JP2000315584A - Organic thin film light-emitting element - Google Patents

Organic thin film light-emitting element

Info

Publication number
JP2000315584A
JP2000315584A JP11123484A JP12348499A JP2000315584A JP 2000315584 A JP2000315584 A JP 2000315584A JP 11123484 A JP11123484 A JP 11123484A JP 12348499 A JP12348499 A JP 12348499A JP 2000315584 A JP2000315584 A JP 2000315584A
Authority
JP
Japan
Prior art keywords
organic
organic compound
compound
layer
carrier transporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11123484A
Other languages
Japanese (ja)
Inventor
Shinji Funakoshi
真二 船越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP11123484A priority Critical patent/JP2000315584A/en
Publication of JP2000315584A publication Critical patent/JP2000315584A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily provide a homogeneous layer, to facilitate industrial production, and to provide excellent luminance stability even in an element temperature rising time by forming a layer consisting of an organic polymer compound having a three-dimensionally cross-linked siloxane skeleton as a layer between a positive electrode and a negative electrode. SOLUTION: An organic polymer compound provided with a siloxane skeleton and used in an organic EL element is prepared by bringing a functional group- introduced carrier transporting organic compound into reaction with reactive silicones for introducing the carrier transporting organic compound to the siloxane skeleton as a side chain. When a cross-linking reaction between the reactive silicones and a multi-functional carrier transporting organic compound is used, addition of another cross-linking agent is not required, so that a ratio of the carrier transporting organic compound in the carrier transporting layer can be increased advantageously to electron/positive hole transportation. On the other hand, a degree of cross-linkage may be controlled when a mono- functional carrier transporting organic compound is used concurretly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気信号に応じて
発光する有機薄膜素子に関するものであり、特に素子温
度上昇時における輝度安定性に優れた有機エレクトロル
ミネッセンス素子(有機EL素子と略称する)に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic thin-film device that emits light in response to an electric signal, and more particularly to an organic electroluminescent device (abbreviated as an organic EL device) having excellent luminance stability when the device temperature rises. It is about.

【0002】[0002]

【従来の技術】有機EL素子は、有機発光体を対向電極
で挟んで構成されており、一方の電極からは電子が注入
され、もう一方の電極からは正孔が注入され、注入され
た電子と正孔が発光層内で再結合するときに発光するも
のである。有機EL素子研究の歴史の中で、初期におい
てはアントラセンなどの有機蛍光体の単結晶あるいは蒸
着膜を、陽極と陰極の間に設けた構造の素子が検討され
た。ところが、蛍光体単層では上述した電子と正孔の再
結合が効率よく行えず、実用性のある素子は得られてい
なかった。正孔輸送性化合物の低分子芳香族アミンと電
子輸送性発光化合物のアルミキレート錯体とを真空蒸着
によって積層させることによって、有機EL素子は飛躍
的に発光効率が向上することが報告された(C.W.T
ang,Appl.Phys.Lett.,51,p.
913(1987))。
2. Description of the Related Art An organic EL element has an organic light-emitting body sandwiched between opposing electrodes. Electrons are injected from one electrode, holes are injected from the other electrode, and the injected electrons are injected. When light and holes recombine in the light emitting layer, light is emitted. In the history of organic EL device research, devices having a structure in which a single crystal or a vapor-deposited film of an organic phosphor such as anthracene was provided between an anode and a cathode were studied at an early stage. However, recombination of the above-mentioned electrons and holes cannot be performed efficiently with a phosphor single layer, and a practical element has not been obtained. It has been reported that the organic EL device is dramatically improved in luminous efficiency by laminating a low molecular weight aromatic amine of a hole transporting compound and an aluminum chelate complex of an electron transporting luminescent compound by vacuum evaporation (C .WT
ang, Appl. Phys. Lett. , 51, p.
913 (1987)).

【0003】以来、真空蒸着法による積層構造を有する
有機EL素子の研究が活発に行われるようになった。し
かし、真空蒸着を行うため、用いられる有機化合物は低
分子量のものに限られ、該低分子有機化合物を用いた有
機EL素子においては、使用環境やジュール熱による素
子温度の上昇により有機層の結晶化や擬集が起こり素子
が劣化し素子寿命に多大な影響を与えるという問題があ
った。そこで、用いる有機化合物の分子量を蒸着可能な
範囲内で大きくし、ガラス転移点を上げ有機層の結晶化
や凝集を抑制する方法などが提案されているが本質的な
問題解決にはなり得ていない。また一方、低分子有機化
合物層から高分子有機化合物層への転換も提案されてお
り、例えば、今までに、不活性なポリマーバインダー中
にキャリヤ輸送性低分子有機化合物や発光性化合物を分
散させたもの、キャリヤ輸送性低分子有機化合物にピニ
ル基を導入し重合することで高分子化を行うものなどが
提案されているが、耐熱性においては未だ十分な性能は
得られていない。
[0003] Since then, researches on organic EL devices having a laminated structure by a vacuum deposition method have been actively conducted. However, since vacuum evaporation is performed, the organic compound used is limited to those having a low molecular weight. In an organic EL device using the low molecular weight organic compound, the crystal of the organic layer is increased due to a use environment or an increase in device temperature due to Joule heat. There has been a problem that the elements are deteriorated due to formation and pseudo-collection, which greatly affects the life of the element. Therefore, a method has been proposed in which the molecular weight of the organic compound to be used is increased within a range where vapor deposition can be performed, and the glass transition point is increased to suppress crystallization and aggregation of the organic layer. Absent. On the other hand, conversion from a low molecular weight organic compound layer to a high molecular weight organic compound layer has also been proposed, for example, by dispersing a carrier transporting low molecular weight organic compound or a luminescent compound in an inert polymer binder. In addition, there have been proposed ones in which a pinyl group is introduced into a carrier-transporting low-molecular-weight organic compound to polymerize the compound, but sufficient performance in terms of heat resistance has not yet been obtained.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来技
術の課題を解決するものであり、その目的とするところ
は、一般に高分子の製膜に用いられているスピンコート
法やディップコート法などにより非常に容易に均質な層
を得ることができ、工業的生産が容易であり、しかも素
子温度上昇時の輝度安定性に優れた有機EL素子を提供
することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a spin coating method or a dip coating method which is generally used for polymer film formation. Accordingly, it is an object of the present invention to provide an organic EL device which can very easily obtain a uniform layer, can be easily manufactured industrially, and has excellent luminance stability when the device temperature rises.

【0005】[0005]

【課題を解決するための手段】本発明者等はこの様な状
況に鑑み鋭意検討を加えた結果、陽極と陰極の間の層と
して、三次元架橋されたシロキサン骨格を有する有機高
分子化合物からなる層を形成することにより、素子温度
上昇時の輝度安定性に優れた有機EL素子を得ることが
できることを見出し、本発明を完成するに至った。ま
た、その際、シロキサン骨格を有する有機高分子化合物
に電子輸送性および正孔輸送性の両方の性能を付与する
ことによって得られる有機EL素子は、さらに輝度安定
性および発光効率に優れることを見出した.即ち、本発
明は: 正孔を注入する陽極と電子を注入する陰極とを有
し、該陽極と該陰極との間に有機化合物よりなる層を有
し、かつ該陽極もしくは該陰極の少なくとも一方が透明
である有機EL素子であって、該有機化合物が三次元架
橋されたシロキサン骨格を有する有機高分子化合物から
なることを特徴とする、有機EL素子を提供する。ま
た、 シロキサン骨格を有する有機高分子化合物が、電子
輸送性および正孔輸送性の両方の性能を付与されたもの
である点にも特徴を有する。また、 前記有機化合物が、多官能の電子輸送性有機化合物
によって三次元架橋されたシロキサン骨格を有する有機
高分子化合物である点にも特徴を有する。また、 前記有機化合物が、多官能の正孔輸送性有機化合物
によって三次元架橋されたシロキサン骨格を有する有機
高分子化合物である点にも特徴を有する。
Means for Solving the Problems The present inventors have made intensive studies in view of such a situation, and as a result, as a layer between an anode and a cathode, an organic polymer compound having a three-dimensionally crosslinked siloxane skeleton has been used. By forming such a layer, it was found that an organic EL device having excellent luminance stability when the device temperature was increased could be obtained, and the present invention was completed. Further, at that time, they have found that an organic EL device obtained by imparting both an electron transporting property and a hole transporting property to an organic polymer compound having a siloxane skeleton has further excellent luminance stability and luminous efficiency. Was. That is, the present invention includes: an anode for injecting holes and a cathode for injecting electrons, a layer made of an organic compound between the anode and the cathode, and at least one of the anode and the cathode. Is a transparent organic EL device, characterized in that the organic compound comprises an organic polymer compound having a three-dimensionally crosslinked siloxane skeleton. Another feature is that the organic polymer compound having a siloxane skeleton is provided with both electron transporting and hole transporting properties. Further, the organic compound is characterized in that the organic compound is an organic polymer compound having a siloxane skeleton three-dimensionally crosslinked by a polyfunctional electron transporting organic compound. Further, the organic compound is characterized in that the organic compound is an organic polymer compound having a siloxane skeleton three-dimensionally crosslinked by a polyfunctional hole transporting organic compound.

【0006】以下、本発明を詳細に説明する.本発明の
有機EL素子で用いられるシロキサン骨格を有する有機
高分子化合物としては、官能基を導入したキャリア輸送
性有機化合物を反応性シリコーン類より選択した一種な
いしは二種以上のものと反応せしめ、シロキサン骨格に
対して側鎖として該キャリア輸送性有機化合物を導入し
たものが挙げられる。この場合、該有機高分子化合物は
単独でも2種以上の混合物の形態で使用できる。 (i) 反応性シリコーン ここでいう反応性シリコーンとは、ハイドロジェンシリ
コーンやビニル基を持つシリコーン、エポキシ基を持⊃
シリコーン、シラノール基を持つシリコーン、アミノ基
を持つシリコーン、カルビノール(ヒドロキシル)基を
持⊃シリコーン、メタクリレート基を持⊃シリコーン、
アクリレート基を持つシリコーン、メルカプト基を持つ
シリコーン、カルボキシル基を持つシリコーン等を好ま
しく挙げられる。
Hereinafter, the present invention will be described in detail. As the organic polymer compound having a siloxane skeleton used in the organic EL device of the present invention, a carrier-transporting organic compound having a functional group introduced therein is reacted with one or two or more compounds selected from reactive silicones. Examples include those in which the carrier transporting organic compound is introduced as a side chain to the skeleton. In this case, the organic polymer compound can be used alone or in the form of a mixture of two or more. (i) Reactive silicone The reactive silicone referred to here is hydrogen silicone, silicone having a vinyl group, or silicone having an epoxy group.
Silicone, silicone with silanol group, silicone with amino group, silicone with carbinol (hydroxyl) group, silicone with methacrylate group, silicone,
Silicones having an acrylate group, silicones having a mercapto group, silicones having a carboxyl group and the like are preferred.

【0007】ここにいうハイドロジェンシリコーンと
は、ポリメチルハイドロジェンシリコーン、ポリフェニ
ルハイドロジェンシリコーン、およびこれらの共重合
物、さらにはこれらハイドロジェンシリコーンのSi−
H基の一部をメチル基やフェニル基で置換した構造を持
つシリコーンなどであり、これら単独或いは2種以上が
用いられる。 (ii)キャリア輸送性有機化合物 また、キャリア輸送性有機化合物とは、正孔輸送性有機
化合物、電子輸送性有機化合物を指し、例えば、電子写
真感光体や低分子積層型有機EL素子の作成において一
般に用いられている有機化合物などである。また、反応
性シリコーン類と多官能の電子輸送性有機化合物との架
橋反応を用いた場合、他に架橋剤を添加する必要がなく
なり、その分、電子輸送層に占める電子輸送性有機化合
物の比率を大きくすることができ、電子を輸送するのに
より有利となる。ただし、この場合、一官能の電子輸送
性有機化合物を併用することによって架橋度を制御する
ことも可能である.
The term "hydrogen silicone" as used herein means polymethyl hydrogen silicone, polyphenyl hydrogen silicone, copolymers thereof, and Si-hydrogen silicone.
Silicone or the like having a structure in which a part of the H group is substituted with a methyl group or a phenyl group is used alone or in combination of two or more. (ii) Carrier-transporting organic compound The carrier-transporting organic compound refers to a hole-transporting organic compound or an electron-transporting organic compound, for example, in the production of an electrophotographic photoreceptor or a low-molecular stacked organic EL device. Organic compounds and the like commonly used. In addition, when a cross-linking reaction between the reactive silicones and the polyfunctional electron-transporting organic compound is used, it is not necessary to add a cross-linking agent, and the proportion of the electron-transporting organic compound in the electron-transporting layer is accordingly reduced. Can be increased, which is more advantageous for transporting electrons. However, in this case, the degree of crosslinking can be controlled by using a monofunctional electron transporting organic compound in combination.

【0008】1)電子輸送性有機化合物としては、従来
公知の電子輸送性有機化合物および該電子輸送性有機化
合物に官能基を導入したものが制限なく使用できる。具
体的には、下記式(1) で示される2,5−ビス(1−ナ
フチル)−1,3,4−オキサジアゾール、下記式(2)
で示される2−(4−t−ブチルフェニル)−5−(4
−ビフェニリル)−1,3,4−オキサジアゾール、下
記式(3) で示される2,5−ビス(1−(2−オキサ−
ペンテニル)ナフチル)−1,3,4−オキサジアゾー
ル(以下、A−BNDと称す)、下記式(4) で示される
2−(4−(2−オキサ−4−ペンテニル)フェニル)
−5−(1−ナフチル)−1,3,4−オキサジアゾー
ル(以下、A−OXDと称す)等が例示される.
1) As the electron transporting organic compound, conventionally known electron transporting organic compounds and those obtained by introducing a functional group into the electron transporting organic compound can be used without limitation. Specifically, 2,5-bis (1-naphthyl) -1,3,4-oxadiazole represented by the following formula (1):
2- (4-t-butylphenyl) -5- (4
-Biphenylyl) -1,3,4-oxadiazole, 2,5-bis (1- (2-oxa-) represented by the following formula (3):
Pentenyl) naphthyl) -1,3,4-oxadiazole (hereinafter, referred to as A-BND), 2- (4- (2-oxa-4-pentenyl) phenyl) represented by the following formula (4)
-5- (1-Naphthyl) -1,3,4-oxadiazole (hereinafter referred to as A-OXD) and the like.

【0009】[0009]

【化1】 Embedded image

【化2】 Embedded image

【0010】[0010]

【化3】 Embedded image

【化4】 Embedded image

【0011】同様に、反応性シリコーン類と多官能の正
孔輸送性有機化合物との架橋反応を用いた場合、他に架
橋剤を添加する必要がなくなり、その分、正孔輸送層に
占める正孔輸送性有機化合物の比率を大きくすることが
でき、正孔を輸送するのにより有利となる。ただし、こ
の場合、一官能の孔子輸送性有機化合物を併用すること
によって架橋度を制御することも可能である。 2)正孔輸送性有機化合物としては、従来公知の正孔輸
送性有機化合物および該正孔輸送性有機化合物に官能基
を導入したものが制限なく使用できる。具体的には、下
記式(5) で示されるN,N’−ジフェニル−N,N’−
(3−メチルフェニル)−1,1’−ビフェニル−4,
4’−ジアミン(以下、TPDと称す)、下記式(6) で
示される9−カルバゾール、下記式(7) で示されるN,
N’−ジフェニル−N,N’−(3−(2−オキサ−4
−ペンテニル)フェニル)−1,1’−ビフェニル−
4,4’−ジアミン(以下、A−TPDと称す)、下記
式(8) で示される9−(2−プロペニルカルバゾール)
(以下、A−Czと称す)等が例示される。
Similarly, when a cross-linking reaction between a reactive silicone and a polyfunctional hole-transporting organic compound is used, it is not necessary to add a cross-linking agent, and the hole occupying the hole-transporting layer is accordingly reduced. The ratio of the hole transporting organic compound can be increased, which is more advantageous for transporting holes. However, in this case, it is also possible to control the degree of crosslinking by using a monofunctional hole transporting organic compound in combination. 2) As the hole transporting organic compound, conventionally known hole transporting organic compounds and those obtained by introducing a functional group into the hole transporting organic compound can be used without limitation. Specifically, N, N'-diphenyl-N, N'- represented by the following formula (5)
(3-methylphenyl) -1,1′-biphenyl-4,
4′-diamine (hereinafter, referred to as TPD), 9-carbazole represented by the following formula (6), N, represented by the following formula (7)
N'-diphenyl-N, N '-(3- (2-oxa-4
-Pentenyl) phenyl) -1,1'-biphenyl-
4,4'-diamine (hereinafter referred to as A-TPD), 9- (2-propenylcarbazole) represented by the following formula (8)
(Hereinafter, referred to as A-Cz) and the like.

【0012】[0012]

【化5】 Embedded image

【化6】 Embedded image

【0013】[0013]

【化7】 Embedded image

【化8】 Embedded image

【0014】(iii) その他 1)成膜方法 本発明の有機高分子化合物の薄膜の成膜方法としては、
特に制限されないが、例えば該有機高分子化合物の非溶
媒溶液或いはトルエン、テトラヒドロフラン、クロロホ
ルム、ジオキサン、ジメチルアセトアミド、ジメチルホ
ルムアミド等の有機溶媒溶液を基板上にスピンコート
法、ディップコート法、ロールコート法等の方法で塗布
後に適当な条件で熱処理することにより容易に得られ
る。 2)封止層 本発明では、有機EL素子の有機層や電極の酸化を防ぐ
ために、有機EL素子上にSiO2 、SiO、GeO、
MgO等の金属酸化物:MgF2 、LiO、等の弗化
物:ZnS、GeS等の硫化物等の封止層を形成しても
良い。 3)防湿層 本発明では、湿気の浸入を防ぐために、市販の低吸湿性
の光硬化性接着剤、エポキシ系接着剤、シリコーン系接
着剤等の低融点接着性樹脂や低融点ガラスの層で有機E
L素子の周囲又は全面を密封しても良い。
(Iii) Others 1) Method of forming a film The method of forming a thin film of the organic polymer compound of the present invention includes:
Although not particularly limited, for example, a non-solvent solution of the organic polymer compound or an organic solvent solution such as toluene, tetrahydrofuran, chloroform, dioxane, dimethylacetamide, or dimethylformamide is spin-coated, dip-coated, or roll-coated on a substrate. It can be easily obtained by heat treatment under appropriate conditions after coating by the method described above. 2) Sealing layer In the present invention, in order to prevent oxidation of the organic layer and the electrodes of the organic EL element, SiO 2 , SiO, GeO,
Metal oxides such as MgO: fluorides such as MgF 2 and LiO: sealing layers such as sulfides such as ZnS and GeS may be formed. 3) Moisture-proof layer In the present invention, in order to prevent moisture from entering, a low-melting-point adhesive resin or low-melting-point glass such as a commercially available low-moisture-absorbing photocurable adhesive, epoxy-based adhesive, or silicone-based adhesive is used. Organic E
The periphery or the entire surface of the L element may be sealed.

【0015】[0015]

【発明の実施の形態】以下に実施例を挙げ、本発明を更
に詳細に説明する。 (実施例1)陽極基板としては、よく洗浄したインジウ
ム錫酸化物(ITO)コートガラス(HOYA(株)
製)を用い、ガラス基板上のITO層は王水により2m
m幅の短冊状にエッチングした。正孔輸送性化合物であ
るA−Czと電子輸送性化合物であるA−OXDおよび
ポリメチルハイドロジェンシリコーン[信越化学工業
(株)製、商品名:KF−99]とをモル比で各々40
対40対100(ポリメチルハイドロジェンシリコーン
の場合はSi−Hユニットのモル数比)となるよう混合
し、この混合物100重量部に対し400重量部のトル
エンと0.05重量部の白金錯体[チッソ(株)製、白
金−ジビニルテトラメチルジシロキサン錯体]とを加
え、よく混合し、80℃に加熱し十分反応せしめた後、
室温まで冷却した.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail with reference to the following examples. (Example 1) A well-washed indium tin oxide (ITO) coated glass (HOYA CORPORATION) was used as an anode substrate.
Made on the glass substrate by aqua regia 2m
It was etched in a strip shape of m width. A-Cz which is a hole-transporting compound, A-OXD which is an electron-transporting compound, and polymethylhydrogen silicone [trade name: KF-99, manufactured by Shin-Etsu Chemical Co., Ltd.] are each 40 in molar ratio.
The mixture was mixed to give a ratio of 40 to 100 (in the case of polymethyl hydrogen silicone, the molar ratio of Si—H units). For 100 parts by weight of this mixture, 400 parts by weight of toluene and 0.05 parts by weight of a platinum complex [ Platinum-divinyltetramethyldisiloxane complex, manufactured by Chisso Corporation], mixed well, and heated to 80 ° C. to react sufficiently.
Cooled to room temperature.

【0016】該反応物に末端ビニルポリジメチルシロキ
サン[チッソ(株)製、DMS−V05]を(該反応物
中のSi−H残基)対(ビニル基)が等モル数となるよ
うに混合し、この混合物中の固形分100重量部に対し
0.02重量部の白金錯体[チッソ(株)製、白金−ジ
ビニルテトラメチルジシロキサン鋸体]と1重量部の、
下記式(9) で示される蛍光物質である3−(2’−ペン
ゾチアゾリル)−7−ジエチルアミノクマリン(以下、
クマリン6と称す)を加え良く混合した後に、上記で得
たガラス基板上にスピンコートした。
The reaction product was mixed with a vinyl polydimethylsiloxane terminated with DMS-V05 (manufactured by Chisso Corporation) such that (Si-H residue in the reaction product) and (vinyl group) were equimolar. Then, with respect to 100 parts by weight of the solid content in this mixture, 0.02 parts by weight of a platinum complex [a platinum-divinyltetramethyldisiloxane saw body manufactured by Chisso Corporation] and 1 part by weight of
3- (2′-Penzothiazolyl) -7-diethylaminocoumarin (hereinafter, referred to as a fluorescent substance represented by the following formula (9))
Coumarin 6) and mixed well, and then spin-coated on the glass substrate obtained above.

【化9】 Embedded image

【0017】次に、徐々に基板を加熱し80℃で十分に
架橋反応せしめ、100nmの厚さの有機化合物層が得
られた。最後に、有機化合物層上に、シャドウマスクを
用いて2mm幅でITO電極と直交する位置関係にて、
10-6Torrの真空下、MgとAgとを成膜速度比1
0対1の割合で厚さ150nmまで共蒸着して陰極を形
成した。素子の発光面積は2×2mm2 である。素子の
発光特性の測定は、0.1Torrの真空下、室温で行
った。ITO電極をプラス、MgAg電極をマイナスと
して定電圧電源装置により直流電流を流して素子を発光
させ、発光強度の測定を行った。その結果、印加電圧1
5Vにおける発光輝度は545cd/m2 であった。つ
ぎに、この素子を0.1Torrの真空下、120℃で
2時間加熱した後室温まで冷却し、発光輝度の測定を行
ったところ455cd/m2 であった。
Next, the substrate was gradually heated and a crosslinking reaction was sufficiently performed at 80 ° C. to obtain an organic compound layer having a thickness of 100 nm. Finally, on the organic compound layer, using a shadow mask, a positional relationship perpendicular to the ITO electrode with a width of 2 mm
Under a vacuum of 10 -6 Torr, a deposition rate ratio of Mg and Ag is 1
A cathode was formed by co-evaporation at a ratio of 0 to 1 to a thickness of 150 nm. The light emitting area of the device is 2 × 2 mm 2 . The emission characteristics of the device were measured at room temperature under a vacuum of 0.1 Torr. With the ITO electrode being positive and the MgAg electrode being negative, a direct current was passed from a constant voltage power supply to cause the element to emit light, and the emission intensity was measured. As a result, the applied voltage 1
The light emission luminance at 5 V was 545 cd / m 2 . Next, the device was heated at 120 ° C. for 2 hours under a vacuum of 0.1 Torr, cooled to room temperature, and measured for light emission luminance to be 455 cd / m 2 .

【0018】(実施例2)実施例1と同様のITOコー
トガラスを陽極基板として用いた。正孔輸送性化合物で
あるA−Czと電子輸送性化合物であるA−BNDおよ
びポリメチルハイドロジェンシリコーン[信越化学工業
(株)製、商品名:KF−99]とをモル比で各々30
対35対100(ポリメチルハイドロジェンシリコーン
の場合はSi−Hユニットのモル数比)となるよう混合
し、この混合物100重量部に対し400重量部のトル
エンと0.05重量部の白金錯体[チッソ(株)製、白
金−ジビニルテトラメチルジシロキサン錯体]と1重量
部のクマリン6を加え良く混合した後に、上記ITOガ
ラス基板上にスピンコートした。次に、徐々に基板を加
熱し80℃で十分に架橋反応せしめ、100nmの厚さ
の有機物層が得られた。
Example 2 The same ITO-coated glass as in Example 1 was used as an anode substrate. A-Cz which is a hole-transporting compound, A-BND which is an electron-transporting compound, and polymethyl hydrogen silicone [trade name: KF-99, manufactured by Shin-Etsu Chemical Co., Ltd.] are each 30 in molar ratio.
35: 100 (in the case of polymethyl hydrogen silicone, the molar ratio of Si—H units), and 400 parts by weight of toluene and 0.05 part by weight of a platinum complex [100 parts by weight of this mixture] Platinum-divinyltetramethyldisiloxane complex, manufactured by Chisso Corp.] and 1 part by weight of coumarin 6 were added and mixed well, and then spin-coated on the ITO glass substrate. Next, the substrate was gradually heated and a crosslinking reaction was sufficiently performed at 80 ° C. to obtain an organic layer having a thickness of 100 nm.

【0019】最後に、有機化合物層上に、シャドウマス
クを用いて2mm幅でITO電極と直交する位置関係に
て、10-6Torrの真空下、MgとAgとを成膜速度
比10対1の割合で厚さ150nmまで共蒸着して陰極
を形成した。素子の発光面積は2×2mm2 である。素
子の発光特性は、実施例1と同様の条件下同様の測定を
行った。その結果、印加電圧15Vにおける発光輝度は
780cd/m2 であった。つぎに、この素子を0.1
Torrの真空下、120℃で2時間加熱した後室温ま
で冷却し、発光輝度の測定を行ったところ770cd/
2 であった。
Finally, Mg and Ag are deposited on the organic compound layer under a vacuum of 10 -6 Torr at a film-forming rate ratio of 10: 1 under a vacuum of 10 -6 Torr using a shadow mask and a positional relationship perpendicular to the ITO electrode. And a cathode was formed by co-evaporation to a thickness of 150 nm. The light emitting area of the device is 2 × 2 mm 2 . The light emission characteristics of the device were measured under the same conditions as in Example 1. As a result, the light emission luminance at an applied voltage of 15 V was 780 cd / m 2 . Next, this element was
After heating at 120 ° C. for 2 hours under a Torr vacuum, the mixture was cooled to room temperature, and the emission luminance was measured to be 770 cd /
m 2 .

【0020】(実施例3)実施例1と同様のITOコー
トガラスを陽極基板として用いた.正孔輸送性化合物で
あるA−TPDと電子輸送性化合物であるA−OXDお
よびポリメチルハイドロジェンシリコーン[信越化学工
業(株)製、商品名:KF−99]とをモル比で各々3
0対40対100(ポリメチルハイドロジェンシリコー
ンの場合はSi−Hユニットのモル数比)となるよう混
合し、この混合物100重量部に対し400重量部のト
ルエンと0.05重量部の白金錯体[チッソ(株)製、
白金−ジビニルテトラメチルジシロキサン錯体]と1重
量部のクマリン6を加え良く混合した後に、上記ITO
ガラス基板上にスピンコートした。
(Example 3) The same ITO-coated glass as in Example 1 was used as an anode substrate. A-TPD which is a hole-transporting compound, A-OXD which is an electron-transporting compound, and polymethyl hydrogen silicone [Shin-Etsu Chemical Co., Ltd. product name: KF-99] are each 3 in molar ratio.
0: 40: 100 (in the case of polymethyl hydrogen silicone, the molar ratio of Si—H units), and 400 parts by weight of toluene and 0.05 parts by weight of a platinum complex with respect to 100 parts by weight of the mixture. [Chisso Corporation,
Platinum-divinyltetramethyldisiloxane complex] and 1 part by weight of coumarin 6 were added and mixed well.
Spin coating was performed on a glass substrate.

【0021】次に、徐々に基板を加熱し80℃で十分に
架橋反応せしめ、100nmの厚さの有機物層が得られ
た。最後に、有機化合物層上に、シャドウマスクを用い
て2mm幅でITO電極と直交する位置関係にて、10
-6Torrの真空下、MgとAgとを成膜速度比10対
1の割合で厚さ150nmまで共蒸着して陰極を形成し
た。素子の発光面積は2×2mm2 である。素子の発光
特性は、実施例1と同様の条件下同様の測定を行った。
その結果、印加電圧15Vにおける発光輝度は600c
d/m2 であった。つぎに、この素子を0.1Torr
の真空下、120℃で2時間加熱した後室温まで冷却
し、発光輝度の測定を行ったところ560cd/m2
あった。
Next, the substrate was gradually heated and a crosslinking reaction was sufficiently performed at 80 ° C. to obtain an organic layer having a thickness of 100 nm. Finally, on the organic compound layer, a shadow mask is used to form a 2 mm width in a position perpendicular to the ITO electrode.
Under a vacuum of -6 Torr, Mg and Ag were co-deposited at a film forming rate ratio of 10: 1 to a thickness of 150 nm to form a cathode. The light emitting area of the device is 2 × 2 mm 2 . The light emission characteristics of the device were measured under the same conditions as in Example 1.
As a result, the emission luminance at an applied voltage of 15 V was 600 c
d / m 2 . Next, this element was set to 0.1 Torr.
After heating at 120 ° C. for 2 hours under vacuum, the temperature was cooled to room temperature, and the emission luminance was measured to be 560 cd / m 2 .

【0022】(比較例1)実施例1と同様のITOコー
トガラスを陽極基板として用いた。正孔輸送性化合物で
あるA−Czと電子輸送性化合物であるA−OXDおよ
びポリメチルハイドロジェンシリコーン[信越化学工業
(株)製、商品名:KF−99]とをモル比で各々50
対50対100(ポリメチルハイドロジェンシリコーン
の場合はSi−Hユニットのモル数比)となるよう混合
し、この混合物100重量部に対し400重量部のトル
エンと0.05重量部の白金錯体[チッソ(株)製、白
金−ジビニルテトラメチルジシロキサン錯体]とを加
え、よく混合し、80℃に加熱し十分反応せしめた後、
室温まで冷却した。これに1重量部のクマリン6を加え
良く混合した後に、上記ITOガラス基板上にスピンコ
ートした。徐々に基板を加熱し80℃で十分にトルエン
を揮発せしめ、100nmの厚さの層が得られた。最後
に、有機化合物層上に、シャドウマスクを用いて2mm
幅でITO電極と直交する位置関係にて、10-6Tor
rの真空下、MgとAgとを成膜速度比10対1の割合
で厚さ150nmまで共蒸着して陰極を形成した。素子
の発光面積は2×2mm2 である。素子の発光特性は、
実施例1と同様の条件下同様の測定を行った。その結
果、印加電圧15Vにおける発光輝度は670cd/m
2 であった。つぎに、この素子を0.1Torrの真空
下、120℃で2時間加熱した後室温まで冷却し、発光
輝度の測定を行ったところ125cd/m2 であった。
Comparative Example 1 The same ITO-coated glass as in Example 1 was used as an anode substrate. A-Cz which is a hole transporting compound, A-OXD which is an electron transporting compound, and polymethyl hydrogen silicone [Shin-Etsu Chemical Co., Ltd. product name: KF-99] are each 50 in molar ratio.
The mixture was mixed at a ratio of 50 to 100 (in the case of polymethyl hydrogen silicone, the molar ratio of Si—H units), and 400 parts by weight of toluene and 0.05 part by weight of a platinum complex [100 parts by weight of this mixture] Platinum-divinyltetramethyldisiloxane complex, manufactured by Chisso Corporation], mixed well, and heated to 80 ° C. to react sufficiently.
Cooled to room temperature. One part by weight of coumarin 6 was added thereto, mixed well, and then spin-coated on the ITO glass substrate. The substrate was gradually heated to sufficiently volatilize toluene at 80 ° C., and a layer having a thickness of 100 nm was obtained. Finally, 2 mm on the organic compound layer using a shadow mask
10 -6 Torr at a position perpendicular to the ITO electrode in width
Under a vacuum of r, Mg and Ag were co-deposited to a thickness of 150 nm at a film forming rate ratio of 10: 1 to form a cathode. The light emitting area of the device is 2 × 2 mm 2 . The emission characteristics of the device
The same measurement was performed under the same conditions as in Example 1. As a result, the emission luminance at an applied voltage of 15 V was 670 cd / m
Was 2 . Next, the device was heated at 120 ° C. for 2 hours under a vacuum of 0.1 Torr, cooled to room temperature, and measured for light emission luminance to be 125 cd / m 2 .

【0023】(比較例2)実施例1と同様のITOコー
トガラスを陽極基板として用いた。10-6Torrの真
空下、正孔輸送性化合物であるTPDをITOガラス基
板上に成膜速度0.1nm/sで厚さ60nm蒸着し、
つぎに、電子輸送性発光化合物であるトリス(8−ヒド
ロキシキノリン)アルミニウムをTPD薄膜上に成膜速
度0.1nm/sで厚さ60nm蒸着した。最後に、有
機化合物層上に、シャドウマスクを用いて2mm幅でI
TO電極と直交する位置関係にて、10-6Torrの真
空下、MgとAgとを成膜速度比10対1の割合で厚さ
150nmまで共蒸着して陰極を形成した。素子の発光
面積は2×2mm2 である。素子の発光特性は、実施例
1と同様の条件下同様の測定を行った。その結果、印加
電圧10Vにおける発光輝度は12300cd/m2
あった。つぎに、この素子を0.1Torrの真空下、
120℃で2時間加熱した後室温まで冷却し、発光輝度
の測定を行おうとしたが、素子には短絡が発生しており
発光しなかった。
Comparative Example 2 The same ITO-coated glass as in Example 1 was used as an anode substrate. Under a vacuum of 10 -6 Torr, TPD, which is a hole transporting compound, is deposited on an ITO glass substrate at a deposition rate of 0.1 nm / s to a thickness of 60 nm,
Next, tris (8-hydroxyquinoline) aluminum, which is an electron transporting light emitting compound, was deposited on the TPD thin film at a film formation rate of 0.1 nm / s to a thickness of 60 nm. Finally, a 2 mm width I
In a positional relationship perpendicular to the TO electrode, Mg and Ag were co-evaporated under a vacuum of 10 -6 Torr at a film forming rate ratio of 10: 1 to a thickness of 150 nm to form a cathode. The light emitting area of the device is 2 × 2 mm 2 . The light emission characteristics of the device were measured under the same conditions as in Example 1. As a result, the light emission luminance at an applied voltage of 10 V was 12,300 cd / m 2 . Next, the device was placed under a vacuum of 0.1 Torr.
After heating at 120 ° C. for 2 hours, the device was cooled to room temperature, and the emission luminance was measured. However, the device was short-circuited and did not emit light.

【0024】[0024]

【発明の効果】本発明は、一般に高分子の製膜に用いら
れているスピンコート法やディップコート法などにより
非常に容易に均質な層を得ることができ、工業的生産が
容易であり、しかも素子温度上昇時の輝度安定性に優れ
た有機EL素子を提供するものである。
According to the present invention, a homogeneous layer can be obtained very easily by a spin coating method or a dip coating method which is generally used for forming a polymer film, and industrial production is easy. Moreover, the present invention provides an organic EL device having excellent luminance stability when the device temperature rises.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正孔を注入する陽極と電子を注入する陰
極とを有し、該陽極と該陰極との間に有機化合物よりな
る層を有し、かつ該陽極もしくは該陰極の少なくとも一
方が透明である有機エレクトロルミネッセンス素子であ
って、該有機化合物が三次元架橋されたシロキサン骨格
を有する有機高分子化合物からなることを特徴とする、
有機エレクトロルミネッセンス素子。
An anode for injecting holes and a cathode for injecting electrons, a layer made of an organic compound between the anode and the cathode, and at least one of the anode and the cathode is provided. A transparent organic electroluminescent device, wherein the organic compound is formed of an organic polymer compound having a three-dimensionally crosslinked siloxane skeleton.
Organic electroluminescent element.
【請求項2】 シロキサン骨格を有する有機高分子化合
物が、電子輸送性および正孔輸送性の両方の性能を付与
されたものであることを特徴とする、請求項1に記載の
有機エレクトロルミネッセンス素子。
2. The organic electroluminescent device according to claim 1, wherein the organic polymer compound having a siloxane skeleton has both electron transporting properties and hole transporting properties. .
【請求項3】 前記有機化合物が、多官能の電子輸送性
有機化合物によって三次元架橋されたシロキサン骨格を
有する有機高分子化合物であることを特徴とする、請求
項1に記載の有機エレクトロルミネッセンス素子。
3. The organic electroluminescence device according to claim 1, wherein the organic compound is an organic polymer compound having a siloxane skeleton three-dimensionally crosslinked by a polyfunctional electron transporting organic compound. .
【請求項4】 前記有機化合物が、多官能の正孔輸送性
有機化合物によって三次元架橋されたシロキサン骨格を
有する有機高分子化合物であることを特徴とする、請求
項1に記載の有機エレクトロルミネッセンス素子。
4. The organic electroluminescence according to claim 1, wherein the organic compound is an organic polymer compound having a siloxane skeleton three-dimensionally crosslinked by a polyfunctional hole transporting organic compound. element.
JP11123484A 1999-04-30 1999-04-30 Organic thin film light-emitting element Pending JP2000315584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11123484A JP2000315584A (en) 1999-04-30 1999-04-30 Organic thin film light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11123484A JP2000315584A (en) 1999-04-30 1999-04-30 Organic thin film light-emitting element

Publications (1)

Publication Number Publication Date
JP2000315584A true JP2000315584A (en) 2000-11-14

Family

ID=14861782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11123484A Pending JP2000315584A (en) 1999-04-30 1999-04-30 Organic thin film light-emitting element

Country Status (1)

Country Link
JP (1) JP2000315584A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137801A (en) * 2005-11-16 2007-06-07 Fuji Xerox Co Ltd Charge transporting compound, charge transporting film and electroluminescent device using the same
WO2008090912A1 (en) * 2007-01-23 2008-07-31 Konica Minolta Holdings, Inc. Method for manufacturing organic electroluminescent device, organic electroluminescent device manufactured by the method, display device and illuminating device
JP2010135799A (en) * 2001-06-21 2010-06-17 Showa Denko Kk Organic light emitting element, and light emitting material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135799A (en) * 2001-06-21 2010-06-17 Showa Denko Kk Organic light emitting element, and light emitting material
JP2007137801A (en) * 2005-11-16 2007-06-07 Fuji Xerox Co Ltd Charge transporting compound, charge transporting film and electroluminescent device using the same
WO2008090912A1 (en) * 2007-01-23 2008-07-31 Konica Minolta Holdings, Inc. Method for manufacturing organic electroluminescent device, organic electroluminescent device manufactured by the method, display device and illuminating device
JP5381103B2 (en) * 2007-01-23 2014-01-08 コニカミノルタ株式会社 Manufacturing method of organic electroluminescence element, organic electroluminescence element obtained by the manufacturing method, display device and lighting device

Similar Documents

Publication Publication Date Title
JPH06325871A (en) Organic electroluminescent element
JPH0753953A (en) Organic electroluminescent element
JPH0785973A (en) Organic thin film el element
JPH08325564A (en) Organic thin film el device
JP2000215984A (en) Organic electroluminescent element
JPH09115669A (en) Organic electroluminescent element
JP2000077185A (en) Organic electroluminescent element
WO2007046246A1 (en) Luminescent composition and light-emitting device
JP3906486B2 (en) Organic electroluminescence device
JPH06330032A (en) Organic electroluminescent element
JPH05271652A (en) Organic thin-film el element
JPH09151371A (en) Organic thin film el element
JP2000315584A (en) Organic thin film light-emitting element
JP3482446B2 (en) EL device
JP2806144B2 (en) Organic thin film EL device
JP2008021575A (en) Organic electroluminescent element and manufacturing method of same
JP3863929B2 (en) Organic thin film electroluminescent device and manufacturing method thereof
JP2004111080A (en) Organic el element
JP4333786B2 (en) Organic electroluminescence device
JPH11307255A (en) Organic electroluminecence element
JPH11167991A (en) Organic electroluminescent element
JP3368390B2 (en) EL device
JP2004031211A (en) Organic electroluminescent element
KR100261537B1 (en) Organic light-emitting device having improved stability
WO2005122650A1 (en) Organic electroluminescent device