JP2001050275A - Manufacture of bearing - Google Patents

Manufacture of bearing

Info

Publication number
JP2001050275A
JP2001050275A JP11226211A JP22621199A JP2001050275A JP 2001050275 A JP2001050275 A JP 2001050275A JP 11226211 A JP11226211 A JP 11226211A JP 22621199 A JP22621199 A JP 22621199A JP 2001050275 A JP2001050275 A JP 2001050275A
Authority
JP
Japan
Prior art keywords
housing
bearing
inner diameter
diameter
core rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11226211A
Other languages
Japanese (ja)
Other versions
JP3698352B2 (en
Inventor
Motohiro Miyasaka
元博 宮坂
Toshiichi Takehana
敏一 竹花
Takeshi Kurihara
健 栗原
Hidekazu Tokushima
秀和 徳島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP22621199A priority Critical patent/JP3698352B2/en
Publication of JP2001050275A publication Critical patent/JP2001050275A/en
Application granted granted Critical
Publication of JP3698352B2 publication Critical patent/JP3698352B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a bearing of two-point support structure where sintered body is incorporated into a housing, efficiently in a relatively simple manner to give appreciable bearing performance. SOLUTION: This bearing manufacturing method has a positioning step of press-fitting and positioning a raw material or sintered body 1A to form a bearing body 10A in a housing 21 coaxially to unite them both temporarily, and a press-fitting step of press-fitting the housing 21 as it carries the raw material 1A in a forming hole 30 of a die 31 after a core rod 32 of a uniform outside diameter has been inserted in the raw material 1A. The press-fitting step bonds the diametrally external surface of the raw material 1A under compression to the diametrally internal surface of the housing 21, and constricts the housing 21 diametrally through the overall length. The diametral constriction of the housing 21 presses both axial ends of the diametrally internal surface of the raw material 1A against the core rod 32 to form shaft supporting surface 12 with an intermediate recess 13 in between.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、精密機器に内蔵さ
れるスピンドルモータの駆動軸等、比較的高速で回転す
る軸を高精度で支持する場合に用いて好適な軸受であっ
て、特に、回転軸が接触しない中逃げ部を有する軸受本
体がハウジング内に組み込まれたタイプの軸受を製造す
る方法に関する。軸受本体は、焼結体あるいは焼結体に
サイジングを施した多孔質体からなる素材を成形したも
のであり、潤滑油が含浸され、焼結含油軸受として好適
に用いられる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bearing suitable for use in supporting a shaft rotating at a relatively high speed, such as a drive shaft of a spindle motor built in precision equipment, with high precision. The present invention relates to a method of manufacturing a bearing of a type in which a bearing body having a middle relief portion that does not contact a rotating shaft is incorporated in a housing. The bearing body is formed by molding a material made of a sintered body or a porous body obtained by sizing the sintered body, is impregnated with lubricating oil, and is suitably used as a sintered oil-impregnated bearing.

【0002】[0002]

【従来の技術】上記焼結含油軸受は、焼結体に含浸され
た潤滑油が内径面にしみ出し、内径面と回転軸との間に
油膜が形成されることにより、摩擦抵抗が低減して騒音
や振動が抑えられるといった特性を有する。また、振動
や騒音の抑制効果をさらに高めた焼結含油軸受として、
軸方向中央部の内径面に、内径が回転軸の外径より僅か
に大きく回転軸と接触しない隙間(以下、中逃げ部と称
する)を形成し、回転軸の軸支面を両端部の内径面に限
定した2点支持構造として摩擦抵抗の低減効果と回転軸
の支持力をより安定化させたものがある。
2. Description of the Related Art In a sintered oil-impregnated bearing, the lubricating oil impregnated in a sintered body seeps into an inner diameter surface, and an oil film is formed between the inner diameter surface and a rotating shaft, thereby reducing frictional resistance. It has the characteristic that noise and vibration are suppressed. In addition, as a sintered oil-impregnated bearing with further enhanced vibration and noise suppression effects,
A gap (hereinafter, referred to as a middle relief portion) having an inner diameter slightly larger than the outer diameter of the rotating shaft and not in contact with the rotating shaft is formed on the inner diameter surface at the central portion in the axial direction. As a two-point support structure limited to a surface, there is a structure in which the effect of reducing frictional resistance and the support force of the rotating shaft are further stabilized.

【0003】焼結含油軸受は、通常、原料の金属粉末を
圧縮成形して得た円筒状の圧粉体を焼結し、焼結体をサ
イジングして最終形状に仕上げるといった工程を主体と
して製造されているが、軸受としては、焼結体単体の他
に、焼結体がハウジング内に組み込まれたタイプのもの
がある。ところで、上記中逃げ部を形成する場合、その
中逃げ部を焼結体への機械加工で形成すると、内径面に
表出している気孔が潰れて潤滑油の循環作用に支障を来
すことになる。このため、焼結体のサイジング工程で中
逃げ部を同時に形成するか、もしくはサイジング後にも
う1度焼結体を変形させて中逃げ部を独自に形成する方
法が好ましい。いずれの場合も、軸方向両端部の内径面
が径方向内側に突出したり、軸方向中央部が径方向外側
に膨出したりする塑性変形を焼結体に生じさせることに
より、離間する2つの軸支面とこれらの間の中逃げ部が
内径面に同時に形成される。
[0003] Sintered oil-impregnated bearings are usually manufactured mainly by the steps of sintering a cylindrical green compact obtained by compression-molding a raw metal powder, sizing the sintered body and finishing it into a final shape. However, as a bearing, there is a type in which a sintered body is incorporated in a housing in addition to a sintered body alone. By the way, in the case where the above-mentioned middle relief portion is formed, if the middle relief portion is formed by machining the sintered body, the pores exposed on the inner diameter surface are crushed, which hinders the circulation operation of the lubricating oil. Become. For this reason, it is preferable to form the middle relief portion at the same time in the sizing step of the sintered body, or to form the middle relief portion by deforming the sintered body again after sizing. In any case, the two inner shafts are separated from each other by causing plastic deformation in the sintered body such that the inner diameter surfaces at both ends in the axial direction project radially inward or the central portion in the axial direction swells radially outward. The supporting surface and the clearance between them are formed on the inner diameter surface at the same time.

【0004】[0004]

【発明が解決しようとする課題】上記2点支持構造の軸
受においては、前述した摩擦抵抗の低減や回転軸の支持
力向上といった軸受性能を高める上で、離間する2つの
軸支面の内径および同軸度が高い精度で一致しているこ
とや、軸支面への潤滑油の供給量が十分になされること
が要求される。ところが、従来より焼結体の塑性変形の
させ方は種々提案されているものの、比較的簡素で、軸
受性能向上のための要求が十分満たされる一定の製造方
法は見い出されていないのが現状であった。また、焼結
体をハウジング内に組み込んだタイプの軸受にあって
は、焼結体に軸支面および中逃げ部を形成してからハウ
ジングに組み込んでも、焼結体に変形が生じて軸支面の
内径に差異が生じたり同軸度が損なわれたりすることが
多く、さりとて、組み込んだ後に焼結体をサイジングし
て軸支面および中逃げ部を形成することは、きわめて困
難であった。
In the bearing having the above-mentioned two-point support structure, in order to enhance the bearing performance such as the reduction of the frictional resistance and the improvement of the support force of the rotary shaft, the inner diameter of the two separated shaft supporting surfaces and It is required that the coaxiality match with high accuracy and that the supply amount of the lubricating oil to the bearing surface be sufficient. However, although various methods of plastically deforming a sintered body have been conventionally proposed, a certain manufacturing method that is relatively simple and does not sufficiently satisfy requirements for improving bearing performance has been found at present. there were. Also, in a bearing of a type in which a sintered body is incorporated in a housing, even if the bearing is formed into a housing after forming a bearing surface and an intermediate relief portion, the sintered body is deformed due to deformation. In many cases, the inner diameter of the surface is different or the coaxiality is impaired, and it is extremely difficult to size the sintered body after the assembly to form the bearing surface and the middle relief.

【0005】したがって本発明は、焼結体がハウジング
内に組み込まれた2点支持構造の軸受を、比較的簡素な
方法で効率よく、かつ、優れた軸受性能(2つの軸支面
の内径や同軸度の同一性に伴う回転軸の支持力、潤滑
性、耐摩耗性等)を有するものに製造することができる
方法を提供することを目的としている。
Therefore, the present invention provides a bearing having a two-point support structure in which a sintered body is incorporated in a housing, by a relatively simple method, efficiently and with excellent bearing performance (the inner diameter of two bearing surfaces, It is an object of the present invention to provide a method capable of manufacturing a rotating shaft having a coaxiality having the same bearing capacity, lubricating property, and wear resistance.

【0006】[0006]

【課題を解決するための手段】本発明は、円筒状の軸受
本体を円筒状のハウジング内に組み込んでなる軸受の製
造方法であって、軸受本体に成形される円筒状の素材を
ハウジング内に略同軸的に配置する配置工程と、ハウジ
ング内に配置した素材に外径均一のコアロッドを挿入し
た状態から、ハウジングを素材ごと成形孔に押し込んで
圧入する圧入工程とを備え、該圧入工程において、素材
の外径面をハウジングの内径面に圧着させる一方、少な
くともハウジングの軸方向両端部を縮径させ、このハウ
ジングの縮径作用により、素材の軸方向両端部の内径面
をコアロッドに圧接させて回転軸を支持する軸支面に形
成するとともに、これら軸支面間に回転軸と接触しない
中逃げ部を形成することを特徴としている。本発明に係
る素材は、前述の如く焼結体あるいは焼結体にサイジン
グを施してなる多孔質体が用いられ、製造後は、潤滑油
が含浸され、焼結含油軸受として好適に用いられる。
SUMMARY OF THE INVENTION The present invention relates to a method for manufacturing a bearing in which a cylindrical bearing main body is incorporated in a cylindrical housing, wherein a cylindrical material molded into the bearing main body is provided in the housing. An arrangement step of substantially coaxial arrangement, and a press-fitting step of pressing the housing together with the material into a molding hole by pressing the housing together with the material from a state in which a core rod having a uniform outer diameter is inserted into the material arranged in the housing, While the outer diameter surface of the material is pressed against the inner diameter surface of the housing, at least both ends in the axial direction of the housing are reduced in diameter, and the inner diameter surfaces of both ends in the axial direction of the material are pressed against the core rod by the reducing action of the housing. It is characterized in that it is formed on a bearing surface that supports the rotating shaft, and that a middle relief portion that does not contact the rotating shaft is formed between these bearing surfaces. As the material according to the present invention, a sintered body or a porous body obtained by sizing the sintered body as described above is used, and after production, the sintered body is impregnated with a lubricating oil and is suitably used as a sintered oil-impregnated bearing.

【0007】上記配置工程としては、例えば、素材をハ
ウジング内に圧入して両者を仮に一体化させる。この場
合、素材の外径がハウジングの内径よりも大きく、素材
はハウジング内でしまり嵌めの状態となる。素材とハウ
ジングは、軸方向長さが等しいと好ましい。素材をハウ
ジング内に配置するには、素材をハウジング内に単に挿
入して嵌合させた中間嵌めや、素材の外径面とハウジン
グの内径面との間に隙間が空く遊嵌といった形態が挙げ
られる。
[0007] In the arrangement step, for example, a material is press-fitted into a housing to temporarily integrate them. In this case, the outer diameter of the material is larger than the inner diameter of the housing, and the material is tightly fitted in the housing. Preferably, the material and the housing have the same axial length. In order to place the material in the housing, there are forms such as an intermediate fitting where the material is simply inserted into the housing and fitted, or a loose fit where there is a gap between the outer diameter surface of the material and the inner diameter surface of the housing. Can be

【0008】圧入工程では、ハウジング内の素材にコア
ロッドを挿入した状態から、ハウジングを素材ごと軸方
向に沿って成形孔に押し込み、圧入する。この圧入と同
時に、両者を軸方向に圧縮してもよい。ハウジングの外
径形状と成形孔の内径形状とは、成形孔にハウジングが
圧入されるにつれ、少なくともハウジングの軸方向両端
部が成形孔の内径面の圧迫を受けて縮径する関係とされ
る。また、素材の内径は、内径が均一な場合、その内径
面とコアロッドとの間に隙間が形成される寸法に設定さ
れる。成形孔に圧入されたハウジングにおいては、少な
くとも軸方向両端部が成形孔の内径面に圧迫されて縮径
する。そして、その縮径部分が素材を圧迫して素材も縮
径し、素材の軸方向両端部の内径面がコアロッドに圧接
する。このようにコアロッドに圧接する内径面が、回転
軸を支持する離間した2つの軸支面とされる。一方、こ
れら軸支面間の内径面は縮径せずにコアロッドとの間に
隙間が残存し、回転軸と接触しない中逃げ部となる。こ
のようにハウジングおよび素材が塑性変形することによ
り、素材が軸受本体に成形され、かつ、ハウジングの内
径面に圧着し、両者が一体化した軸受に成形される。
In the press-fitting step, the housing is pushed into the forming hole along the axial direction with the core rod inserted into the material in the housing, and the material is press-fitted. Simultaneously with this press-fitting, both may be compressed in the axial direction. The outer diameter of the housing and the inner diameter of the forming hole are such that at least both ends in the axial direction of the housing are reduced in diameter by being pressed against the inner surface of the forming hole as the housing is pressed into the forming hole. In addition, when the inner diameter is uniform, the inner diameter of the material is set to such a size that a gap is formed between the inner diameter surface and the core rod. In the housing press-fitted into the molding hole, at least both ends in the axial direction are pressed against the inner diameter surface of the molding hole to reduce the diameter. Then, the reduced diameter portion presses the material, and the material is also reduced in diameter, and the inner diameter surfaces of both ends in the axial direction of the material are pressed against the core rod. In this way, the inner diameter surfaces that are in pressure contact with the core rod are two spaced-apart bearing surfaces that support the rotating shaft. On the other hand, the inner diameter surface between these shaft support surfaces does not decrease in diameter, and a gap remains between the core rod and the core support rod. As a result of the plastic deformation of the housing and the raw material, the raw material is formed on the bearing main body, and is pressed against the inner diameter surface of the housing to form a bearing in which both are integrated.

【0009】本発明では、ハウジングを全長にわたって
縮径する形態も勿論含む。この場合には、ハウジングと
ともに素材も全長にわたって縮径するので、中逃げ部が
形成されるべく、予め素材の軸方向両端部の内径を中央
部よりも小径として肉厚としておき、その内径小径部の
内径面のみがコアロッドに圧接するよう構成する。上記
のようにハウジングの軸方向両端部を局部的に縮径する
場合には、素材の内径は均一であってかまわないが、軸
方向両端部に内径小径部を有する形状の素材を用いるこ
ともできる。この内径小径部は、中逃げ部が確実に形成
されるのであれば、その内径面がコアロッドに当接する
寸法であってもかまわない。また、内径小径部は、上記
配置工程において、素材をハウジングに圧入すると素材
が変形して形成されるものとすることができる。
The present invention naturally includes a mode in which the diameter of the housing is reduced over the entire length. In this case, the diameter of the material is reduced along the entire length of the material together with the housing, so that the inside diameter of both ends in the axial direction of the material is made smaller in advance than the center to increase the wall thickness so that a middle clearance portion is formed. Is configured so that only the inner diameter surface thereof is pressed against the core rod. When locally reducing the diameter of both ends in the axial direction of the housing as described above, the inner diameter of the material may be uniform, but a material having a small inner diameter portion at both axial ends may be used. it can. This small-diameter inner diameter portion may have such a size that its inner diameter surface is in contact with the core rod as long as the middle relief portion is formed reliably. The small-diameter portion may be formed by deforming the material when the material is pressed into the housing in the arranging step.

【0010】なお、ハウジングの縮径量ならびにハウジ
ング内への素材の配置形態(しまり嵌め、中間嵌め、も
しくは遊嵌)は互いに相関する関係にあるが、これら
は、ハウジングの圧入工程でハウジングが縮径された際
に、素材がハウジングに圧着して両者が一体化し、か
つ、素材の内径面に軸支面ならびに中逃げ部が確実に形
成され得るように設定される。
Although the diameter of the housing and the arrangement of the material in the housing (tight fit, intermediate fit, or loose fit) have a correlation with each other, they are reduced during the press-fitting step of the housing. When the diameter is adjusted, the material is press-fitted to the housing so that the two are integrated, and the bearing surface and the intermediate relief portion can be reliably formed on the inner diameter surface of the material.

【0011】本発明は、上記のような変形態様が適宜に
なされる素材およびハウジングと成形型との組み合わせ
を採ることにより、軸受本体がハウジング内に組み込ま
れた構成であって、かつ、中逃げ量が比較的大きな中逃
げ部を有する2点支持構造の軸受を、比較的簡素な方法
で効率よく製造することができる。
According to the present invention, the bearing body is incorporated in the housing by adopting a combination of a material and a housing and a molding die in which the above-mentioned deformation mode is appropriately made. A bearing having a two-point support structure having a relatively large amount of middle relief can be efficiently manufactured by a relatively simple method.

【0012】また、軸受本体に形成される軸支面は、素
材の内径面がコアロッドに強く圧接させられることによ
り形成されるので、その内径および同軸度が高い精度で
一致する。また、軸支面の密度を高くすることができる
ので、耐摩耗性の向上が図られる。一方、中逃げ部が形
成される内径面の密度を軸支面よりも低くすること、な
らびに中逃げ部の直径を比較的大きく形成することが可
能なので、潤滑油の含有量や保油量を増大させることが
でき、潤滑性の向上が図られる。これらの結果、高レベ
ルの軸受性能を有する軸受を製造することができる。
Further, since the bearing surface formed on the bearing body is formed by pressing the inner diameter surface of the material strongly against the core rod, the inner diameter and the coaxiality coincide with high accuracy. Further, since the density of the bearing surface can be increased, the wear resistance is improved. On the other hand, it is possible to make the density of the inner diameter surface where the middle relief portion is formed lower than that of the bearing surface, and it is possible to form the diameter of the middle relief portion relatively large, so that the lubricating oil content and the oil retention amount are reduced. It can be increased, and the lubricity is improved. As a result, a bearing having a high level of bearing performance can be manufactured.

【0013】また、本発明では、素材の軸方向両端部の
内径面が圧接させられるコアロッドの外径面に、動圧溝
形成用の凸部または凹部が形成されていることを特徴と
している。これによると、前者の凸部の場合では、軸支
面には凸部形状に応じた動圧溝が形成される。また、後
者の凹部の場合では、凹部形状に応じて刻設された軸支
面と軸支面間の動圧溝とが同時に形成される。軸支面に
動圧溝を形成すると、両端部の各軸支面により回転軸を
支持する2点支持構造に加え、動圧溝に発生する動圧効
果(動圧溝に流入する潤滑油の高圧化に伴う剛性向上)
によって回転軸の支持力が相乗的に高まり、回転軸の支
持力をより安定させることができる。
Further, the present invention is characterized in that a convex portion or a concave portion for forming a dynamic pressure groove is formed on the outer diameter surface of the core rod which is pressed against the inner diameter surfaces of both ends in the axial direction of the material. According to this, in the case of the former convex portion, a dynamic pressure groove corresponding to the shape of the convex portion is formed on the bearing surface. In the case of the latter concave portion, a bearing surface engraved according to the shape of the concave portion and a dynamic pressure groove between the bearing surfaces are simultaneously formed. When the dynamic pressure grooves are formed on the bearing surface, the dynamic pressure effect generated in the dynamic pressure grooves (the lubricating oil flowing into the dynamic pressure grooves) Increased rigidity with higher pressure)
Accordingly, the supporting force of the rotating shaft is synergistically increased, and the supporting force of the rotating shaft can be further stabilized.

【0014】[0014]

【発明の実施の形態】以下、図面を参照して本発明の実
施形態を説明する。(1)第1実施形態−図1 図1は、第1実施形態に係る軸受の成形工程を(a)〜
(d)の順に示している。本実施形態では、図1(a)
に示すように、予め素材1Aをハウジング21内に配置
し、ハウジング21を素材1Aごと成形装置の成形孔に
圧入して軸受を製造する。
Embodiments of the present invention will be described below with reference to the drawings. (1) First Embodiment-FIG. 1 FIGS . 1A to 1C show a bearing forming process according to a first embodiment.
These are shown in the order of (d). In the present embodiment, FIG.
As shown in (1), the raw material 1A is placed in the housing 21 in advance, and the housing 21 is pressed into the forming hole of the forming device together with the raw material 1A to manufacture a bearing.

【0015】成形装置は、図1(b)〜(d)に示すよ
うに、ハウジング21が圧入される成形孔30を有する
ダイ31と、外径均一のコアロッド32と、上下のパン
チ33,34とから構成されている。ダイ31の成形孔
30はハウジング21に対応する形状であって、図1
(b)に示すように、円筒状の主部30aの入口側(上
側)に、水平な段部30dを介して、主部30aよりも
内径が大きい開口部30cが形成されている。上パンチ
33は、成形孔30の開口部30cに摺動自在に挿入さ
れるようになされ、また、下パンチ34は、成形孔30
の主部30aに摺動自在に挿入されるようになされてい
る。コアロッド32は、上下のパンチ33,34に摺動
自在に貫通するようになされている。
As shown in FIGS. 1B to 1D, the molding apparatus includes a die 31 having a molding hole 30 into which the housing 21 is press-fitted, a core rod 32 having a uniform outer diameter, and upper and lower punches 33 and 34. It is composed of The molding hole 30 of the die 31 has a shape corresponding to the housing 21 and is formed as shown in FIG.
As shown in (b), an opening 30c having an inner diameter larger than that of the main portion 30a is formed on the entrance side (upper side) of the cylindrical main portion 30a via a horizontal step portion 30d. The upper punch 33 is slidably inserted into the opening 30 c of the forming hole 30, and the lower punch 34 is
Is slidably inserted into the main portion 30a of the main body. The core rod 32 is slidably penetrated by upper and lower punches 33 and 34.

【0016】ハウジング21は、図1(a)に示すよう
に、内径が均一で、主体をなす円筒部22の一端部にフ
ランジ23が形成された円筒状のものである。円筒部2
2の外径は成形孔30の主部30aの内径よりも大き
く、フランジ23の外径は開口部30cの内径よりも大
きく設定されている。また、軸方向長さ(高さ)に関し
ては、円筒部22は成形孔30の主部30aよりも短
く、フランジ23は開口部30cよりも短く設定されて
いる。ハウジング21は、成形孔30に塑性変形しなが
ら圧入され得る材質が選択され、例えば、青銅、黄銅、
アルミニウム合金、鋼の他、焼結材が用いられる。焼結
材の場合、素材1Aよりも気孔が大きいものを用いる
と、ハウジング21に含浸させた油が、毛細管力によっ
て軸受本体側に効果的に供給されるので、軸受寿命を長
くすることができ好ましい。
As shown in FIG. 1 (a), the housing 21 has a uniform inner diameter, and has a cylindrical shape in which a flange 23 is formed at one end of a cylindrical portion 22 which forms a main body. Cylindrical part 2
The outer diameter of 2 is larger than the inner diameter of the main part 30a of the forming hole 30, and the outer diameter of the flange 23 is set to be larger than the inner diameter of the opening 30c. Further, with respect to the axial length (height), the cylindrical portion 22 is set shorter than the main portion 30a of the forming hole 30, and the flange 23 is set shorter than the opening 30c. The housing 21 is made of a material that can be press-fit into the forming hole 30 while being plastically deformed. For example, bronze, brass,
Sintered materials are used in addition to aluminum alloys and steels. In the case of using a sintered material, if a material having pores larger than the material 1A is used, the oil impregnated in the housing 21 is effectively supplied to the bearing main body side by capillary force, so that the bearing life can be extended. preferable.

【0017】素材1Aは、焼結体もしくは焼結体にサイ
ジングを施して成形された円筒状の多孔質体である。素
材1Aの外径は均一であり、ハウジング21内にしまり
嵌めの状態で嵌合する程度にハウジング21の内径より
も大きく設定されている。また、内径は不均一であっ
て、軸方向両端部に内径小径部3aが形成され、中央部
が内径小径部3aよりも大径の内径大径部3bとされて
いる。内径小径部3aは、図1(b)に示すように、ハ
ウジング21内に嵌合された状態でも、その内径面とコ
アロッド32との間に微小な隙間が形成される寸法に設
定されている。また、素材1Aの軸方向長さは、ハウジ
ング21のそれと等しく設定されている。
The raw material 1A is a sintered body or a cylindrical porous body formed by sizing the sintered body. The outer diameter of the material 1A is uniform, and is set to be larger than the inner diameter of the housing 21 to such an extent that the material 1A fits in the housing 21 in a tight fit state. Further, the inner diameter is non-uniform, and the inner diameter small-diameter portions 3a are formed at both ends in the axial direction, and the central portion is the inner diameter large-diameter portion 3b having a diameter larger than the inner diameter small-diameter portion 3a. As shown in FIG. 1B, the small-diameter inner diameter portion 3a is set to have such a size that a minute gap is formed between the inner-diameter surface and the core rod 32 even when fitted in the housing 21. . The axial length of the material 1A is set equal to that of the housing 21.

【0018】次に、成形装置により軸受を製造する手順
を説明する。 [工程1−ハウジング内への素材の配置]図1(a)に
示すように、素材1Aを、上記成形装置以外の適宜な装
置によってハウジング21内に圧入してしまり嵌めの状
態に嵌合し、両者を仮に一体化させる。
Next, a procedure for manufacturing a bearing by a molding apparatus will be described. [Step 1-Arrangement of Material in Housing] As shown in FIG. 1A, the material 1A is press-fitted into the housing 21 by an appropriate device other than the above-described molding device, and fitted into a tight fit. The two are temporarily integrated.

【0019】[工程2−ハウジングの圧入]図1(b)
に示すように、下パンチ34の上端をダイ31の成形孔
30の段部30dと同一レベルに保持する一方、コアロ
ッド32をダイ31の上面から所定長さ突出させ、待機
状態とする。ハウジング21のフランジ23を上に配し
て素材1Aをコアロッド32に同軸的に嵌め込み、ハウ
ジング21および素材1Aを下パンチ34上にセットす
る。次いで、図1(c)に示すように上パンチ33とコ
アロッド32をともに降下させ、上パンチ33によりハ
ウジング21を素材1Aごと成形孔30に押し込んで圧
入する。下パンチ34は、ハウジング21とともに降下
させる。
[Step 2—Press Fitting of Housing] FIG. 1 (b)
As shown in (2), while holding the upper end of the lower punch 34 at the same level as the step portion 30d of the forming hole 30 of the die 31, the core rod 32 is protruded from the upper surface of the die 31 by a predetermined length to be in a standby state. The material 1 </ b> A is coaxially fitted to the core rod 32 with the flange 23 of the housing 21 disposed above, and the housing 21 and the material 1 </ b> A are set on the lower punch 34. Next, as shown in FIG. 1C, the upper punch 33 and the core rod 32 are both lowered, and the housing 21 is pushed into the forming hole 30 together with the raw material 1A by the upper punch 33 and press-fitted. The lower punch 34 is lowered together with the housing 21.

【0020】ハウジング21が成形孔30に圧入される
と、円筒部22が成形孔30の主部30aの内径面に圧
迫されて縮径し、フランジ23が開口部30cの内径面
に圧迫されて縮径する。すなわち、ハウジング21は全
長にわたって縮径し、これにともなって素材1Aが全長
にわたって縮径するとともに、ハウジング21の内径面
に圧着する。素材1Aが縮径すると、内径小径部3aが
コアロッド32に圧接し、その内径面が回転軸を支持す
る軸支面12が形成される。また、軸支面12間の内径
大径部3bは残存し、回転軸が接触しない中逃げ部13
に形成される。このようにハウジング21および素材1
Aが塑性変形することにより、素材1Aが軸受本体10
Aに成形され、かつ、この軸受本体10Aとハウジング
21とが一体化した軸受20Aが成形される。
When the housing 21 is pressed into the forming hole 30, the cylindrical portion 22 is pressed against the inner diameter surface of the main portion 30a of the forming hole 30 to reduce the diameter, and the flange 23 is pressed against the inner diameter surface of the opening 30c. Reduce diameter. That is, the diameter of the housing 21 is reduced over the entire length, and accordingly, the material 1A is reduced in diameter over the entire length, and is pressed against the inner diameter surface of the housing 21. When the diameter of the material 1A is reduced, the small-diameter inner diameter portion 3a is pressed against the core rod 32, and the inner diameter surface forms the bearing surface 12 that supports the rotating shaft. In addition, the large-diameter portion 3b between the shaft supporting surfaces 12 remains, and the middle escape portion 13 with which the rotating shaft does not contact.
Formed. Thus, the housing 21 and the material 1
A is plastically deformed, so that the material 1A is
A, and a bearing 20A in which the bearing main body 10A and the housing 21 are integrated is formed.

【0021】[工程3−軸受の脱型]図1(d)に示す
ように、上パンチ33を上昇させて退避させ、コアロッ
ド32とともに下パンチ34を上昇させ、軸受20Aを
ダイ31から抜き出し、脱型する。この後、コアロッド
32を降下させ、軸受20Aを得る。
[Step 3—Removal of Bearing] As shown in FIG. 1D, the upper punch 33 is raised and retracted, the lower punch 34 is raised together with the core rod 32, and the bearing 20A is pulled out from the die 31. Demold. Thereafter, the core rod 32 is lowered to obtain the bearing 20A.

【0022】上記第1実施形態によれば、素材1Aをハ
ウジング21内に圧入して配置し、ハウジング21を素
材1Aごとダイ31の成形孔30に圧入するといった簡
素な方法により、焼結体からなる軸受本体10Aがハウ
ジング21内に組み込まれた2点支持構造の軸受20A
を、効率よく製造することができる。
According to the first embodiment, the raw material 1A is press-fitted into the housing 21, and the housing 21 is press-fitted into the forming hole 30 of the die 31 together with the raw material 1A. Bearing 20A having a two-point support structure in which a bearing body 10A
Can be manufactured efficiently.

【0023】軸受20Aの軸支面12は、素材1Aの内
径面をコアロッド32に強く圧接させることにより形成
されるので、その内径および同軸度が高い精度で一致
し、加えて高密度化する故、耐摩耗性および回転軸の支
持力に優れる。一方、中逃げ部13はコアロッド32に
圧接しないことから軸支面12よりも密度は低く、か
つ、その中逃げ量を比較的大きなものとすることができ
るので、潤滑油の含有量や保油量を増大させることがで
き、潤滑性が向上する。これらの結果、軸受20Aは優
れた軸受性能を発揮する。また、双方の軸支面12の圧
縮度がほぼ等しいことから、それら軸支面12の気孔率
が均等化され、このため、軸支面12に生じる油圧も均
等となって回転軸をバランスよく支持することができ
る。
Since the bearing surface 12 of the bearing 20A is formed by pressing the inner diameter surface of the material 1A strongly against the core rod 32, the inner diameter and the coaxiality match with high precision, and the density is increased. Excellent in abrasion resistance and rotating shaft support force. On the other hand, since the middle relief portion 13 does not press against the core rod 32, the density is lower than that of the bearing surface 12, and the middle relief amount can be made relatively large. The amount can be increased and lubricity is improved. As a result, the bearing 20A exhibits excellent bearing performance. Further, since the degree of compression of both the bearing surfaces 12 is substantially equal, the porosity of the bearing surfaces 12 is equalized. Therefore, the hydraulic pressure generated on the bearing surfaces 12 is also equalized and the rotating shaft is well balanced. Can be supported.

【0024】次に、上記成形装置を用いて第1実施形態
の素材1Aとは異なる形状の素材から軸受を製造する第
2、第3実施形態を説明する。
Next, second and third embodiments of manufacturing a bearing from a material having a shape different from that of the material 1A of the first embodiment using the above-described molding apparatus will be described.

【0025】(2)第2実施形態−図2 図2(a)の符合1Bで示す第2実施形態の素材は、外
径均一で、軸方向一端部に外径大径部4bが、また、他
端部に内径小径部3aが形成された円筒状のものであ
る。外径大径部4bの外径は、ハウジング21の内径よ
りも大きく、外径大径部4b以外の外径部分である外径
小径部4aの外径は、ハウジング21内に中間嵌めの状
態で嵌合する寸法に設定されている。なお、外径小径部
4aの外径は、第1実施形態の素材1Aの外径と同様
に、ハウジング21内にしまり嵌めの状態で嵌合する寸
法に設定されていてもよい。また、内径小径部3aの内
径は、その内径面とコアロッド32との間に微小な隙間
が形成される寸法に設定され、内径小径部3a以外の内
径部分である内径大径部3bは、当然内径小径部3aよ
りも大きく設定されている。
(2) Second Embodiment—FIG . 2 The material of the second embodiment indicated by reference numeral 1B in FIG . 2A has a uniform outer diameter, an outer diameter large diameter portion 4b at one axial end, and , A cylindrical shape having a small-diameter portion 3a formed at the other end. The outer diameter of the outer diameter large diameter portion 4b is larger than the inner diameter of the housing 21, and the outer diameter of the outer diameter small diameter portion 4a, which is the outer diameter portion other than the outer diameter large diameter portion 4b, is in a state of being fitted in the housing 21 in the middle. The dimensions are set to fit. Note that the outer diameter of the outer diameter small diameter portion 4a may be set to a size that fits in the housing 21 in a tightly fitted state, similarly to the outer diameter of the material 1A of the first embodiment. The inner diameter of the small-diameter inner diameter portion 3a is set to a size at which a minute gap is formed between the inner diameter surface of the small-diameter inner diameter portion 3a and the core rod 32. It is set larger than the inner diameter small diameter portion 3a.

【0026】次に、成形装置により軸受を製造する手順
を説明する。 [工程1−ハウジング内への素材の配置]図2(a)に
示すように、素材1Bの外径小径部4aをハウジング2
1内にフランジ23側から嵌合して中間嵌め状態とす
る。次いで、待機状態の成形装置のコアロッド32に、
ハウジング21のフランジ23および素材1Bの外径大
径部4bを上に配して素材1Aを嵌め込み、ハウジング
21を下パンチ34上にセットする。次いで、図2
(b)に示すように上パンチ33を降下させ、上パンチ
33により素材1Bをハウジング21内に押し込む。こ
のとき、素材1Bから抜けない状態を保持しながらコア
ロッド32も降下させる。素材1Bがハウジング21内
に押し込まれると、外径大径部4bが圧入されることに
より消滅し、その分の肉が内径側に塑性流動して上端部
に内径小径部3aが新たに造形される。内径大径部3b
は、軸方向中央部に残存する。これにより素材1Bとハ
ウジング21とが仮に一体化する。
Next, a procedure for manufacturing a bearing by a molding apparatus will be described. [Step 1-Arrangement of Material in Housing] As shown in FIG.
1 is fitted from the flange 23 side to be in an intermediate fitting state. Next, the core rod 32 of the molding apparatus in a standby state is
The material 1A is fitted with the flange 23 of the housing 21 and the large-diameter outer diameter portion 4b of the material 1B disposed above, and the housing 21 is set on the lower punch 34. Then, FIG.
As shown in (b), the upper punch 33 is lowered, and the material 1B is pushed into the housing 21 by the upper punch 33. At this time, the core rod 32 is also lowered while maintaining a state in which the core rod 32 does not come off from the material 1B. When the material 1B is pushed into the housing 21, the large-diameter outer diameter portion 4b disappears due to press-fitting, and the corresponding portion of the material 1B plastically flows to the internal diameter side, and the small-diameter internal diameter portion 3a is newly formed at the upper end. You. Large diameter part 3b
Remains at the center in the axial direction. Thereby, the material 1B and the housing 21 are temporarily integrated.

【0027】[工程2−ハウジングの圧入]図2(c)
に示すように上パンチ33とコアロッド32をともに降
下させ、上パンチ33によりハウジング21を素材1B
ごと成形孔30に押し込んで圧入する。ハウジング21
および素材1Bは第1実施形態と同様に縮径し、素材1
Bが軸支面12および中逃げ部13を有する軸受本体1
0Bに成形され、かつ、ハウジング21の内径面に圧着
し、両者が一体化した軸受20Bが成形される。軸受2
0Bは、第1実施形態と同様の操作(図1(d)参照)
によって脱型される。
[Step 2—Press Fitting of Housing] FIG. 2 (c)
The upper punch 33 and the core rod 32 are both lowered as shown in FIG.
Into the forming hole 30 and press fit. Housing 21
And the material 1B are reduced in diameter as in the first embodiment.
B is a bearing body 1 having a bearing surface 12 and a middle relief 13
The bearing 20B is molded into a bearing 0B and is pressed against the inner diameter surface of the housing 21 to form an integrated bearing 20B. Bearing 2
0B is the same operation as in the first embodiment (see FIG. 1D)
Demolded by

【0028】(3)第3実施形態−図3 第3実施形態では、図3(a)に示すように、上記ハウ
ジング21に代えてハウジング21Aを用いている。こ
のハウジング21Aは、フランジ23側の端部の内径面
に内径小径部24aが形成され、他の内径部分が内径大
径部24bとなっている。他の構成ならびに寸法は、ハ
ウジング21と同様である。
(3) Third Embodiment—FIG. 3 In the third embodiment, as shown in FIG. 3A, a housing 21 A is used instead of the housing 21. The housing 21A has a small inner diameter portion 24a formed on the inner diameter surface at the end on the flange 23 side, and the other inner diameter portion is a large inner diameter portion 24b. Other configurations and dimensions are the same as those of the housing 21.

【0029】一方、図3(a)の符合1Cで示す第3実
施形態の素材は、外径均一で、軸方向一端部に内径小径
部3aが形成され、他の内径部分が内径大径部3bとさ
れた円筒状のものである。素材1Cの外径は、ハウジン
グの内径小径部24aの内径よりも大きく、かつ、その
外径面と内径大径部24bとの間に微小な隙間が形成さ
れて遊嵌状態となる寸法に設定されている。また、内径
に関しては、内径小径部3aの内径が、その内径面とコ
アロッド32との間に微小な隙間が形成される寸法に設
定されている。なお、素材1Cの外径は、ハウジング2
1内に中間嵌めの状態で嵌合する寸法に設定されていて
もよい。
On the other hand, the material of the third embodiment indicated by reference numeral 1C in FIG. 3A has a uniform outer diameter, a small inner diameter portion 3a formed at one end in the axial direction, and another inner diameter portion having a large inner diameter portion. 3b. The outer diameter of the material 1C is set to be larger than the inner diameter of the small-diameter inner diameter portion 24a of the housing, and a small gap is formed between the outer-diameter surface and the large-diameter large-diameter portion 24b so as to be in a loose fit state. Have been. As for the inner diameter, the inner diameter of the inner diameter small diameter portion 3 a is set to a size at which a minute gap is formed between the inner diameter surface and the core rod 32. The outer diameter of the material 1C is
1 may be set to a size that fits in the state of intermediate fitting.

【0030】次に、成形装置により軸受を製造する手順
を説明する。 [工程1−ハウジング内への素材の配置]図3(a)に
示すように、待機状態の成形装置のコアロッド32に、
内径小径部3a側を下に配した素材1Cを嵌め込んで下
パンチ34上に載せ、フランジ23を上に配したハウジ
ング21Aを、素材1Cに嵌め込む。次いで、図3
(b)に示すように上パンチ33によりハウジング21
Aを降下させ、素材1Cの上端部をハウジング21Aの
内径小径部24aに圧入させる。すると、素材1Cの上
端部は縮径して絞り部11が造形され、絞り部11の内
径面がコアロッド32に圧接する。内径大径部3bは、
軸方向中央部に残存する。これにより素材1Cとハウジ
ング21Aとが仮に一体化する。
Next, a procedure for manufacturing a bearing by a molding apparatus will be described. [Step 1-Arrangement of Material in Housing] As shown in FIG. 3A, the core rod 32 of the molding apparatus in a standby state is
The material 1C having the smaller inner diameter portion 3a side is fitted thereon and placed on the lower punch 34, and the housing 21A having the flange 23 disposed thereon is fitted into the material 1C. Then, FIG.
As shown in FIG.
A is lowered, and the upper end of the material 1C is pressed into the small inner diameter portion 24a of the housing 21A. Then, the upper end portion of the material 1 </ b> C is reduced in diameter to form the narrowed portion 11, and the inner diameter surface of the narrowed portion 11 is pressed against the core rod 32. The inner diameter large diameter portion 3b is
It remains at the axial center. As a result, the material 1C and the housing 21A are temporarily integrated.

【0031】[工程2−ハウジングの圧入]図3(c)
に示すように上パンチ33とコアロッド32をともに降
下させ、上パンチ33によりハウジング21Aを素材1
Cごと成形孔30に押し込んで圧入する。ハウジング2
1Aは、成形孔30の内径面の圧迫を受けて全長にわた
り縮径し、このハウジング21Aの縮径作用により、素
材1Cも全長にわたり縮径する。これにより、素材1C
が軸支面12および中逃げ部13を有する軸受本体10
Cに成形され、かつ、ハウジング21Aの内径面に圧着
し、両者が一体化した軸受20Cが成形される。軸受2
0Cは、第1実施形態と同様の操作(図1(d)参照)
によって脱型される。
[Step 2—Press Fitting of Housing] FIG. 3 (c)
The upper punch 33 and the core rod 32 are both lowered as shown in FIG.
The entire C is pressed into the forming hole 30 and press-fitted. Housing 2
1A is reduced in diameter over its entire length by being pressed by the inner diameter surface of the molding hole 30, and the material 1C is also reduced in diameter over its entire length by the diameter reducing action of the housing 21A. Thereby, material 1C
Bearing body 10 having a bearing surface 12 and a middle relief 13
C, and is pressed against the inner diameter surface of the housing 21A to form a bearing 20C in which both are integrated. Bearing 2
0C is the same operation as in the first embodiment (see FIG. 1D).
Demolded by

【0032】次に、上記成形装置とは異なる成形装置を
用いて軸受を製造する第4、第5実施形態を説明する。
Next, fourth and fifth embodiments of manufacturing a bearing by using a molding apparatus different from the above-mentioned molding apparatus will be described.

【0033】(4)第4実施形態−図4 第4実施形態の成形装置は、上記第1〜第3実施形態で
用いたダイ31の成形孔30を変更したものである。成
形孔30は、図4(a)に示すように、主部30aの奥
部(下部)に、主部30aよりも径が小さい小径部30
bが形成され、この小径部30bに、下パンチ34が挿
入されるようになされている。第4実施形態では、第
1、第2実施形態と同様のハウジング21と、図4
(a)の符合1Dで示す素材とから軸受を製造する。
(4) Fourth Embodiment—FIG. 4 The molding apparatus of the fourth embodiment is obtained by changing the molding hole 30 of the die 31 used in the first to third embodiments. As shown in FIG. 4 (a), the forming hole 30 is provided at a deep portion (lower portion) of the main portion 30a at a small diameter portion 30 having a smaller diameter than the main portion 30a.
The lower punch 34 is inserted into the small diameter portion 30b. In the fourth embodiment, a housing 21 similar to those of the first and second embodiments is provided.
A bearing is manufactured from the material indicated by reference numeral 1D in (a).

【0034】この場合のハウジング21の円筒部22の
外径は、成形孔30の主部30aに中間嵌めの状態で嵌
合する寸法に設定されている。なお、円筒部22の外径
は、主部30aの内径よりも小さく、その外径面と主部
30aの内径面との間に微小な隙間が形成される遊嵌状
態となる寸法に設定されていてもよい。一方、素材1D
は、第3実施形態の素材1Cと同様のものであり、その
外径は、ハウジング21内にしまり嵌めの状態で嵌合す
る程度にハウジング21の内径よりも大きく設定されて
いる。
In this case, the outer diameter of the cylindrical portion 22 of the housing 21 is set to a size that fits into the main portion 30a of the forming hole 30 in an intermediately fitted state. The outer diameter of the cylindrical portion 22 is smaller than the inner diameter of the main portion 30a, and is set to a size in which a small gap is formed between the outer diameter surface and the inner diameter surface of the main portion 30a so as to be in a loose fitting state. May be. Meanwhile, material 1D
Is the same as the material 1C of the third embodiment, and its outer diameter is set to be larger than the inner diameter of the housing 21 to such an extent that it fits in the housing 21 in a tightly fitted state.

【0035】次に、成形装置により軸受を製造する手順
を説明する。 [工程1−ハウジング内への素材の配置]図4(a)に
示すように、内径小径部3aがフランジ23に対応する
状態に、素材1Dを上記成形装置以外の適宜な装置によ
ってハウジング21内に圧入してしまり嵌めの状態に嵌
合し、両者を仮に一体化させる。
Next, a procedure for manufacturing a bearing by a molding apparatus will be described. [Step 1-Arrangement of Material in Housing] As shown in FIG. 4A, the material 1D is placed in the housing 21 by an appropriate device other than the above-described molding device in a state in which the small-diameter portion 3a corresponds to the flange 23. And press fit into a tight fit to temporarily integrate them.

【0036】[工程2−ハウジングの圧入]図4(a)
に示すように、待機状態の成形装置のコアロッド32
に、ハウジング21のフランジ23および素材1Dの内
径小径部3aを上に配して素材1Dを嵌め込み、下パン
チ34上にセットする。次いで、図4(b)に示すよう
に上パンチ33とコアロッド32をともに降下させ、上
パンチ33によりハウジング21を素材1Dごと成形孔
30に押し込んで圧入する。
[Step 2—Press Fitting of Housing] FIG. 4 (a)
As shown in FIG.
The material 1D is fitted with the flange 23 of the housing 21 and the small-diameter portion 3a of the material 1D arranged on the upper side, and set on the lower punch 34. Next, as shown in FIG. 4B, the upper punch 33 and the core rod 32 are both lowered, and the upper punch 33 pushes the housing 21 into the forming hole 30 together with the material 1D.

【0037】成形孔30に圧入されたハウジング21に
おいては、フランジ23が縮径し、下端部が成形孔30
の小径部30bに圧入されることにより縮径して絞り部
25が造形される。フランジ23の縮径により、素材1
Dの上端部の内径小径部3aの内径面がコアロッド32
に圧接して軸支面12に形成される。また、絞り部25
が造形されることにより素材1Dの下端部にも新たに絞
り部11が造形され、その内径面が軸支面12に形成さ
れる。成形孔30の主部30aに対応するハウジング2
1の円筒部22は、主部30aを摺動するのみで縮径せ
ず、素材1Dには内径大径部3bが残存し、中逃げ部1
3が形成される。このようにして素材1Dが塑性変形し
て軸支面12および中逃げ部13を有する軸受本体10
Dに成形され、かつ、ハウジング21の内径面に圧着
し、両者が一体化した軸受20Dが成形される。軸受2
0Dは、第1実施形態と同様の操作(図1(d)参照)
によって脱型される。
In the housing 21 press-fitted into the molding hole 30, the diameter of the flange 23 is reduced, and the lower end is formed at the molding hole 30.
The diameter of the narrowed portion 25 is reduced by being press-fitted into the small diameter portion 30b. By reducing the diameter of the flange 23, the material 1
The inner diameter surface of the inner diameter small diameter portion 3a at the upper end of D is the core rod 32.
And is formed on the bearing surface 12. Also, the squeezing section 25
Is formed at the lower end of the material 1D, and the inner diameter surface is formed on the shaft support surface 12. Housing 2 corresponding to main portion 30a of forming hole 30
The first cylindrical portion 22 does not reduce in diameter only by sliding on the main portion 30a, and the large-diameter portion 3b remains in the material 1D, and the middle escape portion 1
3 is formed. In this way, the material 1D is plastically deformed, and the bearing body 10 having the shaft support surface 12 and the middle relief 13 is formed.
D, and is pressed against the inner diameter surface of the housing 21 to form a bearing 20D in which both are integrated. Bearing 2
0D is the same operation as in the first embodiment (see FIG. 1D)
Demolded by

【0038】(5)第5実施形態−図5 第5実施形態は、第4実施形態の成形装置を用い、第3
実施形態と同様のハウジング21Aと、図5(a)の符
合1Eで示す素材とから軸受を製造する。この場合のハ
ウジング21Aの円筒部22の外径は、成形孔30の主
部30aに中間嵌めの状態で嵌合する寸法に設定されて
いる。なお、円筒部22の外径は、主部30aの内径よ
りも小さくて、その外径面と主部30aの内径面との間
に微小な隙間が形成される遊嵌状態となる寸法に設定さ
れていてもよい。一方、素材1Eは、外径および内径が
ともに均一の単純な円筒状である。素材1Eの外径は、
ハウジング21Aの内径大径部24b内に中間嵌めの状
態で嵌合する寸法に設定されている。また、内径は、内
径面とコアロッド32との間に微小な隙間が形成される
寸法に設定されている。
(5) Fifth Embodiment—FIG. 5 In the fifth embodiment, the molding apparatus according to the fourth embodiment is used,
A bearing is manufactured from the same housing 21A as in the embodiment and a material indicated by reference numeral 1E in FIG. In this case, the outer diameter of the cylindrical portion 22 of the housing 21A is set to a size that fits into the main portion 30a of the forming hole 30 in an intermediately fitted state. The outer diameter of the cylindrical portion 22 is smaller than the inner diameter of the main portion 30a, and is set to a size in which a small clearance is formed between the outer diameter surface and the inner diameter surface of the main portion 30a. It may be. On the other hand, the raw material 1E is a simple cylindrical shape having both uniform outer and inner diameters. The outer diameter of material 1E is
The dimensions are set so as to fit into the large-diameter inner diameter portion 24b of the housing 21A in an intermediate fitting state. The inner diameter is set to a size at which a minute gap is formed between the inner diameter surface and the core rod 32.

【0039】次に、成形装置により軸受を製造する手順
を説明する。 [工程1−ハウジング内への素材の配置]図5(a)に
示すように、下パンチ34の上端を成形孔30の主部3
0aの下端付近に位置させる。そして、コアロッド32
に素材1Eを嵌め込んで下パンチ34上に載せ、フラン
ジ23を上に配したハウジング21Aを素材1Eに嵌め
込む。次いで、図5(b)に示すように上パンチ33に
よりハウジング21Aを降下させて円筒部22の下部を
成形孔30の主部30aに挿入するとともに、素材1E
の上端部をハウジング21Aの内径小径部24aに圧入
させる。すると、素材1Eの上端部は縮径して絞り部1
1が造形され、絞り部11の内径面がコアロッド32に
圧接する。これにより素材1Eとハウジング21Aとが
仮に一体化する。
Next, a procedure for manufacturing a bearing by a molding apparatus will be described. [Step 1-Arrangement of Material in Housing] As shown in FIG. 5A, the upper end of the lower punch 34 is
0a. And the core rod 32
The material 1E is fitted on the lower punch 34, and the housing 21A having the flange 23 disposed thereon is fitted into the material 1E. Next, as shown in FIG. 5B, the housing 21A is lowered by the upper punch 33 to insert the lower portion of the cylindrical portion 22 into the main portion 30a of the forming hole 30, and the material 1E is formed.
Is pressed into the small inner diameter portion 24a of the housing 21A. Then, the upper end of the material 1E is reduced in diameter, and
1 is formed, and the inner diameter surface of the narrowed portion 11 is pressed against the core rod 32. Thereby, the material 1E and the housing 21A are temporarily integrated.

【0040】[工程2−ハウジングの圧入]図5(c)
に示すように上パンチ33とコアロッド32をともに降
下させ、上パンチ33によりハウジング21Aを素材1
Eごと成形孔30に押し込んで圧入する。ハウジング2
1Aは、第4実施形態と同様にフランジ23と下端部が
縮径し、下端部には絞り部25が新たに造形される。そ
して、素材1Eはハウジング21Aの内径面に圧着する
とともに、上下の絞り部11の内径面がコアロッド32
に圧接して軸支面12に形成され、軸支面12間の内径
面には、コアロッド32との間の隙間が残存して中逃げ
部13が形成される。このようにして素材1Eが塑性変
形して軸支面12および中逃げ部13を有する軸受本体
10Eに成形され、かつ、この軸受本体10Eとハウジ
ング21Aとが一体化した軸受20Eが成形される。軸
受20Dは、第1実施形態と同様の操作(図1(d)参
照)によって脱型される。
[Step 2—Press Fitting of Housing] FIG. 5 (c)
The upper punch 33 and the core rod 32 are both lowered as shown in FIG.
E is pressed into the forming hole 30 by press-fitting. Housing 2
1A, similarly to the fourth embodiment, the flange 23 and the lower end are reduced in diameter, and a narrowed portion 25 is newly formed at the lower end. The material 1E is pressed against the inner diameter surface of the housing 21A, and the inner diameter surfaces of the upper and lower throttles 11 are
Is formed on the shaft support surface 12 by pressing against the inner surface, and a clearance between the shaft support surface 12 and the core rod 32 remains to form a middle relief portion 13. In this way, the material 1E is plastically deformed and formed into the bearing body 10E having the shaft support surface 12 and the middle relief portion 13, and the bearing 20E in which the bearing body 10E and the housing 21A are integrated is formed. The bearing 20D is released by the same operation as that of the first embodiment (see FIG. 1D).

【0041】(6)第6実施形態−図6,図7 第6実施形態は、図6に示すように、上記コアロッド3
2に代えた動圧溝形成用のコアロッド32Aを、上記第
1実施形態に適用して素材1Aを成形し、軸支面12に
動圧溝が形成された軸受を成形する例である。そのコア
ロッド32Aは、図7(a)に示すように、素材1Aの
両端部内径面の圧接を受ける外径面に、複数のV字状の
凸部32aが周方向に等間隔をおいてヘリングボーン状
に形成されたものである。凸部32aは、コアロッド3
2Aの切削やメッキ等の手段によって形成することがで
きるものであり、その高さは、数μm程度である。
(6) Sixth Embodiment—FIGS. 6, 7 In the sixth embodiment, as shown in FIG.
This is an example in which a core rod 32A for forming a dynamic pressure groove in place of 2 is applied to the first embodiment to form a raw material 1A and a bearing in which a dynamic pressure groove is formed on a shaft support surface 12. As shown in FIG. 7 (a), the core rod 32A has a plurality of V-shaped protrusions 32a herring at equal intervals in the circumferential direction on the outer diameter surface of the material 1A which receives pressure contact between the inner diameter surfaces at both ends. It is formed in a bone shape. The protrusion 32a is formed by the core rod 3
It can be formed by means such as cutting or plating of 2A, and its height is about several μm.

【0042】図6(a)に示すように、素材1Aが圧入
されたハウジング21を成形装置にセットし、コアロッ
ド32Aの凸部32aが形成された部分を素材1Aの両
端部内径面に対応させる。この状態から、第1実施形態
と同様の操作(図6(b)〜(c))を行い、軸受本体
10Fがハウジング21内に組み込まれた軸受20Fを
得る。
As shown in FIG. 6 (a), the housing 21 into which the material 1A is press-fitted is set in a molding apparatus, and the portions of the core rod 32A where the projections 32a are formed correspond to the inner diameter surfaces at both ends of the material 1A. . From this state, the same operation as in the first embodiment (FIGS. 6B to 6C) is performed to obtain a bearing 20F in which the bearing body 10F is incorporated in the housing 21.

【0043】軸受本体10Fの軸支面12には、図7
(b)に示すように(同図はハウジング21を省略して
いる)、コアロッド32Aの凸部32aによってヘリン
グボーン状の動圧溝14が刻設される。脱型された軸受
20Fには、ダイ31による外径面の拘束が開放されて
全体が僅かに拡径するスプリングバックが生じるので、
動圧溝14間の凸部を摩滅することなくコアロッド32
Aから軸受20Fを抜くことができる。
As shown in FIG.
As shown in (b) (the housing 21 is omitted in the figure), a herringbone-shaped dynamic pressure groove 14 is formed by the projection 32a of the core rod 32A. Since the constraint on the outer diameter surface by the die 31 is released in the removed bearing 20F, spring back occurs in which the entire diameter slightly expands.
The core rod 32 without abrasion of the projections between the dynamic pressure grooves 14.
The bearing 20F can be removed from A.

【0044】第6実施形態によって製造された軸受20
Fによれば、軸支面12で回転軸を支持する2点支持構
造に加え、動圧溝14に発生する動圧効果(動圧溝に流
入する潤滑油の高圧化に伴う剛性向上)によって回転軸
の支持力が相乗的に高まり、回転軸の支持力がより安定
する。なお、潤滑油が動圧溝14の一部に集中して動圧
が上昇する効果が十分に期待される観点から、軸受20
Fは、回転軸の回転方向が動圧溝14のV字の先端方向
(図7(b)で矢印R方向)に向くようにセットされる
ことが好ましい。
Bearing 20 manufactured according to the sixth embodiment
According to F, in addition to the two-point support structure for supporting the rotating shaft on the shaft supporting surface 12, due to the dynamic pressure effect generated in the dynamic pressure groove 14 (improved rigidity due to the high pressure of the lubricating oil flowing into the dynamic pressure groove). The supporting force of the rotating shaft increases synergistically, and the supporting force of the rotating shaft becomes more stable. From the viewpoint that the effect that the lubricating oil concentrates on a part of the dynamic pressure groove 14 and the dynamic pressure rises is sufficiently expected, the bearing 20
F is preferably set so that the rotation direction of the rotating shaft is oriented in the direction of the V-shaped tip of the dynamic pressure groove 14 (the direction of arrow R in FIG. 7B).

【0045】上記第6実施形態のように動圧溝形成用の
コアロッド32Aを用いて軸支面に動圧溝を形成する形
態は、第2〜第5実施形態にも勿論適用することができ
る。
The form in which the dynamic pressure grooves are formed on the bearing surface using the core rods 32A for forming the dynamic pressure grooves as in the sixth embodiment can be applied to the second to fifth embodiments. .

【0046】なお、第6実施形態で示した動圧溝の形状
は任意であり、その数も適宜に選択されるが、回転軸を
より安定して支持する観点から、複数が軸支面の周方向
に沿って等間隔をおいて配置されると好ましい。第6実
施形態では、ヘリングボーン状として、つまり形状によ
って、動圧上昇が生じる効果を得るようにしているが、
深さの断面形状によってもその効果を得ることができ
る。
The shape of the dynamic pressure groove shown in the sixth embodiment is arbitrary, and the number thereof is appropriately selected. However, from the viewpoint of more stably supporting the rotating shaft, a plurality of dynamic bearing grooves are formed on the bearing surface. It is preferable that they are arranged at equal intervals along the circumferential direction. In the sixth embodiment, the effect of increasing the dynamic pressure is obtained as a herringbone shape, that is, depending on the shape.
The effect can also be obtained depending on the cross-sectional shape of the depth.

【0047】それには、概略形状を軸方向に沿って延び
る溝とし、回転軸が一方向のみに回転する場合には、回
転軸の回転方向の逆方向側の端部を最深部とし、この最
深部から回転軸の回転方向に向かってしだいに浅くなる
よう傾斜させる。また、回転軸が正逆双方向に回転する
場合には、周方向の中間部を最深部とし、この最深部か
ら周方向両端部に向かってしだいに浅くなるよう傾斜さ
せる。このように形成された動圧溝は、横断面(輪切り
にした場合の断面)形状が回転軸の回転方向に向かって
浅くなるくさび状の隙間となり、溝の浅い先端部に潤滑
油が集中するくさび効果を得ることができる。
In order to achieve this, the general shape is a groove extending along the axial direction. When the rotating shaft rotates in only one direction, the end of the rotating shaft in the direction opposite to the rotating direction is the deepest portion. From the section to the direction of rotation of the rotating shaft. When the rotating shaft rotates in both the forward and reverse directions, the middle part in the circumferential direction is set as the deepest part, and the inclination is made so as to gradually become shallower from the deepest part toward both ends in the circumferential direction. The thus formed dynamic pressure groove has a wedge-shaped gap in which the cross-section (cross-section when cut into a circle) becomes shallower in the direction of rotation of the rotary shaft, and the lubricating oil concentrates on the shallow tip of the groove. A wedge effect can be obtained.

【0048】また、第6実施形態で示した動圧溝14
は、コアロッド32Aに形成した凸部32aにより形成
されているが、このような凸部に代え、凹部によって動
圧溝を形成することができる。すなわち、第6実施形態
と刻設のパターンが逆であって、素材1Aの内径小径部
の内径面がコアロッドに圧接させられるとコアロッドに
形成した凹部に導入されて凸部が突設され、この凸部の
内径面が軸支面に、また、凸部間の溝が動圧溝として機
能する。この場合、凸部がさらに突設されることによ
り、その高さだけ中逃げ量が大きい軸受が得られる。ま
た、凹部32aを備えたコアロッド32Aを図5に示し
た第5実施形態に用いて成形孔30に圧入し、成形され
る軸受本体の内径面が全長にわたってコアロッド32A
に圧接される形態とした場合でもコアロッド32Aの凹
部32aに導入された内径面が軸支面となるので、中逃
げ部が動圧溝と面一の軸受を得ることができる。なお、
コアロッドに形成する凹部は、放電加工や電解腐食とい
った手段により形成することができる。
Further, the dynamic pressure groove 14 shown in the sixth embodiment
Is formed by the convex portion 32a formed on the core rod 32A, but a dynamic pressure groove can be formed by a concave portion instead of such a convex portion. That is, the pattern of the engraving is opposite to that of the sixth embodiment, and when the inner diameter surface of the inner diameter small diameter portion of the material 1A is pressed against the core rod, it is introduced into the recess formed in the core rod, and the projection is projected. The inner diameter surface of the convex portion functions as a bearing surface, and the groove between the convex portions functions as a dynamic pressure groove. In this case, by further projecting the convex portion, a bearing having a large amount of middle clearance by its height can be obtained. Further, the core rod 32A having the concave portion 32a is press-fitted into the forming hole 30 by using the fifth embodiment shown in FIG.
Even in the case where the bearing is pressed against, the inner diameter surface introduced into the recess 32a of the core rod 32A becomes the bearing surface, so that a bearing in which the middle relief portion is flush with the dynamic pressure groove can be obtained. In addition,
The recess formed in the core rod can be formed by means such as electric discharge machining or electrolytic corrosion.

【0049】[0049]

【発明の効果】以上説明したように、本発明によれば、
軸受本体がハウジング内に組み込まれた構成であって、
比較的大きな中逃げ部を有する2点支持構造の軸受を、
比較的簡素な方法で効率よく製造することができる。ま
た、本発明によって製造された軸受は、軸方向両端部の
軸支面においては、内径および同軸度が高い精度で一致
するとともに高密度化されて耐摩耗性の向上が図られ、
一方、中逃げ部が形成された軸方向中央部においては、
密度が低いことから潤滑油の含有量や保油量が十分に確
保される。これらの結果、優れた軸受性能を発揮する。
As described above, according to the present invention,
The bearing body is configured to be incorporated in the housing,
A two-point support structure bearing with a relatively large middle relief
It can be efficiently manufactured by a relatively simple method. In the bearing manufactured by the present invention, the inner diameter and the coaxiality of the bearing surfaces at both ends in the axial direction are matched with high accuracy, and the density is increased to improve wear resistance.
On the other hand, in the central portion in the axial direction where the middle relief portion is formed,
Since the density is low, the content of lubricating oil and the amount of retained oil are sufficiently ensured. As a result, excellent bearing performance is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施形態に係る軸受の製造工程
を(a)〜(d)の順に示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing a manufacturing process of a bearing according to a first embodiment of the present invention in the order of (a) to (d).

【図2】 本発明の第2実施形態に係る軸受の製造工程
を(a)〜(c)の順に示す縦断面図である。
FIG. 2 is a longitudinal sectional view showing a manufacturing process of a bearing according to a second embodiment of the present invention in the order of (a) to (c).

【図3】 本発明の第3実施形態に係る軸受の製造工程
を(a)〜(c)の順に示す縦断面図である。
FIG. 3 is a longitudinal sectional view showing a manufacturing process of a bearing according to a third embodiment of the present invention in the order of (a) to (c).

【図4】 本発明の第4実施形態に係る軸受の製造工程
を(a),(b)の順に示す縦断面図である。
FIG. 4 is a longitudinal sectional view showing a manufacturing process of a bearing according to a fourth embodiment of the present invention in the order of (a) and (b).

【図5】 本発明の第5実施形態に係る軸受の製造工程
を(a)〜(c)の順に示す縦断面図である。
FIG. 5 is a longitudinal sectional view showing a manufacturing process of a bearing according to a fifth embodiment of the present invention in the order of (a) to (c).

【図6】 本発明の第6実施形態に係る軸受の製造工程
を(a)〜(c)の順に示す縦断面図である。
FIGS. 6A to 6C are longitudinal sectional views showing a manufacturing process of a bearing according to a sixth embodiment of the present invention in the order of (a) to (c).

【図7】 (a)は本発明の第6実施形態で用いるコア
ロッドの一部斜視図、(b)は第6実施形態で製造され
た軸受の一部を示す縦割り斜視図である。
FIG. 7A is a partial perspective view of a core rod used in a sixth embodiment of the present invention, and FIG. 7B is a vertical perspective view showing a part of a bearing manufactured in the sixth embodiment.

【符号の説明】[Explanation of symbols]

1A〜1E…素材 10A〜10F…軸受本体 12…軸支面 13…中逃げ部 14…動圧溝 20A〜20F…軸受 21,21A…ハウジング 30…成形孔 32,32A…コアロッド 32a…動圧溝形成用の凸部 1A to 1E: Material 10A to 10F: Bearing body 12: Bearing surface 13: Middle relief portion 14: Dynamic pressure groove 20A to 20F: Bearing 21, 21, A: Housing 30: Forming hole 32, 32A: Core rod 32a: Dynamic pressure groove Convex for forming

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3J011 AA20 BA02 CA02 DA01 DA02 5H605 AA08 BB05 CC03 CC04 CC05 DD03 DD05 EA06 EB06 EB13 EB17 EB21 FF03 GG04 GG10 GG12 GG14  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 3J011 AA20 BA02 CA02 DA01 DA02 5H605 AA08 BB05 CC03 CC04 CC05 DD03 DD05 EA06 EB06 EB13 EB17 EB21 FF03 GG04 GG10 GG12 GG14

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 円筒状の軸受本体を円筒状のハウジング
内に組み込んでなる軸受の製造方法であって、 前記軸受本体に成形される円筒状の素材を前記ハウジン
グ内に略同軸的に配置する配置工程と、 ハウジング内に配置した素材に外径均一のコアロッドを
挿入した状態から、ハウジングを素材ごと成形孔に押し
込んで圧入する圧入工程とを備え、 該圧入工程において、 素材の外径面をハウジングの内径面に圧着させる一方、
少なくともハウジングの軸方向両端部を縮径させ、 このハウジングの縮径作用により、素材の軸方向両端部
の内径面を前記コアロッドに圧接させて回転軸を支持す
る軸支面に形成するとともに、これら軸支面間に、回転
軸と接触しない中逃げ部を形成することを特徴とする軸
受の製造方法。
1. A method for manufacturing a bearing, comprising a cylindrical bearing main body incorporated in a cylindrical housing, wherein a cylindrical material molded into the bearing main body is disposed substantially coaxially in the housing. An arranging step; and a press-fitting step of pressing the housing together with the material into a forming hole and press-fitting the material from a state in which a core rod having a uniform outer diameter is inserted into the material arranged in the housing. While crimping to the inside diameter surface of the housing,
At least both ends in the axial direction of the housing are reduced in diameter, and the inner diameter surfaces of both ends in the axial direction of the material are pressed against the core rod to form a bearing surface for supporting the rotating shaft by reducing the diameter of the housing. A method for manufacturing a bearing, comprising forming a middle relief portion between a shaft support surface and a contact portion that does not contact a rotating shaft.
【請求項2】 前記素材の軸方向両端部の内径面が圧接
させられる前記コアロッドの外径面に、動圧溝形成用の
凸部または凹部が形成されていることを特徴とする請求
項1に記載の軸受の製造方法。
2. A convex portion or a concave portion for forming a dynamic pressure groove is formed on an outer diameter surface of the core rod to which inner diameter surfaces of both ends in the axial direction of the material are pressed. 3. The method for producing a bearing according to item 1.
JP22621199A 1999-08-10 1999-08-10 Manufacturing method of bearing Expired - Fee Related JP3698352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22621199A JP3698352B2 (en) 1999-08-10 1999-08-10 Manufacturing method of bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22621199A JP3698352B2 (en) 1999-08-10 1999-08-10 Manufacturing method of bearing

Publications (2)

Publication Number Publication Date
JP2001050275A true JP2001050275A (en) 2001-02-23
JP3698352B2 JP3698352B2 (en) 2005-09-21

Family

ID=16841647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22621199A Expired - Fee Related JP3698352B2 (en) 1999-08-10 1999-08-10 Manufacturing method of bearing

Country Status (1)

Country Link
JP (1) JP3698352B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101592295B1 (en) 2014-11-19 2016-02-05 주식회사 티엠시 Shaped Article Supporting Apparatus for guiding an Interval Rotation of a Bush Shaped Article during the Manufacturing Process of a Pressing Embossing Bushing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101592295B1 (en) 2014-11-19 2016-02-05 주식회사 티엠시 Shaped Article Supporting Apparatus for guiding an Interval Rotation of a Bush Shaped Article during the Manufacturing Process of a Pressing Embossing Bushing

Also Published As

Publication number Publication date
JP3698352B2 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
JP3607492B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP2006520877A (en) Sintered plain bearing with continuously changing hole compression
JP3607661B2 (en) Hydrodynamic porous oil-impregnated bearing and method for producing the same
JPH11236604A (en) Oil-impregnated sintered bearing and its production
JP2001050275A (en) Manufacture of bearing
JP3818626B2 (en) Method for producing sintered oil-impregnated bearing
JP2001056028A (en) Manufacture of bearing
JP2001059106A (en) Manufacture of bearing
JP2001059104A (en) Manufacture of bearing
JP2001020956A (en) Manufacture method of bearing
JP3856363B2 (en) Manufacturing method of bearing
JP3797465B2 (en) Manufacturing method of bearing
JP2001059105A (en) Manufacture of bearing
JP2001032838A (en) Manufacture of bearing
JP2008267394A (en) Method of manufacturing bearing unit
JP2001041244A (en) Manufacture of bearing
JP3377681B2 (en) Sintered oil-impregnated bearing and its manufacturing method
JP2001050274A (en) Manufacture of bearing
JPH11182551A (en) Manufacture of hydrodynamic porous oil retaining bearing
JP2001050277A (en) Manufacture of bearing
JP2001032839A (en) Manufacture of bearing
JP2001012470A (en) Manufacture of bearing
JP3734130B2 (en) Method for producing sintered oil-impregnated bearing
JP3784690B2 (en) Dynamic pressure type porous oil-impregnated bearing and manufacturing method thereof
JP4188288B2 (en) Manufacturing method of dynamic pressure type porous oil-impregnated bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees