JP2016151517A - Carbon potential calculation device - Google Patents

Carbon potential calculation device Download PDF

Info

Publication number
JP2016151517A
JP2016151517A JP2015029840A JP2015029840A JP2016151517A JP 2016151517 A JP2016151517 A JP 2016151517A JP 2015029840 A JP2015029840 A JP 2015029840A JP 2015029840 A JP2015029840 A JP 2015029840A JP 2016151517 A JP2016151517 A JP 2016151517A
Authority
JP
Japan
Prior art keywords
value
unit
detected
concentration
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015029840A
Other languages
Japanese (ja)
Inventor
之溥 杉本
Yukihiro Sugimoto
之溥 杉本
蔵 耳塚
Kura Mimizuka
蔵 耳塚
康男 小出
Yasuo Koide
康男 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISSODEN KOGYO KK
SHINEI NETSUKEISO KK
Chino Corp
Original Assignee
NISSODEN KOGYO KK
SHINEI NETSUKEISO KK
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISSODEN KOGYO KK, SHINEI NETSUKEISO KK, Chino Corp filed Critical NISSODEN KOGYO KK
Priority to JP2015029840A priority Critical patent/JP2016151517A/en
Publication of JP2016151517A publication Critical patent/JP2016151517A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a calculation device in which abnormality such as sensor degradation occurred in oxygen sensors for detecting Oconcentration of atmosphere inside a furnace is detected.SOLUTION: The carbon potential calculation device comprises: a setting unit 20 that sets an input upper limit value of the Oconcentration to be detected by a sensor unit 10; a plurality of oxygen sensors 11 (first oxygen sensor 11a, second oxygen sensor 11b) that detect the Oconcentration of the atmosphere inside the furnace; and a determination unit 40 that compares a deviation difference which is a difference value of the Oconcentration detected by each of the oxygen sensors 11a, 11b, or a deviation difference which is a difference value of a CP value calculated using the Oconcentration detected by the oxygen sensors 11a, 11b, with an abnormality determination threshold stored in a storage unit 50, and determines that the oxygen sensor 11 has degraded when the deviation difference exceeds the abnormality determination threshold, and outputs an abnormal signal.SELECTED DRAWING: Figure 1

Description

本発明は、例えば浸炭炉や浸炭窒化炉などの熱処理炉内のO2 濃度に基づき炉内雰囲気のカーボンポテンシャル(CP値)を算出するカーボンポテンシャル算出装置に関するものである。 The present invention relates to a carbon potential calculation device that calculates a carbon potential (CP value) of an atmosphere in a furnace based on an O 2 concentration in a heat treatment furnace such as a carburizing furnace or a carbonitriding furnace.

従来より、調質処理を施した鋼材は、強度と靱性との組合せの点で著しく優れているが、耐摩耗性は浸炭焼入れ処理したものに比較して劣り、また繰返し応力による疲労破壊が問題となる部品では疲労亀裂が表面近傍から生ずる関係上、表面における強度が重要となる。そこで、このような観点から、通常、耐摩耗性や疲労破壊に対する強度が必要な品物に対する表面硬化処理として、ガス浸炭法が知られている。   Conventionally, tempered steel is remarkably superior in terms of the combination of strength and toughness, but its wear resistance is inferior to that of carburized and quenched, and fatigue failure due to repeated stress is a problem. In such a component, the strength at the surface is important because fatigue cracks are generated near the surface. Therefore, from this point of view, a gas carburizing method is generally known as a surface hardening treatment for an article that requires strength against wear resistance and fatigue fracture.

ガス浸炭法とは、熱処理炉(連続式ガス浸炭炉或いはバッチ式ガス浸炭炉)内において、炭化水素系ガスと空気との混合ガスを原料として吸熱型変成ガス発生炉又は発熱型ガス変成炉を用いて変成することで得られる変成ガス(エンドサーミックガス)をキャリアガスとし、このキャリアガスと共に所定のカーボンポテンシャルを得るためのエンリッチガス(プロパンやブタンなどの炭化水素系ガス)を浸炭室内に供給して浸炭処理する方法であり、浸炭室内雰囲気を構成するガス成分の濃度若しくは分圧を測定することで間接的にカーボンポテンシャルを算出し、その結果を基にエンリッチガスの供給量を調節することにより浸炭の制御を行っている。   The gas carburizing method is a heat treatment furnace (continuous gas carburizing furnace or batch type gas carburizing furnace) that uses a mixed gas of hydrocarbon-based gas and air as a raw material for an endothermic or gas-generating furnace. Using the modified gas (endthermic gas) obtained by modification using the carrier gas as a carrier gas, an enriched gas (hydrocarbon gas such as propane or butane) for supplying a predetermined carbon potential is supplied into the carburizing chamber together with the carrier gas. The carbon potential is indirectly calculated by measuring the concentration or partial pressure of the gas components that make up the carburizing room atmosphere, and the amount of enriched gas supplied is adjusted based on the result. Carburization is controlled by this.

そして、熱処理炉内におけるエンリッチガスの適切な供給量制御を行うため、炉内雰囲気ガス中のCO2 濃度をCO2 センサで検出し、このCO2 濃度を基にカーボンポテンシャル(Carbon Potential、以下、単に「CP値」という)を算出するカーボンポテンシャル算出装置が知られている(詳細は下記特許文献1を参照)。 Then, for proper supply amount control of enriched gas in the heat treatment furnace, the CO 2 concentration in the furnace atmosphere gas detected by the CO 2 sensor, carbon potential (Carbon Potential Based on this CO 2 concentration, or less, There is known a carbon potential calculation device that simply calculates a “CP value” (refer to Patent Document 1 below for details).

特許第3973795号Japanese Patent No. 3973795

しかしながら、特許文献1の装置を含む従来のカーボンポテンシャル算出装置に使用されるCO2 センサは、濃度検出方法として赤外線吸収法を利用しているため、CO2 濃度を検出するまでに時間を要するという問題がある。従って、CP値を算出する際に使用するCO2 濃度は、検出直後から所定時間遅延した値となってしまうため、炉内雰囲気中のCP値をリアルタイムに観測することができなかった。 However, since the CO 2 sensor used in the conventional carbon potential calculation device including the device of Patent Document 1 uses the infrared absorption method as the concentration detection method, it takes time to detect the CO 2 concentration. There's a problem. Therefore, since the CO 2 concentration used for calculating the CP value is a value delayed for a predetermined time immediately after detection, the CP value in the furnace atmosphere could not be observed in real time.

また、CO2 センサは非常に高価であるため、例えば熱処理炉が連続式である場合、炉内における各処理ゾーン(予熱ゾーン、浸炭ゾーン、拡散ゾーン、降温・保持ゾーン、焼入ゾーン)に赤外線検出部を設置し、各赤外線検出部からの入力電圧をその都度切り替えて検出処理をしているため、炉内雰囲気中で検出したCO2 濃度が知得されるまでの時間がさらに遅延してしまうという問題があった。 Further, since the CO 2 sensor is very expensive, for example, when the heat treatment furnace is a continuous type, each treatment zone (preheating zone, carburizing zone, diffusion zone, temperature drop / holding zone, quenching zone) in the furnace is infrared. Since the detection unit is installed and the input voltage from each infrared detection unit is switched each time and detection processing is performed, the time until the CO 2 concentration detected in the furnace atmosphere is known is further delayed. There was a problem that.

そこで、本発明は上記問題点に鑑みてなされたものであり、測定対象となる熱処理炉内のCP値をリアルタイムに近い状態で算出することのできるカーボンポテンシャル算出装置を提供することを目的とするものである。   Accordingly, the present invention has been made in view of the above problems, and an object thereof is to provide a carbon potential calculation device capable of calculating a CP value in a heat treatment furnace to be measured in a state close to real time. Is.

上記した目的を達成するために、請求項1記載のカーボンポテンシャル算出装置は、熱処理炉に設置されたセンサ部によって検出された炉内雰囲気中のO2 濃度、CO濃度、温度に基づき前記炉内雰囲気のカーボンポテンシャル(CP値)を算出するカーボンポテンシャル算出装置において、
前記炉内雰囲気を検出する酸素センサを2つ有するセンサ部と、
予め設定された固定値であるCO濃度と、前記センサ部で検出したO2 濃度を用いてCP値を算出する算出処理部と、
を備えたことを特徴とする。
In order to achieve the above object, the carbon potential calculating apparatus according to claim 1 is based on the O 2 concentration, CO concentration, and temperature in the furnace atmosphere detected by a sensor unit installed in the heat treatment furnace. In the carbon potential calculation device for calculating the carbon potential (CP value) of the atmosphere,
A sensor unit having two oxygen sensors for detecting the atmosphere in the furnace;
A calculation processing unit that calculates a CP value using a CO concentration that is a preset fixed value and an O 2 concentration detected by the sensor unit;
It is provided with.

請求項2記載のカーボンポテンシャル算出装置は、請求項1記載のカーボンポテンシャル算出装置において、
前記算出処理部は、前記各酸素センサで検出したO2 濃度に相当する電圧値の偏位差を算出する偏位差算出手段を有し、
前記偏位差算出手段で算出された偏位差が予め設定された異常判定用閾値を超えたときに異常と判定して異常信号を出力する判定部を備えたことを特徴とする。
The carbon potential calculation device according to claim 2 is the carbon potential calculation device according to claim 1,
The calculation processing unit includes deviation difference calculation means for calculating a deviation difference of a voltage value corresponding to the O 2 concentration detected by each oxygen sensor,
It is characterized by comprising a determination unit for determining an abnormality and outputting an abnormality signal when the deviation difference calculated by the deviation difference calculating means exceeds a preset abnormality determination threshold value.

請求項3記載のカーボンポテンシャル算出装置は、請求項1記載のカーボンポテンシャル算出装置において、
前記算出処理部は、前記各酸素センサで検出した2つのO2 濃度に応じてそれぞれ算出したCP値の偏位差を算出する偏位差算出手段を有し、
前記偏位差算出手段で算出した偏位差が予め設定された異常判定用閾値を超えたときに異常と判定して異常信号を出力する判定部を備えたことを特徴とする。
The carbon potential calculation device according to claim 3 is the carbon potential calculation device according to claim 1,
The calculation processing unit includes deviation difference calculation means for calculating a deviation difference between CP values calculated according to two O 2 concentrations detected by the oxygen sensors,
The apparatus includes a determination unit that determines an abnormality and outputs an abnormality signal when the deviation difference calculated by the deviation difference calculation means exceeds a preset abnormality determination threshold value.

請求項4記載のカーボンポテンシャル算出装置は、請求項2又は3記載のカーボンポテンシャル算出装置において、前記判定部から異常信号を入力すると、外部に警報出力を行う警報部を備えたことを特徴とする。   According to a fourth aspect of the present invention, there is provided the carbon potential calculation device according to the second or third aspect, further comprising an alarm unit that outputs an alarm to the outside when an abnormal signal is input from the determination unit. .

本発明のカーボンポテンシャル算出装置によれば、炉内雰囲気の状態を検出するセンサ部として具備される酸素センサはCO2 センサと比べて炉内雰囲気中のガス濃度検出応答性に優れているため、炉内雰囲気中のCP値を算出する際に、よりリアルタイムに近い値を知得することができる。また、各酸素センサで検出したO2 濃度を基に酸素センサの劣化の有無を検出することができるため、酸素センサに劣化が認められたときは即座にメンテナンスを実施することができる。 According to the carbon potential calculation apparatus of the present invention, the oxygen sensor provided as a sensor unit for detecting the state of the furnace atmosphere is superior in gas concentration detection response in the furnace atmosphere as compared to the CO 2 sensor. When calculating the CP value in the furnace atmosphere, a value closer to real time can be obtained. In addition, since it is possible to detect the presence or absence of deterioration of the oxygen sensor based on the O 2 concentration detected by each oxygen sensor, it is possible to perform maintenance immediately when the deterioration of the oxygen sensor is recognized.

本発明に係るカーボンポテンシャル算出装置の構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the carbon potential calculation apparatus which concerns on this invention. 同装置の前面パネルの概略図である。It is the schematic of the front panel of the apparatus.

以下、本発明を実施するための形態について、添付した図面を参照しながら詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではなく、この形態に基づいて当業者などによりなされる実施可能な他の形態、実施例及び運用技術などは全て本発明の範疇に含まれる。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the present invention is not limited by this embodiment, and all other forms, examples, operation techniques, etc. that can be implemented by those skilled in the art based on this form are included in the scope of the present invention. .

本発明のカーボンポテンャル算出装置(以下、単に「CP値算出装置」という)は、測定対象である例えば浸炭炉や浸炭窒化炉などの熱処理炉における炉内雰囲気中のガス濃度や温度などの各種状態を検出して炉内雰囲気中のカーボンポテンシャル(CP値)を算出する装置であり、検出応答性に優れた酸素センサを複数備え、酸素センサで検出したO2 濃度からCP値を算出するとともに、各酸素センサで検出したO2 濃度やこのO2 濃度から算出するCP値の偏位差を利用して酸素センサの劣化の有無を判定している。 The carbon potential calculation device (hereinafter simply referred to as “CP value calculation device”) of the present invention is a measurement target such as a gas concentration or temperature in a furnace atmosphere in a heat treatment furnace such as a carburizing furnace or a carbonitriding furnace. This device detects various conditions and calculates the carbon potential (CP value) in the furnace atmosphere. It has multiple oxygen sensors with excellent detection response, and calculates the CP value from the O 2 concentration detected by the oxygen sensor. At the same time, the presence or absence of deterioration of the oxygen sensor is determined by using the O 2 concentration detected by each oxygen sensor and the deviation difference of the CP value calculated from the O 2 concentration.

まず、本例のCP値算出装置の構成について、図1、2を参照しながら説明する。図1又は図2に示すように、CP値算出装置1は、センサ部10と、設定部20と、算出処理部30と、判定部40と、記憶部50と、表示部60と、警報部70とを備えて構成される。   First, the configuration of the CP value calculation apparatus of this example will be described with reference to FIGS. As shown in FIG. 1 or FIG. 2, the CP value calculation apparatus 1 includes a sensor unit 10, a setting unit 20, a calculation processing unit 30, a determination unit 40, a storage unit 50, a display unit 60, and an alarm unit. 70.

センサ部10は、測定対象となる熱処理炉100における炉内雰囲気中のO2 濃度を電圧値(mV)で検出する複数の酸素センサ11(本例では第1酸素センサ11a、第2酸素センサ11bの2つ)と、炉内雰囲気中の温度(℃)を検出する温度センサ12(本例ではK熱電対、R熱電対、S熱電対の3種)を備え、各センサで検出したO2 濃度や温度値を算出処理部30に出力している。 The sensor unit 10 includes a plurality of oxygen sensors 11 (in this example, a first oxygen sensor 11a and a second oxygen sensor 11b) that detect the O 2 concentration in the furnace atmosphere in the heat treatment furnace 100 to be measured by a voltage value (mV). ) And a temperature sensor 12 (three types of K thermocouple, R thermocouple, and S thermocouple in this example) for detecting the temperature (° C.) in the furnace atmosphere, and O 2 detected by each sensor. The concentration and temperature value are output to the calculation processing unit 30.

なお、図1中では、センサ部10として温度センサ12を1つ具備する構成としているが、酸素センサ11毎に別途設けてもよい。また、図1中では、センサ部10をCP値算出装置1の構成要件として説明しているが、実際には装置と別体でありセンサ部10の検出部分を熱処理炉100の所定箇所に配置した状態でCP値算出装置1との間で電気的に接続されている。   In FIG. 1, the sensor unit 10 includes one temperature sensor 12, but may be provided separately for each oxygen sensor 11. Further, in FIG. 1, the sensor unit 10 is described as a constituent requirement of the CP value calculation device 1, but actually the detection unit of the sensor unit 10 is arranged at a predetermined location of the heat treatment furnace 100, which is separate from the device. In this state, the CP value calculation device 1 is electrically connected.

酸素センサ11は、CO2 センサのように赤外線吸収法ではなくジルコニア固体電解質の酸素イオン電導性を利用しているためガス濃度検出時の応答性に優れており、例えば炉内雰囲気中のO2 濃度を取得するまでの時間が5秒程度である。これに対し、従来装置に使用されるCO2 センサがCO2 濃度を検出するまでの時間が約数分程度掛かることを鑑みると、本装置で取得されるCP値は、従来装置と比してより濃度検出直後に近いCP値の取得が可能となる。 Since the oxygen sensor 11 uses the oxygen ion conductivity of the zirconia solid electrolyte instead of the infrared absorption method like the CO 2 sensor, the oxygen sensor 11 has excellent responsiveness at the time of gas concentration detection, for example, O 2 in the furnace atmosphere. The time until acquiring the density is about 5 seconds. On the other hand, in view of the fact that it takes about several minutes until the CO 2 sensor used in the conventional apparatus detects the CO 2 concentration, the CP value acquired by this apparatus is compared with the conventional apparatus. It is possible to obtain a CP value closer to that immediately after density detection.

設定部20は、図2に示すように装置の前面パネルの所定箇所に複数設けられた各種操作キーで構成される。設定内容としては、表示部13に表示する表示内容の切り替え、センサ部10における酸素センサ11の選択設定、使用するガスに応じて適宜決定されるCO濃度(固定値)の入力設定など、CP値の算出処理に関する各種設定が行える。   As shown in FIG. 2, the setting unit 20 is composed of various operation keys provided in plural at predetermined locations on the front panel of the apparatus. Setting contents include CP values such as switching of display contents displayed on the display unit 13, selection setting of the oxygen sensor 11 in the sensor unit 10, and input setting of a CO concentration (fixed value) appropriately determined according to the gas used. Various settings related to the calculation process can be performed.

算出処理部30は、第1酸素センサ11aや第2酸素センサ11bで検出したO2 濃度と設定部20で設定されたCO濃度と記憶部50に記憶されるCP値算出式を用いてCP値を算出するCP値算出手段31と、センサ部10から入力する第1酸素センサ11a及び第2酸素センサ11bからのO2 濃度(電圧値)の偏位差又は各酸素センサ11a、11bで検出したO2 濃度を基にCP値算出手段31で算出したCP値の偏位差を算出する偏位差算出手段32と、備えている。 The calculation processing unit 30 uses the O 2 concentration detected by the first oxygen sensor 11a and the second oxygen sensor 11b, the CO concentration set by the setting unit 20 and the CP value calculation formula stored in the storage unit 50 to calculate the CP value. Detected by the CP value calculation means 31 for calculating the difference in deviation of the O 2 concentration (voltage value) from the first oxygen sensor 11a and the second oxygen sensor 11b input from the sensor unit 10 or by the oxygen sensors 11a and 11b. Displacement difference calculating means 32 for calculating a deviation difference of the CP value calculated by the CP value calculating means 31 based on the O 2 concentration is provided.

CP値算出手段31は、センサ部10からの各種検出データ(炉内雰囲気中のO2 濃度、温度)と設定部20で設定されたCO濃度(固定値)に基づきCP値の算出処理を行っている。 The CP value calculation means 31 performs a CP value calculation process based on various detection data from the sensor unit 10 (O 2 concentration and temperature in the furnace atmosphere) and the CO concentration (fixed value) set by the setting unit 20. ing.

ここで、CP値の算出方法について説明する。なお、CP値算出処理に用いるCO濃度は、熱処理炉100で使用するガスの種類によって適宜適正な値が固定値として設定部20から入力設定されるものとする。また、下記に示す各式中において、「t」は温度センサ12によって検出された炉内雰囲気中の温度(℃)であり、「CO」は設定部20で設定された固定値であるCO濃度(%)であり、「PO2 」は炉内雰囲気中のO2 濃度から算出される酸素分圧である。 Here, a calculation method of the CP value will be described. The CO concentration used in the CP value calculation process is appropriately set as a fixed value from the setting unit 20 depending on the type of gas used in the heat treatment furnace 100. In the following equations, “t” is the temperature (° C.) in the furnace atmosphere detected by the temperature sensor 12, and “CO” is the CO concentration that is a fixed value set by the setting unit 20. “PO 2 ” is the oxygen partial pressure calculated from the O 2 concentration in the furnace atmosphere.

まず、下記数1を用いてAs1(オーステナイトの飽和炭素量)を算出し、下記数2を用いて測定されたPO2 (酸素分圧)を算出する。次に、オーステナイトの飽和炭素量と温度との関係から回帰分析で得られた下記数3を用いてAs2(オーステナイトの飽和炭素量)を算出する。 First, As1 (saturated carbon content of austenite) is calculated using the following formula 1, and PO 2 (oxygen partial pressure) measured using the following formula 2 is calculated. Next, As2 (saturated carbon content of austenite) is calculated from the relationship between the saturated carbon content of austenite and the temperature using the following equation 3 obtained by regression analysis.

Figure 2016151517
Figure 2016151517

Figure 2016151517
Figure 2016151517

Figure 2016151517
Figure 2016151517

そして、上記数2、3で算出したPO2 、As2を用いて下記数4又は5よりCP値を算出する。なお、数5を用いる場合は、CO濃度(CO)を上記数2で算出した酸素分圧の平方根(PO2 1/2 )で除算したものにオーステナイトの飽和炭素量(As2)を積算して得られる値(L)がL≧2.7622のときに用いる。 Then, using the PO 2 and As 2 calculated in the above formulas 2 and 3, the CP value is calculated from the following formula 4 or 5. In addition, when using Equation 5, the saturation carbon amount (As2) of austenite is added to the value obtained by dividing the CO concentration (CO) by the square root (PO 2 1/2) of the oxygen partial pressure calculated in Equation 2 above. Used when the obtained value (L) is L ≧ 2.7622.

Figure 2016151517
Figure 2016151517

Figure 2016151517
Figure 2016151517

そして、本装置では、CP値を決定する方法として、下記決定処理1〜4の何れかの方法を採用することができる。なお、決定処理1、2は2つの酸素センサ11のうち何れか一方のセンサを選択した場合の処理であり、決定処理3、4は酸素センサ11a、11bを両方利用する場合の処理であり、所望の決定処理方法を設定部20から設定する。
(決定処理1)
2つの酸素センサ11のうち何れか一方のセンサを選択し、選択した酸素センサ11で検出したO2 濃度からCP値を算出する方法。
(決定処理2)
2つの酸素センサ11のうち何れか一方のセンサを選択し、選択した酸素センサ11で検出したO2 濃度からCP値を算出し、算出した最新のCP値から所定回数前(例えば5回)までの過去データの平均値を真値のCP値として利用する方法。
(決定処理3)
第1酸素センサ11a及び第2酸素センサ11bで測定した各O2 濃度に応じたCP値を算出し、判定部40による偏位差判定結果が正常範囲内であった場合に、2つのCP値を平均化して得られた値を真値のCP値として利用する方法。
(決定処理4)
第1酸素センサ11a及び第2酸素センサ11bで検出した各O2 濃度に応じて算出したCP値のうち最新のCP値から所定回数前(例えば5回)までの過去データの平均値をそれぞれ求め、得られた2つのCP値をさらに平均化して得られた値を真値のCP値として利用する方法。
And in this apparatus, any of the following determination processes 1-4 can be employ | adopted as a method of determining CP value. The determination processes 1 and 2 are processes when one of the two oxygen sensors 11 is selected. The determination processes 3 and 4 are processes when both the oxygen sensors 11a and 11b are used. A desired determination processing method is set from the setting unit 20.
(Decision process 1)
A method of selecting either one of two oxygen sensors 11 and calculating a CP value from the O 2 concentration detected by the selected oxygen sensor 11.
(Decision process 2)
One of the two oxygen sensors 11 is selected, a CP value is calculated from the O 2 concentration detected by the selected oxygen sensor 11, and a predetermined number of times before the calculated latest CP value (for example, five times). A method of using an average value of past data as a true CP value.
(Decision process 3)
When CP values corresponding to the respective O 2 concentrations measured by the first oxygen sensor 11a and the second oxygen sensor 11b are calculated and the deviation difference determination result by the determination unit 40 is within the normal range, two CP values are obtained. The value obtained by averaging the values is used as the true CP value.
(Decision process 4)
Of the CP values calculated according to the respective O 2 concentrations detected by the first oxygen sensor 11a and the second oxygen sensor 11b, average values of past data from the latest CP value to a predetermined number of times (for example, five times) are obtained. A method of using the value obtained by further averaging the two obtained CP values as the true CP value.

偏位差算出手段32は、第1酸素センサ11a及び第2酸素センサ11bで検出した各O2 濃度(電圧値)の偏位差を算出して判定部40に出力する。また、偏位差算出手段32は、センサ部10の各センサで検出したO2 濃度に基づきCP値算出手段31で算出されたCP値の偏位差を算出して判定部40に出力する。なお、偏位差算出手段32は、第1酸素センサ11a及び第2酸素センサ11bでそれぞれ検出したO2 濃度(電圧値)の差分値の絶対値又は2つのO2 濃度から算出されたCP値の差分値の絶対値を「偏位差」としている。 The deviation difference calculating means 32 calculates the deviation difference of each O 2 concentration (voltage value) detected by the first oxygen sensor 11a and the second oxygen sensor 11b and outputs it to the determination unit 40. Further, the deviation difference calculation means 32 calculates the deviation difference of the CP value calculated by the CP value calculation means 31 based on the O 2 concentration detected by each sensor of the sensor unit 10 and outputs it to the determination unit 40. The deviation difference calculating means 32 is configured to calculate the absolute value of the difference value of the O 2 concentration (voltage value) detected by the first oxygen sensor 11a and the second oxygen sensor 11b or the CP value calculated from the two O 2 concentrations. The absolute value of the difference value is “deviation difference”.

なお、本例の偏位差算出手段32は、上記2種類の偏位差算出処理(すなわち、O2 濃度(電位差)の偏位を算出する処理又はCP値の偏位差を算出する処理)を行うための機能を備え、ユーザが設定部20から任意に処理方法を選択して実行する構成とするが、何れか一方の処理機能のみを備える構成としてもよい。 The deviation difference calculation means 32 of this example is the above-described two types of deviation difference calculation processing (that is, processing for calculating deviation of O 2 concentration (potential difference) or processing for calculating deviation of CP value). However, a configuration in which the user arbitrarily selects a processing method from the setting unit 20 and executes the selected processing method may be employed.

判定部40は、偏位差算出手段32で算出された偏位差と、記憶部50に記憶される異常判定用閾値とを比較し、偏位差が異常判定用閾値を超えている場合に酸素センサ11のうち何れか一方のセンサに劣化が生じていると判断して警報部70に異常信号を出力する。   The determination unit 40 compares the deviation difference calculated by the deviation difference calculation unit 32 with the abnormality determination threshold value stored in the storage unit 50, and when the deviation difference exceeds the abnormality determination threshold value. It is determined that any one of the oxygen sensors 11 has deteriorated, and an abnormal signal is output to the alarm unit 70.

判定部40の判定処理内容について詳述すると、偏位差算出手段32で算出された偏位差と、記憶部50に記憶される異常判定用閾値と比較して偏位差が異常判定用閾値を超えたか否かを判定する。このとき、偏位差が異常判定用閾値を超えたときは、第1酸素センサ11a又は第2酸素センサ11bのうち何れか一方又は両方のセンサが劣化して正確なO2 濃度を検出できないと判断し、酸素センサ11の劣化をユーザに通知するため、警報部70に異常信号を出力する。一方、偏位差が異常判定用閾値を超えていないときは、酸素センサ11の劣化が認められないと判断して異常信号は出力しない。 The determination processing contents of the determination unit 40 will be described in detail. The deviation difference calculated by the deviation difference calculation unit 32 is compared with the abnormality determination threshold value stored in the storage unit 50. It is determined whether or not the number is exceeded. At this time, when the deviation difference exceeds the abnormality determination threshold, one or both of the first oxygen sensor 11a and the second oxygen sensor 11b are deteriorated and an accurate O 2 concentration cannot be detected. In order to determine and notify the user of the deterioration of the oxygen sensor 11, an abnormal signal is output to the alarm unit 70. On the other hand, when the deviation difference does not exceed the abnormality determination threshold value, it is determined that the deterioration of the oxygen sensor 11 is not recognized, and no abnormality signal is output.

このように、判定部40は、酸素センサ11の劣化有無判定機能として、各酸素センサ11a、11bで検出したO2 濃度(電圧値)を直接比較して得られる偏位差又は各酸素センサ11a、11bで検出したO2 濃度に基づき算出したCP値を比較して得られる偏位差を予め設定した異常判定用閾値と比較し、偏位差が異常判定用閾値を超えたか否かにより酸素センサ11の劣化の有無を判断することができる。また、酸素センサ11を複数備えているため、上述したCP値の決定方法に利用すれば、より精度の高いCP値を知得することができる。 As described above, the determination unit 40 functions as a function for determining whether or not the oxygen sensor 11 has deteriorated. The deviation difference obtained by directly comparing the O 2 concentrations (voltage values) detected by the oxygen sensors 11a and 11b or the oxygen sensors 11a. The deviation difference obtained by comparing the CP values calculated based on the O 2 concentration detected in 11b is compared with a preset abnormality determination threshold, and oxygen is determined depending on whether the deviation difference exceeds the abnormality determination threshold. Whether or not the sensor 11 has deteriorated can be determined. In addition, since a plurality of oxygen sensors 11 are provided, a more accurate CP value can be obtained by using the above-described CP value determination method.

記憶部50は、各種記憶装置で構成され、判定部40で異常判定用に使用する異常判定用閾値の他、CP値算出装置1を構成する各部を駆動制御するのに必要な駆動制御プログラムを記憶する。また、上述したCP値の決定処理の仕様によっては、記憶部50に酸素センサ11で検出したO2 濃度の過去データ(所定回数分)や算出したCP値の過去データ(所定回数分)を記憶するようにしてもよい。 The storage unit 50 includes various storage devices. In addition to the abnormality determination threshold used by the determination unit 40 for abnormality determination, the storage unit 50 includes a drive control program necessary for driving and controlling each unit included in the CP value calculation device 1. Remember. Further, depending on the specification of the CP value determination process described above, the storage unit 50 stores the past data (predetermined number of times) of the O 2 concentration detected by the oxygen sensor 11 and the past data (predetermined number of times) of the calculated CP value. You may make it do.

表示部60は、図2に示すように、数値又は文字を複数の7セグメント表示による発光表示機器とLED(light emitting diode)などの各種表示機器で構成している。なお、表示部60の構成として、図2に示す構成の他、例えば液晶ディスプレイ(liquid crystal display)、無機又は有機ELディスプレイ、など)で構成してもよい。表示部60は、設定部20からの各種設定時や警報部70からの警報出力などに応じて点灯/点滅を行う。また、表示部60は、算出処理部30で算出されたO2 濃度に基づくCP値の表示や、センサ部10で検出されたO2 濃度や温度などを設定部20による設定内容に応じた形式で表示する。 As shown in FIG. 2, the display unit 60 includes a light emitting display device that displays numerical values or characters in a plurality of seven segments and various display devices such as LEDs (light emitting diodes). In addition to the configuration shown in FIG. 2, the display unit 60 may be configured by a liquid crystal display, an inorganic or organic EL display, or the like. The display unit 60 is lit / flashed according to various settings from the setting unit 20 or an alarm output from the alarm unit 70. Further, the display unit 60, corresponding display of CP value based on O 2 concentration calculated in the calculation processing unit 30, such as has been the O 2 concentration and temperature detected by the sensor unit 10 to the setting by the setting unit 20 form Is displayed.

警報部70は、例えばブザーなどの鳴動装置やLEDなどの表示装置で構成され、判定部40からの異常信号を入力すると、外部に異常を通知するための警報出力(鳴動や点灯/点滅など)を行う。また、警報部70は、熱処理炉100を管理する管理業者が炉の運転状況を監視する際に使用するPC(personal computer )でもよい。   The alarm unit 70 is configured by a sounding device such as a buzzer or a display device such as an LED, for example. When an abnormal signal is input from the determination unit 40, an alarm output (sounding, lighting / blinking, etc.) for notifying the outside is provided. I do. Further, the alarm unit 70 may be a personal computer (PC) used when a manager who manages the heat treatment furnace 100 monitors the operation state of the furnace.

そして、上述したCP値算出装置1では、酸素センサ11で検出した熱処理炉100における炉内雰囲気のO2 濃度と、温度センサ12で検出した炉内雰囲気中の温度と、設定部20で設定したCO濃度とを基にして算出処理部30にてCP値を算出する。 In the CP value calculation apparatus 1 described above, the O 2 concentration in the furnace atmosphere in the heat treatment furnace 100 detected by the oxygen sensor 11, the temperature in the furnace atmosphere detected by the temperature sensor 12, and the setting unit 20 are set. The CP value is calculated by the calculation processing unit 30 based on the CO concentration.

また、酸素センサ11の劣化の有無を判断する場合は、第1酸素センサ11a及び第2酸素センサ11bで検出したO2 濃度(電圧値)の偏位差又は検出したO2 濃度を基に算出したCP値の偏位差と、記憶部50に記憶される異常判定用閾値とを比較する。そして、偏位差が異常判定用閾値を超えたときに酸素センサ11の何れかに劣化があると判断し、異常信号を警報部70に出力して異常有りの外部通知をする。 Further, when determining whether or not the oxygen sensor 11 has deteriorated, calculation is based on the deviation of the O 2 concentration (voltage value) detected by the first oxygen sensor 11a and the second oxygen sensor 11b or the detected O 2 concentration. The deviation difference of the CP value is compared with the abnormality determination threshold value stored in the storage unit 50. Then, when the deviation difference exceeds the abnormality determination threshold, it is determined that any of the oxygen sensors 11 is deteriorated, and an abnormality signal is output to the alarm unit 70 to notify the outside that there is an abnormality.

以上説明したように、上述したCP値算出装置1は、従来装置で用いたCO2 センサよりもガス濃度検出応答性に優れた複数の酸素センサ11(第1酸素センサ11a、第2酸素センサ11b)を備え、また各酸素センサ11a、11bで検出したO2 濃度の差分値である偏位差又は各酸素センサ11a、11bで検出したO2 濃度から算出したCP値の差分値である偏位差と記憶部50に記憶される異常判定用閾値とを比較し、偏位差が異常判定用閾値を超えたときに酸素センサ11が劣化有りと判断して異常信号を警報部70に出力する判定部40を備えている。 As described above, the above-described CP value calculation apparatus 1 has a plurality of oxygen sensors 11 (first oxygen sensor 11a and second oxygen sensor 11b) that have better gas concentration detection response than the CO 2 sensor used in the conventional apparatus. ) comprising a, also deviation which is a difference value of each oxygen sensor 11a, the detected O 2 concentration excursion difference or the oxygen sensor 11a is a difference value, CP value calculated from the O 2 concentration detected by 11b and 11b The difference is compared with the abnormality determination threshold value stored in the storage unit 50, and when the deviation difference exceeds the abnormality determination threshold value, the oxygen sensor 11 determines that there is deterioration and outputs an abnormality signal to the alarm unit 70. A determination unit 40 is provided.

これにより、複数具備する酸素センサ11の劣化の有無を検出することができるため、仮に劣化有りと判定されたときは即座にメンテナンスを実施することができる。また、酸素センサ11は、CO2 センサと比べて炉内雰囲気中のガス濃度検出応答性に優れているため、熱処理炉100が連続式浸炭炉のような場合であっても炉内雰囲気中のCP値を算出する際によりリアルタイムに近い値を知得することができる。 Thereby, since it is possible to detect the presence or absence of deterioration of the plurality of oxygen sensors 11, if it is determined that there is deterioration, maintenance can be performed immediately. Further, since the oxygen sensor 11 is superior in response to gas concentration detection in the furnace atmosphere as compared with the CO 2 sensor, even if the heat treatment furnace 100 is a continuous carburizing furnace, When calculating the CP value, a value closer to real time can be obtained.

1…カーボンポテンシャル算出装置(CP値算出装置)
10…センサ部
11…酸素センサ(11a…第1酸素センサ、11b…第2酸素センサ)
12…温度センサ
20…設定部
30…算出処理部
31…CP値算出手段
32…偏位差算出手段
40…判定部
50…記憶部
60…表示部
70…警報部
100…熱処理炉
1 ... Carbon potential calculation device (CP value calculation device)
DESCRIPTION OF SYMBOLS 10 ... Sensor part 11 ... Oxygen sensor (11a ... 1st oxygen sensor, 11b ... 2nd oxygen sensor)
DESCRIPTION OF SYMBOLS 12 ... Temperature sensor 20 ... Setting part 30 ... Calculation process part 31 ... CP value calculation means 32 ... Deviation difference calculation means 40 ... Determination part 50 ... Memory | storage part 60 ... Display part 70 ... Alarm part 100 ... Heat treatment furnace

Claims (4)

熱処理炉に設置されたセンサ部によって検出された炉内雰囲気中のO2 濃度、CO濃度、温度に基づき前記炉内雰囲気のカーボンポテンシャル(CP値)を算出するカーボンポテンシャル算出装置において、
前記炉内雰囲気を検出する酸素センサを2つ有するセンサ部と、
予め設定された固定値であるCO濃度と、前記センサ部で検出したO2 濃度を用いてCP値を算出する算出処理部と、
を備えたことを特徴とするカーボンポテンシャル算出装置。
In the carbon potential calculation device for calculating the carbon potential (CP value) of the furnace atmosphere based on the O 2 concentration, CO concentration, and temperature in the furnace atmosphere detected by a sensor unit installed in the heat treatment furnace,
A sensor unit having two oxygen sensors for detecting the atmosphere in the furnace;
A calculation processing unit that calculates a CP value using a CO concentration that is a preset fixed value and an O 2 concentration detected by the sensor unit;
A carbon potential calculation device comprising:
前記算出処理部は、前記各酸素センサで検出したO2 濃度に相当する電圧値の偏位差を算出する偏位差算出手段を有し、
前記偏位差算出手段で算出された偏位差が予め設定された異常判定用閾値を超えたときに異常と判定して異常信号を出力する判定部を備えたことを特徴とする請求項1記載のカーボンポテンシャル算出装置。
The calculation processing unit includes deviation difference calculation means for calculating a deviation difference of a voltage value corresponding to the O 2 concentration detected by each oxygen sensor,
2. The apparatus according to claim 1, further comprising a determination unit that determines that an abnormality is detected and outputs an abnormality signal when the deviation difference calculated by the deviation difference calculation unit exceeds a preset abnormality determination threshold value. The carbon potential calculation apparatus described.
前記算出処理部は、前記各酸素センサで検出した2つのO2 濃度に応じてそれぞれ算出したCP値の偏位差を算出する偏位差算出手段を有し、
前記偏位差算出手段で算出した偏位差が予め設定された異常判定用閾値を超えたときに異常と判定して異常信号を出力する判定部を備えたことを特徴とする請求項1記載のカーボンポテンシャル算出装置。
The calculation processing unit includes deviation difference calculation means for calculating a deviation difference between CP values calculated according to two O 2 concentrations detected by the oxygen sensors,
2. The apparatus according to claim 1, further comprising: a determination unit that determines that an abnormality is detected and outputs an abnormality signal when the deviation difference calculated by the deviation difference calculation unit exceeds a preset abnormality determination threshold value. Carbon potential calculation device.
前記判定部から異常信号を入力すると、外部に警報出力を行う警報部を備えたことを特徴とする請求項2又は3記載のカーボンポテンシャル算出装置。 The carbon potential calculation device according to claim 2, further comprising an alarm unit that outputs an alarm to the outside when an abnormal signal is input from the determination unit.
JP2015029840A 2015-02-18 2015-02-18 Carbon potential calculation device Pending JP2016151517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015029840A JP2016151517A (en) 2015-02-18 2015-02-18 Carbon potential calculation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015029840A JP2016151517A (en) 2015-02-18 2015-02-18 Carbon potential calculation device

Publications (1)

Publication Number Publication Date
JP2016151517A true JP2016151517A (en) 2016-08-22

Family

ID=56696351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015029840A Pending JP2016151517A (en) 2015-02-18 2015-02-18 Carbon potential calculation device

Country Status (1)

Country Link
JP (1) JP2016151517A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075389A1 (en) * 2019-10-15 2021-04-22 関東冶金工業株式会社 Heat treatment furnace, control method for same, information processing device, information processing method, and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103366U (en) * 1982-01-07 1983-07-14 トヨタ自動車株式会社 Furnace atmosphere balance detection device
JPS59172370U (en) * 1983-05-06 1984-11-17 東京熱処理工業株式会社 Oxygen sensor for open air furnace
JPS62243754A (en) * 1986-04-15 1987-10-24 Isuzu Motors Ltd Control device for carburization furnace atmosphere
US5496450A (en) * 1994-04-13 1996-03-05 Blumenthal; Robert N. Multiple on-line sensor systems and methods
JP3973795B2 (en) * 1999-05-24 2007-09-12 東邦瓦斯株式会社 Gas carburizing method
JP2010037597A (en) * 2008-08-05 2010-02-18 Chino Corp Carbon potential operational equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103366U (en) * 1982-01-07 1983-07-14 トヨタ自動車株式会社 Furnace atmosphere balance detection device
JPS59172370U (en) * 1983-05-06 1984-11-17 東京熱処理工業株式会社 Oxygen sensor for open air furnace
JPS62243754A (en) * 1986-04-15 1987-10-24 Isuzu Motors Ltd Control device for carburization furnace atmosphere
US5496450A (en) * 1994-04-13 1996-03-05 Blumenthal; Robert N. Multiple on-line sensor systems and methods
JP3973795B2 (en) * 1999-05-24 2007-09-12 東邦瓦斯株式会社 Gas carburizing method
JP2010037597A (en) * 2008-08-05 2010-02-18 Chino Corp Carbon potential operational equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021075389A1 (en) * 2019-10-15 2021-04-22 関東冶金工業株式会社 Heat treatment furnace, control method for same, information processing device, information processing method, and program
JP2021063288A (en) * 2019-10-15 2021-04-22 関東冶金工業株式会社 Heat treatment furnace, its control method, information processing device, information processing method and program

Similar Documents

Publication Publication Date Title
KR101619919B1 (en) Method for heat treatment and heat treatment apparatus, and heat treatment system
JP5167553B2 (en) Nitrogen treatment method and nitrogen treatment apparatus
US20180038825A1 (en) Multiple Sensor System for Breath Acetone Monitoring
JP2002212702A (en) Carburizing method and carburizing equipment
JP2016151517A (en) Carbon potential calculation device
JP2021003050A5 (en)
US9897491B2 (en) Protecting tube deterioration detecting apparatus and method therefor
US20160339534A1 (en) Device for measuring and collecting oxygen concentration data in welding processes
JP5390139B2 (en) Carbon potential calculation device
Käser et al. Prediction of the ageing of rubber using the chemiluminescence approach and isoconversional kinetics
US11549874B2 (en) Method and apparatus for using a gas density sensor to control gas mixture composition
Kolitsch et al. Determination of crack initiation and crack growth stress-life curves by fracture mechanics experiments and statistical analysis
US20120166100A1 (en) Identifying transition points in chemical reactions
JP2008278783A (en) Device for detecting abnormal value in gene measurement by using fluorescent intensity as index and method for the same
JP6864932B2 (en) Heat treatment furnace, its control method, information processing equipment, information processing method and program
FR3063810B1 (en) METHOD FOR INSPECTING A CARTER BY COLORIMETRY
Castillo‐Gómez et al. Experimental design of a simple medium for the bioluminescence of Aliivibrio fischeri and mathematical modelling for growth estimation
EP3218516B1 (en) Method for determining a property of a starting sample
US20170292170A1 (en) Controlling and optimising furnace atmospheres for stainless steel heat treatment
JP2021018464A (en) Operational results management system
Kelly et al. Implicit rather than explicit threat predicts attentional bias towards Black but not Asian faces in a White undergraduate population
US20130263617A1 (en) Refrigerator Alarm System
TW202335038A (en) Assistance device, assistance method and assistance program
Schelp et al. Fatigue life assessment of quenched and tempered steels by means of strain, temperature and electrical resistance measurements
KR20090010024U (en) A Monitoring System for Quality of Water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190312