JP2004292829A - Non-oriented silicon steel sheet - Google Patents

Non-oriented silicon steel sheet Download PDF

Info

Publication number
JP2004292829A
JP2004292829A JP2003063571A JP2003063571A JP2004292829A JP 2004292829 A JP2004292829 A JP 2004292829A JP 2003063571 A JP2003063571 A JP 2003063571A JP 2003063571 A JP2003063571 A JP 2003063571A JP 2004292829 A JP2004292829 A JP 2004292829A
Authority
JP
Japan
Prior art keywords
less
steel sheet
steel
magnetic properties
mno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003063571A
Other languages
Japanese (ja)
Other versions
JP3852419B2 (en
Inventor
Hiroshi Fujimura
浩志 藤村
Mitsuhiro Numata
光裕 沼田
Hiroyoshi Yashiki
裕義 屋鋪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003063571A priority Critical patent/JP3852419B2/en
Publication of JP2004292829A publication Critical patent/JP2004292829A/en
Application granted granted Critical
Publication of JP3852419B2 publication Critical patent/JP3852419B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-oriented silicon steel sheet which is composed of steel having minimal Al content and has excellent magnetic properties. <P>SOLUTION: The non-oriented silicon steel sheet has a composition which consists of, by mass, ≤0.004% C, 0.7 to 1.5% Si, 0.15 to 0.8% Mn, 0.06 to 0.2% P, ≤0.005% S, <0.0005% sol.Al, ≤0.003% N, ≤0.012% O, 0 to 0.03% Sn, 0 to 0.03% Sb and the balance Fe with impurities and in which the total content of Sn and Sb is made to 0.002 to 0.03%. Further, in the non-oriented electrical steel sheet, the ratio between the contents (mass%) of MnO and FeO in inclusions existing in the steel, MnO/FeO, is made to ≤2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は無方向性電磁鋼板に関する。とくに本発明は、モータや小形トランスなどの電気機器の鉄心材料に適用される、打ち抜き等の成形加工後歪取り焼鈍をおこなって使用するのに好適な無方向性電磁鋼板に関する。
【0002】
【従来の技術】
地球温暖化防止や省エネルギーなどの観点から、各種電気機器の高効率化が進められており、小形のモータや小形トランスなどに鉄心材として使用される電磁鋼板にも、低コストであることとともに、すぐれた磁気特性を有することが要求されている。さらに資源の有効活用や環境汚染対策としての廃棄物量低減の観点から、電気機器材料のリサイクルにも対応が必要となってきている。
【0003】
小形のモータや小形トランス用の鉄心材には、無方向性電磁鋼板が多く用いられる。この無方向性電磁鋼板の磁気特性の向上には、主として鉄損の低減と磁束密度の増加または透磁率向上が対象となり、数多くの対策が検討され、提案されてきた。
【0004】
鋼の鉄損を低減する主要な手段は、比抵抗を増大させて渦電流の発生、すなわち渦電流損を抑制するため、Si、AlまたはMnなどの含有量を増加させることである。比抵抗増加に対し、Siは最も有効であるが、鋼の硬さを大幅に上昇させるためその含有には限度があり、Mnの効果はSiやAlに比して小さく、多量の含有が必要になる。Alは、Siに近い比抵抗増加効果があり、Siほどには硬さ上昇がないので、硬さを増すことなく鉄損を低減させることができる。
【0005】
磁束密度(通常B50)の増加または透磁率向上の手段には、無方向性電磁鋼板の場合、結晶粒を大きくすることや炭化物、硫化物、酸化物、窒化物など非金属介在物または微細析出物の低減、あるいは板面に平行な磁化に好ましい方位を多くすること、さらには加工歪みの低減などがある。これらは磁化の際の磁壁の移動に影響をおよぼしており、相互に影響し合うばかりでなく、ヒシテリシス損により鉄損にも関係すると考えられる。
【0006】
たとえば、結晶粒界は磁壁の移動を阻害するので、結晶粒を大きくすれば同じ体積内の粒界の存在面積が減少し、磁化が容易になって磁束密度の増加という形で磁気特性が向上する。微細析出物は粒界と同じく磁壁の移動を阻害するばかりでなく、焼鈍時の粒成長を阻害し、結晶粒を小さくさせる。また、磁壁の移動が阻害されると、ヒシテリシス損が増し、これもまた鉄損を増加させる。したがって、無方向性電磁鋼板の磁気特性の向上には、比抵抗を大きくすると共に、不純物を低減し結晶粒を大きくする方策が採られる。
【0007】
また、カスタマーにおいても、より一層磁束密度の向上や鉄損低下をはかるため、モータコアなどに打ち抜き加工後、歪み除去やさらなる結晶粒成長を目的に、750℃にて1〜2時間の歪み取り焼鈍を施すことも広くおこなわれている。
【0008】
しかしながら、鉄心に使用される無方向性電磁鋼板も、リサイクルを考えるとき、カスタマーにおいて電気炉を用いた溶解がおこなわれ、再利用される可能性がある。その際、Alを多く含む材料では電極を傷めやすく、その上、0.1質量%以上のAlが含まれた溶鋼は、鋳込みのときにノズル詰まりなどを生じ、鋳込み作業を阻害するといった問題が起きてくる。このため、Alを使用せずに、より磁気特性のすぐれた無方向性電磁鋼板が望ましいと考えられる。
【0009】
Alは、前述のように鋼の比抵抗を高めるが、O(酸素)との親和力が極めて大きく、通常は溶鋼の脱酸剤として用いられ、鋼中の酸化物系介在物の状態に大きく影響する。さらに酸化物になっていない、いわゆるsol.Alは、鋼中のNと結合しAlNを形成するが、sol.Al量が0.005〜0.1%程度の場合、AlNが微細な析出物となって分散し、結晶粒の成長を妨げ、磁気特性を劣化させるので、無方向性電磁鋼板では、Alを含有させる場合は0.1%以上とし、含有させない場合は0.005%以下に限定することが多い。
【0010】
このAlの含有をできるだけ少なくした無方向性電磁鋼板に関しては、いくつかの提案がある。たとえば、特許文献1にはSi:0.1〜1.0%、Mn:1.5%以下、sol.Al:0.001〜0.005%とし、鋼中のSiO、MnO、Alの3種の介在物の総質量に対するMnOの質量の割合を15%以下とすることにより、歪み取り焼鈍後の結晶粒を大きくした、鉄損の少ない無方向性電磁鋼板の発明が開示されている。さらに、特許文献2に開示された発明は、上記と同じ組成にて、鋼中のSiO、MnO、Alの3種の介在物の総質量に対するMnOの質量の割合が15%以下であるとともに、SiOの割合が75%以上であるとしている。
【0011】
また、特許文献3には、Si:0.05〜0.55%、Mn:0.1%以上でかつMn−Si≦0.5%の範囲、Al:0.004%以下の組成の無方向性電磁鋼板において、鋼中に存在するSiOとMnOとの質量%比MnO/SiOを0.3以下とすることにより、へげや穴などの表面欠陥を少なくできるという発明が提示されている。
【0012】
このように、Alの含有量をできるだけ少なくした無方向性電磁鋼板の磁気特性向上に対しては、その酸化物系介在物の量の制御が重要と考えられる。しかし、より一層その磁気特性を向上させるためには、SiやMnの含有量を変えなければならず、その場合、このような酸化物量制御が実施可能かどうかあきらかでない。
【0013】
【特許文献1】
特開昭63−195217号公報
【特許文献2】
特公平7−42555号公報
【特許文献3】
特開平10−147849号公報
【0014】
【発明が解決しようとする課題】
本発明の目的は、Alの含有量をできるだけ低くしたリサイクルに有利な鋼による、磁気特性にすぐれた無方向性電磁鋼板の提供にある。
【0015】
【課題を解決するための手段】
本発明者らは、リサイクル使用を配慮して、Al量をできるだけ低減した無方向性電磁鋼板の磁気特性を向上させるべく、種々検討をおこなった。鉄損低減のためには、比抵抗を大きくすることが望ましいが、Alを用いないのでSiやMn量を増すか、その他の元素添加を利用する必要がある。
【0016】
そこで、極低炭素鋼をベースとし組成を種々変え実験室的に真空溶解してインゴットを作り、鍛造してスラブとし、これから熱間圧延および冷間圧延して0.5mm厚にし、焼鈍して無方向性電磁鋼板試料を作製した。これらの電磁鋼板から試験片を打ち抜いて採取後、750℃、2時間の歪み取り焼鈍をおこなって磁気特性を測定し、各種成分の磁気特性におよぼす影響を調査した。
【0017】
まず、鉄損改善を目的にSiおよびMn量の増加による効果を調べたところ、比抵抗の増加から期待されるほどには鉄損は改善されず、磁束密度もよくないものであった。その理由として考えられるのは、sol.Alをほとんど含まないことによる、Si−Mn窒化物の形成である。一般に、脱酸剤としてAlが使用されるとsol.Alが鋼中に残り、これがNと結合しAlNとなるため、Si−Mn窒化物は現れない。ところがsol.AlがなくSiとMnの濃度が高い場合、Si−Mn窒化物が生じ、これが微細に分散して鉄損を悪くし磁束密度を低下させたと思われる。
【0018】
このように、sol.Alがほとんど存在しない鋼をベースとすることとし、さらに他元素添加による磁気特性改善の可能性について検討した。その結果、PとともにSnおよびSbの、いずれか一方または両方を少量含有させることにより、鉄損が低下し、磁束密度は向上するという効果の得られることが見出された。
【0019】
P、SnおよびSbは、いずれも結晶粒界に偏析する元素である。これらの元素の少量含有は、比抵抗を多少増加させるが、それから予想されるよりはるかに大きく鉄損を低下させ、磁束密度を上昇させる効果がある。この効果をもたらす理由についてはあきらかではないが、上述のようにsol.Alを極力少なくした状態にてSiとMnを多く含有させるため、Si−Mn窒化物が形成されやすい状態となっているのに対し、P、SnおよびSbを複合して含有させることによって、Si−Mn窒化物の形成が抑止されるようである。
【0020】
この微細析出物生成の抑止効果により焼鈍時の粒成長が促進され、磁気特性が向上したと推定される。とくにカスタマーにおける歪み取り焼鈍は、仕上げ焼鈍に比して低温長時間の焼鈍であり、Si−Mn窒化物形成の抑止はセミプロセス材の磁気特性向上に、より有効であると推定される。さらに、これらの元素の少量含有は、磁気特性に好ましい優先方位を増すのではないかとも考えられる。
【0021】
また、これらの電磁鋼板は、カスタマーにおける実際の使用条件に合わせ、試験片に打ち抜き後、750℃、2時間の焼鈍をおこなわれる場合がある。この焼鈍は、酸化防止のため通常は窒素雰囲気中で加熱されるが、雰囲気の窒素が鋼板に吸収され窒化物を形成し、磁気特性を悪くすることがある。SnやSbの存在はこの窒素の吸収を抑止する効果もある。
【0022】
次に、これら試作電磁鋼板試料について、鋼中に分散する非金属介在物の状態を調べてみると、酸化物系介在物中のMnO/FeO比(質量%比)が小さくなっている場合の方が、磁気特性が良好である傾向が見出された。MnO/FeO比が小さければ磁気特性が良好となる理由はよくわからないが、上述のようにsol.Alを極力少なくした成分系においては、低融点酸化物系介在物が粗大となる傾向があり、このような粗大な酸化物系介在物は、後続する圧延工程で破砕されて細かく分散して仕上げ焼鈍時あるいは歪取り焼鈍時の粒成長を阻害することから、酸化物系介在物中のMnO/FeO比を小さくして低融点酸化物系介在物の生成を抑制することにより磁気特性が改善されるためと考えられる。
【0023】
介在物のMnO/FeO比は、鋼の製錬や脱酸さらには鋳造など溶製の段階でほぼ決定されると推測される。そこで、この鋼の溶製条件について種々調査した結果、溶鋼の真空処理による脱炭後の脱酸方法が大きく影響していることがわかった。
【0024】
電磁鋼板のような極低炭素鋼の場合、炭素をできるだけ低下させるため、脱炭が終了した溶鋼中にはかなり多量の酸素が含まれている。そのまま凝固させると気泡だらけの鋼塊となるので、脱酸剤を添加して酸化物を形成させ、酸素の固定や排除がおこなわれる。この脱酸剤としてSiおよびAlを添加するとき、Al/Siの添加量比をある値以下にすることにより、介在物のMnO/FeO比を特定な値以下にすることができたのである。
【0025】
以上の知見に基づき、よりすぐれた磁気特性を有する無方向性電磁鋼板を得るための、鋼中の各元素の含有範囲、非金属介在物の状態、あるいはこれらを実現するための製造条件等の限界をさらに明確にし、本発明を完成させた。本発明の要旨は次のとおりである。
【0026】
(1) 質量%にて、C:0.004%以下、Si:0.7〜1.5%、Mn:0.15〜0.8%、P:0.06〜0.2%、S:0.005%以下、sol.Al:0.0005%未満、N:0.003%以下、O:0.012%以下、Sn:0〜0.03%およびSb:0〜0.03%、ただしSnとSbとの合計含有量が0.002〜0.03%であって、残部がFeおよび不純物からなることを特徴とする無方向性電磁鋼板。
【0027】
(2) 鋼中に存在する介在物中のMnOとFeOの含有量(質量%)の比「MnO/FeO」が2以下であることを特徴とする上記(1)の無方向性電磁鋼板。
【0028】
【発明の実施の形態】
本発明において、化学成分あるいは介在物組成を限定する理由を以下に説明する。含有量比はいずれも質量%である。
【0029】
C:0.004%以下
Cは鋼の磁気特性を低下させるので、その含有量は少なければ少ないほどよい。0.004%以下であればその影響はほとんど無視できるが、0.004%を超えると磁気時効を生じはじめ、さらに増してくると磁気特性劣化が顕著になる。できればその含有量は0.003%以下とするのが望ましい。
【0030】
Si:0.7〜1.5%
Siは鋼の比抵抗を増し鉄損を小さくさせるので、目的とする鉄損を得るため0.7%以上含有させる。しかし、Siの含有量増加は硬さを上昇させ、打ち抜き金型の摩耗を促進させるので、多くても1.5%までとする。
【0031】
Mn:0.15〜0.8%
Mnは、比抵抗を増す効果があり、不純物として混入してくるSと結合し無害化する作用がある。少ない場合、生じたMnSが微細に分散し結晶粒成長を阻害したり磁気特性を悪くするので、0.15%以上含有させる。しかし、sol.Alが極めて少なく、かつ上記のようにSi量が多い場合、Mnを多く含有させると磁気特性が大きく低下してくる。したがって、多くても0.8%までとする。これはSi−Mn窒化物が増加したために焼鈍時の粒成長阻害が増大してくることによると推定される。好ましくは0.15〜0.5%である。
【0032】
P:0.06〜0.2%
Pは、本発明の鋼板においては、後で述べるSnまたは/およびSbとの複合添加にて鉄損を低下させるという重要な作用があり、積極的に活用する。この鉄損低減のためには、0.06%以上含有させる必要があるが、多く含有させすぎると硬く脆くなり、打ち抜き金型の摩耗が早くなるので、0.2%までとする。
【0033】
S:0.005%以下
Sは微細析出物を形成し、結晶粒成長を阻害するばかりでなく、磁気特性を悪くするので少なければ少ないほどよい。このSによる微細析出物は主としてMnSであるが、MnSの存在は、Si−Mn窒化物形成の核にもなり、この窒化物の形成を促進すると推測される。このような悪影響が顕著に現れない範囲として0.005%以下に限定するが、0.004%以下とする方がよく、さらに望ましくは0.003%以下とする。
【0034】
sol.Al:0.0005%未満
Alは、欠陥のない鋼塊を得るための脱酸を目的に用いられる。通常はその結果として、sol.Al(酸可溶Al)が鋼中に残存するが、本発明ではこのsol.Alの量をできるだけ少なくし、0.0005%未満とする。これはsol.Al量が増すと、微細なAlN析出物が形成され、これが焼鈍時の結晶粒の成長を阻害し、結晶粒が十分大きくならず磁気特性が向上しなくなるからである。
【0035】
N:0.003%以下
Nの含有は少なければ少ないほどよい。NはAlまたはSi−Mnと微細な窒化物を形成し、それによって焼鈍時の結晶粒成長を妨げて磁気特性向上を阻害し、さらに微細析出物そのものも磁気特性を悪くする。このため0.003%以下に限定するが、より好ましいのは0.002%以下である。
【0036】
O:0.012%以下
O(酸素)は酸化物系の介在物を形成し、結晶粒の成長を阻害して磁気特性を悪くするので、少なければ少ないほどよい。しかし、溶鋼の真空処理により脱炭素をおこなうためには酸素の存在が必要なので、極低炭素化するためのある程度の酸素の残存は避けがたい。顕著な悪影響をおよぼさない範囲として0.012%以下とするが、望ましくは0.008%以下である。
【0037】
Sn:0〜0.03%、Sb:0〜0.03%、ただしSn+Sb:0.002〜0.03%
Sn:0.03%以下およびSb:0.03%以下の1種または2種を、SnとSbの合計量が0.002〜0.03%の範囲で含有させる。これは、0.06〜0.2%のPとともに含有させることによって、磁気特性が向上するからである。この磁気特性向上の理由は、Si−Mn窒化物の形成をこれらの元素が抑制しているためではないかと思われる。
【0038】
P、SnおよびSbの添加の効果について調査した結果を次に示す。真空溶解炉を用い、C:0.002%、Si:0.85%、Mn:0.25%、S:0.0025%、sol.Al:0.0004%以下、N:0.002%、O:0.012%以下の鋼をベースにして、P量0.01〜0.18%、Sn+Sb量0.001〜0.1%の範囲で変えた鋼塊を溶製し、鍛造して15mm厚のスラブとした後、1100℃にて加熱し熱間圧延をおこなって、3mm厚に仕上げ、表面を研削して2.3mmにした後、冷間圧延して0.5mmにした。この鋼板を750℃、30秒加熱の連続焼鈍相当の仕上げ焼鈍をおこなって、無方向性電磁鋼板試料とした。
【0039】
これらの鋼板から幅30mm長さ100mmの試験片を、長さ方向が圧延方向に平行および直角に打ち抜いて、磁気特性測定用試片とし、750℃、2時間の窒素雰囲気中焼鈍をおこなった後、小形単板磁気測定装置により圧延方向とその直角方向との磁気特性を測定し、平均値を求めた。
【0040】
図1にSnまたはSbを添加しない場合(Sn+Sb:0.002%未満)、およびSn+Sbを0.015%とした場合のP含有量による鉄損W15/50の変化を示す。これから、Pの含有量増加により鉄損は減少するが、SnおよびSbを添加したとき、とくにPが0.06%以上で鉄損の低減が大きく、4W/kgを下回るものが得られていることがわかる。
【0041】
図2にPが0.03%の場合と、0.10%の場合とにおけるSnおよびSbの添加による磁束密度B50の変化を調べた結果を示すが、Pが多く含まれているとき、SnおよびSbの添加は顕著な磁束密度の向上を示し、Sn+Sbの量が0.002%以上の含有から効果が現れる。しかしSn+Sbの量は0.03%を超えて含有させてもその効果は飽和し、それ以上の改善は得られない。
【0042】
また、SnやSbはスクラップなどを再溶解したときに、これら元素の混入が溶接割れや表面疵の原因になるおそれがあるので、Sn+Sbの量は0.03%を超えないようにする。
【0043】
介在物中のMnO/FeOの含有量比は2以下とするのが望ましい。これは、この比を2以下とすることにより、鉄損が大きく低下するからである。鋼中のMnOとFeOは、臭素−メタノール法で抽出し分析することができる。このMnO/FeO比を2以下とするには、溶鋼の脱酸処理において、SiとAlを添加し、そのときのAl量/Si量比を0.4以下とするのがよい。
【0044】
鋼の炭素量の低減は、たとえばRH式脱ガス法のような溶鋼の真空処理法にておこなうが、目的とする極低炭素鋼では脱炭終了時の溶鋼中の酸素がかなり高いので、十分な脱酸剤の添加が必要になる。健全な鋳片を製造するためには、Siだけでは不完全で、脱酸剤としてAlを使用せざるをえない。しかし、Alを固溶状態にして残存させると、鋼板の磁気特性を劣化させる。
【0045】
そこで、Al濃度に応じた酸素を溶鋼に供給し、Alを酸化させて低減させることによりsol.Al量を0.0005%未満に制御する。溶鋼中のAl濃度は、溶鋼を分析する直接的な方法や、酸素センサーにより酸素濃度を測定してAl−O平衡から算出する間接的な方法などにより求めることができる。溶鋼に供給する酸素量は、Alとの反応に要する当量分でよいが、より確実にsol.Alを低減させるには当量分に対してさらに10〜20%多くするのが好ましい。酸素の供給方法は、酸化鉄や酸化Mnといった固体酸化物の塊体あるいは粉体を溶鋼に添加する方法や、酸素ガスを溶鋼に吹き込むまたは吹き付ける方法など、いかなる方法でもよい。
【0046】
脱酸剤としてのSiおよびAlは、上記の比率で添加する。その際、両成分を同時に添加してもよいが、Siを添加してからAlを添加する方が望ましい。Siに比しAlは脱酸力が極めて大きいので、先にAlを添加するとアルミナ介在物やFeO−MnO−Al系介在物が生成し、MnO/FeO比を2以下に制御することが困難になる。
【0047】
これに対し、Siを添加してからAlを添加すると、Alの方が脱酸力が大きく、しかも反応速度が速いので、短時間で処理できる。ただし、いずれの方法でも添加するAl量/Si量比を0.4以下とする。
【0048】
溶鋼の脱酸処理を、このようにSiとAlとの添加によりおこなった後、Mnの目的組成に対する不足分を添加し、さらにP、SnおよびSbの合金元素を添加し成分調整をおこなう。なお、これら各成分元素は、脱酸の前に添加してもよい。
【0049】
成分調整された溶鋼は、連続鋳造法あるいは鋼塊−分塊圧延法にて圧延用スラブとする。スラブは通常の無方向性電磁鋼板の製造方法に準じ、熱間圧延、冷間圧延、焼鈍、表面コーティング等をおこなって製品にする。
【0050】
上記の製造工程において、熱間圧延のスラブ加熱温度は1000〜1150℃が望ましい。これは、1150℃以下とすることにより、得られた製品の磁気特性が向上し特性のばらつきが低減するからであるが、1000℃を下回る加熱温度ではスラブのスキッドに当たった部分の温度が低すぎて変形抵抗が増し、板厚変動が大きくなるおそれがある。熱間圧延の仕上げ温度は830〜930℃とするのがよい。これは、830℃未満でも930℃を超えても、鉄損の低下や磁束密度の低下が生じ、十分な磁気特性が得られないからである。
【0051】
とくに磁気特性を向上させようとする場合、熱間圧延後の冷間圧延の前に、熱延板焼鈍をおこなうことが好ましいが、おこなわなくてもよい。冷間圧延の圧下率は70〜85%が望ましい。これは無方向性電磁鋼板の板厚は0.5mmが主であり、70%を下回る圧下率では熱間圧延板の厚さが薄く、熱延設備への負担が増し、酸洗能率も低下するからであり、85%を超える圧下率では磁気特性が悪くなるからである。
【0052】
【実施例】
転炉にて精錬した溶鋼をRH式真空脱ガス装置を用いて脱炭をおこない、Mn、P、SnおよびSbを添加した後、AlとSiとを、比率を変えて同時に添加して脱酸し、連続鋳造してスラブとした。試作した鋼の組成および脱酸時に用いたAlとSiの添加量比を表1に示す。
【0053】
これらのスラブを用い、加熱温度を1100℃として熱間圧延し、860〜880℃にて仕上げ、厚さ2.3mmの鋼板にした。酸洗後冷間圧延して0.5mm厚とし、連続処理ラインにて810℃の焼鈍後、表面に厚さ0.2μmの絶縁皮膜を塗布した。
【0054】
これらの鋼板から、幅30mm、長さ280mmの試験片を打ち抜き、窒素雰囲気中750℃、2時間の焼鈍をおこなった後、JIS−C−2550に基づき磁気特性を測定した。また、これら鋼板の試料からは臭素−メタノール法により介在物を抽出し、介在物中のMnOとFeOの量を分析しMnO/FeO比を求めた。磁気特性およびMnO/FeO比の測定結果も合わせて表1に示す。
【0055】
【表1】

Figure 2004292829
【0056】
この表の結果のうち、鋼成分が本発明で定める範囲内である試番1〜12と、sol.Al量以外の鋼成分の量が本発明で定める範囲内である試番21および試番22について、sol.Al量と鉄損の関係を示すと図3のようになる。また、脱酸時の[Al添加量/Si添加量]比と介在物中のMnO/FeO比との関係を図4に示す。
【0057】
これらからあきらかなように、本発明にて規定する化学組成を有する試番1から12の鋼板の、歪み取り焼鈍後の鉄損W15/50は、いずれも4.3W/kg未満で良好な値を示している。これらの中でも試番1〜10は、W15/50が4.0W/kgを下回るすぐれた鉄損値が得られているが、その鋼板の介在物中のMnO/FeO比はいずれも2以下である。そして、このような介在物組成を安定して実現させるためには、脱酸時に用いたAlとSiの添加量比が、0.4を以下とするのがよいことがわかる。
【0058】
【発明の効果】
本発明は、Alの含有量をできるだけ低くした鋼による、磁気特性にすぐれた無方向性電磁鋼板である。磁気特性のすぐれた電磁鋼板は、電気エネルギーを回転など他の形のエネルギーに変換するときの変換効率を高めるため、省エネルギーの観点から望ましいが、Alの含有量を低くしたことは、さらにこの鋼板の加工屑などを溶解して再利用する際に、使用が容易でありリサイクル性にすぐれている。
【図面の簡単な説明】
【図1】Sn+Sbの添加の有無およびP量と、無方向性電磁鋼板の鉄損W15/50の低下との関係を調べた例を示す図である。
【図2】Sn+Sbの添加量と無方向性電磁鋼板の磁束密度B50の変化との関係を調べた例を示す図である。
【図3】鋼中のsol.Al量と、無方向性電磁鋼板の鉄損との関係を示す図である。
【図4】溶鋼の脱酸時に添加するAlおよびSiの添加量比と、鋼板の酸化物系介在物中のMnO/FeOの含有量比との関係を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-oriented electrical steel sheet. In particular, the present invention relates to a non-oriented electrical steel sheet which is applied to an iron core material of electric equipment such as a motor and a small transformer and is suitable for use after performing strain relief annealing after forming such as punching.
[0002]
[Prior art]
From the perspective of preventing global warming and saving energy, various types of electrical equipment are being made more efficient.Electromagnetic steel sheets, which are used as iron core materials in small motors and small transformers, have low cost, It is required to have excellent magnetic properties. Furthermore, from the viewpoint of effective use of resources and reduction of waste as a countermeasure against environmental pollution, it is necessary to respond to recycling of electrical equipment materials.
[0003]
Non-oriented electrical steel sheets are often used as core materials for small motors and small transformers. The improvement of the magnetic properties of the non-oriented electrical steel sheet mainly aims at reduction of iron loss and increase of magnetic flux density or improvement of magnetic permeability, and many measures have been studied and proposed.
[0004]
The main means of reducing iron loss in steel is to increase the content of Si, Al or Mn, etc., in order to increase the specific resistance and generate eddy current, that is, to suppress eddy current loss. Although Si is the most effective in increasing the specific resistance, its content is limited because it significantly increases the hardness of steel, and the effect of Mn is smaller than that of Si and Al, so a large amount of Mn is necessary. become. Al has a specific resistance increasing effect close to that of Si, and does not have a hardness increase as much as Si. Therefore, iron loss can be reduced without increasing hardness.
[0005]
Means for increasing the magnetic flux density (usually B 50 ) or improving the magnetic permeability include, for non-oriented electrical steel sheets, enlarging the crystal grains, non-metallic inclusions such as carbides, sulfides, oxides and nitrides or fine particles. Reduction of precipitates, increase of preferred orientations for magnetization parallel to the plate surface, and reduction of processing strain can be mentioned. These influence the movement of the domain wall at the time of magnetization, and not only affect each other but also relate to iron loss due to hysteresis loss.
[0006]
For example, the grain boundaries hinder the movement of the domain wall, so making the grains larger reduces the existing area of the grain boundaries in the same volume, making magnetization easier and improving magnetic properties in the form of an increase in magnetic flux density. I do. The fine precipitates not only hinder the movement of the domain wall as in the case of the grain boundaries, but also hinder the grain growth during annealing and reduce the crystal grains. In addition, when the domain wall movement is hindered, hysteresis loss increases, which also increases iron loss. Therefore, in order to improve the magnetic properties of the non-oriented electrical steel sheet, measures are taken to increase the specific resistance, reduce impurities and increase the crystal grains.
[0007]
Also, in order to further improve the magnetic flux density and reduce iron loss, after punching out a motor core, etc., the strain relief annealing is performed at 750 ° C. for 1 to 2 hours for the purpose of strain removal and further crystal grain growth. Is also widely practiced.
[0008]
However, when considering non-oriented electrical steel sheets used for iron cores, there is a possibility that customers will use an electric furnace to melt them when considering recycling, and reuse them. At that time, a material containing a large amount of Al is apt to damage the electrode, and a molten steel containing 0.1% by mass or more of Al causes nozzle clogging and the like during casting, which hinders the casting operation. Get up. Therefore, it is considered that a non-oriented electrical steel sheet having more excellent magnetic properties without using Al is desirable.
[0009]
Al increases the specific resistance of the steel as described above, but has an extremely high affinity for O (oxygen), and is usually used as a deoxidizing agent for molten steel and greatly affects the state of oxide-based inclusions in the steel. I do. In addition, a so-called sol. Al combines with N in steel to form AlN. When the amount of Al is about 0.005 to 0.1%, AlN is dispersed as fine precipitates, hinders the growth of crystal grains, and degrades magnetic characteristics. When it is contained, it is often limited to 0.1% or more, and when it is not contained, it is often limited to 0.005% or less.
[0010]
There have been several proposals regarding non-oriented electrical steel sheets in which the content of Al is reduced as much as possible. For example, in Patent Document 1, Si: 0.1 to 1.0%, Mn: 1.5% or less, sol. Al: 0.001 to 0.005%, and the ratio of the mass of MnO to the total mass of the three types of inclusions of SiO 2 , MnO, and Al 2 O 3 in the steel is set to 15% or less, thereby removing distortion. There is disclosed an invention of a non-oriented electrical steel sheet in which crystal grains after annealing are increased and iron loss is small. Furthermore, in the invention disclosed in Patent Document 2, the ratio of the mass of MnO to the total mass of three types of inclusions of SiO 2 , MnO, and Al 2 O 3 in steel is 15% or less with the same composition as described above. And the ratio of SiO 2 is 75% or more.
[0011]
Patent Literature 3 discloses that a composition having a composition of Si: 0.05 to 0.55%, Mn: 0.1% or more and Mn-Si ≦ 0.5%, and Al: 0.004% or less. in grain-oriented electrical steel sheet, by mass% ratio MnO / SiO 2 of SiO 2 and MnO which is present in the steel is 0.3 or less, the invention is presented that can be reduced surface defects such as Hege or holes ing.
[0012]
As described above, in order to improve the magnetic properties of the non-oriented electrical steel sheet in which the Al content is reduced as much as possible, it is considered important to control the amount of the oxide-based inclusions. However, in order to further improve the magnetic properties, the contents of Si and Mn must be changed, and in that case, it is not clear whether such control of the amount of oxides can be performed.
[0013]
[Patent Document 1]
JP-A-63-195217 [Patent Document 2]
Japanese Patent Publication No. 7-42555 [Patent Document 3]
JP-A-10-147849
[Problems to be solved by the invention]
An object of the present invention is to provide a non-oriented electrical steel sheet having excellent magnetic properties by using a steel having an Al content as low as possible and advantageous for recycling.
[0015]
[Means for Solving the Problems]
The present inventors have conducted various studies in order to improve the magnetic properties of a non-oriented electrical steel sheet in which the amount of Al is reduced as much as possible in consideration of recycling. In order to reduce iron loss, it is desirable to increase the specific resistance. However, since Al is not used, it is necessary to increase the amounts of Si and Mn or to use other elements.
[0016]
Therefore, various compositions were made based on ultra-low carbon steel and various compositions were vacuum-melted in a laboratory to produce an ingot, forged into a slab, then hot-rolled and cold-rolled to a thickness of 0.5 mm, and annealed. A non-oriented electrical steel sheet sample was prepared. After punching out and collecting test pieces from these magnetic steel sheets, the magnetic properties were measured by performing strain relief annealing at 750 ° C. for 2 hours, and the influence of various components on the magnetic properties was investigated.
[0017]
First, when the effect of increasing the amounts of Si and Mn was examined for the purpose of improving iron loss, the iron loss was not improved as expected from the increase in specific resistance, and the magnetic flux density was not good. The possible reason is that sol. This is the formation of Si-Mn nitride due to almost no Al. Generally, when Al is used as a deoxidizing agent, sol. Since Al remains in the steel and combines with N to form AlN, Si-Mn nitride does not appear. However, sol. When Al and the concentration of Si and Mn are high without Al, it is considered that Si-Mn nitrides are generated, and these are finely dispersed to reduce iron loss and decrease magnetic flux density.
[0018]
Thus, sol. The steel was assumed to be almost free of Al, and the possibility of improving the magnetic properties by adding other elements was examined. As a result, it has been found that by including a small amount of one or both of Sn and Sb together with P, an effect of reducing iron loss and improving magnetic flux density can be obtained.
[0019]
P, Sn and Sb are all elements that segregate at crystal grain boundaries. The inclusion of small amounts of these elements slightly increases the specific resistance, but has the effect of reducing the iron loss and increasing the magnetic flux density much more than expected. The reason for this effect is not clear, but as described above, sol. In order to contain Si and Mn as much as possible with Al being minimized, Si-Mn nitride is likely to be formed. On the other hand, by containing P, Sn and Sb in combination, Si -Mn nitride formation appears to be suppressed.
[0020]
It is presumed that the effect of suppressing the formation of fine precipitates promoted grain growth during annealing and improved magnetic properties. In particular, the strain relief annealing at the customer is an annealing at a lower temperature for a longer time than the finish annealing, and it is presumed that suppressing the formation of the Si-Mn nitride is more effective for improving the magnetic properties of the semi-process material. It is further believed that the inclusion of small amounts of these elements may increase the preferred orientation preferred for magnetic properties.
[0021]
Further, these magnetic steel sheets may be annealed at 750 ° C. for 2 hours after punching out a test piece in accordance with actual use conditions of a customer. This annealing is usually heated in a nitrogen atmosphere to prevent oxidation, but the nitrogen in the atmosphere is absorbed by the steel sheet to form nitrides, which may deteriorate magnetic properties. The presence of Sn or Sb also has the effect of suppressing this nitrogen absorption.
[0022]
Next, the state of the nonmetallic inclusions dispersed in the steel of these prototype magnetic steel sheet samples was examined, and the MnO / FeO ratio (mass% ratio) in the oxide-based inclusions was small. It was found that the magnetic properties tended to be better. It is not clear why the magnetic properties are good if the MnO / FeO ratio is small, but as described above, sol. In a component system in which Al is reduced as much as possible, the low-melting-point oxide-based inclusions tend to be coarse, and such coarse oxide-based inclusions are crushed in a subsequent rolling step to be finely dispersed and finished. Since the grain growth during annealing or strain relief annealing is inhibited, the magnetic characteristics are improved by reducing the MnO / FeO ratio in the oxide-based inclusions and suppressing the formation of low-melting-point oxide-based inclusions. It is thought to be.
[0023]
It is presumed that the MnO / FeO ratio of the inclusions is substantially determined at the stage of smelting, deoxidizing, and further casting, such as steel. Thus, as a result of various investigations on the smelting conditions of the steel, it was found that the deoxidation method after decarburization of the molten steel by the vacuum treatment had a great effect.
[0024]
In the case of ultra-low carbon steel such as an electrical steel sheet, in order to reduce carbon as much as possible, a considerably large amount of oxygen is contained in the molten steel after decarburization. If solidified as it is, it becomes a steel ingot full of bubbles, so a deoxidizing agent is added to form an oxide, and oxygen is fixed or eliminated. When adding Si and Al as the deoxidizing agent, the MnO / FeO ratio of the inclusions could be reduced to a specific value or less by setting the additive amount ratio of Al / Si to a certain value or less.
[0025]
Based on the above findings, to obtain a non-oriented electrical steel sheet with better magnetic properties, the content range of each element in the steel, the state of non-metallic inclusions, or the manufacturing conditions for realizing these The limitations have been further clarified and the present invention has been completed. The gist of the present invention is as follows.
[0026]
(1) In mass%, C: 0.004% or less, Si: 0.7 to 1.5%, Mn: 0.15 to 0.8%, P: 0.06 to 0.2%, S : 0.005% or less, sol. Al: less than 0.0005%, N: 0.003% or less, O: 0.012% or less, Sn: 0 to 0.03% and Sb: 0 to 0.03%, provided that the total content of Sn and Sb A non-oriented electrical steel sheet having an amount of 0.002 to 0.03%, with the balance being Fe and impurities.
[0027]
(2) The non-oriented electrical steel sheet according to (1), wherein the ratio “MnO / FeO” of the content (% by mass) of MnO and FeO in the inclusions present in the steel is 2 or less.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the reason for limiting the chemical component or the composition of the inclusion will be described below. All content ratios are mass%.
[0029]
C: 0.004% or less C lowers the magnetic properties of steel, so the smaller the content, the better. If it is 0.004% or less, the effect can be almost ignored, but if it exceeds 0.004%, magnetic aging starts to occur, and if it further increases, the magnetic characteristics deteriorate remarkably. If possible, the content is desirably 0.003% or less.
[0030]
Si: 0.7 to 1.5%
Since Si increases the specific resistance of steel and reduces iron loss, it is contained in an amount of 0.7% or more to obtain a desired iron loss. However, an increase in the Si content increases the hardness and promotes wear of the punching die.
[0031]
Mn: 0.15 to 0.8%
Mn has the effect of increasing the specific resistance, and has the effect of making it harmless by combining with S that is mixed in as an impurity. If the amount is small, the generated MnS is finely dispersed, which inhibits crystal grain growth and deteriorates magnetic properties. However, sol. When the amount of Al is extremely small and the amount of Si is large as described above, when the amount of Mn is increased, the magnetic properties are significantly reduced. Therefore, it is limited to at most 0.8%. This is presumed to be due to an increase in grain growth inhibition during annealing due to an increase in Si-Mn nitride. Preferably it is 0.15 to 0.5%.
[0032]
P: 0.06-0.2%
In the steel sheet of the present invention, P has an important effect of reducing iron loss by the combined addition with Sn and / or Sb described later, and is positively utilized. In order to reduce the iron loss, it is necessary to contain 0.06% or more. However, if too much is contained, it becomes hard and brittle, and wear of the punching die becomes faster.
[0033]
S: 0.005% or less S forms fine precipitates and not only inhibits the growth of crystal grains, but also deteriorates magnetic properties. The fine precipitates due to S are mainly MnS, but it is presumed that the presence of MnS also serves as a nucleus for Si-Mn nitride formation and promotes the formation of this nitride. The range in which such adverse effects do not appear remarkably is limited to 0.005% or less, but is preferably 0.004% or less, and more preferably 0.003% or less.
[0034]
sol. Al: less than 0.0005% Al is used for the purpose of deoxidizing to obtain a defect-free steel ingot. Usually, as a result, sol. Al (acid-soluble Al) remains in the steel, but in the present invention, this sol. The amount of Al is made as small as possible and less than 0.0005%. This is sol. This is because, when the amount of Al increases, fine AlN precipitates are formed, which hinder the growth of crystal grains during annealing, and the crystal grains do not become sufficiently large to improve the magnetic properties.
[0035]
N: 0.003% or less The smaller the content of N, the better. N forms fine nitrides with Al or Si-Mn, thereby hindering the growth of crystal grains during annealing and hindering the improvement of magnetic properties, and the fine precipitates themselves also deteriorate magnetic properties. Therefore, the content is limited to 0.003% or less, and more preferably 0.002% or less.
[0036]
O: 0.012% or less O (oxygen) forms oxide-based inclusions and inhibits the growth of crystal grains to deteriorate magnetic properties. However, since the presence of oxygen is necessary for decarbonizing molten steel by vacuum treatment, it is inevitable that a certain amount of oxygen remains for extremely low carbon. The content is set to 0.012% or less as a range that does not have a significant adverse effect, but is preferably 0.008% or less.
[0037]
Sn: 0 to 0.03%, Sb: 0 to 0.03%, provided that Sn + Sb: 0.002 to 0.03%
One or two of Sn: 0.03% or less and Sb: 0.03% or less are contained in the total amount of Sn and Sb in the range of 0.002 to 0.03%. This is because the magnetic properties are improved by containing P together with 0.06 to 0.2% of P. It is considered that the reason for the improvement of the magnetic properties is that these elements suppress the formation of the Si-Mn nitride.
[0038]
The result of investigating the effect of the addition of P, Sn and Sb is shown below. Using a vacuum melting furnace, C: 0.002%, Si: 0.85%, Mn: 0.25%, S: 0.0025%, sol. Al: 0.0004% or less, N: 0.002%, O: 0.012% or less based on steel, P content 0.01 to 0.18%, Sn + Sb content 0.001 to 0.1% The ingot changed in the range described above was melted and forged into a 15 mm thick slab, then heated at 1100 ° C., hot rolled, finished to a 3 mm thickness, and ground to 2.3 mm. Then, it was cold-rolled to 0.5 mm. This steel sheet was subjected to finish annealing equivalent to continuous annealing at 750 ° C. for 30 seconds to obtain a non-oriented electrical steel sheet sample.
[0039]
A test piece having a width of 30 mm and a length of 100 mm was punched out of these steel sheets so that the length direction was parallel and perpendicular to the rolling direction, and used as magnetic property measurement test pieces. After annealing at 750 ° C. for 2 hours in a nitrogen atmosphere, The magnetic properties in the rolling direction and the direction perpendicular to the rolling direction were measured by a small single-plate magnetometer, and the average value was determined.
[0040]
FIG. 1 shows a change in iron loss W15 / 50 depending on the P content when Sn or Sb is not added (Sn + Sb: less than 0.002%) and when Sn + Sb is 0.015%. From this, iron loss is reduced by increasing the content of P, but when Sn and Sb are added, the iron loss is greatly reduced, especially when P is 0.06% or more, and the iron loss is less than 4 W / kg. You can see that.
[0041]
The case in FIG. 2 P is 0.03%, shows the results of examining the change in the magnetic flux density B 50 by the addition of Sn and Sb in the case of 0.10%, when it contains much P, Addition of Sn and Sb shows a remarkable improvement in magnetic flux density, and the effect is exhibited when the content of Sn + Sb is 0.002% or more. However, even if the content of Sn + Sb exceeds 0.03%, the effect is saturated and further improvement cannot be obtained.
[0042]
In addition, when Sn and Sb are re-dissolved in scrap and the like, the mixing of these elements may cause welding cracks and surface flaws, so the amount of Sn + Sb should not exceed 0.03%.
[0043]
It is desirable that the content ratio of MnO / FeO in the inclusions is 2 or less. This is because by setting the ratio to 2 or less, the iron loss is greatly reduced. MnO and FeO in steel can be extracted and analyzed by the bromine-methanol method. In order to keep the MnO / FeO ratio at 2 or less, it is preferable to add Si and Al in the deoxidizing treatment of the molten steel, and to make the Al / Si ratio at that time 0.4 or less.
[0044]
The carbon content of the steel is reduced by a vacuum treatment method of molten steel such as an RH type degassing method. However, in the case of a target ultra-low carbon steel, the oxygen in the molten steel at the end of decarburization is considerably high. It is necessary to add an appropriate deoxidizing agent. In order to produce a sound slab, Si alone is incomplete and must use Al as a deoxidizing agent. However, when Al is left in a solid solution state, the magnetic properties of the steel sheet are deteriorated.
[0045]
Therefore, oxygen corresponding to the Al concentration is supplied to the molten steel, and Al is oxidized to reduce the sol. The Al content is controlled to less than 0.0005%. The Al concentration in the molten steel can be determined by a direct method of analyzing the molten steel or an indirect method of measuring the oxygen concentration with an oxygen sensor and calculating from the Al-O equilibrium. The amount of oxygen supplied to the molten steel may be an equivalent amount required for the reaction with Al, but it is more certain that sol. To reduce Al, it is preferable to further increase Al by 10 to 20% with respect to the equivalent amount. As a method for supplying oxygen, any method such as a method of adding a solid oxide lump or powder such as iron oxide or Mn oxide to molten steel, and a method of blowing or blowing oxygen gas to molten steel may be used.
[0046]
Si and Al as deoxidizing agents are added in the above ratio. At this time, both components may be added at the same time, but it is preferable to add Al after adding Si. Since Al relative to Si is force deoxidation is extremely large, it is added to Al above alumina inclusions and FeO-MnO-Al 2 O 3 inclusions is generated, controls the MnO / FeO ratio 2 below Becomes difficult.
[0047]
On the other hand, when Al is added after Si is added, Al can be processed in a short time because Al has a greater deoxidizing power and a higher reaction rate. However, the ratio of the amount of Al added / the amount of Si to be added is set to 0.4 or less in any method.
[0048]
After the deoxidation treatment of the molten steel is performed by adding Si and Al in this way, a deficiency with respect to the target composition of Mn is added, and further, alloying elements of P, Sn and Sb are added to adjust the components. In addition, you may add these each component element before deoxidation.
[0049]
The molten steel whose composition is adjusted is used as a rolling slab by a continuous casting method or a steel ingot-bulking rolling method. The slab is subjected to hot rolling, cold rolling, annealing, surface coating, and the like according to a normal method for manufacturing a non-oriented electrical steel sheet to obtain a product.
[0050]
In the above manufacturing process, the slab heating temperature of the hot rolling is desirably 1000 to 1150 ° C. This is because by setting the temperature to 1150 ° C. or less, the magnetic characteristics of the obtained product are improved and the variation in the characteristics is reduced. However, at a heating temperature lower than 1000 ° C., the temperature of the portion of the slab hitting the skid is low. Too much, the deformation resistance may increase, and the thickness variation may increase. The finishing temperature of the hot rolling is preferably 830 to 930 ° C. This is because if the temperature is lower than 830 ° C. or exceeds 930 ° C., the iron loss and the magnetic flux density decrease, and sufficient magnetic properties cannot be obtained.
[0051]
In particular, when the magnetic properties are to be improved, it is preferable to perform hot rolled sheet annealing before cold rolling after hot rolling, but it is not necessary to perform annealing. The rolling reduction of the cold rolling is desirably 70 to 85%. This is because the thickness of non-oriented electrical steel sheet is mainly 0.5 mm, and at a rolling reduction of less than 70%, the thickness of the hot-rolled sheet is thin, the load on the hot rolling equipment increases, and the pickling efficiency decreases. This is because the magnetic properties deteriorate when the rolling reduction exceeds 85%.
[0052]
【Example】
Molten steel refined in a converter is decarburized using an RH-type vacuum degasser, and after adding Mn, P, Sn and Sb, Al and Si are simultaneously added at a different ratio to deoxidize. Then, it was continuously cast into a slab. Table 1 shows the composition of the prototype steel and the addition ratios of Al and Si used during deoxidation.
[0053]
Using these slabs, hot rolling was performed at a heating temperature of 1100 ° C, and finishing was performed at 860 to 880 ° C to obtain a steel sheet having a thickness of 2.3 mm. After pickling, it was cold-rolled to a thickness of 0.5 mm, annealed at 810 ° C. in a continuous processing line, and coated with a 0.2 μm-thick insulating film on the surface.
[0054]
Test pieces having a width of 30 mm and a length of 280 mm were punched out of these steel sheets, annealed in a nitrogen atmosphere at 750 ° C. for 2 hours, and then magnetic properties were measured based on JIS-C-2550. Further, inclusions were extracted from these steel sheet samples by the bromine-methanol method, and the amounts of MnO and FeO in the inclusions were analyzed to determine the MnO / FeO ratio. Table 1 also shows the measurement results of the magnetic characteristics and the MnO / FeO ratio.
[0055]
[Table 1]
Figure 2004292829
[0056]
Of the results in this table, sample numbers 1 to 12 in which the steel component is within the range defined by the present invention, sol. Sample No. 21 and Sample No. 22 in which the amounts of the steel components other than the amount of Al are within the range specified in the present invention, are described in sol. FIG. 3 shows the relationship between the Al content and the iron loss. FIG. 4 shows the relationship between the [Al addition amount / Si addition amount] ratio during deoxidation and the MnO / FeO ratio in inclusions.
[0057]
As is apparent from the above, the iron loss W 15/50 after strain relief annealing of each of the steel sheets of Nos. 1 to 12 having the chemical composition specified in the present invention is less than 4.3 W / kg, which is favorable. Indicates the value. Among them, Test Nos. 1 to 10 have excellent iron loss values in which W 15/50 is less than 4.0 W / kg, but the MnO / FeO ratio in the inclusions of the steel sheet is 2 or less. It is. Then, in order to stably realize such an inclusion composition, it is found that the ratio of the added amount of Al and Si used at the time of deoxidation should be 0.4 or less.
[0058]
【The invention's effect】
The present invention is a non-oriented electrical steel sheet having excellent magnetic properties, which is made of a steel having an Al content as low as possible. Electromagnetic steel sheets with excellent magnetic properties are desirable from the viewpoint of energy saving in order to increase the conversion efficiency when converting electric energy into energy of other forms such as rotation.However, lowering the Al content further reduces this steel sheet. It is easy to use and excellent in recyclability when dissolving and recycling processing wastes.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example in which the relationship between the presence or absence of Sn + Sb and the amount of P and the decrease in iron loss W15 / 50 of a non-oriented electrical steel sheet is examined.
2 is a diagram showing an example of examining the relationship between the change in the magnetic flux density B 50 of the addition amount and the non-oriented electrical steel sheet Sn + Sb.
FIG. 3 shows sol. It is a figure which shows the relationship between the amount of Al and the iron loss of a non-oriented electrical steel sheet.
FIG. 4 is a diagram showing the relationship between the addition ratio of Al and Si added during deoxidation of molten steel and the content ratio of MnO / FeO in oxide inclusions of a steel sheet.

Claims (2)

質量%にて、C:0.004%以下、Si:0.7〜1.5%、Mn:0.15〜0.8%、P:0.06〜0.2%、S:0.005%以下、sol.Al:0.0005%未満、N:0.003%以下、O:0.012%以下、Sn:0〜0.03%およびSb:0〜0.03%、ただしSnとSbとの合計含有量が0.002〜0.03%であって、残部がFeおよび不純物からなることを特徴とする無方向性電磁鋼板。In mass%, C: 0.004% or less, Si: 0.7 to 1.5%, Mn: 0.15 to 0.8%, P: 0.06 to 0.2%, S: 0. 005% or less, sol. Al: less than 0.0005%, N: 0.003% or less, O: 0.012% or less, Sn: 0 to 0.03%, and Sb: 0 to 0.03%, provided that the total content of Sn and Sb A non-oriented electrical steel sheet having an amount of 0.002 to 0.03%, with the balance being Fe and impurities. 鋼中に存在する介在物中のMnOとFeOの含有量(質量%)の比「MnO/FeO」が2以下であることを特徴とする請求項1に記載の無方向性電磁鋼板。2. The non-oriented electrical steel sheet according to claim 1, wherein the ratio “MnO / FeO” of the content (% by mass) of MnO and FeO in the inclusions present in the steel is 2 or less.
JP2003063571A 2003-02-06 2003-03-10 Non-oriented electrical steel sheet Expired - Lifetime JP3852419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003063571A JP3852419B2 (en) 2003-02-06 2003-03-10 Non-oriented electrical steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003029450 2003-02-06
JP2003063571A JP3852419B2 (en) 2003-02-06 2003-03-10 Non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2004292829A true JP2004292829A (en) 2004-10-21
JP3852419B2 JP3852419B2 (en) 2006-11-29

Family

ID=33421317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063571A Expired - Lifetime JP3852419B2 (en) 2003-02-06 2003-03-10 Non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3852419B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142100A1 (en) * 2013-03-13 2014-09-18 Jfeスチール株式会社 Non-directional electromagnetic steel plate with excellent magnetic characteristics
WO2015025759A1 (en) * 2013-08-20 2015-02-26 Jfeスチール株式会社 Non-oriented magnetic steel sheet having high magnetic flux density, and motor
JP2015131993A (en) * 2014-01-14 2015-07-23 Jfeスチール株式会社 Non-oriented silicon steel sheet having excellent magnetic property
WO2016017263A1 (en) * 2014-07-31 2016-02-04 Jfeスチール株式会社 Non-oriented electromagnetic steel plate and production method therefor, and motor core and production method therefor
WO2016067568A1 (en) * 2014-10-30 2016-05-06 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing non-oriented electromagnetic steel sheet
US10006109B2 (en) 2013-08-20 2018-06-26 Jfe Steel Corporation Non-oriented electrical steel sheet and hot rolled steel sheet thereof
RU2674181C1 (en) * 2015-02-18 2018-12-05 ДжФЕ СТИЛ КОРПОРЕЙШН Sheet from non-textured electrotechnical steel, its manufacturing method and engine core
WO2019225529A1 (en) * 2018-05-21 2019-11-28 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
US10975451B2 (en) 2015-08-04 2021-04-13 Jfe Steel Corporation Method for producing non-oriented electrical steel sheet having excellent magnetic properties
WO2021238895A1 (en) * 2020-05-29 2021-12-02 宝山钢铁股份有限公司 Low-cost non-oriented electrical steel plate with extremely low aluminum content, and preparation method therefor
RU2806222C1 (en) * 2020-05-29 2023-10-30 Баошань Айрон Энд Стил Ко., Лтд. Economical sheet of non-textured electrical steel with very low aluminum content and method of its manufacture

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105189799A (en) * 2013-03-13 2015-12-23 杰富意钢铁株式会社 Non-directional electromagnetic steel plate with excellent magnetic characteristics
JP2014198896A (en) * 2013-03-13 2014-10-23 Jfeスチール株式会社 Nonoriented magnetic steel sheet excellent in magnetic properties
WO2014142100A1 (en) * 2013-03-13 2014-09-18 Jfeスチール株式会社 Non-directional electromagnetic steel plate with excellent magnetic characteristics
US10102951B2 (en) 2013-03-13 2018-10-16 Jfe Steel Corporation Non-oriented electrical steel sheet having excellent magnetic properties
KR101797334B1 (en) * 2013-03-13 2017-11-13 제이에프이 스틸 가부시키가이샤 Non-oriented electrical steel sheet having excellent magnetic properties
EP2975152A4 (en) * 2013-03-13 2016-04-06 Jfe Steel Corp Non-directional electromagnetic steel plate with excellent magnetic characteristics
US10597759B2 (en) 2013-08-20 2020-03-24 Jfe Steel Corporation Non-oriented electrical steel sheet having high magnetic flux density and motor
RU2637449C2 (en) * 2013-08-20 2017-12-04 ДжФЕ СТИЛ КОРПОРЕЙШН Non-oriented electrical steel sheet with high magnetic flux density and motor
CN105378130A (en) * 2013-08-20 2016-03-02 杰富意钢铁株式会社 Non-oriented magnetic steel sheet having high magnetic flux density, and motor
WO2015025759A1 (en) * 2013-08-20 2015-02-26 Jfeスチール株式会社 Non-oriented magnetic steel sheet having high magnetic flux density, and motor
JP2015040309A (en) * 2013-08-20 2015-03-02 Jfeスチール株式会社 Non-oriented magnetic steel sheet with high magnetic flux density and motor
US10006109B2 (en) 2013-08-20 2018-06-26 Jfe Steel Corporation Non-oriented electrical steel sheet and hot rolled steel sheet thereof
WO2015107967A1 (en) * 2014-01-14 2015-07-23 Jfeスチール株式会社 Non-directional electromagnetic steel sheet having excellent magnetic properties
JP2015131993A (en) * 2014-01-14 2015-07-23 Jfeスチール株式会社 Non-oriented silicon steel sheet having excellent magnetic property
US10526673B2 (en) 2014-07-31 2020-01-07 Jfe Steel Corporation Non-oriented electrical steel sheet and method for producing the same, and motor core and method of producing the same
TWI575075B (en) * 2014-07-31 2017-03-21 Jfe Steel Corp A non-oriented electrical steel sheet, a manufacturing method thereof, and an electric motor core and a manufacturing method thereof
WO2016017263A1 (en) * 2014-07-31 2016-02-04 Jfeスチール株式会社 Non-oriented electromagnetic steel plate and production method therefor, and motor core and production method therefor
JPWO2016067568A1 (en) * 2014-10-30 2017-04-27 Jfeスチール株式会社 Non-oriented electrical steel sheet and method for producing non-oriented electrical steel sheet
WO2016067568A1 (en) * 2014-10-30 2016-05-06 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing non-oriented electromagnetic steel sheet
US10704115B2 (en) 2014-10-30 2020-07-07 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
RU2674181C1 (en) * 2015-02-18 2018-12-05 ДжФЕ СТИЛ КОРПОРЕЙШН Sheet from non-textured electrotechnical steel, its manufacturing method and engine core
US10941458B2 (en) 2015-02-18 2021-03-09 Jfe Steel Corporation Non-oriented electrical steel sheet, production method therefor, and motor core
US10975451B2 (en) 2015-08-04 2021-04-13 Jfe Steel Corporation Method for producing non-oriented electrical steel sheet having excellent magnetic properties
CN112154221A (en) * 2018-05-21 2020-12-29 杰富意钢铁株式会社 Non-oriented electromagnetic steel sheet and method for producing same
JP6662501B1 (en) * 2018-05-21 2020-03-11 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
WO2019225529A1 (en) * 2018-05-21 2019-11-28 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
US11649532B2 (en) 2018-05-21 2023-05-16 Jfe Steel Corporation Non-oriented electrical steel sheet and method of producing same
US11946123B2 (en) 2018-05-21 2024-04-02 Jfe Steel Corporation Method of producing a non-oriented electrical steel sheet
WO2021238895A1 (en) * 2020-05-29 2021-12-02 宝山钢铁股份有限公司 Low-cost non-oriented electrical steel plate with extremely low aluminum content, and preparation method therefor
EP4137603A4 (en) * 2020-05-29 2023-10-11 Baoshan Iron & Steel Co., Ltd. Low-cost non-oriented electrical steel plate with extremely low aluminum content, and preparation method therefor
RU2806222C1 (en) * 2020-05-29 2023-10-30 Баошань Айрон Энд Стил Ко., Лтд. Economical sheet of non-textured electrical steel with very low aluminum content and method of its manufacture

Also Published As

Publication number Publication date
JP3852419B2 (en) 2006-11-29

Similar Documents

Publication Publication Date Title
EP2532758B1 (en) Manufacture method of high efficiency non-oriented silicon steel having good magnetic performance
KR102530719B1 (en) Non-oriented electrical steel sheet and its manufacturing method
WO2010010801A1 (en) Cast slab of non-oriented magnetic steel and method for producing the same
JP2010209467A (en) Improved method for producing non-oriented electrical steel sheet
JP3852419B2 (en) Non-oriented electrical steel sheet
JP3350285B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent surface properties and magnetic properties
JP3687644B2 (en) Method for producing non-oriented electrical steel sheet
CN108796373B (en) Steel for generator excitation element produced by CSP process and manufacturing method thereof
JP3843955B2 (en) Non-oriented electrical steel sheet
JP4730981B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP3931842B2 (en) Method for producing non-oriented electrical steel sheet
JP3252692B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same
JP2009102739A (en) Method for producing non-oriented magnetic steel sheet
JP3280959B1 (en) Low iron loss non-oriented electrical steel sheet with good workability and method for producing the same
JPH09263908A (en) Nonoriented silicon steel sheet and its production
JP2003013190A (en) High-grade non-oriented magnetic steel sheet
JP3362077B2 (en) Smelting method of molten steel for non-oriented electrical steel sheets with low iron loss
JPH0967654A (en) Nonoriented silicon steel sheet excellent in core loss characteristics
JP4218136B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JP2003183734A (en) Method for manufacturing non-oriented electromagnetic steel sheet superior in cold-rolling property
CN112789363B (en) Non-oriented electrical steel sheet and method for producing slab cast sheet as material thereof
JP2003064456A (en) Nonoriented silicon steel sheet for semiprocess, and production method therefor
JPH09263909A (en) Nonoriented silicon steel sheet excellent in core loss characteristic
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
JP3202475B2 (en) Non-oriented electrical steel sheet with excellent surface properties and magnetic properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3852419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term