JP2001115242A - Nonoriented silicon steel sheet excellent in magnetic property - Google Patents
Nonoriented silicon steel sheet excellent in magnetic propertyInfo
- Publication number
- JP2001115242A JP2001115242A JP29615599A JP29615599A JP2001115242A JP 2001115242 A JP2001115242 A JP 2001115242A JP 29615599 A JP29615599 A JP 29615599A JP 29615599 A JP29615599 A JP 29615599A JP 2001115242 A JP2001115242 A JP 2001115242A
- Authority
- JP
- Japan
- Prior art keywords
- iron loss
- ppm
- magnetic
- less
- annealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電気機器鉄心材料
等に使用される無方向性電磁鋼板に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet used for a core material of electric equipment.
【0002】[0002]
【従来の技術】地球温暖化防止を受けて、産業、運輸、
民生の各分野において省エネルギーへの取組みが活発に
なってきており、そのような中で、無方向性電磁鋼板
は、各種電気機器の鉄心材料として多量に使用され、素
材に対する高特性化の要請は一段と大きくなっている。[Prior Art] In response to the prevention of global warming, industry, transportation,
Efforts to save energy have been active in various fields of consumer use. Under such circumstances, non-oriented electrical steel sheets have been used in large quantities as core materials for various electrical devices. It is getting bigger.
【0003】無方向性電磁鋼板は、その製造方法により
フルプロセス材とセミプロセス材に分けられる。このう
ち、フルプロセス材は鉄鋼メーカー側の仕上焼鈍により
所定の磁気特性を得るものであり、一方、セミプロセス
材は、需要家において打抜き加工後に歪取り焼鈍を施
し、所定の磁気特性を得るものである。セミプロセス材
においては、歪取り焼鈍時に、加工歪みの除去と同時に
結晶粒も成長することから、より一層の鉄損の低減が可
能となる。このため歪取り焼鈍は「磁性焼鈍」とも呼ば
れており、磁性焼鈍時おける粒成長性を向上させること
が、低鉄損化には重要である。[0003] Non-oriented electrical steel sheets are classified into full-process materials and semi-process materials according to the manufacturing method. Among them, the full process material is to obtain predetermined magnetic properties by finish annealing on the steel maker side, while the semi-process material is to obtain the predetermined magnetic characteristics by performing strain relief annealing after punching at the customer. It is. In the case of the semi-process material, the crystal grains grow simultaneously with the removal of the processing strain during the strain relief annealing, so that the iron loss can be further reduced. For this reason, the strain relief annealing is also called “magnetic annealing”, and it is important to improve the grain growth during magnetic annealing to reduce iron loss.
【0004】この磁性焼鈍は通常750 ℃×2 時間で行わ
れるために、粒成長を阻害する微細な析出物が鋼中に存
在すると低鉄損化を図ることができない。これら析出物
の中でも、微細な窒化物や硫化物は、特に粒成長を阻害
し鉄損や磁束密度を大幅に劣化させる。Since this magnetic annealing is usually performed at 750 ° C. × 2 hours, low iron loss cannot be achieved if fine precipitates that inhibit grain growth are present in the steel. Among these precipitates, fine nitrides and sulfides particularly inhibit grain growth and significantly reduce iron loss and magnetic flux density.
【0005】Al添加鋼では、従来から窒化物の制御技術
に関して種々提案されてきた。特開昭61-119652 号公報
では、Al添加量を0.15%以上としてAlN を粗大化させる
方法が、特開昭54-163720 号公報では、B 添加によるN
をBNとしての固定する方法が、特開昭64-4454 号公報で
は、Zr添加によるAlN の析出を抑制する方法がそれぞれ
開示されている。[0005] In the case of Al-added steel, various proposals have been made with respect to nitride control technology. Japanese Patent Application Laid-Open No. 61-119652 discloses a method in which AlN is coarsened by adding Al in an amount of 0.15% or more.
As a method for fixing BN as BN, Japanese Patent Application Laid-Open No. 64-4454 discloses a method for suppressing the precipitation of AlN by adding Zr.
【0006】また、特開平8-3699号公報では、Al脱酸で
希土類元素を添加することにより硫化物と窒化物を無害
化し、高特性化を達成する方法が開示されている。[0006] Japanese Patent Application Laid-Open No. 8-3699 discloses a method in which sulfides and nitrides are rendered harmless by adding a rare earth element by Al deoxidation to achieve high characteristics.
【0007】一方、近年、製鋼工程でのコスト低減の観
点から、スラグレス吹錬や低品位原料の活用等により鋼
中の微量不純物は多くなりつつある。特にTi、V の混入
は、微細な窒化物を形成するために、磁束密度、鉄損を
大幅に劣化させる。そこで特開平6-108149号公報では、
需要家焼鈍後の鉄損を低減するためにTi、Zr、Nb、V等
の窒化物形成元素をすべて0.0050%以下に管理すること
が提案されている。On the other hand, in recent years, from the viewpoint of cost reduction in the steelmaking process, trace impurities in steel are increasing due to slagless blowing and utilization of low-grade raw materials. In particular, the incorporation of Ti and V significantly deteriorates magnetic flux density and iron loss due to the formation of fine nitrides. Therefore, in JP-A-6-108149,
It has been proposed that all nitride forming elements such as Ti, Zr, Nb and V be controlled to 0.0050% or less in order to reduce iron loss after customer annealing.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、特開昭
61-119652 号公報、特開昭54-163720 号公報、特開昭64
-4454 号公報に記載される技術では、完全にAlN の析出
は抑制できず、磁性焼鈍後に十分な低鉄損化を図ること
は困難である。SUMMARY OF THE INVENTION However, Japanese Patent Application Laid-Open
61-119652, JP-A-54-163720, JP-A-64
According to the technique described in Japanese Patent No. 4454, precipitation of AlN cannot be completely suppressed, and it is difficult to sufficiently reduce iron loss after magnetic annealing.
【0009】特開平8-3699号公報に記載される技術で
は、希土類元素は高価であるために非常なコスト高を招
くことは避けられない。このように、Al添加鋼で鉄損が
低く磁束密度の高い無方向性電磁鋼板を安価に製造する
ことは、現状では困難である。In the technique described in Japanese Patent Application Laid-Open No. 8-3699, the rare earth element is expensive, so that it is inevitable that the cost is extremely high. As described above, it is currently difficult to inexpensively manufacture a non-oriented electrical steel sheet having a low iron loss and a high magnetic flux density using Al-added steel.
【0010】一方、特開平6-108149号公報に記載される
技術では、すべての微量不純物を管理するのは実用レベ
ルでは困難であり、大幅なコストアップは避けられな
い。On the other hand, in the technique described in Japanese Patent Application Laid-Open No. 6-108149, it is difficult to control all trace impurities at a practical level, and a significant increase in cost is inevitable.
【0011】すなわち、従来の窒化物の無害化技術は、
合金元素添加による析出物サイズや組成の変更、あるい
は、窒化物形成元素自体を低減する、ことに注力してき
た。しかしながら、最近の電気機器の省エネルギーへの
取組みに対する要望に十分に応えるものではなく、鋼中
微細析出物をより一層低減するための新しい技術の出現
が渇望されているのが現状である。That is, the conventional nitride detoxification technology is as follows:
Efforts have been made to change the size and composition of precipitates by adding alloying elements, or to reduce nitride forming elements themselves. However, it does not sufficiently respond to recent demands for efforts for energy saving of electric equipment, and at present, there is a desire for a new technology for further reducing fine precipitates in steel.
【0012】本発明は上記のような問題に鑑みなされた
ものであり、粒成長を阻害する微細な窒化物を低減する
ことを通じて、磁気特性に優れた無方向性電磁鋼板を提
案することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to propose a non-oriented electrical steel sheet having excellent magnetic properties by reducing fine nitrides that inhibit grain growth. And
【0013】[0013]
【課題を解決するための手段】上記の課題は次の発明に
より解決される。The above object is achieved by the following invention.
【0014】第一の発明は、重量%で、C :0.005 %以
下、Si:0.05〜1.0 %、Mn:0.1 %〜1.0 %、P :0.2
%以下、N :0.001 %以下、S :0.02%以下、sol.Al:
0.05〜1.0 %、 Ti :0.0015%以下、残部実質的にFeで
あることを特徴とする磁気特性に優れた無方向性電磁鋼
板である。In the first invention, C: 0.005% or less, Si: 0.05-1.0%, Mn: 0.1% -1.0%, P: 0.2% by weight.
%, N: 0.001% or less, S: 0.02% or less, sol.Al:
This is a non-oriented electrical steel sheet having excellent magnetic properties, characterized by 0.05 to 1.0%, Ti: 0.0015% or less, and the balance being substantially Fe.
【0015】第二の発明は、重量%で、C :0.001 %以
下、Si:0.05〜1.0 %、Mn:0.1 %〜1.0 %、P :0.2
%以下、N :0.001 %以下、S :0.02%以下、sol.Al:
0.05〜1.0 %、Ti:0.0015%以下、残部実質的にFeであ
ることを特徴とする磁気特性に優れた無方向性電磁鋼板
である。According to the second invention, C: 0.001% or less, Si: 0.05 to 1.0%, Mn: 0.1% to 1.0%, P: 0.2% by weight.
%, N: 0.001% or less, S: 0.02% or less, sol.Al:
This is a non-oriented electrical steel sheet having excellent magnetic properties, characterized by 0.05 to 1.0%, Ti: 0.0015% or less, and the balance being substantially Fe.
【0016】なお、これらの手段において、「残部実質
的にFe」とは、本発明の作用効果を無くさない限り、不
可避不純物をはじめ、他の微量元素を含有するものが本
発明の範囲に含まれることを意味する。また、本明細書
において、鋼の成分を示す%はすべて重量%であり、pp
m も重量ppm である。In these means, "substantially Fe" means, insofar as the effects of the present invention are not lost, those containing other trace elements including unavoidable impurities are included in the scope of the present invention. Means that Further, in this specification, all the percentages indicating the components of steel are% by weight, and pp
m is also ppm by weight.
【0017】[0017]
【発明の実施の形態】本発明者らは課題を達成すべく、
Al添加系の電磁鋼板において鉄損を低減する手法に関し
検討した。その結果、N を極低減化し、さらにまたはTi
量およびC 量を制御することによって微細な窒化物や炭
窒化物が低減し、仕上げ焼鈍後(フルプロ特性)および
磁性焼鈍後の磁気特性が向上するという知見を得た。BEST MODE FOR CARRYING OUT THE INVENTION The present inventors
A method for reducing iron loss in magnetic steel sheets with Al addition was studied. As a result, N is extremely reduced and
It has been found that by controlling the amount of carbon and the amount of carbon, fine nitrides and carbonitrides are reduced, and the magnetic properties after finish annealing (full-pro properties) and after magnetic annealing are improved.
【0018】本発明を実験結果に基づいて詳細に説明す
る。最初に鉄損および磁束密度に及ぼす窒素量の影響を
調査するため、C :0.0020%、Si:0.21%、Mn:0.40
%、P :0.100 %、S :0.0040%、sol.Al:0.20%、T
i:tr、V :trとし、N 量を3 ppm 〜30 ppmの範囲で変
化させた鋼をラボ溶解し、鋳造しインゴットを作製し
た。これらインゴットを熱延後、酸洗し、引き続きこの
熱延板を板厚0.5mm まで冷間圧延し、850 ℃×40sec の
連続仕上焼鈍を施し、さらに一部のサンプルについて
は、磁性焼鈍を行った。磁性焼鈍条件は標準的な750 ℃
×2hr の100 %N 2 雰囲気で行った。The present invention will be described in detail based on experimental results. First, to investigate the effect of nitrogen content on iron loss and magnetic flux density, C: 0.0020%, Si: 0.21%, Mn: 0.40%
%, P: 0.100%, S: 0.0040%, sol.Al: 0.20%, T
A steel in which i was tr and V was tr and the N content was changed in the range of 3 ppm to 30 ppm was melted in a laboratory and cast to produce an ingot. After hot-rolling these ingots, they were pickled, then the hot-rolled sheets were cold-rolled to a thickness of 0.5 mm, subjected to continuous finish annealing at 850 ° C x 40 sec, and magnetic annealing was performed for some samples. Was. Magnetic annealing conditions are standard 750 ° C
The test was performed in a 100% N 2 atmosphere for × 2 hours.
【0019】図1 にこのようにして得られたサンプルの
N 量と仕上げ焼鈍後の鉄損W15/50の関係を示す。ここ
で、磁気特性は25cmエプスタイン試験片を用いて行っ
た。図1 より、鉄損は、N 量の低下と共に低下し、10 p
pm近傍を境に大幅に低減し、N=10ppm 付近に臨界点の
あることがわかる。FIG. 1 shows the sample thus obtained.
The relationship between N content and iron loss W15 / 50 after finish annealing is shown. Here, the magnetic properties were measured using a 25 cm Epstein test piece. From Fig. 1, iron loss decreases with decreasing N content,
It can be seen that it is greatly reduced around pm and that there is a critical point near N = 10 ppm.
【0020】また、図2 に上記方法により得られたサン
プルのN 量と磁性焼鈍後の鉄損W15/50 の関係を示す。
図2 において、磁気特性の測定は図1 と同様の方法で行
った。図2 より、磁性焼鈍後の鉄損も仕上げ焼鈍後の鉄
損と同様に、N 量の低下とともに徐々に低下する。特に
10 ppm近傍を境に大幅に低減し、N =10ppm 付近に臨界
点のあることがわかる。FIG. 2 shows the relationship between the N content of the sample obtained by the above method and the iron loss W15 / 50 after magnetic annealing.
In FIG. 2, the measurement of the magnetic characteristics was performed in the same manner as in FIG. As shown in FIG. 2, the iron loss after magnetic annealing gradually decreases as the N content decreases, similarly to the iron loss after finish annealing. In particular
It can be seen that it is greatly reduced around 10 ppm, and there is a critical point near N = 10 ppm.
【0021】上記原因を調査するため、N 量が13ppm と
9ppmの磁性焼鈍後のサンプルの組織を光学顕微鏡にて観
察したところ、N 量が13 ppmのサンプルに比べて9ppmの
サンプルではフェライト粒は粗大化していることが判明
した。この原因を調査するために、さらにTEM 観察を行
った。その結果、N 量が11 ppm以上のサンプルでは、ス
ラブ加熱時の固溶- 再析出に起因すると考えられる80nm
程度の微細なAlN と、スラブ加熱では未固溶状態であっ
たと推定される300 nm程度の未固溶のAlN が粒界上ある
いは粒内に観察された。一方、N 量が9ppm以下のサンプ
ルでは、300 nm程度のAlN は全く認められず、80nmの微
細なAlN が散見されるだけであった。このAlN の析出形
態の差が鉄損の大幅な低減の原因と考えられる。In order to investigate the above-mentioned cause, the N content was set to 13 ppm.
The structure of the sample after the magnetic annealing of 9 ppm was observed with an optical microscope, and it was found that the ferrite grains were coarser in the sample with 9 ppm than in the sample with 13 ppm of N. Further TEM observations were made to investigate the cause. As a result, the sample with N content of 11 ppm or more is considered to be caused by solid solution-reprecipitation during slab heating.
Fine AlN of about the same level and undissolved AlN of about 300 nm, which was presumed to be in the undissolved state by slab heating, were observed on the grain boundaries or in the grains. On the other hand, in the sample having N content of 9 ppm or less, AlN of about 300 nm was not recognized at all, and fine AlN of 80 nm was only scattered. This difference in the precipitation form of AlN is considered to be the cause of the significant reduction in iron loss.
【0022】図3 に図1 と同様の方法により得られたサ
ンプルのN 量と仕上げ焼鈍後の磁束密度B50の関係を示
す。ここで磁束密度は25cmエプスタイン試験により測定
した。図3 より、図1 の鉄損と同様にN 量が10ppm 以下
になると急激に磁束密度が高くなり、N =10ppm 付近に
臨界点のあることがわかる。これは、300 nm程度のAlN
が激減することによって熱延時の粒成長性が改善され
て、熱延板組織が粗大化するためと考えられる。FIG. 3 shows the relationship between the N content of the sample obtained by the same method as in FIG. 1 and the magnetic flux density B50 after the finish annealing. Here, the magnetic flux density was measured by a 25 cm Epstein test. From FIG. 3, it can be seen that the magnetic flux density sharply increases when the N content becomes 10 ppm or less, similar to the iron loss in FIG. 1, and there is a critical point near N = 10 ppm. This is about 300 nm AlN
This is considered to be due to the fact that the grain growth during hot rolling is improved by drastically reducing the grain size of the hot rolled sheet.
【0023】従来からN 、C 、S 等の炭窒化物や硫化物
を形成する元素を低減すると鉄損が低下することは知ら
れていたが、N 量が10ppm 以下の鉄損の低下率はN 量が
10ppm 超えの場合と同じような割合で下がると考えられ
ていた。ところが、図1 、図2 、図3 に示されるよう
に、N 量を10ppm 以下まで低減することにより、鉄損は
急激に低下し、さらに磁束密度も上昇することが判明し
た。It has been known that iron loss decreases when elements forming carbonitrides and sulfides such as N, C, and S are reduced, but the rate of decrease in iron loss when the N content is 10 ppm or less is as follows. N amount
It was thought to fall at a similar rate as above 10 ppm. However, as shown in FIG. 1, FIG. 2, and FIG. 3, it was found that when the N content was reduced to 10 ppm or less, the iron loss sharply decreased and the magnetic flux density also increased.
【0024】以上の結果より、N は10ppm 以下、好まし
くは9ppm以下とする。次に、実用的な観点から、工業レ
ベルで微量混入が避けられない元素であるTi、V の影響
を調べるため、以下のような実験を行った。From the above results, N is set to 10 ppm or less, preferably 9 ppm or less. Next, from a practical point of view, the following experiments were conducted in order to investigate the effects of Ti and V, which are inevitable elements in trace amounts at the industrial level.
【0025】C :0.0019%、Si:0.21%、Mn:0.40%、
P :0.100 %、S :0.0050%、sol.Al:0.20% 、Ti:20
ppm、V :70 ppmとし、N を2 〜30 ppmの範囲で変化さ
せた鋼をラボ溶解し、鋳造しインゴットを作製した。こ
れらインゴットを熱間圧延後、酸洗し、引き続き板厚
0.5mmまで冷間圧延し、850 ℃×40sec の仕上焼鈍を施
し、さらに750 ℃×2hr の磁性焼鈍を行った。C: 0.0019%, Si: 0.21%, Mn: 0.40%,
P: 0.100%, S: 0.0050%, sol.Al: 0.20%, Ti: 20
ppm, V: 70 ppm, N was changed in the range of 2 to 30 ppm, and the steel was melted in a laboratory and cast to produce an ingot. After hot rolling these ingots, they are pickled and then
The sample was cold-rolled to 0.5 mm, subjected to finish annealing at 850 ° C. × 40 sec, and further subjected to magnetic annealing at 750 ° C. × 2 hours.
【0026】図4 にこのようにして得られたサンプルの
N 量と磁性焼鈍後の鉄損W15/50 の関係を示す(図中○
印)。ここで、図2 で得られたサンプルのデ−タを図中
に●印で示した。図4 において、磁気特性の測定は図1
と同様の方法で行った。磁性焼鈍後の鉄損は粒成長性が
敏感に反映される特性であり、微妙な変化を判断するの
に適している。この熱処理は、750 ℃の比較的低温域の
ために、粒界移動の駆動力が小さく、粒界をピンニング
する微細析出物の影響が顕著に現れる。図4 より、Ti、
V 含有サンプル(図中○印)は、Ti、V を含有していな
い(Ti:tr、V:tr)サンプル(図中●印)より全体的
に高鉄損を示している。またTi、V 含有サンプルは、N
量の低下と共に鉄損は徐々に低下し、Ti、V を含有して
いないサンプルに比べると低下の割合はゆるやかではあ
るが、N 量が10ppm 以下になると低下の割合は大きくな
る。この割合は、Nが9ppm以下でより顕著であり、さら
に低減することがわかる。そこで、これらのサンプルの
TEM 観察を行った。Ti、V含有サンプルではN 量に関わ
らず、すべてのサンプルにおいて40nm程度の微細なTiN
が観察され、V 系窒化物は認めらなかった。これより、
Ti、V 含有サンプルの鉄損劣化は、この微細なTiN 析出
が主因であり、V の含有は磁気特性に影響がないと考え
られる。すなわち、TiやAlに比べて窒化物形成能の低い
V は、Tiの存在下ではN と結合しないため、析出物は形
成されないと考えられる。FIG. 4 shows the sample thus obtained.
The relationship between N content and iron loss W15 / 50 after magnetic annealing is shown (in the figure, ○
mark). Here, the data of the sample obtained in FIG. 2 is indicated by a circle in the figure. In FIG. 4, the measurement of the magnetic characteristics is shown in FIG.
Was performed in the same manner as described above. Iron loss after magnetic annealing is a characteristic in which grain growth is sensitively reflected, and is suitable for judging subtle changes. Since this heat treatment has a relatively low temperature range of 750 ° C., the driving force for the movement of the grain boundaries is small, and the influence of fine precipitates that pin the grain boundaries appears remarkably. From Fig. 4, Ti,
The V-containing sample (circle in the figure) shows higher iron loss overall than the sample (Ti: tr, V: tr) not containing Ti and V (circle in the figure). Samples containing Ti and V
The iron loss gradually decreases as the amount decreases, and the rate of decrease is slower than that of the sample not containing Ti and V. However, the rate of decrease increases when the N amount becomes 10 ppm or less. This ratio is more remarkable when N is 9 ppm or less, and it is understood that the ratio is further reduced. So, for these samples
TEM observation was performed. Regardless of the N content in Ti and V-containing samples, fine TiN of about 40 nm in all samples
Was observed, and no V-based nitride was observed. Than this,
Iron loss degradation of Ti and V containing samples is mainly due to this fine TiN precipitation, and it is considered that V content does not affect magnetic properties. That is, the nitride forming ability is lower than that of Ti or Al
Since V does not bond with N in the presence of Ti, it is considered that no precipitate is formed.
【0027】そこで、さらに極低N 鋼でのTi量の影響を
詳細に調べた。 C :0.0019%、Si:0.21%、Mn:0.40%、P :0.100
%、S :0.0050%、sol.Al:0.20% 、N :4 〜7 ppm 、
V :70 ppmとし、Tiを0 〜30 ppmの範囲で変化させた鋼
をラボ溶解し、鋳造しインゴットを作製した。これらイ
ンゴットを熱間圧延後、酸洗し、引き続き板厚 0.5mmま
で冷間圧延し、850 ℃×40sec の仕上焼鈍を施し、750
℃×2hr の磁性焼鈍を行った。Therefore, the effect of the amount of Ti on the ultra-low N steel was further investigated in detail. C: 0.0019%, Si: 0.21%, Mn: 0.40%, P: 0.100
%, S: 0.0050%, sol.Al: 0.20%, N: 4-7 ppm,
V: 70 ppm, and steel in which Ti was changed in the range of 0 to 30 ppm was melted in a laboratory and cast to produce an ingot. These ingots are hot-rolled, pickled, then cold-rolled to a thickness of 0.5 mm, finish-annealed at 850 ° C × 40 sec, and subjected to 750 ° C.
Magnetic annealing was performed at ℃ 2 hours.
【0028】図5 にこのようにして得られたサンプルの
Ti量と磁性焼鈍後の鉄損W15/50 の関係を示す。図5 に
おいて、磁気特性の測定は図1 と同様の方法で行った。
図5より極低N 鋼ではTi量が15ppm 以下になると鉄損が
急激に低減されることがわかる。また、サンプルのTEM
観察の結果、Tiが15 ppm以下のサンプルにはTi系および
V 系窒化物は認められず、窒化物としてはAlN が観察さ
れた。FIG. 5 shows the sample thus obtained.
The relationship between the Ti content and the iron loss W15 / 50 after magnetic annealing is shown. In FIG. 5, the measurement of the magnetic characteristics was performed in the same manner as in FIG.
From Fig. 5, it can be seen that in the extremely low N steel, when the Ti content is 15 ppm or less, the iron loss is sharply reduced. Sample TEM
As a result of observation, it was found that the sample containing less than 15 ppm
No V-based nitride was observed, and AlN was observed as the nitride.
【0029】また、図6 に図5 と同様の方法により得ら
れたサンプルのTi量と磁性焼鈍後の磁束密度B50の関係
を示す。図6 において、磁束密度の測定は図3 と同様の
方法で行った。図6 より、磁束密度に関しても、Ti量が
15ppm 以下になると急激に向上することがわかる。FIG. 6 shows the relationship between the amount of Ti of the sample obtained by the same method as in FIG. 5 and the magnetic flux density B50 after magnetic annealing. In FIG. 6, the measurement of the magnetic flux density was performed in the same manner as in FIG. From Fig. 6, the Ti amount is also
It can be seen that when the concentration is 15 ppm or less, it is rapidly improved.
【0030】以上図5 、図6 より、低鉄損、高磁束密度
化のためにはTi量の制御が重要であり、15ppm 以下、よ
り好ましくは9ppm以下に規定することが重要であること
がわかる。From FIGS. 5 and 6, it can be seen from FIGS. 5 and 6 that it is important to control the amount of Ti in order to reduce iron loss and increase magnetic flux density, and it is important to regulate the Ti content to 15 ppm or less, more preferably 9 ppm or less. Understand.
【0031】次に、さらなる低鉄損化を目的として、C
量の影響を調べた。 Si:0.22%、Mn:0.40%、P :0.100 %、S :0.0050
%、sol.Al:0.20% 、N:6 ppm 、Ti:7 ppm 、V :70
ppmとし、C を0.003 〜0.0030%の範囲で変化させた鋼
をラボ溶解し、鋳造しインゴットを作製した。これらイ
ンゴットを熱間圧延後、酸洗し、引き続き板厚 0.5mmま
で冷間圧延し、850 ℃×40 sec の仕上焼鈍を施し、さ
らに750 ℃×2hr の磁性焼鈍を行った。Next, in order to further reduce iron loss, C
The effect of the amount was investigated. Si: 0.22%, Mn: 0.40%, P: 0.100%, S: 0.0050
%, Sol.Al: 0.20%, N: 6 ppm, Ti: 7 ppm, V: 70
Ingot was prepared by lab melting and casting a steel in which ppm was set and C was changed in the range of 0.003 to 0.0030%. These ingots were hot-rolled, pickled, subsequently cold-rolled to a thickness of 0.5 mm, subjected to finish annealing at 850 ° C. × 40 sec, and further subjected to magnetic annealing at 750 ° C. × 2 hours.
【0032】図7 はこのようにして得られたサンプルの
C 量と磁性焼鈍後の鉄損W15/50 の関係を示す。図7 に
おいて、磁気特性の測定は図1 と同様の方法で行った。
図7より、C 量の低減と共に鉄損は徐々に低減し、10ppm
以下になるとその低減効果が大きくなる傾向がある。
これは、固溶C の低減による焼鈍時の粒成長性向上に起
因すると考えられる。以上より、さらに鉄損を低減する
ためには、C を10ppm以下にすることが好ましい。FIG. 7 shows the sample thus obtained.
The relationship between the C content and the iron loss W15 / 50 after magnetic annealing is shown. In FIG. 7, the measurement of the magnetic characteristics was performed in the same manner as in FIG.
According to Fig. 7, iron loss gradually decreases with decreasing C content,
Below, the reduction effect tends to increase.
This is thought to be due to the improvement in grain growth during annealing due to the reduction of solid solution C. As described above, in order to further reduce iron loss, it is preferable that C be 10 ppm or less.
【0033】以下、本発明におけるその他の成分の限定
理由について述べる。 C :磁気時効の原因となり鉄損を劣化させるために0.00
5 %以下とするが、より低鉄損化のためには、0.001 %
以下が好ましい。The reasons for limiting other components in the present invention will be described below. C: 0.00 to cause magnetic aging and deteriorate iron loss
5% or less, but 0.001% for lower iron loss
The following is preferred.
【0034】Si:添加量の増大とともに鉄損が低減する
元素である。鉄損の低減を図るために0.05%以上添加す
る必要がある。しかし、1.0 %を超えると磁束密度が低
下するため上限を1.0 %とする。Si: An element whose iron loss decreases as the amount of addition increases. It is necessary to add 0.05% or more to reduce iron loss. However, if it exceeds 1.0%, the magnetic flux density decreases, so the upper limit is made 1.0%.
【0035】Mn:S をMnS として固定するために、0.1
%以上含有させる必要がある。一方、添加量が増加する
と磁束密度が低下するため、1.0 %以下に規定する。Mn: In order to fix S as MnS, 0.1
% Or more. On the other hand, when the amount of addition increases, the magnetic flux density decreases.
【0036】P :鋼板の打ち抜き性を改善するために必
要な元素であるが、0.2 %を超えて添加すると鋼板が脆
化するため0.2 %以下とする。P: an element necessary for improving the punching property of a steel sheet, but if added in excess of 0.2%, the steel sheet becomes brittle, so that the content is 0.2% or less.
【0037】S :Mnと結合しMnS として微細析出し、粒
成長を阻害するのでできるだけ少ない方が望ましく、0.
02%を上限とする。しかし、過度の低減は著しいコスト
上昇を招くので、0.003 %以上が好ましい。S: as small as possible is desirable because it combines with Mn and precipitates finely as MnS and inhibits grain growth.
The upper limit is 02%. However, excessive reduction leads to significant cost increase, so 0.003% or more is preferable.
【0038】sol.Al:脱酸のために添加されるが、Siと
同様に鋼板の固有抵抗を増大させて鉄損を低減する効果
を有するために重要な元素である。また、AlN 形成によ
るNの無害化のために適度に添加される。しかし、過度
の添加は磁束密度の低下を招く。以上の観点より、0.05
%〜1.0 %とする。Sol. Al: It is added for deoxidation, but is an important element to increase the specific resistance of the steel sheet and to reduce iron loss, similarly to Si. Also, it is added moderately to render N harmless by forming AlN. However, excessive addition causes a decrease in magnetic flux density. From the above perspective, 0.05
% To 1.0%.
【0039】V :前記のように、本発明においては、V
の添加は磁気特性に影響しないので、特別制御する必要
はない。しかし、0.02%を越えるとVCを形成するため、
好ましくない。また、0.003 %以下に低減するために
は、原料の選定、吹錬時間増大、スラグボリュームの増
加等で大幅にコストアップする。以上より、0.003 %〜
0.02%とするのが好ましい。V: As described above, in the present invention, V
Does not affect the magnetic properties and does not require special control. However, if it exceeds 0.02%, VC will be formed.
Not preferred. In order to reduce the content to 0.003% or less, the cost is greatly increased by selecting the raw materials, increasing the blowing time, increasing the slag volume, and the like. From above, 0.003% ~
It is preferably set to 0.02%.
【0040】なお、Sb、Snを磁気特性向上のために添加
することはなんら差し支えない。次に製造方法について
説明する。It should be noted that addition of Sb and Sn for the purpose of improving the magnetic properties can be performed without any problem. Next, a manufacturing method will be described.
【0041】通常の製造方法に従う。即ち、転炉で成分
調整した溶鋼を鋳造し熱間圧延を行う。熱延板焼鈍は行
ってもよいが必須ではない。次いで酸洗後冷間圧延、も
しくは中間焼鈍を含む2 回以上の冷間圧延により所定の
板厚とした後、仕上焼鈍を行う。A general manufacturing method is followed. That is, molten steel whose composition is adjusted in a converter is cast and hot-rolled. Hot rolled sheet annealing may be performed, but is not essential. Next, after finishing to a predetermined thickness by cold rolling after pickling or cold rolling twice or more including intermediate annealing, finish annealing is performed.
【0042】[0042]
【実施例】表1 の成分の鋼を転炉で吹錬した後に、RHで
脱ガス処理を行うことにより所定の成分に調整後に連続
鋳造した。次にこのスラブを加熱温度1200℃で2hr 加熱
し、板厚2.0mm まで熱間圧延を行った。なおこの際の仕
上げ温度は810 ℃、巻取り温度は675 ℃とした。次にこ
の熱延板を酸洗し、板厚0.5mm まで冷間圧延を行い、85
0 ℃×40sec の仕上焼鈍を施し、次いで 750℃×2hr の
磁性焼鈍を行った。EXAMPLE After steel having the components shown in Table 1 was blown in a converter, degassing treatment was carried out with RH to adjust the components to predetermined components, followed by continuous casting. Next, this slab was heated at a heating temperature of 1200 ° C. for 2 hours and hot-rolled to a thickness of 2.0 mm. In this case, the finishing temperature was 810 ° C and the winding temperature was 675 ° C. Next, this hot-rolled sheet is pickled and cold-rolled to a sheet thickness of 0.5 mm.
Finish annealing at 0 ° C. × 40 sec was performed, and then magnetic annealing at 750 ° C. × 2 hr.
【0043】磁気特性は25cmエプスタイン試験片を用い
て測定した。各鋼板の磁気特性を表1 に併せて示す。The magnetic properties were measured using a 25 cm Epstein test piece. Table 1 also shows the magnetic properties of each steel sheet.
【0044】[0044]
【表1】 [Table 1]
【0045】これより、鋼板成分を本発明範囲内に制御
したNo.1〜 No.3 および No.6 は、鉄損が低く磁束密度
の高い鋼板が得られることがわかる。From these results, it can be seen that No. 1 to No. 3 and No. 6 in which the steel sheet components are controlled within the range of the present invention can obtain steel sheets having low iron loss and high magnetic flux density.
【0046】一方、No.4の比較鋼はTiの量が、No.5の比
較鋼はN の量が本発明の範囲を外れているので、鉄損が
高くなっている。また、No.7の比較鋼はSiの量が、No.8
の比較鋼はAlの量がそれぞれ本発明の範囲を上まわって
いるので、鉄損は低いものの磁束密度が劣っている。On the other hand, the No. 4 comparative steel has an increased amount of Ti, and the No. 5 comparative steel has an increased N loss since the amount of N is out of the range of the present invention. Also, the comparative steel of No. 7 had an amount of Si of No. 8
Since the amount of Al is more than the range of the present invention, the iron loss is low, but the magnetic flux density is inferior.
【0047】[0047]
【発明の効果】本発明によれば、安価で、鉄損が低く磁
束密度の高い鋼板を得ることができ、電気機器鉄心材料
等に好適な鋼板を提供することができる。According to the present invention, a steel plate which is inexpensive, has a low iron loss and a high magnetic flux density can be obtained, and a steel plate suitable for a core material of electric equipment can be provided.
【図1】N 量と仕上焼鈍後の鉄損との関係を示す図であ
る。FIG. 1 is a graph showing the relationship between N content and iron loss after finish annealing.
【図2】N 量と磁性焼鈍後の鉄損との関係を示す図であ
る。FIG. 2 is a graph showing a relationship between N content and iron loss after magnetic annealing.
【図3】N 量と仕上げ焼鈍後の磁束密度との関係を示す
図である。FIG. 3 is a diagram showing the relationship between the amount of N and the magnetic flux density after finish annealing.
【図4】N 量と磁性焼鈍後の鉄損との関係を示す図であ
る。FIG. 4 is a graph showing the relationship between N content and iron loss after magnetic annealing.
【図5】Ti量と磁性焼鈍後の鉄損との関係を示す図であ
る。FIG. 5 is a diagram showing the relationship between the amount of Ti and iron loss after magnetic annealing.
【図6】Ti量と磁性焼鈍後の磁束密度との関係を示す図
である。FIG. 6 is a diagram showing the relationship between the amount of Ti and the magnetic flux density after magnetic annealing.
【図7】C 量と磁性焼鈍後の鉄損との関係を示す図であ
る。FIG. 7 is a diagram showing the relationship between the C content and iron loss after magnetic annealing.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾田 善彦 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 寒川 孝 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 田中 靖 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 5E041 AA02 AA11 AA19 CA02 NN01 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yoshihiko Oda 1-1-2 Marunouchi, Chiyoda-ku, Tokyo Japan Co., Ltd. (72) Inventor Takashi Samukawa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Sun (72) Inventor Yasushi Yasushi Tanaka 1-2-1 Marunouchi, Chiyoda-ku, Tokyo F-term (reference) 5E041 AA02 AA11 AA19 CA02 NN01
Claims (2)
〜1.0 %、Mn:0.1%〜1.0 %、P :0.2 %以下、N :
0.001 %以下、S :0.02%以下、sol.Al:0.05〜1.0
%、Ti:0.0015% 以下、残部実質的にFeであることを特
徴とする磁気特性に優れた無方向性電磁鋼板。(1) C: 0.005% or less and Si: 0.05% by weight
~ 1.0%, Mn: 0.1% ~ 1.0%, P: 0.2% or less, N:
0.001% or less, S: 0.02% or less, sol.Al: 0.05 to 1.0
%, Ti: 0.0015% or less, balance being substantially Fe, a non-oriented electrical steel sheet having excellent magnetic properties.
〜1.0 %、Mn:0.1%〜1.0 %、P :0.2 %以下、N :
0.001 %以下、S :0.02%以下、sol.Al:0.05〜1.0
%、Ti:0.0015%以下、残部実質的にFeであることを特
徴とする磁気特性に優れた無方向性電磁鋼板。2. C: 0.001% or less and Si: 0.05% by weight
~ 1.0%, Mn: 0.1% ~ 1.0%, P: 0.2% or less, N:
0.001% or less, S: 0.02% or less, sol.Al: 0.05 to 1.0
%, Ti: 0.0015% or less, balance being substantially Fe, a non-oriented electrical steel sheet having excellent magnetic properties.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29615599A JP2001115242A (en) | 1999-10-19 | 1999-10-19 | Nonoriented silicon steel sheet excellent in magnetic property |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29615599A JP2001115242A (en) | 1999-10-19 | 1999-10-19 | Nonoriented silicon steel sheet excellent in magnetic property |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001115242A true JP2001115242A (en) | 2001-04-24 |
Family
ID=17829883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29615599A Pending JP2001115242A (en) | 1999-10-19 | 1999-10-19 | Nonoriented silicon steel sheet excellent in magnetic property |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001115242A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1632582A1 (en) * | 2003-05-06 | 2006-03-08 | Nippon Steel Corporation | Tole d'acier magmetique non orientee excellente du point de vue des pertes de fer, et son procede de production |
-
1999
- 1999-10-19 JP JP29615599A patent/JP2001115242A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1632582A1 (en) * | 2003-05-06 | 2006-03-08 | Nippon Steel Corporation | Tole d'acier magmetique non orientee excellente du point de vue des pertes de fer, et son procede de production |
EP1632582A4 (en) * | 2003-05-06 | 2007-08-22 | Nippon Steel Corp | Tole d'acier magmetique non orientee excellente du point de vue des pertes de fer, et son procede de production |
US7470333B2 (en) | 2003-05-06 | 2008-12-30 | Nippon Steel Corp. | Non-oriented electrical steel sheet excellent in core loss and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190136336A1 (en) | High-magnetic-induction low-iron-loss non-oriented silicon steel sheet and manufacturing method therfor | |
US12104215B2 (en) | High-magnetic-induction low-iron-loss non-oriented silicon steel sheet and manufacturing method therefor | |
JP2004292829A (en) | Non-oriented silicon steel sheet | |
US4338143A (en) | Non-oriented silicon steel sheet with stable magnetic properties | |
JP3458683B2 (en) | Method for producing non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing | |
JP4062833B2 (en) | Method for producing non-oriented electrical steel sheet with excellent magnetic properties | |
JP2001115242A (en) | Nonoriented silicon steel sheet excellent in magnetic property | |
JP2888226B2 (en) | Non-oriented electrical steel sheet with low iron loss | |
JP2000328207A (en) | Silicon steel sheet excellent in nitriding and internal oxidation resistances | |
JP2853552B2 (en) | Non-oriented electrical steel sheet with excellent magnetic properties and manufacturing method | |
JP3458682B2 (en) | Non-oriented electrical steel sheet excellent in magnetic properties after strain relief annealing and method for producing the same | |
JP2000017330A (en) | Production of nonoriented silicon steel sheet low in iron loss | |
JP3424178B2 (en) | Non-oriented electrical steel sheet with low iron loss | |
JPH0967654A (en) | Nonoriented silicon steel sheet excellent in core loss characteristics | |
JP3362077B2 (en) | Smelting method of molten steel for non-oriented electrical steel sheets with low iron loss | |
JP2003064456A (en) | Nonoriented silicon steel sheet for semiprocess, and production method therefor | |
JPH10330893A (en) | Nonoriented silicon steel sheet low in core loss after low temperature-short time magnetic annealing | |
JPH1088297A (en) | Nonoriented silicon steel sheet reduced in iron loss after magnetic annealing | |
JPH1112701A (en) | Nonoriented silicon steel sheet with low iron loss | |
JP3766745B2 (en) | Non-oriented electrical steel sheet with low iron loss after magnetic annealing | |
JP3975603B2 (en) | Non-oriented electrical steel sheet | |
WO2024150733A1 (en) | Non-oriented electrical steel sheet | |
JPWO2021045212A1 (en) | Directional electromagnetic steel plate and its manufacturing method | |
JPH1046245A (en) | Manufacture of nonoriented magnetic steel sheet reduced in iron loss after magnetic annealing | |
JPH10212555A (en) | Nonoriented silicon steel sheet excellent in magnetic property and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060920 |