JP2001152271A - Aluminum hard sheet for can cover and producing method therefor - Google Patents

Aluminum hard sheet for can cover and producing method therefor

Info

Publication number
JP2001152271A
JP2001152271A JP33003899A JP33003899A JP2001152271A JP 2001152271 A JP2001152271 A JP 2001152271A JP 33003899 A JP33003899 A JP 33003899A JP 33003899 A JP33003899 A JP 33003899A JP 2001152271 A JP2001152271 A JP 2001152271A
Authority
JP
Japan
Prior art keywords
orientation
less
brass
rolling
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33003899A
Other languages
Japanese (ja)
Inventor
Naoyuki Sakuma
佐久間尚幸
Toshio Komatsubara
小松原俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP33003899A priority Critical patent/JP2001152271A/en
Publication of JP2001152271A publication Critical patent/JP2001152271A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an aluminum hard sheet small in the anisotropy of strength and small in the generation of cracking caused by blistering when used to a positive pressure can cover material for carbonated beverages, beer or the like and to provide a method for producing the same. SOLUTION: This sheet has a composition composed of 3.5 to 5.0% Mg, 0.15 to 0.6% Mn, 0.02 to 0.20% Si, 0.01 to 0.20% Cu, <=0.40% Fe, <=0.03% Ti, also (Fe+Mn)/Si<=20, and the balance Al with inevitable impurities, in which the ratio between the total of the orientational density from the Cu orientation to the S orientation (Cu to S) belonging to beta fiber among the components with a rolled texture in the center of the sheet thickness and the total of the orientational density from the S orientation to the Brass orientation (Brass to S), i.e., (Cu to S)/(Brass to S) is <=5.0.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は炭酸飲料用やビール
用等の内圧の高い缶蓋材に用いられる5000系合金に
関するもので、詳細には晶出物のサイズ、分散状態およ
び集合組織を制御することによって強度の異方性を低減
させ、仮に内圧によって蓋が膨れた場合でも各方向均等
に膨れるため局部的な応力集中が生じず、変形の際亀裂
が発生し難くなるアルミニウム硬質板とその製造法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a 5000 series alloy used for cans having a high internal pressure such as for carbonated beverages and beer, and more particularly to controlling the size, dispersion state and texture of crystallized substances. By reducing the anisotropy of strength, even if the lid swells due to internal pressure, it will expand evenly in each direction, so that local stress concentration does not occur and cracks do not easily occur during deformation. It concerns the manufacturing method.

【0002】[0002]

【従来の技術】一般に、炭酸飲料用やビール用等の内圧
の高い缶蓋材には、強度や成形性の観点からJIS−5
182合金が主に用いられ、焼き付け塗装後の強度、張
出し成形、スコアー加工、リベット成形、巻き締め加工
などの特性が要求されている。近年、材料の更なる薄肉
化の要望が益々高まりつつあり、これらの特性も従来の
材料よりも更に優れたものが求められている。
2. Description of the Related Art Generally, can lid materials having a high internal pressure for carbonated beverages and beer are JIS-5 from the viewpoint of strength and moldability.
182 alloy is mainly used, and properties such as strength after baking, bulging, scoring, rivet forming, and crimping are required. In recent years, the demand for further thinning of materials has been increasing more and more, and there has been a demand for materials having even better properties than conventional materials.

【0003】[0003]

【発明が解決しようとする課題】晶出物を含む材料を冷
間圧延すると、圧延によって導入された転位が晶出物周
辺に多数集積され、高転位密度領域が形成される。この
ような領域が数多く形成されると、マトリックスと晶出
物周辺との間に転位密度の粗密が生じ強度異方性を顕著
にさせる。そして強度異方性が大きい場合、内圧によっ
て均等に蓋が膨れずに強度の低い方向から優先的に膨れ
るため、その変形の際、局部的に応力集中が生じ亀裂が
発生しやすくなるという問題がある。また同時に缶蓋用
として成形する際、リベット成形性が悪いと成形時に割
れが発生してしまうという問題もある。また充分な強度
を持つことも必要であるが、一方、開缶する際の引き裂
き性も同時に要求される。これらの課題を解決し、要求
特性を満たす素材の開発ならびにその製造方法が必要と
なる。
When a material containing a crystallized material is cold-rolled, a large number of dislocations introduced by the rolling are accumulated around the crystallized material to form a high dislocation density region. When such a large number of regions are formed, the dislocation density becomes uneven between the matrix and the periphery of the crystallized substance, and the strength anisotropy becomes remarkable. When the strength anisotropy is large, the lid does not swell evenly due to the internal pressure, but preferentially swells in a direction of low strength, and at the time of the deformation, a local stress concentration occurs and a crack is easily generated. is there. At the same time, when molded for can lids, if the rivet moldability is poor, there is also a problem that cracks occur during molding. It is also necessary to have a sufficient strength, but on the other hand, it is also required to be tearable when opening the can. To solve these problems, it is necessary to develop a material that satisfies the required characteristics and a method of manufacturing the material.

【0004】[0004]

【課題を解決するための手段】先述のような課題を解決
するために、本発明者らが種々実験、検討を重ねた結
果、新しい知見を得て、本発明に到った。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have conducted various experiments and studies, and as a result, have obtained new findings and arrived at the present invention.

【0005】即ち本発明は、Mg3.5〜5.0%(質
量%、以下同じ)、Mn0.15〜0.6%、Si0.
02〜0.20%、Cu0.01〜0.20、Fe0.
40%以下、Ti0.03%以下でかつ、(Fe+M
n)/Siが20以下であり、残部がAl及び不可避的
不純物からなる組成を有し、板厚中央の圧延集合組織成
分のうちベータファイバーに属するCu方位からS方位
までの方位密度の総和(Cu〜S)とS方位からBra
ss方位までの方位密度の総和(Brass〜S)の比
(Cu〜S)/(Brass〜S)が5.0以下である
ことを特徴とする強度異方性の小さい缶蓋用アルミニウ
ム硬質板である。また本第二発明は、Mg3.5〜5.
0%、Mn0.15〜0.6%、Si0.02〜0.2
0%、Cu0.01〜0.20、Fe0.40%以下、
Ti0.03%以下でかつ(Fe+Mn)/Siが20
以下であり、残部がAl及び不可避的不純物からなるA
l鋳塊を、400〜550℃の温度範囲で保持1〜10
時間の加熱処理を施した後、熱間圧延を行い、最終冷間
圧延前の初期結晶粒径を250μm以下となるように
し、40〜95%の圧下率で最終冷間圧延を行い、最終
冷間圧延後に100〜240℃の温度範囲で0.5〜1
0時間保持する仕上げ焼鈍を施し、板厚中央の圧延集合
組織成分のうちベータファイバーに属するCu方位から
S方位までの方位密度の総和とS方位からBrass方
位までの方位密度の総和の比(Cu〜S)/(Bras
s〜S)が5.0以下であることを特徴とする強度異方
性の小さい缶蓋用アルミニウム硬質板の製造方法であ
る。
That is, according to the present invention, 3.5 to 5.0% of Mg (% by mass, the same applies hereinafter), 0.15 to 0.6% of Mn,
02 to 0.20%, Cu 0.01 to 0.20, Fe0.
40% or less, Ti 0.03% or less, and (Fe + M
n) / Si is 20 or less, the balance has a composition consisting of Al and unavoidable impurities, and the sum of the orientation densities from the Cu orientation belonging to the beta fiber to the S orientation belonging to the beta fiber among the rolling texture components in the center of the plate thickness ( Bra from Cu to S) and S orientation
The aluminum hard plate for a can lid with small strength anisotropy, wherein the ratio (Cu-S) / (Brass-S) of the sum of the orientation densities up to the ss orientation (Brass-S) / (Brass-S) is 5.0 or less. It is. In the second invention, Mg 3.5 to 5.5.
0%, Mn 0.15-0.6%, Si 0.02-0.2
0%, Cu 0.01 to 0.20, Fe 0.40% or less,
Ti not more than 0.03% and (Fe + Mn) / Si is 20
And the remainder is A composed of Al and unavoidable impurities.
1 Hold the ingot in a temperature range of 400 to 550 ° C.
After performing the heat treatment for a long time, hot rolling is performed so that the initial crystal grain size before final cold rolling is 250 μm or less, and final cold rolling is performed at a rolling reduction of 40 to 95%. 0.5-1 in the temperature range of 100-240 ° C after cold rolling
Finish annealing is performed for 0 hour, and the ratio of the sum of the orientation densities from the Cu orientation to the S orientation belonging to the beta fiber and the sum of the orientation densities from the S orientation to the Brass orientation (Cu ~ S) / (Bras
s to S) is 5.0 or less, which is a method for producing an aluminum hard plate for a can lid having low strength anisotropy.

【0006】なお、本発明においては強度異方性は圧延
方向に対して0、45、90°方向の耐力の差の最大値
で評価し、この値が25MPa以下であれば缶蓋用アル
ミニウム合金板として強度異方性が小さいと言える。
In the present invention, the strength anisotropy is evaluated by the maximum value of the difference in proof stress in the 0, 45, and 90 ° directions with respect to the rolling direction. If this value is 25 MPa or less, the aluminum alloy for can lids is used. It can be said that the plate has low strength anisotropy.

【0007】[0007]

【発明の実施の形態】先ず、この発明において用いられ
るアルミニウム合金の成分組成の限定理由を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the reasons for limiting the composition of the aluminum alloy used in the present invention will be described.

【0008】Mg:Mgの添加は、Mgそれ自体の固溶
による強度向上作用があり、また、転位との相互作用が
大きいために加工硬化による強度向上が期待でき、缶蓋
材として必要な強度を得るために不可欠な元素である。
但し、Mg量が3.5%未満では、炭酸飲料用やビール
用等の蓋に利用するには強度不足となり、一方、5.0
%を超えれば加工性の低下や熱延時の割れなどを引き起
こす。したがって、Mg量は3.5〜5.0%の範囲と
した。
Mg: The addition of Mg has the effect of improving the strength due to the solid solution of Mg itself, and can be expected to improve the strength by work hardening due to the large interaction with dislocations. Is an indispensable element for obtaining
However, if the Mg content is less than 3.5%, the strength is insufficient for use in lids for carbonated drinks, beer, etc., while 5.0 is used.
%, The workability is reduced and cracking during hot rolling is caused. Therefore, the amount of Mg was set in the range of 3.5 to 5.0%.

【0009】Mn:Mn添加によって形成するAl−M
n−(Si)、Al−Fe−Mn−(Si)系晶出物は、ス
コアー部の引き裂き性を高めるために不可欠な晶出物で
ある。また、MnはMgと同様、強度向上にも寄与す
る。Mn量が0.15%未満では、その効果が小さい。
一方、0.6%を超えれば、これらの晶出物が粗大化
し、圧延の際に晶出物周辺に高転位密度領域を形成し強
度異方性を増大させてしまう。また、加工性の低下やリ
ベット成形の際にAlとこれら晶出物の界面に亀裂が生
じて伝播し、材料の割れを引き起こし易くなる。そのた
め、Mn量は、0.15〜0.6%の範囲とした。
Mn: Al-M formed by adding Mn
The n- (Si) and Al-Fe-Mn- (Si) -based crystallized substances are indispensable crystallized substances for enhancing the tearability of the score portion. Further, Mn contributes to the improvement of the strength similarly to Mg. If the Mn content is less than 0.15%, the effect is small.
On the other hand, if it exceeds 0.6%, these crystallized substances are coarsened, and a high dislocation density region is formed around the crystallized substances during rolling to increase the strength anisotropy. In addition, cracks are generated and propagated at the interface between Al and these crystallized substances at the time of rivet forming and deterioration of workability, which easily causes cracking of the material. Therefore, the Mn content is set in the range of 0.15 to 0.6%.

【0010】Si:Siによって形成するMg2 Si晶
出物は、Mnと同じように開缶性を向上させる効果があ
る。しかし、添加量が0.02%未満と云った高純度で
あると、鋳造時の規制が厳しくなるため生産性を低下さ
せる。一方、0.20%を越えると晶出物の生成数が多
くなったり、Al−Mn−(Si)、Al−Fe−Mn
−(Si)系晶出物が大きくなり、圧延の際に晶出物周
辺に高転位密度領域を形成し強度異方性を増大させ、か
つ、リベット成形を低下させる。そのため、Si量は
0.02〜0.20%以下とした。
[0010] Si: The crystallized Mg 2 Si formed by Si has the effect of improving the openability, like Mn. However, when the amount of addition is as high as less than 0.02%, the regulation at the time of casting becomes strict and the productivity is reduced. On the other hand, if it exceeds 0.20%, the number of crystallized substances increases, or Al—Mn— (Si), Al—Fe—Mn
-The (Si) crystallized material becomes large, and a high dislocation density region is formed around the crystallized material during rolling to increase the strength anisotropy and reduce the rivet forming. Therefore, the Si content is set to 0.02 to 0.20% or less.

【0011】Cu:Cuは強度向上に寄与する元素であ
るが、添加量が0.01%未満ではその効果は現れな
い。一方、0.20%を超えると、リベット成形性を阻
害する恐れがある。そのためCu量は0.01〜0.2
0%の範囲とした。
Cu: Cu is an element contributing to the improvement of strength, but its effect is not exhibited if the added amount is less than 0.01%. On the other hand, if it exceeds 0.20%, rivet formability may be impaired. Therefore, the amount of Cu is 0.01 to 0.2.
The range was 0%.

【0012】Fe:Fe添加によって形成するAl−F
e−Mn−(Si)系晶出物は開缶性の向上に重要であ
るが、Fe量が0.40%を超えると晶出物が粗大化
し、圧延の際に晶出物周辺に高転位密度領域を形成し強
度異方性を増大させ、かつ、リベット成形性を低下させ
る。そのため、Fe量は、0.40%以下とした。
Fe: Al—F formed by adding Fe
The e-Mn- (Si) -based crystallized material is important for improving the openability. However, when the Fe content exceeds 0.40%, the crystallized material becomes coarse, and high rolling around the crystallized material occurs during rolling. A dislocation density region is formed to increase strength anisotropy and decrease rivet formability. Therefore, the Fe content is set to 0.40% or less.

【0013】Ti:Tiは結晶粒の微細化に有効な元素
であるが、添加量が多いと鋳塊組織を羽毛状晶になり難
くし、粒状晶を生成しやすくする。粒状晶の場合には、
羽毛状晶よりも粒界に晶出する晶出物を大きくさせてし
まうため、晶出物の小径化には有害な元素となる。ま
た、Ti自体、巨大晶出物を生成して成形性を低下させ
る。Ti量を0.03%以下に規制すれば、鋳塊組織断
面における羽毛状晶の面積率は10%以上となり、晶出
物を小径化することができる。そのため、Ti量を0.
03%以下に規制した。
Ti: Ti is an element effective for refining crystal grains. However, if the amount of Ti is large, the ingot structure is less likely to become feather-like crystals, and it is easy to form granular crystals. In the case of granular crystals,
Since the size of the crystallized substance that is crystallized at the grain boundary is larger than that of the feathered crystal, it is a harmful element for reducing the diameter of the crystallized substance. In addition, Ti itself produces a giant crystallized substance to lower the formability. If the amount of Ti is regulated to 0.03% or less, the area ratio of the feathered crystals in the cross section of the ingot becomes 10% or more, and the crystallized product can be reduced in diameter. For this reason, the Ti content is set to 0.1.
Restricted to less than 03%.

【0014】(Fe+Mn)/Si≦20:この条件を
満たせば、晶出物が粗大化することなく、かつ、Al−
Fe−Mn−Si晶出物の生成を促進し、Al−Fe−
Mn晶出物よりも晶出物サイズを小径化できる。晶出物
サイズが小さくなれば、圧延の際に発生する運動転位は
晶出物周りに高転位密度領域を形成し難くなり、その結
果、転位密度の粗密が緩和され強度異方性はあまり問題
とならなくなる。
(Fe + Mn) / Si ≦ 20: If this condition is satisfied, the crystallized material will not be coarsened and Al—
Promotes the formation of Fe-Mn-Si crystallization,
The size of the crystallized product can be smaller than that of the Mn crystallized product. If the size of the crystallized material becomes smaller, it becomes difficult for the kinetic dislocations generated during rolling to form a high dislocation density region around the crystallized material. Will not be.

【0015】次に、板厚中央で集合組織を測定した際の
Cu方位からS方位までの方位密度の総和と、S方位か
らBrass方位までの方位密度の総和の比率(Cu〜
S)/(S〜Brass)が5.0以下の理由について
説明する。なお結晶方位分布を示すオイラー空間を図1
に示す。ベータファイバーに属するCu方位からS方位
までの方位成分は、剪断帯のような不均一変形領域に発
達する。このような不均一変形領域内の転位密度は、S
方位からBrass方位までの方位成分に発達する均一
変形領域内の転位密度に比べてかなり高密度である。そ
のため、Cu方位からS方位までの方位を有する領域内
の転位密度とS方位からBrass方位までの方位を有
する領域内の転位密度との間に粗密が生じ、強度異方性
を顕著にさせる。強度異方性を低減するには、なるべく
均一変形領域すなわちS方位からBrass方位までの
方位密度を高めなければならない。しかし、種々実験を
重ねた結果、両者の比(Cu〜S/S〜Brass)が
5.0%以下であるならば強度異方性を問題にならない
程度まで低減させ得ることが判明した。
Next, the ratio of the sum of the orientation densities from the Cu orientation to the S orientation when the texture is measured at the center of the sheet thickness and the sum of the orientation densities from the S orientation to the Brass orientation (Cu to
The reason why (S) / (S to Brass) is 5.0 or less will be described. The Euler space showing the crystal orientation distribution is shown in FIG.
Shown in Orientation components from the Cu orientation to the S orientation belonging to the beta fiber develop into non-uniform deformation regions such as shear bands. The dislocation density in such a non-uniform deformation region is S
The dislocation density is considerably higher than the dislocation density in the uniform deformation region that develops to the azimuth component from the azimuth to the Brass azimuth. For this reason, the density between the dislocation density in the region having the orientation from the Cu orientation to the S orientation and the dislocation density in the region having the orientation from the S orientation to the Brass orientation is generated, and the strength anisotropy is remarkable. In order to reduce the strength anisotropy, it is necessary to increase the uniform deformation region, that is, the azimuth density from the S azimuth to the Brass azimuth as much as possible. However, as a result of repeated experiments, it has been found that if the ratio (Cu to S / S to Brass) is 5.0% or less, the strength anisotropy can be reduced to a level that does not cause a problem.

【0016】強度異方性(圧延方向に対して0、45、
90°方向の最大耐力差)が25MPa以下であること
について説明する。強度異方性が25MPaを超えるよ
うな大きさであると、内圧によって均等に蓋が膨れずに
強度の低い方向から優先的に膨れるため、その変形の
際、局部的に応力集中が生じ亀裂が発生しやすくなる。
しかし、強度異方性が25MPa以下であると、このよ
うな現象は起こり難いことが判明した。
Strength anisotropy (0, 45,
The fact that the maximum proof stress difference in the 90 ° direction) is 25 MPa or less will be described. If the strength anisotropy is greater than 25 MPa, the lid does not swell evenly due to internal pressure, but preferentially swells in the direction of lower strength. More likely to occur.
However, it has been found that such a phenomenon is unlikely to occur when the strength anisotropy is 25 MPa or less.

【0017】なお、耐力は270MPa未満では実用
上、耐圧強度が不足し、炭酸飲料缶やビール缶などの陽
圧缶では歪の原因となる。従って耐力は270MPa以
上であることが必要である。
If the proof stress is less than 270 MPa, the pressure resistance is practically insufficient, and a positive pressure can such as a carbonated beverage can or a beer can cause distortion. Therefore, the proof stress needs to be 270 MPa or more.

【0018】次に本発明の製造工程について説明する。Next, the manufacturing process of the present invention will be described.

【0019】Al鋳塊を400〜550℃の温度で保持
1〜10時間の加熱処理を施す。加熱温度が400℃未
満では熱間加工性の低下を招き、550℃を越えるとM
gの酸化が促進され表面性状の低下を招く。また、保持
時間が1時間未満では組織の均質効果が得られず、10
時間を越えると生産性の低下を引き起こし、かつ晶出物
が大きくなるため板にした際、晶出物周辺に多数高転位
密度領域すなわち不均一変形領域が形成され、強度異方
性が大きくなる。そのため、加熱温度は400〜550
℃の温度範囲とし、保持1〜10時間とした。
The Al ingot is heated at a temperature of 400 to 550 ° C. for 1 to 10 hours. If the heating temperature is lower than 400 ° C., the hot workability is reduced.
The oxidation of g is promoted, and the surface properties are reduced. Further, if the holding time is less than 1 hour, a homogeneous effect of the tissue cannot be obtained, and
Exceeding the time causes a decrease in productivity and increases the size of the crystallized material, so that when forming a plate, a large number of high dislocation density regions, that is, non-uniform deformation regions are formed around the crystallized material, and the strength anisotropy increases. . Therefore, the heating temperature is 400 to 550
° C, and maintained for 1 to 10 hours.

【0020】続いて熱間圧延を施し、最終冷間圧延を行
う。なお、最終冷間圧延の前に、必要に応じて熱間圧延
後に連続焼鈍(以下CALと略す)若しくはバッチ焼鈍
を行い、または熱間圧延後に一次冷間圧延を施しCAL
若しくはバッチ焼鈍を行っても良い。その場合、焼鈍で
形成する再結晶粒の大きさを制御するために、一次冷間
圧延率は55%以上が望ましい。また、連続焼鈍する場
合、320℃未満の温度で行うと、未再結晶組織となり
CALの効果が現れない。一方、550℃を超えると再
結晶粒が粗大化して成形性を低下させたり、製品板での
強度異方性を増大させてしまう。そのため、連続焼鈍条
件は320〜550℃の温度範囲で、生産性の低下を引
き起こさない保持10分以下とする。また、バッチ焼鈍
の場合は250℃未満の温度で行うと未再結晶組織とな
りバッチ焼鈍の効果が現れない。一方、500℃を超え
ると再結晶粒が粗大化して成形性を低下させたり、製品
板での強度異方性を増大させてしまう。そのため、バッ
チ焼鈍の条件は250〜500℃の温度範囲で生産性の
低下を引き起こさない10〜50℃/時間の平均昇温・
冷却速度で、保持0.5時間以上の熱処理を行う。
Subsequently, hot rolling is performed and final cold rolling is performed. Before the final cold rolling, if necessary, continuous annealing (hereinafter abbreviated as CAL) or batch annealing is performed after hot rolling, or primary cold rolling is performed after hot rolling to perform CAL.
Alternatively, batch annealing may be performed. In that case, the primary cold rolling reduction is desirably 55% or more in order to control the size of the recrystallized grains formed by annealing. In the case where continuous annealing is performed at a temperature lower than 320 ° C., an unrecrystallized structure is formed, and the effect of CAL does not appear. On the other hand, when the temperature exceeds 550 ° C., the recrystallized grains become coarse and the formability is reduced, or the strength anisotropy of the product plate is increased. For this reason, the continuous annealing condition is set to a temperature range of 320 to 550 ° C. and a holding time of 10 minutes or less that does not cause a decrease in productivity. In the case of batch annealing, if the temperature is lower than 250 ° C., a non-recrystallized structure is formed, and the effect of batch annealing does not appear. On the other hand, if the temperature exceeds 500 ° C., the recrystallized grains become coarse and the formability is reduced, or the strength anisotropy in the product plate is increased. Therefore, the conditions of batch annealing are such that the average temperature rise of 10 to 50 ° C./hour does not cause a decrease in productivity in the temperature range of 250 to 500 ° C.
Heat treatment is performed at a cooling rate for 0.5 hours or more.

【0021】なお最終冷間圧延時の初期平均結晶粒径
(圧延開始時の結晶粒径)は250μm以下になるよう
焼鈍、若しくは圧延を制御しなければならない。熱間圧
延後、直ちに最終冷間圧延を行う場合には、220〜3
90℃の範囲で熱間圧延を終了させなければならない。
220℃未満で熱間圧延を終了すると、板の耳割れが顕
著となり生産性を低下させる。一方、390℃を超える
温度で熱間圧延を終了すると、再結晶粒が粗大化し平均
結晶粒径が250μmを超える恐れがある。この平均結
晶粒径を超えた場合、その後の圧延によって剪断帯が顕
著に発達しCu〜S方位の方位密度が増加し、かつ、粗
大な旧結晶粒が残存し単結晶のような働きを示すため、
製品板の強度異方性を増大させる。
Annealing or rolling must be controlled so that the initial average grain size at the time of final cold rolling (the grain size at the start of rolling) is 250 μm or less. If final cold rolling is performed immediately after hot rolling, 220 to 3
Hot rolling must be terminated in the range of 90 ° C.
When the hot rolling is completed at a temperature lower than 220 ° C., the edge cracks of the sheet become remarkable and the productivity is reduced. On the other hand, if hot rolling is completed at a temperature exceeding 390 ° C., recrystallized grains may become coarse and the average crystal grain size may exceed 250 μm. When the average crystal grain size is exceeded, the shear band is remarkably developed by the subsequent rolling, the orientation density of the Cu to S orientation is increased, and coarse old crystal grains remain to exhibit a function like a single crystal. For,
Increase the strength anisotropy of the product plate.

【0022】最終冷間圧延は40〜95%の圧下率で行
う。最終冷間圧延率が40%未満では缶蓋材としての必
要な強度が得られない。また、95%を超えると不均一
変形領域が増加し強度異方性が大きくなったり、高転位
密度となるためにリベット成形性が低下する。そのた
め、最終冷間圧延率を40〜95%とした。
The final cold rolling is performed at a rolling reduction of 40 to 95%. If the final cold rolling reduction is less than 40%, the required strength as a can lid material cannot be obtained. On the other hand, if it exceeds 95%, the non-uniform deformation region increases and the strength anisotropy increases, or the dislocation density becomes high, so that the rivet formability decreases. Therefore, the final cold rolling reduction was set to 40 to 95%.

【0023】最終冷間圧延後に更に100〜240℃の
温度範囲で保持0.5〜10時間の仕上げ焼鈍を施すと
強度異方性が低減する。仕上げ焼鈍温度が100℃未満
ならばその効果は顕著に現れない。一方、240℃を超
えると材料が軟化し強度不足となる恐れがある。また時
間が0.5時間未満ならばその効果は現れ難く、一方、
10時間を超えると生産性の低下を招く。なお、最終冷
間圧延後の板温度が100〜240℃に到達した場合
で、かつその後の冷却過程において上記の焼鈍条件と同
じ温度・時間条件を満たす場合には結果的に同じ効果と
なることから、必ずしも改めて焼鈍炉による仕上げ焼鈍
を施さなくても良い。
[0023] After the final cold rolling, a further finish annealing at a temperature in the range of 100 to 240 ° C for 0.5 to 10 hours reduces the strength anisotropy. If the finish annealing temperature is less than 100 ° C., the effect is not remarkably exhibited. On the other hand, if the temperature exceeds 240 ° C., the material may be softened and the strength may be insufficient. If the time is less than 0.5 hour, the effect is hard to appear, while
If it exceeds 10 hours, the productivity will be reduced. In addition, when the sheet temperature after the final cold rolling reaches 100 to 240 ° C., and when the same temperature and time conditions as the above annealing conditions are satisfied in the subsequent cooling process, the same effect is finally obtained. Therefore, it is not always necessary to perform the finish annealing again by the annealing furnace.

【0024】[0024]

【実施例】表1に示す種々の化学成分のAl合金鋳塊
を、500℃×6hで加熱処理し熱間圧延を行い、表2
で記載したプロセスで製造し、最終板厚0.26mmに
仕上げた。製造符号Aだけは熱延後、冷延前に焼鈍を行
ったものである。製造プロセスの途中で最終冷間圧延前
の初期平均粒径を観察し、粒径が250μm以下の場合
は○、250μmを超える場合は×と記載した。
EXAMPLE An ingot of an Al alloy having various chemical components shown in Table 1 was subjected to a heat treatment at 500 ° C. for 6 hours and hot-rolled.
And finished to a final plate thickness of 0.26 mm. Only production code A is annealed after hot rolling and before cold rolling. During the production process, the initial average grain size before the final cold rolling was observed. When the grain size was 250 μm or less, it was described as ○, and when it exceeded 250 μm, it was described as x.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】できあがった板を用いて種々の測定、評価
を行った。製造した板を、缶蓋の製造工程と同様に、2
70℃×20sで塗装焼き付け処理して耐力を測定し、
また板厚中央の集合組織を測定した。尚、方位密度の定
量化は{200}、{220}、{111}の不完全極点図を
測定し、それらを用いて3次元方位分布関数を計算し評
価した。リベット成形性の評価は、塗装焼き付け処理し
た材料を製蓋して1%NaCl溶液を約10ml滴ら
し、6Vの電圧を3秒間付加した後の通電電流を測定し
て行った。割れの度合いが大きい程、通電電流値が高く
なることから、通電電流値が15mA以上の場合を不合
格(×)とした。また、塗装焼付け処理を施した板を圧
延方向に沿って引き裂き、そのときの引き裂き荷重を従
来材と比較して引き裂き性を評価した。従来材より優れ
ている場合、若しくは同等の場合を○、従来材より劣る
場合を×とした。その結果を表3に示す。
Various measurements and evaluations were performed using the finished plate. The manufactured plate is subjected to 2
Measure the proof strength by painting and baking at 70 ° C x 20s,
The texture at the center of the plate thickness was measured. The azimuth density was determined by measuring incomplete pole figures of {200}, {220}, and {111}, and using them to calculate and evaluate a three-dimensional azimuth distribution function. The rivet formability was evaluated by covering the material subjected to the paint baking treatment, dropping about 10 ml of a 1% NaCl solution, and measuring the current flowing after applying a voltage of 6 V for 3 seconds. The larger the degree of cracking, the higher the energizing current value. Therefore, the case where the energizing current value was 15 mA or more was rejected (x). Further, the plate subjected to the paint baking treatment was torn along the rolling direction, and the tearing load at that time was compared with that of the conventional material to evaluate the tearability. The case where the material was superior or equal to the conventional material was evaluated as ○, and the case where the material was inferior to the conventional material was evaluated as ×. Table 3 shows the results.

【0028】[0028]

【表3】 [Table 3]

【0029】表に示すように、発明例はいずれも優れた
特性を示している。すなわち、製造符号A、Cは本発明
合金を用い、本発明プロセスで製造しているため強度異
方性に優れ、且つリベット成形性および引き裂き性も良
好であり合格となった。一方、B、D、E、F、Gは本
発明合金を用いたが、製造プロセスがいずれかの条件を
満たしていなかったため、耐力が不充分であったり、強
度異方性が規定値から外れ、リベット成形性も劣り不合
格となった。またH、I、J、K、L、M、Nは本発明
プロセスで製造したが、本発明合金を用いなかったため
に、強度、強度異方性、リベット成形性および引き裂き
性の何れかが劣り不合格となった。
As shown in the table, all of the inventive examples show excellent characteristics. That is, the production codes A and C were excellent in strength anisotropy and good in rivet formability and tearability because they were manufactured by the process of the present invention using the alloy of the present invention. On the other hand, the alloys of the present invention were used for B, D, E, F, and G. However, since the manufacturing process did not satisfy any of the conditions, the proof stress was insufficient or the strength anisotropy was out of the specified value. Also, the rivet formability was poor and the test was rejected. H, I, J, K, L, M, and N were manufactured by the process of the present invention, but because the alloy of the present invention was not used, strength, strength anisotropy, rivet formability and tearability were inferior. Rejected.

【0030】[0030]

【発明の効果】以上詳述したように、本発明によれば、
炭酸飲料用やビール用等の内圧の高い缶蓋材に用いられ
た際に、内圧によって蓋が膨れた場合でも局部的な応力
集中が生じず、変形の際亀裂が発生し難く、またリベッ
ト成形性に優れ、引き裂き性も良好なアルミニウム硬質
板を得ることができる。
As described in detail above, according to the present invention,
When used for cans with high internal pressure such as for carbonated drinks and beer, even if the lid expands due to internal pressure, local stress concentration does not occur, cracks are less likely to occur during deformation, and rivet forming It is possible to obtain an aluminum hard plate having excellent tearability and good tearability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】アルミニウムの集合組織における結晶方位分布
を示すオイラー空間の模式図である。
FIG. 1 is a schematic diagram of an Euler space showing a crystal orientation distribution in a texture of aluminum.

【符号の説明】[Explanation of symbols]

ψ1,ψ2,φ ‥‥‥ オイラー角座標 Cu,S,Brass ‥‥‥ 各結晶方位 ψ1, ψ2, φ ‥‥‥ Euler angle coordinates Cu, S, Brass ‥‥‥ Each crystal orientation

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 691 C22F 1/00 691B 691C 694 694A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 691 C22F 1/00 691B 691C 694 694A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Mg3.5〜5.0%(質量%、以下同
じ)、Mn0.15〜0.6%、Si0.02〜0.2
0%、Cu0.01〜0.20、Fe0.40%以下、
Ti0.03%以下でかつ、(Fe+Mn)/Siが2
0以下であり、残部がAl及び不可避的不純物からなる
組成を有し、板厚中央の圧延集合組織成分のうちベータ
ファイバーに属するCu方位からS方位までの方位密度
の総和(Cu〜S)とS方位からBrass方位までの
方位密度の総和(Brass〜S)の比(Cu〜S)/
(Brass〜S)が5.0以下であることを特徴とす
る強度異方性の小さい缶蓋用アルミニウム硬質板。
1. Mg 3.5-5.0% (mass%, the same applies hereinafter), Mn 0.15-0.6%, Si 0.02-0.2
0%, Cu 0.01 to 0.20, Fe 0.40% or less,
Ti not more than 0.03% and (Fe + Mn) / Si is 2
0 or less, the balance having a composition consisting of Al and inevitable impurities, and the sum of the orientation densities (Cu to S) from the Cu orientation to the S orientation belonging to the beta fiber among the rolling texture components at the center of the plate thickness. Ratio of total (Brass to S) of orientation densities from S orientation to Brass orientation (Cu to S) /
(Brass-S) is 5.0 or less, The aluminum hard plate for can lids with small strength anisotropy characterized by the above-mentioned.
【請求項2】 Mg3.5〜5.0%、Mn0.15〜
0.6%、Si0.02〜0.20%、Cu0.01〜
0.20、Fe0.40%以下、Ti0.03%以下で
かつ(Fe+Mn)/Siが20以下であり、残部がA
l及び不可避的不純物からなるAl鋳塊を、400〜5
50℃の温度範囲で保持1〜10時間の加熱処理を施し
た後、熱間圧延を行い、最終冷間圧延前の初期結晶粒径
を250μm以下となるようにし、40〜95%の圧下
率で最終冷間圧延を行い、最終冷間圧延後に100〜2
40℃の温度範囲で0.5〜10時間保持する仕上げ焼
鈍を施し、板厚中央の圧延集合組織成分のうちベータフ
ァイバーに属するCu方位からS方位までの方位密度の
総和とS方位からBrass方位までの方位密度の総和
の比(Cu〜S)/(Brass〜S)が5.0以下で
あることを特徴とする強度異方性の小さい缶蓋用アルミ
ニウム硬質板の製造方法。
2. Mg 3.5-5.0%, Mn 0.15-
0.6%, Si 0.02 to 0.20%, Cu 0.01 to
0.20, Fe 0.40% or less, Ti 0.03% or less, (Fe + Mn) / Si is 20 or less, and the balance is A
1 and an ingot of Al inevitable impurities
After performing heat treatment at a temperature range of 50 ° C. for 1 to 10 hours, hot rolling is performed so that the initial crystal grain size before final cold rolling is 250 μm or less, and a rolling reduction of 40 to 95%. The final cold rolling is performed, and after the final cold rolling, 100 to 2
Finish annealing is performed at a temperature range of 40 ° C. for 0.5 to 10 hours, and among the rolling texture components in the center of the sheet thickness, the sum of the orientation densities from the Cu orientation to the S orientation belonging to the beta fiber and the Brass orientation from the S orientation. A ratio (Cu to S) / (Brass to S) of the sum of the orientation densities up to 5.0 is not more than 5.0.
JP33003899A 1999-11-19 1999-11-19 Aluminum hard sheet for can cover and producing method therefor Pending JP2001152271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33003899A JP2001152271A (en) 1999-11-19 1999-11-19 Aluminum hard sheet for can cover and producing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33003899A JP2001152271A (en) 1999-11-19 1999-11-19 Aluminum hard sheet for can cover and producing method therefor

Publications (1)

Publication Number Publication Date
JP2001152271A true JP2001152271A (en) 2001-06-05

Family

ID=18228086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33003899A Pending JP2001152271A (en) 1999-11-19 1999-11-19 Aluminum hard sheet for can cover and producing method therefor

Country Status (1)

Country Link
JP (1) JP2001152271A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141886A (en) * 2015-02-05 2016-08-08 株式会社神戸製鋼所 Aluminum alloy sheet for can top
WO2017065137A1 (en) * 2015-10-14 2017-04-20 株式会社神戸製鋼所 Aluminum alloy plate for can end

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141886A (en) * 2015-02-05 2016-08-08 株式会社神戸製鋼所 Aluminum alloy sheet for can top
WO2017065137A1 (en) * 2015-10-14 2017-04-20 株式会社神戸製鋼所 Aluminum alloy plate for can end

Similar Documents

Publication Publication Date Title
JP2009221567A (en) Aluminum alloy sheet for positive pressure coated can lid, and method for producing the same
JPH0569898B2 (en)
JPH06136478A (en) Baking hardening type al alloy sheet excellent in formability and its production
JP3998387B2 (en) Manufacturing method of aluminum alloy hard plate for can lid
JP2006283113A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP3726893B2 (en) Method for producing an aluminum alloy plate used for a lid for a positive pressure can excellent in rivet formability, score workability and blow-up resistance
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JP2004263253A (en) Aluminum alloy hard sheet for can barrel, and production method therefor
JP2001152271A (en) Aluminum hard sheet for can cover and producing method therefor
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JP2002105574A (en) Aluminum alloy hard sheet for can peever and its production method
JP2525017B2 (en) Aluminum alloy material for can ends
JPH09268341A (en) Baking-coated al alloy sheet for can lid material, excellent in stress corrosion cracking resistance in score part, and its production
JP2004183045A (en) Aluminum alloy sheet for coated tab, and its production method
JP2626859B2 (en) Method for producing aluminum alloy sheet for high strength forming with low anisotropy
WO2000034544A2 (en) High strength aluminium alloy sheet and process
JP2005076041A (en) Method for manufacturing hard aluminum alloy sheet for can body
JP2745254B2 (en) Aluminum alloy hard plate excellent in local overhang property and method of manufacturing the same
JP3587993B2 (en) Manufacturing method of aluminum alloy sheet for deep drawing
JPH06316739A (en) Al alloy sheet for negative pressure can stay on tab type end, excellent in can openability, and its production
JPH09256129A (en) Production of high strength heat treated type aluminum alloy sheet for drawing
JP4077997B2 (en) Manufacturing method of aluminum alloy hard plate for can lid
JP2891620B2 (en) High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same
JP2956038B2 (en) Al alloy plate for drawing cups excellent in suppressing distortion pattern and method for producing the same
JP3248803B2 (en) Al alloy plate for full open end with excellent openability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714