JP2001041924A - ガスセンサ - Google Patents

ガスセンサ

Info

Publication number
JP2001041924A
JP2001041924A JP11213266A JP21326699A JP2001041924A JP 2001041924 A JP2001041924 A JP 2001041924A JP 11213266 A JP11213266 A JP 11213266A JP 21326699 A JP21326699 A JP 21326699A JP 2001041924 A JP2001041924 A JP 2001041924A
Authority
JP
Japan
Prior art keywords
film
gas sensor
electrode films
solid electrolyte
potential difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11213266A
Other languages
English (en)
Inventor
Takahiro Umeda
孝裕 梅田
Masao Maki
正雄 牧
Takashi Niwa
孝 丹羽
Kunihiro Tsuruta
邦弘 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11213266A priority Critical patent/JP2001041924A/ja
Publication of JP2001041924A publication Critical patent/JP2001041924A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

(57)【要約】 【課題】 測定した電位差についてゼロ点補正を行わな
くても、正確な一酸化炭素の濃度を検出できるガスセン
サを提供する。 【解決手段】 絶縁体4と、ヒーター膜5と、絶縁膜7
と、金属膜8と、固体電解質膜1と、一対の電極膜2a
および2bと、触媒3からなり、固体電解質膜1の下に
熱伝導のよいシート状の金属膜8を備えているので、均
一に熱を伝えることができ、測定した電位差についてゼ
ロ点補正を行わなくても電極膜2aおよび2b間の電位
差から直接一酸化炭素の濃度を正確に求めることができ
る。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は燃焼機器や内燃機関
から排出される排ガス中に含まれる可燃性ガス、特に一
酸化炭素を検出するガスセンサに関する。
【0002】
【従来の技術】従来この種のガスセンサは、特開平10
−31003号公報などに記載されているようなものが
一般的であった。
【0003】このガスセンサは図10に示すように酸素
イオン導電性を有する固体電解質1の一方の面に形成し
た面積が等しい一対の電極膜2aおよび2bと、このう
ち一方の電極膜2aの表面に形成した触媒3と、固体電
解質1の下に絶縁体4の表面にヒーター膜5を形成した
ヒーター6を備えていた。
【0004】上記構成のガスセンサを一酸化炭素などの
可燃性ガスが含まれない雰囲気に配置し、固体電解質1
をヒーター6により所定の動作温度に加熱すると、電極
膜2aおよび2bの面積は等しいので、それぞれに到達
する酸素の量は等しく、電極膜2aおよび2b間に電位
差は発生しない。このとき電極膜2aおよび2b上では
式(1)で示した電極反応が生じ、平衡を保っている。
【0005】Oad+2e-←→O2- ・・・(1) ここでOadは電極膜2aまたは2bの表面に吸着した酸
素原子を示す。
【0006】次に、このガスセンサを可燃性ガスである
一酸化炭素が含まれる雰囲気に配置すると、触媒3の形
成されていない電極膜2b上では式(1)で示した電極
反応に加え、式(2)で示した電極反応が生じる。
【0007】CO+Oad→CO2 ・・・(2) 一方、触媒3が形成された電極膜2a上では、一酸化炭
素が触媒3の表面で二酸化炭素に酸化され、電極膜2a
の表面まで到達できないので、式(1)で示した電極反応
のみが生じる。したがって電極膜2aおよび2bの間で
吸着した酸素濃度に差が生じ、酸素イオンが電極膜2a
から2bへと固体電解質1中を伝導し、電極膜2aおよ
び2b間に電位差が発生する。
【0008】この電位差と一酸化炭素の濃度の関係はN
ernstの式に従い、電極膜2aおよび2b間の電位
差を測定することにより、被検出ガス中の一酸化炭素の
濃度を求めることができた。
【0009】
【発明の解決しようとする課題】この種のガスセンサ
は、一酸化炭素の存在するときの電極膜2aおよび2b
間に生じる電位差から、一酸化炭素の存在しないときの
電位差(ゼロ点)を減算して、すなわちゼロ点補正を行
って、一酸化炭素の濃度を求める。しかしながら、一酸
化炭素の存在しないときの電位差が、存在するときの電
位差に比べて無視できるほどに小さいとき、すなわちゼ
ロに近い値のとき、ゼロ点補正を行わなくても電極膜2
aおよび2b間の電位差から直接一酸化炭素の濃度を算
出することができる。
【0010】したがって、一酸化炭素が存在しないとき
の電極膜2aおよび2b上で起こる電極反応の量を等し
くし、電極膜2aおよび2b間に生じる電位差をゼロに
近づけるために、電極膜2aおよび2bの面積が等しく
なるようにしていた。
【0011】しかしながら、ヒーター6の位置ずれや、
ヒーター膜5の膜厚あるいはパターン幅のばらつきなど
により、加熱に分布が生じた場合、電極膜2aおよび2
b間に温度差が発生し、各電極膜2aおよび2b上で起
こる電極反応のバランスが崩れ、一酸化炭素が存在しな
いとき、たとえ電極膜2aおよび2bの面積が等しくて
も、電極膜2aおよび2b間に大きな電位差が発生し、
正確な一酸化炭素の濃度を求めるため、測定した電位差
についてゼロ点補正を行わなければならないという課題
があった。
【0012】また、排ガス中には天然ガスの産地にもよ
るが、微量の不純物が含まれ、例えば、ガス燃焼機器の
排ガス中には2ppm以下の二酸化硫黄が含まれる。
【0013】しかしながら、従来のガスセンサの構成に
おいて被検出ガス中に二酸化硫黄などの汚染物質が含ま
れた場合、二酸化硫黄が検出に必要な一酸化炭素や酸素
よりも電極膜2aおよび2bに含まれる白金などの貴金
属と強く吸着し、電極膜2aおよび2bを被毒劣化させ
るため、検出に必要な一酸化炭素や酸素が電極膜2aお
よび2bに吸着し難くなり、正確な一酸化炭素の濃度を
検出できないという課題があった。
【0014】
【課題を解決するための手段】本発明は上記課題を解決
するために、ヒーター膜と、固体電解質膜との間に金属
膜を設けたものである。
【0015】上記発明によれば、ヒーターで加熱された
金属膜により固体電解質膜および一対の電極膜に均一に
熱を伝えることができ、加熱に分布が生じず、電極膜間
に温度差が発生しない。したがって、被検出ガス中に一
酸化炭素が存在しないとき電極膜上で起こる電極反応の
量が等しくなり、電極膜間の電位差はほぼゼロになり、
測定した電位差についてゼロ点補正を行わなくても電極
膜間の電位差から直接一酸化炭素の濃度を正確に求める
ことができる。
【0016】
【発明の実施の形態】本発明は、請求項1記載のように
電気的絶縁性を有する絶縁体と、前記絶縁体の表面に形
成したヒーター膜と、前記ヒーター膜を覆うように形成
した電気的絶縁性を有する絶縁膜と、前記絶縁膜の表面
に形成したシート状の金属膜と、前記金属膜の表面に形
成した酸素イオン導電性を有する固体電解質膜と、前記
固体電解質膜の表面に形成した面積の等しい一対の電極
膜と、前記一対の電極膜のうちどちらか一方の電極膜の
表面に形成した触媒からなるものである。
【0017】そして、固体電解質膜の下に熱伝導のよい
シート状の金属膜を備えているので、ヒーターで加熱さ
れた金属膜により固体電解質膜および一対の電極膜に均
一に熱を伝えることができ、加熱に分布が生じず、電極
膜間に温度差が発生しない。したがって、被検出ガス中
に一酸化炭素が存在しないとき電極膜上で起こる電極反
応の量が等しくなり、電極膜間の電位差はほぼゼロにな
り、測定した電位差についてゼロ点補正を行わなくても
電極膜間の電位差から直接一酸化炭素の濃度を正確に求
めることができる。
【0018】また、請求項2記載のように金属膜は、
鉄、イリジウム、モリブデン、ニッケル、パラジウム、
白金、ロジウム、タンタル、タングステンのうち少なく
とも一種以上を含むものである。
【0019】そして、金属膜の熱伝導率が0.5(W/
(cm・K))以上であり、絶縁膜や固体電解質膜などの
それに比べて熱伝導性に優れ、線熱膨張率が(4〜1
3)×10-6(deg-1)であり、絶縁体や固体電解質膜
のそれと同じ程度であるので、剥離や割れを生じさせる
ことなく、固体電解質膜や電極膜を効率よく均一に加熱
することができる。
【0020】また、請求項3記載のように金属膜と固体
電解質膜の間に形成した電気的絶縁性を有する第二絶縁
膜を備えたものである。
【0021】そして、第二絶縁膜が金属膜と固体電解質
膜を確実に絶縁し、リークイオン電流の発生を防止する
ので、一酸化炭素の濃度を正確に検出することができ
る。
【0022】また、請求項4記載のように一対の電極膜
を覆うように形成した細孔径が20〜500Åのガス選
択透過体を備えたものである。
【0023】そして、被検出ガスはKnudsen拡散
によりガス選択透過体を通過し、検出に必要な一酸化炭
素や酸素はガス選択透過体を通って電極膜に到達するこ
とができるが、一酸化炭素や酸素に比べ分子サイズが大
きく吸着性を有する二酸化硫黄などの汚染物質はガス選
択透過体を透過できないので、電極膜が被毒し難くな
り、汚染物質に対して耐久性の高いガスセンサを得るこ
とができる。
【0024】また、請求項5記載のようにガス選択透過
体の表面に触媒を形成したものである。
【0025】そして、ガス選択透過体と電極膜を密着
し、ガス選択透過体と電極膜の間に空隙を持たないの
で、隙間から侵入する汚染物質を確実に遮断することが
でき、汚染物質に対して耐久性の高いガスセンサを得る
ことができる。
【0026】そして、ガス選択透過体の表面に触媒を形
成することにより、触媒の量を増加させることができ、
電極膜間の電位差が増大し、触媒活性を長期間維持する
ことができるので、感度がよくライフタイムの長いガス
センサを得ることができる。
【0027】また、請求項6記載のように一対の電極膜
間の電位差を検出する電位差検出手段と、金属膜の抵抗
を測定する抵抗検出手段と、前記抵抗から固体電解質膜
の温度を算出し、前記電位差と前記温度から被検出ガス
の濃度を算出する演算手段を備えたものである。
【0028】そして、金属膜の抵抗の温度特性から固体
電解質膜の温度を算出し、その温度における電極膜間の
電位差から一酸化炭素の濃度を算出するので、周囲の温
度が変化しても正確な一酸化炭素の濃度を求めることが
できる。
【0029】また、請求項7記載のように金属膜の抵抗
を一定に保持するようにヒーター膜に供給される電圧を
制御する制御手段を備えたものである。
【0030】そして、制御手段により固体電解質膜およ
び電極膜の温度を一定に保持することができるので、周
囲の温度によらず安定した電位差が得られ、信頼性の高
いガスセンサを得ることができる。
【0031】また、請求項8記載のように一対の電極
膜、金属膜およびヒーター膜のリード取り出し部を絶縁
体の同一の表面に形成するものである。
【0032】そして、それぞれのリード取り出し部が絶
縁体の同一の表面に形成されるので、リード線を容易に
接続することができ、作業効率を向上させることができ
る。
【0033】
【実施例】以下、本発明の実施例について図面を用いて
説明する。なお従来例と同一符号のものは同一構造を有
し、一部説明を省略する。
【0034】(実施例1)図1および図2は本発明の実
施例1におけるガスセンサの要部断面図および上面図で
ある。
【0035】図1および図2において4は電気的絶縁性
を有する絶縁体である。絶縁体4の表面にヒーター膜5
が形成されており、その表面に絶縁膜7が形成されてい
る。そして、絶縁膜7の表面に熱伝導のよい金属膜8が
形成され、その表面に酸素イオン導電性の固体電解質膜
1が形成されている。そして、固体電解質膜1の表面に
電極膜2aおよび2bが形成されており、電極膜2aを
覆うように一酸化炭素を酸化する触媒3が積層されてい
る。
【0036】そして、図2に示したように電極膜2aお
よび2bのリード取り出し部2a’および2b’と、ヒ
ーター膜5のリード取り出し部5aおよび5bおよび金
属膜8のリード取り出し部8aおよび8bは絶縁体4の
表面に形成されている。
【0037】そして、電極膜リード取り出し部2a’お
よび2b’の間に電極膜2aおよび2b間の電位差を検
出する電位差検出手段9、金属膜リード取り出し部8a
および8bの間に金属膜8の抵抗を検出する抵抗検出手
段10が接続されており、さらに抵抗検出手段10で検
出した抵抗から固体電解質膜1の温度を算出し、この温
度と電位差検出手段9で検出した電位差から被検出ガス
中の一酸化炭素の濃度を算出する演算手段11が備えら
れており、ヒーター膜リード取り出し部5aおよび5b
の間に抵抗検出手段10で検出した抵抗から固体電解質
膜1の温度が一定となるようにヒーターに供給される電
圧を制御する制御手段12が接続されている。
【0038】上記構成によれば、固体電解質膜1の下に
熱伝導のよいシート状の金属膜8を備えているので、ヒ
ーター膜5で加熱された金属膜8により固体電解質膜1
および一対の電極膜2aおよび2bに均一に熱を伝える
ことができ、加熱に分布が生じず、電極膜2aおよび2
b間に温度差が発生しない。したがって、被検出ガス中
に一酸化炭素が存在しないとき電極膜2aおよび2b上
で起こる電極反応の量が等しくなり、電極膜2aおよび
2b間の電位差はほぼゼロになり、測定した電位差につ
いてゼロ点補正を行わなくても電極膜2aおよび2b間
の電位差から直接一酸化炭素の濃度を正確に求めること
ができる。
【0039】また、金属膜8の抵抗の温度特性から固体
電解質膜1の温度を算出し、その温度における電極膜2
aおよび2b間の電位差から一酸化炭素の濃度を算出す
るので、周囲の温度が変化しても正確な一酸化炭素の濃
度を求めることができる。
【0040】さらに、制御手段12により固体電解質膜
1および電極膜2aおよび2bの温度を一定に保持する
ことができるので、周囲の温度によらず安定した電位差
が得られ、信頼性の高いガスセンサを得ることができ
る。
【0041】また、電極膜2aおよび2bのリード取り
出し部2a’および2b’と、ヒーター膜5のリード取
り出し部5aおよび5bおよび金属膜8のリード取り出
し部8aおよび8bが絶縁体4の同一の表面に形成され
るので、リード線を容易に接続することができ、作業効
率を向上させることができる。
【0042】次に、ガスセンサの製造方法について具体
的に説明する。
【0043】まず、表面を研磨したアルミナ基板を絶縁
体4として用い、有機溶剤で超音波脱脂した後、白金か
ら成るヒーター膜5のパターンを印刷、焼成した。ヒー
ター膜5は印刷以外にスパッタリングや真空蒸着などで
も同様に形成することができ、ヒーター膜5を形成した
後、フォトリソグラフィやエッチングなどの技術を用
い、細密なヒーターパターンを形成することができる。
【0044】次に、ヒーター膜5のリード取り出し部5
aおよび5b以外の部分を覆って金属膜8と電気的に絶
縁するように、酸化アルミニウムから成る絶縁膜7をス
パッタリングにより形成した。絶縁膜7はスパッタリン
グ以外に印刷・塗布、真空蒸着、めっきなどでも同様に
形成することができる。
【0045】次に、絶縁膜7の表面に熱伝導のよいシー
ト状の金属膜8として白金をスパッタリングにより形成
した。白金の熱伝導率は0.69(W/(cm・K))で
あり、絶縁体4や絶縁膜7の酸化アルミニウムの熱伝導
率0.30(W/(cm・K))よりも大きく、熱伝導に
優れている。また白金の線熱膨張率は8.9×10
-6(deg-1)であり、絶縁体4や絶縁膜7の酸化アルミ
ニウムおよび固体電解質膜1の安定化ジルコニアの線熱
膨張率(それぞれ約5×10-6(deg-1)および約10
×10-6(deg-1))と同じ程度であるので、剥離や割
れを生じさせることなく、固体電解質膜1や電極膜2a
および2bを効率よく均一に加熱することができる。ま
た、金属膜8は白金以外に熱伝導率が0.5(W/(cm
・K))以上で、線熱膨張率が(4〜13)×10
-6(deg-1)である鉄、イリジウム、モリブデン、ニッ
ケル、パラジウム、ロジウム、タンタル、タングステ
ン、もしくはこれら金属の合金でも同様の効果を得るこ
とができる。また、金属膜8の両端の抵抗を測るための
リード取り出し部8aおよび8bを絶縁体4の表面に形
成した。
【0046】次に、金属膜8の表面にイットリアを8モ
ル%添加した安定化ジルコニアから成る固体電解質膜1
をスパッタリングにより形成し、スパッタリング後、高
温で焼結し、酸素イオン伝導性の得られる固体電解質膜
1を形成した。
【0047】次に、固体電解質膜1の表面に白金から成
る面積が等しい一対の電極膜2aおよび2bをスパッタ
リングにより形成し、電極膜2aおよび2b間の電位差
を測るため、それぞれのリード取り出し部2a’および
2b’を絶縁体4の表面に形成した。電極膜2aおよび
2bはスパッタリング以外に、印刷・塗布、真空蒸着、
めっきなどの方法で形成してもよい。
【0048】次に、一方の電極膜2a上に一酸化炭素を
酸化する白金とパラジウムを主成分とする触媒3を塗布
し、焼成した。
【0049】上記のようにして作成したガスセンサをエ
ージングするため、一酸化炭素が3,000ppm、酸素
が20%および二酸化硫黄が20ppm含まれる雰囲気に
暴露し、雰囲気の温度を500℃に保持し、ヒーター膜
リード取り出し部5aおよび5b間に使用時に流す電流
よりも大きい電流を流し、約24時間放置した。各種ガ
スの濃度は実際の燃焼排ガスよりもかなり過酷な条件で
あり、あらかじめ高濃度の一酸化炭素、酸素および二酸
化硫黄が含まれる雰囲気に暴露し、熱処理することによ
り、初期安定性に優れ、耐久性の高いガスセンサを得る
ことができる。
【0050】また、同時に固体電解質膜1を動作温度に
加熱するヒーター膜5にあらかじめ使用時より大きい電
流を流して通電処理するので、初期安定性に優れ、耐久
性の高いガスセンサを得ることができる。
【0051】以上のようにして得られたガスセンサの基
本特性を調べるため、ガスセンサを被検出ガス中に配置
し、ヒーター膜リード取り出し部5aおよび5b間に電
圧を供給し、ガスセンサを約450℃に加熱した。この
ガスセンサの動作温度は、固体電解質膜1の酸素イオン
導電性が得られ、かつ触媒3の一酸化炭素を酸化するの
に十分な触媒活性が得られる温度である。このときの被
検出ガスの流量は約185cm/minであった。
【0052】そして、電極膜リード取り出し部2a’お
よび2b’間に電位差検出手段9を接続し、電極膜2a
および2b間に発生する電位差を測定した。
【0053】図3に酸素濃度を20%一定に保ち、一酸
化炭素の濃度を0→1,000→0ppmと変化させたと
きの電極膜2aおよび2b間に発生する電位差の変化を
示す。図3より一酸化炭素の濃度が0ppmのとき電極膜
2aおよび2b間の電位差はほぼ0mVであった。これは
電極膜2aおよび2bの面積が等しいだけでなく、金属
膜8により電極膜2aおよび2bが均一に加熱され、電
極膜2aおよび2b間に温度差が発生しないので、各電
極膜上で起こる電極反応の量が等しくなるからである。
また、一酸化炭素の濃度が1,000ppmのとき電位差
は約8mVであり、90%応答時間は約90秒であった。
【0054】次に、一酸化炭素の濃度特性を図4に示
す。図4より電位差は一酸化炭素の濃度の対数に比例し
ており、Nernstの式に従っていることが判った。
【0055】したがって、実施例1のガスセンサの構成
により、ゼロ点補正を必要としない応答性のよいガスセ
ンサを得ることができることが判った。
【0056】また、このガスセンサを燃焼機器あるいは
内燃機関などに搭載し、排気ガス中の一酸化炭素の濃度
を監視すれば、一酸化炭素の発生量が許容値を越えたと
き強制的に燃焼を停止させたり、一酸化炭素の許容濃度
範囲内で燃焼効率が最大となるように制御することがで
き、燃焼機器あるいは内燃機関などの安全性を向上させ
るだけでなく、省エネをも図ることができる。
【0057】次に金属膜リード取り出し部8aおよび8
b間に接続した抵抗検出手段10により測定した金属膜
8の抵抗の温度特性を図5に示す。図5から金属膜8の
抵抗を測定すれば、固体電解質膜1や電極膜2aおよび
2bの動作温度を検出することができ、演算手段11に
よりそのときの温度と電位差から一酸化炭素の濃度を算
出するので、周囲の温度が変化しても正確な一酸化炭素
の濃度を求めることができる。
【0058】さらに制御手段12により固体電解質膜1
および電極膜2aおよび2bの温度を一定に保持するよ
うヒーター膜リード取り出し部5aおよび5b間に供給
する電圧を制御するので、周囲の温度によらず安定した
電位差が得られ、信頼性の高いガスセンサを得ることが
できる。
【0059】(実施例2)図6に実施例2のガスセンサ
の要部断面図を示す。図6において実施例1のガスセン
サと異なる点は、金属膜8と固体電解質膜1の間に第二
絶縁膜13を形成したところである。それ以外で同一符
号のものは実施例1と同じ構成であり、説明を省略す
る。
【0060】実施例1と同様に絶縁体4の表面にヒータ
ー膜5、絶縁膜7および金属膜8を形成した後、金属膜
8と固体電解質膜1を電気的に確実に絶縁させるため
に、酸化アルミニウムから成る第二絶縁膜13をスパッ
タリングにより形成した。さらにその表面に固体電解質
膜1と、一対の電極膜2aおよび2bと、触媒3を実施
例1と同様に形成した。第二絶縁膜13はスパッタリン
グ以外に塗布や真空蒸着といった方法でも形成すること
ができる。
【0061】金属膜8と固体電解質膜1が接触した場
合、金属膜8と固体電解質膜1と気相の三相界面で金属
膜8が電極として働き、金属膜8上で電極反応が生じる
可能性があるが、実施例2のガスセンサによれば、第二
絶縁膜13が金属膜8と固体電解質膜1を確実に絶縁
し、リークイオン電流の発生を防止するので、一酸化炭
素の濃度を正確に検出することができる。
【0062】また、第二絶縁膜13の形成により電極膜
2aおよび2b間の電位差が変化したり、金属膜8の抵
抗の温度特性が変化するようなことはなく、実施例1と
同様に正確な一酸化炭素の濃度を検出することができ
た。
【0063】(実施例3)図7に実施例3のガスセンサ
の要部断面図を示す。図7において実施例2のガスセン
サと異なる点は、一対の電極膜2a、2bおよび触媒3
を覆うように形成した細孔径が20〜500Åのガス選
択透過体14を備えたところである。それ以外で同一符
号のものは実施例2と同じ構成であり、説明を省略す
る。
【0064】実施例2と同様に絶縁体4の表面にヒータ
ー膜5、絶縁膜7および金属膜8、第二絶縁膜13、固
体電解質膜1、電極膜2aおよび2b、触媒3を順に形
成した後、電極膜2a、2bおよび触媒3を覆うように
ガス選択透過体14を配置し、接合材15を介し絶縁体
4に積層した。
【0065】次に、ガス選択透過体14の製造方法につ
いて具体的に説明する。
【0066】ガス選択透体14として平均細孔径が約1
μm以下の多孔性セラミック基板を使用し、このままで
はガスの選択透過性は得られないので、細孔内にゾル−
ゲル法により薄膜を形成し、細孔制御を行った。具体的
には、多孔性セラミック基板をゾルコート液に浸漬し、
一定速度で引き上げた後、乾燥し、焼成した。このとき
細孔内でゲル化が起こり、細孔表面に均一な被膜が形成
され、浸漬時間および浸漬回数を調節することにより、
平均細孔径が(20〜500)Åのガス選択透過体14
を得た。
【0067】ところで、排ガス中には分子サイズの大き
い二酸化硫黄などの汚染物質が多く含まれる。実施例3
のガスセンサによれば汚染物質のうち粒径が500Å以
上より大きな分子はガス選択透過体14を透過すること
ができない。また細孔径が(20〜500)Åのガス選
択透過体14においてガスは基本的にKnudsen拡
散により細孔内部表面を吸着しながら拡散する。このと
きガスの透過係数比は分子量と絶対温度の積の平方根に
反比例するので、二酸化硫黄など分子量が大きく、吸着
性のあるガスは酸素や一酸化炭素などのガスに比べて細
孔内を透過し難くなる。したがって、電極膜2aおよび
2bに到達する汚染物質が減少し、電極膜2aおよび2
bが被毒し難くなる。
【0068】次に、このガスセンサの二酸化硫黄に対す
る耐久性を調べた。1,000ppmの一酸化炭素と空気
の混合ガス中に100ppmの二酸化硫黄を添加したとき
の電極膜2aおよび2b間に生じる電位差の変化を図8
に示した。図8より二酸化硫黄の添加の有無に関わら
ず、電位差はほぼ一定であり、二酸化硫黄による影響が
見られなかった。実際の排ガス中に含まれる二酸化硫黄
の濃度は2ppm以下であり、これに対して約50倍の濃
度の二酸化硫黄による加速耐久試験において安定した電
位差が得られていることから実施例3のガスセンサは汚
染物質に対する耐久性が極めて優れていることが判っ
た。
【0069】(実施例4)図9に実施例4のガスセンサ
の要部断面図を示す。図9において実施例3のガスセン
サと異なる点は、ガス選択透過体14の表面に触媒3を
形成したところである。それ以外で同一符号のものは実
施例3と同じ構成であり、説明を省略する。
【0070】実施例3と同様に絶縁体4の表面にヒータ
ー膜5、絶縁膜7および金属膜8、第二絶縁膜13、固
体電解質膜1、電極膜2aおよび2bを順に形成した
後、電極膜2a、2bを覆うようにガス選択透過体14
を配置し、接合材15を介し絶縁体4に積層し、さらに
その表面に電極膜2aを覆うように触媒3を積層してい
る。
【0071】次に触媒3の製造方法について説明する。
触媒3を担持する担体としてステンレスからなる繊維を
シート状にしたものを用い、この繊維にアルミナゾルや
コロイダルシリカなどの無機系結合材を担持した後、白
金やパラジウムなどの貴金属から成る酸化触媒を担持
し、焼成した。
【0072】実施例4のガスセンサによれば、ガス選択
透過体14と電極膜2aおよび2bを密着し、ガス選択
透過体14と電極膜2aおよび2bの間に空隙を持たな
いので、隙間から侵入する汚染物質を確実に遮断するこ
とができ、汚染物質に対して耐久性の高いガスセンサを
得ることができる。
【0073】そして、ガス選択透過体14の表面に触媒
3を形成することにより、触媒3の量を増加させること
ができ、電極膜2aおよび2b間の電位差が増大し、触
媒活性を長期間維持することができるので、感度がよく
ライフタイムの長いガスセンサを得ることができる。
【0074】
【発明の効果】以上の説明から明らかなように本発明の
ガスセンサによれば、以下の効果が得られる。
【0075】(1)請求項1の発明は、固体電解質膜の
下に熱伝導のよいシート状の金属膜を備えているので、
ヒーターで加熱された金属膜により固体電解質膜および
一対の電極膜に均一に熱を伝えることができ、加熱に分
布が生じず、電極膜間に温度差が発生しない。したがっ
て、被検出ガス中に一酸化炭素が存在しないとき電極膜
上で起こる電極反応の量が等しくなり、電極膜間の電位
差はほぼゼロになり、測定した電位差についてゼロ点補
正を行わなくても電極膜間の電位差から直接一酸化炭素
の濃度を正確に求めることができる。
【0076】(2)請求項2の発明は、金属膜の熱伝導
率が0.5(W/(cm・K))以上であり、絶縁膜や固
体電解質膜などのそれに比べて熱伝導性に優れ、線熱膨
張率が(4〜13)×10-6(deg-1)であり、絶縁体
や固体電解質膜のそれと同じ程度であるので、剥離や割
れを生じさせることなく、固体電解質膜や電極膜を効率
よく均一に加熱することができる。
【0077】(3)請求項3の発明は、第二絶縁膜が金
属膜と固体電解質膜を確実に絶縁し、リークイオン電流
の発生を防止するので、一酸化炭素の濃度を正確に検出
することができる。
【0078】(4)請求項4の発明は、被検出ガスはK
nudsen拡散によりガス選択透過体を通過し、検出
に必要な一酸化炭素や酸素はガス選択透過体を通って電
極膜に到達することができるが、一酸化炭素や酸素に比
べ分子サイズが大きく吸着性を有する二酸化硫黄などの
汚染物質はガス選択透過体を透過できないので、電極膜
が被毒し難くなり、汚染物質に対して耐久性の高いガス
センサを得ることができる。
【0079】(5)請求項5の発明は、ガス選択透過体
と電極膜を密着し、ガス選択透過体と電極膜の間に空隙
を持たないので、隙間から侵入する汚染物質を確実に遮
断することができ、汚染物質に対して耐久性の高いガス
センサを得ることができる。
【0080】(6)請求項5の発明は、ガス選択透過体
の表面に触媒を形成することにより、触媒の量を増加さ
せることができ、電極膜間の電位差が増大し、触媒活性
を長期間維持することができるので、感度がよくライフ
タイムの長いガスセンサを得ることができる。
【0081】(7)請求項6の発明は、金属膜の抵抗の
温度特性から固体電解質膜の温度を算出し、その温度に
おける電極膜間の電位差から一酸化炭素の濃度を算出す
るので、周囲の温度が変化しても正確な一酸化炭素の濃
度を求めることができる。
【0082】(8)請求項7の発明は、制御手段により
固体電解質膜および電極膜の温度を一定に保持すること
ができるので、周囲の温度によらず安定した電位差が得
られ、信頼性の高いガスセンサを得ることができる。
【0083】(9)請求項8の発明は、それぞれのリー
ド取り出し部が絶縁体の同一の表面に形成されるので、
リード線を容易に接続することができ、作業効率を向上
させることができる。
【図面の簡単な説明】
【図1】本発明の実施例1におけるガスセンサの要部断
面図
【図2】同ガスセンサの上面図
【図3】同ガスセンサの応答性を示す図
【図4】同ガスセンサの一酸化炭素濃度特性を示す図
【図5】同ガスセンサの金属膜の抵抗の温度特性を示す
【図6】本発明の実施例2におけるガスセンサの要部断
面図
【図7】本発明の実施例3におけるガスセンサの要部断
面図
【図8】同ガスセンサの二酸化硫黄耐久性を示す図
【図9】本発明の実施例4におけるガスセンサの要部断
面図
【図10】従来のガスセンサの分解斜視図
【符号の説明】
1 固体電解質膜 2a、2b 電極膜 3 触媒 4 絶縁体 5 ヒーター膜 7 絶縁膜 8 金属膜 9 電位差検出手段 10 抵抗検出手段 11 演算手段 12 制御手段 13 第二絶縁膜 14 ガス選択透過体
───────────────────────────────────────────────────── フロントページの続き (72)発明者 丹羽 孝 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 鶴田 邦弘 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2G004 BB04 BC05 BE12 BE15 BE16 BE22 BE25 BF07 BF14 BF22 BG05 BG09 BG13 BH15 BJ02 BJ03 BK04 BL08 BL19 BM07

Claims (8)

    【特許請求の範囲】
  1. 【請求項1】電気的絶縁性を有する絶縁体と、前記絶縁
    体の表面に形成したヒーター膜と、前記ヒーター膜を覆
    うように形成した電気的絶縁性を有する絶縁膜と、前記
    絶縁膜の表面に形成したシート状の金属膜と、前記金属
    膜の表面に形成した酸素イオン導電性を有する固体電解
    質膜と、前記固体電解質膜の表面に形成した面積の等し
    い一対の電極膜と、前記一対の電極膜のうちどちらか一
    方の電極膜の表面に形成した触媒からなるガスセンサ。
  2. 【請求項2】金属膜は、鉄、イリジウム、モリブデン、
    ニッケル、パラジウム、白金、ロジウム、タンタル、タ
    ングステンのうち少なくとも一種以上を含む請求項1記
    載のガスセンサ。
  3. 【請求項3】金属膜と固体電解質膜の間に形成した電気
    的絶縁性を有する第二絶縁膜を備えた請求項1または2
    記載のガスセンサ。
  4. 【請求項4】一対の電極膜を覆うように形成した細孔径
    が20〜500Åのガス選択透過体を備えた請求項1、
    2または3記載のガスセンサ。
  5. 【請求項5】ガス選択透過体の表面に触媒を形成した請
    求項4記載のガスセンサ。
  6. 【請求項6】一対の電極膜間の電位差を検出する電位差
    検出手段と、金属膜の抵抗を測定する抵抗検出手段と、
    前記抵抗から固体電解質膜の温度を算出し、前記電位差
    と前記温度から被検出ガスの濃度を算出する演算手段を
    備えた請求項1ないし5のいずれか1項記載のガスセン
    サ。
  7. 【請求項7】金属膜の抵抗を一定に保持するようにヒー
    ター膜に供給される電圧を制御する制御手段を備えた請
    求項1ないし6のいずれか1項記載のガスセンサ。
  8. 【請求項8】一対の電極膜、金属膜およびヒーター膜の
    リード取り出し部を絶縁体の同一の表面に形成する請求
    項1ないし7のいずれか1項記載のガスセンサ。
JP11213266A 1999-07-28 1999-07-28 ガスセンサ Pending JP2001041924A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11213266A JP2001041924A (ja) 1999-07-28 1999-07-28 ガスセンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11213266A JP2001041924A (ja) 1999-07-28 1999-07-28 ガスセンサ

Publications (1)

Publication Number Publication Date
JP2001041924A true JP2001041924A (ja) 2001-02-16

Family

ID=16636263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11213266A Pending JP2001041924A (ja) 1999-07-28 1999-07-28 ガスセンサ

Country Status (1)

Country Link
JP (1) JP2001041924A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108732212A (zh) * 2018-05-23 2018-11-02 重庆海士测控技术有限公司 一种多效应检测集成气体传感器制造方法的制造方法、传感器及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108732212A (zh) * 2018-05-23 2018-11-02 重庆海士测控技术有限公司 一种多效应检测集成气体传感器制造方法的制造方法、传感器及其应用
CN108732212B (zh) * 2018-05-23 2020-12-15 哈尔滨工程大学 一种多效应检测集成气体传感器制造方法的制造方法、传感器及其应用

Similar Documents

Publication Publication Date Title
EP0853762B1 (en) Gas sensor and manufacturing process thereof
US6051123A (en) Multi-functional and NOx sensor for combustion systems
JP3128114B2 (ja) 窒素酸化物検出装置
US20030205078A1 (en) Gas-detecting element and gas-detecting device comprising same
CA2436238A1 (en) Gas sensor and detection method and device for gas.concentration
JPS58124943A (ja) マイクロヒ−タ付き限界電流式酸素センサとそれを用いた限界電流式酸素濃度検出装置
JP3481344B2 (ja) 排ガス浄化用触媒の劣化検知方法及びそのためのシステム
JP4743375B2 (ja) 可燃性ガス濃度測定方法
JP3776386B2 (ja) ガスセンサ素子及びガス濃度の検出方法
JP2000338081A (ja) ガスセンサ
JPH09269307A (ja) ガスセンサ
JP2006133039A (ja) 窒素酸化物センサ
JPH10115597A (ja) ガスセンサ
JP2001004589A (ja) ガスセンサ
JP2001041924A (ja) ガスセンサ
JPH11237366A (ja) ガスセンサ
JPH0875691A (ja) ガスセンサ
JP3511747B2 (ja) ガスセンサ
JPH07260728A (ja) 一酸化炭素ガスセンサ
JP4315992B2 (ja) ガスセンサ及びガス検出器及びガス検出方法
JP3435836B2 (ja) ガスセンサおよびその製造法
JP2001033425A (ja) 水素ガスセンサ
JP3371358B2 (ja) 酸素ガス・一酸化炭素ガスセンサ、酸素・一酸化炭素測定装置及び酸素・一酸化炭素測定方法
JP3696494B2 (ja) 窒素酸化物センサ
JP4356177B2 (ja) ガスセンサの製造方法