JP2004169070A - Method for protecting bottom-blown double-tube tuyere in molten metal refining furnace - Google Patents

Method for protecting bottom-blown double-tube tuyere in molten metal refining furnace Download PDF

Info

Publication number
JP2004169070A
JP2004169070A JP2002333809A JP2002333809A JP2004169070A JP 2004169070 A JP2004169070 A JP 2004169070A JP 2002333809 A JP2002333809 A JP 2002333809A JP 2002333809 A JP2002333809 A JP 2002333809A JP 2004169070 A JP2004169070 A JP 2004169070A
Authority
JP
Japan
Prior art keywords
tuyere
molten metal
gas
tube
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002333809A
Other languages
Japanese (ja)
Other versions
JP3909589B2 (en
Inventor
Shoichi Watanabe
正一 渡邉
Hiroyasu Morioka
宏泰 森岡
Shigeyuki Nabeshima
茂之 鍋島
Seiji Hosohara
聖司 細原
Seiji Nabeshima
誠司 鍋島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002333809A priority Critical patent/JP3909589B2/en
Publication of JP2004169070A publication Critical patent/JP2004169070A/en
Application granted granted Critical
Publication of JP3909589B2 publication Critical patent/JP3909589B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for effectively preventing the wear of a tuyere caused by blowing-away of mushroom by suitably keeping the mushroom in a molten metal refining furnace having a double-tube tuyere at the furnace bottom. <P>SOLUTION: When the molten metal is refined by supplying refining gas from the inner tube of the tuyere and gas for cooling the tuyere from a gap between the inner tube and an outer tube, into the molten metal held in the molten metal refining furnace from the double tube type gas blowing tuyere arranged at the bottom of the molten metal refining furnace, a linear flowing velocity of the gas for cooling the tuyere in the gap between the inner tube and the outer tube of the tuyere, is made to be ≤ 220 Nm/sec. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、製鋼用の底吹き転炉あるいは上底吹き転炉に代表される溶融金属の精錬炉の炉底部に設けられた二重管方式の羽口を効果的に保護して損耗を少なくする方法に関するものである。
【0002】
【従来の技術】
精錬炉内の溶融金属浴面下に同心二重管方式の羽口(以下、 単に「二重管羽口」と呼ぶ)を介してガスを吹き込む形式の炉として、製鋼用の底吹き転炉あるいは上底吹き転炉が知られている。 底吹き転炉は精錬用酸素ガスの全量を上記二重管羽口の内管から吹き込む方式の溶融金属精錬炉であり、上底吹き転炉は精錬用酸素ガスの一部を二重管羽口の内管から、他の一部を上吹きランスから吹き込む方式の溶融金属精錬炉である。
【0003】
二重管羽口は、一定の間隔を隔てて同心二重管に形成した金属管からなる羽口に、通常、 その内管から酸素、あるいは酸素と不活性ガスの混合ガス(これを「精錬ガス」と呼ぶ)を溶融金属中に吹き込み、内管と外管の間隙からはプロパンガス,不活性ガス等の冷却ガス(これを「外管冷却ガス」と呼ぶ)を吹き込み、この外管冷却ガスが溶鋼温度に到達するための顕熱とプロパンガスにあってはさらに熱分解の分解吸熱を利用して羽口を冷却し保護するものである。
【0004】
このような二重管羽口先端の周囲には、マッシュルームと呼ばれる溶鋼が凝固した金属塊が生成する。このマッシュルームは内管から溶鋼中に吹き込まれる精錬ガスによって形成される火点と呼ばれる高温領域からの受熱と外管冷却ガスの顕熱,分解熱による抜熱のバランスによって生じることが知られている(例えば特許文献1参照)。
【0005】
マッシュルームは火点および周囲の高温の溶鋼が直接羽口外管あるいはその周囲の耐火物に接触することを防止し、これによって二重管羽口の溶損や、羽口周囲の耐火物の損耗を防止する働きがある。このため、安定したマッシュルームを形成することが羽口損耗低減に効果がある。そこで、従来、 底吹き転炉や上底吹き転炉に代表される二重管羽口を有する溶融金属精錬炉においては、マッシュルームを大型にかつ安定して形成するような操業がなされて来た。具体的には、内管から供給する精錬ガスに対して一定比率以上の外管冷却ガスを内管と外管の間隙に供給するものであった。
【0006】
しかし本発明者が解明したところによれば、図2に示すようにマッシュルーム1内に形成される外管冷却ガス流路9は網の目のように分岐しており、マッシュルーム1が大きく肥大するとマッシュルーム1内の外管冷却ガス5の圧損が極端に増大する。内管6から精錬ガス4を供給する二重管羽口のマッシュルーム1は、図2に模式的に示すように、内管6側は精錬ガス4と溶融金属3(すなわち溶鋼)の反応による高温の火点の影響で太いガス流路8が形成されている。したがってマッシュルーム1と羽口との固着は主に内,外管先端面でしかなされない(炉底耐火物とマッシュルーム1とは見掛け上接触しているが、凝着はしていない)ため、マッシュルーム1内の外管冷却ガス5の圧損が大きくなると操業中にマッシュルーム1が吹き飛ばされて羽口が極端に損耗する現象が発生することが明らかとなった。
【0007】
とりわけ、近年、鉄鋼生産用の転炉(溶融鉄−炭素合金である溶銑を酸素によって脱炭精錬して溶鋼となす精錬炉)の場合には、高生産性を目指して、羽口1本あたりの精錬ガス流量を増大する傾向にあり、内管に流す精錬ガス流量が羽口1本あたり0.06Nm/(min・t)以上となるときに、このようなマッシュルームの吹き飛びが発生する傾向が強い。また、ステンレス鋼のように、クロムを9〜30質量%含有する溶融鉄合金の場合には、脱炭精錬中に精錬ガスや外管冷却ガスの組成,種別を段階的に変化する操業が行なわれており、このような段階的なガスの切り替えが一層、マッシュルームの吹き飛びの引き金になっていることが明らかとなった。
【0008】
一方において、 酸素ガスの吹き込みを伴わない羽口、 たとえば小径の金属管を多数集合させた構造の底吹き羽口を有する転炉の場合、特許文献2に開示されているように、羽口毎にガス流量計を設けてマッシュルームの圧力損失を計算し、一方、 羽口毎にその内部に一定間隔で複数の熱電対を設けて温度を測定し、これらマッシュルームの圧力損失と羽口内部の温度が特定の安定領域になるように操業を行なうことが知られている。
【0009】
しかし特許文献2に開示された小径金属管羽口は、上述の二重管羽口のように酸素を吹き込むものではないので、マッシュルームは上記特許文献2の図3に示すように羽口耐火物先端の全面にわたって固着しており、マッシュルーム内のガスの圧損が高まってもマッシュルームが吹き飛ぶ懸念はない。このような観点から特許文献2ではマッシュルームの圧損の上限としては専ら、それによる溶鋼中へのガス流量の低下を考慮したものでしかなく、操業中におけるマッシュルームの吹き飛びを防止する点については何らの知見を提供するものではなかった。
【0010】
【特許文献1】
特開昭63−189783 号公報
【特許文献2】
特開平4−32507 号公報
【特許文献3】
特開昭62−147308 号公報
【0011】
【発明が解決しようとする課題】
上述したように、二重管羽口により、特にその内管から精錬ガスを溶融金属(たとえば溶鋼)中に吹き込む形式の溶融金属精錬炉においては、羽口外管からマッシュルーム内に流入する外管冷却ガスの圧損が高まった場合にマッシュルームの吹き飛びという、従来予測しなかった事態が発生し、これにより羽口寿命が低下する問題が知見されたものであるが、これに対して従来の技術は何ら解決策を与えるものではなかった。
【0012】
本発明は、上記の状況に鑑み、 炉底に二重管羽口を有する溶融金属精錬炉のマッシュルームを適正に維持し、マッシュルームの吹き飛びによる羽口の損耗を効果的に防止する方法を提供することを目的とするものである。
【0013】
【課題を解決するための手段】
本発明は、溶融金属精錬炉の炉底に設けた二重管方式のガス吹込み羽口から該溶融金属精錬炉内に保持した溶融金属中に、該羽口の内管からは精錬ガス、内管と外管の間隙からは羽口冷却用ガスを供給して該溶融金属を精錬するにあたり、前記羽口冷却用ガスの前記羽口の内管と外管の間隙における線流速を 220Nm/sec 以下とすることを特徴とする溶融金属精錬炉の底吹き二重管羽口の保護方法を提案するものである。
【0014】
上記の発明は、前記羽口内管から溶融金属中に吹込む精錬ガス流量が羽口1本あたり0.06Nm/(min・t)以上である場合に適用することが好ましい。
さらに前記溶融金属が溶融鉄−炭素合金であり、前記内管羽口からは酸素を吹込んで脱炭精錬を行なう場合、さらには、前記溶融鉄−炭素合金がさらにクロムを9〜30質量%含有する場合に上記発明を適用すると一層効果があるので好ましい。
【0015】
【発明の実施の形態】
以下に本発明の好ましい実施の形態について説明する。
本発明が適用対象とする溶融金属精錬炉は、炉底に二重管方式のガス吹込み羽口を一つ以上有し、該羽口の内管と外管の間隙用のガス供給経路と内管用のガス供給経路を有する溶融金属精錬炉である。具体的には、溶鋼の精錬に使用される酸素底吹き転炉や酸素上底吹き転炉が挙げられる。これらの溶融金属精錬炉では、炉底に設けた羽口から溶鋼中に精錬ガスとして酸素あるいは酸素と不活性ガスの混合ガスを溶融金属中に吹き込む。その際に羽口先端には酸素と溶鋼中のCやSi等の易酸化性の成分が反応して発熱し、いわゆる高温の火点が生成する。
【0016】
羽口やその周囲の耐火物は、この火点からの熱を受けるため、なんらかの冷却なしには羽口やその周囲の耐火物の溶損を防止することができない。
そこで、精錬ガス吹き込み羽口においては、酸素あるいは酸素と不活性ガスの混合ガスを吹き込むための内管とその周囲に一定間隔の隙間を形成するように設けられた外管を設け、 外管と内管の間隙からは不活性ガスや炭化水素ガスを外管冷却ガスとして供給するようにしている。特に、プロパン等の炭化水素ガスは顕熱による冷却だけでなく分解吸熱によっても羽口先端を冷却できるので有利である。そして、このような外管冷却ガスの作用により、羽口先端の周囲にマッシュルームと呼ばれる金属塊が生成し、それによって羽口の保護が達成されていることは前述した通りである。
【0017】
本発明者は、上記のような底吹き羽口を配置した溶融金属精錬炉において、前述したようなマッシュルームが吹き飛ぶ現象がどのような条件の下で発生するかを詳細に調査した。対象ヒートはクロムを9〜30質量%含有する高クロム溶鉄を脱炭精錬してステンレス溶鋼を製造するヒートを選択した。マッシュルームの吹き飛び現象の確認にあたっては、具体的には羽口内に電気パルスの送信線と受信線を対にしたケーブルを挿入し、特許文献3に記載される電気パルス反射法によって羽口の根元から先端(すなわちマッシュルームとの凝着位置)までの羽口外管長さを連続的に測定すると共に、外管冷却ガスの圧力,線流速を連続的に測定し、操業条件と羽口外管長さの変化の対応付けを行なった。
【0018】
まず、予備実験として、操業中に羽口外管長さが急激に短くなった時点で直ちに炉を傾動して、その羽口を炉口から観察する作業を繰り返し行ない、羽口外管長さが急激に短くなった時には常にその羽口からマッシュルーム1が消失していることを確認した。すなわち、羽口外管長さが急激に短くなったときには、その直前にマッシュルームの吹き飛びが生じていたことが推測された。
【0019】
次いで、羽口ガスの供給条件と羽口外管長さの消耗速度(これを羽口損耗速度という)の対応関係を調査したところ、種々の条件のうち、外管冷却ガス5の線流速と羽口損耗速度に図1に示すような関係があることが確認された。つまり外管冷却ガス5の線流速が 220Nm/sec を超えると、急激に羽口損耗速度が増大することが判明した。
【0020】
このことから、本発明では外管冷却ガス線流速を 220Nm/sec 以下に限定する。図1から上記の傾向は羽口1本あたりの内管ガス流量が0.06Nm/(min・t)以上のヒートでより顕著である。したがって、本発明は内管ガス流量が0.06Nm/(min・t)以上のヒートに適用すると一層効果を発揮することが明らかとなった。
【0021】
上記の実験はクロムを9〜30質量%含有する溶鉄の脱炭精錬において行なったが、これに引き続きクロムを含有しない普通鋼の脱炭精錬についても同様の調査を行ない、同じように外管冷却ガス線流速を 220Nm/sec 以下にすると羽口の損耗速度を低減できることが明らかとなった。
【0022】
【実施例】
本発明を適用した発明例として、炉底に二重管式の底吹き羽口を8本有する、炉容量180tonの上底吹き転炉によってクロムを9〜30質量%含有する含クロム溶鉄を炭素濃度を平均で 5.5質量%から 0.2質量%まで脱炭精錬する際に、外管冷却ガスの線流速が常に 220Nm/sec 以下(平均では 195Nm/sec )として精錬する操業を繰り返し行なった。なお、このときの内管ガス流量は羽口1本あたり 0.1Nm/(min・t)であった。このようにして羽口外管長さを前述した電気パルス反射法によって連続的に測定し、羽口の損耗速度を求めた。全部で 100ヒートについて、このような操業を行ない、羽口損耗速度を求めたところ、平均で3.6mm/ヒートであった。
【0023】
比較例として、発明例と同じ上底吹き転炉を用いてクロムを9〜30質量%含有する含クロム溶鉄を炭素濃度で 5.5質量%から 0.2質量%まで脱炭精錬する際に、外管冷却ガスの線流速が常に 220Nm/sec 超え(平均では 230Nm/sec )として精錬する従来の条件の操業を繰り返し行なった。なお、このときの内管ガス流量は、羽口1本あたり 0.1Nm/(min・t)であった。発明例と同様にこのときの羽口外管長さを前述した電気パルス反射法によって連続的に測定し、羽口の損耗速度を求めた。全部で 100ヒートについて、このような操業を行ない、羽口損耗速度を求めたところ、平均で 5.6mm/ヒートであった。
【0024】
これらの例から明らかなように、本発明によれば羽口の損耗速度を従来の64%にまで低減することができた。これによって上底吹き転炉の炉底寿命を 1.5倍以上に延長することが可能となった。
【0025】
【発明の効果】
本発明は、炉底に二重管方式底吹き羽口を有する溶融金属の精錬炉、とりわけ鉄鋼の脱炭精錬用の転炉において、羽口先端のマッシュルームの吹き飛びを回避し、それによって羽口の損耗速度を低減し、もって炉底の長寿命化を達成することが可能である。
【図面の簡単な説明】
【図1】外管冷却ガス線流速と羽口損耗速度との関係を示すグラフである。
【図2】二重管羽口の先端のマッシュルームを示す模式図である。
【符号の説明】
1 マッシュルーム
2 炉底耐火物
3 溶融金属
4 精錬ガス
5 外管冷却ガス
6 内管
7 外管
8 マッシュルーム内の精錬ガス流路
9 マッシュルーム内の外管冷却ガス流路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention effectively protects a double-pipe tuyere provided at the furnace bottom of a molten metal refining furnace typified by a bottom-blowing converter or an upper-bottom-blowing converter for steelmaking to reduce wear. How to do it.
[0002]
[Prior art]
A bottom-blowing converter for steelmaking, in which gas is blown below the surface of a molten metal bath in a refining furnace through a concentric double-pipe tuyere (hereinafter simply referred to as "double-pipe tuyere"). Alternatively, top-bottom blow converters are known. The bottom-blowing converter is a molten metal refining furnace in which the entire amount of oxygen gas for refining is blown from the inner tube of the double-tube tuyere. This is a molten metal smelting furnace of the type in which another part is blown in from the inner pipe of the mouth from the top blowing lance.
[0003]
A double-tube tuyere is a tuyere consisting of a metal tube formed in a concentric double tube at a fixed interval. Usually, oxygen or a mixed gas of oxygen and an inert gas (this Gas) is blown into the molten metal, and a cooling gas such as propane gas or inert gas (referred to as “outer tube cooling gas”) is blown from the gap between the inner tube and the outer tube to cool the outer tube. The sensible heat for the gas to reach the temperature of the molten steel and the propane gas are used to cool and protect the tuyere using the decomposition endotherm of the thermal decomposition.
[0004]
Around the tip of the tuyere of such a double tube, a metal mass called mushroom solidified by molten steel is formed. It is known that this mushroom is generated by the balance between the heat received from the high temperature region called the flash point formed by the refining gas blown into the molten steel from the inner pipe, the sensible heat of the outer pipe cooling gas, and the heat removal by the heat of decomposition. (See, for example, Patent Document 1).
[0005]
The mushroom prevents the hot spot and surrounding hot molten steel from coming into direct contact with the tuyere outer tube or surrounding refractory, thereby reducing the erosion of the double tube tuyere and the wear of the refractory around the tuyere. It works to prevent it. Therefore, forming a stable mushroom is effective in reducing tuyere wear. Therefore, conventionally, in a molten metal refining furnace having a double tube tuyere represented by a bottom blown converter or an upper bottom blown converter, an operation for forming a large and stable mushroom has been performed. . Specifically, an outer pipe cooling gas at a certain ratio or more to the refining gas supplied from the inner pipe is supplied to a gap between the inner pipe and the outer pipe.
[0006]
However, according to the findings of the present inventor, as shown in FIG. 2, the outer pipe cooling gas flow path 9 formed in the mushroom 1 is branched like a mesh, and when the mushroom 1 is greatly enlarged, The pressure loss of the outer pipe cooling gas 5 in the mushroom 1 increases extremely. As shown schematically in FIG. 2, the mushroom 1 having a double-tube tuyere that supplies the refining gas 4 from the inner pipe 6 has a high temperature due to the reaction between the refining gas 4 and the molten metal 3 (that is, molten steel) on the inner pipe 6 side. A thick gas flow path 8 is formed due to the influence of the fire point. Therefore, the mushroom 1 and the tuyere are fixed mainly at the inner and outer tube tips (the furnace bottom refractory and the mushroom 1 are in apparent contact with each other, but are not adhered to each other). It has been found that when the pressure loss of the outer pipe cooling gas 5 in the inside 1 increases, the mushroom 1 is blown off during the operation and the tuyere is extremely worn.
[0007]
In particular, in recent years, in the case of converters for steel production (refining furnaces in which molten iron, which is a molten iron-carbon alloy, is decarburized and refined with oxygen to form molten steel), one tuyere is used for high productivity. When the flow rate of the smelting gas flowing through the inner tube is 0.06 Nm 3 / (min · t) or more per tuyere, the mushroom blow-off tends to occur. Is strong. In the case of a molten iron alloy containing 9 to 30% by mass of chromium, such as stainless steel, an operation is performed in which the composition and type of the refining gas and the outer pipe cooling gas are changed stepwise during the decarburization refining. It has become clear that such stepwise gas switching has further triggered the mushroom blow-off.
[0008]
On the other hand, in the case of a converter having a tuyere without oxygen gas blowing, for example, a bottom tuyere having a structure in which a large number of small diameter metal tubes are assembled, as disclosed in Patent Document 2, each tuyere A gas flow meter is installed in each tuyere to calculate the pressure loss of the mushrooms, while each tuyere is equipped with multiple thermocouples at regular intervals inside to measure the temperature, and the pressure loss of these mushrooms and the temperature inside the tuyere It is known that the operation is performed so as to be in a specific stable region.
[0009]
However, since the small-diameter metal tube tuyere disclosed in Patent Document 2 does not blow oxygen as in the above-described double tube tuyere, the mushroom is a tuyere refractory as shown in FIG. It is fixed over the entire surface of the tip, and there is no concern that the mushroom will blow off even if the pressure loss of the gas in the mushroom increases. From this point of view, Patent Literature 2 sets the upper limit of the pressure loss of the mushroom solely in consideration of the decrease in the gas flow rate into the molten steel due to the upper limit, and does not provide any method for preventing the mushroom from blowing off during operation. It did not provide knowledge.
[0010]
[Patent Document 1]
JP-A-63-189873 [Patent Document 2]
JP-A-4-32507 [Patent Document 3]
JP-A-62-147308
[Problems to be solved by the invention]
As described above, in a molten metal refining furnace of the type in which a refining gas is blown into a molten metal (for example, molten steel) from a double tube tuyere, particularly from its inner tube, outer tube cooling flowing into a mushroom from a tuyere outer tube. It has been found that when the gas pressure drop increases, the mushrooms blow off, which was an unexpected phenomenon, which shortened the tuyere life. It did not give a solution.
[0012]
The present invention has been made in view of the above circumstances, and provides a method for appropriately maintaining a mushroom of a molten metal smelting furnace having a double tube tuyere at a furnace bottom, and effectively preventing the tuyere from being worn away due to blow-off of the mushroom. It is intended for that purpose.
[0013]
[Means for Solving the Problems]
The present invention provides a double-pipe gas injection tuyere provided in the furnace bottom of a molten metal refining furnace, into the molten metal held in the molten metal refining furnace, a refining gas from the inner tube of the tuyere, When the tuyere cooling gas is supplied from the gap between the inner pipe and the outer pipe to refine the molten metal, the linear flow velocity of the tuyere cooling gas in the gap between the inner pipe and the outer pipe of the tuyere is set to 220 Nm / The present invention proposes a method for protecting a tuyere of a bottom blown double tube of a molten metal smelting furnace characterized by being made to be no more than sec.
[0014]
The above invention is preferably applied when the flow rate of the refining gas blown into the molten metal from the tuyere inner tube is 0.06 Nm 3 / (min · t) or more per tuyere.
When the molten metal is a molten iron-carbon alloy and oxygen is blown from the inner tube tuyere to perform decarburization refining, the molten iron-carbon alloy further contains 9 to 30% by mass of chromium. In this case, it is preferable to apply the above-mentioned invention because it is more effective.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
The molten metal smelting furnace to which the present invention is applied has at least one gas injection tuyere of a double tube type at the furnace bottom, and a gas supply path for the gap between the inner tube and the outer tube of the tuyere. This is a molten metal refining furnace having a gas supply path for an inner pipe. Specifically, an oxygen bottom-blowing converter and an oxygen top-bottom blowing converter used for refining molten steel are exemplified. In these molten metal refining furnaces, oxygen or a mixed gas of oxygen and an inert gas is blown as molten gas into the molten metal from a tuyere provided at the furnace bottom into molten steel. At that time, oxygen and easily oxidizable components such as C and Si in the molten steel react at the tip of the tuyere to generate heat and generate a so-called high-temperature flash point.
[0016]
Since the tuyere and its surrounding refractory receive heat from this fire point, it is not possible to prevent the tuyere and its surrounding refractory from being damaged without any cooling.
Therefore, at the refining gas injection tuyere, an inner pipe for blowing oxygen or a mixed gas of oxygen and an inert gas and an outer pipe provided so as to form a gap at regular intervals around the inner pipe are provided. An inert gas or hydrocarbon gas is supplied as a cooling gas for the outer tube from the gap between the inner tubes. In particular, a hydrocarbon gas such as propane is advantageous because the tip of the tuyere can be cooled not only by sensible heat but also by decomposition heat absorption. As described above, a metal lump called mushroom is generated around the tip of the tuyere by the action of the outer tube cooling gas, thereby protecting the tuyere.
[0017]
The present inventor has investigated in detail the conditions under which the above-described phenomenon in which the mushroom blows off occurs in the molten metal smelting furnace in which the above-described bottom-blowing tuyere is arranged. As a target heat, a heat for producing molten stainless steel by decarburizing and refining high chromium molten iron containing 9 to 30% by mass of chromium was selected. To confirm the mushroom blow-off phenomenon, specifically, a cable paired with a transmission line and a reception line of an electric pulse is inserted into the tuyere, and from the base of the tuyere by the electric pulse reflection method described in Patent Document 3. The length of the tuyere outer tube up to the tip (ie, the position where it adheres to the mushroom) is continuously measured, and the pressure and linear flow velocity of the outer tube cooling gas are continuously measured to determine the operating conditions and changes in the tuyere outer tube length. Correspondence was made.
[0018]
First, as a preliminary experiment, the furnace was tilted immediately when the tuyere outer tube length was suddenly reduced during operation, and the work of observing the tuyere from the furnace port was repeated, and the tuyere outer tube length was rapidly shortened. When it became, it was confirmed that mushroom 1 had disappeared from the tuyere. In other words, it was presumed that when the tuyere outer tube length was suddenly shortened, the mushroom was blown off immediately before that.
[0019]
Next, the correspondence between the tuyere gas supply conditions and the wear rate of the tuyere outer tube length (this is referred to as the tuyere wear rate) was investigated. Among various conditions, the linear flow rate of the outer tube cooling gas 5 and the tuyere It was confirmed that the wear rate had a relationship as shown in FIG. That is, it has been found that when the linear flow velocity of the outer pipe cooling gas 5 exceeds 220 Nm / sec, the tuyere wear rate rapidly increases.
[0020]
For this reason, in the present invention, the outer pipe cooling gas linear flow velocity is limited to 220 Nm / sec or less. From FIG. 1, the above tendency is more remarkable in the heat in which the inner tube gas flow rate per tuyere is 0.06 Nm 3 / (min · t) or more. Therefore, it has been clarified that the present invention is more effective when applied to heat in which the inner tube gas flow rate is 0.06 Nm 3 / (min · t) or more.
[0021]
The above experiment was carried out in the decarburization and refining of molten iron containing 9 to 30% by mass of chromium. Subsequently, the same investigation was carried out for the decarburization and refining of ordinary steel not containing chromium. It became clear that the tuyere wear rate can be reduced by setting the gas line flow rate to 220 Nm / sec or less.
[0022]
【Example】
As an example of the invention to which the present invention is applied, a chromium-containing molten iron containing 9 to 30% by mass of chromium is formed by a 180 ton top-bottom blowing converter having a furnace capacity of eight double tube type bottom blowing tuyeres. When decarburizing and refining the concentration from 5.5% by mass to 0.2% by mass on average, the refining operation is repeated with the linear flow rate of the outer pipe cooling gas always being 220 Nm / sec or less (195 Nm / sec on average). Was. The inner tube gas flow rate at this time was 0.1 Nm 3 / (min · t) per tuyere. In this way, the tuyere outer tube length was continuously measured by the electric pulse reflection method described above, and the tuyere wear rate was determined. This operation was performed for a total of 100 heats, and the tuyere abrasion rate was calculated. The average was 3.6 mm / heat.
[0023]
As a comparative example, when decarbonizing and refining chromium-containing molten iron containing 9 to 30% by mass of carbon from 5.5% by mass to 0.2% by mass using the same top-bottom blowing converter as the invention example. The operation under the conventional conditions of refining was repeated with the linear flow velocity of the outer pipe cooling gas always exceeding 220 Nm / sec (230 Nm / sec on average). The inner tube gas flow rate at this time was 0.1 Nm 3 / (min · t) per tuyere. The tuyere outer tube length at this time was continuously measured by the aforementioned electric pulse reflection method in the same manner as in the invention example, and the tuyere wear rate was determined. This operation was performed for a total of 100 heats, and the tuyere wear rate was determined. The average was 5.6 mm / heat.
[0024]
As is clear from these examples, according to the present invention, the tuyere wear rate could be reduced to 64% of the conventional one. This has made it possible to extend the bottom life of the top and bottom blown converter by 1.5 times or more.
[0025]
【The invention's effect】
The present invention avoids blow-off of a mushroom at the tip of a tuyere in a molten metal smelting furnace having a double-pipe bottom tuyere at the furnace bottom, particularly in a converter for decarburizing and refining steel. It is possible to reduce the wear rate of the furnace and thereby achieve a longer life of the furnace bottom.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the outer pipe cooling gas line flow velocity and the tuyere wear rate.
FIG. 2 is a schematic diagram showing a mushroom at the tip of a double tube tuyere.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 mushroom 2 furnace bottom refractory 3 molten metal 4 refining gas 5 outer pipe cooling gas 6 inner pipe 7 outer pipe 8 refining gas flow path in mushroom 9 outer pipe cooling gas flow path in mushroom

Claims (4)

溶融金属精錬炉の炉底に設けた二重管方式のガス吹込み羽口から該溶融金属精錬炉内に保持した溶融金属中に、該羽口の内管からは精錬ガス、内管と外管の間隙からは羽口冷却用ガスを供給して該溶融金属を精錬するにあたり、前記羽口冷却用ガスの前記羽口の内管と外管の間隙における線流速を 220Nm/sec 以下とすることを特徴とする溶融金属精錬炉の底吹き二重管羽口の保護方法。From the inner pipe of the tuyere to the refining gas, the inner pipe and the outer pipe into the molten metal held in the molten metal refining furnace from the gas injection tuyere of the double pipe system provided at the bottom of the molten metal refining furnace In supplying the tuyere cooling gas from the gap between the tubes and refining the molten metal, the linear flow velocity of the tuyere cooling gas in the gap between the inner tube and the outer tube of the tuyere is set to 220 Nm / sec or less. A method for protecting a bottom blown double tube tuyere of a molten metal smelting furnace. 前記羽口内管から溶融金属中に吹込む精錬ガス流量が羽口1本あたり0.06Nm/(min・t)以上であることを特徴とする請求項1記載の溶融金属精錬炉の底吹き二重管羽口の保護方法。2. The bottom blow of a molten metal refining furnace according to claim 1, wherein a flow rate of the refining gas blown into the molten metal from the tuyere inner tube is 0.06 Nm < 3 > / (min.t) or more per one tuyere. How to protect the double tube tuyere. 前記溶融金属が溶融鉄−炭素合金であり、前記内管羽口からは酸素を吹込んで脱炭精錬を行なうことを特徴とする請求項1または2記載の溶融金属精錬炉の底吹き二重管羽口の保護方法。The bottom-blown double-pipe of a molten metal refining furnace according to claim 1 or 2, wherein the molten metal is a molten iron-carbon alloy, and decarburization is performed by blowing oxygen from the inner tube tuyere. How to protect tuyeres. 前記溶融鉄−炭素合金がさらにクロムを9〜30質量%含有することを特徴とする請求項3記載の溶融金属精錬炉の底吹き二重管羽口の保護方法。The method according to claim 3, wherein the molten iron-carbon alloy further contains 9 to 30% by mass of chromium.
JP2002333809A 2002-11-18 2002-11-18 Method for protecting bottom blown double pipe tuyere of molten metal refining furnace Expired - Lifetime JP3909589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002333809A JP3909589B2 (en) 2002-11-18 2002-11-18 Method for protecting bottom blown double pipe tuyere of molten metal refining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002333809A JP3909589B2 (en) 2002-11-18 2002-11-18 Method for protecting bottom blown double pipe tuyere of molten metal refining furnace

Publications (2)

Publication Number Publication Date
JP2004169070A true JP2004169070A (en) 2004-06-17
JP3909589B2 JP3909589B2 (en) 2007-04-25

Family

ID=32698420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002333809A Expired - Lifetime JP3909589B2 (en) 2002-11-18 2002-11-18 Method for protecting bottom blown double pipe tuyere of molten metal refining furnace

Country Status (1)

Country Link
JP (1) JP3909589B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431028B1 (en) 2012-12-27 2014-08-18 주식회사 포스코 Apparatus for melting loss of bottom brick in furnance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101431028B1 (en) 2012-12-27 2014-08-18 주식회사 포스코 Apparatus for melting loss of bottom brick in furnance

Also Published As

Publication number Publication date
JP3909589B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
JP2003172584A (en) Fine particle blowing device and refining method
CA2586789A1 (en) Production of stainless steel of aisi 4xx grade ferritic steel in an aod converter
CN105506213A (en) Method for lowering oxygen activity of semisteel smelting end point molten steel
JP2007051349A (en) Method for dephosphorizing molten pig iron and top-blown lance for dephosphorizing treatment
WO2020230561A1 (en) Method for modifying steelmaking slag, and lance
JP4487812B2 (en) Method for producing low phosphorus hot metal
JP2006249569A (en) Method for producing molten iron having low phosphorus
JP2004169070A (en) Method for protecting bottom-blown double-tube tuyere in molten metal refining furnace
JP7004015B2 (en) Converter refining method
JP2011202236A (en) Top-blowing lance for converter, and method for operating converter
JP2001220617A (en) Gas blowing lance
JPH0723494B2 (en) Method and apparatus for refining molten metal
AU733778B2 (en) Simplified ladle refining process
JP2003213318A (en) Lance for refining
JP2003193123A (en) Method for repairing converter lining refractory
JP7099657B1 (en) Refining method of molten iron and manufacturing method of molten steel using it
JP6828509B2 (en) How to operate the melting furnace
JPH0931513A (en) Steelmaking method in combination blown converter having long service life of refractory
JPH0543924A (en) Secondary combustion blow-refining method
JP2004250759A (en) Method for protecting double tubular bottom-blowing tuyere in molten metal refining furnace
JP2005290515A (en) Blowing method for converter having high metal yield
JP4015873B2 (en) Hot metal Si control method in pulverized coal injection operation
JP2023147218A (en) Dephosphorization method of molten iron
JPS61264119A (en) Constituting structure of tuyere for converter bottom
JPH0543926A (en) Secondary combustion blow-refining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3909589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term