JP2000328224A - Gas carburization method - Google Patents

Gas carburization method

Info

Publication number
JP2000328224A
JP2000328224A JP11143639A JP14363999A JP2000328224A JP 2000328224 A JP2000328224 A JP 2000328224A JP 11143639 A JP11143639 A JP 11143639A JP 14363999 A JP14363999 A JP 14363999A JP 2000328224 A JP2000328224 A JP 2000328224A
Authority
JP
Japan
Prior art keywords
furnace
gas
carburizing
temperature
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11143639A
Other languages
Japanese (ja)
Other versions
JP3973795B2 (en
Inventor
Masao Hattori
雅夫 服部
Hiroshi Asai
広志 浅井
Kazutaka Kawase
和孝 川瀬
Masahiro Okumiya
正洋 奥宮
Yoshiki Tsunekawa
好樹 恒川
Akikimi Tomita
明君 冨田
Hisayoshi Takita
久芳 滝田
Toru Morishita
徹 森下
Susumu Ohira
晋 大平
Takatoshi Saeki
孝敏 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP14363999A priority Critical patent/JP3973795B2/en
Publication of JP2000328224A publication Critical patent/JP2000328224A/en
Application granted granted Critical
Publication of JP3973795B2 publication Critical patent/JP3973795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas carburization method which is capable of introducing a proper amount of an enriching gas without the generation of soot and efficiently executing carburization even if an in-furnace temperature is lower than a treatment temperature. SOLUTION: A carburizing furnace 1 is previously provided with a CO2 sensor 2 which samples an in-furnace gaseous atmosphere and detects the CO2 concentration in the in-furnace gaseous atmosphere outside the furnace and an oxygen sensor 3 which detects the oxygen concentration in the in-furnace gaseous atmosphere within the furnace. The introduction of the enriching gas 7 is started during the rising of the in-furnace temperature T and a difference (CP2--CP1) between the apparent carbon potential CP1 calculated on the basis of the CO2 concentration and the apparent carbon potential CP2 calculated on the basis of the oxygen concentration is determined. The flow rate of the enriching gas 7 is then so regulated that the difference (CP2-CP1) approaches a prescribed value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,高い処理能率が得られる浸炭方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carburizing method capable of obtaining a high treatment efficiency.

【0002】[0002]

【従来技術】鋼部品の耐ピッチング性,耐摩耗性等の機
械的性質を向上させる手段として,浸炭が広く行われて
いる。浸炭法としては,浸炭剤として炭化水素系ガスを
用いたガス浸炭方法がある。従来のガス浸炭方法を,図
4を用いて簡単に説明する。同図は,横軸に時間,縦軸
に温度をとり,炉内温度Tおよびエンリッチガス導入タ
イミングC等を示したものである。
2. Description of the Related Art Carburizing is widely used as a means for improving mechanical properties such as pitting resistance and wear resistance of steel parts. As a carburizing method, there is a gas carburizing method using a hydrocarbon gas as a carburizing agent. A conventional gas carburizing method will be briefly described with reference to FIG. In this figure, the horizontal axis represents time, and the vertical axis represents temperature, and shows the furnace temperature T, enriched gas introduction timing C, and the like.

【0003】同図より知られるごとく,従来のガス浸炭
方法においては,まず予め処理温度T0まで昇温してお
いた浸炭炉の炉内に被処理材を送入する(A)。この被
処理材の送入時に炉扉が開かれるので,炉内温度が低下
する。次いで,炉内温度が処理温度T0に回復した時点
(B)に,エンリッチガスの導入を開始(C)する。こ
れにより,炉内のカーボンポテンシャルが上昇し,上記
被処理材に浸炭が施される。なお,通常,炉内には,酸
化防止のための吸熱型雰囲気ガスが常時導入される。ま
た,浸炭終了時(D)には,通常は焼入れ処理がなされ
る。
As is known from FIG. 1, in the conventional gas carburizing method, first, a material to be treated is fed into a carburizing furnace which has been previously heated to a processing temperature T 0 (A). Since the furnace door is opened when the material to be treated is fed in, the furnace temperature decreases. Next, at the time (B) when the furnace temperature recovers to the processing temperature T 0 , the introduction of enriched gas is started (C). Thereby, the carbon potential in the furnace increases, and the material to be treated is carburized. Normally, an endothermic atmosphere gas for preventing oxidation is always introduced into the furnace. At the end of carburizing (D), quenching is usually performed.

【0004】[0004]

【解決しようとする課題】ところで,上記従来のガス浸
炭方法においては,次の問題がある。即ち,上記エンリ
ッチガスの導入開始は,炉内温度が処理温度T0に復帰
した後に行う。これは,炉内温度が低い段階でエンリッ
チガスを導入すると煤が発生し易くなり,被処理材の品
質に影響を与えるためである。
The conventional gas carburizing method has the following problems. That is, the beginning of the introduction of the enriched gas is performed after the furnace temperature has returned to the processing temperature T 0. This is because, when the enriched gas is introduced at a stage where the furnace temperature is low, soot is easily generated, which affects the quality of the material to be treated.

【0005】上記被処理材の送入から炉内温度回復まで
の間は,エンリッチガスが炉内に存在しないので浸炭が
進行しない。そのため,図4におけるA点からB点の
間,即ち,被処理材送入時点から炉内温度の処理温度T
0への回復までの間は,浸炭に寄与しない時間帯とな
る。
[0005] During the period from the feeding of the material to be treated to the recovery of the furnace temperature, carburization does not proceed because no enriched gas exists in the furnace. For this reason, between the point A and the point B in FIG.
Until it returns to 0 , it is a time zone that does not contribute to carburization.

【0006】一方,浸炭自体は,上記処理温度T0に達
していない状態であっても,炉内のカーボンポテンシャ
ルさえ適正な状態となれば進行させることができる場合
がある。しかしながら,炉内温度Tの昇温中において
は,上記のごとく,エンリッチガスの導入が煤の発生に
つながりやすいので,煤の発生を抑えつつ適量のエンリ
ッチガスを導入して炉内のカーボンポテンシャルを適度
に向上させることは非常に困難であった。
[0006] On the other hand, even if the carburizing itself has not reached the processing temperature T 0 , the carburizing itself can sometimes proceed if the carbon potential in the furnace is in an appropriate state. However, during the rise of the furnace temperature T, as described above, the introduction of the enriched gas tends to lead to the generation of soot. Therefore, while suppressing the generation of soot, an appropriate amount of enriched gas is introduced to reduce the carbon potential in the furnace. It was very difficult to improve it moderately.

【0007】本発明は,かかる従来の問題点に鑑みてな
されたもので,炉内温度が処理温度よりも低い状態であ
っても煤を発生させることなく適量のエンリッチガスを
導入することができ,効率よく浸炭を行うことができる
ガス浸炭方法を提供しようとするものである。
The present invention has been made in view of such a conventional problem, and it is possible to introduce an appropriate amount of enriched gas without generating soot even when the furnace temperature is lower than the processing temperature. Another object of the present invention is to provide a gas carburizing method capable of efficiently carburizing.

【0008】[0008]

【課題の解決手段】請求項1の発明は,浸炭炉の炉内に
被処理材を送入し,次いで,炉内温度を浸炭温度まで昇
温すると共にエンリッチガスを炉内に導入してカーボン
ポテンシャルを上昇させて上記被処理材に浸炭を施すガ
ス浸炭方法において,上記浸炭炉には,炉内雰囲気ガス
をサンプリングして炉外において該炉内雰囲気ガス中の
CO2濃度を検出するCO2センサと,炉内において上記
炉内雰囲気ガス中の酸素濃度を検出する酸素センサとを
設けておき,上記エンリッチガスの導入は上記炉内温度
の昇温中に開始し,かつ,上記エンリッチガスの導入量
を制御するに当たっては,上記CO2センサにより測定
したCO2濃度を基に算出した見掛け上のカーボンポテ
ンシャルCP1と,上記酸素センサにより測定した酸素
濃度を基に算出した見掛け上のカーボンポテンシャルC
2との差(CP2−CP1)を求め,差(CP2−C
1)が所定値に近づくように上記エンリッチガスの流
量を調整することを特徴とするガス浸炭方法にある。
According to a first aspect of the present invention, a material to be treated is fed into a furnace of a carburizing furnace, and then the temperature inside the furnace is raised to the carburizing temperature, and enriched gas is introduced into the furnace. in gas carburizing method the potential to increase the by carburizing in the treated material, the above-mentioned carburizing furnace, detects the CO 2 concentration in the furnace in the atmospheric gas in a furnace outside by sampling the furnace atmospheric gas CO 2 A sensor and an oxygen sensor for detecting the oxygen concentration in the furnace atmosphere gas in the furnace are provided, and the introduction of the enriched gas is started during the rise of the furnace temperature, and the enriched gas is in controlling the introduction amount, the carbon potential CP 1 apparent calculated based on the CO 2 concentration measured by the CO 2 sensor, is calculated based on the oxygen concentration measured by the oxygen sensor Apparent carbon potential C
The difference (CP 2 −CP 1 ) from P 2 is determined, and the difference (CP 2 −C
The gas carburizing method is characterized in that the flow rate of the enriched gas is adjusted so that P 1 ) approaches a predetermined value.

【0009】本発明において最も注目すべきことは,上
記エンリッチガスの導入を炉内温度が浸炭温度まで達し
ていない昇温途中において開始し,かつ,上記2つの異
なるセンサの検出値から2つの見掛け上のカーボンポテ
ンシャルCP1,CP2を求め,これらの差(CP2−C
1)を用いて上記エンリッチガスの流量を制御するこ
とである。
It is most remarkable in the present invention that the introduction of the enriched gas is started in the middle of the temperature increase in which the furnace temperature has not reached the carburizing temperature, and two apparent values are detected from the two different sensors. The above carbon potentials CP 1 and CP 2 are obtained, and their difference (CP 2 −C
P 1 ) to control the flow rate of the enriched gas.

【0010】上記CO2センサは,上記のごとく,炉内
雰囲気ガスをサンプリングして炉外においてCO2濃度
を測定するように構成されている。これにより,上記C
2センサは,炉内の煤発生傾向等に左右されることな
く,比較的精度良くCO2濃度を測定することができ
る。そのため,上記CO2濃度から算出したカーボンポ
テンシャルCP1の値は,炉内の煤発生傾向等にあまり
影響されない値として得られる。
As described above, the CO 2 sensor is configured to sample the atmosphere gas in the furnace and measure the CO 2 concentration outside the furnace. Thereby, the above C
The O 2 sensor can relatively accurately measure the CO 2 concentration without being affected by the tendency of soot generation in the furnace. Therefore, the value of the carbon potential CP 1 calculated from the CO 2 concentration is obtained as much unaffected values in soot generation tendency like in the furnace.

【0011】一方,上記酸素センサは,上記のごとく,
炉内に設置され,炉内雰囲気ガスに直接触れた状態でそ
の中の酸素濃度を測定する。そのため,上記酸素センサ
は,炉内の煤発生傾向等により比較的大きな影響を受け
る。したがって,上記酸素濃度から算出したカーボンポ
テンシャルCP2の値は,炉内の煤発生傾向等の影響を
受けた値となる。
On the other hand, the oxygen sensor is, as described above,
It is installed in a furnace and measures the oxygen concentration in the furnace while directly touching the atmosphere gas. Therefore, the oxygen sensor is relatively greatly affected by soot generation tendency in the furnace. Therefore, the value of the carbon potential CP 2 calculated from the oxygen concentration is a value affected by the soot generation trends such in the furnace.

【0012】このように,上記2種類のカーボンポテン
シャルCP1,CP2は,計算の基礎となるデータの対象
が異なるだけでなく,炉内状態から受ける影響度が異な
る。そのため,上記浸炭炉内における煤発生傾向等が変
化した場合には,上記CP1とCP2との間に大きな差が
生ずる。
As described above, the two types of carbon potentials CP 1 and CP 2 not only have different data targets as the basis for calculation, but also have different degrees of influence from the state in the furnace. Therefore, if the soot generating trends, etc. in the carburizing furnace is changed, a large difference between the CP 1 and CP 2 is generated.

【0013】具体的には,炉内において煤が発生しやす
い状態となると,上記酸素濃度から求めたカーボンポテ
ンシャルCP2が上記CO2濃度から求めたカーボンポテ
ンシャルCP1よりも大きくなる傾向がある。即ち,炉
内における煤発生傾向が高まった場合には,上記2つの
カーボンポテンシャルの差(CP2−CP1)が大きくな
る傾向がある。
[0013] Specifically, when the soot is a state likely to occur in a furnace, the carbon potential CP 2 obtained from the oxygen concentration tends to be larger than the carbon potential CP 1 obtained from the CO 2 concentration. That is, when the tendency of soot generation in the furnace increases, the difference (CP 2 -CP 1 ) between the two carbon potentials tends to increase.

【0014】この特性を利用して,上記2つのカーボン
ポテンシャルの差(CP2−CP1)が煤の発生を抑制し
うる所定値に近づくようにエンリッチガスの導入量を制
御すれば,炉内での煤発生を抑制することができる。こ
こで,上記所定値は,炉内において煤の発生を抑制しう
る値である。例えば,炉内において煤の発生を抑制しう
る最大値よりも若干小さい値等を採用することができ
る。
By utilizing this characteristic, if the amount of enriched gas introduced is controlled so that the difference between the two carbon potentials (CP 2 -CP 1 ) approaches a predetermined value that can suppress the generation of soot, the furnace interior Soot generation can be suppressed. Here, the predetermined value is a value that can suppress the generation of soot in the furnace. For example, a value slightly smaller than the maximum value that can suppress the generation of soot in the furnace can be adopted.

【0015】また,上記エンリッチガスの導入量の制御
方法としては,種々の方法がある。例えば,差(CP2
−CP1)の上記所定値を制御目標値とし,いわゆるオ
ン・オフ制御,あるいはPID制御等によりエンリッチ
ガスの流量を調整する方法等がある。
There are various methods for controlling the amount of the enriched gas introduced. For example, the difference (CP 2
−CP 1 ) is a control target value, and there is a method of adjusting the flow rate of the enriched gas by so-called on / off control, PID control, or the like.

【0016】次に,本発明の作用効果につき説明する。
本発明においては,上記のごとく,2つの異なるセンサ
の検出値から2つの見掛け上のカーボンポテンシャルC
1,CP2を求め,これらの差(CP2−CP1)が上記
所定値に近づくように上記エンリッチガスの流量を制御
する。そのため,炉内において煤を発生させることなく
適量のエンリッチガスを導入することができる。
Next, the operation and effect of the present invention will be described.
In the present invention, as described above, two apparent carbon potentials C are obtained from the detection values of two different sensors.
P 1 and CP 2 are obtained, and the flow rate of the enriched gas is controlled so that the difference (CP 2 −CP 1 ) approaches the predetermined value. Therefore, an appropriate amount of enriched gas can be introduced without generating soot in the furnace.

【0017】そして,この制御方法は,炉内温度が低い
昇温中においても適用することができる。そのため,炉
内温度の昇温中においても,煤が発生しない程度の適量
のエンリッチガスを炉内に導入することができ,カーボ
ンポテンシャルを適度に高めることができる。それ故,
従来浸炭ができなかった炉内温度の昇温中において浸炭
を開始することができ,浸炭完了時間を従来よりも早め
ることができる。
This control method can be applied even when the temperature inside the furnace is low. Therefore, even during the temperature rise in the furnace, an appropriate amount of enriched gas that does not generate soot can be introduced into the furnace, and the carbon potential can be appropriately increased. Therefore,
Carburizing can be started during the temperature increase in the furnace where carburizing was not possible in the past, and the carburizing completion time can be made earlier than before.

【0018】したがって,本発明によれば,炉内温度が
処理温度よりも低い状態であっても煤を発生させること
なく適量のエンリッチガスを導入することができ,効率
よく浸炭を行うことができるガス浸炭方法を提供するこ
とができる。
Therefore, according to the present invention, even when the furnace temperature is lower than the processing temperature, an appropriate amount of enriched gas can be introduced without generating soot, and carburizing can be performed efficiently. A gas carburizing method can be provided.

【0019】次に,請求項2の発明のように,上記CO
2センサは,赤外線吸収法によりCO2濃度を測定するよ
う構成することができる。赤外線吸収法は,分子の固有
振動よりある特定の波長の赤外線が吸収されることを利
用しているので,定量分析及びその自動化が容易であ
る。そのため,上記CO2濃度の測定を精度良くかつ容
易に行うことができる。
Next, according to the present invention, the CO
2 sensor can be configured to measure the CO 2 concentration by the infrared absorption method. The infrared absorption method utilizes the fact that an infrared ray having a specific wavelength is absorbed from the intrinsic vibration of a molecule, so that quantitative analysis and its automation are easy. Therefore, the measurement of the CO 2 concentration can be performed accurately and easily.

【0020】また,請求項3の発明のように,上記酸素
センサは,炉内雰囲気ガス中の酸素分圧と標準ガス中の
酸素分圧との差により発生する起電力を利用して測定す
るよう構成することができる。この起電力を利用する原
理は,公知のネルンストの式により示される。また,上
記方式の酸素センサとしては,例えば固体電解質として
ジルコニアを用いたジルコニア式センサ等がある。
According to a third aspect of the present invention, the oxygen sensor measures an electromotive force generated by a difference between an oxygen partial pressure in a furnace atmosphere gas and an oxygen partial pressure in a standard gas. It can be configured as follows. The principle of using this electromotive force is shown by the known Nernst equation. Examples of the oxygen sensor of the above-mentioned type include a zirconia sensor using zirconia as a solid electrolyte.

【0021】また,請求項4の発明のように,上記エン
リッチガスの導入は,上記浸炭炉の炉内温度が所定温度
を越えたときに開始することが好ましい。上記所定温度
としては,例えば浸炭の進行を速めることができる温度
に設定することができる。具体的には700℃以上の温
度とすることが好ましい。これにより,浸炭の進行の効
率を向上することができる。
It is preferable that the enriched gas is introduced when the temperature in the carburizing furnace exceeds a predetermined temperature. The predetermined temperature can be set, for example, to a temperature at which the progress of carburizing can be accelerated. Specifically, the temperature is preferably set to 700 ° C. or higher. Thereby, the efficiency of the progress of carburizing can be improved.

【0022】また,請求項5の発明のように,上記CP
1及びCP2は,下記の関係式(I)(II)により表すこ
とができる。 CP1=(As・Pco2)/Pco2・K1.......(I), CP2=(As・Pco)/Po2 1/2・K2.......(II), As:処理温度におけるオーステナイト中の飽和炭素濃
度(mass%), Pco:エンリッチガス組成より算出した一酸化炭素の分
圧, Pco2:測定された二酸化炭素の分圧, Po2:測定された酸素の分圧, K1:<C>+CO2=2COの平衡定数, K2:<C>+(1/2)O2=COの平衡定数, <C>:被処理材中に固溶したC,
Further, according to the invention of claim 5, the CP
1 and CP 2 can be represented by the following relational expressions (I) and (II). CP 1 = (As · Pco 2 ) / Pco 2 · K 1 . . . . . . . (I), CP 2 = (As · Pco) / Po 2 1/2 · K 2 . . . . . . . (II), As: saturated carbon concentration (mass%) in austenite at the treatment temperature, Pco: partial pressure of carbon monoxide calculated from the composition of enriched gas, Pco 2 : measured partial pressure of carbon dioxide, Po 2 : The measured partial pressure of oxygen, K 1 : equilibrium constant of <C> + CO 2 = 2CO, K 2 : equilibrium constant of <C> + (1 /) O 2 = CO, <C>: in the material to be treated C dissolved in

【0023】上記(I)(II)の関係式を用いることに
より,カーボンポテンシャルの算出精度を向上させるこ
とができる。なお,上記(I)(II)の関係式中におけ
る上記As,K1,K2は,下記の関係式により表すこと
ができる。 As=0.23290−5.6957×10-4(T−273)+1.8830×
10-6(T−273)2, K1=exp{(170707−174.473T)/(−8.3144
T)}, K2=exp{(111713+87.6548T)/8.3144T}, ここでTは処理温度である。
By using the relational expressions (I) and (II), the calculation accuracy of the carbon potential can be improved. Note that As, K 1 , and K 2 in the above relational expressions (I) and (II) can be expressed by the following relational expressions. As = 0.23290-5.6957 x 10-4 (T-273) + 1.8830 x
10 −6 (T−273) 2 , K 1 = exp {(170707−174.473T) / (− 8.3144
T)}, K2 = exp {(111713 + 87.6548T) /8.3144T}, where T is the processing temperature.

【0024】また,請求項6の発明のように,上記エン
リッチガスは天然ガスであることが好ましい。天然ガス
は,一般にエンリッチガスとして利用されているブタン
ガスよりも煤が出にくい性質があり,さらに煤発生抑制
効果を高めることができる。
Also, as in the invention of claim 6, the enriched gas is preferably natural gas. Natural gas is less likely to emit soot than butane gas, which is generally used as enriched gas, and can further enhance the soot generation suppression effect.

【0025】[0025]

【発明の実施の形態】実施形態例 本発明の実施形態例にかかるガス浸炭方法につき,図1
〜図3を用いて説明する。本例のガス浸炭方法は,浸炭
炉1の炉内に被処理材8を送入し,次いで,炉内温度を
浸炭温度(約930℃)まで昇温すると共にエンリッチ
ガス7を炉内に導入してカーボンポテンシャルを上昇さ
せて上記被処理材8に浸炭を施す方法である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment FIG. 1 shows a gas carburizing method according to an embodiment of the present invention.
This will be described with reference to FIG. In the gas carburizing method of this example, the material 8 to be treated is fed into the furnace of the carburizing furnace 1, and then the furnace temperature is raised to the carburizing temperature (about 930 ° C.) and the enriched gas 7 is introduced into the furnace. Then, the carbon potential is raised to carburize the workpiece 8.

【0026】上記浸炭炉1には,図1に示すごとく,炉
内雰囲気ガスをサンプリングして炉外において該炉内雰
囲気ガス中のCO2濃度を検出するCO2センサ2と,炉
内において上記炉内雰囲気ガス中の酸素濃度を検出する
酸素センサ3とを設けておく。そしてエンリッチガス7
の導入は上記炉内温度の昇温中に開始し,かつ,上記エ
ンリッチガス7の導入量を制御するに当たっては,上記
CO2センサ2により測定したCO2濃度を基に算出した
見掛け上のカーボンポテンシャルCP1と,上記酸素セ
ンサ3により測定した酸素濃度を基に算出した見掛け上
のカーボンポテンシャルCP2との差(CP2−CP1
を求め,差(CP2−CP1)が所定値Mに近づくように
上記エンリッチガス7の流量を調整する。
As shown in FIG. 1, the carburizing furnace 1 has a CO 2 sensor 2 for sampling the atmosphere gas in the furnace and detecting the CO 2 concentration in the atmosphere gas inside the furnace outside the furnace. An oxygen sensor 3 for detecting the oxygen concentration in the furnace atmosphere gas is provided. And enriched gas 7
Introduction begins during heating of the furnace temperature, and, in controlling the introduction amount of the enriched gas 7 carbon apparent calculated based on the CO 2 concentration measured by the CO 2 sensor 2 a potential CP 1, the difference between the carbon potential CP 2 apparent that calculated based on the oxygen concentration measured by the oxygen sensor 3 (CP 2 -CP 1)
And the flow rate of the enriched gas 7 is adjusted so that the difference (CP 2 −CP 1 ) approaches the predetermined value M.

【0027】以下,これを詳説する。図1には,本例の
浸炭炉1及びこれが有する設備等を示す。浸炭炉1に
は,上記CO2センサ2及び酸素センサ3を配設した。
CO2センサ2は,上記のごとく炉外に設置してあり,
配管21を介して炉内雰囲気ガスを定期的にサンプリン
グするよう構成されている。また,このCO2センサ2
は,赤外線吸収法を利用したセンサである。
Hereinafter, this will be described in detail. FIG. 1 shows a carburizing furnace 1 of the present embodiment and equipment and the like included therein. The carburizing furnace 1 was provided with the above-mentioned CO 2 sensor 2 and oxygen sensor 3.
The CO 2 sensor 2 is installed outside the furnace as described above,
The atmosphere gas in the furnace is sampled periodically through the pipe 21. In addition, this CO 2 sensor 2
Is a sensor using the infrared absorption method.

【0028】酸素センサ3は,図1に示すごとく,固体
電解質としてのジルコニア31を利用して,炉内雰囲気
ガス中の酸素分圧と大気中の酸素分圧との差により起電
力を発生させ,この起電力から上記炉内雰囲気ガス中の
酸素分圧を算出するよう構成されている。この算出は,
後述の制御部5において行う。また,上記浸炭炉1に
は,温度センサ4が配設されている。この温度センサ4
は,炉内雰囲気ガスの温度(炉内温度)を定期的に測定
する。
As shown in FIG. 1, the oxygen sensor 3 uses zirconia 31 as a solid electrolyte to generate an electromotive force by the difference between the oxygen partial pressure in the furnace atmosphere gas and the oxygen partial pressure in the atmosphere. The apparatus is configured to calculate the oxygen partial pressure in the furnace atmosphere gas from the electromotive force. This calculation is
This is performed in the control unit 5 described later. The carburizing furnace 1 is provided with a temperature sensor 4. This temperature sensor 4
, Periodically measure the temperature of the furnace atmosphere gas (furnace temperature).

【0029】また,上記浸炭炉1は,エンリッチガスと
しての天然ガス(LNG)7を入れたボンベ70に配管
61及び流量コントローラ6を介して接続されている。
流量コントローラ6は,後述の制御部5の指示に従って
天然ガス7の流量を調整するよう構成されている。そし
て,図1に示すごとく,上記CO2センサ2,酸素セン
サ3,温度センサ4,流量コントローラ6は,すべて制
御部5に電気的に接続されている。
The carburizing furnace 1 is connected via a pipe 61 and a flow rate controller 6 to a cylinder 70 containing a natural gas (LNG) 7 as an enriched gas.
The flow rate controller 6 is configured to adjust the flow rate of the natural gas 7 in accordance with an instruction from the control unit 5 described below. As shown in FIG. 1, the CO 2 sensor 2, oxygen sensor 3, temperature sensor 4, and flow controller 6 are all electrically connected to a control unit 5.

【0030】本例では,エンリッチガスの導入量を次の
ように制御する。図2のフローチャートに示すように,
まず,ステップS1において炉内に被処理材8が送入さ
れた後,ステップS2において炉内温度Tが低下した後
に800℃以上となったか否かを判断する。ここでの8
00℃は,浸炭の進行を早めることができる温度の一例
であって,浸炭炉の特徴などによって他の温度に変更す
ることも勿論可能である。
In this embodiment, the amount of enriched gas introduced is controlled as follows. As shown in the flowchart of FIG.
First, after the workpiece 8 is fed into the furnace in step S1, it is determined in step S2 whether or not the furnace temperature T has dropped to 800 ° C. or more after the furnace temperature T decreased. 8 here
The temperature of 00 ° C. is an example of a temperature at which the progress of carburizing can be accelerated, and it is of course possible to change the temperature to another temperature depending on the characteristics of the carburizing furnace.

【0031】炉内温度Tが800℃以上となった場合に
は,ステップS3においてエンリッチガスの導入を開始
する。即ち,上記制御部5は,流量コントローラ6を制
御して,エンリッチガス(天然ガス)7の導入量を最大
とする。
When the furnace temperature T becomes equal to or higher than 800 ° C., introduction of enriched gas is started in step S3. That is, the control unit 5 controls the flow rate controller 6 to maximize the amount of enriched gas (natural gas) 7 introduced.

【0032】次いで,ステップS4においては,上記C
2センサ2からのCO2濃度(Pco 2),酸素センサか
らの酸素濃度(Po2),温度センサからの炉内雰囲気ガ
スの温度(T)を制御部5が定期的に受け取り,これら
の値を基にして定期的にカーボンポテンシャルCP1
CP2を算出する。
Next, in step S4, the above C
OTwoCO from sensor 2TwoConcentration (Pco Two) 、 Oxygen sensor
Oxygen concentration (PoTwo), Furnace atmosphere gas from temperature sensor
The controller 5 periodically receives the temperature (T) of the
Periodically based on the value of1,
CPTwoIs calculated.

【0033】このときの算出は,次の関係式(I)(I
I)により行った。 CP1=(As・Pco2)/Pco2・K1.......(I), CP2=(As・Pco)/Po2 1/2・K2.......(II), As:処理温度におけるオーステナイト中の飽和炭素濃
度(mass%), (As=0.23290−5.6957×10-4(T−273)+1.8830
×10-6(T−273)2), Pco:エンリッチガス組成より算出した一酸化炭素の分
圧, Pco2:測定された二酸化炭素の分圧, Po2:測定された酸素の分圧, K1:<C>+CO2=2COの平衡定数, (K1=exp{(170707−174.473T)/(−8.3144
T)}), K2:<C>+(1/2)O2=COの平衡定数, (K2=exp{(111713+87.6548T)/8.3144T}), <C>:被処理材中に固溶したC, T:炉内温度。
The calculation at this time is performed by the following relational expressions (I) and (I).
I). CP 1 = (As · Pco 2 ) / Pco 2 · K 1 . . . . . . . (I), CP 2 = (As · Pco) / Po 2 1/2 · K 2 . . . . . . . (II), As: Saturated carbon concentration in austenite (mass%) at processing temperature, (As = 0.23290-5.6957 × 10 -4 (T-273) +1.8830
× 10 -6 (T-273) 2 ), Pco: partial pressure of carbon monoxide calculated from the enriched gas composition, Pco 2 : measured partial pressure of carbon dioxide, Po 2 : measured partial pressure of oxygen, K 1 : equilibrium constant of <C> + CO 2 = 2CO, (K 1 = exp {(170707−174.473T) / (− 8.3144)
T)}), K 2 : <C> + (1 /) O 2 = CO equilibrium constant, (K 2 = exp {(111713 + 87.6548T) /8.3144T}), <C>: in the material to be treated C, T dissolved in, T: furnace temperature.

【0034】次に,ステップS5においては,上記CP
1,CP2の差(CP2−CP1)を求め,これが所定値M
以下であるか否かを判断する。本例では,この所定値M
を0.2とした。なお,この所定値Mの値は,浸炭炉の
種類,被処理材の種類等により最適値が異なる。
Next, at step S5, the CP
1, determines the difference between CP 2 (CP 2 -CP 1) , which is a predetermined value M
It is determined whether or not: In this example, the predetermined value M
Was set to 0.2. The optimum value of the predetermined value M differs depending on the type of the carburizing furnace, the type of the material to be treated, and the like.

【0035】上記差(CP2−CP1)が所定値Mを越え
る場合には,ステップS6においてエンリッチガスの流
量を減らす。具体的には,制御部5によって流量コント
ローラ6を制御してエンリッチガスの流量を絞る。流量
の絞り方としては,種々の方法があるが,本例では,完
全に流量を0とした。いわゆるオン・オフ制御である。
一方,ステップS5において差(CP2−CP1)が所定
値M以下である場合には,ステップS7においてエンリ
ッチガスの導入量を最大のまま維持する。
If the difference (CP 2 -CP 1 ) exceeds the predetermined value M, the flow rate of the enriched gas is reduced in step S6. Specifically, the control unit 5 controls the flow rate controller 6 to reduce the flow rate of the enriched gas. There are various methods for restricting the flow rate. In this example, the flow rate is completely set to 0. This is so-called on / off control.
On the other hand, if the difference (CP 2 −CP 1 ) is equal to or less than the predetermined value M in step S5, the amount of enriched gas introduced is maintained at the maximum in step S7.

【0036】本例では,このようなエンリッチガスの流
量制御を行うことにより,上記2つの見掛け上のカーボ
ンポテンシャルの差(CP2−CP1)が所定値Mに近づ
き,炉内における煤の発生を確実に抑制することができ
る。また,そのため,従来煤の発生しやすかった炉内温
度の昇温中においても,エンリッチガスの導入を行うこ
とができる。
In this embodiment, by controlling the flow rate of the enriched gas, the difference between the two apparent carbon potentials (CP 2 -CP 1 ) approaches a predetermined value M, and the generation of soot in the furnace. Can be reliably suppressed. In addition, the enriched gas can be introduced even during the temperature increase in the furnace where the soot is easily generated.

【0037】それ故,従来浸炭ができなかった炉内温度
の昇温中を浸炭時間として有効に利用することができ,
浸炭完了時間を従来よりも早めることができる。これを
図3を用いて説明する。同図は,図4と同様に横軸に時
間,縦軸に温度をとり,炉内温度Tの推移を示すと共に
被処理材送入タイミングA,炉内温度が浸炭温度T0
回復したタイミングB,エンリッチガスの導入を開始し
たタイミングC等を示したものである。
Therefore, it is possible to effectively utilize the time during which the temperature in the furnace, in which carburizing has not been conventionally possible, is increased as the carburizing time.
Carburizing completion time can be made earlier than before. This will be described with reference to FIG. 4, the horizontal axis represents time and the vertical axis represents temperature, similarly to FIG. 4, showing the transition of the furnace temperature T, the timing A at which the material to be treated is fed, and the timing at which the furnace temperature is restored to the carburizing temperature T 0. B, timing C at which the introduction of the enriched gas was started, and the like.

【0038】図3と図4との比較からわかるように,本
例の場合(図3)には,従来の場合(図4)よりもエン
リッチガス導入開始タイミングCが早い。そのため,ト
ータルの浸炭時間(A〜D)は,本例の方が従来よりも
短い。それ故,本例では,浸炭の能率を従来よりも向上
させることができる。一方,上記制御方法を用いること
により,昇温中にエンリッチガスを導入しても炉内での
煤発生を抑制することができる。それ故,被処理材の品
質も十分に良好な状態に維持することができる。
As can be seen from a comparison between FIG. 3 and FIG. 4, the enriched gas introduction start timing C is earlier in the case of this example (FIG. 3) than in the conventional case (FIG. 4). Therefore, the total carburizing time (A to D) is shorter in this example than in the conventional case. Therefore, in this example, the efficiency of carburizing can be improved as compared with the conventional case. On the other hand, by using the above control method, it is possible to suppress the generation of soot in the furnace even if the enriched gas is introduced during the temperature rise. Therefore, the quality of the material to be processed can be maintained in a sufficiently good state.

【0039】なお,本例では,上記エンリッチガスの流
量制御を上記所定値Mを制御目標値としてオン・オフ制
御により行った。これに代えて,いわゆるPID制御等
により行うことも勿論できる。
In this embodiment, the flow control of the enriched gas is performed by on / off control using the predetermined value M as a control target value. Instead of this, it is of course possible to carry out by so-called PID control or the like.

【0040】[0040]

【発明の効果】上述のごとく,本発明によれば,炉内温
度が処理温度よりも低い状態であっても煤を発生させる
ことなく適量のエンリッチガスを導入することができ,
効率よく浸炭を行うことができるガス浸炭方法を提供す
ることができる。
As described above, according to the present invention, an appropriate amount of enriched gas can be introduced without generating soot even when the furnace temperature is lower than the processing temperature.
A gas carburizing method capable of efficiently carburizing can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例における,浸炭炉の構成を示す説明
図。
FIG. 1 is an explanatory diagram showing a configuration of a carburizing furnace in an embodiment.

【図2】実施形態例における,エンリッチガスの流量制
御方法を示すフローチャート。
FIG. 2 is a flowchart illustrating a flow control method of an enriched gas in the embodiment.

【図3】実施形態例における,エンリッチガスの導入開
始タイミングを示す説明図。
FIG. 3 is an explanatory diagram showing an enrich gas introduction start timing in the embodiment.

【図4】従来例における,エンリッチガスの導入開始タ
イミングを示す説明図。
FIG. 4 is an explanatory diagram showing the timing of starting introduction of enriched gas in a conventional example.

【符号の説明】[Explanation of symbols]

1...浸炭炉, 2...CO2センサ, 3...酸素センサ, 4...温度センサ, 5...制御部, 6...流量コントローラ, 7...エンリッチガス(天然ガス),1. . . 1. carburizing furnace, . . 2. CO 2 sensor, . . Oxygen sensor, 4. . . Temperature sensor, 5. . . Control section, 6. . . 6. flow controller, . . Enriched gas (natural gas),

───────────────────────────────────────────────────── フロントページの続き (72)発明者 服部 雅夫 愛知県名古屋市熱田区桜田町19番18号 東 邦瓦斯株式会社内 (72)発明者 浅井 広志 愛知県名古屋市熱田区桜田町19番18号 東 邦瓦斯株式会社内 (72)発明者 川瀬 和孝 愛知県名古屋市熱田区桜田町19番18号 東 邦瓦斯株式会社内 (72)発明者 奥宮 正洋 愛知県名古屋市天白区高島1−501シティ ーコーポしまだA302 (72)発明者 恒川 好樹 愛知県岡崎市竜美南2−5−8 (72)発明者 冨田 明君 愛知県名古屋市中川区露橋町16 (72)発明者 滝田 久芳 東京都港区海岸一丁目5番20号 東京瓦斯 株式会社内 (72)発明者 森下 徹 東京都港区海岸一丁目5番20号 東京瓦斯 株式会社内 (72)発明者 大平 晋 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 (72)発明者 佐伯 孝敏 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 Fターム(参考) 4K028 AA01 AC07 AC08  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masao Hattori 19-18, Sakuradacho, Atsuta-ku, Nagoya, Aichi Prefecture Inside Higashi Kokugas Co., Ltd. (72) Inventor Hiroshi Asai 19-18, Sakuradacho, Atsuta-ku, Nagoya, Aichi Prefecture No. Toho Gas Co., Ltd. (72) Inventor Kazutaka Kawase 19-18 Sakuradacho, Atsuta-ku, Nagoya City, Aichi Prefecture Inside Toho Gas Co., Ltd. (72) Inventor Masahiro Okumiya 1-501 City, Takashima, Tenpaku-ku, Nagoya City, Aichi Prefecture -Corp. Shima A302 (72) Inventor Yoshiki Tsunekawa 2-5-8 Tatsumi Minami, Okazaki City, Aichi Prefecture (72) Inventor Akira Tomita 16 Dewashi-cho, Nakagawa-ku, Nagoya-shi, Aichi Prefecture (72) Inventor Hisayoshi Takita Minato-ku, Tokyo 1-5-20 Kaigan, Tokyo Gas Co., Ltd. (72) Inventor Toru Morishita 1-5-20 Kaigan, Minato-ku, Tokyo Tokyo Gas Co., Ltd. (72) Inventor Susumu Ohira, Chuo, Osaka 4-1-2 Hirano-cho, Ward, Osaka Gas Co., Ltd. (72) Inventor Takatoshi Saeki 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi F-term in Osaka Gas Co., Ltd. 4K028 AA01 AC07 AC08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 浸炭炉の炉内に被処理材を送入し,次い
で,炉内温度を浸炭温度まで昇温すると共にエンリッチ
ガスを炉内に導入してカーボンポテンシャルを上昇させ
て上記被処理材に浸炭を施すガス浸炭方法において,上
記浸炭炉には,炉内雰囲気ガスをサンプリングして炉外
において該炉内雰囲気ガス中のCO2濃度を検出するC
2センサと,炉内において上記炉内雰囲気ガス中の酸
素濃度を検出する酸素センサとを設けておき,上記エン
リッチガスの導入は上記炉内温度の昇温中に開始し,か
つ,上記エンリッチガスの導入量を制御するに当たって
は,上記CO2センサにより測定したCO2濃度を基に算
出した見掛け上のカーボンポテンシャルCP1と,上記
酸素センサにより測定した酸素濃度を基に算出した見掛
け上のカーボンポテンシャルCP2との差(CP2−CP
1)を求め,差(CP2−CP1)が所定値に近づくよう
に上記エンリッチガスの流量を調整することを特徴とす
るガス浸炭方法。
1. A material to be treated is fed into a furnace of a carburizing furnace, and then the temperature in the furnace is raised to the carburizing temperature and enriched gas is introduced into the furnace to increase the carbon potential to increase the carbon potential. In the gas carburizing method for carburizing a material, the carburizing furnace is provided with a C for detecting a CO 2 concentration in the furnace atmosphere gas outside the furnace by sampling a furnace atmosphere gas.
An O 2 sensor and an oxygen sensor for detecting the oxygen concentration in the atmosphere gas in the furnace in the furnace are provided, and the introduction of the enriched gas is started during the temperature rise in the furnace, and the enriched gas is in controlling the amount of introduced gas, the carbon potential CP 1 apparent calculated based on the CO 2 concentration measured by the CO 2 sensor, apparent calculated based on the oxygen concentration measured by the oxygen sensor Difference from carbon potential CP 2 (CP 2 -CP
1 ) is determined, and the flow rate of the enriched gas is adjusted so that the difference (CP 2 −CP 1 ) approaches a predetermined value.
【請求項2】 請求項1において,上記CO2センサ
は,赤外線吸収法によりCO2濃度を測定するよう構成
されていることを特徴とするガス浸炭方法。
2. The gas carburizing method according to claim 1, wherein the CO 2 sensor is configured to measure a CO 2 concentration by an infrared absorption method.
【請求項3】 請求項1又は2において,上記酸素セン
サは,炉内雰囲気ガス中の酸素分圧と標準ガス中の酸素
分圧との差により発生する起電力を利用して測定するよ
う構成されていることを特徴とするガス浸炭方法。
3. The oxygen sensor according to claim 1, wherein the oxygen sensor measures an electromotive force generated by a difference between a partial pressure of oxygen in a furnace atmosphere gas and a partial pressure of oxygen in a standard gas. A gas carburizing method characterized by being performed.
【請求項4】 請求項1〜3のいずれか1項において,
上記エンリッチガスの導入は,上記浸炭炉の炉内温度が
所定温度を越えたときに開始することを特徴とするガス
浸炭方法。
4. The method according to claim 1, wherein:
A gas carburizing method characterized in that the introduction of the enriched gas is started when the temperature inside the carburizing furnace exceeds a predetermined temperature.
【請求項5】 請求項1〜4のいずれか1項において,
上記CP1及びCP2は,下記の関係式, CP1=(As・Pco2)/Pco2・K1, CP2=(As・Pco)/Po2 1/2・K2, As:処理温度におけるオーステナイト中の飽和炭素濃
度(mass%), Pco:エンリッチガス組成より算出した一酸化炭素の分
圧, Pco2:測定された二酸化炭素の分圧, Po2:測定された酸素の分圧, K1:<C>+CO2=2COの平衡定数, K2:<C>+(1/2)O2=COの平衡定数, <C>:被処理材中に固溶したC,により表されること
を特徴とするガス浸炭方法。
5. The method according to claim 1, wherein:
The CP 1 and CP 2 are the relationship:, CP 1 = (As · Pco 2) / Pco 2 · K 1, CP 2 = (As · Pco) / Po 2 1/2 · K 2, As: treatment Saturated carbon concentration in austenite (mass%) at temperature, Pco: partial pressure of carbon monoxide calculated from enriched gas composition, Pco 2 : measured partial pressure of carbon dioxide, Po 2 : measured partial pressure of oxygen , K 1 : equilibrium constant of <C> + CO 2 = 2CO, K 2 : equilibrium constant of <C> + (1/2) O 2 = CO, <C>: C dissolved in the material to be treated A gas carburizing method characterized by being represented.
【請求項6】 請求項1〜5のいすれか1項において,
上記エンリッチガスは天然ガスであることを特徴とする
ガス浸炭方法。
6. The method according to claim 1, wherein:
A gas carburizing method, wherein the enriched gas is natural gas.
JP14363999A 1999-05-24 1999-05-24 Gas carburizing method Expired - Fee Related JP3973795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14363999A JP3973795B2 (en) 1999-05-24 1999-05-24 Gas carburizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14363999A JP3973795B2 (en) 1999-05-24 1999-05-24 Gas carburizing method

Publications (2)

Publication Number Publication Date
JP2000328224A true JP2000328224A (en) 2000-11-28
JP3973795B2 JP3973795B2 (en) 2007-09-12

Family

ID=15343459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14363999A Expired - Fee Related JP3973795B2 (en) 1999-05-24 1999-05-24 Gas carburizing method

Country Status (1)

Country Link
JP (1) JP3973795B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013136A (en) * 2001-07-04 2003-01-15 Toho Gas Co Ltd Method for controlling heat treatment atmosphere
JP2003073730A (en) * 2001-09-07 2003-03-12 Toho Gas Co Ltd Method for controlling heat treatment atmosphere
JP2003073798A (en) * 2001-09-07 2003-03-12 Toho Gas Co Ltd Method for controlling carburization atmosphere
JP2010037597A (en) * 2008-08-05 2010-02-18 Chino Corp Carbon potential operational equipment
JP2010189686A (en) * 2009-02-17 2010-09-02 Dowa Thermotech Kk Method for nitriding iron group element-based alloy
CN105200368A (en) * 2015-09-11 2015-12-30 北京北方车辆集团有限公司 Controlled-atmosphere thermal treatment furnace carbon potential and temperature control system online calibration method
CN105886998A (en) * 2015-02-13 2016-08-24 加特可株式会社 Vacuum carburizing method and vacuum carburizing device
KR102686148B1 (en) 2019-10-15 2024-07-17 간토 야낀 고교 가부시키가이샤 Heat treatment furnace, its control method, information processing device, information processing method and program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151517A (en) * 2015-02-18 2016-08-22 新栄熱計装株式会社 Carbon potential calculation device
JP7086481B2 (en) * 2018-12-14 2022-06-20 ジヤトコ株式会社 Continuous carburizing furnace

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716164A (en) * 1980-06-30 1982-01-27 Oriental Eng Kk Gas cementation treatment
JPS57177969A (en) * 1981-04-23 1982-11-01 Chugai Ro Kogyo Kaisha Ltd Controlling method for carbon potential in furnace
JPS6029461A (en) * 1983-07-29 1985-02-14 Tokyo Netsu Shiyori Kogyo Kk Controlling method of carburizing atmosphere for batch type carburizing furnace
JPS63199859A (en) * 1987-02-16 1988-08-18 Nippon Denso Co Ltd Automatic heat-treating device for steel
JPS6447843A (en) * 1987-08-17 1989-02-22 Daido Steel Co Ltd Fluidized bed heat treating method and apparatus thereof
JPH03291368A (en) * 1990-04-06 1991-12-20 Nippon Seiko Kk Vacuum carburizing method and vacuum carburizing furnace
JPH06279981A (en) * 1993-03-30 1994-10-04 Dowa Mining Co Ltd Method for carburizing steel parts to high carbon state with gas
JPH07173602A (en) * 1993-05-26 1995-07-11 Skf Ind Trading Dev Co Bv Method of carbonitriding steel, and rolling bearing made of this steel
JPH10226871A (en) * 1997-02-18 1998-08-25 Dowa Mining Co Ltd Method and device for controlling atmosphere in heat treatment furnace

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716164A (en) * 1980-06-30 1982-01-27 Oriental Eng Kk Gas cementation treatment
JPS57177969A (en) * 1981-04-23 1982-11-01 Chugai Ro Kogyo Kaisha Ltd Controlling method for carbon potential in furnace
JPS6029461A (en) * 1983-07-29 1985-02-14 Tokyo Netsu Shiyori Kogyo Kk Controlling method of carburizing atmosphere for batch type carburizing furnace
JPS63199859A (en) * 1987-02-16 1988-08-18 Nippon Denso Co Ltd Automatic heat-treating device for steel
JPS6447843A (en) * 1987-08-17 1989-02-22 Daido Steel Co Ltd Fluidized bed heat treating method and apparatus thereof
JPH03291368A (en) * 1990-04-06 1991-12-20 Nippon Seiko Kk Vacuum carburizing method and vacuum carburizing furnace
JPH06279981A (en) * 1993-03-30 1994-10-04 Dowa Mining Co Ltd Method for carburizing steel parts to high carbon state with gas
JPH07173602A (en) * 1993-05-26 1995-07-11 Skf Ind Trading Dev Co Bv Method of carbonitriding steel, and rolling bearing made of this steel
JPH10226871A (en) * 1997-02-18 1998-08-25 Dowa Mining Co Ltd Method and device for controlling atmosphere in heat treatment furnace

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013136A (en) * 2001-07-04 2003-01-15 Toho Gas Co Ltd Method for controlling heat treatment atmosphere
JP2003073730A (en) * 2001-09-07 2003-03-12 Toho Gas Co Ltd Method for controlling heat treatment atmosphere
JP2003073798A (en) * 2001-09-07 2003-03-12 Toho Gas Co Ltd Method for controlling carburization atmosphere
JP2010037597A (en) * 2008-08-05 2010-02-18 Chino Corp Carbon potential operational equipment
JP2010189686A (en) * 2009-02-17 2010-09-02 Dowa Thermotech Kk Method for nitriding iron group element-based alloy
CN105886998A (en) * 2015-02-13 2016-08-24 加特可株式会社 Vacuum carburizing method and vacuum carburizing device
CN105886998B (en) * 2015-02-13 2020-12-11 加特可株式会社 Vacuum carburization method and vacuum carburization apparatus
CN105200368A (en) * 2015-09-11 2015-12-30 北京北方车辆集团有限公司 Controlled-atmosphere thermal treatment furnace carbon potential and temperature control system online calibration method
KR102686148B1 (en) 2019-10-15 2024-07-17 간토 야낀 고교 가부시키가이샤 Heat treatment furnace, its control method, information processing device, information processing method and program

Also Published As

Publication number Publication date
JP3973795B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
JP2000328224A (en) Gas carburization method
US20090253090A1 (en) System for controlling atmosphere gas inside furnace
JPS57177969A (en) Controlling method for carbon potential in furnace
JP3409236B2 (en) Atmosphere control method of heat treatment furnace
KR20210058810A (en) Surface hardening treatment device and surface hardening treatment method
Kaspersma et al. Carburization of iron by CO-based mixtures in nitrogen at 925 C
US9109277B2 (en) Method and apparatus for heat treating a metal
JP4292280B2 (en) Carburizing method
JP2006063389A (en) Continuous carburizing furnace and continuous carburizing method
GB2066301A (en) Process for carburising or heating of steel workpieces in a protective atmosphere
JP2003013136A (en) Method for controlling heat treatment atmosphere
JPS63199859A (en) Automatic heat-treating device for steel
JPH10226870A (en) Method and device for controlling atmosphere in heat treatment furnace
JP5024647B2 (en) Vacuum carburizing quality control method and vacuum carburizing furnace
JPH0645867B2 (en) Atmosphere heat treatment control device
JP2003073730A (en) Method for controlling heat treatment atmosphere
JPS5713169A (en) Method for controlling concentration of carbon in carburizing atmosphere
JP3949059B2 (en) Heat treatment furnace atmosphere control device
JP5390139B2 (en) Carbon potential calculation device
JPS6372821A (en) Treatment of metal
JP2004294330A (en) Zirconia oxygen sensor
JP2003073798A (en) Method for controlling carburization atmosphere
JP3301598B2 (en) Gas carburizing method
RU2037529C1 (en) Method to control metal temperature in converter
JP2020196943A (en) Gas carburizing method and gas carburizing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160622

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees