JP5024647B2 - Vacuum carburizing quality control method and vacuum carburizing furnace - Google Patents
Vacuum carburizing quality control method and vacuum carburizing furnace Download PDFInfo
- Publication number
- JP5024647B2 JP5024647B2 JP2005304250A JP2005304250A JP5024647B2 JP 5024647 B2 JP5024647 B2 JP 5024647B2 JP 2005304250 A JP2005304250 A JP 2005304250A JP 2005304250 A JP2005304250 A JP 2005304250A JP 5024647 B2 JP5024647 B2 JP 5024647B2
- Authority
- JP
- Japan
- Prior art keywords
- carburizing
- partial pressure
- pressure ratio
- hydrogen partial
- flow rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Muffle Furnaces And Rotary Kilns (AREA)
Description
本発明は、真空浸炭処理において、同一操業バッチ内又は各操業バッチ間における浸炭品質のバラつき度合を判定する真空浸炭の品質管理方法、及び浸炭品質のバラつきを少なくする真空浸炭炉に関するものである。 The present invention relates to a vacuum carburizing quality control method for determining the degree of variation in carburizing quality within the same operation batch or between operation batches in a vacuum carburizing process, and a vacuum carburizing furnace that reduces variations in carburizing quality.
浸炭(carburizing)とは、鋼材の表面に炭素を拡散浸透させる処理をいう。通常、浸炭後、焼入れを行って表面を硬化させ、耐摩耗性の高い表面と靭性に富む心部からなる部品を作製する。 Carburizing is a process of diffusing and penetrating carbon into the surface of a steel material. Usually, after carburizing, quenching is performed to harden the surface to produce a part composed of a highly wear-resistant surface and a tough core.
浸炭処理としては、ガス浸炭法、プラズマ浸炭法、真空浸炭法等がある。この中でガス浸炭法は、天然ガス、プロパン、ブタンなどを変成してCOを主体とする浸炭性ガスを作り、これによって鋼材に浸炭を行うものである。ガス浸炭法は、カーボンポテンシャルに基づいて雰囲気を制御しながら浸炭を行うため、被処理品の表面炭素濃度を安定して制御することができる。このため、ガス浸炭法は、被処理品に対する浸炭品質の再現性が良好であるという利点を有する。しかしながら、ガス浸炭法は、浸炭ガスの使用量が多い、排気ガスを燃焼させる際に危険性がある、被処理品の表面に粒界酸化が生じる、等の問題がある。 Examples of carburizing treatment include gas carburizing, plasma carburizing, and vacuum carburizing. Among these, the gas carburizing method is a method in which natural gas, propane, butane and the like are modified to produce a carburizing gas mainly composed of CO, and thereby carburizing a steel material. Since the gas carburizing method performs carburizing while controlling the atmosphere based on the carbon potential, the surface carbon concentration of the article to be treated can be stably controlled. For this reason, the gas carburizing method has the advantage that the reproducibility of the carburizing quality for the article to be processed is good. However, the gas carburizing method has problems such as a large amount of carburizing gas used, danger of burning exhaust gas, and grain boundary oxidation on the surface of the product to be processed.
一方、真空浸炭法は、ガス浸炭法の一種であり、浸炭処理を減圧下で行うガス浸炭法である(例えば、下記特許文献1〜3参照)。以下、本明細書において、「ガス浸炭」とは大気圧下で行われるガス浸炭法を意味し、「真空浸炭」とは減圧下で行われるガス浸炭法を意味するものとする。 On the other hand, the vacuum carburizing method is a kind of gas carburizing method, and is a gas carburizing method in which carburizing treatment is performed under reduced pressure (see, for example, Patent Documents 1 to 3 below). Hereinafter, in this specification, “gas carburizing” means a gas carburizing method performed under atmospheric pressure, and “vacuum carburizing” means a gas carburizing method performed under reduced pressure.
真空浸炭では、表面炭素濃度が浸炭開始直後に炭素固溶限(Acm)に達した後、浸炭ガス投入時間(浸炭時間)と拡散時間を管理することで所望の表面炭素濃度及び炭素濃度分布を得ている。被処理品内の炭素流入深さ(拡散深さ)については、ガス浸炭、真空浸炭ともに拡散時間により管理を行っている。 In vacuum carburizing, after the surface carbon concentration reaches the carbon solid solubility limit (Acm) immediately after the start of carburizing, the desired surface carbon concentration and carbon concentration distribution can be obtained by managing the carburizing gas input time (carburizing time) and diffusion time. It has gained. The carbon inflow depth (diffusion depth) in the product to be treated is controlled by the diffusion time for both gas carburizing and vacuum carburizing.
ガス浸炭では、カーボンポテンシャルに基づく雰囲気の制御を行っていたことは上述の通りであるが、ガス浸炭と真空浸炭では反応形態が異なるため、ガス浸炭におけるカーボンポテンシャルに基づく雰囲気の制御を真空浸炭に適用することは不可能である。このため、真空浸炭では、浸炭・拡散温度、浸炭時間、ガス投入量などの条件管理により被処理品に対する浸炭品質(表面浸炭濃度、浸炭濃度分布)の均一性確保を図ってきた。 In gas carburization, the atmosphere was controlled based on the carbon potential as described above. However, since the reaction forms differ between gas carburizing and vacuum carburizing, control of the atmosphere based on the carbon potential in gas carburizing is changed to vacuum carburizing. It is impossible to apply. For this reason, in the case of vacuum carburizing, the uniformity of carburizing quality (surface carburizing concentration and carburizing concentration distribution) for the products to be processed has been ensured by controlling conditions such as carburizing / diffusion temperature, carburizing time, and gas input amount.
しかしながら、従来技術による真空浸炭では、上記のような条件管理によっても各操業バッチ間における浸炭品質にある程度のバラつきが生じることは避けられず、さらに、同一操業バッチ内における浸炭品質にもバラつきを生じていた。このため、真空浸炭では、被処理品の浸炭品質のバラつき度合を管理することが必要となる。ところが、上記のような条件管理項目では、処理中に浸炭品質を管理する手法が無いため、従来では、浸炭処理後に被処理品の抜取り試験により浸炭品質の検証が必要であった。
このように、従来技術では、浸炭品質のバラつき度合の判定が煩雑であるという問題があった。また、浸炭処理の雰囲気の制御を行っていなかったため、浸炭品質の再現性が悪いという問題があった。
However, in the conventional carburization, it is inevitable that the carburizing quality varies between the operation batches even under the above-described condition management, and further, the carburizing quality within the same operation batch also varies. It was. For this reason, in vacuum carburizing, it is necessary to manage the degree of variation in the carburizing quality of the workpiece. However, in the condition management items as described above, there is no method for managing the carburizing quality during the processing, and conventionally, it has been necessary to verify the carburizing quality by performing a sampling test of the article to be processed after the carburizing process.
Thus, in the prior art, there is a problem that the determination of the degree of variation in carburization quality is complicated. In addition, since the carburizing atmosphere was not controlled, there was a problem that the reproducibility of carburizing quality was poor.
本発明は、上述した問題点に鑑み、浸炭品質のバラつき度合の判定を容易にして浸炭品質の管理を容易に行うことができる真空浸炭の品質管理方法及び真空浸炭炉を提供することを目的とする。また、本発明は、浸炭品質の再現性を向上させ、浸炭品質のバラつきを少なくしてその均一性を確保できる真空浸炭炉を提供することを目的とする。 An object of the present invention is to provide a vacuum carburizing quality control method and a vacuum carburizing furnace that can easily determine the degree of variation in carburizing quality and easily manage carburizing quality in view of the above-described problems. To do. Another object of the present invention is to provide a vacuum carburizing furnace that can improve the reproducibility of carburizing quality, reduce the variation in carburizing quality, and ensure its uniformity.
上記目的を達成するために創案された第1の発明は、炭化水素からなる浸炭ガスにより減圧及び加熱状態で被処理品に浸炭処理を行う真空浸炭の品質管理方法であって、被処理品に要求される有効硬化層深さ(浸炭深さ)と表面炭素濃度に応じて、被処理品内部への炭素の拡散に基づいて、浸炭処理に必要な炭素量を元に浸炭ガスの理論流量の時間変化を求め、該理論流量の時間変化に基づいて、該理論流量における浸炭反応により生じる水素の処理室内の全圧力に対する分圧比を理論水素分圧比とし、この理論水素分圧比の時間変化を求め、該理論水素分圧比の時間変化と、実際の浸炭処理時における処理室内の全圧力に対する水素分圧比の時間変化とを比較し、その近似度合に基づいて、同一操業バッチ内における浸炭品質のバラつき度合を判定する、ことを特徴とする真空浸炭の品質管理方法である。 A first invention created to achieve the above object is a quality control method for vacuum carburizing, in which carburizing treatment is performed on a product under reduced pressure and heating with a carburizing gas composed of hydrocarbons. Depending on the required effective hardened layer depth (carburization depth) and surface carbon concentration, the theoretical flow rate of carburizing gas based on the amount of carbon required for carburizing treatment based on the diffusion of carbon inside the treated product. The time change is obtained, and based on the time change of the theoretical flow rate, the partial pressure ratio of hydrogen generated by the carburization reaction at the theoretical flow rate to the total pressure in the processing chamber is defined as the theoretical hydrogen partial pressure ratio, and the time change of the theoretical hydrogen partial pressure ratio is obtained. The time variation of the theoretical hydrogen partial pressure ratio is compared with the time variation of the hydrogen partial pressure ratio with respect to the total pressure in the processing chamber during actual carburizing treatment, and the variation in carburizing quality within the same operation batch is based on the degree of approximation. Every time Determining, that a quality control method for vacuum carburizing characterized by.
上記目的を達成するために創案された第1の参考例によれば、炭化水素からなる浸炭ガスにより減圧及び加熱状態で被処理品に浸炭処理を行う真空浸炭の品質管理方法であって、浸炭処理時における処理室内の全圧力に対する水素分圧比の時間変化と、それ以前の浸炭処理時における処理室内の全圧力に対する水素分圧比の時間変化とを比較し、その近似度合に基づいて、各操業バッチ間の浸炭品質のバラつき度合を判定する、ことを特徴とする真空浸炭の品質管理方法である。 According to a first reference example created to achieve the above object, there is provided a quality control method for vacuum carburizing, in which carburizing treatment is performed on a product under reduced pressure and heating with a carburizing gas composed of hydrocarbon, Compare the time variation of the hydrogen partial pressure ratio with respect to the total pressure in the treatment chamber during processing and the time variation of the hydrogen partial pressure ratio with respect to the total pressure in the treatment chamber during the previous carburizing treatment, and determine each operation based on the degree of approximation. A quality control method for vacuum carburizing, characterized in that the degree of variation in carburizing quality between batches is determined.
上記目的を達成するために創案された第2の発明は、被処理品を収容し減圧及び加熱状態で前記被処理品を浸炭処理する処理室を有する炉体と、該処理室に炭化水素からなる浸炭ガスを導入する浸炭ガス導入手段と、前記処理室内のガスを排気し所定の減圧状態に保持するガス排気手段とを備えた真空浸炭炉において、浸炭処理時における前記処理室内の全圧力に対する水素分圧比を検知する水素分圧比検知手段と、被処理品に要求される浸炭深さと表面炭素濃度に応じて、材料の内部拡散に基づいて、浸炭処理に必要な浸炭ガスの理論流量の時間変化を求める処理と、該理論流量の時間変化に基づいて、該理論流量における浸炭反応により生じる水素の処理室内における全圧力に対する分圧比を理論水素分圧比とし、この理論水素分圧比の時間変化を求める処理と、を行う演算処理手段と、前記理論水素分圧比の時間変化と、前記水素分圧比検知手段により検知した水素分圧比の時間変化を表示する出力手段と、を備える、ことを特徴とする真空浸炭炉である。 A second invention created to achieve the above object is to provide a furnace body having a processing chamber for containing a product to be processed and carburizing the product to be processed in a reduced pressure and a heated state, and from the hydrocarbon to the processing chamber. In a vacuum carburizing furnace comprising a carburizing gas introducing means for introducing a carburizing gas and a gas exhausting means for exhausting the gas in the processing chamber and maintaining the pressure in a predetermined reduced pressure state, the total pressure in the processing chamber during the carburizing process The hydrogen partial pressure ratio detection means for detecting the hydrogen partial pressure ratio, and the time of the theoretical flow rate of carburizing gas required for carburizing treatment based on the internal diffusion of the material according to the carburizing depth and surface carbon concentration required for the workpiece Based on the process for obtaining the change and the temporal change in the theoretical flow rate, the partial pressure ratio of the hydrogen generated by the carburization reaction at the theoretical flow rate to the total pressure in the processing chamber is defined as the theoretical hydrogen partial pressure ratio. An arithmetic processing means for performing a process for obtaining a change in time, an output means for displaying a temporal change in the theoretical hydrogen partial pressure ratio, and a temporal change in the hydrogen partial pressure ratio detected by the hydrogen partial pressure ratio detecting means. Is a vacuum carburizing furnace.
第3の発明は、上記第2の発明において、前記浸炭ガス導入手段による浸炭ガスの導入量を調節するガス導入量調節手段と、前記演算処理手段により求めた理論水素分圧比の時間変化と、前記水素分圧比検知手段により検知した水素分圧比の時間変化とを比較し、その近似度合に基づいて前記ガス導入量調節手段を制御する制御手段と、を更に備える、ことを特徴とするものである。 According to a third invention, in the second invention, a gas introduction amount adjusting means for adjusting an introduction amount of the carburizing gas by the carburizing gas introduction means, a temporal change in the theoretical hydrogen partial pressure ratio obtained by the arithmetic processing means, A control means for comparing the time variation of the hydrogen partial pressure ratio detected by the hydrogen partial pressure ratio detecting means and controlling the gas introduction amount adjusting means based on the degree of approximation. is there.
また、第2の参考例は、被処理品を収容し減圧及び加熱状態で前記被処理品を浸炭処理する処理室を有する炉体と、該処理室に炭化水素からなる浸炭ガスを導入する浸炭ガス導入手段と、前記処理室内のガスを排気し所定の減圧状態に保持するガス排気手段とを備えた真空浸炭炉において、浸炭処理時における前記処理室内の全圧力に対する水素分圧比を検知する水素分圧比検知手段と、該水素分圧比検知手段により検知した水素分圧比の時間変化を表示する出力手段と、を備える、ことを特徴とする真空浸炭炉である。 In addition, the second reference example includes a furnace body having a processing chamber that accommodates an article to be processed and carburizes the article to be processed in a decompressed and heated state, and carburizing that introduces a carburizing gas made of hydrocarbons into the processing chamber. Hydrogen for detecting a hydrogen partial pressure ratio with respect to the total pressure in the processing chamber in a carburizing process in a vacuum carburizing furnace provided with a gas introduction unit and a gas exhaust unit that exhausts the gas in the processing chamber and maintains the pressure in a predetermined reduced pressure state A vacuum carburizing furnace comprising: a partial pressure ratio detecting means; and an output means for displaying a temporal change in the hydrogen partial pressure ratio detected by the hydrogen partial pressure ratio detecting means.
第3の参考例は、上記第2の参考例において、前記浸炭ガス導入手段による浸炭ガスの導入量を調節するガス導入量調節手段と、前記水素分圧検知手段により検知した水素分圧比の時間変化と、それ以前の浸炭処理時における水素分圧比の時間変化とを比較し、その近似度合に基づいて前記ガス導入量調節手段を制御する制御手段と、を更に備える、ことを特徴とするものである。 A third reference example is the same as the second reference example , except that the gas introduction amount adjusting means for adjusting the introduction amount of the carburizing gas by the carburizing gas introduction means and the time of the hydrogen partial pressure ratio detected by the hydrogen partial pressure detecting means. A control means for comparing the change with the temporal change in the hydrogen partial pressure ratio during the previous carburizing process and controlling the gas introduction amount adjusting means based on the degree of approximation. It is.
本発明において、「浸炭品質」とは、浸炭処理を施した被処理品の表面炭素濃度や炭素濃度分布のように、被処理品中の炭素の割合、範囲、深さ等の状態を示す概念である。 In the present invention, “carburization quality” is a concept that indicates the state of the ratio, range, depth, etc. of carbon in the article to be treated, such as the surface carbon concentration and carbon concentration distribution of the article to be treated subjected to carburizing treatment. It is.
「表示」とは、外部に目的の情報を表し示すことをいい、モニターのように電磁的・磁気的手法により表示することや、プリンターのように印刷により有形的手法により表示することも含む概念である。 “Display” means to express the target information to the outside, including the concept of displaying by electromagnetic or magnetic method like a monitor, or displaying by tangible method by printing like a printer. It is.
「水素分圧比検知手段」とは、浸炭処理時における処理室内の全圧力に対する水素分圧比を検知するための機能を有するものをいい、複数の機器の組み合わせによりそのような機能を達成するものも含む概念である。実施形態では、水素センサ、真空計及び演算処理装置のもつ複数の機能のうちの一部の機能の組み合せがこれに該当する。 “Hydrogen partial pressure ratio detection means” means a device having a function for detecting the hydrogen partial pressure ratio with respect to the total pressure in the processing chamber during carburizing, and a device that achieves such a function by combining a plurality of devices. It is a concept that includes. In the embodiment, a combination of some of the functions of the hydrogen sensor, the vacuum gauge, and the arithmetic processing device corresponds to this.
「演算処理手段」とは、理論流量の時間変化を求める処理と、理論水素分圧比の時間変化を求める処理とを行う機能を有するものをいい、電子計算機の一部の機能を使用することによりそのような機能を達成するものも含む概念である。実施形態では、演算処理装置がこれに該当する。 “Arithmetic processing means” means a function having a function of performing a process for obtaining a temporal change in the theoretical flow rate and a process for obtaining a temporal change in the theoretical hydrogen partial pressure ratio, and by using a part of the functions of an electronic computer. It is a concept including what achieves such a function. In the embodiment, the arithmetic processing device corresponds to this.
他の用語の意義については、本明細書の以下の説明により明らかになろう。 The meaning of other terms will become apparent from the following description of this specification.
上記第1の発明によれば、浸炭処理に必要な浸炭ガスの理論流量の時間変化を求め、この時間変化に基づいて、浸炭ガスの理論流量に対応する理論水素分圧比を求め、この理論水素分圧比の時間変化と、実際の浸炭処理時における処理室内の水素分圧比の時間変化とを比較し、その近似度合に基づいて、同一操業バッチ内における浸炭品質のバラつき度合を判定するので、従来技術のように浸炭処理後に抜取り試験を実施する必要が無く、浸炭品質の再現性の確認を容易に行うことができる。後に詳述するように、本願発明者は、実際の浸炭処理時における処理室内の水素分圧比の時間変化が、浸炭処理に必要な浸炭ガスの理論流量に対応する理論水素分圧比(浸炭ガスの理論流量における浸炭反応により生じる理論上の水素の処理室内の全圧力に対する水素分圧比)の時間変化に近似するほど、浸炭品質のバラつき度合が少ないという新規な知見を得た。本発明は、かかる新規な知見を利用したものである。すなわち、理論水素分圧比の時間変化と、実際の水素分圧比の時間変化とを比較し、その近似度合に基づいて、同一操業バッチ内における浸炭品質のバラつき度合を判定することができる。 According to the first invention, the theoretical change in the theoretical flow rate of the carburizing gas required for the carburizing process is obtained, and the theoretical hydrogen partial pressure ratio corresponding to the theoretical flow rate of the carburized gas is obtained based on the change in time. Compare the time variation of the partial pressure ratio with the time variation of the hydrogen partial pressure ratio in the processing chamber during actual carburizing treatment, and based on the approximate degree, determine the degree of variation in carburizing quality within the same operation batch. Unlike the technology, it is not necessary to carry out a sampling test after carburizing treatment, and the reproducibility of carburizing quality can be easily confirmed. As will be described in detail later, the inventor of the present application stated that the temporal change in the hydrogen partial pressure ratio in the processing chamber during actual carburizing treatment corresponds to the theoretical hydrogen partial pressure ratio (the amount of carburizing gas A new finding was obtained that the degree of variation in the carburizing quality was smaller as the time variation of the theoretical hydrogen partial pressure ratio to the total pressure in the treatment chamber generated by the carburizing reaction at the theoretical flow rate was approximated. The present invention utilizes such novel knowledge. That is, the time variation of the theoretical hydrogen partial pressure ratio is compared with the time variation of the actual hydrogen partial pressure ratio, and the degree of variation in carburizing quality within the same operation batch can be determined based on the degree of approximation.
上記第1の参考例によれば、各操業バッチでの浸炭処理時の水素分圧比の時間変化を比較し、その近似度合いに基づいて、各操業バッチ間の浸炭品質のバラつき度合を判定するので、従来技術のように浸炭処理後に抜取り試験を実施する必要が無く、浸炭品質の再現性の確認を容易に行うことができる。後に詳述するように、本願発明者は、浸炭処理時における処理室内の水素分圧比の時間変化と、浸炭品質とに相関関係があるという新規な知見を得た。本発明は、かかる新規な知見を利用したものである。すなわち、各操業バッチでの浸炭処理時の水素分圧比の時間変化を比較し、その近似度合いに基づいて、各操業バッチ間の浸炭品質のバラつき度合を判定することができる。したがって、例えば、浸炭処理時における処理室内の水素分圧比の時間変化が、それ以前に行われた浸炭処理時における処理室内の水素分圧比の時間変化と同等であるか、又は同等ではないがその差異が許容範囲内であるときは、浸炭品質の再現性が良好であると判定できる。 According to the first reference example, the time variation of the hydrogen partial pressure ratio during the carburizing process in each operation batch is compared, and the degree of variation in carburizing quality between each operation batch is determined based on the degree of approximation. Thus, unlike the prior art, it is not necessary to carry out a sampling test after carburizing treatment, and the reproducibility of carburizing quality can be easily confirmed. As described in detail later, the inventor of the present application has obtained a novel finding that there is a correlation between the time change of the hydrogen partial pressure ratio in the processing chamber during the carburizing process and the carburizing quality. The present invention utilizes such novel knowledge. That is, the time variation of the hydrogen partial pressure ratio during the carburizing process in each operation batch can be compared, and the degree of variation in carburizing quality between the operation batches can be determined based on the degree of approximation. Therefore, for example, the time change of the hydrogen partial pressure ratio in the processing chamber during the carburizing process is equal to or not equivalent to the time change of the hydrogen partial pressure ratio in the processing chamber during the carburizing process performed before that time. When the difference is within the allowable range, it can be determined that the reproducibility of the carburizing quality is good.
上記第2の発明によれば、演算処理手段により上述した理論水素分圧比を求め、出力手段により、この理論水素分圧比の時間変化と、実際の浸炭処理時における水素分圧比の時間変化を表示等するので、この理論水素分圧比と、実際の浸炭処理時における処理室内の水素分圧比とを比較することができる。このため、上述したように、その近似度合に基づいて、同一操業バッチ内における浸炭品質のバラつき度合を判定することができる。したがって、従来技術のように浸炭処理後に抜取り試験を実施する必要が無く、浸炭品質の再現性の確認を容易に行うことができる。 According to the second invention, the theoretical hydrogen partial pressure ratio described above is obtained by the arithmetic processing means, and the time change of the theoretical hydrogen partial pressure ratio and the time change of the hydrogen partial pressure ratio during actual carburizing treatment are displayed by the output means. Therefore, the theoretical hydrogen partial pressure ratio can be compared with the hydrogen partial pressure ratio in the processing chamber during the actual carburizing process. For this reason, as described above, the degree of variation in carburizing quality within the same operation batch can be determined based on the degree of approximation. Therefore, unlike the prior art, it is not necessary to perform a sampling test after carburizing treatment, and the reproducibility of carburizing quality can be easily confirmed.
上記第3の発明によれば、ガス導入量調節手段と、上記近似度合に基づいてガス導入手段を制御する制御手段とを備えるので、真空浸炭炉の操業中に、処理室内の水素分圧比の時間変化が、理論水素分圧比の時間変化に近づくように、ガス導入量調節手段を制御し、処理室への浸炭ガスの導入量を調節することができる。上述したように、実際の浸炭処理時における処理室内の水素分圧比の時間変化が、理論水素分圧比の時間変化に近似するほど、浸炭品質のバラつき度合が少ないため、処理室内の水素分圧比の時間変化を、理論水素分圧比の時間変化に近づけることにより、同一操業バッチ内における浸炭品質のバラつき度合を少なくし、均一性を確保することができる。 According to the third aspect of the invention, since the gas introduction amount adjusting means and the control means for controlling the gas introduction means based on the approximation degree are provided, the hydrogen partial pressure ratio in the processing chamber is controlled during the operation of the vacuum carburizing furnace. The gas introduction amount adjusting means can be controlled to adjust the introduction amount of the carburizing gas into the processing chamber so that the time change approaches the time change of the theoretical hydrogen partial pressure ratio. As described above, since the time variation of the hydrogen partial pressure ratio in the treatment chamber during actual carburizing treatment approximates the time variation of the theoretical hydrogen partial pressure ratio, the degree of variation in carburization quality is small. By bringing the time change closer to the time change of the theoretical hydrogen partial pressure ratio, the degree of variation in carburizing quality within the same operation batch can be reduced, and uniformity can be ensured.
上記第2の参考例によれば、真空浸炭炉において、浸炭処理時における水素分圧比を検知する水素分圧比検知手段と、この水素分圧比の時間変化を表示又は記録する出力手段とを備えるので、各操業バッチでの浸炭処理時における水素分圧比の時間変化を比較することができる。このため、上述したように、その近似度合いに基づいて、各操業バッチ間の浸炭品質のバラつき度合を判定することができる。したがって、従来技術のように浸炭処理後に抜取り試験を実施する必要が無く、浸炭品質の再現性の確認を容易に行うことができる。 According to the second reference example, the vacuum carburizing furnace includes the hydrogen partial pressure ratio detecting means for detecting the hydrogen partial pressure ratio at the time of the carburizing process, and the output means for displaying or recording the time change of the hydrogen partial pressure ratio. The time change of the hydrogen partial pressure ratio during the carburizing process in each operation batch can be compared. For this reason, as described above, the degree of variation in carburizing quality between the operation batches can be determined based on the degree of approximation. Therefore, unlike the prior art, it is not necessary to perform a sampling test after carburizing treatment, and the reproducibility of carburizing quality can be easily confirmed.
上記第3の参考例によれば、ガス導入量調節手段と、上記近似度合に基づいてガス導入手段を制御する制御手段とを備えるので、真空浸炭炉の操業中に、処理室内の水素分圧比の時間変化が、以前の操業バッチと同一又は許容範囲内の変化となるように、ガス導入量調節手段を制御し、処理室への浸炭ガスの導入量を調節することができる。上述したように、浸炭処理時における処理室内の水素分圧比の時間変化と、浸炭品質とに相関関係があるため、浸炭処理時における処理室内の水素分圧比の時間変化を、それ以前の操業バッチにおける水素分圧比の時間変化と同等なものとすることにより、操業バッチ間における浸炭品質のバラつき度合を少なくし、均一性を確保することができる。 According to the third reference example, since the gas introduction amount adjusting means and the control means for controlling the gas introduction means based on the approximate degree are provided, the hydrogen partial pressure ratio in the processing chamber during the operation of the vacuum carburizing furnace is provided. Thus, the gas introduction amount adjusting means can be controlled to adjust the introduction amount of the carburizing gas into the processing chamber so that the time change of the time is the same as or within the allowable range of the previous operation batch. As described above, since there is a correlation between the time variation of the hydrogen partial pressure ratio in the processing chamber during carburizing treatment and the carburizing quality, the time variation of the hydrogen partial pressure ratio in the processing chamber during carburizing treatment is By making it the same as the time change of the hydrogen partial pressure ratio, the degree of variation in carburization quality between operation batches can be reduced, and uniformity can be ensured.
このように、上記本発明によれば、浸炭品質のバラつき度合の判定を容易にして浸炭品質の管理を容易に行うことができるとともに、浸炭品質の再現性を向上させ、浸炭品質のバラつきを少なくしてその均一性を確保できる、という優れた効果が得られる。 As described above, according to the present invention, it is possible to easily determine the degree of variation in carburizing quality and easily manage the carburizing quality, improve the reproducibility of carburizing quality, and reduce the variation in carburizing quality. Thus, the excellent effect of ensuring the uniformity can be obtained.
本発明の具体的な実施形態について説明する前に、まず、本発明の理解を容易にするために、本発明の課題解決原理を理解するための種々の事項について説明する。 Before describing specific embodiments of the present invention, various matters for understanding the problem-solving principles of the present invention will be described first in order to facilitate understanding of the present invention.
まず、「浸炭処理に必要な浸炭ガスの理論流量」について説明する。真空浸炭処理においては、所定の真空状態の処理室内に浸炭ガス(例えばアセチレン)を導入し、導入された浸炭ガスと処理室内の被処理品の表面とで浸炭反応を生じる。このときの浸炭反応は、浸炭ガスがアセチレンの場合、H2C2→2C+H2の反応が行われる。 First, the “theoretical flow rate of carburizing gas necessary for carburizing treatment” will be described. In the vacuum carburizing process, a carburizing gas (for example, acetylene) is introduced into a processing chamber in a predetermined vacuum state, and a carburizing reaction occurs between the introduced carburizing gas and the surface of the workpiece in the processing chamber. In this case, when the carburizing gas is acetylene, the reaction of H 2 C 2 → 2C + H 2 is performed.
すなわち、被処理品の表面における浸炭反応では、炭素が被処理品の表面に投入され、水素が放出される。通常の場合、処理室内に導入された浸炭ガスには、浸炭反応に寄与しない分も含まれている。これに対し、処理室内に導入された浸炭ガスが100%浸炭反応に寄与するとした場合に、要求される表面浸炭濃度と炭素濃度分布を得るために理論上必要な浸炭ガスの流量を「浸炭ガスの理論流量」と定義する。 That is, in the carburization reaction on the surface of the article to be treated, carbon is input to the surface of the article to be treated and hydrogen is released. Normally, the carburizing gas introduced into the processing chamber includes a portion that does not contribute to the carburizing reaction. On the other hand, when the carburizing gas introduced into the processing chamber contributes to the 100% carburizing reaction, the flow rate of the carburizing gas theoretically necessary to obtain the required surface carburizing concentration and carbon concentration distribution is expressed as “carburizing gas. Defined as “theoretical flow rate”.
浸炭処理に必要な浸炭ガスの理論流量Vと浸炭時間tとの関係V=f(t)、つまり浸炭ガスの理論流量の時間変化の求め方は次の通りである。浸炭処理における被処理材の内部への拡散速度は、Fickの第2法則から数1の式(1)で、炭素の拡散係数は式(2)で示される。ここで、Cは濃度、xは表面からの距離、Dは拡散係数[m2/s]、D0は頻度因子[m2/s]、Qは活性化エネルギー[kJ/mol]、Rはガス定数[kJ/K・mol]、Tは温度[K]である。
The relationship between the theoretical flow rate V of the carburizing gas necessary for the carburizing process and the carburizing time t, that is, V = f (t), that is, how to obtain the temporal change in the theoretical flow rate of the carburizing gas is as follows. The diffusion rate into the material to be treated in the carburizing process is expressed by Formula (1) of Formula 1 from Fick's second law, and the diffusion coefficient of carbon is expressed by Formula (2). Here, C is the concentration, x is the distance from the surface, D is the diffusion coefficient [m 2 / s], D0 is the frequency factor [m 2 / s], Q is the activation energy [kJ / mol], and R is the gas Constant [kJ / K · mol] , T is temperature [K].
初期条件をC=C0(C0は母材炭素濃度)とし、浸炭時の表面においてC=CS(CSは表面炭素濃度)とすることにより、式(1)(2)から浸炭温度Tにおける距離x、時間tと炭素濃度Cの関係を求めることができる。これから必要な浸炭深さ及び炭素濃度と表面炭素濃度より、浸炭ガスの理論流量Vと浸炭時間tとの関係V=f(t)を算出することができる。このようにして求めた関係式に基づいて、図1に例示するように、浸炭ガスの理論流量Vの時間変化を表すことができる。 The initial condition is C = C 0 (C 0 is the base material carbon concentration), and C = C S (C S is the surface carbon concentration) on the surface during carburizing. The relationship between the distance x at T, the time t, and the carbon concentration C can be obtained. From this, the relationship V = f (t) between the theoretical flow rate V of the carburizing gas and the carburizing time t can be calculated from the required carburizing depth, carbon concentration, and surface carbon concentration. Based on the relational expression thus obtained, the time change of the theoretical flow rate V of the carburizing gas can be expressed as illustrated in FIG.
次に、「理論水素分圧比」について説明する。通常の真空浸炭処理では、処理室内に実際に導入する浸炭ガスの流量は、上述した理論流量Vとは一致せず、その比率は、処理室内に導入する実際の浸炭ガス流量を実流量VRとした場合、下記(3)式で表される。
理論流量V/実流量VR・・・・(3)
Next, the “theoretical hydrogen partial pressure ratio” will be described. In conventional vacuum carburization, the flow rate of the carburizing gas to be actually introduced into the treatment chamber, does not coincide with the theoretical flow rate V as described above, the ratio is, the actual carburizing gas flow is introduced into the processing chamber actual flow rate V R Is expressed by the following formula (3).
Theoretical flow rate V / actual flow rate V R (3)
そして、この場合において、理想的な浸炭処理が行われたと仮定した場合、理論流量に対応する量の浸炭ガスにより浸炭反応が行われたときに発生する水素量は、その浸炭反応を行った浸炭ガスと同モル数となる。このことは、浸炭ガスがアセチレンの場合、H2C2→2C+H2の反応が行われることから理解できる。そうすると、理論流量の導入による(理想的な)浸炭反応によって生じる理論水素量VTHは、理論的には、浸炭ガスの理論流量Vと同じであるということができる。つまり、下記(4)の関係が成立する。
理論流量V=理論水素量VTH・・・・(4)
In this case, assuming that an ideal carburizing process has been performed, the amount of hydrogen generated when the carburizing reaction is performed with a carburizing gas in an amount corresponding to the theoretical flow rate is equal to the amount of carburizing that has performed the carburizing reaction. It becomes the same number of moles as the gas. This can be understood from the fact that when the carburizing gas is acetylene, a reaction of H 2 C 2 → 2C + H 2 is performed. Then, it can be said that the theoretical hydrogen amount V TH generated by the (ideal) carburizing reaction by introducing the theoretical flow rate is theoretically the same as the theoretical flow rate V of the carburizing gas. That is, the following relationship (4) is established.
Theoretical flow rate V = theoretical hydrogen amount V TH (4)
上記(3)、(4)式から、理論流量Vを理論水素量VTHに置き換えると、下記(5)式が導かれる。
理論水素量VTH/実流量VR・・・・(5)
When the theoretical flow rate V is replaced with the theoretical hydrogen amount V TH from the above equations (3) and (4), the following equation (5) is derived.
Theoretical hydrogen amount V TH / actual flow rate V R (5)
そして、上記(5)式で表されたものは、浸炭処理時における処理室内の全圧力に対する水素分圧比の理論値である。つまり、この水素分圧比の理論値は、(3)、(4)式より、理論流量V、実流量VRから求めることができる。本発明では、上記(5)式で表される水素分圧比の理論値を「理論水素分圧比」と定義する。 And what was represented by the said (5) Formula is the theoretical value of the hydrogen partial pressure ratio with respect to the total pressure in a process chamber at the time of a carburizing process. That is, the theoretical value of the hydrogen partial pressure ratio, (3) can be obtained (4) from the equation, the theoretical flow rate V, the actual flow rate V R. In the present invention, the theoretical value of the hydrogen partial pressure ratio represented by the above formula (5) is defined as “theoretical hydrogen partial pressure ratio”.
次に、理論水素分圧比の時間変化と、実際の浸炭処理時における処理室内の全圧力に対する水素分圧比の時間変化との関係について、図2を参照して説明する。図2において、横軸は浸炭経過時間(sec)を示し、縦軸は水素の分圧比(%)を示している。また図中、A、B、Cは、理論水素分圧比の時間変化を示し、そのときの浸炭ガスの実投入量(実流量)は、それぞれ、10L/m、20L/m、30L/mである。また図中、a、b、cは、実際の浸炭処理時における処理室内の全圧力に対する水素分圧比の時間変化を示し、それぞれ、A、B、Cに対応している。また、a、b、cに付記したΔC%は、それぞれの浸炭工程及び拡散工程終了後の浸炭品質のバラつき度合を示している。 Next, the relationship between the temporal change in the theoretical hydrogen partial pressure ratio and the temporal change in the hydrogen partial pressure ratio with respect to the total pressure in the processing chamber during the actual carburizing process will be described with reference to FIG. In FIG. 2, the horizontal axis represents carburizing elapsed time (sec), and the vertical axis represents hydrogen partial pressure ratio (%). In the figure, A, B, and C indicate the time variation of the theoretical hydrogen partial pressure ratio, and the actual input amount (actual flow rate) of the carburizing gas at that time is 10 L / m, 20 L / m, and 30 L / m, respectively. is there. Further, in the figure, a, b, and c indicate temporal changes in the hydrogen partial pressure ratio with respect to the total pressure in the processing chamber during the actual carburizing process, and correspond to A, B, and C, respectively. Further, ΔC% added to a, b, and c indicates the degree of variation in carburizing quality after the end of each carburizing step and diffusion step.
図2から、実際の水素分圧比が早期に低下するほど、浸炭品質のバラつきが少ないことが分かる。また、実際の水素分圧比が、これに対応する理論水素分圧比に近いほど、浸炭品質のバラつきが少ないことが分かる。このことを、図3を参照して説明する。 From FIG. 2, it can be seen that the earlier the actual hydrogen partial pressure ratio decreases, the less the variation in carburizing quality. It can also be seen that the closer the actual hydrogen partial pressure ratio is to the corresponding theoretical hydrogen partial pressure ratio, the less the variation in carburizing quality. This will be described with reference to FIG.
浸炭処理時における被処理品への炭素の流入を、バラつきの有無を条件として考えた場合、以下のように説明できる。
(1)被処理品が均一に浸炭されている場合(図3Aの場合)
表層付近の炭素濃度の位置による差はなく、炭素流入にも差は無い。
(2)被処理品に不均一な浸炭が発生している場合(図3Bの場合)
表層の炭素濃度に位置による差が生じていることになり、炭素濃度が高い箇所は炭素流入量が少なくなるが、低濃度の箇所では、炭素流入量が高濃度の箇所よりも大きくなる。
(3)以上の2つの状態において、水素分圧比の時間変化(低下率)は、均一な浸炭では理想状態に近づく(図2のb、c)のに対し、不均一な場合(バラつきがある場合)では炭素流入が継続するため、理想状態より遅れる(図2のa)ことになる。
When considering the inflow of carbon to the article to be treated during carburizing treatment on the condition of the presence or absence of variation, it can be explained as follows.
(1) When the product to be treated is uniformly carburized (in the case of FIG. 3A)
There is no difference depending on the position of the carbon concentration near the surface layer, and there is no difference in carbon inflow.
(2) When non-uniform carburization occurs in the product to be processed (in the case of FIG. 3B)
A difference in position occurs in the carbon concentration of the surface layer, and the carbon inflow amount decreases at a location where the carbon concentration is high, but the carbon inflow amount increases at a location where the concentration is low compared to a location where the carbon concentration is high.
(3) In the above two states, the time change (decrease rate) of the hydrogen partial pressure ratio approaches the ideal state in uniform carburization (b and c in FIG. 2), but is non-uniform (there is variation). In the case), since the carbon inflow continues, it is delayed from the ideal state (a in FIG. 2).
以上の事実に基づき、本願発明者は、以下の新規な知見を得た。
(1)実際の浸炭処理時における処理室内の水素分圧比の時間変化が、理論水素分圧比の時間変化に近似するほど、浸炭品質のバラつき度合が少ない。これを利用し、理論水素分圧比の時間変化と、実際の浸炭処理時における処理室内の水素分圧比の時間変化とを比較し、その近似度合に基づいて、同一操業バッチ内における浸炭品質のバラつき度合を判定する。
(2)浸炭処理時における処理室内の水素分圧比の時間変化と、浸炭品質とに相関関係があるという上記(1)の知見から、水素分圧比の時間変化が同じであれば、浸炭品質も同じであると推定できる。これを利用し、各操業バッチでの浸炭処理時の水素分圧比の時間変化を比較し、その近似度合いに基づいて、各操業バッチ間の浸炭品質のバラつき度合を判定する。
Based on the above facts, the present inventor has obtained the following novel findings.
(1) The degree of variation in carburization quality decreases as the time change in the hydrogen partial pressure ratio in the processing chamber during actual carburizing treatment approximates the time change in the theoretical hydrogen partial pressure ratio. Using this, the time variation of the theoretical hydrogen partial pressure ratio is compared with the time variation of the hydrogen partial pressure ratio in the treatment chamber during actual carburizing treatment, and the carburizing quality varies within the same operation batch based on the degree of approximation. Determine the degree.
(2) From the knowledge of the above (1) that there is a correlation between the time variation of the hydrogen partial pressure ratio in the processing chamber during carburizing treatment and the carburizing quality, if the time variation of the hydrogen partial pressure ratio is the same, the carburizing quality is also It can be estimated that they are the same. Using this, the time variation of the hydrogen partial pressure ratio during the carburizing process in each operation batch is compared, and the degree of variation in carburizing quality between each operation batch is determined based on the degree of approximation.
本発明は、上記新規な知見に基づくものであり、以下、本発明の好ましい実施形態を添付図面に基づいて詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。 The present invention is based on the above-described novel findings. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.
図4は、本発明の第1実施形態による真空浸炭炉10の概略構成を示す図である。図4に示すように、真空浸炭炉10は、内部に処理室17を有する炉体12と、ガス導入ライン20と、ガス排気ライン22とを備えている。炉体12の炉壁16の内部には断熱壁14が設けられており、この断熱壁14の内部に、被処理品1を収容し減圧及び加熱状態で被処理品1を浸炭処理する処理室17が形成されている。また、処理室17内には、ヒータ19が設置され、加熱室17内及び被処理品1を所定温度に加熱するようになっている。 FIG. 4 is a diagram showing a schematic configuration of the vacuum carburizing furnace 10 according to the first embodiment of the present invention. As shown in FIG. 4, the vacuum carburizing furnace 10 includes a furnace body 12 having a processing chamber 17 therein, a gas introduction line 20, and a gas exhaust line 22. A heat insulating wall 14 is provided inside the furnace wall 16 of the furnace body 12. The processing chamber in which the product 1 is accommodated in the heat insulating wall 14 and carburized for the product 1 under reduced pressure and heating. 17 is formed. A heater 19 is installed in the processing chamber 17 so as to heat the heating chamber 17 and the workpiece 1 to a predetermined temperature.
ガス導入ライン20は、断熱壁14に接続され、処理室17内に炭化水素(例えばアセチレン)からなる浸炭ガスを導入する「浸炭ガス導入手段」として機能する。ガス排気ライン22は、断熱壁14に接続され、処理室17内のガスを排気するようになっている。また、ガス排気ライン22は真空ポンプ24に接続されており、このガス排気ライン22及び真空ポンプ24は、処理室17内のガスを排気し所定の減圧状態に保持する「ガス排気手段」として機能する。 The gas introduction line 20 is connected to the heat insulating wall 14 and functions as “carburization gas introduction means” for introducing a carburizing gas made of hydrocarbon (for example, acetylene) into the processing chamber 17. The gas exhaust line 22 is connected to the heat insulating wall 14 and exhausts the gas in the processing chamber 17. Further, the gas exhaust line 22 is connected to a vacuum pump 24, and the gas exhaust line 22 and the vacuum pump 24 function as “gas exhaust means” for exhausting the gas in the processing chamber 17 and holding it in a predetermined reduced pressure state. To do.
さらに、真空浸炭炉10は、浸炭処理時における処理室17内の水素圧力を検出する水素センサ30、浸炭処理時における処理室17内の全圧力を検出する真空計32、各種の演算・制御を行う演算処理装置34、この演算処理装置34からの出力を画像表示するディスプレー36及び演算処理装置34からの出力を印刷するプリンター38を備えている。また、演算処理装置34には、入力手段としてのキーボード40及びマウス42が接続されている。 Further, the vacuum carburizing furnace 10 includes a hydrogen sensor 30 that detects the hydrogen pressure in the processing chamber 17 during the carburizing process, a vacuum gauge 32 that detects the total pressure in the processing chamber 17 during the carburizing process, and various calculations and controls. An arithmetic processing unit 34 to perform, a display 36 for displaying an output from the arithmetic processing unit 34, and a printer 38 for printing the output from the arithmetic processing unit 34 are provided. The arithmetic processing unit 34 is connected with a keyboard 40 and a mouse 42 as input means.
水素センサ30は、例えば四重極質量分析器で構成することができ、真空計32は、例えばバラトロン真空計で構成することができる。水素センサ30及び真空計32は演算処理装置34に接続され、検出した処理室17内の水素分圧及び全圧を出力し、その出力信号は演算処理装置34に入力されるようになっている。 The hydrogen sensor 30 can be composed of, for example, a quadrupole mass spectrometer, and the vacuum gauge 32 can be composed of, for example, a Baratron vacuum gauge. The hydrogen sensor 30 and the vacuum gauge 32 are connected to the arithmetic processing unit 34 and output the detected hydrogen partial pressure and total pressure in the processing chamber 17, and the output signals are input to the arithmetic processing unit 34. .
演算処理装置34は、少なくともCPU、記憶部を備えて各種情報処理・演算・制御を実行可能であり、パーソナルコンピュータ又は専用の電子計算機により構成することができる。本実施形態における演算処理装置34は、水素センサ30からの水素分圧及び真空計32からの全圧に基づいて、浸炭処理時における処理室17内の全圧力に対する水素分圧比を演算し、求める処理を行う。このように、本実施形態では、水素センサ30、真空計32及び演算処理装置34により、浸炭処理時における処理室17内の全圧力に対する水素分圧比を検知する「水素分圧比検知手段」としての機能を達成している。 The arithmetic processing unit 34 includes at least a CPU and a storage unit and can execute various types of information processing / calculation / control, and can be configured by a personal computer or a dedicated electronic computer. The arithmetic processing unit 34 in the present embodiment calculates and obtains the hydrogen partial pressure ratio with respect to the total pressure in the processing chamber 17 during the carburizing process based on the hydrogen partial pressure from the hydrogen sensor 30 and the total pressure from the vacuum gauge 32. Process. As described above, in this embodiment, the hydrogen sensor 30, the vacuum gauge 32, and the arithmetic processing unit 34 serve as “hydrogen partial pressure ratio detecting means” that detects the hydrogen partial pressure ratio with respect to the total pressure in the processing chamber 17 during the carburizing process. Has achieved the function.
また、演算処理装置34は、浸炭処理に必要な浸炭ガスの理論流量の時間変化を求める処理と、理論水素分圧比の時間変化を求める処理を行う。この「浸炭ガスの理論流量」及び「理論水素分圧比」の意味は、上述した通りである。具体的には、浸炭処理に必要な浸炭ガスの理論流量は、被処理品1に要求される浸炭深さと表面炭素濃度に応じて、材料の内部拡散に基づいて、求めることができる。また、理論水素分圧比の時間変化は、上記の浸炭ガスの理論流量の時間変化に基づいて、該理論流量における浸炭反応により生じる水素の処理室内における全圧力に対する分圧比により、求めることができる。 Moreover, the arithmetic processing unit 34 performs a process for obtaining a temporal change in the theoretical flow rate of the carburizing gas necessary for the carburizing process and a process for obtaining a temporal change in the theoretical hydrogen partial pressure ratio. The meanings of “theoretical flow rate of carburizing gas” and “theoretical hydrogen partial pressure ratio” are as described above. Specifically, the theoretical flow rate of the carburizing gas necessary for the carburizing treatment can be obtained based on the internal diffusion of the material according to the carburizing depth and surface carbon concentration required for the article 1 to be processed. Further, the temporal change of the theoretical hydrogen partial pressure ratio can be obtained from the partial pressure ratio of the hydrogen generated by the carburizing reaction at the theoretical flow rate to the total pressure in the processing chamber based on the temporal change of the theoretical flow rate of the carburizing gas.
このように、本実施形態では、演算処理装置34により、被処理品1に要求される浸炭深さと表面炭素濃度に応じて、材料の内部拡散に基づいて、浸炭処理に必要な浸炭ガスの理論流量の時間変化を求める処理と、理論流量の時間変化に基づいて、当該理論流量における浸炭反応により生じる水素の処理室17内における全圧力に対する分圧比を理論水素分圧比とし、この理論水素分圧比の時間変化を求める処理と、を行う「演算処理手段」としての機能を達成している。 Thus, in this embodiment, the theory of the carburizing gas necessary for the carburizing process based on the internal diffusion of the material according to the carburizing depth and the surface carbon concentration required for the workpiece 1 by the arithmetic processing unit 34. Based on the process for obtaining the time change of the flow rate and the time change of the theoretical flow rate, the partial pressure ratio of the hydrogen generated by the carburizing reaction at the theoretical flow rate to the total pressure in the processing chamber 17 is defined as the theoretical hydrogen partial pressure ratio. The function as the “arithmetic processing means” for performing the process for obtaining the time change is achieved.
ディスプレー36は、演算処理装置34により求めた理論水素分圧比の時間変化と、実際の水素分圧比の時間変化を画像表示により出力するようになっている。また、プリンター38は、演算処理装置34により求めた理論水素分圧比の時間変化と、実際の水素分圧比の時間変化を印刷により出力するようになっている。このように、本実施形態において、ディスプレー36又はプリンター38は、理論水素分圧比の時間変化と、水素分圧比検知手段により検知した水素分圧比の時間変化を表示する「出力手段」として機能する。 The display 36 outputs the time change of the theoretical hydrogen partial pressure ratio obtained by the arithmetic processing unit 34 and the time change of the actual hydrogen partial pressure ratio by image display. Further, the printer 38 outputs the time change of the theoretical hydrogen partial pressure ratio obtained by the arithmetic processing unit 34 and the time change of the actual hydrogen partial pressure ratio by printing. Thus, in the present embodiment, the display 36 or the printer 38 functions as an “output unit” that displays the temporal change in the theoretical hydrogen partial pressure ratio and the temporal change in the hydrogen partial pressure ratio detected by the hydrogen partial pressure ratio detecting unit.
このように構成された真空浸炭炉10によれば、水素分圧検知手段として機能する水素センサ30、真空計32及び演算処理装置34により実際の浸炭処理時における処理室17内の全圧力に対する水素分圧比を検知し、演算処理手段として機能する演算処理装置34により理論水素分圧比を求め、出力手段として機能するディスプレー36又はプリンター38により、この理論水素分圧比の時間変化と、実際の浸炭処理時における水素分圧比の時間変化を表示するので、この理論水素分圧比と、実際の浸炭処理時における処理室内の水素分圧比とを比較することができる。上述したように、実際の浸炭処理時における処理室内の水素分圧比の時間変化が、理論水素分圧比の時間変化に近似するほど、浸炭品質のバラつき度合が少ない。このため、その近似度合に基づいて、同一操業バッチ内における浸炭品質のバラつき度合を判定することができる。したがって、従来技術のように浸炭処理後に抜取り試験を実施する必要が無く、浸炭品質の再現性の確認を容易に行うことができる。 According to the vacuum carburizing furnace 10 configured as described above, hydrogen with respect to the total pressure in the processing chamber 17 during the actual carburizing process by the hydrogen sensor 30, the vacuum gauge 32, and the arithmetic processing unit 34 functioning as a hydrogen partial pressure detecting means. The partial pressure ratio is detected, the theoretical hydrogen partial pressure ratio is obtained by the arithmetic processing unit 34 functioning as the arithmetic processing means, and the time change of the theoretical hydrogen partial pressure ratio and the actual carburizing process are performed by the display 36 or the printer 38 functioning as the output means. Since the time change of the hydrogen partial pressure ratio at the time is displayed, it is possible to compare this theoretical hydrogen partial pressure ratio with the hydrogen partial pressure ratio in the processing chamber during the actual carburizing process. As described above, the degree of variation in carburization quality decreases as the time change in the hydrogen partial pressure ratio in the processing chamber during actual carburizing treatment approximates the time change in the theoretical hydrogen partial pressure ratio. For this reason, the degree of variation in carburizing quality within the same operation batch can be determined based on the degree of approximation. Therefore, unlike the prior art, it is not necessary to perform a sampling test after carburizing treatment, and the reproducibility of carburizing quality can be easily confirmed.
次に、本発明の第2実施形態について説明する。図5は、本発明の第2実施形態による真空浸炭炉10の概略構成を示す図である。本実施形態による真空浸炭炉10は、上述した第1実施形態による真空浸炭炉10に、ガス流量調節弁26を加えたものである。このガス流量調節弁26は、浸炭ガス導入手段(ガス導入ライン20)による浸炭ガスの導入量を調節する「ガス導入量調節手段」として機能する。その他の、機器構成は、上述した第1実施形態と同様である。 Next, a second embodiment of the present invention will be described. FIG. 5 is a diagram showing a schematic configuration of the vacuum carburizing furnace 10 according to the second embodiment of the present invention. The vacuum carburizing furnace 10 according to the present embodiment is obtained by adding a gas flow rate adjusting valve 26 to the vacuum carburizing furnace 10 according to the first embodiment described above. The gas flow rate adjusting valve 26 functions as a “gas introduction amount adjusting means” for adjusting the amount of carburizing gas introduced by the carburizing gas introducing means (gas introduction line 20). Other device configurations are the same as those in the first embodiment described above.
また、この第2実施形態における演算処理装置34は、求めた理論水素分圧比の時間変化と、実際の水素分圧比の時間変化とを比較し、その近似度合に基づいてガス流量調節弁26を制御するようになっている。具体的には、真空浸炭炉10の操業中に、処理室17内の水素分圧比の時間変化が、理論水素分圧比の時間変化に近づくように、ガス流量調節弁26を制御し、処理室17への浸炭ガスの導入量を調節する。 Further, the arithmetic processing unit 34 in the second embodiment compares the obtained temporal change in the theoretical hydrogen partial pressure ratio with the temporal change in the actual hydrogen partial pressure ratio, and sets the gas flow rate control valve 26 based on the degree of approximation. It comes to control. Specifically, during operation of the vacuum carburizing furnace 10, the gas flow rate control valve 26 is controlled so that the temporal change in the hydrogen partial pressure ratio in the processing chamber 17 approaches the temporal change in the theoretical hydrogen partial pressure ratio, and the processing chamber The amount of carburizing gas introduced to 17 is adjusted.
このように、第2実施形態では、演算処理装置34により、演算処理手段により求めた理論水素分圧比の時間変化と、水素分圧比検知手段により検知した水素分圧比の時間変化とを比較し、その近似度合に基づいてガス導入手段を制御する「制御手段」としての機能を達成している。 Thus, in the second embodiment, the arithmetic processing unit 34 compares the temporal change in the theoretical hydrogen partial pressure ratio obtained by the arithmetic processing means with the temporal change in the hydrogen partial pressure ratio detected by the hydrogen partial pressure ratio detecting means, A function as a “control unit” for controlling the gas introduction unit based on the degree of approximation is achieved.
上述したように、実際の浸炭処理時における処理室17内の水素分圧比の時間変化が、理論水素分圧比の時間変化に近似するほど、浸炭品質のバラつき度合が少ない。このため、第2実施形態による真空浸炭炉によれば、処理室17内の水素分圧比の時間変化を、理論水素分圧比の時間変化に近づけることにより、同一操業バッチ内における浸炭品質のバラつき度合を少なくし、均一性を確保することができる。 As described above, the degree of variation in carburizing quality decreases as the time change in the hydrogen partial pressure ratio in the processing chamber 17 during actual carburizing treatment approximates the time change in the theoretical hydrogen partial pressure ratio. For this reason, according to the vacuum carburizing furnace according to the second embodiment, the time variation of the hydrogen partial pressure ratio in the processing chamber 17 is brought close to the time variation of the theoretical hydrogen partial pressure ratio, so that the degree of variation in carburizing quality in the same operation batch. The uniformity can be ensured.
次に、本発明の第3実施形態について説明する。第3実施形態による真空浸炭炉は、図4に示した第1実施形態による真空浸炭炉10の機器構成と基本的に同様であるので、第3実施形態についても、図4を参照して説明する。 Next, a third embodiment of the present invention will be described. Since the vacuum carburizing furnace according to the third embodiment is basically the same as the equipment configuration of the vacuum carburizing furnace 10 according to the first embodiment shown in FIG. 4, the third embodiment will also be described with reference to FIG. To do.
この第3実施形態における演算処理装置34は、浸炭処理時における水素分圧比の時間変化を記憶部に記憶させておくことができ、ディスプレー36又はプリンター38により、異なる操業バッチでの浸炭処理時における水素分圧比の時間変化を同時又は順次に画像表示又は印刷により出力することができる。 The arithmetic processing unit 34 according to the third embodiment can store the time change of the hydrogen partial pressure ratio during the carburizing process in the storage unit, and the display 36 or the printer 38 can perform the carburizing process in different operation batches. The time change of the hydrogen partial pressure ratio can be output simultaneously or sequentially by image display or printing.
したがって、第3実施形態による真空浸炭炉10によれば、各操業バッチでの浸炭処理時における水素分圧比の時間変化を比較することができる。上述したように、浸炭処理時における処理室内の水素分圧比の時間変化と、浸炭品質とに相関関係があるという知見から、水素分圧比の時間変化が同じであれば、浸炭品質も同じであると推定できる。このため、その近似度合いに基づいて、各操業バッチ間の浸炭品質のバラつき度合を判定することができる。したがって、従来技術のように浸炭処理後に抜取り試験を実施する必要が無く、浸炭品質の再現性の確認を容易に行うことができる。 Therefore, according to the vacuum carburizing furnace 10 by 3rd Embodiment, the time change of the hydrogen partial pressure ratio at the time of the carburizing process in each operation batch can be compared. As described above, from the knowledge that there is a correlation between the time change of the hydrogen partial pressure ratio in the processing chamber during carburizing treatment and the carburizing quality, if the time change of the hydrogen partial pressure ratio is the same, the carburizing quality is also the same. Can be estimated. For this reason, the variation degree of the carburizing quality between each operation batch can be determined based on the degree of approximation. Therefore, unlike the prior art, it is not necessary to perform a sampling test after carburizing treatment, and the reproducibility of carburizing quality can be easily confirmed.
次に、本発明の第4実施形態について説明する。第4実施形態による真空浸炭炉は、図5に示した第2実施形態による真空浸炭炉10の機器構成と基本的に同様であるので、第4実施形態についても、図5を参照して説明する。 Next, a fourth embodiment of the present invention will be described. Since the vacuum carburizing furnace according to the fourth embodiment is basically the same as the equipment configuration of the vacuum carburizing furnace 10 according to the second embodiment shown in FIG. 5, the fourth embodiment will also be described with reference to FIG. To do.
この第4実施形態は、上述した第3実施形態による真空浸炭炉10に、更にガス流量調節弁26を加えた点と、演算処理装置34の動作内容の点で、第3実施形態と異なる。すなわち、第4実施形態における演算処理装置34は、水素分圧比の時間変化と、それ以前に行われた操業バッチの浸炭処理時における水素分圧比の時間変化とを比較し、その近似度合に基づいてガス流量調節弁26を制御するようになっている。具体的には、真空浸炭炉10の操業中に、処理室17内の水素分圧比の時間変化が、以前の操業バッチと同一又は許容範囲内の変化となるように、ガス流量調節弁26を制御し、処理室17への浸炭ガスの導入量を調節する。 The fourth embodiment is different from the third embodiment in that a gas flow rate adjusting valve 26 is further added to the vacuum carburizing furnace 10 according to the above-described third embodiment and the operation content of the arithmetic processing unit 34. That is, the arithmetic processing unit 34 in the fourth embodiment compares the time change of the hydrogen partial pressure ratio with the time change of the hydrogen partial pressure ratio during the carburizing process of the operation batch performed before that, and based on the degree of approximation. Thus, the gas flow rate adjusting valve 26 is controlled. Specifically, during the operation of the vacuum carburizing furnace 10, the gas flow rate control valve 26 is set so that the temporal change in the hydrogen partial pressure ratio in the processing chamber 17 is the same as or within the allowable range of the previous operation batch. The amount of carburizing gas introduced into the processing chamber 17 is controlled.
このように、第4実施形態では、演算処理装置34により、水素分圧検知手段により検知した水素分圧比の時間変化と、それ以前の浸炭処理時における水素分圧比の時間変化とを比較し、その近似度合に基づいてガス導入量調節手段を制御する「制御手段」としての機能を達成している。 Thus, in the fourth embodiment, the arithmetic processing unit 34 compares the time change of the hydrogen partial pressure ratio detected by the hydrogen partial pressure detection means with the time change of the hydrogen partial pressure ratio during the previous carburizing process, A function as a “control unit” for controlling the gas introduction amount adjusting unit based on the degree of approximation is achieved.
上述したように、浸炭処理時における処理室17内の水素分圧比の時間変化と、浸炭品質とに相関関係がある。このため、第4実施形態による真空浸炭炉10によれば、浸炭処理時における処理室17内の水素分圧比の時間変化を、それ以前の操業バッチにおける水素分圧比の時間変化と同等なものとすることにより、操業バッチ間における浸炭品質のバラつき度合を少なくし、均一性を確保することができる。 As described above, there is a correlation between the time variation of the hydrogen partial pressure ratio in the processing chamber 17 during the carburizing process and the carburizing quality. For this reason, according to the vacuum carburizing furnace 10 according to the fourth embodiment, the time change of the hydrogen partial pressure ratio in the processing chamber 17 during the carburizing process is equivalent to the time change of the hydrogen partial pressure ratio in the previous operation batch. By doing so, the degree of variation in carburization quality between operation batches can be reduced, and uniformity can be ensured.
以上の説明から明らかなように、本発明によれば、浸炭品質のバラつき度合の判定を容易にして浸炭品質の管理を容易に行うことができるとともに、浸炭品質の再現性を向上させ、浸炭品質のバラつきを少なくしてその均一性を確保できる、という優れた効果が得られる。 As is clear from the above description, according to the present invention, it is possible to easily determine the degree of variation in carburizing quality and easily manage the carburizing quality, improve the reproducibility of the carburizing quality, and improve the carburizing quality. It is possible to obtain an excellent effect that the uniformity can be ensured by reducing the variation of.
なお、本発明は上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。 In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.
1 被処理品
10 真空浸炭炉
12 炉体
14 断熱壁
16 炉壁
17 被処理室
20 ガス導入ライン
22 ガス排気ライン
24 真空ポンプ
26 ガス流量調節弁
30 水素センサ
32 真空計
34 演算処理装置
36 ディスプレー
38 プリンター
40 キーボード
42 マウス
DESCRIPTION OF SYMBOLS 1 Product 10 Vacuum carburizing furnace 12 Furnace body 14 Heat insulation wall 16 Furnace wall 17 Processed chamber 20 Gas introduction line 22 Gas exhaust line 24 Vacuum pump 26 Gas flow control valve 30 Hydrogen sensor 32 Vacuum gauge 34 Processing unit 36 Display 38 Printer 40 Keyboard 42 Mouse
Claims (3)
被処理品に要求される有効硬化層深さ(浸炭深さ)と表面炭素濃度に応じて、被処理品内部への炭素の拡散に基づいて、式(1)及び(2)から浸炭温度Tにおける表面からの距離x、時間tと炭素濃度Cの関係を求め、さらに必要な浸炭深さ及び炭素濃度と表面炭素濃度より、浸炭ガスの理論流量Vと浸炭時間tとの関係を算出して、浸炭処理に必要な浸炭ガスの理論流量の時間変化を求め、
次いで、理論流量の時間変化に基づいて、該理論流量における浸炭反応により生じる水素の処理室内の全圧力に対する分圧比を理論水素分圧比とし、この理論水素分圧比の時間変化を式(3)によって求め、
理論水素分圧比の時間変化と、実際の浸炭処理時における処理室内の全圧力に対する水素分圧比の時間変化とを比較し、その近似度合に基づいて、同一操業バッチ内における浸炭品質のバラつき度合を判定する、ことを特徴とする真空浸炭の品質管理方法。
C:炭素濃度(初期条件をC=C0(C0は母材炭素濃度)とし、浸炭時の表面においてC=CS(CSは表面炭素濃度)とする)
x:表面からの距離
D:拡散係数[m2/s]
D0:頻度因子[m2/s]
Q:活性化エネルギー[kJ/mol]
R:ガス定数[kJ/K・mol]
T:温度[K]
VR:処理室内に導入する実際の浸炭ガス流量 A quality control method for vacuum carburizing, in which carburizing treatment is performed on a product to be processed in a reduced pressure and heated state with a carburizing gas composed of hydrocarbon,
The carburizing temperature T is calculated from the equations (1) and (2) based on the diffusion of carbon into the processed product according to the effective hardened layer depth (carburized depth) and surface carbon concentration required for the processed product. The relationship between the distance x from the surface, time t and the carbon concentration C is calculated, and the relationship between the carburizing gas theoretical flow rate V and the carburizing time t is calculated from the required carburizing depth, carbon concentration and surface carbon concentration. , Find the time change of the theoretical flow rate of carburizing gas required for carburizing treatment,
Next, based on the time change of the theoretical flow rate, the partial pressure ratio of the hydrogen generated by the carburization reaction at the theoretical flow rate to the total pressure in the processing chamber is defined as the theoretical hydrogen partial pressure ratio, and the time change of this theoretical hydrogen partial pressure ratio is expressed by Equation (3). Seeking
Comparing the time variation of the theoretical hydrogen partial pressure ratio with the time variation of the hydrogen partial pressure ratio with respect to the total pressure in the processing chamber during actual carburizing treatment, and based on the approximation, the degree of variation in carburizing quality within the same operation batch A quality control method for vacuum carburizing, characterized by: determining.
C: Carbon concentration (initial condition is C = C 0 (C 0 is base material carbon concentration), and C = C S (C S is surface carbon concentration) on the surface during carburization)
x: distance from the surface D: diffusion coefficient [m 2 / s]
D0: Frequency factor [m 2 / s]
Q: Activation energy [kJ / mol]
R: Gas constant [kJ / K · mol]
T: Temperature [K]
V R : Actual carburizing gas flow rate introduced into the processing chamber
被処理品に要求される有効硬化層深さ(浸炭深さ)と表面炭素濃度に応じて、被処理品内部への炭素の拡散に基づいて、式(1)及び(2)から浸炭温度Tにおける表面からの距離x、時間tと炭素濃度Cの関係を求め、さらに必要な浸炭深さ及び炭素濃度と表面炭素濃度より、浸炭ガスの理論流量Vと浸炭時間tとの関係を算出して、浸炭処理に必要な浸炭ガスの理論流量の時間変化を求める処理と、次いで、理論流量の時間変化に基づいて、該理論流量における浸炭反応により生じる水素の処理室内の全圧力に対する分圧比を理論水素分圧比とし、この理論水素分圧比の時間変化を式(3)によって求める処理と、からなる演算処理手段と、
理論水素分圧比の時間変化と、実際の浸炭処理時における処理室内の全圧力に対する水素分圧比の時間変化とを比較し、その近似度合に基づいて、前記処理室内に炭化水素からなる浸炭ガスの導入を制御する制御手段と、を備えることを特徴とする真空浸炭の品質管理装置。
C:炭素濃度(初期条件をC=C0(C0は母材炭素濃度)とし、浸炭時の表面においてC=CS(CSは表面炭素濃度)とする)
x:表面からの距離
D:拡散係数[m2/s]
D0:頻度因子[m2/s]
Q:活性化エネルギー[kJ/mol]
R:ガス定数[kJ/K・mol]
T:温度[K]
VR:処理室内に導入する実際の浸炭ガス流量 A quality control device for vacuum carburizing that performs a carburizing process on a product to be processed in a reduced pressure and heated state with a carburizing gas made of hydrocarbon,
The carburizing temperature T is calculated from the equations (1) and (2) based on the diffusion of carbon into the processed product according to the effective hardened layer depth (carburized depth) and surface carbon concentration required for the processed product. The relationship between the distance x from the surface, time t and the carbon concentration C is calculated, and the relationship between the carburizing gas theoretical flow rate V and the carburizing time t is calculated from the required carburizing depth, carbon concentration and surface carbon concentration. Then, based on the time change of the theoretical flow rate of the carburizing gas required for the carburizing treatment , and then the time change of the theoretical flow rate, the partial pressure ratio of hydrogen generated by the carburizing reaction at the theoretical flow rate to the total pressure in the processing chamber is theoretically calculated. A hydrogen partial pressure ratio, and a process for obtaining a temporal change in the theoretical hydrogen partial pressure ratio by the equation (3) , and an arithmetic processing means comprising:
The time variation of the theoretical hydrogen partial pressure ratio is compared with the time variation of the hydrogen partial pressure ratio with respect to the total pressure in the processing chamber during actual carburizing treatment. Based on the approximation, the carburizing gas composed of hydrocarbons in the processing chamber is compared . A quality control device for vacuum carburizing , comprising: a control means for controlling introduction .
C: Carbon concentration (initial condition is C = C 0 (C 0 is base material carbon concentration), and C = C S (C S is surface carbon concentration) on the surface during carburization)
x: distance from the surface D: diffusion coefficient [m 2 / s]
D0: Frequency factor [m 2 / s]
Q: Activation energy [kJ / mol]
R: Gas constant [kJ / K · mol]
T: Temperature [K]
V R : Actual carburizing gas flow rate introduced into the processing chamber
浸炭処理時における前記処理室内の全圧力に対する水素分圧比を検知する水素分圧比検知手段と、
被処理品に要求される浸炭深さと表面炭素濃度に応じて、材料の内部拡散に基づいて、式(1)及び(2)から浸炭温度Tにおける表面からの距離x、時間tと炭素濃度Cの関係を求め、さらに必要な浸炭深さ及び炭素濃度と表面炭素濃度より、浸炭ガスの理論流量Vと浸炭時間tとの関係を算出して、浸炭処理に必要な浸炭ガスの理論流量の時間変化を求める処理と、
次いで、理論流量の時間変化に基づいて、該理論流量における浸炭反応により生じる水素の処理室内における全圧力に対する分圧比を理論水素分圧比とし、この理論水素分圧比の時間変化を式(3)によって求める処理と、を行う演算処理手段と、
前記理論水素分圧比の時間変化と、前記水素分圧比検知手段により検知した水素分圧比の時間変化を表示する出力手段と、
前記浸炭ガス導入手段による浸炭ガスの導入量を調節するガス導入量調節手段と、
前記演算処理手段により求めた理論水素分圧比の時間変化と、前記水素分圧比検知手段により検知した水素分圧比の時間変化とを比較し、その近似度合に基づいて前記ガス導入量調節手段を制御する制御手段と、を備える、ことを特徴とする真空浸炭炉。
C:炭素濃度(初期条件をC=C0(C0は母材炭素濃度)とし、浸炭時の表面においてC=CS(CSは表面炭素濃度)とする)
x:表面からの距離
D:拡散係数[m2/s]
D0:頻度因子[m2/s]
Q:活性化エネルギー[kJ/mol]
R:ガス定数[kJ/K・mol]
T:温度[K]
VR:処理室内に導入する実際の浸炭ガス流量
A furnace body having a processing chamber for containing the product to be processed and carburizing the product to be processed under reduced pressure and heating, carburizing gas introduction means for introducing a carburizing gas composed of hydrocarbons into the processing chamber, In a vacuum carburizing furnace provided with a gas exhaust means for exhausting gas and maintaining a predetermined reduced pressure state,
A hydrogen partial pressure ratio detecting means for detecting a hydrogen partial pressure ratio with respect to the total pressure in the processing chamber at the time of carburizing;
The distance x from the surface at the carburizing temperature T, time t, and carbon concentration C based on the internal diffusion of the material, depending on the carburization depth and surface carbon concentration required for the workpiece. The relationship between the theoretical flow rate V of the carburizing gas and the carburizing time t is calculated from the required carburizing depth, carbon concentration and surface carbon concentration, and the time of the theoretical flow rate of the carburizing gas necessary for the carburizing process is calculated. The process of seeking change,
Next, based on the time change of the theoretical flow rate, the partial pressure ratio of the hydrogen generated by the carburization reaction at the theoretical flow rate to the total pressure in the processing chamber is defined as the theoretical hydrogen partial pressure ratio. An arithmetic processing means for performing processing to obtain,
An output means for displaying the time change of the theoretical hydrogen partial pressure ratio and the time change of the hydrogen partial pressure ratio detected by the hydrogen partial pressure ratio detection means;
Gas introduction amount adjusting means for adjusting the amount of carburizing gas introduced by the carburizing gas introduction means;
The time change of the theoretical hydrogen partial pressure ratio obtained by the arithmetic processing means is compared with the time change of the hydrogen partial pressure ratio detected by the hydrogen partial pressure ratio detection means, and the gas introduction amount adjusting means is controlled based on the degree of approximation. A vacuum carburizing furnace, comprising:
C: Carbon concentration (initial condition is C = C 0 (C 0 is base material carbon concentration), and C = C S (C S is surface carbon concentration) on the surface during carburization)
x: distance from the surface D: diffusion coefficient [m 2 / s]
D0: Frequency factor [m 2 / s]
Q: Activation energy [kJ / mol]
R: Gas constant [kJ / K · mol]
T: Temperature [K]
V R : Actual carburizing gas flow rate introduced into the processing chamber
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005304250A JP5024647B2 (en) | 2005-10-19 | 2005-10-19 | Vacuum carburizing quality control method and vacuum carburizing furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005304250A JP5024647B2 (en) | 2005-10-19 | 2005-10-19 | Vacuum carburizing quality control method and vacuum carburizing furnace |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011157643A Division JP5429500B2 (en) | 2011-07-19 | 2011-07-19 | Quality control method and apparatus for vacuum carburizing, and vacuum carburizing furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007113045A JP2007113045A (en) | 2007-05-10 |
JP5024647B2 true JP5024647B2 (en) | 2012-09-12 |
Family
ID=38095511
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005304250A Active JP5024647B2 (en) | 2005-10-19 | 2005-10-19 | Vacuum carburizing quality control method and vacuum carburizing furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5024647B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5429500B2 (en) * | 2011-07-19 | 2014-02-26 | 株式会社Ihi | Quality control method and apparatus for vacuum carburizing, and vacuum carburizing furnace |
WO2019182140A1 (en) * | 2018-03-22 | 2019-09-26 | 日本製鉄株式会社 | Vacuum carburization processing method, and method for manufacturing carburized component |
JP7201092B2 (en) * | 2019-08-29 | 2023-01-10 | 日本製鉄株式会社 | Vacuum carburizing treatment method and carburized part manufacturing method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04107256A (en) * | 1990-08-28 | 1992-04-08 | Nippon Seiko Kk | Carburizing furnace |
JP2002173759A (en) * | 2000-12-05 | 2002-06-21 | Toho Gas Co Ltd | Vacuum carburizing atmospheric gas control system and vacuum carburizing treatment apparatus used in the system |
JP2004332075A (en) * | 2003-05-09 | 2004-11-25 | Toho Gas Co Ltd | Carburization control method and carburizing device using the method |
-
2005
- 2005-10-19 JP JP2005304250A patent/JP5024647B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007113045A (en) | 2007-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3531736B2 (en) | Carburizing method and carburizing device | |
JP5429500B2 (en) | Quality control method and apparatus for vacuum carburizing, and vacuum carburizing furnace | |
US20080149226A1 (en) | Method of optimizing an oxygen free heat treating process | |
Yada et al. | Reactive flow simulation of vacuum carburizing by acetylene gas | |
EP1264915B1 (en) | A carburising method and an apparatus therefor | |
JP5024647B2 (en) | Vacuum carburizing quality control method and vacuum carburizing furnace | |
Kula et al. | FineCarb-the flexible system for low pressure carburizing. New options and performance | |
CN106852159A (en) | For carrying out heat-treating methods to steel pipe long | |
Sokolowska et al. | Nitrogen transport mechanisms in low temperature ion nitriding | |
JP4853615B2 (en) | Vacuum carburizing quality control method and vacuum carburizing furnace | |
JP3973795B2 (en) | Gas carburizing method | |
JP2002173759A (en) | Vacuum carburizing atmospheric gas control system and vacuum carburizing treatment apparatus used in the system | |
Keddam | Surface modification of the pure iron by the pulse plasma nitriding: Application of a kinetic model | |
US9109277B2 (en) | Method and apparatus for heat treating a metal | |
JP2004332075A (en) | Carburization control method and carburizing device using the method | |
JP2017082275A (en) | Nitriding treatment apparatus and nitriding treatment method | |
EP0859067B1 (en) | Method and apparatus for controlling the atmosphere in a heat treatment furnace | |
JP2021063288A (en) | Heat treatment furnace, its control method, information processing device, information processing method and program | |
EP1264914B1 (en) | A carburising method and an apparatus therefor | |
CN114341392B (en) | Vacuum carburization method and carburized component manufacturing method | |
WO2019182140A1 (en) | Vacuum carburization processing method, and method for manufacturing carburized component | |
JPS5896866A (en) | Controlling method for quantity of carburization in vaccum carburization treatment | |
JP7183126B2 (en) | SUBSTRATE PROCESSING APPARATUS, INFORMATION PROCESSING APPARATUS AND INFORMATION PROCESSING METHOD | |
JP2009287070A (en) | Method for preparatorily baking holder and apparatus for determining completion of preparatory baking | |
JP6724201B2 (en) | Nitriding apparatus and nitriding method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080829 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110520 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110719 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110805 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110920 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120525 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120607 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150629 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5024647 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |