JPS6216243B2 - - Google Patents
Info
- Publication number
- JPS6216243B2 JPS6216243B2 JP1013982A JP1013982A JPS6216243B2 JP S6216243 B2 JPS6216243 B2 JP S6216243B2 JP 1013982 A JP1013982 A JP 1013982A JP 1013982 A JP1013982 A JP 1013982A JP S6216243 B2 JPS6216243 B2 JP S6216243B2
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- converter
- tuyere
- blowing
- combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 64
- 239000001301 oxygen Substances 0.000 claims description 51
- 229910052760 oxygen Inorganic materials 0.000 claims description 51
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 49
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 47
- 238000007664 blowing Methods 0.000 claims description 40
- 238000010438 heat treatment Methods 0.000 claims description 36
- 238000002485 combustion reaction Methods 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 34
- 229910052757 nitrogen Inorganic materials 0.000 claims description 23
- 229910001021 Ferroalloy Inorganic materials 0.000 claims description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 12
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 12
- 239000011819 refractory material Substances 0.000 claims description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 6
- 239000000446 fuel Substances 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 239000001569 carbon dioxide Substances 0.000 claims description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 4
- 238000009628 steelmaking Methods 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 description 21
- 239000000428 dust Substances 0.000 description 16
- 239000007789 gas Substances 0.000 description 13
- 239000003350 kerosene Substances 0.000 description 12
- 238000002156 mixing Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 9
- 229910052804 chromium Inorganic materials 0.000 description 9
- 239000011651 chromium Substances 0.000 description 9
- 238000005520 cutting process Methods 0.000 description 9
- 238000007670 refining Methods 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000003923 scrap metal Substances 0.000 description 4
- 229910000604 Ferrochrome Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- -1 carbide Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 150000002926 oxygen Chemical class 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000011234 economic evaluation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/30—Regulating or controlling the blowing
- C21C5/35—Blowing from above and through the bath
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
Description
【発明の詳細な説明】
本発明は、転炉における冷材装入物即ち屑鉄・
合金鉄等の加熱方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a cold material charge in a converter, that is, scrap iron.
Related to heating methods for ferroalloys, etc.
従来、一般に広く採用されている製鋼法は、純
酸素上吹転炉、純酸素底吹転炉、あるいは最近開
発実用化されつつある上底吹転炉(複合吹錬法)
などの転炉製鋼法である。これ等各種の転炉製鋼
法に共通した機能上の問題は、他の製鋼法、例え
ば平炉、あるいは電気炉等に比して、屑鉄溶解能
力が高々25〜30%と限定されており屑鉄使用量に
限界があることである。従つて、この転炉製鋼法
の機能的な基本的問題を解決しようとする種種の
提案、試みが成されて来た。例えば、転炉にフエ
ロシリコン、カーバイド、あるいは金属アルミニ
ユーム、さらにはコークス粉などの補助熱源を装
入し、これを精錬用酸素で燃焼させて入熱量の増
加を図る方法が広く採用されて来た。あるいはま
た、転炉に装入した屑鉄を精錬に先立つて、オキ
シフユーアル・バーナー、あるいはトロイダル・
バーナーを用いて屑鉄を予熱する方法なども、あ
る限定された条件下で実用化されている。 Traditionally, the commonly used steelmaking methods are pure oxygen top-blowing converter, pure oxygen bottom-blowing converter, and top-bottom blowing converter (combined blowing method), which has recently been developed and put into practical use.
This is a converter steel manufacturing method. A common functional problem with these various converter steelmaking methods is that compared to other steelmaking methods, such as open hearth or electric furnaces, the scrap iron melting capacity is limited to 25-30% at most, and the use of scrap iron is limited. There is a limit to the amount. Therefore, various proposals and attempts have been made to solve the basic functional problems of this converter steel manufacturing method. For example, a method has been widely adopted in which an auxiliary heat source such as ferrosilicon, carbide, metal aluminum, or even coke powder is charged into a converter and combusted with refining oxygen to increase heat input. Ta. Alternatively, the scrap iron charged to the converter may be heated using an oxyfuel burner or toroidal burner prior to smelting.
Methods such as preheating scrap iron using a burner have also been put into practical use under certain limited conditions.
然しながらこれ等各種の屑鉄溶解能力の向上法
は、使用する熱源のコスト的負荷が大きく、かつ
燃焼生成物が転炉の精錬反応に悪影響を与えた
り、あるいは熱効率が低く、予熱時間の為、製鋼
能率低下を持たらすなど広く採用される為には
種々の問題を有するものである。従つて、これ等
の各種屑鉄溶解能力向上法は、例えば高炉の内張
り耐火物の巻き替え時の如き、極端な溶銑不足時
の生産対策として、極く限定された適用例を見る
に過ぎない。 However, these various methods of improving scrap iron melting capacity have a large cost burden on the heat source used, and the combustion products have a negative effect on the refining reaction of the converter, or the thermal efficiency is low and the preheating time is too long, making it difficult to make steel. There are various problems that prevent it from being widely adopted, such as a decrease in efficiency. Therefore, these various scrap iron melting capacity improvement methods have only found extremely limited application as a production measure in times of extreme hot metal shortage, such as when replacing the refractory lining of a blast furnace.
一方、転炉の炉底に設けた精錬用ガスの底吹羽
口を用いて灯油の如き燃料と燃焼用酸素を吹き込
んで装入されている屑鉄を予熱する方法も古くよ
り知られており、(特許出願公告昭53−28241(出
願:昭49年9月10日))一部の底吹転炉、あるい
は上底吹転炉で実用化されている。 On the other hand, a method of preheating the charged scrap iron by blowing fuel such as kerosene and combustion oxygen using the bottom blowing tuyere for refining gas installed at the bottom of the converter has been known for a long time. (Patent Application Publication No. 53-28241 (Application: September 10, 1972)) It has been put into practical use in some bottom-blowing converters or top-bottom blowing converters.
この方法は、通常の精錬中には転炉々底に設け
た二重管羽口の内管より精錬用酸素を吹き込み、
外管からは羽口保護用のメタン、プロパンの如き
炭化水素を吹き込むが屑鉄予熱時には、内管に燃
焼用酸素を、外管に灯油の如き燃料油を夫々吹き
込んで燃焼させ、この燃焼によつて生成する高温
の排ガスを装入されている充填屑鉄層の下方より
上方に逃散浮上せしめ、その過程で被加熱物の屑
鉄に高い効率で伝熱を行なうものである。 In this method, during normal refining, refining oxygen is blown into the inner tube of a double-tube tuyere installed at the bottom of the converter.
Hydrocarbons such as methane and propane are injected from the outer tube to protect the tuyere, but when preheating the scrap metal, combustion oxygen is injected into the inner tube and fuel oil such as kerosene is injected into the outer tube. The high-temperature exhaust gas generated by the heating process is caused to escape and float upward from the bottom of the charged scrap metal layer, and in the process, heat is transferred to the scrap metal to be heated with high efficiency.
本発明者等は、上記の方法の工業化について詳
細な研究を行なつたが、上記の如く公知の羽口を
利用した燃焼方法では、極めて限定された適用し
か出来ず、被加熱物の種類及び加熱温度に限界が
あり、汎用性のある工業化には問題があることを
知見した。 The present inventors have conducted detailed research on the industrialization of the above method, but as mentioned above, the known combustion method using tuyeres can only be applied to a very limited range of applications, depending on the type of material to be heated. It was discovered that there is a limit to the heating temperature, and that there is a problem with general-purpose industrialization.
従つて、本発明の課題は、底吹転炉、あるいは
上底吹転炉の底吹用羽口を利用した屑鉄、あるい
は合金鉄の加熱方法において、被加熱物の種類、
及び加熱温度の制限を大幅に改善、かつ、熱効率
が高く、同時に被加熱物の損失の非常に少ない、
汎用性の高い技術的方法を提供するところにあ
る。 Therefore, an object of the present invention is to provide a heating method for scrap iron or ferroalloy using the bottom-blowing tuyeres of a bottom-blowing converter or a top-bottom-blowing converter, and to
The heating temperature limit has been greatly improved, the thermal efficiency is high, and at the same time, there is very little loss of the heated material.
The aim is to provide highly versatile technical methods.
先に述べた公知の方法、つまり底吹用羽口の内
管より燃焼用酸素、外管より灯油の如き燃料を吹
き込み、屑鉄、あるいは合金鉄を加熱する場合の
基本的な問題は、酸素による灯油、あるいは他の
炭化水素、他の含炭物質の燃焼火炎温度は非常に
高いこと、及び被加熱物がある温度に達すると、
内管より吹き込まれる酸素によつて直接激しい金
属と酸素の酸化反応(所謂酸素によるカツテイン
グ現象)が起ることであることを、発明者等の詳
細な研究で明らかとなつた。これ等二つの基本的
な問題は、実操業上致命的な障害を持たらすこと
も知見した。底吹用羽口より吹き込まれた、例え
ば灯油と酸素の火炎温度は、本発明質等の種々の
理論計算、及び実験で確認したところによれば、
約3000℃の超高温炎となり、この為羽口直上部、
及びその近傍は、短時間の加熱で局部的に加熱さ
れ、加えて被加熱物の種類によつても異るが、被
加熱物の表面温度が約1100〜1250℃に至ると酸素
によるカツテング現象を開始することが確認され
た。この酸素のカツテング、つまり被加熱物の金
属、例えば、鉄、珪素、クロム、マンガン等の激
しい酸化発熱反応により被加熱物は、上述の超高
温の火炎下にあることもあり、急速に溶解が進行
する。この結果、底吹用羽口を中心として、その
近傍が局部的に高温に加熱され、かつ部分的に溶
融層を形成し、これが炉底に湯溜りを作るが、内
管より吹き込まれる酸素ガスの圧力がかかる湯溜
りの形成によつても、羽口内部に溶湯が差し込ま
ないある臨界圧力以上で吹き込まれている為に、
溶融層の一部は、この酸素ジエツトでスプラツシ
として吹き飛ばされる。このスプラツシは、未溶
解の被加熱物充填層に飛散して、充填層の個々の
被加熱物間の空隙を充たし、遂には局部的に半溶
融状の大きな塊りとなる。つまり、例に示した灯
油と酸素の燃焼条件では、羽口を中心にして溶融
層の湯溜が形成され、羽口直上部は吹き込みガス
によつて完全に吹き抜け、その周囲には半溶融状
の塊りの層が形成される。この現象は被加熱物
が、酸化によるカツテイングが比較的起りにくい
型銑で、その加熱温度が低い場合には、比較的軽
微であるが被加熱物が普通鋼屑、珪素、あるいは
クロムを多く含んだ屑鉄、あるいはフエロクロ
ム、フエロニツケルなどの合金鉄の場合には、極
く短時間の加熱時間でも必らず発生することが判
明した。 The basic problem with the previously mentioned method of heating scrap iron or ferroalloy by blowing combustion oxygen through the inner tube of the bottom-blowing tuyere and fuel such as kerosene through the outer tube is that the oxygen The combustion flame temperature of kerosene or other hydrocarbons or other carbon-containing substances is very high, and when the heated material reaches a certain temperature,
Detailed research by the inventors has revealed that the oxygen blown into the inner tube directly causes a violent oxidation reaction between the metal and oxygen (so-called oxygen-induced cutting phenomenon). It was also found that these two basic problems pose fatal obstacles in actual operation. The flame temperature of, for example, kerosene and oxygen injected from the bottom blowing tuyere has been confirmed by various theoretical calculations and experiments, including those of the present invention, as follows:
It becomes an extremely high temperature flame of approximately 3000℃, and as a result, the flame directly above the tuyere,
The area and its vicinity are locally heated by short-time heating, and the cutting phenomenon caused by oxygen occurs when the surface temperature of the heated object reaches approximately 1100 to 1250°C, although it also depends on the type of heated object. It has been confirmed that it will start. Due to this cutting of oxygen, which is a violent oxidative exothermic reaction of the metal of the object to be heated, such as iron, silicon, chromium, manganese, etc., the object to be heated, which is under the above-mentioned ultra-high temperature flame, rapidly melts. proceed. As a result, the area around the bottom blowing tuyere is locally heated to a high temperature, and a molten layer is partially formed, which forms a pool at the bottom of the furnace, but the oxygen gas blown from the inner pipe Even though the molten metal is formed in a pool under a pressure of
A portion of the molten layer is blown off as a spray by this oxygen jet. This splash scatters onto the packed bed of unmelted objects to be heated, fills the gaps between the individual objects to be heated in the packed bed, and finally locally becomes a large semi-molten lump. In other words, under the combustion conditions of kerosene and oxygen shown in the example, a pool of molten layer is formed around the tuyere, the area just above the tuyere is completely blown through by the blown gas, and the area around it is a semi-molten layer. A layer of lumps is formed. This phenomenon may be relatively slight if the object to be heated is a pig iron type that is relatively unlikely to be cut due to oxidation, and the heating temperature is low, but it may occur if the object to be heated contains a large amount of ordinary steel scrap, silicon, or chromium. It has been found that in the case of scrap iron or ferroalloys such as ferrochrome and ferronitkel, this occurs even when heated for an extremely short time.
このような不可避的な現象は、底吹用羽口をバ
ーナーとして利用する、屑鉄、あるいは合金鉄の
加熱方法としては、致命的な障害となる。 Such an unavoidable phenomenon is a fatal hindrance to the heating method of scrap iron or ferroalloy, which utilizes the bottom blowing tuyere as a burner.
その一つは、熱効率の低下である。底吹用羽口
を利用した加熱方法では、羽口先端で燃焼した高
温の排ガスが、被加熱物充填層の間隙を下部より
上方に通過することにより高い伝熱効率が得られ
ることが大きな利点である。然しながら、上述の
如く羽口直上部が溶融して空間を形成して燃焼ガ
スの大部分が直接吹き抜ける為に、熱効率が著し
く低下することが避けられないと云う実際操業上
の大きな問題点となる。 One of them is a decrease in thermal efficiency. A heating method using bottom-blowing tuyeres has the major advantage that high heat transfer efficiency can be obtained by allowing the high-temperature exhaust gas combusted at the tip of the tuyere to pass through the gap between the layers of the material to be heated upwards from the bottom. be. However, as mentioned above, the area directly above the tuyere melts to form a space through which most of the combustion gas blows through, resulting in a major problem in actual operation in which a significant drop in thermal efficiency is unavoidable. .
次ぎの問題は、炉底の羽口を中心として出来た
湯溜りが羽口の内管より吹き込んだ酸素ジエツト
によつて、容易に吹き抜ける現象である。これは
スプラツシの吹き上げにより溶湯の一部が転炉の
集じん機まで達し、これによつて大幅な歩留の低
下を来たすと云う大きな問題を生じる。さらに、
被加熱物の酸素による激しい酸化反応によつて、
鉄、あるいは含有する有価元素、例えばクロム、
マンガンなどの酸化である。特にクロムやマンガ
ンなどを含む合金鉄を加熱する時は、これ等元素
の酸化は、次の精錬工程で大きな障害となり、こ
れ等の酸化を如何に抑制するかは、そのプロセス
の経済的評価として非常に重要である。 The next problem is that the pool of water formed around the tuyere at the bottom of the furnace is easily blown through by the oxygen jet blown through the inner pipe of the tuyere. This poses a serious problem in that a portion of the molten metal reaches the dust collector of the converter due to the splash, resulting in a significant drop in yield. moreover,
Due to the intense oxidation reaction caused by oxygen in the heated material,
Iron or valuable elements it contains, such as chromium,
This is the oxidation of manganese, etc. Particularly when heating alloyed iron alloys containing chromium, manganese, etc., oxidation of these elements becomes a major hindrance in the next refining process, and how to suppress these oxidations is an economic evaluation of the process. Very important.
次ぎに発見された大きな問題は、羽口先端上部
の超高温火炎の形成により羽口周囲の耐火物が非
常な高温にさらされ、耐火物の損傷が大きいこと
である。 The next big problem discovered was that the refractory material around the tuyere was exposed to extremely high temperatures due to the formation of ultra-high temperature flames above the tuyere tip, causing significant damage to the refractory material.
このように、従来の公知の底吹羽口を利用した
屑鉄、あるいは合金鉄の加熱方法は、熱効率の低
下、被加熱物の集じん機への損失(歩立低下)鉄
および含有するクロム、マンガン等の有価元素の
酸化、さらには羽口、および炉底耐火物の損傷な
ど工業化にあたつては、基本的な問題を残してい
る。 As described above, the conventional heating method of scrap iron or ferroalloy using a bottom blowing tuyere has the disadvantages of a decrease in thermal efficiency, a loss of the heated material to the dust collector (decreased yield rate), iron and chromium contained therein, There remain fundamental problems in industrialization, such as oxidation of valuable elements such as manganese, and damage to tuyeres and bottom refractories.
本発明者等は、上記の問題を解決する加熱方法
について、種々詳細な検討・研究を行ない羽口先
端での燃焼条件の改善により、これ等の基本的問
題が抜本的に解決できることを知見し得た。従来
の羽口を利用した加熱方法の最も基本的な問題
は、灯油の如き燃料を酸素によつて、化学量論的
にCO2、H2Oに完全に燃焼させる為に、羽口先端
の火炎温度が3000℃を越えるような超高温とな
り、羽口近傍の被加熱物が局部的に高温に加熱さ
れること、および局部的に加熱された被加熱物が
燃焼用の酸素ジエツトによりカツテイング(急激
な酸化反応)されることであり、これを防止する
ことが抜本的改善策であることを知見した。 The present inventors have conducted various detailed studies and studies on heating methods that solve the above problems, and have found that these basic problems can be fundamentally solved by improving the combustion conditions at the tip of the tuyere. Obtained. The most fundamental problem with conventional heating methods using tuyeres is that the tip of the tuyere is required to completely burn fuel such as kerosene into CO 2 and H 2 O in a stoichiometric manner using oxygen. The flame temperature becomes extremely high, exceeding 3000℃, and the object to be heated near the tuyere is locally heated to a high temperature, and the locally heated object is cut (cutting) by the oxygen jet for combustion. It was discovered that a rapid oxidation reaction occurs, and that preventing this is a fundamental improvement measure.
先ずこの解決法として、羽口先端での灯油―酸
素の燃焼条件を、従来の化学量論的な完全燃焼条
件より不完全燃焼条件に変えて検討した。灯油1
の燃焼に必要な理論酸素量は、1.88Nm3である
が、この理論酸素量に対する実際の吹込み酸素量
を50%および30%に減じて、不完全燃焼の加熱試
験を行なつた、先に述べた被加熱物の局部溶解、
酸素のカツテイング現象は防止できなかつた。 First, as a solution to this problem, we changed the combustion conditions of kerosene and oxygen at the tip of the tuyere from the conventional stoichiometric complete combustion conditions to incomplete combustion conditions. Kerosene 1
The theoretical amount of oxygen required for the combustion of Local melting of the heated object as described in
The oxygen cutting phenomenon could not be prevented.
この実験を通じて行なつた詳細な検討により、
羽口の内管に酸素を吹き込む限り、この酸素が羽
口先端より音速に近いジエツト流として吐出し、
これにより超高温の火炎の生成、及び酸素による
被加熱物のカツテイング現象は避けられないこと
を思い起こした。 Through detailed consideration through this experiment,
As long as oxygen is blown into the inner tube of the tuyere, this oxygen is discharged from the tip of the tuyere as a jet flow close to the speed of sound.
This reminded us that the generation of ultra-high temperature flames and the cutting phenomenon of heated objects due to oxygen are unavoidable.
そこで、小規模のオフライン実験を行ない羽口
先端での燃焼条件について種々の研究を行なつた
結果、内管より吹き込む燃焼用酸素に窒素、アル
ゴン、あるいは炭酸ガスの如き不活性ガスを混合
することにより、被加熱物のカツテイング現象が
大幅に抑制されることが知見された。 Therefore, after conducting small-scale off-line experiments and conducting various studies on the combustion conditions at the tip of the tuyere, we found that an inert gas such as nitrogen, argon, or carbon dioxide was mixed with the combustion oxygen blown from the inner tube. It was found that the cutting phenomenon of the heated object was significantly suppressed.
この知見に基いて、実際の操業炉である150ト
ン転炉で、更に詳細な燃焼条件についての種々の
実験を行なつた。 Based on this knowledge, we conducted various experiments on more detailed combustion conditions in a 150-ton converter, which is an actual operating furnace.
実験に供した転炉は第1図に示す如く、炉底に
6本の羽口を有し、その内管には酸素、窒素、ア
ルゴンの各ガスを独立に、あるいは任意の比率に
混合して流せ、外管には通常の吹錬中に流すプロ
パンの外に窒素、アルゴン、および加熱時に使用
する灯油を流せるようになつている。また、上吹
水冷ランスからは、通常流す酸素の外に窒素ガス
が酸素に混合されて流せるようになつている。第
1図の上底吹転炉に屑鉄を約50トン装入し、6本
の底吹羽口の外管より灯油を2000/時から4000
/時、内管吹込みガス量を純酸素から酸素と窒
素の混合比率を種々変えて、羽口口径によつても
異るが3000Nm3/時から10000Nm3/時を種々の組
み合せで流して、試験操業を繰り返えし実施し
た。この試験操業では、屑鉄の加熱後、所定の溶
銑を追加装入して通常の脱炭精錬を行なつた。燃
焼用酸素に対する窒素の混合比率と加熱中の熱効
率、および集じん機へのダストロスの関係を第2
図に示す。同図の熱効率は、屑鉄加熱後の精錬中
の熱バランスより屑鉄加熱後の平均加熱温度より
算出し、ダストロスは、加熱中の集じん水中の金
属酸化物の濃度、および装入鉄分の物質バランス
より算出した。第2図より判るように内管より酸
素単体ガス、あるいは窒素を10%程度混合した時
には、先に述べたような基本的な問題が発生し、
特に被加熱物の30〜50%は溶融しているのが観察
され、かつ表面には金属酸化物のスラグの生成が
観察された。このような状態では燃焼火炎の吹き
抜けにより、伝熱効率が悪く熱効率も40%以下と
低く、かつ被加熱物の集じん機へのダストロスが
非常に大きい。 As shown in Figure 1, the converter used in the experiment had six tuyeres at the bottom of the furnace, and the inner tubes contained oxygen, nitrogen, and argon gases, either individually or mixed in arbitrary ratios. In addition to the propane that is normally flowed during blowing, nitrogen, argon, and kerosene used during heating can be flowed into the outer tube. Additionally, in addition to the normally flowing oxygen, nitrogen gas can be mixed with oxygen and flowed from the top-blown water cooling lance. Approximately 50 tons of scrap iron is charged into the top and bottom blowing converter in Figure 1, and kerosene is poured from 2,000 to 4,000/hour through the outer pipes of the six bottom blowing tuyeres.
/hour, the amount of gas blown into the inner tube was varied from pure oxygen to the mixing ratio of oxygen and nitrogen, and the flow ranged from 3000Nm 3 /hour to 10000Nm 3 /hour in various combinations, depending on the tuyere diameter. , test operations were conducted repeatedly. In this test operation, after heating the scrap iron, a predetermined amount of hot metal was additionally charged and normal decarburization refining was performed. The relationship between the mixing ratio of nitrogen to combustion oxygen, thermal efficiency during heating, and dust loss to the dust collector is
As shown in the figure. The thermal efficiency in the same figure is calculated from the average heating temperature after heating the scrap iron from the heat balance during refining after heating the scrap iron. Calculated from. As can be seen from Figure 2, when oxygen alone gas or nitrogen is mixed at about 10% from the inner tube, the basic problem mentioned above occurs.
In particular, 30 to 50% of the heated material was observed to be melted, and formation of metal oxide slag was observed on the surface. In such a state, the combustion flame blows through, resulting in poor heat transfer efficiency and low thermal efficiency of less than 40%, and the loss of dust from the heated material to the dust collector is extremely large.
これに対して酸素に窒素を20%混合した場合に
は、被加熱物の溶融・カツテイングが大幅に防止
され、熱効率、ダストロスも可成り改善され、こ
の効果は酸素への窒素の混合比率が約30%でほゞ
完全となる。さらに窒素濃度を大きくして行く
と、窒素の混合比率が約70%で熱効率の低下の傾
向が見られ80%では、この影響は無視できなくな
る。但し、この時には窒素の冷却効果により火炎
温度が極度に低くなり、ダストロス、および金属
酸化物の生成は皆無であつた。従つて熱効率、ダ
ストロスおよび金属酸化鉄の生成など加熱の総合
的な特性・効率を考えると実操業の条件として
は、酸素への窒素の混合比率は、20%から70%の
範囲が好ましいことが判明した。また、この程度
の窒素の混合比率での操業では、従来の灯油・酸
素の燃焼の時に観察された羽口周囲の耐火物の大
きな損傷も見られず、羽口寿命も大幅に延長でき
ることが確認された。 On the other hand, when 20% nitrogen is mixed with oxygen, melting and cutting of the heated object is significantly prevented, and thermal efficiency and dust loss are also considerably improved. 30% is almost complete. As the nitrogen concentration is further increased, there is a tendency for thermal efficiency to decrease at a nitrogen mixing ratio of about 70%, and at 80%, this effect can no longer be ignored. However, at this time, the flame temperature was extremely low due to the cooling effect of nitrogen, and there was no dust loss or metal oxide formation. Therefore, considering the overall characteristics and efficiency of heating such as thermal efficiency, dust loss, and generation of metal iron oxide, it is recommended that the mixing ratio of nitrogen to oxygen be in the range of 20% to 70% under actual operating conditions. found. In addition, it was confirmed that when operating at this level of nitrogen mixing ratio, there was no major damage to the refractories around the tuyere, which was observed during conventional kerosene/oxygen combustion, and the life of the tuyere could be significantly extended. It was done.
また、第1図に示した上吹ランスからの酸素の
供給を行ない、その分だけ底吹ガスの供給を減じ
て、羽口口径を小さくする方法についても実験を
行なつた。この時は底吹羽口による燃焼条件は、
先に述べた酸素と窒素の混合ガスを吹き込んで、
理論酸素量より少ない不完全燃焼となるが、この
時の未燃焼分解ガスを上吹ランスよりの酸素で二
次燃焼させる方法となる。上吹ランスより燃焼用
の酸素を吹き込む場合には、その吹き込み条件に
よつては燃焼が屑鉄表面の局部に集中して先きに
述べた底吹羽口の燃焼と同様の問題が起ると同時
に、上吹比率が高い時には二次燃焼による火炎の
温度が高くなり、炉内雰囲気温度が実測によれば
約1800℃もの高温に達し、炉体耐火物の損傷を助
長する現象を隨伴することが知見された。従つ
て、この上吹酸素の燃焼条件についても、これま
でに述べた底吹羽口の燃焼条件と同様の検討を行
なつた結果、上吹酸素に窒素を20%から70%混合
することにより、熱効率、ダストロス、金属の酸
化物生成、および耐火物の損傷などについて、理
想的な加熱条件が得られることが確認された。特
に炉体耐火物の損傷については、炉内雰囲気温度
の大幅な低下によつて、加熱を行なわない場合に
比して殆んど損傷の進行がないことが大きな経済
的効果である。なお、本実験は、酸素に混合する
気体として窒素を使用したが、先に述べた小型炉
のオフライン実験でアルゴン、炭酸ガスなどの他
の不活性ガスで、燃焼火炎の冷却効果を有し、か
つ金属の酸素によるカツテイング特性を抑制する
効果があれば、その本来の目的を達するものであ
り、その選択範囲は広いことが確認された。 We also conducted an experiment on a method of supplying oxygen from the top blowing lance shown in FIG. 1 and reducing the supply of bottom blowing gas by that amount to reduce the tuyere diameter. At this time, the combustion conditions using the bottom blowing tuyere are as follows.
Blow in the aforementioned mixed gas of oxygen and nitrogen,
Although this results in incomplete combustion with less oxygen than the theoretical amount, this method involves secondary combustion of the unburned decomposed gas with oxygen from the top blowing lance. When blowing oxygen for combustion from the top blowing lance, depending on the blowing conditions, the combustion may concentrate locally on the surface of the scrap metal, causing the same problem as the bottom blowing tuyere combustion mentioned earlier. At the same time, when the top blowing ratio is high, the temperature of the flame due to secondary combustion increases, and the atmospheric temperature inside the furnace reaches a high temperature of approximately 1800℃ according to actual measurements, leading to a phenomenon that promotes damage to the furnace refractories. It was discovered that Therefore, regarding the combustion conditions for this top-blown oxygen, we conducted the same study as the combustion conditions for the bottom-blown tuyere described above, and found that by mixing 20% to 70% nitrogen with the top-blown oxygen, It was confirmed that ideal heating conditions could be obtained in terms of thermal efficiency, dust loss, metal oxide formation, and damage to refractories. In particular, with regard to damage to the furnace refractories, a significant economic effect is that due to the drastic reduction in the atmospheric temperature within the furnace, damage hardly progresses compared to when no heating is performed. Although nitrogen was used as the gas to be mixed with oxygen in this experiment, other inert gases such as argon and carbon dioxide were used in the offline experiment in the small reactor mentioned above, which has the effect of cooling the combustion flame. It was also confirmed that if it has the effect of suppressing the cutting characteristics of metals due to oxygen, the original purpose can be achieved, and the selection range is wide.
以上は通常の溶銑と屑鉄を主原料とした転炉吹
錬に於ける一般の普通鋼屑を予熱して屑鉄の溶解
能力を向上させる方法についての実施例を示した
ものである。この結果を、例えば高クロム合金鋼
を溶製する時のフエロクロム合金鉄の予熱に適用
した時の代表的な結果を第3図に示した。加熱時
の燃焼用酸素への窒素の混合比率が0%、15%、
50%の場合の転炉の集じん機へのダストロスを、
集じん水中のクロム濃度で評価すると、第3図よ
り判る如く酸素への窒素の混合比率が15%までは
非常に高濃度が検出されるが、窒素の混合比率が
50%の時には、殆んど検出されていない。この結
果、加熱後の精錬工程を含めた総合のクロム歩留
は窒素の混合比率が0%と15%の時は、90%以下
であつたが、窒素混合比率が50%の場合は、94.3
%と大幅な向上が図られた。被加熱物に上記の例
に示したクロム、あるいはニツケルやマンガンな
どの高価元素を含む場合には、本発明の効果は非
常に大きくなることは当然である。 The above is an example of a method for preheating ordinary steel scrap in converter blowing using ordinary hot metal and scrap iron as main raw materials to improve the scrap iron melting ability. FIG. 3 shows typical results when this result is applied, for example, to preheating ferrochrome alloy iron when producing high chromium alloy steel. The mixing ratio of nitrogen to combustion oxygen during heating is 0%, 15%,
Dust loss to converter dust collector in 50% case,
When evaluating the chromium concentration in the collected dust water, as shown in Figure 3, a very high concentration is detected up to a mixing ratio of nitrogen to oxygen of 15%;
At 50%, it is hardly detected. As a result, the overall chromium yield including the refining process after heating was less than 90% when the nitrogen mixing ratio was 0% and 15%, but when the nitrogen mixing ratio was 50%, it was 94.3%.
%, a significant improvement was achieved. Naturally, when the object to be heated contains chromium as shown in the above example, or an expensive element such as nickel or manganese, the effects of the present invention are greatly enhanced.
以上述べた実施態様は、本発明の全ての構成技
術を現わすものでなく、例えば底吹羽口より吹き
込む燃料として、他の炭化水素、あるいは含炭物
質などの燃料、あるいはさらに上吹方法としては
上吹水冷ランスによらず、炉壁上部に設置した羽
口を通じて吹き込む方法なども、本発明の実施態
様に含まれるものである。 The embodiments described above do not represent all the constituent technologies of the present invention, and for example, as fuel injected from the bottom blowing tuyeres, other hydrocarbons or carbon-containing materials, or even as a top blowing method. Embodiments of the present invention include a method in which the water is blown through a tuyere installed at the upper part of the furnace wall, instead of using a top-blown water cooling lance.
本発明は上述した如く構成し、且つ用いること
により被加熱物の種類、及び加熱温度などの制約
条件なしに被加熱物の加熱効率の向上、さらには
被加熱損失を極めて減少させることが出来るなど
転炉における屑鉄、合金鉄などの加熱に貢献する
ところがきわめて大きい。 By constructing and using the present invention as described above, it is possible to improve the heating efficiency of the object to be heated, and to significantly reduce heating loss, without any restrictions such as the type of object to be heated or the heating temperature. It greatly contributes to the heating of scrap iron, ferroalloy, etc. in converters.
第1図は上底吹転炉で屑鉄、合金鉄を加熱する
本発明の概念図、第2図は屑鉄加熱時の燃焼用酸
素に対する窒素の混合比率と熱効率および集じん
機へのダストロスの関係を示す図、第3図はフエ
ロクロム合金鉄加熱時、燃焼用酸素に窒素を0
%、15%、50%混合した場合の集じん水中クロム
濃度を示す図である。
1……底吹内管ガス配管、2……底吹外管ガス
配管、3……上吹ランス、4……被加熱物、5…
…転炉々体、6……底吹二重管羽口。
Figure 1 is a conceptual diagram of the present invention for heating scrap iron and ferroalloy in a top-bottom blowing converter, and Figure 2 is the relationship between the mixing ratio of nitrogen to combustion oxygen when heating scrap iron, thermal efficiency, and dust loss to the dust collector. Fig. 3 shows that when heating ferrochrome alloy iron, zero nitrogen is added to the combustion oxygen.
%, 15%, and 50% of the chromium concentration in the collected dust water. 1... Bottom-blown inner pipe gas piping, 2... Bottom-blown outer pipe gas pipe, 3... Top-blown lance, 4... Heated object, 5...
...Converter body, 6...Bottom-blown double pipe tuyere.
Claims (1)
あるいは上底吹転炉の製鋼法で、底吹羽口の一つ
の流路より炭化水素、他の含炭物質の燃料を他の
流路より燃料燃焼用の酸素を吹き込んで燃焼さ
せ、装入されている屑鉄、あるいは/および合金
鉄を加熱する方法において、燃焼用酸素に20%以
上70%未満の窒素、アルゴン、あるいは炭酸ガス
などの不活性ガスを混合することを特徴とする転
炉に於ける屑鉄・合金鉄の加熱方法。 2 底吹羽口に加えて燃焼用酸素の一部を、上吹
水冷ランス、あるいは炉壁耐火物を貫通して設け
た羽口より供給することを特徴とする特許請求の
範囲第1項記載の転炉に於ける屑鉄・合金鉄の加
熱方法。 3 水冷ランス、あるいは炉壁耐火物を貫通して
設けた羽口より供給する燃焼用酸素に窒素、アル
ゴン、炭酸ガスなどの不活性ガスを20%以上70%
未満混合することを特徴とする特許請求の範囲第
2項記載の転炉に於ける屑鉄・合金鉄の加熱方
法。[Claims] 1. A bottom-blowing converter equipped with bottom-blowing multi-tube tuyeres at the bottom of the furnace;
Alternatively, in the top-bottom blowing converter steelmaking method, fuel consisting of hydrocarbons or other carbon-containing substances is blown into one channel of the bottom blowing tuyere and oxygen for fuel combustion is blown into the other channel, then combusted, and then charged. In the method of heating scrap iron and/or ferroalloy, which is used in a converter, the converter is characterized in that 20% or more and less than 70% of an inert gas such as nitrogen, argon, or carbon dioxide is mixed with oxygen for combustion. Heating method for scrap iron and ferroalloy. 2. Claim 1, characterized in that, in addition to the bottom blowing tuyere, a part of the combustion oxygen is supplied from the top blowing water cooling lance or the tuyere provided through the furnace wall refractories. A method of heating scrap iron and ferroalloy in a converter. 3 Oxygen for combustion supplied from a water-cooled lance or a tuyere installed through the furnace wall refractories is mixed with an inert gas such as nitrogen, argon, or carbon dioxide by 20% or more and 70%.
3. A method for heating scrap iron and ferroalloy in a converter according to claim 2, wherein said scrap iron and ferroalloy are mixed in a converter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57010139A JPS58130210A (en) | 1982-01-27 | 1982-01-27 | Heating method for scrap iron and ferroalloy in converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57010139A JPS58130210A (en) | 1982-01-27 | 1982-01-27 | Heating method for scrap iron and ferroalloy in converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58130210A JPS58130210A (en) | 1983-08-03 |
JPS6216243B2 true JPS6216243B2 (en) | 1987-04-11 |
Family
ID=11741943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57010139A Granted JPS58130210A (en) | 1982-01-27 | 1982-01-27 | Heating method for scrap iron and ferroalloy in converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58130210A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4529443A (en) * | 1984-04-26 | 1985-07-16 | Allegheny Ludlum Steel Corporation | System and method for producing steel in a top-blown vessel |
JPS61195909A (en) * | 1985-02-26 | 1986-08-30 | Kawasaki Steel Corp | Method for melting iron scrap in converter |
DE3607777A1 (en) * | 1986-03-08 | 1987-09-17 | Kloeckner Cra Tech | METHOD FOR PRODUCING STEEL FROM SCRAP |
FR2646789B1 (en) * | 1989-05-12 | 1994-02-04 | Air Liquide | PROCESS FOR THE TREATMENT OF OXIDATION OF A LIQUID BATH |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS541220A (en) * | 1977-05-04 | 1979-01-08 | Maximilianshuette Eisenwerk | Steel producing method and converter |
-
1982
- 1982-01-27 JP JP57010139A patent/JPS58130210A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS541220A (en) * | 1977-05-04 | 1979-01-08 | Maximilianshuette Eisenwerk | Steel producing method and converter |
Also Published As
Publication number | Publication date |
---|---|
JPS58130210A (en) | 1983-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4089677A (en) | Metal refining method and apparatus | |
AU2009236006B2 (en) | Refining ferroalloys | |
CA1115962A (en) | Steelmaking process | |
US3232748A (en) | Process for the production of steel | |
JPS6023182B2 (en) | Melting method for medium carbon high chromium molten metal | |
JPS6216243B2 (en) | ||
JPH0368082B2 (en) | ||
JPS6036613A (en) | Production of raw molten nickel-containing stainless steel | |
JP2661478B2 (en) | Cylindrical furnace and method for producing hot metal using the same | |
JP4114346B2 (en) | Manufacturing method of high Cr molten steel | |
JPH0355538B2 (en) | ||
JPS61213310A (en) | Production of molten ferrous alloy | |
JPS6237340A (en) | Manufacture of low-nitrogen and low-carbon ferrochrome | |
JPS631367B2 (en) | ||
US3640701A (en) | Direct reduction of oxides | |
JPS61272346A (en) | Melting-reducing refining method for high manganese ferrous alloy | |
JP2022117935A (en) | Molten iron refining method | |
JP2727627B2 (en) | Manufacturing method of hot metal for high alloy steel | |
JPH01252710A (en) | Method for operating iron bath type smelting reduction furnace | |
SU1423600A1 (en) | Method of smelting steel in converter with combined blast | |
JP2760155B2 (en) | Hot metal production method | |
JPH02282410A (en) | Smelting reduction method for ore | |
JPS6123244B2 (en) | ||
JPH09227918A (en) | Method for smelting stainless steel | |
JPH01195211A (en) | Method for melting and reducing iron oxide |