JPH0753953A - Organic electroluminescent element - Google Patents

Organic electroluminescent element

Info

Publication number
JPH0753953A
JPH0753953A JP5205377A JP20537793A JPH0753953A JP H0753953 A JPH0753953 A JP H0753953A JP 5205377 A JP5205377 A JP 5205377A JP 20537793 A JP20537793 A JP 20537793A JP H0753953 A JPH0753953 A JP H0753953A
Authority
JP
Japan
Prior art keywords
organic
group
hole transport
layer
transport layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5205377A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kanai
浩之 金井
Yoshiharu Sato
佳晴 佐藤
Atsuro Saida
敦朗 齋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP5205377A priority Critical patent/JPH0753953A/en
Publication of JPH0753953A publication Critical patent/JPH0753953A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the element stably emitting light over a long period of time by forming on a substrate a multilayer structure comprising an organic hole transport layer containing a specific compound, an organic luminescent layer, and an anode and a cathode between which the two layers are sandwiched. CONSTITUTION:The element comprises a substrate 1 and formed thereon a multilayer structure comprising an organic hole transport layer 3, an organic luminescent layer 4, and an anode and a cathode between which the layers 3 and 4 are sandwiched, the layer 3 containing a poly(vinyltriarylamine) (a) having repeating units represented by the formula (wherein Ar<1> is an optionally substituted arylene and Ar<2> and Ar<3> each is an optionally substituted aryl, the substituents each independently being an alkyl, an alkenyl, allyl, an alkoxycarbonyl, an alkoxy, or amino). The polymer (a) may further contain other units.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、有機電界発光素子に関
するものであり、詳しくは、有機化合物から成る発光層
に電界をかけて光を放出する薄膜型デバイスに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic electroluminescence device, and more particularly to a thin film type device which emits light by applying an electric field to a light emitting layer made of an organic compound.

【0002】[0002]

【従来の技術】従来、薄膜型の電界発光(EL)素子と
しては、無機材料のII−VI族化合物半導体であるZn
S、CaS、SrS等に、発光中心であるMnや希土類
元素(Eu、Ce、Tb、Sm等)をドープしたものが
一般的であるが、上記の無機材料から作製したEL素子
は、 1)交流駆動が必要(50〜1000Hz)、 2)駆動電圧が高い(〜200V)、 3)フルカラー化が困難(特に青色が問題)、 4)周辺駆動回路のコストが高い、 という問題点を有している。
2. Description of the Related Art Conventionally, as a thin film type electroluminescent (EL) element, Zn which is a II-VI group compound semiconductor of an inorganic material has been used.
It is general that S, CaS, SrS, etc. are doped with Mn or a rare earth element (Eu, Ce, Tb, Sm, etc.), which is the emission center, but the EL element made from the above inorganic material is 1). AC drive is required (50 to 1000 Hz), 2) high drive voltage (up to 200 V), 3) full colorization is difficult (especially blue is a problem), and 4) peripheral drive circuit costs are high. ing.

【0003】しかし、近年、上記問題点の改良のため、
有機薄膜を用いたEL素子の開発が行われるようになっ
た。特に、発光効率を高めるために電極からのキャリア
ー注入の効率向上を目的とした電極種類の最適化を行
い、芳香族ジアミンから成る有機正孔輸送層と8−ヒド
ロキシキノリンのアルミニウム錯体から成る有機発光層
を設けた有機電界発光素子の開発(Appl.Phy
s.Lett.,51巻,913頁,1987年)によ
り、従来のアントラセン等の単結晶を用いた電界発光素
子と比較して発光効率の大幅な改善がなされ、実用特性
に近づいている。
However, in recent years, in order to improve the above problems,
EL devices using organic thin films have been developed. In particular, the electrode type was optimized for the purpose of improving the efficiency of carrier injection from the electrode in order to increase the light emission efficiency, and the organic hole transport layer made of an aromatic diamine and the organic light emission made of an aluminum complex of 8-hydroxyquinoline. Of an organic electroluminescent device having a layer (Appl. Phy
s. Lett. , 51, p. 913, 1987), the luminous efficiency is greatly improved as compared with the conventional electroluminescent device using a single crystal such as anthracene, and is close to practical characteristics.

【0004】上記の材料の他にも、有機発光層の材料と
して、ポリ(p−フェニレンビニレン)(Natur
e,347巻,539頁,1990年;Appl.Ph
ys.Lett.,61巻,2793頁,1992
年)、ポリ[2−メトキシ,5−(2’−エチルヘキソ
キシ)−1,4−フェニレンビニレン](Appl.P
hys.Lett.,58巻,1982頁,1991
年;Thin Solid Films,216巻,9
6頁,1992年;Nature,357巻,477
頁,1992年)、ポリ(3−アルキルチオフェン)
(Jpn.J.Appl.Phys,30巻,L193
8頁,1991年;J.Appl.Phys.,72
巻,564頁,1992年)等の高分子材料の開発や、
ポリビニルカルバゾール等の高分子に発光材料と電子移
動材料を混合した素子(応用物理,61巻,1044
頁,1992年)の開発も行われている。
In addition to the above materials, poly (p-phenylene vinylene) (Natur is used as a material for the organic light emitting layer).
e, 347, 539, 1990; Appl. Ph
ys. Lett. , 61, 2793, 1992
Year), poly [2-methoxy, 5- (2'-ethylhexoxy) -1,4-phenylenevinylene] (Appl.P).
hys. Lett. , 58, 1982, 1991.
Year; Thin Solid Films, Volume 216, 9
6 1992; Nature, 357, 477.
P., 1992), poly (3-alkylthiophene)
(Jpn. J. Appl. Phys, 30 volumes, L193
8 pages, 1991; Appl. Phys. , 72
Vol., P. 564, 1992), etc.
A device in which a light emitting material and an electron transfer material are mixed with a polymer such as polyvinylcarbazole (Applied Physics, 61, 1044
Page, 1992) is also being developed.

【0005】[0005]

【発明が解決しようとする課題】有機電界発光素子の最
大の問題点は、駆動時の寿命である。素子の寿命を短く
している要因はいくつか存在するが、有機層の薄膜形状
の劣化が支配的である。この薄膜形状の劣化は、素子駆
動時の発熱による有機非晶質膜の結晶化(または凝集)
等に起因すると考えられている。
The biggest problem of the organic electroluminescent device is the service life during driving. Although there are several factors that shorten the life of the device, the deterioration of the thin film shape of the organic layer is dominant. This deterioration of the thin film shape is caused by crystallization (or aggregation) of the organic amorphous film due to heat generated when the device is driven.
It is believed that this is due to the above.

【0006】従来、正孔輸送材料として用いられている
低分子量(分子量が400から600程度)の化合物
は、ガラス転移温度(Tg)が低いものが多く、例え
ば、芳香族ジアミン化合物では、−23〜82℃(米国
特許第4,127,412号)、39〜78℃(第51
回応用物理学会,28a−PB−3,1990年)とい
うガラス転移温度が報告されている。この様な化合物か
ら形成される有機非晶質薄膜では、温度上昇により結晶
化が加速され、結果として島状の凝集構造を示すものが
多い。この様な結晶化が起こると、素子の発光特性の劣
化として、発光効率の低下、ダークスポットと呼ばれる
非発光部分の発生、短絡等の現象が現われ、最終的には
駆動寿命の低下につながる。素子の駆動時以外でも、素
子作製時において、蒸着、ベーキング(アニール)、配
線、封止等の工程で温度上昇が見込まれるので、Tgは
100℃以上であることが望ましい。
Many low molecular weight compounds (molecular weight of about 400 to 600) conventionally used as hole transport materials have a low glass transition temperature (Tg). For example, an aromatic diamine compound has a temperature of -23. ~ 82 ° C (U.S. Pat. No. 4,127,412), 39 to 78 ° C (No. 51)
The Japan Society of Applied Physics, 28a-PB-3, 1990) reported a glass transition temperature. In many organic amorphous thin films formed from such compounds, crystallization is accelerated by the temperature rise, and as a result, an island-like aggregate structure is exhibited. When such crystallization occurs, phenomena such as a decrease in light emitting efficiency, a non-light emitting portion called a dark spot, a short circuit, etc. appear as deterioration of the light emitting characteristics of the device, and finally the driving life is shortened. It is desirable that the Tg is 100 ° C. or higher because the temperature is expected to rise in the steps of vapor deposition, baking (annealing), wiring, encapsulation, etc. when the element is manufactured, other than when the element is driven.

【0007】また、低分子量化合物の代わりに高分子材
料を有機電界発光素子の有機正孔輸送層として用いる試
みも行われている。ポリビニルカルバゾール(電子情報
通信学会技術研究報告,OME90−38,1990
年)、ポリシラン(Appl.Phys.Lett.,
59巻,2760頁,1991年)、ポリフォスファゼ
ン(第42回高分子学会年次大会,I−8−07及びI
−8−08,1993年)等が報告されているが、ポリ
ビニルカルバゾールは200℃と高いTgを有するがト
ラップ等の問題があり耐久性は低く、ポリシランは光劣
化等により駆動寿命が数秒と短く、ポリフォスファゼン
はイオン化ポテンシャルが高く従来の芳香族ジアミンを
凌ぐ特性は示していない。この他に、芳香族ジアミン化
合物をポリカーボネートやPMMAに30から80重量
%分散させた正孔輸送層も検討されているが(Jpn.
J.Appl.Phys.,31巻,L960頁,19
92年)、低分子化合物が可塑剤としてはたらきTgを
下げ、素子特性も芳香族ジアミン化合物と比較して低下
している。
Attempts have also been made to use a polymer material as an organic hole transport layer of an organic electroluminescence device instead of a low molecular weight compound. Polyvinylcarbazole (Technical report of IEICE, OME90-38, 1990)
Year), polysilane (Appl. Phys. Lett.,
59, 2760, 1991), Polyphosphazene (The 42nd Annual Meeting of the Polymer Society of Japan, I-8-07 and I)
-8-08, 1993) and the like have been reported, but polyvinylcarbazole has a high Tg of 200 ° C., but has a low durability due to problems such as traps, and polysilane has a short driving life of several seconds due to photodegradation and the like. Polyphosphazene has a high ionization potential and does not show the characteristics superior to those of conventional aromatic diamines. In addition to this, a hole transport layer in which an aromatic diamine compound is dispersed in polycarbonate or PMMA in an amount of 30 to 80% by weight has been studied (Jpn.
J. Appl. Phys. , 31 volumes, L960 pages, 19
1992), a low molecular weight compound acts as a plasticizer, lowering Tg, and the device characteristics are lower than those of the aromatic diamine compound.

【0008】上記の理由から、有機電界発光素子の実用
化には、素子の駆動寿命に大きな問題を抱えているのが
実状である。
For the above reasons, the practical situation of the organic electroluminescence device is that it has a serious problem in the driving life of the device.

【0009】[0009]

【課題を解決するための手段】本発明者等は上記実状に
鑑み、長期間に渡って安定な発光特性を示す有機電界発
光素子を提供することを目的として鋭意検討した結果、
有機正孔輸送層がポリビニルアリールアミンを含有する
ことが好適であることを見い出し、本発明を完成するに
至った。
In view of the above situation, the inventors of the present invention have conducted extensive studies for the purpose of providing an organic electroluminescent device which exhibits stable emission characteristics over a long period of time.
It has been found that it is preferable that the organic hole transport layer contains polyvinyl arylamine, and the present invention has been completed.

【0010】即ち、本発明の要旨は、基板上に、少なく
とも陽極及び陰極により挟持された有機正孔輸送層およ
び有機発光層を含む有機電界発光素子であって、有機正
孔輸送層が、下記一般式(I)
That is, the gist of the present invention is an organic electroluminescent device comprising an organic hole transport layer and an organic light emitting layer sandwiched at least by an anode and a cathode on a substrate, wherein the organic hole transport layer is: General formula (I)

【0011】[0011]

【化2】 [Chemical 2]

【0012】(式中、Ar1 は置換基を有していてもよ
いアリーレン基、Ar2 及びAr3 は置換基を有していて
もよいアリール基を示し、前記置換基は各々独立に、ア
ルキル基、アルケニル基、アリル基、アルコキシカルボ
ニル基、アルコキシ基、アミノ基)で表わされる繰り返
し単位を有するポリビニルトリアリールアミンを含有す
ることを特徴とする有機電界発光素子に存する。
(In the formula, Ar 1 represents an arylene group which may have a substituent, Ar 2 and Ar 3 represent an aryl group which may have a substituent, and the substituents are each independently, An organic electroluminescent device characterized by containing a polyvinyltriarylamine having a repeating unit represented by an alkyl group, an alkenyl group, an allyl group, an alkoxycarbonyl group, an alkoxy group, an amino group).

【0013】以下、本発明の有機電界発光素子について
添付図面に従い説明する。図1は、本発明の有機電界発
光素子の構造例を模式的に示す断面図であり、1は基
板、2a、2bは導電層、3は有機正孔輸送層、4は有
機発光層を各々表わす。基板1は、本発明の有機電界発
光素子の支持体となるものであり、石英やガラスの板、
金属板や金属箔、プラスチックフィルムやシートなどが
用いられるが、ガラス板や、ポリエステル、ポリメタア
クリレート、ポリカーボネート、ポリサルホンなどの透
明な合成樹脂基板が好ましい。
The organic electroluminescent device of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a cross-sectional view schematically showing a structural example of the organic electroluminescent device of the present invention, in which 1 is a substrate, 2a and 2b are conductive layers, 3 is an organic hole transport layer, and 4 is an organic light emitting layer. Represent. The substrate 1 serves as a support for the organic electroluminescent element of the present invention, and is a quartz or glass plate,
A metal plate, a metal foil, a plastic film, a sheet, or the like is used, but a glass plate or a transparent synthetic resin substrate such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable.

【0014】基板1上には導電層2aが設けられるが、
この導電層2aとしては、通常、アルミニウム、金、
銀、ニッケル、パラジウム、テルル等の金属、インジウ
ム及び/またはスズの酸化物などの金属酸化物やヨウ化
銅、カーボンブラック、あるいは、ポリ(3−メチルチ
オフェン)等の導電性高分子などにより構成される。導
電層の形成は通常、スパッタリング法、真空蒸着法など
により行われることが多いが、銀などの金属微粒子ある
いはヨウ化銅、カーボンブラック、導電性の金属酸化物
微粒子、導電性高分子微粉末などの場合には、適当なバ
インダー樹脂溶液に分散し、基板上に塗布することによ
り形成することもできる。さらに、導電性高分子の場合
は電解重合により直接基板上に薄膜を形成したり、基板
上に塗布して形成することもできる(Appl.Phy
s.Lett.,60巻,2711頁,1992年)。
上記の導電層は異なる物質で積層することも可能であ
る。導電層2aの厚みは、必要とする透明性により異な
るが、透明性が必要とされる場合は、可視光の透過率が
60%以上、好ましくは80%以上透過することが望ま
しく、この場合、厚みは、通常、5〜1000nm、好
ましくは10〜500nm程度である。
A conductive layer 2a is provided on the substrate 1,
The conductive layer 2a is usually aluminum, gold,
Consists of a metal such as silver, nickel, palladium, tellurium, a metal oxide such as an oxide of indium and / or tin, copper iodide, carbon black, or a conductive polymer such as poly (3-methylthiophene) To be done. The conductive layer is usually formed by a sputtering method, a vacuum deposition method or the like, but metal fine particles such as silver or copper iodide, carbon black, conductive metal oxide fine particles, conductive polymer fine powder, etc. In this case, it can also be formed by dispersing it in an appropriate binder resin solution and applying it on a substrate. Further, in the case of a conductive polymer, a thin film can be directly formed on the substrate by electrolytic polymerization, or can be formed by coating on the substrate (Appl. Phy.
s. Lett. , 60, 2711, 1992).
The above conductive layers can be stacked with different materials. The thickness of the conductive layer 2a varies depending on the required transparency, but when the transparency is required, it is desirable that the visible light has a transmittance of 60% or more, preferably 80% or more. The thickness is usually 5 to 1000 nm, preferably 10 to 500 nm.

【0015】不透明でよい場合は導電層2aは基板1と
同一でもよい。また、さらには上記の導電層は異なる物
質で積層することも可能である。図1の例では、導電層
2aは陽極(アノード)として正孔注入の役割を果たす
ものである。一方、導電層2bは陰極(カソード)とし
て、有機発光層4に電子を注入する役割を果たす。導電
層2bとして用いられる材料は、前記導電層2a用の材
料を用いることが可能であるが、効率よく電子注入を行
なうには、仕事関数の低い金属が好ましく、スズ、マグ
ネシウム、インジウム、アルミニウム、銀等の適当な金
属またはそれらの合金が用いられる。導電層2bの膜厚
は通常、導電層2aと同様である。また、図1には示し
てはいないが、導電層2bの上にさらに基板1と同様の
基板を設けることもできる。但し、導電層2aと2bの
少なくとも一方は透明性の良いことがEL素子としては
必要である。このことから、導電層2aと2bの一方
は、10〜500nmの膜厚であることが好ましく、透
明性の良いことが望まれる。
The conductive layer 2a may be the same as the substrate 1 if it is opaque. Further, the above conductive layers can be stacked with different materials. In the example of FIG. 1, the conductive layer 2a plays a role of hole injection as an anode. On the other hand, the conductive layer 2b functions as a cathode to inject electrons into the organic light emitting layer 4. As the material used for the conductive layer 2b, the material for the conductive layer 2a can be used, but a metal having a low work function is preferable for efficient electron injection, and tin, magnesium, indium, aluminum, A suitable metal such as silver or an alloy thereof is used. The thickness of the conductive layer 2b is usually the same as that of the conductive layer 2a. Although not shown in FIG. 1, a substrate similar to the substrate 1 may be further provided on the conductive layer 2b. However, it is necessary for the EL element that at least one of the conductive layers 2a and 2b has good transparency. From this, one of the conductive layers 2a and 2b preferably has a film thickness of 10 to 500 nm, and is desired to have good transparency.

【0016】導電層2aの上には有機正孔輸送層3が設
けられるが、正孔輸送材料としては、導電層2aからの
正孔注入効率が高く、かつ、注入された正孔を効率よく
輸送することができる材料であることが必要である。そ
のためには、イオン化ポテンシャルが小さく、しかも正
孔移動度が大きく、さらに安定性にすぐれ、トラップと
なる不純物が製造時や使用時に発生しにくいことが要求
される。
The organic hole transport layer 3 is provided on the conductive layer 2a. As the hole transport material, the hole injection efficiency from the conductive layer 2a is high and the injected holes are efficiently injected. It must be a material that can be transported. For that purpose, it is required that the ionization potential is small, the hole mobility is large, the stability is excellent, and impurities that serve as traps are hard to be generated during manufacturing or use.

【0017】本発明においては、有機正孔輸送層が、前
記一般式(I)で示される繰り返し単位を有するポリビ
ニルトリアリールアミンを含有することを特徴とする。
前記一般式(I)において、好ましくは、Ar1 は置換
基を有していてもよいフェニレン基を示し、Ar2 およ
びAr3 は、置換基を有していてもよいフェニル基、ナ
フチル基やアントリル基等の置換基を有していてもよい
縮合芳香族環基を示す。上記の置換基としては、各々独
立に、メチル基、エチル基等の炭素数1〜6のアルキル
基;ビニル基等のアルケニル基;アリル基;メトキシカ
ルボニル基、エトキシカルボニル基等の炭素数1〜6の
アルコキシカルボニル基;メトキシ基、エトキシ基等の
炭素数1〜6のアルコキシ基;ジメチルアミノ基、ジエ
チルアミノ基等のアミノ基等が挙げられる。
The present invention is characterized in that the organic hole transport layer contains a polyvinyltriarylamine having a repeating unit represented by the general formula (I).
In the general formula (I), Ar 1 is preferably a phenylene group which may have a substituent, and Ar 2 and Ar 3 are preferably a phenyl group which may have a substituent, a naphthyl group and The condensed aromatic ring group which may have a substituent such as an anthryl group is shown. As the above-mentioned substituents, each independently, an alkyl group having 1 to 6 carbon atoms such as a methyl group and an ethyl group; an alkenyl group such as a vinyl group; an allyl group; a carbon number 1 to 1 such as a methoxycarbonyl group and an ethoxycarbonyl group. 6 alkoxycarbonyl group; C1-6 alkoxy group such as methoxy group and ethoxy group; amino group such as dimethylamino group and diethylamino group.

【0018】前記一般式(I)で表される繰り返し単位
を有するポリビニルトリアリールアミンの数平均分子量
は、好ましくは500〜2000000、特に好ましく
は1000〜1000000であるのが望ましい。本発
明においては、ポリビニルの側鎖としてトリアリールア
ミンを導入したポリビニルアリールアミンを有機正孔輸
送層に含有することにより、正孔移動度を大きくするこ
とができると同時に、Tgを100℃以上とすることが
可能となる。
The number average molecular weight of the polyvinyltriarylamine having the repeating unit represented by the general formula (I) is preferably 500 to 2,000,000, and particularly preferably 1,000 to 1,000,000. In the present invention, by containing a polyvinylarylamine into which a triarylamine has been introduced as a side chain of polyvinyl in the organic hole transport layer, the hole mobility can be increased and at the same time, the Tg is 100 ° C. or higher. It becomes possible to do.

【0019】前記一般式(I)で表される繰り返し単位
を有するポリビニルトリアリールアミンは、例えば、特
開平1−105954号公報に開示されている方法によ
り合成される。前記一般式(I)で表される繰り返し単
位を有するポリビニルトリアリールアミンの好ましい具
体例を下記の表−1に示すが、これらに限定するもので
はない。
The polyvinyl triarylamine having the repeating unit represented by the general formula (I) is synthesized by the method disclosed in, for example, Japanese Patent Application Laid-Open No. 1-105954. Specific preferred examples of the polyvinyltriarylamine having the repeating unit represented by the general formula (I) are shown in Table 1 below, but the invention is not limited thereto.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】また、本発明に用いるポリビニルトリアリ
ールアミンは、前記一般式(I)で表される繰り返し単
位を有するポリビニルトリアリールアミン以外に他の共
重合部を有していてもよい。ポリビニルトリアリールア
ミンは、塗布法あるいは真空蒸着法により前記導電層2
a上に積層することにより有機正孔輸送層3を形成する
ことができる。
Further, the polyvinyltriarylamine used in the present invention may have a copolymerization part other than the polyvinyltriarylamine having the repeating unit represented by the general formula (I). Polyvinyltriarylamine is applied to the conductive layer 2 by a coating method or a vacuum deposition method.
The organic hole transport layer 3 can be formed by stacking on the a.

【0023】塗布法の場合は、クロロホルム、ジクロロ
エタン、テトラヒドロフラン、トルエン等の有機溶媒に
溶かして、スピンコート法やディッピング法などの方法
により導電層2a上に塗布し、加熱乾燥して有機正孔輸
送層3を形成する。バインダー樹脂等は用いない方が望
ましい。この際、特にピンホール等の欠陥のないサブミ
クロンオーダーの均一な薄膜を形成ためには、スピンコ
ート法が好ましい。
In the case of the coating method, it is dissolved in an organic solvent such as chloroform, dichloroethane, tetrahydrofuran, toluene or the like, coated on the conductive layer 2a by a method such as a spin coating method or a dipping method, and dried by heating to transport organic holes. Form layer 3. It is desirable not to use a binder resin or the like. At this time, the spin coating method is preferable in order to form a uniform thin film of submicron order without defects such as pinholes.

【0024】真空蒸着法の場合には、ポリビニルトリア
リールアミンを真空容器内に設置されたルツボに入れ、
真空容器内を適当な真空ポンプで10-6Torrにまで
排気した後、ルツボを加熱して、上記ポリマを蒸発さ
せ、ルツボと向き合って置かれた基板上に層を形成す
る。有機正孔輸送層を形成する場合、さらに、アクセプ
タとして、芳香族カルボン酸の金属錯体及び/または金
属塩(特開平4−320484号公報)、ベンゾフェノ
ン誘導体およびチオベンゾフェノン誘導体(特願平4−
106977号)、フラーレン類(特願平4−1444
79号)を10-3から10重量%の濃度でドープして、
フリーキャリアとしての正孔を生成させ、低電圧駆動と
することが可能である。
In the case of the vacuum vapor deposition method, polyvinyltriarylamine is placed in a crucible installed in a vacuum container,
After evacuating the vacuum vessel to 10 −6 Torr with a suitable vacuum pump, the crucible is heated to evaporate the polymer and form a layer on the substrate placed facing the crucible. When forming the organic hole transport layer, a metal complex and / or a metal salt of an aromatic carboxylic acid (JP-A-4-320484), a benzophenone derivative and a thiobenzophenone derivative (Japanese Patent Application No. 4-204) are further used as an acceptor.
106977), fullerenes (Japanese Patent Application No. 4-1444)
No. 79) at a concentration of 10 −3 to 10% by weight,
It is possible to generate holes as free carriers and drive at a low voltage.

【0025】以上の様にして形成される有機正孔輸送層
3の膜厚は、通常、10〜300nm、好ましくは30
〜100nmである。有機正孔輸送層3の上には有機発
光層4が設けられるが、有機発光層4は、電界を与えら
れた電極間において陰極からの電子を効率よく有機正孔
輸送層の方向に輸送することができる化合物より形成さ
れる。
The thickness of the organic hole transport layer 3 formed as described above is usually 10 to 300 nm, preferably 30.
-100 nm. The organic light emitting layer 4 is provided on the organic hole transport layer 3, and the organic light emitting layer 4 efficiently transports electrons from the cathode between the electrodes to which an electric field is applied in the direction of the organic hole transport layer. Is formed from a compound capable of.

【0026】有機発光層4に用いられる化合物として
は、導電層2bからの電子注入効率が高く、かつ、注入
された電子を効率よく輸送することができる化合物であ
ることが必要である。そのためには、電子親和力が大き
く、しかも電子移動度が大きく、さらに安定性にすぐれ
トラップとなる不純物が製造時や使用時に発生しにくい
化合物であることが要求される。また、正孔と電子の再
結合の際に発光をもたらす役割も求られる。さらに、均
一な薄膜形状を与えることも素子の安定性の点で重要で
ある。
The compound used for the organic light emitting layer 4 needs to be a compound having a high electron injection efficiency from the conductive layer 2b and capable of efficiently transporting the injected electrons. For that purpose, it is required that the compound has a high electron affinity, a high electron mobility, excellent stability, and an impurity that becomes a trap and is less likely to be generated at the time of production or use. In addition, a role of causing light emission upon recombination of holes and electrons is also required. Further, it is important to provide a uniform thin film shape from the viewpoint of device stability.

【0027】有機発光層の材料としては、テトラフェニ
ルブタジエンなどの芳香族化合物(特開昭57−517
81号公報)、8−ヒドロキシキノリンのアルミニウム
錯体などの金属錯体(特開昭59−194393号公
報、米国特許第5,151,629号、米国特許第5,
141,671号)、シクロペンタジエン誘導体(特開
平2−289675号公報)、ペリノン誘導体(特開平
2−289676号公報)、オキサジアゾール誘導体
(特開平2−216791号公報)、ビススチリルベン
ゼン誘導体(特開平1−245087号公報、同2−2
22484号公報)、ペリレン誘導体(特開平2−18
9890号公報、同3−791号公報)、クマリン化合
物(特開平2−191694号公報、同3−792号公
報)、希土類錯体(特開平1−256584)、ジスチ
リルピラジン誘導体(特開平2−252793号公
報)、p−フェニレン化合物(特開平3−33183号
公報)、チアジアゾロピリジン誘導体(特開平3−37
292号公報)、ピロロピリジン誘導体(特開平3−3
7293号公報)、ナフチリジン誘導体(特開平3−2
03982号公報)などが挙げられる。これらの化合物
は、単独で用いるか、必要に応じて、各々、混合して使
用してもよい。
As a material for the organic light emitting layer, an aromatic compound such as tetraphenyl butadiene (JP-A-57-517).
No. 81), a metal complex such as an aluminum complex of 8-hydroxyquinoline (JP-A-59-194393, US Pat. No. 5,151,629, US Pat. No. 5,).
141, 671), a cyclopentadiene derivative (JP-A-2-289675), a perinone derivative (JP-A-2-289676), an oxadiazole derivative (JP-A-2-216791), a bisstyrylbenzene derivative ( Japanese Patent Laid-Open No. 1-245087 and 2-2
No. 22484), perylene derivatives (JP-A-2-18)
No. 9890, No. 3-791), coumarin compounds (JP-A Nos. 2-191694 and 3-792), rare earth complexes (JP-A 1-256584), and distyrylpyrazine derivatives (JP-A No. 2-25984). No. 252793), p-phenylene compounds (JP-A-3-33183), thiadiazolopyridine derivatives (JP-A-3-37).
292), a pyrrolopyridine derivative (JP-A-3-3).
7293), a naphthyridine derivative (JP-A-3-2).
No. 03982). These compounds may be used alone or, if necessary, may be mixed and used.

【0028】有機発光層4の膜厚は、通常、10〜20
0nm、好ましくは30〜100nmである。素子の発
光効率を向上させるとともに発光色を変える目的で、例
えば、8−ヒドロキシキノリンのアルミニウム錯体をホ
スト材料として、クマリン等のレーザ用蛍光色素をドー
プすること(J.Appl.Phys.,65巻,36
10頁,1989年)も行われている。本発明において
も、上記の有機発光層4にレーザ色素等の有機蛍光体を
さらに10-3〜10モル%ドープすることにより、素子
の発光特性をさらに向上させることができる。
The thickness of the organic light emitting layer 4 is usually 10 to 20.
It is 0 nm, preferably 30 to 100 nm. For the purpose of improving the luminous efficiency of the device and changing the luminescent color, for example, by doping an aluminum complex of 8-hydroxyquinoline as a host material with a fluorescent dye for laser such as coumarin (J. Appl. Phys., Vol. 65). , 36
10 pages, 1989). Also in the present invention, the emission characteristics of the device can be further improved by further doping the organic light emitting layer 4 with an organic phosphor such as a laser dye in an amount of 10 −3 to 10 mol%.

【0029】本発明の有機電界発光素子の構造として
は、以下に示すような層構成のものが挙げられる。
The structure of the organic electroluminescent element of the present invention includes the following layered structures.

【0030】[0030]

【表3】 陽極/有機正孔輸送層/有機発光層/陰極 陽極/有機正孔輸送層/有機発光層/電子輸送層/陰極 陽極/有機正孔輸送層/有機発光層/界面層/陰極 陽極/有機正孔輸送層/有機発光層/電子輸送層/界面
層/陰極 上記の層構成において、電子輸送層は素子の効率をさら
に向上するためのものであり、有機発光層の上に積層さ
れる。この電子輸送層に用いられる化合物には、陰極か
らの電子注入が容易で、電子の輸送能力がさらに大きい
ことが要求される。この様な電子輸送材料としては、
[Table 3] Anode / organic hole transport layer / organic light emitting layer / cathode Anode / organic hole transport layer / organic light emitting layer / electron transport layer / cathode Anode / organic hole transport layer / organic light emitting layer / interface layer / cathode Anode / organic hole transport layer / organic light emitting layer / electron transport layer / interface layer / cathode In the above layer structure, the electron transport layer is for further improving the efficiency of the device, and is laminated on the organic light emitting layer. To be done. The compound used for the electron transport layer is required to be capable of easily injecting electrons from the cathode and have a further high electron transporting ability. As such an electron transport material,

【0031】[0031]

【化3】 [Chemical 3]

【0032】[0032]

【化4】 [Chemical 4]

【0033】などのオキサジアゾール誘導体(App
l.Phys.Lett.,55巻,1489頁,19
89年;Jpn.J.Appl.Phys.,31巻,
1812頁,1992年)やそれらをPMMA等の樹脂
に分散した系(Appl.Phys.Lett.,61
巻,2793頁,1992年)、または、n型水素化非
晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛等
が挙げられる。電子輸送層の膜厚は、通常、5〜200
nm、好ましくは10〜100nmである。
Oxadiazole derivatives such as (App
l. Phys. Lett. , 55, 1489, 19
1989; Jpn. J. Appl. Phys. , 31 volumes,
1812, 1992) or a system in which they are dispersed in a resin such as PMMA (Appl. Phys. Lett., 61).
Vol., P. 2793, 1992), or n-type hydrogenated amorphous silicon carbide, n-type zinc sulfide, n-type zinc selenide and the like. The thickness of the electron transport layer is usually 5 to 200.
nm, preferably 10 to 100 nm.

【0034】また、上記の層構成において、界面層は陰
極と有機層とのコンタクトを向上させるためのもので、
芳香族ジアミン化合物(特願平5−48075号)、キ
ナクリドン化合物(特願平5−116204号)、ナフ
タセン誘導体(特願平5−116205号)、有機シリ
コン化合物(特願平5−116206号)、有機リン化
合物(特願平5−116207号)等が挙げられる。界
面層の膜厚は、通常、2〜100nm、好ましくは5〜
30nmである。界面層を設ける代わりに、有機発光層
及び電子輸送層の陰極界面近傍に上記界面層材料を50
モル%以上含む領域を設けてもよい。
In the above layer structure, the interface layer is for improving the contact between the cathode and the organic layer,
Aromatic diamine compound (Japanese Patent Application No. 5-48075), quinacridone compound (Japanese Patent Application No. 5-116204), naphthacene derivative (Japanese Patent Application No. 5-116205), organic silicon compound (Japanese Patent Application No. 5-116206). , An organic phosphorus compound (Japanese Patent Application No. 5-116207) and the like. The thickness of the interface layer is usually 2 to 100 nm, preferably 5 to
It is 30 nm. Instead of providing an interfacial layer, the interfacial layer material is added in the vicinity of the cathode interface of the organic light emitting layer and the electron transport layer by 50
A region containing mol% or more may be provided.

【0035】本発明においては、有機正孔輸送層にポリ
ビニルトリアリールアミンを含有することにより、耐熱
性のある、長期の駆動に対しても安定した発光特性を示
す素子を得ることができる。尚、図1とは逆の構造、す
なわち、基板上に導電層2b、有機発光層4、有機正孔
輸送層3、導電層2aの順に積層することも可能であ
り、既述した様に少なくとも一方が透明性の高い2枚の
基板の間に本発明の有機電界発光素子を設けることも可
能である。同様に、前記各層構成とは逆の構造に積層す
ることも可能である。
In the present invention, by containing polyvinyltriarylamine in the organic hole transport layer, it is possible to obtain an element having heat resistance and exhibiting stable light emission characteristics even after long-term driving. Incidentally, it is also possible to have a structure opposite to that of FIG. 1, that is, the conductive layer 2b, the organic light emitting layer 4, the organic hole transport layer 3, and the conductive layer 2a may be laminated in this order on the substrate, and at least as described above. It is also possible to provide the organic electroluminescent element of the present invention between two substrates, one of which is highly transparent. Similarly, it is also possible to stack in a structure opposite to the above-mentioned layer structure.

【0036】[0036]

【実施例】次に、本発明を実施例によって更に具体的に
説明するが、本発明はその要旨を越えない限り、以下の
実施例の記載に限定されるものではない。 実施例1 特開平1−105954号公報に開示されている方法に
より、下記構造式に示すポリビニルトリフェニルアミン
(表−1の番号(1))を合成した。
EXAMPLES Next, the present invention will be described more specifically by way of examples, but the present invention is not limited to the description of the following examples unless it exceeds the gist. Example 1 Polyvinyltriphenylamine (No. (1) in Table 1) represented by the following structural formula was synthesized by the method disclosed in JP-A-1-105954.

【0037】[0037]

【化5】 [Chemical 5]

【0038】このポリマーの数平均分子量は9,300
で、重量平均分子量は20,200であった。DSC測
定(セイコーDSC−20を使用)を行ったところ、T
gは116℃であった。上記ポリマーを下記の条件で、
ガラス基板上にスピンコートした。
The number average molecular weight of this polymer is 9,300.
The weight average molecular weight was 20,200. When DSC measurement (using Seiko DSC-20) was performed, T
The g was 116 ° C. The above polymer under the following conditions,
It was spin-coated on a glass substrate.

【0039】[0039]

【表4】 溶媒 ジクロロエタン 塗布液濃度 21.6[mg/ml] スピナ回転数 3000[rpm] スピナ回転時間 20[秒] 乾燥条件 70℃−30分間 上記のスピンコートにより63nmの膜厚の均一な薄膜
が形成された。この薄膜試料のイオン化ポテンシャルを
理研計器(株)製の紫外線電子分析装置(AC−1)を
用いて測定したところ、5.55eVであった。また、
この薄膜試料を大気中で2カ月間保存しても、膜の形状
は均一なままで安定であった。
[Table 4] Solvent Dichloroethane Coating solution concentration 21.6 [mg / ml] Spinner rotation speed 3000 [rpm] Spinner rotation time 20 [second] Drying condition 70 ° C-30 minutes A uniform film thickness of 63 nm was obtained by the above spin coating. A thin film was formed. The ionization potential of this thin film sample was measured with an ultraviolet electron analyzer (AC-1) manufactured by Riken Keiki Co., Ltd., and it was 5.55 eV. Also,
Even when this thin film sample was stored in the atmosphere for 2 months, the shape of the film remained stable and stable.

【0040】実施例2 有機正孔輸送層と有機発光層の積層膜を以下の方法で作
製した。ガラス基板上にインジウム・スズ酸化物(IT
O)透明導電膜を120nm堆積したものをアセトンで
超音波洗浄、純水で水洗、イソプロピルアルコールで超
音波洗浄、乾燥窒素で乾燥、UV/オゾン洗浄を行った
後、実施例1と同様にしてポリビニルトリフェニルアミ
ンから成る有機正孔輸送層を65nmの膜厚で形成し
た。
Example 2 A laminated film of an organic hole transport layer and an organic light emitting layer was prepared by the following method. Indium tin oxide (IT
O) A transparent conductive film deposited to a thickness of 120 nm was subjected to ultrasonic cleaning with acetone, pure water, ultrasonic cleaning with isopropyl alcohol, drying with dry nitrogen, and UV / ozone cleaning, and then in the same manner as in Example 1. An organic hole transport layer made of polyvinyl triphenylamine was formed to a thickness of 65 nm.

【0041】上記の試料を、真空蒸着装置内に設置し
て、装置内の真空度が2×10-6Torr以下になるま
で液体窒素トラップを備えた油拡散ポンプを用いて排気
した。有機発光層の材料として、以下の構造式で示され
るアルミニウムの8−ヒドロキシキノリン錯体Al(C9
6NO)3
The above sample was placed in a vacuum vapor deposition apparatus and evacuated using an oil diffusion pump equipped with a liquid nitrogen trap until the degree of vacuum in the apparatus became 2 × 10 -6 Torr or less. As a material for the organic light emitting layer, an aluminum 8-hydroxyquinoline complex Al (C 9
H 6 NO) 3

【0042】[0042]

【化6】 [Chemical 6]

【0043】をセラミックるつぼに入れ、るつぼの周囲
のタンタル線ヒーターで加熱して蒸着を行った。この時
のるつぼの温度は230〜270℃の範囲で制御し、蒸
着時の真空度は2×10-6Torr、蒸着時間は3分3
0秒であった。この様にして、膜厚75nmの有機発光
層を有機正孔輸送層の上に積層した。上記のITOガラ
ス基板上の積層膜を蒸着後、真空蒸着装置から取り出し
て、電子顕微鏡(SEM)による観察(2万倍)を行っ
たところ、均一性にすぐれ欠陥のない膜であった。
[0043] was placed in a ceramic crucible and heated by a tantalum wire heater around the crucible for vapor deposition. The temperature of the crucible at this time was controlled in the range of 230 to 270 ° C., the vacuum degree during vapor deposition was 2 × 10 −6 Torr, and the vapor deposition time was 3 minutes 3
It was 0 seconds. In this manner, an organic light emitting layer having a film thickness of 75 nm was laminated on the organic hole transport layer. After the above laminated film on the ITO glass substrate was vapor-deposited, it was taken out from the vacuum vapor deposition apparatus and observed by an electron microscope (SEM) (20,000 times). As a result, it was a film having excellent uniformity and no defects.

【0044】この積層膜を真空電気炉内に入れて、10
-4Torrの真空度で、83℃で1時間加熱後、再びS
EM観察を行ったが、一様で欠陥のない膜構造に変化は
なかった。
This laminated film was placed in a vacuum electric furnace and
After heating at 83 ° C for 1 hour at -4 Torr vacuum, S again
When EM observation was performed, the uniform and defect-free film structure was not changed.

【0045】実施例3 有機発光層を真空蒸着する時に、基板加熱を行って73
℃としたこと以外は、実施例2と同様にしてITOガラ
ス基板上に有機正孔輸送層/有機発光層から成る積層膜
を形成した。上記の積層膜のSEM観察(2万倍)を行
ったところ、均一性にすぐれ欠陥のない膜であった。こ
の積層膜を真空電気炉内に入れて、10-4Torrの真
空度で、83℃で1時間加熱後、再びSEM観察を行っ
たが、一様で欠陥のない膜構造に変化はなかった。
Example 3 The substrate was heated to 73 during vacuum deposition of the organic light emitting layer.
A laminated film consisting of an organic hole transport layer / organic light emitting layer was formed on an ITO glass substrate in the same manner as in Example 2 except that the temperature was set to be ° C. SEM observation (20,000 times) of the above laminated film revealed that the film had excellent uniformity and no defects. This laminated film was placed in a vacuum electric furnace and heated at 83 ° C. for 1 hour at a vacuum degree of 10 −4 Torr, and then SEM observation was performed again, but the uniform and defect-free film structure was not changed. .

【0046】比較例1 有機正孔輸送層材料として、下記構造式で示されるN,
N’−ジフェニル−N,N’−(3−メチルフェニル)
−1,1’−ビフェニル−4,4’−ジアミン
Comparative Example 1 As the organic hole transport layer material, N, represented by the following structural formula,
N'-diphenyl-N, N '-(3-methylphenyl)
-1,1'-biphenyl-4,4'-diamine

【0047】[0047]

【化7】 [Chemical 7]

【0048】を真空蒸着法により膜厚60nmで形成し
たこと以外は、実施例2と同様にしてITOガラス基板
上に有機正孔輸送層/有機発光層から成る積層膜を作製
した。この積層膜のSEM観察(2万倍)を行ったとこ
ろ、100nm程度の大きさを有するボイド状の欠陥が
84μm2 当りに15個の数密度で観測された。上記積
層膜を実施例2と同様にして真空電気炉内で83℃−1
時間の条件で加熱したところ、目視でもはっきりと判明
する程度にまで膜が白濁して凝集が激しく起きていた。
A laminated film comprising an organic hole transport layer / organic light emitting layer was formed on an ITO glass substrate in the same manner as in Example 2 except that was formed by vacuum vapor deposition to have a film thickness of 60 nm. When SEM observation (20,000 times) was performed on this laminated film, void-like defects having a size of about 100 nm were observed at a number density of 15 per 84 μm 2 . The laminated film was treated in the same manner as in Example 2 in a vacuum electric furnace at 83 ° C -1.
When heated under the condition of time, the film became cloudy and agglomeration occurred vigorously to the extent that it was clearly visible.

【0049】実施例4 図1に示す構造を有する有機電界発光素子を以下の方法
で作製した。ガラス基板上にインジウム・スズ酸化物
(ITO)透明導電膜を120nm堆積したものをアセ
トンで超音波洗浄、純水で水洗、イソプロピルアルコー
ルで超音波洗浄、乾燥窒素で乾燥、UV/オゾン洗浄を
行った後、真空蒸着装置内に設置して、装置内の真空度
が2×10-6Torr以下になるまで液体窒素トラップ
を備えた油拡散ポンプを用いて排気した。
Example 4 An organic electroluminescent device having the structure shown in FIG. 1 was produced by the following method. Ultrasonic cleaning with acetone, ultrasonic cleaning with pure water, ultrasonic cleaning with isopropyl alcohol, drying with dry nitrogen, UV / ozone cleaning was performed on a glass substrate with a transparent conductive film of indium tin oxide (ITO) deposited to a thickness of 120 nm. After that, it was installed in a vacuum vapor deposition apparatus and evacuated using an oil diffusion pump equipped with a liquid nitrogen trap until the degree of vacuum in the apparatus became 2 × 10 −6 Torr or less.

【0050】ポリビニルトリフェニルアミン塗布液の濃
度を、2.6、5.3、11.4、21.6[mg/m
l]とすることにより、各々、16.5、35、50、
63nmの膜厚の有機正孔輸送層を形成した。次に、実
施例2と同様にして、アルミニウムの8−ヒドロキシキ
ノリノール錯体から成る有機発光層を75nmの膜厚で
上記の各有機正孔正孔輸送層の上に積層した。
The concentration of the polyvinyl triphenylamine coating solution was 2.6, 5.3, 11.4, 21.6 [mg / m
1], 16.5, 35, 50,
An organic hole transport layer having a film thickness of 63 nm was formed. Next, in the same manner as in Example 2, an organic light emitting layer made of an 8-hydroxyquinolinol complex of aluminum was laminated in a thickness of 75 nm on each of the organic hole / hole transport layers described above.

【0051】最後に、陰極として、マグネシウムと銀の
合金電極を2元同時蒸着法によって膜厚150nmで蒸
着した。蒸着はモリブデンボートを用いて、真空度は4
×10-6Torr、蒸着時間は4分20秒で光沢のある
膜が得られた。マグネシウムと銀の原子比は10:1.
5であった。この様にして作製した有機電界発光素子の
ITO電極(陽極)にプラス、マグネシウム・銀合金電
極(陰極)にマイナスの直流電圧を印加してすると、こ
の素子は一様な緑色の発光を示し、発光のピーク波長は
530nmであった。素子の発光特性を表−2に示す。
Finally, as a cathode, an alloy electrode of magnesium and silver was vapor-deposited with a film thickness of 150 nm by the binary simultaneous vapor deposition method. Vapor deposition uses a molybdenum boat and the degree of vacuum is 4
A glossy film was obtained at x10 -6 Torr and vapor deposition time of 4 minutes and 20 seconds. The atomic ratio of magnesium to silver is 10: 1.
It was 5. When a positive DC voltage is applied to the ITO electrode (anode) of the organic electroluminescent device thus manufactured and a negative DC voltage is applied to the magnesium-silver alloy electrode (cathode), the device emits uniform green light. The peak wavelength of light emission was 530 nm. The light emission characteristics of the device are shown in Table 2.

【0052】実施例5 ポリビニルトリフェニルアミンをモリブデンボートに入
れ、ボートを加熱して6分間で40nmの有機正孔輸送
層を形成したこと以外は、実施例4と同様にして有機電
界発光素子を作製した。この素子の発光特性を表−2に
示す。
Example 5 An organic electroluminescent device was prepared in the same manner as in Example 4, except that polyvinyltriphenylamine was placed in a molybdenum boat and the boat was heated to form an organic hole transport layer of 40 nm in 6 minutes. It was made. The light emission characteristics of this device are shown in Table 2.

【0053】[0053]

【表5】 [Table 5]

【0054】[0054]

【発明の効果】本発明によれば、熱的に安定な薄膜構造
を有し、優れた発光特性を示す有機電界発光素子を得る
ことができる。従って、本発明による有機電界発光素子
はフラットパネル・ディスプレイ(例えばOAコンピュ
ータ用や壁掛けテレビ)や面発光体としての特徴を生か
した光源(例えば、複写機の光源、液晶ディスプレイや
計器類のバックライト光源)、表示板、標識灯への応用
が考えられ、その技術的価値は大きい。
According to the present invention, it is possible to obtain an organic electroluminescent device having a thermally stable thin film structure and exhibiting excellent light emitting characteristics. Therefore, the organic electroluminescent device according to the present invention is a light source (for example, a light source of a copying machine, a liquid crystal display or a backlight of a meter, etc.) that makes use of the characteristics of a flat panel display (for example, for OA computers or wall-mounted televisions) or a surface light emitter. It can be applied to light sources), display boards, and marker lights, and its technical value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における有機電界発光素子の一例を示し
た模式断面図。
FIG. 1 is a schematic cross-sectional view showing an example of an organic electroluminescent device according to the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2a、2b 導電層 3 有機正孔輸送層 4 有機発光層 1 Substrate 2a, 2b Conductive Layer 3 Organic Hole Transport Layer 4 Organic Light Emitting Layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、少なくとも陽極及び陰極によ
り挟持された有機正孔輸送層および有機発光層を含む有
機電界発光素子であって、有機正孔輸送層が、下記一般
式(I) 【化1】 (式中、Ar1 は置換基を有していてもよいアリーレン
基、Ar2 及びAr3 は置換基を有していてもよいアリー
ル基を示し、前記置換基は各々独立に、アルキル基、ア
ルケニル基、アリル基、アルコキシカルボニル基、アル
コキシ基、アミノ基)で表わされる繰り返し単位を有す
るポリビニルトリアリールアミンを含有することを特徴
とする有機電界発光素子。
1. An organic electroluminescent device comprising an organic hole transport layer and an organic light emitting layer sandwiched at least by an anode and a cathode on a substrate, wherein the organic hole transport layer has the following general formula (I): Chemical 1] (In the formula, Ar 1 represents an arylene group which may have a substituent, Ar 2 and Ar 3 represent an aryl group which may have a substituent, and the substituents are each independently an alkyl group, An organic electroluminescence device comprising a polyvinyltriarylamine having a repeating unit represented by an alkenyl group, an allyl group, an alkoxycarbonyl group, an alkoxy group, an amino group).
JP5205377A 1993-08-19 1993-08-19 Organic electroluminescent element Pending JPH0753953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5205377A JPH0753953A (en) 1993-08-19 1993-08-19 Organic electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5205377A JPH0753953A (en) 1993-08-19 1993-08-19 Organic electroluminescent element

Publications (1)

Publication Number Publication Date
JPH0753953A true JPH0753953A (en) 1995-02-28

Family

ID=16505824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5205377A Pending JPH0753953A (en) 1993-08-19 1993-08-19 Organic electroluminescent element

Country Status (1)

Country Link
JP (1) JPH0753953A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2334959A (en) * 1998-03-05 1999-09-08 Secr Defence Conducting polymers
US6066712A (en) * 1997-05-09 2000-05-23 Minolta Co., Ltd. Styryl polymer, production method and use thereof
WO2001067823A1 (en) * 2000-03-06 2001-09-13 Mitsubishi Chemical Corporation Organic electroluminescent element and photosensitive polymer
US6358765B2 (en) 1999-12-28 2002-03-19 Nec Corporation Method for manufacturing organic electroluminescence display device
US6756249B2 (en) 2001-10-15 2004-06-29 President Of Toyama University Method of manufacturing organic electroluminescent device
JP2006059878A (en) * 2004-08-17 2006-03-02 Tdk Corp Organic el element and its fabrication process, and organic el display
WO2006062062A1 (en) 2004-12-10 2006-06-15 Pioneer Corporation Organic compound, charge-transporting material, and organic electroluminescent element
JP2006237592A (en) * 2005-01-31 2006-09-07 Semiconductor Energy Lab Co Ltd Hole-injecting material, light emitting device material, light emitting device, organic compound, monomer and monomer mixture
WO2006101018A1 (en) 2005-03-23 2006-09-28 Semiconductor Energy Laboratory Co., Ltd. Composite material, material for light-emitting element, light-emitting element, light-emitting device and electronic device
US7449252B2 (en) 2004-08-20 2008-11-11 Seiko Epson Corporation Organic electroluminescent device, manufacturing method thereof, and electronic apparatus
WO2009102027A1 (en) 2008-02-15 2009-08-20 Mitsubishi Chemical Corporation Conjugated polymer, insolubilized polymer, organic electroluminescent device material, composition for organic electroluminescent device, method for producing polymer, organic electroluminescent device, organic el display, and organic el illuminator
WO2009116377A1 (en) 2008-03-17 2009-09-24 新日鐵化学株式会社 Organic electroluminescent device
WO2009123269A1 (en) 2008-04-02 2009-10-08 三菱化学株式会社 Polymer compound, reticulated polymer compound produced by crosslinking the polymer compound, composition for organic electroluminescent element, organic electroluminescent element, organic el display, and organic el lighting
WO2010013780A1 (en) 2008-07-31 2010-02-04 三菱化学株式会社 Composition for organic electroluminescent element, organic thin film, organic electroluminescent element, organic el display device, and organic el lighting
WO2010016555A1 (en) 2008-08-07 2010-02-11 三菱化学株式会社 Polymer, material for luminescent layer, material for organic electroluminescent element, composition for organic electroluminescent element, and organic electroluminescent element, solar cell element, organic el display device, and organic el lighting utilizing same
WO2010018813A1 (en) 2008-08-11 2010-02-18 三菱化学株式会社 Charge-transporting polymer, composition for organic electroluminescent element, organic electroluminescent element, organic el display device and organic el illuminating device
WO2011052698A1 (en) 2009-10-30 2011-05-05 三菱化学株式会社 Low-molecular compound, polymer, material for electronic devices, composition for electronic devices, organic electroluminescent element, organic solar cell element, display and lighting equipment
WO2011083588A1 (en) 2010-01-08 2011-07-14 三菱化学株式会社 Organic el element and organic light-emitting device
EP2592905A1 (en) 2003-07-31 2013-05-15 Mitsubishi Chemical Corporation Compound, charge transporting material and organic electroluminescent element
WO2013105556A1 (en) 2012-01-10 2013-07-18 三菱化学株式会社 Coating composition, porous film, light-scattering film, and organic electroluminescent element
US8518619B2 (en) 2010-07-21 2013-08-27 Fuji Xerox Co., Ltd. Photoelectric conversion device, electrophotographic photoreceptor, process cartridge, and image forming apparatus
WO2013125662A1 (en) 2012-02-23 2013-08-29 三菱化学株式会社 Polymer, and organic electroluminescent element
WO2013154076A1 (en) 2012-04-09 2013-10-17 三菱化学株式会社 Composition for organic electroluminescent elements, and organic electroluminescent element
WO2013168660A1 (en) 2012-05-09 2013-11-14 三菱化学株式会社 Organic el light emitting device
WO2013191137A1 (en) 2012-06-18 2013-12-27 三菱化学株式会社 Polymer compound, charge transporting polymer, composition for organic electroluminescent elements, organic electroluminescent element, organic el display device, and organic el lighting
US8748070B2 (en) 2011-01-28 2014-06-10 Fuji Xerox Co., Ltd. Thiol group-containing charge transporting material, thiol group-containing charge transporting material-dissolving solution, photoelectric conversion device, electrophotographic photoreceptor, image forming apparatus, and process cartridge
WO2014097813A1 (en) 2012-12-17 2014-06-26 新日鉄住金化学株式会社 Organic electrical field light-emitting element
JP5856483B2 (en) * 2009-10-27 2016-02-09 三星電子株式会社Samsung Electronics Co.,Ltd. Composition for anode buffer layer, polymer compound for anode buffer layer, organic electroluminescence device, method for producing the same, and use thereof
JP2016143679A (en) * 2015-01-29 2016-08-08 三星電子株式会社Samsung Electronics Co.,Ltd. Charge-transporting material
US9478754B2 (en) 2004-04-02 2016-10-25 Samsung Display Co., Ltd. Phenylcarbazole-based compounds and fluorene-based compounds and organic light emitting device and flat panel display device comprising the same
WO2019093369A1 (en) 2017-11-07 2019-05-16 三菱ケミカル株式会社 Iridium complex compound, composition containing said compound and solvent, organic electroluminescent element containing said compound, display device, and illumination device
WO2019107467A1 (en) 2017-11-29 2019-06-06 三菱ケミカル株式会社 Iridium complex compound, composition containing said compound and solvent, organic electroluminescent element containing said compound, display device and illumination device
WO2019177175A1 (en) 2018-03-16 2019-09-19 三菱ケミカル株式会社 Polymer, composition for organic electroluminescent element, organic electroluminescent element, organic el display device, organic el lighting, and manufacturing method for organic electroluminescent element
WO2020145294A1 (en) 2019-01-10 2020-07-16 三菱ケミカル株式会社 Iridium complex compound
WO2020230811A1 (en) 2019-05-15 2020-11-19 三菱ケミカル株式会社 Iridium complex compound, composition containing said compound and solvent, organic electroluminescent element containing said compound, display device and lighting device
WO2021161974A1 (en) 2020-02-12 2021-08-19 三菱ケミカル株式会社 Iridium complex compound, iridium complex compound-containing composition, organic electroluminescent element and production method therefor, organic el display device, and organic el lighting device
WO2022250044A1 (en) 2021-05-25 2022-12-01 三菱ケミカル株式会社 Iridium complex compound, composition containing iridium complex compound, organic electroluminescent element and method for producing same

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066712A (en) * 1997-05-09 2000-05-23 Minolta Co., Ltd. Styryl polymer, production method and use thereof
GB2334959A (en) * 1998-03-05 1999-09-08 Secr Defence Conducting polymers
US6358765B2 (en) 1999-12-28 2002-03-19 Nec Corporation Method for manufacturing organic electroluminescence display device
WO2001067823A1 (en) * 2000-03-06 2001-09-13 Mitsubishi Chemical Corporation Organic electroluminescent element and photosensitive polymer
US6756249B2 (en) 2001-10-15 2004-06-29 President Of Toyama University Method of manufacturing organic electroluminescent device
EP2592905A1 (en) 2003-07-31 2013-05-15 Mitsubishi Chemical Corporation Compound, charge transporting material and organic electroluminescent element
US11950501B2 (en) 2004-04-02 2024-04-02 Samsung Display Co., Ltd. Phenylcarbazole-based compounds and fluorene-based compounds and organic light emitting device and flat panel display device comprising the same
US9478754B2 (en) 2004-04-02 2016-10-25 Samsung Display Co., Ltd. Phenylcarbazole-based compounds and fluorene-based compounds and organic light emitting device and flat panel display device comprising the same
US9917258B2 (en) 2004-04-02 2018-03-13 Samsung Display Co., Ltd. Phenylcarbazole-based compounds and fluorene-based compounds and organic light emitting device and flat panel display device comprising the same
US10211406B2 (en) 2004-04-02 2019-02-19 Samsung Display Co., Ltd. Phenylcarbazole-based compounds and fluorene-based compounds and organic light emitting device and flat panel display device comprising the same
US10573821B2 (en) 2004-04-02 2020-02-25 Samsung Display Co., Ltd. Phenylcarbazole-based compounds and fluorene-based compounds and organic light emitting device and flat panel display device comprising the same
US11482678B2 (en) 2004-04-02 2022-10-25 Samsung Display Co., Ltd. Phenylcarbazole-based compounds and fluorene-based compounds and organic light emitting device and flat panel display device comprising the same
JP2006059878A (en) * 2004-08-17 2006-03-02 Tdk Corp Organic el element and its fabrication process, and organic el display
US7449252B2 (en) 2004-08-20 2008-11-11 Seiko Epson Corporation Organic electroluminescent device, manufacturing method thereof, and electronic apparatus
WO2006062062A1 (en) 2004-12-10 2006-06-15 Pioneer Corporation Organic compound, charge-transporting material, and organic electroluminescent element
JP2006237592A (en) * 2005-01-31 2006-09-07 Semiconductor Energy Lab Co Ltd Hole-injecting material, light emitting device material, light emitting device, organic compound, monomer and monomer mixture
WO2006101018A1 (en) 2005-03-23 2006-09-28 Semiconductor Energy Laboratory Co., Ltd. Composite material, material for light-emitting element, light-emitting element, light-emitting device and electronic device
US7977865B2 (en) 2005-03-23 2011-07-12 Semiconductor Energy Laboratory Co., Ltd. Composite material, material for light-emitting element, light-emitting element, light-emitting device and electronic device
EP2528127A1 (en) * 2005-03-23 2012-11-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electronic device
US8986854B2 (en) 2005-03-23 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Composite material, material for light-emitting element, light-emitting element, light-emitting device and electronic device
WO2009102027A1 (en) 2008-02-15 2009-08-20 Mitsubishi Chemical Corporation Conjugated polymer, insolubilized polymer, organic electroluminescent device material, composition for organic electroluminescent device, method for producing polymer, organic electroluminescent device, organic el display, and organic el illuminator
EP3182479A1 (en) 2008-02-15 2017-06-21 Mitsubishi Chemical Corporation Conjugated polymer for organic electroluminescence element
WO2009116377A1 (en) 2008-03-17 2009-09-24 新日鐵化学株式会社 Organic electroluminescent device
WO2009123269A1 (en) 2008-04-02 2009-10-08 三菱化学株式会社 Polymer compound, reticulated polymer compound produced by crosslinking the polymer compound, composition for organic electroluminescent element, organic electroluminescent element, organic el display, and organic el lighting
WO2010013780A1 (en) 2008-07-31 2010-02-04 三菱化学株式会社 Composition for organic electroluminescent element, organic thin film, organic electroluminescent element, organic el display device, and organic el lighting
WO2010016555A1 (en) 2008-08-07 2010-02-11 三菱化学株式会社 Polymer, material for luminescent layer, material for organic electroluminescent element, composition for organic electroluminescent element, and organic electroluminescent element, solar cell element, organic el display device, and organic el lighting utilizing same
WO2010018813A1 (en) 2008-08-11 2010-02-18 三菱化学株式会社 Charge-transporting polymer, composition for organic electroluminescent element, organic electroluminescent element, organic el display device and organic el illuminating device
JP5856483B2 (en) * 2009-10-27 2016-02-09 三星電子株式会社Samsung Electronics Co.,Ltd. Composition for anode buffer layer, polymer compound for anode buffer layer, organic electroluminescence device, method for producing the same, and use thereof
WO2011052698A1 (en) 2009-10-30 2011-05-05 三菱化学株式会社 Low-molecular compound, polymer, material for electronic devices, composition for electronic devices, organic electroluminescent element, organic solar cell element, display and lighting equipment
WO2011083588A1 (en) 2010-01-08 2011-07-14 三菱化学株式会社 Organic el element and organic light-emitting device
US8518619B2 (en) 2010-07-21 2013-08-27 Fuji Xerox Co., Ltd. Photoelectric conversion device, electrophotographic photoreceptor, process cartridge, and image forming apparatus
US8748070B2 (en) 2011-01-28 2014-06-10 Fuji Xerox Co., Ltd. Thiol group-containing charge transporting material, thiol group-containing charge transporting material-dissolving solution, photoelectric conversion device, electrophotographic photoreceptor, image forming apparatus, and process cartridge
WO2013105556A1 (en) 2012-01-10 2013-07-18 三菱化学株式会社 Coating composition, porous film, light-scattering film, and organic electroluminescent element
WO2013125662A1 (en) 2012-02-23 2013-08-29 三菱化学株式会社 Polymer, and organic electroluminescent element
WO2013154076A1 (en) 2012-04-09 2013-10-17 三菱化学株式会社 Composition for organic electroluminescent elements, and organic electroluminescent element
WO2013168660A1 (en) 2012-05-09 2013-11-14 三菱化学株式会社 Organic el light emitting device
WO2013191137A1 (en) 2012-06-18 2013-12-27 三菱化学株式会社 Polymer compound, charge transporting polymer, composition for organic electroluminescent elements, organic electroluminescent element, organic el display device, and organic el lighting
WO2014097813A1 (en) 2012-12-17 2014-06-26 新日鉄住金化学株式会社 Organic electrical field light-emitting element
JP2016143679A (en) * 2015-01-29 2016-08-08 三星電子株式会社Samsung Electronics Co.,Ltd. Charge-transporting material
WO2019093369A1 (en) 2017-11-07 2019-05-16 三菱ケミカル株式会社 Iridium complex compound, composition containing said compound and solvent, organic electroluminescent element containing said compound, display device, and illumination device
WO2019107467A1 (en) 2017-11-29 2019-06-06 三菱ケミカル株式会社 Iridium complex compound, composition containing said compound and solvent, organic electroluminescent element containing said compound, display device and illumination device
WO2019177175A1 (en) 2018-03-16 2019-09-19 三菱ケミカル株式会社 Polymer, composition for organic electroluminescent element, organic electroluminescent element, organic el display device, organic el lighting, and manufacturing method for organic electroluminescent element
WO2020145294A1 (en) 2019-01-10 2020-07-16 三菱ケミカル株式会社 Iridium complex compound
WO2020230811A1 (en) 2019-05-15 2020-11-19 三菱ケミカル株式会社 Iridium complex compound, composition containing said compound and solvent, organic electroluminescent element containing said compound, display device and lighting device
WO2021161974A1 (en) 2020-02-12 2021-08-19 三菱ケミカル株式会社 Iridium complex compound, iridium complex compound-containing composition, organic electroluminescent element and production method therefor, organic el display device, and organic el lighting device
WO2022250044A1 (en) 2021-05-25 2022-12-01 三菱ケミカル株式会社 Iridium complex compound, composition containing iridium complex compound, organic electroluminescent element and method for producing same

Similar Documents

Publication Publication Date Title
JPH0753953A (en) Organic electroluminescent element
JP4058842B2 (en) Organic electroluminescence device
JP4023204B2 (en) Organic electroluminescence device
JP3945123B2 (en) Organic electroluminescence device
JP3996036B2 (en) Aromatic diamine-containing polymer compound and organic electroluminescence device using the same
JP4144192B2 (en) Method for manufacturing organic electroluminescent device
JPH06325871A (en) Organic electroluminescent element
JP3972588B2 (en) Organic electroluminescence device
JPH06267658A (en) Organic el element
JP2001223084A (en) Organic electric field light emitting element
JP3845941B2 (en) Imidazole metal complex and organic electroluminescence device using the same
JP2000150169A (en) Organic electroluminescence element
JP3552317B2 (en) Manufacturing method of organic electroluminescent device
JPH08199161A (en) Organic electroluminescence element
JP3750315B2 (en) Organic electroluminescence device
JP4030608B2 (en) Organic electroluminescent device and manufacturing method thereof
JPH0888083A (en) Organic electric field light-emitting device
JP3463364B2 (en) Organic electroluminescent device
JP3284766B2 (en) Organic electroluminescent device
JP3296042B2 (en) Organic electroluminescent device
JP3279014B2 (en) Organic electroluminescent device
JP3284737B2 (en) Organic electroluminescent device
JPH06330032A (en) Organic electroluminescent element
JP2004327166A (en) Organic el device and its manufacturing method
JPH0762526A (en) Production of organic electroluminescence element