JP2001104784A - Catalyst for purifying exhaust gas - Google Patents
Catalyst for purifying exhaust gasInfo
- Publication number
- JP2001104784A JP2001104784A JP28510399A JP28510399A JP2001104784A JP 2001104784 A JP2001104784 A JP 2001104784A JP 28510399 A JP28510399 A JP 28510399A JP 28510399 A JP28510399 A JP 28510399A JP 2001104784 A JP2001104784 A JP 2001104784A
- Authority
- JP
- Japan
- Prior art keywords
- strontium
- carrier
- zro
- particle diameter
- suppressed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 37
- 239000002245 particle Substances 0.000 claims abstract description 35
- 238000000746 purification Methods 0.000 claims abstract description 30
- 150000003438 strontium compounds Chemical class 0.000 claims abstract description 23
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims abstract 8
- 239000013078 crystal Substances 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 12
- 230000000694 effects Effects 0.000 abstract description 12
- 238000005245 sintering Methods 0.000 abstract description 5
- 230000009257 reactivity Effects 0.000 abstract description 3
- 239000007790 solid phase Substances 0.000 abstract description 3
- 230000006641 stabilisation Effects 0.000 abstract description 2
- 238000011105 stabilization Methods 0.000 abstract description 2
- 229910052712 strontium Inorganic materials 0.000 abstract description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 abstract description 2
- 230000003247 decreasing effect Effects 0.000 abstract 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 abstract 1
- 239000002075 main ingredient Substances 0.000 abstract 1
- 231100000572 poisoning Toxicity 0.000 abstract 1
- 230000000607 poisoning effect Effects 0.000 abstract 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 abstract 1
- 229910052717 sulfur Inorganic materials 0.000 abstract 1
- 239000011593 sulfur Substances 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 35
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 32
- 229910000018 strontium carbonate Inorganic materials 0.000 description 32
- 230000000052 comparative effect Effects 0.000 description 25
- 239000007789 gas Substances 0.000 description 20
- 239000007864 aqueous solution Substances 0.000 description 18
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 12
- 238000012360 testing method Methods 0.000 description 11
- 238000002441 X-ray diffraction Methods 0.000 description 10
- 239000011232 storage material Substances 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- UBXAKNTVXQMEAG-UHFFFAOYSA-L strontium sulfate Chemical compound [Sr+2].[O-]S([O-])(=O)=O UBXAKNTVXQMEAG-UHFFFAOYSA-L 0.000 description 8
- RXSHXLOMRZJCLB-UHFFFAOYSA-L strontium;diacetate Chemical compound [Sr+2].CC([O-])=O.CC([O-])=O RXSHXLOMRZJCLB-UHFFFAOYSA-L 0.000 description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- IXSUHTFXKKBBJP-UHFFFAOYSA-L azanide;platinum(2+);dinitrite Chemical compound [NH2-].[NH2-].[Pt+2].[O-]N=O.[O-]N=O IXSUHTFXKKBBJP-UHFFFAOYSA-L 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Chemical compound [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 description 4
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 150000001342 alkaline earth metals Chemical class 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 230000001603 reducing effect Effects 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- ITHZDDVSAWDQPZ-UHFFFAOYSA-L barium acetate Chemical compound [Ba+2].CC([O-])=O.CC([O-])=O ITHZDDVSAWDQPZ-UHFFFAOYSA-L 0.000 description 2
- 150000001553 barium compounds Chemical class 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 2
- 239000001095 magnesium carbonate Substances 0.000 description 2
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- -1 strontium nitrate Chemical class 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 102100033041 Carbonic anhydrase 13 Human genes 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 101000867860 Homo sapiens Carbonic anhydrase 13 Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 150000005323 carbonate salts Chemical class 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229910052730 francium Inorganic materials 0.000 description 1
- KLMCZVJOEAUDNE-UHFFFAOYSA-N francium atom Chemical compound [Fr] KLMCZVJOEAUDNE-UHFFFAOYSA-N 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- UEGPKNKPLBYCNK-UHFFFAOYSA-L magnesium acetate Chemical compound [Mg+2].CC([O-])=O.CC([O-])=O UEGPKNKPLBYCNK-UHFFFAOYSA-L 0.000 description 1
- 239000011654 magnesium acetate Substances 0.000 description 1
- 229940069446 magnesium acetate Drugs 0.000 description 1
- 235000011285 magnesium acetate Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001631 strontium chloride Inorganic materials 0.000 description 1
- AHBGXTDRMVNFER-UHFFFAOYSA-L strontium dichloride Chemical compound [Cl-].[Cl-].[Sr+2] AHBGXTDRMVNFER-UHFFFAOYSA-L 0.000 description 1
- 159000000008 strontium salts Chemical class 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、自動車の排ガスを
浄化する排ガス浄化用触媒に関し、詳しくはNOx吸蔵還
元型の排ガス浄化用触媒に関する。The present invention relates to relates to a catalyst for purifying exhaust gas for purifying exhaust gas of an automobile, and more particularly to a catalyst for purifying an exhaust gas of the NO x storage reduction.
【0002】[0002]
【従来の技術】近年、二酸化炭素による地球温暖化現象
が問題となり、二酸化炭素の排出量を低減することが課
題となっている。自動車においても排ガス中の二酸化炭
素量の低減が課題となり、燃料を酸素過剰雰囲気で希薄
燃焼させるリーンバーンエンジンが開発されている。こ
のリーンバーンエンジンによれば、燃費が向上するため
二酸化炭素の排出量を抑制することができる。2. Description of the Related Art In recent years, global warming due to carbon dioxide has become a problem, and reducing carbon dioxide emissions has become an issue. In automobiles, reduction of the amount of carbon dioxide in exhaust gas has become an issue, and lean burn engines have been developed in which fuel is burned lean in an oxygen-excess atmosphere. According to this lean-burn engine, the fuel consumption is improved, so that the amount of carbon dioxide emission can be suppressed.
【0003】ところでリーンバーンエンジンからの排ガ
ス中の有害成分を浄化する場合、酸素過剰雰囲気である
がゆえにNOx の還元浄化が困難となる。そこで特開平5-
317652号公報には、貴金属とともにアルカリ金属、アル
カリ土類金属及び希土類元素から選ばれるNOx 吸蔵材を
担持したNOx 吸蔵還元型の排ガス浄化用触媒が開示され
ている。このNOx 吸蔵還元型の排ガス浄化用触媒を用
い、リーン雰囲気の途中にパルス状にストイキ〜リッチ
雰囲気となるように混合気組成を制御すれば、HC及びCO
の酸化とNOx の還元とを効率よく進行させることがで
き、高い浄化性能が得られる。[0003] When purifying harmful components in the exhaust gas from lean-burn engines, the reduction purification is an oxygen-rich atmosphere because NO x becomes difficult. Therefore,
The 317,652 discloses an alkali metal with the precious metal, the NO x storage-reduction type exhaust gas purifying catalyst carrying the NO x storage material selected from alkaline earth metals and rare earth elements is disclosed. Using this NO x storage-and-reduction type exhaust gas purifying catalyst, by controlling the mixture composition as a stoichiometric-rich atmosphere in a pulsed manner during the lean atmosphere, HC and CO
Oxidation and NO x reduction can proceed efficiently, and high purification performance can be obtained.
【0004】つまりリーン雰囲気では排ガス中のNOが酸
化されてNOx となり、NOx 吸蔵材に吸蔵されるためNOx
の排出が抑制される。そしてパルス状にストイキ〜リッ
チ雰囲気に制御されると、NOx 吸蔵材からNOx が放出さ
れ、それが排ガス中に存在するHCなどの還元成分と反応
して還元されるため、NOx の排出が抑制される。したが
ってリーン〜リッチの全雰囲気でNOx の排出を抑制する
ことができる。[0004] That NO x becomes oxidized is NO in the exhaust gas in a lean atmosphere, because it is occluded in the NO x storage material NO x
Emission is suppressed. When the controlled to the stoichiometric-rich atmosphere in a pulsed manner, NO x from the NO x storage material is released, because it is reduced by reaction with reducing components such as HC present in the exhaust gas, NO x emissions Is suppressed. Therefore it is possible to suppress the emission of the NO x in all the atmosphere of the lean-rich.
【0005】また特開平10−156145号公報には、アルミ
ナに酸化ストロンチウムを付着させ、それに貴金属とジ
ルコニウム及び硫酸イオンをさらに付着させた窒素酸化
物トラップが開示されている。Japanese Patent Application Laid-Open No. 10-156145 discloses a nitrogen oxide trap in which strontium oxide is adhered to alumina, and a noble metal, zirconium and sulfate ions are further adhered thereto.
【0006】[0006]
【発明が解決しようとする課題】ところが従来のNOx 吸
蔵還元型の排ガス浄化用触媒においては、 700℃以上の
高温に長時間曝されるとNOx 浄化性能が低下し、特に 3
50℃以下の低温域におけるNOx 浄化性能の低下が著しい
という不具合があった。このような不具合が発生する理
由として、以下のような原因が考えられている。 (1)NOx 吸蔵材の結晶粒子がシンタリングして表面積
が減少し、結晶表面に存在するNOx 吸蔵元素が減少する
ためNOx 浄化性能が低下する。 (2)担体とNOx 吸蔵材とが反応して複合酸化物を生成
し、これによりNOx 吸蔵元素が安定化されるためNOx 浄
化性能が低下する。 (3)排ガス中に含まれるSOx とNOx 吸蔵材とが反応し
て亜硫酸塩や硫酸塩が生成し、NOx 吸蔵材のNOx 吸蔵能
が消失するためNOx 浄化性能が低下する。In the [0007] However the conventional NO x storage-and-reduction type exhaust gas purifying catalyst was reduced for a long time exposure is the the NO x purification performance at a high temperature above 700 ° C., in particular 3
There was a problem that the NO x purification performance was significantly reduced in a low temperature range of 50 ° C. or lower. The following causes are considered as the reason for such a problem. (1) The crystal particles of the NO x occluding material are sintered to reduce the surface area, and the NO x occluding elements existing on the crystal surface are reduced, so that the NO x purification performance is reduced. (2) The carrier reacts with the NO x storage material to form a composite oxide, which stabilizes the NO x storage element, thereby lowering the NO x purification performance. (3) by reaction with SO x and the NO x storage material contained in the exhaust gas sulfites and sulfates are produced, the NO x storage capacity of the NO x storage material is the NO x purification performance decreases to disappear.
【0007】本発明はこのような事情に鑑みてなされた
ものであり、 700℃以上の高温に曝された後のNOx 浄化
性能の低下を防止し、特に 350℃以下の低温域における
NOx浄化性能の低下を防止することを目的とする。The present invention has been made in view of such circumstances, and prevents a decrease in NO x purification performance after being exposed to a high temperature of 700 ° C. or more, and particularly in a low temperature range of 350 ° C. or less.
It is intended to prevent a decrease in NO x purification performance.
【0008】[0008]
【課題を解決するための手段】上記課題を解決する本発
明の排ガス浄化用触媒の特徴は、ZrO2を主成分とする担
体と、担体に担持された結晶粒子径が40nm以下のストロ
ンチウム化合物と、担体に担持された貴金属とからなる
ことにある。Means for Solving the Problems The features of the exhaust gas purifying catalyst of the present invention that solves the above-mentioned problems include a carrier mainly composed of ZrO 2 and a strontium compound having a crystal particle diameter of 40 nm or less supported on the carrier. And a noble metal supported on a carrier.
【0009】担体はLaが添加されたZrO2からなるLaO2−
ZrO2を含むことが望ましく、LaO2−ZrO2は 0.1mol%〜10
mol%のLaを含むことが望ましい。The carrier is LaO 2 − composed of ZrO 2 added with La.
Desirably containing ZrO 2, LaO 2 -ZrO 2 is 0.1 mol% to 10
It is desirable to contain mol% of La.
【0010】またストロンチウム化合物は、担体に酢酸
ストロンチウム水溶液を含浸し、大気中 250℃〜 350℃
で焼成した後、さらに大気中 400℃〜 600℃で焼成する
ことによって得られる炭酸ストロンチウムであることが
望ましい。The strontium compound is prepared by impregnating a carrier with an aqueous solution of strontium acetate, and then heating the carrier in the air at 250 ° C.
Strontium carbonate obtained by sintering at 400 ° C. to 600 ° C. in the atmosphere after firing.
【0011】[0011]
【発明の実施の形態】本発明の排ガス浄化用触媒は、Zr
O2を主成分とする担体に、NOx 吸蔵材として結晶粒子径
が40nm以下のストロンチウム化合物を担持している。Zr
O2とストロンチウム化合物との固相反応性は、例えばZr
O2とバリウム化合物、 Al2O3とストロンチウム化合物、
Al2O3とバリウム化合物などの固相反応性に比べて低
い。したがって 700℃以上の高温が作用しても複合酸化
物が生成しにくいため、ストロンチウム化合物の安定化
が抑制される。BEST MODE FOR CARRYING OUT THE INVENTION The exhaust gas purifying catalyst of the present invention is Zr
A strontium compound having a crystal particle diameter of 40 nm or less is supported as a NO x storage material on a carrier mainly composed of O 2 . Zr
The solid-state reactivity between O 2 and the strontium compound is, for example, Zr
O 2 and barium compounds, Al 2 O 3 and strontium compounds,
Lower than solid phase reactivity of Al 2 O 3 and barium compounds. Therefore, even when a high temperature of 700 ° C. or more acts, a composite oxide is not easily generated, and thus stabilization of the strontium compound is suppressed.
【0012】またストロンチウム化合物の結晶粒子径が
40nm以下ときわめて微細であるため表面積が大きく、表
面に表出するSr元素が多くなりNOx 浄化活性が向上す
る。The crystal particle size of the strontium compound is
Since the surface is very fine as 40 nm or less, the surface area is large, the amount of Sr element exposed on the surface increases, and the NO x purification activity is improved.
【0013】そしてZrO2粒子どうしの界面に結晶粒子径
が40nm以下の微細なストロンチウム化合物が存在するこ
とによって、ZrO2粒子どうしの接触が抑制されシンタリ
ングが抑制される。これにより担体の比表面積の低下が
抑制され、それに伴う活性低下が抑制される。[0013] and by the crystal grain size at the interface of each other ZrO 2 particles are present the following fine strontium compound 40 nm, sintering contact each other ZrO 2 particles is suppressed is suppressed. As a result, a decrease in the specific surface area of the carrier is suppressed, and a corresponding decrease in activity is suppressed.
【0014】さらにストロンチウム化合物の結晶粒子径
が40nm以下ときわめて微細であるため、SOx と反応して
生成する硫酸ストロンチウムの結晶粒子径もきわめて微
細となる。したがってパルス状にストイキ〜リッチ雰囲
気に制御されたときに、硫酸ストロンチウムが容易に分
解されてNOx 吸蔵能を有するストロンチウム化合物が再
生し易く、NOx 浄化活性の低下が抑制される。Further, since the crystal particle diameter of the strontium compound is extremely fine, that is, 40 nm or less, the crystal particle diameter of strontium sulfate produced by reacting with SO x is also extremely fine. Therefore when it is controlled to the stoichiometric-rich atmosphere in a pulsed manner, easily reproduced strontium compound having the NO x storage capacity is easily decomposed strontium sulfate, reduction of the NO x purification activity is suppressed.
【0015】これらの理由により、本発明の排ガス浄化
用触媒は 700℃以上の高温に曝されてもNOx 浄化性能の
低下が防止される。そしてストロンチウム化合物は 350
℃以下の低温域におけるNOx 浄化活性が高いので、 700
℃以上の高温に曝された後でも 350℃以下の低温域にお
けるNOx 浄化性能の低下が防止される。[0015] For these reasons, the exhaust gas purifying catalyst of the present invention falls in the NO x purification performance when exposed to temperatures higher than 700 ° C. is prevented. And the strontium compound is 350
℃ so high the NO x purification activity in the following low temperature range, 700
Even after being exposed to a high temperature of not less than ℃, the reduction of NO x purification performance in a low temperature range of not more than 350 ° C is prevented.
【0016】担体としてはZrO2を主成分とするものが用
いられ、ZrO2のみから構成してもよいし、他の多孔質酸
化物を含んでいてもよい。他の多孔質酸化物としては A
l2O3、SiO2、TiO2などが例示される。しかし他の多孔質
酸化物が多くなるほどストロンチウム化合物との反応性
が高くなって複合酸化物が生成し易くなるので、全ての
担体の重量に対してZrO2が20重量%以上存在することが
好ましく、担体全体をZrO2から構成することがさらに望
ましい。As the carrier, a carrier containing ZrO 2 as a main component is used. The carrier may be composed of only ZrO 2 or may contain another porous oxide. A for other porous oxides
Examples include l 2 O 3 , SiO 2 , and TiO 2 . However, since the composite oxide is more reactive with higher strontium compound becomes large other porous oxide is likely to generate, preferably present ZrO 2 is more than 20% by weight relative to the weight of all carrier More desirably, the entire carrier is composed of ZrO 2 .
【0017】担体の主成分を構成するZrO2は、Laが添加
されたZrO2からなるLaO2−ZrO2を含むことが望ましい。
Laを含むことによりNOx 吸蔵能が一層向上し、NOx 浄化
性能が一層向上する。また熱安定性も向上し、シンタリ
ングが一層抑制される。したがって含まれるLaO2−ZrO2
は多ければ多いほど好ましく、ZrO2の全部をLaO2−ZrO2
とすることが望ましく担体全体をLaO2−ZrO2から構成す
ることがさらに望ましい。なおLaO2−ZrO2は 0.1mol%〜
10mol%のLaを含むことが好ましい。Laの添加量が 0.1mo
l%未満では添加した効果が発現されず、10mol%以上添加
すると担体としての活性が低下するためNOx 浄化性能が
低下してしまう。[0017] ZrO 2 constituting the main component of the carrier, it is desirable to include LaO 2 -ZrO 2 consisting of ZrO 2 which La is added.
By containing La, the NO x storage ability is further improved, and the NO x purification performance is further improved. Further, thermal stability is improved, and sintering is further suppressed. Therefore LaO 2 -ZrO 2 included
Is preferably as large as possible, and all of ZrO 2 is LaO 2 -ZrO 2
It is that it is more desirable to configure the entire undesired carriers from LaO 2 -ZrO 2. The LaO 2 -ZrO 2 is 0.1mol% ~
Preferably, it contains 10 mol% of La. The amount of La added is 0.1mo
the added effect is less than l% is not expressed, is added over 10 mol% activity as a carrier deteriorates is the NO x purification performance to decrease.
【0018】ストロンチウム化合物としては、炭酸スト
ロンチウム、酸化ストロンチウム、塩化ストロンチウ
ム、硫酸ストロンチウム、硝酸ストロンチウムなど各種
の化合物を用いることができるが、安定性が高くNOx 吸
蔵能も高い炭酸ストロンチウムが特に好ましい。なお硫
酸ストロンチウムなどは、リッチ雰囲気における還元作
用によって炭酸ストロンチウムとなるが、最初から炭酸
ストロンチウムとして担持しておくのが好ましいことは
いうまでもない。[0018] Strontium compounds, strontium carbonate, strontium oxide, strontium chloride, strontium sulfate, can be used various compounds such as strontium nitrate, higher the NO x storage capacity stability is high strontium carbonate is particularly preferred. Strontium sulfate or the like is converted into strontium carbonate by a reducing action in a rich atmosphere, but it is needless to say that strontium carbonate is preferably supported as strontium carbonate from the beginning.
【0019】担持されたストロンチウム化合物の結晶粒
子径は、40nm以下ときわめて微細である。これにより前
述したような各種の効果が発現され、結晶粒子径が40nm
を超えるとこれらの効果の発現が困難となる。The crystal particle diameter of the strontium compound supported is extremely fine, 40 nm or less. As a result, various effects as described above are exhibited, and the crystal particle diameter is 40 nm.
If the ratio exceeds, it is difficult to express these effects.
【0020】ストロンチウム化合物を担持するには、担
体に酢酸ストロンチウムなど水溶性ストロンチウム塩の
水溶液を含浸し大気中にて焼成すれば、大気中の二酸化
炭素と反応することで安定な炭酸ストロンチウムとして
担持することができる。焼成条件は、 250℃〜 350℃で
焼成した後、さらに大気中 400℃〜 600℃で焼成するこ
とが好ましい。これにより結晶粒子径が40nm以下の炭酸
ストロンチウムを容易に、かつ確実に高分散担持するこ
とができる。また担体粉末と結晶粒子径が40nm以下の炭
酸ストロンチウム粉末とを固相混合し、それを大気中で
焼成することで担持することもできるが、このように微
細な炭酸ストロンチウム粉末は凝集しやすく取り扱いも
困難であるので、上記したように酢酸ストロンチウムな
どの水溶液から担持することが特に望ましい。In order to carry the strontium compound, the carrier is impregnated with an aqueous solution of a water-soluble strontium salt such as strontium acetate, and calcined in the air. be able to. As for the firing conditions, it is preferable that after firing at 250 ° C. to 350 ° C., firing is further performed at 400 ° C. to 600 ° C. in the atmosphere. As a result, strontium carbonate having a crystal particle size of 40 nm or less can be easily and reliably dispersed and supported. In addition, the carrier powder and the strontium carbonate powder having a crystal particle diameter of 40 nm or less can be supported by solid-phase mixing and baking it in the air, but such fine strontium carbonate powder is easily aggregated and handled. Since it is also difficult, it is particularly desirable to support from an aqueous solution such as strontium acetate as described above.
【0021】ストロンチウム化合物の担持量は、ZrO2を
主成分とする担体1リットルあたり0.05〜 2.0モルの範
囲が望ましい。担持量が0.05モルより少ないとNOx 吸蔵
能力が小さくNOx 浄化性能が低下し、 2.0モルを超えて
含有しても効果が飽和するとともに他の成分量の低下に
よる不具合が生じる。The amount of the strontium compound to be carried is desirably in the range of 0.05 to 2.0 mol per liter of the carrier containing ZrO 2 as a main component. If the supported amount is less than 0.05 mol, the NO x storage capacity is small and the NO x purification performance is reduced. Even if the amount exceeds 2.0 mol, the effect is saturated and a problem occurs due to a decrease in the amount of other components.
【0022】なお本発明の排ガス浄化用触媒には、スト
ロンチウム化合物に加えて他のNOx吸蔵材を担持しても
よい。他のNOx 吸蔵材としては、アルカリ金属、アルカ
リ土類金属及び希土類元素から選ばれる少なくとも一種
の化合物を用いることができる。アルカリ金属としては
リチウム、ナトリウム、カリウム、ルビジウム、セシウ
ム、フランシウムが挙げられる。また、アルカリ土類金
属としてはバリウム、ベリリウム、マグネシウム、カル
シウム、が挙げられる。また希土類元素としては、スカ
ンジウム、イットリウム、ランタン、セリウム、プラセ
オジム、ネオジムなどが例示される。しかしながらスト
ロンチウム化合物以外のNOx 吸蔵材は、ZrO2と反応して
複合酸化物を生成しやすいので、極力用いないことが望
ましい。[0022] Note that the exhaust gas purifying catalyst of the present invention may carry other NO x storage material in addition to the strontium compound. As the other NO x occluding material, at least one compound selected from alkali metals, alkaline earth metals, and rare earth elements can be used. Examples of the alkali metal include lithium, sodium, potassium, rubidium, cesium, and francium. In addition, examples of the alkaline earth metal include barium, beryllium, magnesium, and calcium. Examples of the rare earth element include scandium, yttrium, lanthanum, cerium, praseodymium, and neodymium. However the NO x storage material other than strontium compound, since easily produce a composite oxide reacts with ZrO 2, it is desirable not to use as much as possible.
【0023】貴金属としては、Pt,Rh,Pd,Irの1種又
は複数種を用いることができる。その担持量は、Pt及び
Pdの場合は担体 120gに対して 0.1〜20.0gが好まし
く、 0.5〜10.0gが特に好ましい。またRhの場合は、担
体 120gに対して0.01〜10gが好ましく、0.05〜 5.0g
が特に好ましい。As the noble metal, one or more of Pt, Rh, Pd, and Ir can be used. The supported amount is Pt and
In the case of Pd, the amount is preferably 0.1 to 20.0 g, and particularly preferably 0.5 to 10.0 g, per 120 g of the carrier. Further, in the case of Rh, 0.01 to 10 g is preferable for 120 g of the carrier, and 0.05 to 5.0 g.
Is particularly preferred.
【0024】ストロンチウム化合物と貴金属の担持順序
は特に制限されない。The loading order of the strontium compound and the noble metal is not particularly limited.
【0025】[0025]
【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。The present invention will be specifically described below with reference to examples and comparative examples.
【0026】(実施例1)添加物を含まないZrO2粉末 1
20gに所定濃度のジニトロジアンミン白金硝酸水溶液の
所定量を含浸させ、蒸発乾固してPtを2g担持した。次
にPtを担持したZrO2粉末全量に所定濃度の酢酸ストロン
チウム水溶液の所定量を含浸させ、大気中300℃で3時
間焼成した後、大気中 500℃で5時間焼成することによ
り、炭酸ストロンチウムを 0.2モル担持して実施例1の
触媒粉末を調製した。なおX線回折法により測定された
炭酸ストロンチウムの結晶粒子径は19nmであった。Example 1 ZrO 2 powder without additives 1
20 g was impregnated with a predetermined amount of a dinitrodiammineplatinum nitric acid aqueous solution having a predetermined concentration, and evaporated to dryness to carry 2 g of Pt. Next, the entire amount of the Pt-supported ZrO 2 powder is impregnated with a predetermined amount of a strontium acetate aqueous solution having a predetermined concentration, baked at 300 ° C. in the air for 3 hours, and then baked at 500 ° C. in the air for 5 hours, thereby converting strontium carbonate. The catalyst powder of Example 1 was prepared by supporting 0.2 mol. The crystal particle size of strontium carbonate measured by the X-ray diffraction method was 19 nm.
【0027】(実施例2)添加物を含まないZrO2粉末の
代わりにLaが1mol%添加されたZrO2よりなるLaO2−ZrO2
粉末を用いたこと以外は実施例1と同様にして実施例2
の触媒粉末を調製した。X線回折法により測定された炭
酸ストロンチウムの結晶粒子径は19nmであった。[0027] (Example 2) made of ZrO 2 which La was added 1 mol%, instead of the ZrO 2 powder without additives LaO 2 -ZrO 2
Example 2 was carried out in the same manner as in Example 1 except that powder was used.
Was prepared. The crystal particle diameter of strontium carbonate measured by the X-ray diffraction method was 19 nm.
【0028】(実施例3)実施例1と同様のZrO2粉末 1
20gに所定濃度のジニトロジアンミン白金硝酸水溶液の
所定量を含浸させ、蒸発乾固してPtを2g担持した。次
にPtを担持したZrO2粉末全量と、結晶粒子径が30nmの炭
酸ストロンチウム粉末 0.2モル(30g)とをボールミル
を用いて乾式混合し、大気中 500℃で5時間焼成して炭
酸ストロンチウムを担持し実施例3の触媒粉末を調製し
た。X線回折法により測定された炭酸ストロンチウムの
結晶粒子径は30nmであった。Example 3 The same ZrO 2 powder as in Example 1
20 g was impregnated with a predetermined amount of a dinitrodiammineplatinum nitric acid aqueous solution having a predetermined concentration, and evaporated to dryness to carry 2 g of Pt. Next, the whole amount of Pt-supported ZrO 2 powder and 0.2 mol (30 g) of strontium carbonate powder having a crystal particle diameter of 30 nm are dry-mixed using a ball mill, and calcined at 500 ° C. for 5 hours in the atmosphere to carry strontium carbonate. Then, a catalyst powder of Example 3 was prepared. The crystal particle diameter of strontium carbonate measured by the X-ray diffraction method was 30 nm.
【0029】(比較例1)実施例1と同様のZrO2粉末 1
20gに所定濃度のジニトロジアンミン白金硝酸水溶液の
所定量を含浸させ、蒸発乾固してPtを2g担持した。一
方、結晶粒子径が30nmの炭酸ストロンチウム粉末 0.2モ
ル(30g)を大気中 750℃で10時間焼成し、結晶粒子径
が55nmの炭酸ストロンチウム粉末とした。そしてPtを担
持したZrO2粉末全量とこの炭酸ストロンチウム粉末全量
をボールミルを用いて乾式混合し、大気中 500℃で5時
間焼成して炭酸ストロンチウムを担持した比較例1の触
媒粉末を調製した。X線回折法により測定された炭酸ス
トロンチウムの結晶粒子径は55nmであった。Comparative Example 1 The same ZrO 2 powder as in Example 1
20 g was impregnated with a predetermined amount of a dinitrodiammineplatinum nitric acid aqueous solution having a predetermined concentration, and evaporated to dryness to carry 2 g of Pt. On the other hand, 0.2 mol (30 g) of strontium carbonate powder having a crystal particle diameter of 30 nm was calcined in the air at 750 ° C. for 10 hours to obtain strontium carbonate powder having a crystal particle diameter of 55 nm. Then, the whole amount of the Pt-supported ZrO 2 powder and the whole amount of the strontium carbonate powder were dry-mixed using a ball mill, and calcined at 500 ° C. for 5 hours in the air to prepare a catalyst powder of Comparative Example 1 supporting the strontium carbonate. The crystal particle size of strontium carbonate measured by the X-ray diffraction method was 55 nm.
【0030】(比較例2)実施例1と同様のZrO2粉末 1
20gに所定濃度のジニトロジアンミン白金硝酸水溶液の
所定量を含浸させ、蒸発乾固してPtを2g担持した。一
方、結晶粒子径が30nmの炭酸ストロンチウム粉末 0.2モ
ル(30g)を大気中 900℃で10時間焼成し、結晶粒子径
が 100nmの炭酸ストロンチウム粉末とした。そしてPtを
担持したZrO2粉末全量とこの炭酸ストロンチウム粉末全
量をボールミルを用いて乾式混合し、大気中 500℃で5
時間焼成して炭酸ストロンチウムを担持した比較例2の
触媒粉末を調製した。X線回折法により測定された炭酸
ストロンチウムの結晶粒子径は 100nmであった。Comparative Example 2 The same ZrO 2 powder as in Example 1
20 g was impregnated with a predetermined amount of a dinitrodiammineplatinum nitric acid aqueous solution having a predetermined concentration, and evaporated to dryness to carry 2 g of Pt. On the other hand, 0.2 mol (30 g) of strontium carbonate powder having a crystal particle diameter of 30 nm was calcined in the air at 900 ° C. for 10 hours to obtain strontium carbonate powder having a crystal particle diameter of 100 nm. Then, the total amount of the Pt-supported ZrO 2 powder and the total amount of the strontium carbonate powder were dry-mixed using a ball mill,
After sintering for a time, a catalyst powder of Comparative Example 2 carrying strontium carbonate was prepared. The crystal particle diameter of strontium carbonate measured by the X-ray diffraction method was 100 nm.
【0031】(比較例3)酢酸ストロンチウム水溶液の
代わりに酢酸バリウム水溶液を用いたこと以外は実施例
1と同様にして、炭酸バリウムを 0.2モル担持した比較
例3の触媒粉末を調製した。X線回折法により測定され
た炭酸バリウムの結晶粒子径は44nmであった。Comparative Example 3 A catalyst powder of Comparative Example 3 carrying 0.2 mol of barium carbonate was prepared in the same manner as in Example 1 except that an aqueous solution of barium acetate was used instead of the aqueous solution of strontium acetate. The crystal particle diameter of barium carbonate measured by the X-ray diffraction method was 44 nm.
【0032】(比較例4)酢酸ストロンチウム水溶液の
代わりに酢酸カルシウム水溶液を用いたこと以外は実施
例1と同様にして、炭酸カルシウムを 0.2モル担持した
比較例4の触媒粉末を調製した。X線回折法により測定
された炭酸カルシウムの結晶粒子径は30nmであった。Comparative Example 4 A catalyst powder of Comparative Example 4 carrying 0.2 mol of calcium carbonate was prepared in the same manner as in Example 1 except that an aqueous solution of calcium acetate was used instead of the aqueous solution of strontium acetate. The crystal particle diameter of calcium carbonate measured by the X-ray diffraction method was 30 nm.
【0033】(比較例5)酢酸ストロンチウム水溶液の
代わりに酢酸マグネシウム水溶液を用いたこと以外は実
施例1と同様にして、炭酸マグネシウムを 0.2モル担持
した比較例5の触媒粉末を調製した。X線回折法により
測定された炭酸マグネシウムの結晶粒子径は25nmであっ
た。Comparative Example 5 A catalyst powder of Comparative Example 5 carrying 0.2 mol of magnesium carbonate was prepared in the same manner as in Example 1 except that an aqueous solution of magnesium acetate was used instead of the aqueous solution of strontium acetate. The crystal particle diameter of magnesium carbonate measured by the X-ray diffraction method was 25 nm.
【0034】(比較例6)添加物を含まないZrO2粉末の
代わりに Al2O3粉末を用いたこと以外は実施例1と同様
にして、炭酸ストロンチウムを 0.2モル担持した比較例
6の触媒粉末を調製した。X線回折法により測定された
炭酸ストロンチウムの結晶粒子径は50nmであった。Comparative Example 6 The catalyst of Comparative Example 6 supporting 0.2 mol of strontium carbonate in the same manner as in Example 1 except that Al 2 O 3 powder was used instead of ZrO 2 powder containing no additive. A powder was prepared. The crystal particle size of strontium carbonate measured by the X-ray diffraction method was 50 nm.
【0035】(比較例7)添加物を含まないZrO2粉末の
代わりに Al2O3粉末を用いたこと、及び酢酸ストロンチ
ウム水溶液の代わりに酢酸バリウム水溶液を用いたこと
以外は実施例1と同様にして、炭酸バリウムを 0.2モル
担持した比較例7の触媒粉末を調製した。X線回折法に
より測定された炭酸バリウムの結晶粒子径は52nmであっ
た。Comparative Example 7 Same as Example 1 except that Al 2 O 3 powder was used instead of ZrO 2 powder containing no additive, and barium acetate aqueous solution was used instead of strontium acetate aqueous solution. Thus, a catalyst powder of Comparative Example 7 supporting 0.2 mol of barium carbonate was prepared. The crystal particle diameter of barium carbonate measured by the X-ray diffraction method was 52 nm.
【0036】(比較例8)特開平10−156145号公報に記
載の方法に従い、 Al2O3粉末90gに所定濃度の硝酸スト
ロンチウム水溶液の所定量を含浸させ、蒸発乾固後 550
℃で5時間焼成して酸化ストロンチウム換算で36g(0.
35モル)を担持した。その後ヘキサクロロ白金酸、塩化
ジルコニウム及び硫酸の混合水溶液を含浸させ、蒸発乾
固して、Ptを2g、ZrO2を30g、硫酸イオンを70gそれ
ぞれ担持した。(Comparative Example 8) According to the method described in JP-A-10-156145, 90 g of Al 2 O 3 powder was impregnated with a predetermined amount of a strontium nitrate aqueous solution having a predetermined concentration, and evaporated to dryness.
Baked at 5 ° C for 5 hours, 36 g (0.
35 mol). Thereafter, the mixture was impregnated with a mixed aqueous solution of hexachloroplatinic acid, zirconium chloride and sulfuric acid and evaporated to dryness to carry 2 g of Pt, 30 g of ZrO 2 and 70 g of sulfate ions.
【0037】<試験・評価>得られたそれぞれの触媒粉
末を定法によりペレット化し、以下の試験に供した。<Test / Evaluation> Each of the obtained catalyst powders was pelletized by a conventional method and subjected to the following tests.
【0038】先ずそれぞれのペレット触媒を耐久試験装
置に充填し、表1に示すA/F= 14.0のリッチモデル
ガスとA/F=22.0のリーンモデルガスを交互に4分間
ずつ流しながら 750℃で10時間加熱する耐久試験を行っ
た。First, each of the pellet catalysts was charged into a durability test apparatus, and a rich model gas of A / F = 14.0 and a lean model gas of A / F = 22.0 shown in Table 1 were alternately flowed for 4 minutes at 750 ° C. An endurance test of heating for 10 hours was performed.
【0039】[0039]
【表1】 [Table 1]
【0040】耐久試験後の各ペレット触媒を常圧固定床
流通反応装置にそれぞれ装着し、表2に示すリーン及び
リッチ雰囲気のモデルガスを用いて、図1に示すリッチ
前処理(5分間)→リーン(20分間)→リッチスパイク
(3秒間)→リーン(10分間)の順に流通させ、その間
の触媒出ガス中のNOx 濃度を測定した。触媒入りガス温
度はいずれも 350℃である。Each of the pellet catalysts after the endurance test was mounted on a normal-pressure fixed-bed flow reactor, and a rich pretreatment (5 minutes) shown in FIG. 1 was performed using a lean and rich atmosphere model gas shown in Table 2. The mixture was circulated in the order of lean (20 minutes) → rich spike (3 seconds) → lean (10 minutes), and the NO x concentration in the gas discharged from the catalyst during that time was measured. The temperature of the gas containing the catalyst is 350 ° C.
【0041】[0041]
【表2】 [Table 2]
【0042】そして図1の塗りつぶし部分の面積から、
飽和NOx 吸蔵量及びリッチスパイク後NOx 吸蔵量を算出
した。結果を表3に示す。なおリッチスパイク後NOx 吸
蔵量が多いほど実車走行におけるNOx 浄化性能が高いこ
とがわかっているので、リッチスパイク後NOx 吸蔵量を
NOx 浄化性能の主たる指標とした。Then, from the area of the solid portion in FIG.
Saturated the NO x storage amount and to calculate the rich spike after the NO x storage amount. Table 3 shows the results. Note since the NO x purification performance in the actual vehicle as after the rich spike the NO x storage amount is large is known to be high, the the NO x storage amount after the rich spike
It was used as a main index of NO x purification performance.
【0043】[0043]
【表3】 [Table 3]
【0044】表3より、各実施例の触媒は飽和NOx 吸蔵
量及びリッチスパイク後NOx 吸蔵量がともに高く、各比
較例の触媒に比べて耐久試験後のNOx 浄化性能に優れて
いることがわかる。以下、表3のデータをさらに細かく
解析する。[0044] From Table 3, the catalyst of each example is excellent in saturation the NO x storage amount and the rich spike after the NO x storage amount are both high, NO x purifying performance after the durability test compared to the catalyst of Comparative Example You can see that. Hereinafter, the data in Table 3 will be analyzed in more detail.
【0045】(1)結晶粒子径の影響 耐久試験後の実施例1,実施例3,比較例1及び比較例
2の触媒における炭酸ストロンチウムの結晶粒子径とリ
ッチスパイク後NOx 吸蔵量との関係を図2に示す。[0045] (1) Example 1 after impact endurance test of the crystal grain size, Example 3, the relationship between the crystal grain size and rich spike after the NO x storage amount of strontium carbonate in the catalyst of Comparative Example 1 and Comparative Example 2 Is shown in FIG.
【0046】図2より、炭酸ストロンチウムの結晶粒子
径が約40nm以下の場合に、耐久試験後にも実用上十分な
NOx 浄化活性が得られることがわかる。FIG. 2 shows that when the crystal particle diameter of strontium carbonate is about 40 nm or less, it is practically sufficient even after the durability test.
It can be seen that the NO x purification activity.
【0047】(2)NOx 吸蔵元素の影響 耐久試験後の実施例1,比較例3,比較例4及び比較例
5の触媒のリッチスパイク後NOx 吸蔵量を図3に示す。(2) Influence of NO x storage element FIG. 3 shows the NO x storage amount after rich spike of the catalysts of Example 1, Comparative Example 3, Comparative Example 4 and Comparative Example 5 after the durability test.
【0048】図3より、NOx 吸蔵元素としてはSrが最も
好ましいことが明らかである。Baの場合には、実施例1
と同様にして製造しても炭酸バリウムの結晶粒子径が大
きくなるため、Srに比べてNOx 浄化性能が低くなったと
考えられる。またCa及びMgの場合には、炭酸塩の結晶粒
子径はSrの場合と同等であるが、Ca及びMgはSrに比べて
塩基性度が低いためSrに比べてNOx 浄化性能が低くなっ
たと考えられる。FIG. 3 clearly shows that Sr is the most preferable as the NO x storage element. In the case of Ba, Example 1
It is considered that the NO x purification performance was lower than that of Sr because the crystal particle diameter of barium carbonate was large even when the barium carbonate was manufactured in the same manner as described above. In the case of Ca and Mg, the crystal grain size of the carbonate salts are equivalent to the case of Sr, Ca and Mg is low is the NO x purification performance compared to a low basicity when compared to the Sr Sr It is considered that
【0049】(3)担体の影響 耐久試験後の実施例1,実施例2及び比較例6の触媒の
リッチスパイク後NOx吸蔵量を図4に示す。(3) Influence of Carrier FIG. 4 shows the NO x storage amounts after rich spike of the catalysts of Examples 1, 2 and Comparative Example 6 after the durability test.
【0050】図4より、 Al2O3担体よりZrO2担体の方が
高いNOx 浄化性能が得られることがわかり、Laを添加し
たZrO2からなるLaO2−ZrO2担体が特に好ましいことが明
らかである。ZrO2又はLaO2−ZrO2担体の場合には、 Al2
O3の場合に比べて炭酸ストロンチウムの結晶粒子径が小
さくなり、NOx の吸蔵に有効なSr原子が表面に多くなっ
たため高いNOx 浄化性能を示すと考えられる。FIG. 4 shows that the ZrO 2 carrier has higher NO x purification performance than the Al 2 O 3 carrier, and that the LaO 2 -ZrO 2 carrier composed of ZrO 2 added with La is particularly preferable. it is obvious. In the case of ZrO 2 or LaO 2 -ZrO 2 carriers, Al 2
It is considered that the crystal particle diameter of strontium carbonate is smaller than that of O 3 , and the surface has a large number of Sr atoms effective for occlusion of NO x , thereby exhibiting high NO x purification performance.
【0051】(4)特開平10−156145号公報との差 表3より、実施例1〜3の触媒は、比較例8の触媒に比
べて飽和NOx 吸蔵量及びリッチスパイク後NOx 吸蔵量が
共に多い。これは実施例1〜3ではZrO2を主成分とした
担体を用い、かつ微細な炭酸ストロンチウムとして担持
した効果であることが明らかである。すなわち比較例8
の触媒では、担体はZrO2を含むものの Al2O3を主成分と
して担持しているため、耐久試験後における 350℃以下
の低温域でのNOx 浄化性能が低いと判断される。[0051] (4) from the difference Table 3 and JP-A 10-156145 and JP-the catalysts Examples 1 to 3, it saturated the NO x storage amount in comparison with the catalyst of Comparative Example 8 and the rich spike after the NO x storage amount There are many. It is apparent that this is the effect of using the carrier containing ZrO 2 as a main component and carrying it as fine strontium carbonate in Examples 1 to 3. That is, Comparative Example 8
In the catalyst of (1), although the carrier contains ZrO 2 but carries Al 2 O 3 as a main component, it is judged that the NO x purification performance in a low temperature range of 350 ° C. or less after the durability test is low.
【0052】[0052]
【発明の効果】すなわち本発明の触媒によれば、 700℃
以上の高温に曝されてもNOx 浄化性能の低下がほとんど
なく、 700℃以上の高温に曝された後であっても 350℃
以下の低温域において高いNOx 浄化性能を示し、耐久性
にきわめて優れている。According to the catalyst of the present invention, 700 ° C.
There is almost no decrease in NO x purification performance even when exposed to temperatures above 350 ° C even after exposure to temperatures above 700 ° C
The following shows the high the NO x purification performance at low temperature range, is excellent in durability.
【図1】飽和NOx 吸蔵量とリッチスパイク後NOx 吸蔵量
の評価法を説明する説明図である。1 is an explanatory view for explaining the evaluation method of the saturated the NO x storage amount and the rich spike after the NO x storage amount.
【図2】炭酸ストロンチウムの結晶粒子径とリッチスパ
イク後NOx 吸蔵量との関係示すグラフである。FIG. 2 is a graph showing the relationship between the crystal particle diameter of strontium carbonate and the NO x storage amount after rich spike.
【図3】NOx 吸蔵元素種とリッチスパイク後NOx 吸蔵量
との関係を示すグラフである。FIG. 3 is a graph showing a relationship between NO x storage element species and NO x storage amount after rich spike.
【図4】担体種とリッチスパイク後NOx 吸蔵量との関係
を示すグラフである。4 is a graph showing the relationship between the carrier species and rich spike after the NO x storage amount.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲高▼橋 直樹 愛知県愛知郡長久手町大字長湫字横道41番 地の1株式会社豊田中央研究所内 (72)発明者 蜂須賀 一郎 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 祖父江 優一 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 4D048 AA06 BA08X BA08Y BA14X BA14Y BA18X BA18Y BA30Y BA41X BA41Y BA42X BA42Y BB17 4G069 AA01 AA03 AA12 BA01B BA05A BA05B BB04A BB04B BB06A BB06B BB16B BC42A BC42B BC51A BC51B BC69A BC71B BC72B BC74B BC75B CA03 CA13 EB18X EB18Y EB19 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor ▲ Taka ▼ Naoki Hashi 41, Chukku Yokomichi, Oku-cho, Nagakute-cho, Aichi-gun 1 Toyota Central Research Laboratory Co., Ltd. No. 1 Toyota Motor Co., Ltd. (72) Inventor Yuichi Sobue 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Co., Ltd. F-term (reference) 4D048 AA06 BA08X BA08Y BA14X BA14Y BA18X BA18Y BA30Y BA41X BA41Y BA42X BA42Y BB17 4G069 AA01 AA03 AA12 BA01B BA05A BA05B BB04A BB04B BB06A BB06B BB16B BC42A BC42B BC51A BC51B BC69A BC71B BC72B BC74B BC75B CA03 CA13 EB18X EB18Y EB19
Claims (3)
と、該担体に担持された結晶粒子径が40nm以下のストロ
ンチウム化合物と、該担体に担持された貴金属とからな
ることを特徴とする排ガス浄化用触媒。1. A carrier comprising zirconia (ZrO 2 ) as a main component, a strontium compound supported on the carrier having a crystal particle diameter of 40 nm or less, and a noble metal supported on the carrier. Exhaust gas purification catalyst.
LaO2−ZrO2を含むことを特徴とする請求項1に記載の排
ガス浄化用触媒。2. The carrier is composed of ZrO 2 to which La is added.
LaO 2 -ZrO exhaust gas purifying catalyst according to claim 1, characterized in that it comprises a 2.
を含むことを特徴とする請求項2に記載の排ガス浄化用
触媒。3. The method according to claim 1, wherein the LaO 2 —ZrO 2 is 0.1 mol% to 10 mol% of La.
The exhaust gas purifying catalyst according to claim 2, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28510399A JP4186345B2 (en) | 1999-10-06 | 1999-10-06 | Exhaust gas purification catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28510399A JP4186345B2 (en) | 1999-10-06 | 1999-10-06 | Exhaust gas purification catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001104784A true JP2001104784A (en) | 2001-04-17 |
JP4186345B2 JP4186345B2 (en) | 2008-11-26 |
Family
ID=17687172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28510399A Expired - Lifetime JP4186345B2 (en) | 1999-10-06 | 1999-10-06 | Exhaust gas purification catalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4186345B2 (en) |
-
1999
- 1999-10-06 JP JP28510399A patent/JP4186345B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP4186345B2 (en) | 2008-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3741303B2 (en) | Exhaust gas purification catalyst | |
JPH10286462A (en) | Catalyst of purifying exhaust gas | |
JP2004074138A (en) | Catalyst for exhaust gas purification, and exhaust gas purification method | |
KR20100037164A (en) | Exhaust gas purifying catalyst | |
JP3568728B2 (en) | Oxygen storage cerium-based composite oxide | |
JP3567708B2 (en) | Exhaust gas purification catalyst | |
JP3797081B2 (en) | Absorption reduction type NOx purification catalyst | |
JPH10128114A (en) | Catalyst for purifying exhaust gas | |
JPH08281116A (en) | Catalyst for purifying exhaust gas | |
JP3965793B2 (en) | Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine | |
JP2000246107A (en) | Catalyst for cleaning exhaust gas, its production and method for cleaning exhaust gas | |
JP4103407B2 (en) | NOx storage reduction catalyst | |
JP4186345B2 (en) | Exhaust gas purification catalyst | |
JP4079622B2 (en) | Exhaust gas purification catalyst | |
JP2000157865A (en) | Gas purifying catalyst carrier | |
JPH10174868A (en) | Catalyst for cleaning of exhaust gas | |
JP2015093227A (en) | Exhaust gas purification catalyst and manufacturing method thereof | |
JP3897483B2 (en) | Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method | |
JP2003144923A (en) | Catalyst for cleaning exhaust gas | |
JP2000325787A (en) | Manufacture of exhaust gas cleaning catalyst | |
JP2000070717A (en) | Exhaust gas purification catalyst and catalyst carrier | |
JP3739226B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JP2005288382A (en) | Catalyst for purifying exhaust gas | |
JP3855252B2 (en) | Exhaust gas purification catalyst | |
JP4556084B2 (en) | Exhaust gas purification catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060724 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20060728 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060728 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080724 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080819 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080901 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 4 |