WO2019093369A1 - Iridium complex compound, composition containing said compound and solvent, organic electroluminescent element containing said compound, display device, and illumination device - Google Patents

Iridium complex compound, composition containing said compound and solvent, organic electroluminescent element containing said compound, display device, and illumination device Download PDF

Info

Publication number
WO2019093369A1
WO2019093369A1 PCT/JP2018/041327 JP2018041327W WO2019093369A1 WO 2019093369 A1 WO2019093369 A1 WO 2019093369A1 JP 2018041327 W JP2018041327 W JP 2018041327W WO 2019093369 A1 WO2019093369 A1 WO 2019093369A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
group
compound
atom
iridium complex
Prior art date
Application number
PCT/JP2018/041327
Other languages
French (fr)
Japanese (ja)
Inventor
和弘 長山
王己 家村
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to EP18876308.0A priority Critical patent/EP3708571A4/en
Priority to KR1020237042759A priority patent/KR20230173735A/en
Priority to JP2019552345A priority patent/JP7238782B2/en
Priority to CN202310494916.6A priority patent/CN116655702A/en
Priority to KR1020207011382A priority patent/KR20200078499A/en
Priority to CN201880068822.XA priority patent/CN111263766B/en
Publication of WO2019093369A1 publication Critical patent/WO2019093369A1/en
Priority to US16/852,815 priority patent/US20200317706A1/en
Priority to JP2022199402A priority patent/JP7439891B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80517Multilayers, e.g. transparent multilayers

Definitions

  • the present invention relates to an iridium complex compound, and more particularly to an iridium complex compound useful as a material of a light emitting layer of an organic electroluminescent device (hereinafter sometimes referred to as “organic EL device”).
  • organic EL device an organic electroluminescent device
  • the present invention also relates to a composition containing the compound and a solvent, an organic electroluminescent device containing the compound, and a display device and a lighting device having the organic electroluminescent device.
  • Organic electroluminescent devices have low applied voltage and low power consumption and can emit light of three primary colors, so applications to medium- and small-sized displays represented by mobile phones and smartphones as well as large display monitors are beginning. .
  • An organic electroluminescent element is manufactured by laminating
  • many organic electroluminescent devices are manufactured by vapor-depositing an organic material under vacuum, but in the vacuum vapor deposition method, the vapor deposition process becomes complicated and the productivity is poor.
  • the organic electroluminescent element manufactured by the vacuum evaporation method it is extremely difficult to increase the size of the illumination or display panel.
  • a wet film formation method (coating method) has been studied as a process for efficiently manufacturing an organic electroluminescent device that can be used for a large display or illumination.
  • the wet film formation method has an advantage of being able to easily form a stable layer as compared with the vacuum deposition method, and therefore, it is expected to be applied to mass production of displays and lighting devices and to large devices.
  • the iridium complex compound generally has poor solvent solubility, it is necessary to introduce solvent-rich solubility to the ligand by introducing a substituent having high flexibility. On the other hand, it is necessary to introduce a substituent for wavelength adjustment into the ligand in order to make the emission color of the organic electroluminescent element the intended color tone.
  • the latter is particularly important in materials having a longer wavelength than green, in particular, a red iridium light-emitting material that requires a maximum of 600 nm or more of the emission wavelength.
  • the inventors found that the conventional red light emitting material has insufficient solvent solubility for use in the wet film forming method and has a low luminescence quantum yield, so that the iridium complex compound has high solubility in the solvent, iridium complex It has been found that it is necessary to further improve the storage stability of the composition containing the compound and the solvent and the improvement of the luminous efficiency of the organic electroluminescent device containing the iridium complex compound.
  • An object of the present invention is to provide an iridium complex compound capable of achieving both high solvent solubility and target chromaticity.
  • Another object of the present invention is to provide an iridium complex compound having a wide half value width of emission spectrum and capable of enhancing a color reproduction rate when used for an illumination application, in addition to the above features.
  • Another object of the present invention is to provide an iridium complex compound suitable as a light emitting material of a wet film formation type organic electroluminescent device capable of simultaneously achieving high solvent solubility, storage stability and light emitting characteristics.
  • an iridium complex compound having a specific chemical structure exhibits extremely high solvent solubility as a red light emitting material as compared to conventional materials. Furthermore, it has been found that an iridium complex compound having a specific chemical structure broadens the half bandwidth of the emission spectrum as a red light emitting material as compared with a conventional material. In addition, it has been found that an iridium complex compound having a specific chemical structure is excellent in storage stability and shows highly efficient light emission.
  • the gist of the present invention is as follows.
  • An iridium complex compound represented by the following formula (1) [In formula (1), Ir represents an iridium atom, C 1 to C 6 represent carbon atoms, and N 1 and N 2 represent nitrogen atoms. R 1 to R 4 each independently represent a hydrogen atom or a substituent, and a, b, c and d respectively represent the maximum number of integers that can be substituted on the rings Cy 1 , Cy 2 , Cy 3 and Cy 4 , m and n represent 1 or 2, and m + n is 3.
  • the ring Cy 1 is a fluorene structure represented by the following formula (2) or (2 ′),
  • the ring Cy 2 is a quinoline or naphthyridine structure represented by any one of the following formulas (3) to (5):
  • the ring Cy 1 is represented by the formula ( 2 ′ )
  • the ring Cy 2 is a naphthyridine structure represented by any one of the following formulas (3) to (5):
  • X 1 to X 18 in formulas (3) to (5) each independently represent a carbon atom or a nitrogen atom
  • Ring Cy 3 represents an aromatic ring or heteroaromatic ring containing carbon atoms C 4 and C 5
  • the ring Cy 4 represents a heteroaromatic ring containing carbon atom C 6 and nitrogen atom N 2 .
  • a composition comprising the iridium complex compound according to any one of [1] to [5] and a solvent.
  • a lighting device comprising the organic electroluminescent device according to [7].
  • iridium complex compound represented by the following formula (7).
  • Ir represents an iridium atom.
  • C 7 to C 9 represent carbon atoms, and N 3 and N 4 represent nitrogen atoms.
  • Ring Cy 5 represents an aromatic ring or heteroaromatic ring containing carbon atoms C 7 and C 8
  • Ring Cy 6 represents a heteroaromatic ring containing carbon atom C 9 and nitrogen atom N 3
  • X 23 to X 26 each independently represent a carbon atom which may have a substituent, or a nitrogen atom
  • Y 2 represents an oxygen atom, a sulfur atom or a selenium atom
  • Each of R 10 to R 12 independently represents a hydrogen atom or a substituent.
  • a ′ and b ′ represent the maximum number of integers that can be substituted on the rings Cy 5 and Cy 6 respectively, and c ′ is 8.
  • m 'and n' represent 1 or 2
  • m '+ n' is 3.
  • the iridium complex compound of the present invention has high solvent solubility, so that it is possible to manufacture an organic electroluminescent device by a wet film formation method.
  • the organic electroluminescent device of the present invention is useful for organic EL display devices and lighting devices.
  • the iridium complex compound of the present invention has a wider half width of the emission spectrum as a red light emitting material as compared with a conventional material, and can increase the color reproduction rate when used for lighting applications.
  • the iridium complex compound of the present invention can provide an organic electroluminescent device having a high luminescence quantum yield and excellent luminescence characteristics.
  • FIG. 1 is a cross-sectional view schematically showing an example of the structure of the organic electroluminescent device of the present invention.
  • FIG. 2 is a graph showing the relationship between the maximum emission wavelength and the half width of the compounds of Examples 3 and 4 and Comparative Examples 3 and 4.
  • FIG. 3 is a graph showing the relationship between the maximum emission wavelength and the emission quantum yield of the compounds of Example 5 and Comparative Examples 5 to 7.
  • aromatic ring refers to "aromatic hydrocarbon ring” and is distinguished from “heteroaromatic ring” containing a hetero atom as a ring constituent atom.
  • aromatic group refers to “aromatic hydrocarbon ring group”
  • heteroaryomatic group refers to “heteroaromatic ring group”.
  • the iridium complex compound of the present invention is a compound represented by the following formula (1).
  • Ir represents an iridium atom
  • C 1 to C 6 represent carbon atoms
  • N 1 and N 2 represent nitrogen atoms.
  • R 1 to R 4 each independently represent a hydrogen atom or a substituent
  • a, b, c and d respectively represent the maximum number of integers that can be substituted on the rings Cy 1 , Cy 2 , Cy 3 and Cy 4
  • m and n represent 1 or 2
  • m + n is 3.
  • a fluorene skeleton into the ligand because the emission wavelength can be easily made into the target red region by combination with the ring Cy 2 skeleton, but conversely, the free rotational movement of the two benzene rings is inhibited. Due to the extremely flat structure, the solubility in a solvent and the dissolution stability in maintaining a uniform state as an ink and not causing precipitation are generally extremely deteriorated. In order to improve the solvent solubility, for example, a long chain alkyl group or the like is introduced at the 9 position of fluorene, but when such a material is used as a light emitting material of an organic electroluminescent device, it has an insulating property.
  • the long-chain alkyl group of the compound significantly blocks the HOMO orbital of the complex molecule, thereby inhibiting the oxidation of the molecule and making charge recombination on the complex less likely to occur, resulting in deterioration of the device performance.
  • the chemical structure is made rigid and energy dissipation to thermal vibration is prevented, the electron-withdrawing substituent is introduced into the ligand, and LUMO is lowered to enhance the MLCT property of the excited state.
  • the method is used. From this point of view, for example, the fluorene structure is considered to be preferable since it is fairly rigid since two benzene rings are directly bonded to each other and two methylene groups which may have a substituent. If the rigid structure is too large, the interaction between molecules becomes strong and the solubility is greatly impaired.
  • a heteroaromatic ring is placed at the 3-position of the fluorene ring. If it has a ligand structure, the conjugation is not strong because the two aromatic rings of the heteroaromatic ring and the fluorene ring are not on a straight line, and the LUMO of the ligand is not lowered and the MLCT property is kept high.
  • the ring Cy 1 is a structure represented by the following formula (2) or (2 ′) containing carbon atoms C 1 and C 2 coordinated to an iridium atom.
  • the substituent (R 1 ) a ⁇ is omitted, but as shown in the specific example of the iridium complex compound of the present invention described later, the ring Cy 1 Is preferably a 9,9-dimethylfluorene ring, including the substituent (R 1 ) a- .
  • the ring Cy 1 is preferably a structure represented by Formula (2).
  • the ring Cy 1 is preferably a structure represented by Formula (2 ′).
  • the ring Cy 2 is a structure represented by any one of the following formulas (3) to (5).
  • ring Cy 1 is a structure represented by formula (2)
  • ring Cy 2 is preferably a quinoline or naphthyridine structure represented by any of the following formulas (3) to (5).
  • the ring Cy 1 is a structure represented by the formula ( 2 ′)
  • the ring Cy 2 is preferably a naphthyridine structure represented by any one of the following formulas (3) to (5).
  • X 1 to X 18 in formulas (3) to (5) each independently represent a carbon atom or a nitrogen atom.
  • the number of nitrogen atoms contained in the ring Cy 2 is preferably 3 or less, more preferably 2 or less, including the nitrogen atom N 1 .
  • the number of nitrogen atoms is 3 or less, the HOMO and LUMO of the iridium complex compound do not become too deep, and both holes and electrons are easily injected into the complex molecule. Therefore, recombination is less likely to occur, which tends to be preferable as a light emitting material of the organic electroluminescent device.
  • the ring Cy 2 is preferably a structure represented by the formula (3) or the formula (5) from the viewpoint of showing preferable chromaticity of red light emission in the organic EL display, and the formula (3)
  • the structure is particularly preferred.
  • the ring Cy 2 is more than a quinoline structure in which the nitrogen atom constituting the ring is only N 1. It is preferable that it is a naphthyridine structure, such as quinazoline and quinoxaline, whose nitrogen atom which comprises a ring is N 1 and is two.
  • Ring Cy 3 represents an aromatic ring or a heteroaromatic ring containing carbon atoms C 4 and C 5 coordinating to the iridium atom.
  • the ring Cy 3 may be a single ring or may be a fused ring to which a plurality of rings are linked.
  • the number of rings is not particularly limited, but 6 or less is preferable, and 5 or less is preferable because it tends not to impair the solvent solubility of the complex.
  • the hetero atom contained in addition to the carbon atom as a ring constituent atom is selected from nitrogen atom, oxygen atom, sulfur atom, silicon atom, phosphorus atom and selenium atom Is preferable from the viewpoint of the chemical stability of the complex.
  • ring Cy 3 examples include, in the aromatic ring, a single-ring benzene ring; two-ring naphthalene ring; three or more rings fluorene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, The chrysene ring, triphenylene ring, fluoranthene ring and the like can be mentioned.
  • an appropriate substituent is introduced onto these rings.
  • the ring be a known method for introducing such a substituent. Therefore, among the above-mentioned specific examples, it is preferable that one ring constituted by carbon atom C 4 directly linked to an iridium atom is a benzene ring. Examples thereof include dibenzofuran ring, dibenzothiophene ring, carbazole ring, indolocarbazole ring, indenocarbazole ring and the like in addition to the above-mentioned aromatic ring.
  • the ring Cy 3 is most preferably a fluorene ring represented by the following formula (8).
  • the number of atoms constituting the ring Cy 3 is not particularly limited, but from the viewpoint of maintaining the solvent solubility of the iridium complex compound, the number of constituting atoms of the ring is preferably 5 or more, more preferably 6 or more.
  • the number of constituent atoms of the ring is preferably 30 or less, more preferably 20 or less.
  • the ring Cy 4 represents a heteroaromatic ring containing a carbon atom C 6 and a nitrogen atom N 2 coordinating to an iridium atom.
  • ring Cy 4 examples include a monocyclic pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, a pyrrole ring, a pyrazole ring, an isoxazole ring, a thiazole ring, an oxazole ring, an oxadiazole ring, Thiazole ring, purine ring; quinoline ring of two ring condensation ring, isoquinoline ring, cinnoline ring, phthalazine ring, quinazoline ring, quinoxaline ring, naphthyridine ring, indole ring, indazole ring, benzoisoxazole ring, benzisothiazole ring, benzimidazole Ring, benzoxazole ring, benzothiazole ring; acridine ring of 3-ring
  • ring Cy 4 Is preferably a single ring or a fused ring having 4 or less rings, more preferably a single ring or a fused ring having 3 or less rings, and most preferably a single ring or a two-ring fused ring.
  • X 19 to X 22 in the formula (6) each independently represent a carbon atom or a nitrogen atom.
  • the preferred number of nitrogen atoms of X 19 to X 22 is 0 or 1 from the viewpoint of adjusting the emission wavelength particularly to the red region and the ease of synthesis of the complex.
  • a hydrogen atom may be bonded to this carbon atom, and those exemplified as the substituents of R 1 to R 5 described later, preferably F, an alkyl group, an aromatic group The group or heteroaromatic group may be substituted.
  • the number of atoms constituting the ring Cy 4 is preferably 14 or less, more preferably 13 or less.
  • Y represents N (-R 5 ), an oxygen atom or a sulfur atom.
  • R 5 represents a hydrogen atom or a substituent.
  • Y may be N (—R 5 ) or a sulfur atom.
  • Y is N (—R 5 ) or a sulfur atom.
  • it is a sulfur atom.
  • R 5 is a substituent, it is not particularly limited, but specifically, it has the same meaning as the substituent of R 1 to R 4 described later, and the preferable range is also the same.
  • R 1 to R 4 and a to d> R 1 to R 4 in the formula (1) represent a hydrogen atom or a substituent.
  • R 1 to R 4 are each independently, and may be the same or different.
  • a to d are integers of the maximum number that can be substituted on the rings Cy 1 to Cy 4 respectively, and a is 8.
  • a to d are 2 or more, a plurality of R 1 to R 4 may be the same or different.
  • R 1 is such that two or more adjacent R 1 's combine with each other to form an aliphatic, aromatic or heteroaromatic, and are not fused to the ring Cy 1 .
  • R 1 to R 4 are a substituent
  • the type thereof is not particularly limited, and precise control of the target emission wavelength, compatibility with the solvent used, compatibility with the host compound in forming an organic electroluminescent device, etc.
  • An optimal substituent can be selected in consideration of Preferred substituents for the optimization studies are the ranges described below.
  • R ′ is a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 30 carbon atoms, a linear chain having 1 to 30 carbon atoms, Branched or cyclic alkylthio group, linear or branched alkenyl group having 2 to 30 carbon atoms, linear or branched or cyclic alkynyl group having 2 to 30 carbon atoms, aromatic group having 5 to 60 carbon
  • the alkyl group, the alkoxy group, the alkylthio group, the alkenyl group and the alkynyl group may be further substituted by one or more R ′, and one —CH 2 — group or two or more in these groups
  • One or more hydrogen atoms in these groups may be substituted by D, F, Cl, Br, I or -CN.
  • Examples of the linear, branched or cyclic alkyl group having 1 to 30 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an n-pentyl group and an n-hexyl group
  • Examples include n-octyl group, 2-ethylhexyl group, isopropyl group, isobutyl group, cyclopentyl group, cyclohexyl group, n-octyl group, norbornyl group, adamantyl group and the like.
  • the number of carbon atoms is preferably 1 or more, preferably 30 or less, more preferably 20 or less, and most preferably 12 or less.
  • Examples of the linear, branched or cyclic alkoxy group having 1 to 30 carbon atoms include methoxy, ethoxy, n-propyloxy, n-butoxy, n-hexyloxy, isopropyloxy and cyclohexyloxy And 2-ethoxyethoxy and 2-ethoxyethoxyethoxy groups.
  • the number of carbon atoms is preferably 1 or more, preferably 30 or less, more preferably 20 or less, and most preferably 12 or less.
  • Examples of the linear, branched or cyclic alkylthio group having 1 to 30 carbon atoms include a methylthio group, an ethylthio group, an n-propylthio group, an n-butylthio group, an n-hexylthio group, an isopropylthio group, and a cyclohexylthio group.
  • Examples include 2-methylbutylthio and n-hexylthio.
  • the number of carbon atoms is preferably 1 or more, preferably 30 or less, more preferably 20 or less, and most preferably 12 or less.
  • linear or branched or cyclic alkenyl groups having 2 to 30 carbon atoms examples include vinyl, allyl, propenyl, heptenyl, cyclopentenyl, cyclohexenyl and cyclooctenyl groups. From the viewpoint of durability, the number of carbon atoms is preferably 2 or more, preferably 30 or less, more preferably 20 or less, and most preferably 12 or less.
  • linear or branched or cyclic alkynyl groups having 2 to 30 carbon atoms examples include ethynyl group, propionyl group, butynyl group, pentynyl group, hexynyl group, heptynyl group, octynyl group and the like. From the viewpoint of durability, the number of carbon atoms is preferably 2 or more, preferably 30 or less, more preferably 20 or less, and most preferably 12 or less.
  • the aromatic group having 5 to 60 carbon atoms and the heteroaromatic group having 5 to 60 carbon atoms may be present as a single ring or a fused ring, and one ring may have another type of aromatic ring
  • the group or heteroaromatic group may be a group formed by bonding or condensation.
  • Examples of these include phenyl, naphthyl, anthracenyl, benzoanthracenyl, phenanthrenyl, benzophenanthrenyl, pyrenyl, chrysenyl, fluoranthenyl, perylenyl, benzopyrenyl and benzofur.
  • Orantenyl group naphthacenyl group, pentacenyl group, biphenyl group, terphenyl group, fluorenyl group, spirobifluorenyl group, dihydrophenanthrenyl group, dihydropyrenyl group, tetrahydropyrenyl group, indenofluorenyl group, furyl Group, benzofuryl group, isobenzofuryl group, dibenzofuranyl group, thiophene group, benzothiophenyl group, dibenzothiophenyl group, pyrrolyl group, indolyl group, isoindolyl group, carbazolyl group, benzocarbazolyl group, indolocarbazolyl Le basis Indenocarbazolyl group, pyridyl group, cinnoyl group, isocinnolyl group, acridyl group, phenanthridyl group, phenothia
  • the carbon number of these groups is preferably 5 or more, preferably 50 or less, more preferably 40 or less, and most preferably 30 or less. preferable.
  • Examples of the aryloxy group having 5 to 40 carbon atoms include a phenoxy group, a methylphenoxy group, a naphthoxy group, a methoxyphenoxy group and the like. From the viewpoint of the balance between solubility and durability, the carbon number of these aryloxy groups is preferably 5 or more, preferably 30 or less, more preferably 25 or less, and most preferably 20 or less.
  • Examples of the arylthio group having 5 to 40 carbon atoms include a phenylthio group, a methylphenylthio group, a naphthylthio group, a methoxyphenylthio group and the like. From the viewpoint of the balance between solubility and durability, the carbon number of these arylthio groups is preferably 5 or more, preferably 30 or less, more preferably 25 or less, and most preferably 20 or less.
  • Examples of the aralkyl group having 5 to 60 carbon atoms include a 1,1-dimethyl-1-phenylmethyl group, a 1,1-di (n-butyl) -1-phenylmethyl group and a 1,1-di (n) group.
  • the carbon number of these aralkyl groups is preferably 5 or more, and more preferably 40 or less.
  • heteroaralkyl groups having 5 to 60 carbon atoms include a 1,1-dimethyl-1- (2-pyridyl) methyl group and 1,1-di (n-hexyl) -1- (2-pyridyl) methyl Group, (2-pyridyl) methyl group, (2-pyridyl) ethyl group, 3- (2-pyridyl) -1-propyl group, 4- (2-pyridyl) -1-n-butyl group, 1-methyl- 1- (2-pyridyl) ethyl group, 5- (2-pyridyl) -1-n-propyl group, 6- (2-pyridyl) -1-n-hexyl group, 6- (2-pyrimidyl) -1- group n-hexyl group, 6- (2,6-diphenyl-1,3,5-triazin-4-yl) -1-n-hexyl group, 7- (2-pyridyl) -1
  • diarylamino group having 10 to 40 carbon atoms examples include a diphenylamino group, a phenyl (naphthyl) amino group, a di (biphenyl) amino group, and a di (p-terphenyl) amino group.
  • the carbon number of these diarylamino groups is preferably 10 or more, preferably 36 or less, more preferably 30 or less, and 25 or less. Is most preferred.
  • arylheteroarylamino group having 10 to 40 carbon atoms examples include phenyl (2-pyridyl) amino group, phenyl (2,6-diphenyl-1,3,5-triazin-4-yl) amino group and the like It can be mentioned. From the viewpoint of the balance between solubility and durability, the carbon number of these arylheteroarylamino groups is preferably 10 or more, preferably 36 or less, more preferably 30 or less, and 25 or less. Most preferably.
  • Examples of the diheteroarylamino group having 10 to 40 carbon atoms include di (2-pyridyl) amino group and di (2,6-diphenyl-1,3,5-triazin-4-yl) amino group. .
  • the carbon number of these diheteroarylamino groups is preferably 10 or more, preferably 36 or less, more preferably 30 or less, and 25 or less. Most preferably.
  • R 1 to R 4 each independently represent a hydrogen atom, F, -CN, a linear or branched C 1 -C 30 chain, from the viewpoint of not impairing the durability as a light emitting material in an organic electroluminescent device.
  • An aromatic group having 60 or less and a heteroaromatic group having 5 to 60 carbon atoms are preferable, and a hydrogen atom, F, -CN, an alkyl group, an aralkyl group, an aromatic group or a heteroaromatic group is particularly preferable, and a hydrogen atom , F, -CN, an alkyl group, an aromatic group and a heteroaromatic group are most preferable.
  • R 3 is a substituent, when the ring Cy 3 is a benzene ring, particularly when emphasis on durability of the complex, at least one of R 3 in the 4-position or 5-position of the benzene ring substituted It is preferable to be substituted, and more preferable to be substituted at the 4-position. In this case, R 3 is preferably the above-mentioned aromatic group or heteroaromatic group.
  • At least one R 2 substituent is preferably present at a position adjacent to the nitrogen atom.
  • the nitrogen atom by shielding the nitrogen atom by steric hindrance, there is a tendency to be able to alleviate the external influence such as solvation and to suppress the influence on the emission wavelength and other physical properties.
  • the alkyl group, the alkoxy group, the alkylthio group, the alkenyl group and the alkynyl group may be further substituted by one or more R ′ ′, and one —CH 2 — group in these groups or 2
  • one or more hydrogen atoms in these groups may be substituted with D, F, Cl, Br, I or -CN.
  • the aromatic group, the heteroaromatic group, the aryloxy group, the arylthio group, the aralkyl group, the heteroaralkyl group, the diarylamino group, the arylheteroarylamino group and the diheteroarylamino group may be further substituted by one or more R ′ ′.
  • R ′ ′ The details of R ′ ′ will be described later.
  • two or more adjacent R's may be bonded to each other to form an aliphatic or aromatic or heteroaromatic single ring or fused ring.
  • R ′ ′ each independently represents a hydrogen atom, D, F, —CN, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an aromatic group having 1 to 20 carbon atoms, or a complex having 1 to 20 carbon atoms It is selected from aromatic groups.
  • Two or more adjacent R ′ ′ may bond to each other to form an aliphatic or aromatic or heteroaromatic single ring or fused ring.
  • the present invention provides a novel iridium complex compound represented by the following formula (7).
  • Ir represents an iridium atom.
  • C 7 to C 9 represent a carbon atom
  • N 3 and N 4 represents a nitrogen atom.
  • Ring Cy 5 represents an aromatic ring or heteroaromatic ring containing carbon atoms C 7 and C 8
  • the ring Cy 6 represents a heteroaromatic ring containing a carbon atom C 9 and a nitrogen atom N 3
  • X 23 to X 26 each independently represent a carbon atom which may have a substituent, or a nitrogen atom
  • Y 2 represents an oxygen atom, a sulfur atom or a selenium atom
  • Each of R 10 to R 12 independently represents a hydrogen atom or a substituent.
  • a ′ and b ′ represent the maximum number of integers that can be substituted on the rings Cy 5 and Cy 6 respectively, and c ′ is 8.
  • m 'and n' represent 1 or 2
  • m '+ n' is 3.
  • the iridium complex compound represented by the formula (7) can improve solvent solubility without necessarily requiring a long-chain alkyl group by combining specific ligands into a heteroleptic type. it can.
  • the inventors of the present invention have found that particularly in the case of having a fluorene structure having R 12 as an auxiliary ligand ring in the formula (7), the half bandwidth of the emission spectrum is broadened. In particular, it has been found that this is particularly remarkable when the ring having the nitrogen atom N 4 is a benzothiazole ring, regardless of the type of main ligand ring Cy 5 and the ring Cy 6 . Although the reason for this phenomenon is not clear, when the excited state electron is deactivated by the HOMO level on the auxiliary ligand side becoming shallow, it partially transits to the orbital on the auxiliary ligand side as well. In order to compete with the transition in the order, we speculate that it is to show light emission by multiple energy gaps.
  • Ring Cy 5 represents an aromatic ring or a heteroaromatic ring containing carbon atoms C 7 and C 8 coordinating to the iridium atom. Specific examples and preferred ranges are the same as the ring Cy 3 of formula (1). Among these, the fluorene structure represented by Formula (2) mentioned as ring Cy 1 of Formula (1) is particularly preferable.
  • the ring Cy 6 represents a heteroaromatic ring containing a carbon atom C 9 coordinating to an iridium atom and a nitrogen atom N 3 . Specific examples thereof include those shown as the heteroaromatic ring of the ring Cy 3 of the formula (1). Among these, heteroaromatic rings mentioned as ring Cy 2 of formula (1) are particularly preferable.
  • Each of X 23 to X 26 independently represents a carbon atom or a nitrogen atom. From the viewpoint of adjusting the emission wavelength particularly to the red region and the ease of synthesis of the complex, the preferred number of nitrogen atoms among X 23 to X 26 is 0 or 1.
  • a hydrogen atom may be bonded to this carbon atom, and those exemplified as the aforementioned substituent of R 1 to R 4 , preferably F, an alkyl group, an aromatic group The group or heteroaromatic group may be substituted.
  • the number of atoms constituting the benzothiazole ring containing X 23 to X 26 is preferably 13 or less.
  • Y 2 represents an oxygen atom, a sulfur atom or a selenium atom. From the viewpoint of the stability of the complex, Y 2 is preferably a sulfur atom.
  • R 10 to R 12 represent a hydrogen atom or a substituent.
  • R 10 to R 12 are each independently, and may be the same or different.
  • a ′ and b ′ represent the maximum number of integers that can be substituted on the rings Cy 5 and Cy 6 respectively, and c ′ is 8.
  • R 10 to R 12 When there are a plurality of R 10 to R 12 , they may be the same or different. Two or more adjacent R 10 to R 12 may be bonded to each other to form an aliphatic or aromatic or heteroaromatic single ring or a fused ring.
  • the iridium complex compound of the present invention can make the emission wavelength longer.
  • the index indicating the length of the emission wavelength is preferably 580 nm or more, more preferably 590 nm or more, still more preferably 600 nm or more, still more preferably 700 nm or less, and most preferably 680 nm or less.
  • the maximum emission wavelength is in this range, it tends to be able to express the preferable color of the red light emitting material suitable as the organic electroluminescent element.
  • the ligand of the iridium complex compound of the present invention can be synthesized by a combination of known methods and the like.
  • the fluorene ring of ring Cy 1 is easily introduced, for example, by using a compound having bromine, -B (OH) 2 group, an acetyl group or a carboxy group at the 2- or 3-position of the fluorene ring as a raw material it can.
  • Synthesis of a ligand containing a ring Cy 1 and a ring Cy 2 may be carried out by further subjecting these raw materials to Suzuki-Miyaura coupling reaction with halogenated quinolines, 2-formyl or acylanilines, or acyls in an ortho position to each other. They can be synthesized by known reactions such as Friedlaender cyclization reaction (Chem. Rev. 2009, 109, 2652 or Organic Reactions, 28 (2), 37-201) with aminopyridines and the like.
  • the iridium complex compound of the present invention can be synthesized by a combination of known methods and the like. Details will be described below.
  • conditions of a typical reaction represented by the following formula [A] are as follows.
  • a chlorine-bridged iridium binuclear complex is synthesized by the reaction of two equivalents of the first ligand and one equivalent of iridium chloride n-hydrate.
  • the solvent a mixed solvent of 2-ethoxyethanol and water is usually used, but no solvent or another solvent may be used.
  • the reaction can also be promoted by using an excess amount of a ligand or using an additive such as a base.
  • other crosslinkable anionic ligands such as bromine can also be used.
  • the reaction temperature is not particularly limited, but generally, 0 ° C. or more is preferable, and 50 ° C. or more is more preferable. Moreover, 250 degrees C or less is preferable and 150 degrees C or less is more preferable. When the reaction temperature is in this range, only the desired reaction proceeds without by-products or decomposition reactions, and high selectivity tends to be obtained.
  • a halide ion scavenger such as silver trifluoromethanesulfonate is added and brought into contact with the second ligand to obtain the target complex.
  • the solvent is usually ethoxyethanol or diglyme, but depending on the type of ligand, no solvent or other solvent can be used, and a plurality of solvents can be mixed and used.
  • the reaction may proceed without the addition of a halogen ion scavenger, it is not always necessary, but in order to selectively synthesize facial isomers having higher reaction yield and higher quantum yield, the scavenger The addition of is preferred.
  • the reaction temperature is not particularly limited, the reaction is usually carried out in the range of 0 ° C to 250 ° C.
  • the first stage binuclear complex can be synthesized in the same manner as in the formula [A].
  • one or more equivalents of a 1,3-dione compound such as acetylacetone and the active hydrogen of the 1,3-dione compound such as sodium carbonate can be extracted to the binuclear complex;
  • the reaction is converted to a mononuclear complex in which a 1,3-dionato ligand is coordinated by reaction with an equivalent or more.
  • a solvent such as ethoxyethanol or dichloromethane capable of dissolving the starting binuclear complex is used, but if the ligand is liquid, it can be carried out without a solvent.
  • the reaction temperature is not particularly limited, it is usually carried out in the range of 0 ° C to 200 ° C.
  • the third step is to react the second ligand with one or more equivalents.
  • the type and amount of solvent are not particularly limited, and may be solventless if the second ligand is liquid at the reaction temperature.
  • the reaction temperature is also not particularly limited, but it is often reacted at a relatively high temperature of 100 ° C. to 300 ° C. because the reactivity is somewhat poor. Therefore, a high boiling point solvent such as glycerin is preferably used.
  • purification is performed to remove unreacted starting materials, reaction byproducts and solvents.
  • purification procedures in ordinary organic synthesis chemistry can be applied, purification by silica gel column chromatography mainly in normal phase is carried out as described in the above non-patent literature.
  • As a developing solution single or mixed liquid of hexane, heptane, dichloromethane, chloroform, ethyl acetate, toluene, methyl ethyl ketone and methanol can be used. Purification may be performed multiple times under different conditions.
  • the iridium complex compound of the present invention can be suitably used as a material used for an organic electroluminescent device, that is, as a red light emitting material of an organic electroluminescent device, and also as a light emitting material for an organic electroluminescent device and other light emitting devices. It can be used for
  • the iridium complex compound of the present invention is preferably used together with a solvent since it is excellent in solvent solubility.
  • a solvent hereinafter sometimes referred to as “iridium complex compound-containing composition”.
  • the iridium complex compound containing composition of this invention contains the iridium complex compound of this invention, and a solvent.
  • the iridium complex compound-containing composition of the present invention is generally used to form a layer or a film by a wet film formation method, and is particularly preferably used to form an organic layer of an organic electroluminescent device.
  • the organic layer is particularly preferably a light emitting layer
  • the iridium complex compound-containing composition is preferably a composition for an organic electroluminescent device, and is particularly preferably used as a composition for forming a light emitting layer.
  • the content of the iridium complex compound of the present invention in the iridium complex compound-containing composition is usually 0.001% by mass or more, preferably 0.01% by mass or more, and usually 99.9% by mass or less, preferably 99% by mass or less is there.
  • the iridium complex compound of the present invention may be contained singly or in combination of two or more kinds in the iridium complex compound-containing composition.
  • the charge transportable compound used in the organic electroluminescent device particularly the light emitting layer, may be contained in addition to the iridium complex compound of the present invention and the solvent. Good.
  • the iridium complex compound of the present invention is used as a light emitting material, and another charge transporting compound is used as a charge transporting host material It is preferable to include.
  • the solvent contained in the iridium complex compound-containing composition of the present invention is a volatile liquid component used to form a layer containing an iridium complex compound by wet film formation.
  • the solvent is not particularly limited as long as it is an organic solvent in which the charge transport compound described later dissolves well because the iridium complex compound of the present invention, which is a solute, has high solvent solubility.
  • Preferred solvents include, for example, alkanes such as n-decane, cyclohexane, ethylcyclohexane, decalin and bicyclohexane; aromatic hydrocarbons such as toluene, xylene, mesitylene, phenylcyclohexane and tetralin; chlorobenzene, dichlorobenzene and trichlorobenzene Halogenated aromatic hydrocarbons such as 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, Aromatic ethers such as 2,4-dimethyl anisole, diphenyl ether; Aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propy
  • alkanes and aromatic hydrocarbons are preferable.
  • phenylcyclohexane has desirable viscosity and boiling point in the wet film formation process.
  • One of these solvents may be used alone, or two or more thereof may be used in any combination and ratio.
  • the boiling point of the solvent used is usually 80 ° C. or more, preferably 100 ° C. or more, more preferably 120 ° C. or more, and usually 270 ° C. or less, preferably 250 ° C. or less, more preferably 230 ° C. or less. If it is less than this range, the film formation stability may be reduced by solvent evaporation from the composition during wet film formation.
  • the content of the solvent in the iridium complex compound-containing composition is preferably 1% by mass or more, more preferably 10% by mass or more, particularly preferably 50% by mass or more, preferably 99.99% by mass or less, more preferably 99 It is not more than 9% by mass, particularly preferably not more than 99% by mass.
  • the thickness of the light emitting layer is about 3 to 200 nm, but if the content of the solvent is below this lower limit, the viscosity of the composition becomes too high, and the film forming workability may be lowered. If the content of the solvent exceeds this upper limit, the thickness of the film obtained by removing the solvent after film formation can not be obtained, so that film formation tends to be difficult.
  • charge transportable compound which can be contained in the iridium complex compound-containing composition of the present invention
  • materials for organic electroluminescent devices can be used.
  • One of these may be used alone, or two or more of them may be used in any combination and ratio.
  • the content of the other charge transporting compound in the iridium complex compound-containing composition is usually 1000 parts by mass or less, preferably 100 parts by mass, relative to 1 part by mass of the iridium complex compound of the present invention in the iridium complex compound containing composition. Or less, more preferably 50 parts by weight or less, usually 0.01 parts by weight or more, preferably 0.1 parts by weight or more, and more preferably 1 part by weight or more.
  • the iridium complex compound-containing composition of the present invention may further contain other compounds in addition to the above compounds and the like.
  • other solvents may be contained.
  • amides such as N, N-dimethylformamide, N, N-dimethylacetamide and the like, dimethyl sulfoxide and the like can be mentioned. One of these may be used alone, or two or more of them may be used in any combination and ratio.
  • Organic electroluminescent device comprises the iridium complex compound of the present invention.
  • the organic electroluminescent device of the present invention preferably has at least an anode, a cathode and at least one organic layer between the anode and the cathode on a substrate, and at least one of the organic layers is the present invention.
  • Iridium complex compounds of The organic layer comprises a light emitting layer.
  • the organic layer containing the iridium complex compound of the present invention is more preferably a layer formed using the composition of the present invention, and still more preferably a layer formed by a wet film formation method.
  • the layer formed by the wet film formation method is preferably a light emitting layer.
  • the wet film forming method is a film forming method, that is, as a coating method, for example, spin coating method, dip coating method, die coating method, bar coating method, blade coating method, roll coating method, spray coating method, capillary Apply a wet film forming method such as coating method, inkjet method, nozzle printing method, screen printing method, gravure printing method, flexo printing method, etc., and dry the film formed by these methods to form a film It says how to do it.
  • a coating method for example, spin coating method, dip coating method, die coating method, bar coating method, blade coating method, roll coating method, spray coating method, capillary
  • a wet film forming method such as coating method, inkjet method, nozzle printing method, screen printing method, gravure printing method, flexo printing method, etc.
  • FIG. 1 is a schematic cross-sectional view showing a structural example suitable for the organic electroluminescent device 10 of the present invention.
  • reference numeral 1 denotes a substrate
  • 2 denotes an anode
  • 3 denotes a hole injection layer
  • 4 denotes a hole transport layer
  • 5 denotes a light emitting layer
  • 6 denotes a hole blocking layer
  • 7 denotes an electron transport layer.
  • Reference numeral 8 represents an electron injection layer
  • reference numeral 9 represents a cathode.
  • the substrate 1 is a support of the organic electroluminescent device, and usually, a plate of quartz or glass, a metal plate or metal foil, a plastic film or sheet, or the like is used. Among these, a glass plate and a plate of a transparent synthetic resin such as polyester, polymethacrylate, polycarbonate or polysulfone are preferable. It is preferable that the substrate 1 be made of a material having high gas barrier properties because deterioration of the organic electroluminescent device due to external air hardly occurs. In particular, in the case of using a material having a low gas barrier property such as a synthetic resin substrate, it is preferable to provide a dense silicon oxide film or the like on at least one side of the substrate 1 to enhance the gas barrier property.
  • the anode 2 has a function of injecting holes into the layer on the light emitting layer side.
  • the anode 2 is usually a metal such as aluminum, gold, silver, nickel, palladium, platinum or the like; a metal oxide such as an oxide of indium and / or tin; a metal halide such as copper iodide; carbon black or poly (3 -Methylthiophene), polypyrrole, and conductive polymers such as polyaniline.
  • the formation of the anode 2 is usually performed by a dry method such as a sputtering method or a vacuum evaporation method in many cases.
  • a dry method such as a sputtering method or a vacuum evaporation method in many cases.
  • metal fine particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, conductive polymer fine powder, etc.
  • they are dispersed in a suitable binder resin solution It can also be formed by coating on a substrate.
  • the thin film can be formed directly on the substrate by electrolytic polymerization, or the conductive polymer can be coated on the substrate to form the anode 2 (Appl. Phys. Lett., 60 volumes) , 2711 (1992).
  • the anode 2 usually has a single layer structure, but may have a laminated structure as appropriate. When the anode 2 has a laminated structure, different conductive materials may be laminated on the first-layer anode.
  • the thickness of the anode 2 may be determined according to the required transparency and the material and the like. In particular, when high transparency is required, the thickness is preferably such that the visible light transmittance is 60% or more, and more preferably 80% or more.
  • the thickness of the anode 2 is usually 5 nm or more, preferably 10 nm or more, and is usually 1000 nm or less, preferably 500 nm or less.
  • the thickness of the anode 2 may be arbitrarily set in accordance with the required strength and the like, and in this case, the anode 2 may have the same thickness as the substrate 1.
  • the impurities on the anode are removed and the ionization potential is adjusted by performing treatment such as ultraviolet light + ozone, oxygen plasma, argon plasma or the like before film formation. It is preferable to improve the hole injection property.
  • the layer responsible for transporting holes from the anode 2 side to the light emitting layer 5 side is usually called a hole injecting and transporting layer or a hole transporting layer.
  • a hole injection layer 3 When there are two or more layers responsible for transporting holes from the anode 2 side to the light emitting layer 5 side, the layer closer to the anode 2 side may be referred to as a hole injection layer 3.
  • the hole injection layer 3 is preferably used in that it enhances the function of transporting holes from the anode 2 to the light emitting layer 5 side. When the hole injection layer 3 is used, the hole injection layer 3 is usually formed on the anode 2.
  • the thickness of the hole injection layer 3 is usually 1 nm or more, preferably 5 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • the hole injection layer 3 may be formed by a vacuum evaporation method or a wet film formation method. It is preferable to form by a wet film-forming method at the point which is excellent in the film-forming property.
  • the hole injecting layer 3 preferably contains a hole transporting compound, and more preferably contains a hole transporting compound and an electron accepting compound. Furthermore, it is preferable to contain a cation radical compound in the hole injection layer 3, and it is particularly preferable to contain a cation radical compound and a hole transporting compound.
  • the composition for forming a hole injection layer usually contains a hole transportable compound to be the hole injection layer 3. In the case of a wet film formation method, a solvent is usually further contained.
  • the composition for forming a hole injection layer preferably has high hole transportability, and can efficiently transport injected holes. For this reason, it is preferable that the hole mobility is large and that an impurity serving as a trap is unlikely to be generated at the time of production or use. In addition, it is preferable that the stability be excellent, the ionization potential be small, and the transparency to visible light be high.
  • the hole injection layer 3 is in contact with the light emitting layer 5, it is preferable that the light emission from the light emitting layer 5 is not quenched or that the light emitting layer 5 forms an exciplex so as not to reduce the light emission efficiency.
  • the hole transportable compound is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV.
  • hole transporting compounds include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, compounds in which tertiary amines are linked by a fluorene group, hydrazones And compounds such as silazane compounds and quinacridone compounds.
  • aromatic amine compounds are preferable, and aromatic tertiary amine compounds are particularly preferable, from the viewpoint of amorphousness and visible light transparency.
  • the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and also includes a compound having a group derived from an aromatic tertiary amine.
  • the type of aromatic tertiary amine compound is not particularly limited, but a polymer compound having a weight average molecular weight of 1,000 to 1,000,000 (a polymerizable compound in which repeating units are continuous) from the viewpoint of obtaining uniform light emission due to the surface smoothing effect. It is preferred to use As a preferable example of an aromatic tertiary amine polymer compound, the polymer compound etc. which have a repeating unit represented by following formula (I) are mentioned.
  • Ar 1 and Ar 2 are each independently, .Ar 3 representing a good heteroaromatic group optionally having an optionally substituted aromatic group or a substituted group
  • Ar 5 each independently represent an aromatic group which may have a substituent or a heteroaromatic group which may have a substituent Q is selected from the following group of linking groups Among Ar 1 to Ar 5 , two groups bonded to the same N atom may be bonded to each other to form a ring.
  • the linking group is shown below.
  • Ar 6 - Ar 16 are each independently, .R a represents an heteroaromatic group optionally having an optionally substituted aromatic group or a substituted group; Each R b independently represents a hydrogen atom or any substituent.
  • a benzene ring, a naphthalene ring, a phenanthrene ring, a thiophene ring, a pyridine ring from the viewpoint of solubility of a polymer compound, heat resistance and hole injection transportability
  • the group derived from is preferable and the group derived from a benzene ring and a naphthalene ring is more preferable.
  • aromatic tertiary amine polymer compound having a repeating unit represented by the formula (I) include those described in WO 2005/089024.
  • the hole injection layer 3 can improve the conductivity of the hole injection layer 3 by oxidation of the hole transport compound, and therefore, preferably contains an electron accepting compound.
  • the electron accepting compound is preferably a compound having an oxidizing power and capable of accepting one electron from the above-mentioned hole transporting compound, specifically, a compound having an electron affinity of 4 eV or more, and an electron affinity More preferred is a compound having a 5 eV or more.
  • Such electron accepting compounds include, for example, triaryl boron compounds, metal halides, Lewis acids, organic acids, onium salts, salts of arylamines and metal halides, and salts of arylamines and Lewis acids.
  • One or two or more compounds selected from the group can be mentioned.
  • substituted onium salts of organic groups such as 4-isopropyl-4'-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate, triphenylsulfonium tetrafluoroborate, etc. (WO 2005/089024);
  • High valent inorganic compounds such as iron (III) (Japanese Patent Laid-Open No.
  • ammonium peroxodisulfate ammonium peroxodisulfate
  • cyano compounds such as tetracyanoethylene
  • tris (pentafluorophenyl) borane Japanese Patent Laid-Open No. 2003-31365
  • Aromatic boron compounds such as: fullerene derivatives and iodine.
  • a cation radical compound As a cation radical compound, the ionic compound which consists of a cation radical which is a chemical species which removed one electron from a hole transportable compound, and counter anion is preferable.
  • the cation radical is derived from a hole transporting polymer compound, the cation radical has a structure in which one electron is removed from the repeating unit of the polymer compound.
  • the cation radical is preferably a chemical species obtained by removing one electron from the compound described above as the hole transporting compound. Chemical species obtained by removing one electron from a compound preferable as the hole transporting compound is preferable from the viewpoints of amorphousness, transmittance of visible light, heat resistance, and solubility.
  • the cation radical compound can be generated by mixing the above-mentioned hole transporting compound and the electron accepting compound. By mixing the above-mentioned hole transporting compound and the electron accepting compound, electron transfer occurs from the hole transporting compound to the electron accepting compound, and it consists of a cation radical and a counter anion of the hole transporting compound. A cation ion compound is formed.
  • Cationic radical compounds derived from high molecular weight compounds such as PEDOT / PSS (Adv. Mater., 2000, 12, 481) and emeraldine hydrochloride (J. Phys. Chem., 1990, 94, 7716) It is also produced by oxidative polymerization (dehydrogenation polymerization).
  • the oxidative polymerization referred to herein is to oxidize a monomer chemically or electrochemically in an acidic solution using a peroxodisulfate or the like.
  • the monomer is polymerized by oxidation, and the cation radical which is obtained by removing one electron from the repeating unit of the polymer having the anion derived from the acidic solution as a counter anion is Generate
  • a composition for forming a film (positive film) is usually prepared by mixing the material to be the hole injection layer 3 with a soluble solvent (solvent for the hole injection layer).
  • the composition for forming a hole injection layer is prepared, and the composition for forming a hole injection layer is formed into a film by a wet film formation method on a layer (usually, the anode 2) corresponding to the lower layer of the hole injection layer 3. , Formed by drying. Drying of the formed film can be performed in the same manner as the drying method in the formation of the light emitting layer 5 by a wet film formation method.
  • the concentration of the hole transporting compound in the composition for forming a hole injection layer is optional as long as the effects of the present invention are not significantly impaired, but a lower one is preferable in terms of film thickness uniformity, and hole injection is preferable. It is preferable that the height is high in that defects in the layer 3 are not easily generated.
  • the concentration of the hole transporting compound in the composition for forming a hole injection layer is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, particularly preferably 0.5% by mass or more, and 70% by mass. % Or less is preferable, 60 mass% or less is more preferable, and 50 mass% or less is particularly preferable.
  • solvent examples include ether solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents and the like.
  • ether solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA), and 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole And aromatic ethers such as phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole and the like.
  • aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA), and 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole And aromatic ethers such as phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxy
  • ester solvents include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, n-butyl benzoate and the like.
  • aromatic hydrocarbon solvent examples include toluene, xylene, cyclohexylbenzene, 3-isopropylbiphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, methylnaphthalene and the like.
  • amide solvents examples include N, N-dimethylformamide, N, N-dimethylacetamide and the like.
  • dimethyl sulfoxide and the like can also be used.
  • the formation of the hole injection layer 3 by the wet film formation method usually prepares a composition for forming the hole injection layer, and then forms the layer on the layer corresponding to the lower layer of the hole injection layer 3 (usually, the anode 2).
  • the film is formed by coating and drying.
  • the hole injection layer 3 usually dries the coating film by heating, reduced-pressure drying, or the like after film formation.
  • Formation of hole injection layer 3 by vacuum evaporation When forming the hole injection layer 3 by a vacuum evaporation method, usually, one or two or more of the constituent materials of the hole injection layer 3 (the above-mentioned hole transportable compound, electron accepting compound, etc.) are vacuumed.
  • a crucible installed in the container if using two or more types of materials, put each one in a separate crucible, evacuate the vacuum container to about 10 -4 Pa with a vacuum pump, and then heat the crucible And (if two or more materials are used, usually each crucible is heated) and evaporated while controlling the evaporation amount of the material in the crucible (when two or more materials are used, they are usually independent of each other) To control the amount of evaporation) to form the hole injection layer 3 on the anode 2 on the substrate placed facing the crucible. When two or more kinds of materials are used, the mixture of them may be put in a crucible, heated and evaporated to form the hole injection layer 3.
  • the degree of vacuum at the time of deposition is not limited as long as the effects of the present invention are not significantly impaired, but usually 0.1 ⁇ 10 ⁇ 6 Torr (0.13 ⁇ 10 ⁇ 4 Pa) or more and 9.0 ⁇ 10 ⁇ 6 Torr (0.13 ⁇ 10 ⁇ 4 Pa). 12.0 ⁇ 10 -4 Pa) or less.
  • the deposition rate is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 ⁇ / sec or more and 5.0 ⁇ / sec or less.
  • the film forming temperature at the time of vapor deposition is not limited as long as the effects of the present invention are not significantly impaired, but it is preferably performed at 10 ° C. or more and 50 ° C. or less.
  • the hole transport layer 4 is a layer responsible for transporting holes from the anode 2 side to the light emitting layer 5 side.
  • the hole transport layer 4 is not an essential layer in the organic electroluminescent device of the present invention, but it is preferable to provide this layer in order to strengthen the function of transporting holes from the anode 2 to the light emitting layer 5.
  • the hole transport layer 4 is generally formed between the anode 2 and the light emitting layer 5.
  • the hole transport layer 4 is formed between the hole injection layer 3 and the light emitting layer 5.
  • the film thickness of the hole transport layer 4 is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the method of forming the hole transport layer 4 may be vacuum evaporation or wet film formation. It is preferable to form by a wet film-forming method at the point which is excellent in film-forming property.
  • the hole transport layer 4 usually contains a hole transportable compound to be the hole transport layer 4.
  • the hole transporting compound contained in the hole transporting layer 4 is, in particular, a secondary or more tertiary compound represented by 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl.
  • Aromatic diamines containing an amine and having two or more fused aromatic rings substituted by nitrogen atoms JP-A-5-234681), 4,4 ′, 4 ′ ′-tris (1-naphthylphenylamino) triphenylamine Et al. (J. Lumin., Vol.
  • the composition for forming a hole transport layer further contains a solvent.
  • the solvent used for the composition for forming a hole transport layer the same solvent as the solvent used for the composition for forming a hole injection layer described above can be used.
  • the concentration of the hole transportable compound in the composition for forming a hole transport layer can be in the same range as the concentration of the hole transportable compound in the composition for forming a hole injection layer.
  • the formation of the hole transport layer 4 by the wet film formation method can be performed in the same manner as the film formation method of the hole injection layer 3 described above.
  • holes are usually substituted for the constituent material of the hole injection layer 3 in the same manner as in the case of forming the hole injection layer 3 described above by the vacuum evaporation method. It can be formed using the constituent material of the transport layer 4.
  • the film forming conditions such as the degree of vacuum at the time of vapor deposition, the vapor deposition rate, and the temperature can be formed under the same conditions as the vacuum vapor deposition of the hole injection layer 3.
  • the light emitting layer 5 is a layer having a function of emitting light by being excited by recombination of holes injected from the anode 2 and electrons injected from the cathode 9 when an electric field is applied between a pair of electrodes. .
  • the light emitting layer 5 is a layer formed between the anode 2 and the cathode 9.
  • the light emitting layer 5 is formed between the hole injection layer 3 and the cathode 9 when the hole injection layer 3 is present on the anode 2, and is positive when the hole transport layer 4 is present on the anode 2. It is formed between the hole transport layer 4 and the cathode 9.
  • the film thickness of the light emitting layer 5 is optional as long as the effects of the present invention are not significantly impaired, but a thicker film is preferable in that defects are not easily generated in the film, and a thinner film is preferable in that a low driving voltage is easily achieved.
  • the thickness of the light emitting layer 5 is preferably 3 nm or more, more preferably 5 nm or more, usually 200 nm or less, and further preferably 100 nm or less.
  • the light emitting layer 5 contains at least a material having a property of light emission (light emitting material), and preferably contains a material having a charge transporting property (charge transporting material).
  • light emitting material any light emitting layer may contain the iridium complex compound of the present invention, and another light emitting material may be used as appropriate.
  • other light emitting materials other than the iridium complex compound of the present invention will be described in detail.
  • the light emitting material emits light at a desired emission wavelength, and is not particularly limited as long as the effects of the present invention are not impaired, and known light emitting materials can be applied.
  • the light emitting material may be a fluorescent light emitting material or a phosphorescent light emitting material, but a material having a good light emitting efficiency is preferable, and a phosphorescent light emitting material is preferable from the viewpoint of the internal quantum efficiency.
  • Examples of the fluorescent material include the following materials.
  • fluorescent material blue fluorescent material
  • examples of the fluorescent material (blue fluorescent material) giving blue emission include naphthalene, perylene, pyrene, anthracene, coumarin, chrysene, p-bis (2-phenylethenyl) benzene and derivatives thereof.
  • fluorescent material green fluorescent material
  • examples of the fluorescent material (green fluorescent material) that emits green light include quinacridone derivatives, coumarin derivatives, aluminum complexes such as Al (C 9 H 6 NO) 3, and the like.
  • fluorescent light emitting material yellow fluorescent light emitting material which gives yellow light emission
  • rubrene a perimidone derivative, etc.
  • perimidone derivative a perimidone derivative
  • red fluorescent light emitting material giving red light emission
  • DCM dimethyl-6- (p-dimethylaminostyryl) -4H-pyran
  • benzopyran derivative rhodamine derivative
  • benzothioxanthene derivatives azabenzothioxanthene and the like.
  • the phosphorescent light emitting material for example, from Group 7 to Group 11 of the long period periodic table (hereinafter referred to as "long period periodic table” in the case of “periodic table” unless otherwise noted).
  • the organic metal complex etc. which contain the metal chosen are mentioned.
  • Preferred examples of the metal selected from Groups 7 to 11 of the periodic table include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, gold and the like.
  • the ligand of the organometallic complex is preferably a ligand in which a (hetero) arylpyridine ligand, a (hetero) aryl group such as a (hetero) arylpyrazole ligand, etc. are linked to pyridine, pyrazole, phenanthroline, etc.
  • a (hetero) aryl represents an aryl group or a heteroaryl group.
  • preferable phosphorescent materials include tris (2-phenylpyridine) iridium, tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, bis (2-phenylpyridine) platinum, tris (2 Phenylpyridine complexes such as -phenylpyridine) osmium and tris (2-phenylpyridine) rhenium; and porphyrin complexes such as octaethyl platinum porphyrin, octaphenyl platinum porphyrin, octaethyl palladium porphyrin and octaphenyl palladium porphyrin.
  • polyphenylene vinylene materials such as poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylene vinylene].
  • the charge transportable material is a material having positive charge (hole) or negative charge (electron) transportability, and is not particularly limited as long as the effects of the present invention are not impaired, and known materials can be applied.
  • charge transporting material compounds conventionally used in the light emitting layer 5 of the organic electroluminescent device can be used, and in particular, compounds used as a host material of the light emitting layer 5 are preferable.
  • the charge transporting material include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, and compounds in which tertiary amines are linked by a fluorene group.
  • the hole transport compound of the hole injection layer 3 such as hydrazone compounds, silazane compounds, silanamine compounds, phosphamine compounds, quinacridone compounds etc., anthracene compounds, pyrene compounds And electron transporting compounds such as carbazole compounds, pyridine compounds, phenanthroline compounds, oxadiazole compounds, and silole compounds.
  • the charge transporting material includes two or more tertiary amines represented by 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl and two or more fused aromatic rings.
  • Aromatic amine compounds having a starburst structure such as aromatic diamines substituted by nitrogen atoms (JP-A-5-234681), 4,4 ′, 4 ′ ′-tris (1-naphthylphenylamino) triphenylamine, etc. (J. Lumin., 72-74, 985, 1997), aromatic amine compounds composed of tetramer of triphenylamine (Chem.
  • 2- (4-biphenylyl) -5- (p-tertiary butylphenyl) -1,3,4-oxadiazole tBu-PBD
  • 2,5-bis (1-naphthyl) -1,3 Oxadiazole compounds such as 4, 4-oxadiazole (BND), 2, 5-bis (6 '-(2', 2 ''-bipyridyl))-1, 1-dimethyl-3,4-diphenylsilole
  • silole compounds such as PyPySPyPy
  • phenanthroline compounds such as bathophenanthroline (BPhen) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP, vasocuproin) and the like.
  • the formation method of the light emitting layer 5 may be a vacuum deposition method or a wet film formation method, the wet film formation method is preferable because of excellent film formability.
  • the light emitting layer 5 is formed by the wet film formation method
  • light emission is usually performed instead of the composition for forming the hole injection layer in the same manner as in the case where the above-mentioned hole injection layer 3 is formed by the wet film formation method.
  • It forms using the composition for light emitting layer formation prepared by mixing the material used as the layer 5 with the soluble solvent (solvent for light emitting layers).
  • it is preferable to use the iridium complex compound-containing composition of the present invention as the composition for forming a light emitting layer.
  • the solvent for example, ether solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents mentioned for the formation of the hole injection layer 3, alkane solvents, halogenated aromatic carbonized water solvents, fat Group alcohol solvents, alicyclic alcohol solvents, aliphatic ketone solvents, and alicyclic ketone solvents.
  • the solvent to be used is as illustrated also as a solvent of the iridium complex compound containing composition of this invention. Although the specific example of a solvent is given to the following, it will not be limited to these, unless the effect of the present invention is spoiled.
  • aliphatic ether solvents such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2
  • Aromatic ether solvents such as-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, diphenyl ether; phenyl acetate, phenyl propionate, methyl benzoate, benzoic acid
  • Aromatic ester solvents such as ethyl, propyl benzoate and n-butyl benzoate; toluene, xylene, mesitylene, cyclohexylbenzene, tetralin, 3-isopropylbiphenyl, 1,2,3,4
  • the solvent evaporates at an appropriate rate from the liquid film immediately after film formation. Therefore, as described above, the boiling point of the solvent used is usually 80 ° C. or more, preferably 100 ° C. or more, more preferably 120 ° C. or more, and usually 270 ° C. or less, preferably 250 ° C. or less, more preferably 230 ° C. or less It is.
  • the amount of the solvent used is optional as long as the effects of the present invention are not significantly impaired, the total content in the composition for forming a light emitting layer, that is, the composition containing an iridium complex compound is low in viscosity and thus film forming operation It is preferable that the number is large because it is easy to perform, and it is preferable that the thickness is low and it is easy to form a thick film.
  • the content of the solvent is preferably 1% by mass or more, more preferably 10% by mass or more, particularly preferably 50% by mass or more, and preferably 99.99% by mass or less in the iridium complex compound-containing composition. More preferably, it is 99.9% by mass or less, particularly preferably 99% by mass or less.
  • Heating or depressurization can be used as a solvent removal method after wet film formation.
  • a heating means used in the heating method a clean oven or a hot plate is preferable because heat is uniformly applied to the entire film.
  • the heating temperature in the heating step is optional as long as the effects of the present invention are not significantly impaired, but a higher temperature is preferable in terms of shortening the drying time, and a lower temperature is preferable in terms of less damage to the material.
  • the upper limit of the heating temperature is usually 250 ° C. or less, preferably 200 ° C. or less, and more preferably 150 ° C. or less.
  • the lower limit of the heating temperature is usually 30 ° C. or more, preferably 50 ° C. or more, and more preferably 80 ° C. or more.
  • the temperature exceeding the above-mentioned upper limit is higher than the heat resistance of the charge transport material or phosphorescent light emitting material which is usually used, and is not preferable because it may be decomposed or crystallized.
  • the heating time in the heating step is appropriately determined by the boiling point and vapor pressure of the solvent in the composition for forming a light emitting layer, the heat resistance of the material, and the heating conditions.
  • Formation of light emitting layer 5 by vacuum evaporation method When forming the light emitting layer 5 by a vacuum evaporation method, usually, one or two or more kinds of constituent materials of the light emitting layer 5 (the above-mentioned light emitting material, charge transporting compound, etc.) are placed in a vacuum vessel.
  • the degree of vacuum at the time of deposition is not limited as long as the effects of the present invention are not significantly impaired, but usually 0.1 ⁇ 10 ⁇ 6 Torr (0.13 ⁇ 10 ⁇ 4 Pa) or more and 9.0 ⁇ 10 ⁇ 6 Torr (0.13 ⁇ 10 ⁇ 4 Pa). 12.0 ⁇ 10 -4 Pa) or less.
  • the deposition rate is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 ⁇ / sec or more and 5.0 ⁇ / sec or less.
  • the film forming temperature at the time of vapor deposition is not limited as long as the effects of the present invention are not significantly impaired, but it is preferably performed at 10 ° C. or more and 50 ° C. or less.
  • the hole blocking layer 6 may be provided between the light emitting layer 5 and the electron injection layer 8 described later.
  • the hole blocking layer 6 is a layer stacked on the light emitting layer 5 so as to be in contact with the interface of the light emitting layer 5 on the cathode 9 side.
  • the hole blocking layer 6 has a role to block the transfer of holes transferred from the anode 2 to the cathode 9 and a role to efficiently transport electrons injected from the cathode 9 toward the light emitting layer 5.
  • the physical properties required for the material constituting the hole blocking layer 6 include high electron mobility and low hole mobility, large energy gap (difference between HOMO and LUMO), excited triplet level (T1) Is high.
  • the hole blocking layer 6 As a material of the hole blocking layer 6 which satisfies such conditions, for example, bis (2-methyl-8-quinolinolato) (phenolato) aluminum, bis (2-methyl-8-quinolinolato) (triphenylsilanolato) aluminum Mixed ligand complexes, etc., metal complexes such as bis (2-methyl-8-quinolato) aluminum- ⁇ -oxo-bis- (2-methyl-8-quinolinolato) aluminum binuclear metal complex, distyrylbiphenyl derivatives, etc.
  • bis (2-methyl-8-quinolinolato) (phenolato) aluminum bis (2-methyl-8-quinolinolato) (triphenylsilanolato) aluminum Mixed ligand complexes, etc.
  • metal complexes such as bis (2-methyl-8-quinolato) aluminum- ⁇ -oxo-bis- (2-methyl-8-quinolinolato) aluminum binuclear metal complex, distyrylb
  • Styryl compounds JP-A-11-242996
  • triazole derivatives such as 3- (4-biphenylyl) -4-phenyl-5 (4-tert-butylphenyl) -1,2,4-triazole 7-41759
  • phenanthroline derivatives such as basokuproin (Japanese Patent Laid-Open No. 10-79297), etc. It is below.
  • a compound having at least one pyridine ring substituted with the 2, 4, 6 position described in WO 2005/022962 is also preferable as a material of the hole blocking layer 6.
  • the formation method of the hole blocking layer 6 is not limited, and can be formed in the same manner as the formation method of the light emitting layer 5 described above.
  • the thickness of the hole blocking layer 6 is arbitrary as long as the effects of the present invention are not significantly impaired, but is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less.
  • the electron transport layer 7 is provided between the light emitting layer 5 or the hole element layer 6 and the electron injection layer 8 for the purpose of further improving the current efficiency of the element.
  • the electron transport layer 7 is formed of a compound capable of efficiently transporting electrons injected from the cathode 9 in the direction of the light emitting layer 5 between electrodes to which an electric field is applied.
  • the electron transport compound used for the electron transport layer 7 has high electron injection efficiency from the cathode 9 or the electron injection layer 8 and can transport the injected electrons efficiently with high electron mobility. It is necessary to be a compound.
  • Examples of the electron transporting compound satisfying such conditions include metal complexes such as aluminum complexes of 8-hydroxyquinoline (JP-A-59-194393), metal complexes of 10-hydroxybenzo [h] quinoline, and oxa Diazole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzene (US Patent No.
  • metal complexes such as aluminum complexes of 8-hydroxyquinoline (JP-A-59-194393), metal complexes of 10-hydroxybenzo [h] quinoline, and oxa Diazole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole
  • the film thickness of the electron transport layer 7 is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the electron transport layer 7 is formed by laminating on the light emitting layer 5 or the hole blocking layer 6 by a wet film forming method or a vacuum evaporation method in the same manner as the light emitting layer 5. Usually, a vacuum evaporation method is used.
  • the electron injection layer 8 plays a role of efficiently injecting electrons injected from the cathode 9 into the electron transport layer 7 or the light emitting layer 5.
  • the material forming the electron injection layer 8 is preferably a metal having a low work function.
  • a metal having a low work function As an example, an alkali metal such as sodium or cesium, an alkaline earth metal such as barium or calcium, or the like is used.
  • the film thickness of the electron injection layer 8 is preferably 0.1 to 5 nm.
  • an alkali metal such as sodium, potassium, cesium, lithium or rubidium is doped to an organic electron transport material represented by a metal complex such as a nitrogen-containing heterocyclic compound such as bathophenanthroline or an aluminum complex of 8-hydroxyquinoline
  • a metal complex such as a nitrogen-containing heterocyclic compound such as bathophenanthroline or an aluminum complex of 8-hydroxyquinoline
  • the electron injection / transportability is improved by the methods disclosed in JP-A-10-270171, JP-A-2002-100478, JP-A-2002-100482, etc., and it becomes possible to achieve both excellent film quality.
  • the film thickness in this case is usually 5 nm or more, preferably 10 nm or more, and usually 200 nm or less, preferably 100 nm or less.
  • the electron injection layer 8 is formed by laminating on the light emitting layer 5 or the hole blocking layer 6 or the electron transport layer 7 thereon by a wet film forming method or a vacuum evaporation method in the same manner as the light emitting layer 5.
  • the details of the wet film formation method are the same as those of the light emitting layer 5 described above.
  • the cathode 9 plays a role of injecting electrons into a layer on the light emitting layer 5 side (the electron injection layer 8 or the light emitting layer 5 or the like).
  • a material of the cathode 9 although it is possible to use the material used for the above-mentioned anode 2, it is preferable to use a metal having a low work function in order to efficiently carry out electron injection, for example, tin, magnesium And metals such as indium, calcium, aluminum and silver, or alloys thereof.
  • Examples of the material of the cathode 9 include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • a metal layer having a high work function and stable to the atmosphere on the cathode 9 to protect the cathode 9 made of a low work function metal.
  • stack metals, such as aluminum, silver, copper, nickel, chromium, gold, platinum, are mentioned, for example.
  • the film thickness of the cathode is usually the same as that of the anode 2.
  • the hole transport layer 4 it is also effective to provide an electron blocking layer between the hole transport layer 4 and the light emitting layer 5 for the same purpose as the hole blocking layer 8.
  • the electron blocking layer prevents the electrons moving from the light emitting layer 5 from reaching the hole transporting layer 4, thereby increasing the probability of recombination with holes in the light emitting layer 5, thereby generating the generated excitons. It has a role of being confined in the light emitting layer 5 and a role of efficiently transporting holes injected from the hole transport layer 4 in the direction of the light emitting layer 5.
  • the characteristics required for the electron blocking layer include high hole transportability, large energy gap (difference between HOMO and LUMO), and high excited triplet level (T1).
  • the light emitting layer 5 is formed by a wet film formation method
  • the electron blocking layer also have wet film forming compatibility, and as a material used for such an electron blocking layer, a copolymer of dioctyl fluorene and triphenylamine represented by F8-TFB (International Publication No. 2004/084260) and the like can be mentioned.
  • the present invention can be applied to any of organic electroluminescent devices, devices having a structure in which the organic electroluminescent devices are arranged in an array, and structures in which an anode and a cathode are arranged in an XY matrix.
  • Display device and lighting device The display device and the illumination device of the present invention use the organic electroluminescent device of the present invention as described above. There are no particular restrictions on the type and structure of the display device and the lighting device of the present invention, and the display can be assembled according to a conventional method using the organic electroluminescent device of the present invention.
  • the display device and the lighting device according to the present invention can be described in the manner described in "Organic EL display” (Am Co., published on August 20, 2004, Toshitoshi Shitashi, Adachi Senya, Murata Hideyuki). Can be formed.
  • reaction solution was poured into 800 mL of water, neutralized with 2 M aqueous solution of tripotassium phosphate: 100 mL, filtered, washed with water and dried under reduced pressure to obtain Intermediate 7 as a cream solid of 6.2 g.
  • Example 1 Compound 1 was mixed with cyclohexylbenzene so as to be 3% by mass. Solubility was observed with only manual shaking for 2 minutes at room temperature. Then, after heating for 5 minutes with a 100 degreeC hot plate, it left still at room temperature for 40 hours, and observed the presence or absence of precipitation, etc., respectively.
  • Example 2 Comparative Examples 1 and 2 The same procedure as in Example 1 was repeated except that Compound 1 was replaced with Compound 2, Compound D-1 below, or Compound D-2 below.
  • Compound D-1 was synthesized based on WO 2015/087961
  • Compound D-2 was synthesized based on WO 2014/024889.
  • Example 3 Compound 1 was dissolved in 2-methyltetrahydrofuran (manufactured by Aldrich, dehydrated, with no stabilizer added) at room temperature to prepare a 1 ⁇ 10 ⁇ 5 mol / L solution. This solution was put into a quartz cell equipped with a Teflon (registered trademark) cock, nitrogen bubbling was performed for 20 minutes or more, and then a phosphorescence spectrum was measured at room temperature. The wavelength showing the maximum value of the obtained phosphorescence spectrum intensity was taken as the maximum emission wavelength. Further, the width of the spectral intensity half of the maximum emission wavelength was taken as the half width.
  • Example 4 Comparative Examples 3 and 4 The same procedure as in Example 3 was repeated, except that Compound 2, Compound D-1 or Compound D-2 was used instead of Compound 1.
  • Example 3 and Example 4 the half width at the maximum emission wavelength of Example 3 and Example 4 indicated by the line connecting the data of Comparative Example 3 and Comparative Example 4 in FIG. showed that. From these results, it can be said that the iridium complex compound of the present invention exhibits a wide half width which deviates from the linear relationship between the maximum emission wavelength and the half width of Comparative Example 3 and Comparative Example 4.
  • reaction 1 In a 1 L eggplant flask, 3-bromo-4-hydroxybenzoic acid (50 g), methanol (400 mL) and sulfuric acid (23 mL) were added, and the mixture was stirred under reflux in an oil bath at 95 ° C. for 3 hours. Thereafter, sodium carbonate (60 g) and water (200 mL) were added to make basic, and then extracted with dichloromethane (250 mL) six times. The aqueous phase was added with 35% hydrochloric acid (15 mL) and extracted five times with dichloromethane (250 mL). The oil phase was dried over magnesium sulfate (50 mL) and filtered, and the solvent was removed under reduced pressure to obtain 53.6 g of methyl ester.
  • Reaction 2 2-methylphenylboronic acid (16.5 g), palladium acetate (0.50 g), S-Phos (2-dicyclohexylphosphino-2 ', 6-dimethoxybiphenyl) in the methyl ester form (27.7 g) of Reaction 1 ) (1.9 g), tripotassium phosphate (46.3 g) and deoxygenated toluene (500 mL) were added and stirred at 100 ° C. for 5 hours.
  • reaction 6 In a 1-L separable flask, 2-aminobenzonitrile (23.4 g) and acetic acid (500 mL) were added, and bromine (30 mL) was added dropwise over 20 minutes at room temperature. In another 1 L separable flask, 2-aminobenzonitrile (50.4 g) and acetic acid (1 L) were added, and bromine (65 mL) was added dropwise over 20 minutes. After reacting for 5 hours at room temperature, water (50 mL) was added and filtered. The filtrate was combined, suspension washed with water (500 mL) and dried under reduced pressure while heating to give 2-amino-3,5-dibromobenzonitrile (141.8 g).
  • reaction 7 In a 1 L eggplant flask, 2-amino-3,5-dibromobenzonitrile (28.9 g), 2-naphthaleneboronic acid (37.7 g), tetrakis (triphenylphosphine) palladium (5.2 g), 2 M phosphoric acid Potassium (300 mL), toluene (300 mL) and ethanol (100 mL) were added, and the mixture was stirred in a 105 ° C. oil bath for 4.5 hours. During the addition, 2-naphthylboronic acid (12.5 g) was additionally charged.
  • reaction 9 In a 100 mL flask, charged magnesium (5.0 g) was added and stirred for 1 hour under reduced pressure. Thereafter, a solution of 35.0 g of 2-bromo-m-xylene in dry tetrahydrofuran (50 mL) was added dropwise over 30 minutes at room temperature. Then, it stirred at room temperature for further 1 hour. The reaction mixture was added dropwise to a solution of Intermediate 14 (18.9 g) in dry tetrahydrofuran (100 mL) at room temperature, and stirred at 85 ° C. for 2 hours.
  • Example 5 The emission quantum yield and the maximum emission wavelength of Compound 3, which is the iridium complex compound of the present invention, were measured by the following method. The results are shown in Table 3.
  • FIG. 3 shows the relationship between the maximum emission wavelength and the emission quantum yield in Example 5 and Comparative Examples 5 to 7.
  • the emission wavelength and quantum yield often show a linear relationship, particularly in the red emission region (for example, S. Okada, et al, Dalton Trans., 2005, 1583-1590).
  • Comparative Examples 5 to 7 are iridium complex compounds in which a phenyl-quinazoline type ligand and a phenyl-benzothiazole type ligand are combined, and it is considered that there is a similar relationship among them.
  • the iridium complex compound of the present invention of Example 5 exhibited a quantum yield higher than the emission quantum efficiency at the maximum emission wavelength of Example 5 (compound 3) indicated by the line connecting the data of Comparative Examples 5 to 7.

Abstract

An iridium complex compound represented by formula (1). [In the formula: Ir represents an iridium atom; C1-C6 represent carbon atoms; N1 and N2 represent nitrogen atoms; R1-R4 represent hydrogen atoms or substituents; a-d are each integer maximum numbers of rings Cy1-Cy4 that can be substituted; m and n are 1 or 2, where m + n = 3; the ring Cy1 is represented by formula (2) or (2'); ring Cy3 is an aromatic ring or a heteroaromatic ring including carbon atoms C4 and C5; and ring Cy4 Cy4 is a heteroaromatic ring including a carbon atom C6 and a nitrogen atom N2.]

Description

イリジウム錯体化合物、該化合物及び溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置及び照明装置Iridium complex compound, composition containing the compound and solvent, organic electroluminescent device containing the compound, display device and lighting device
 本発明はイリジウム錯体化合物に関し、特に、有機電界発光素子(以下、「有機EL素子」と称す場合がある。)の発光層の材料として有用なイリジウム錯体化合物に関する。本発明はまた、該化合物及び溶剤を含有する組成物、該化合物を含有する有機電界発光素子、該有機電界発光素子を有する表示装置及び照明装置に関する。 The present invention relates to an iridium complex compound, and more particularly to an iridium complex compound useful as a material of a light emitting layer of an organic electroluminescent device (hereinafter sometimes referred to as “organic EL device”). The present invention also relates to a composition containing the compound and a solvent, an organic electroluminescent device containing the compound, and a display device and a lighting device having the organic electroluminescent device.
 有機EL照明や有機ELディスプレイなど、有機EL素子を利用する各種電子デバイスが実用化されている。有機電界発光素子は、印加電圧が低いため消費電力が小さく、三原色発光も可能であるため、大型のディスプレイモニターだけではなく、携帯電話やスマートフォンに代表される中小型ディスプレイへの応用が始まっている。 Various electronic devices using organic EL elements, such as organic EL lighting and organic EL display, have been put to practical use. Organic electroluminescent devices have low applied voltage and low power consumption and can emit light of three primary colors, so applications to medium- and small-sized displays represented by mobile phones and smartphones as well as large display monitors are beginning. .
 有機電界発光素子は発光層や電荷注入層、電荷輸送層など複数の層を積層することにより製造される。現在、有機電界発光素子の多くは、有機材料を真空下で蒸着することにより製造されているが、真空蒸着法では、蒸着プロセスが煩雑となり、生産性に劣る。真空蒸着法で製造された有機電界発光素子では照明やディスプレイのパネルの大型化が極めて難しい。 An organic electroluminescent element is manufactured by laminating | stacking several layers, such as a light emitting layer, a charge injection layer, and a charge transport layer. At present, many organic electroluminescent devices are manufactured by vapor-depositing an organic material under vacuum, but in the vacuum vapor deposition method, the vapor deposition process becomes complicated and the productivity is poor. In the organic electroluminescent element manufactured by the vacuum evaporation method, it is extremely difficult to increase the size of the illumination or display panel.
 近年、大型のディスプレイや照明に用いることのできる有機電界発光素子を効率よく製造するプロセスとして、湿式成膜法(塗布法)が研究されている。湿式成膜法は、真空蒸着法に比べて安定した層を容易に形成できる利点があるため、ディスプレイや照明装置の量産化や大型デバイスへの適用が期待されている。 In recent years, a wet film formation method (coating method) has been studied as a process for efficiently manufacturing an organic electroluminescent device that can be used for a large display or illumination. The wet film formation method has an advantage of being able to easily form a stable layer as compared with the vacuum deposition method, and therefore, it is expected to be applied to mass production of displays and lighting devices and to large devices.
 有機電界発光素子を湿式成膜法で製造するためには、使用される材料はすべて有機溶剤に溶解してインクとして使用できるものである必要がある。使用材料が溶剤溶解性に劣ると、長時間加熱するなどの操作を要するため、使用前に材料が劣化してしまう可能性がある。さらに、溶液状態で長時間均一状態を保持することができないと、溶液から材料の析出が起こり、インクジェット装置などによる成膜が不可能となる。
 湿式成膜法に使用される材料には、有機溶剤に速やかに溶解することと、溶解した後析出せず均一状態を保持する、という2つの意味での溶解性が求められる。
In order to manufacture an organic electroluminescent device by a wet film formation method, all materials to be used need to be dissolved in an organic solvent and used as an ink. If the material to be used is poor in solvent solubility, an operation such as heating for a long time is required, so the material may be deteriorated before use. Furthermore, if the uniform state can not be maintained for a long time in the solution state, deposition of the material from the solution occurs, and film formation by an inkjet device or the like becomes impossible.
The materials used in the wet film formation method are required to have solubility in two senses, that is, quick dissolution in an organic solvent and maintenance of a uniform state without precipitation after dissolution.
 近年、このインクの高濃度化の要求が高まっている。これは、高濃度のインクを用いて膜厚のより厚い発光層を形成することにより、素子の駆動寿命を延ばしたり、素子の光学的設計を最適化し、いわゆるマイクロキャビティ効果を効果的に発現させて色純度を高める、などの改良が加えられてきているためである。
 したがって、有機電界発光素子の湿式成膜用材料には、従来より高い溶剤溶解性を有することが要求されている。
In recent years, the demand for higher density of the ink is increasing. This is achieved by extending the drive life of the device or optimizing the optical design of the device by forming a thicker light emitting layer using a high concentration of ink, so that the so-called microcavity effect is effectively exhibited. This is because improvements have been made to improve color purity and the like.
Therefore, a material for wet film formation of an organic electroluminescent element is required to have higher solvent solubility than that of the prior art.
 湿式成膜法に適用される高性能の発光材料として、発光効率が高い燐光発光性のイリジウム錯体化合物がある。イリジウム錯体化合物の配位子を工夫することで、色調や発光効率並びに素子駆動寿命を改善しようとする試みがなされている(例えば、特許文献1~7及び非特許文献1)。 As a high performance light emitting material applied to a wet film formation method, there is a phosphorescent iridium complex compound having high light emission efficiency. Attempts have been made to improve the color tone, the luminous efficiency and the device driving life by devising the ligand of the iridium complex compound (for example, Patent Documents 1 to 7 and Non-patent Document 1).
国際公開第2015/087961号International Publication No. 2015/087961 特開2016-64998号公報JP, 2016-64998, A 国際公開第2014/024889号International Publication No. 2014/024889 特開2006-151888号公報JP 2006-151888 A 特開2002-332291号公報JP 2002-332291 A 米国特許出願公開第2016/0351835号明細書US Patent Application Publication No. 2016/0351835 米国特許出願公開第2016/0233442号明細書US Patent Application Publication No. 2016/0233442
 イリジウム錯体化合物は、一般的に溶剤溶解性が乏しいため、配位子に可撓性に富む置換基を導入して溶剤溶解性を付与する必要がある。
 一方で、有機電界発光素子の発光色を目的とする色調とするために、波長調整のための置換基を配位子に導入する必要がある。後者は特に緑色以上に長波長であるもの、特に発光波長の極大値600nm以上を要求される赤色のイリジウム発光材料において重要となる。
Since the iridium complex compound generally has poor solvent solubility, it is necessary to introduce solvent-rich solubility to the ligand by introducing a substituent having high flexibility.
On the other hand, it is necessary to introduce a substituent for wavelength adjustment into the ligand in order to make the emission color of the organic electroluminescent element the intended color tone. The latter is particularly important in materials having a longer wavelength than green, in particular, a red iridium light-emitting material that requires a maximum of 600 nm or more of the emission wavelength.
 従来の赤色発光イリジウム錯体においては、置換基が多くなりかつそれらの位置や種類あるいは配位子自体の組み合わせが適切ではない場合には高い溶剤溶解性が得られない。
 溶解性と所望の色度を両立可能な材料設計の指針は未だ十分には得られていない。
In the case of conventional red light emitting iridium complexes, high solvent solubility can not be obtained when the number of substituents is large and the combination of their positions and types or ligands themselves is not appropriate.
Guides for material design compatible with solubility and desired chromaticity have not yet been sufficiently obtained.
 有機EL照明においては、色再現性の更なる向上が検討されている。より多くの波長成分を有する光源下では色再現性が向上する。発光材料の発光スペクトルの幅をより広くすること、言い換えれば発光スペクトルの半値幅がより広い発光材料の開発が求められている。 In organic EL lighting, further improvement of color reproducibility is being studied. Under the light source having more wavelength components, color reproducibility is improved. Increasing the width of the light emission spectrum of the light emitting material, in other words, development of a light emitting material having a wider half width of the light emission spectrum is required.
 本発明者が特許文献3~5に具体的に開示されている構造を参考にしたイリジウム錯体化合物を合成し、赤色発光材料としての性能を検討した結果、溶剤溶解性の改善は見られたものの、発光量子収率が低下し、有機EL材料としての発光特性が損なわれる可能性を示唆する結果を得た。
 特許文献6および7に具体的に記載されているイリジウム錯体化合物は縮環構造が大きすぎるため、高い溶剤溶解性を示さない。
Although the inventors of the present invention synthesized iridium complex compounds referring to the structures specifically disclosed in Patent Documents 3 to 5 and examined the performance as a red light emitting material, improvement in solvent solubility was found as a result. The results suggest that the light emission quantum yield is lowered and the light emission characteristics of the organic EL material may be impaired.
The iridium complex compounds specifically described in Patent Documents 6 and 7 do not exhibit high solvent solubility because the condensed ring structure is too large.
 本発明者は、従来の赤色発光材料では、湿式成膜法に用いるには溶剤溶解性が不十分であり、発光量子収率も低いことから、イリジウム錯体化合物の溶剤に対する高い溶解性、イリジウム錯体化合物及び溶媒を含む組成物の保存安定性及びイリジウム錯体化合物を含む有機電界発光素子の発光効率向上について、更なる改良が必要であることを見出した。 The inventors found that the conventional red light emitting material has insufficient solvent solubility for use in the wet film forming method and has a low luminescence quantum yield, so that the iridium complex compound has high solubility in the solvent, iridium complex It has been found that it is necessary to further improve the storage stability of the composition containing the compound and the solvent and the improvement of the luminous efficiency of the organic electroluminescent device containing the iridium complex compound.
 本発明は、高い溶剤溶解性と目標色度とを両立可能なイリジウム錯体化合物を提供することを課題とする。特に、高い溶剤溶解性と赤色発光を併せ持つイリジウム錯体化合物を提供することを課題とする。また、上記特徴に加え、発光スペクトルの半値幅が広く、照明用途に使用される場合に色再現率を高くすることができるイリジウム錯体化合物を提供することを課題とする。
 さらに本発明は、高い溶剤溶解性、保存安定性及び発光特性を並立し得る、湿式成膜型の有機電界発光素子の発光材料として好適なイリジウム錯体化合物を提供することを課題とする。
An object of the present invention is to provide an iridium complex compound capable of achieving both high solvent solubility and target chromaticity. In particular, it is an object of the present invention to provide an iridium complex compound having both high solvent solubility and red light emission. Another object of the present invention is to provide an iridium complex compound having a wide half value width of emission spectrum and capable of enhancing a color reproduction rate when used for an illumination application, in addition to the above features.
Another object of the present invention is to provide an iridium complex compound suitable as a light emitting material of a wet film formation type organic electroluminescent device capable of simultaneously achieving high solvent solubility, storage stability and light emitting characteristics.
 本発明者は、特定の化学構造を有するイリジウム錯体化合物が、赤色発光材料として従来材料に比べ極めて高い溶剤溶解性を示すことを見出した。
 さらに、ある特定の化学構造を有するイリジウム錯体化合物が、赤色発光材料として従来材料に比べ発光スペクトルの半値幅が広幅化することを見出した。
また、ある特定の化学構造を有するイリジウム錯体化合物が、保存安定性に優れ、高効率な発光を示すことを見出した。
The present inventor has found that an iridium complex compound having a specific chemical structure exhibits extremely high solvent solubility as a red light emitting material as compared to conventional materials.
Furthermore, it has been found that an iridium complex compound having a specific chemical structure broadens the half bandwidth of the emission spectrum as a red light emitting material as compared with a conventional material.
In addition, it has been found that an iridium complex compound having a specific chemical structure is excellent in storage stability and shows highly efficient light emission.
 即ち、本発明の要旨は、以下の通りである。 That is, the gist of the present invention is as follows.
[1] 下記式(1)で表されるイリジウム錯体化合物。
Figure JPOXMLDOC01-appb-C000007
[式(1)において、Irはイリジウム原子を表し、
 C~Cは炭素原子を表し、N及びNは窒素原子を表す。
 R~Rは、それぞれ独立に水素原子又は置換基を表し、
 a、b、cおよびdは、それぞれ環Cy、Cy、CyおよびCyに置換しうる最大数の整数を表し、
 m及びnは、1又は2を表し、m+nは3である。
 環Cyは下記式(2)又は(2´)で表されるフルオレン構造であり、
Figure JPOXMLDOC01-appb-C000008
 環Cyが式(2)で表される場合、環Cyは、下記式(3)~式(5)のいずれかで表されるキノリン又はナフチリジン構造であり、
 環Cyが式(2´)で表される場合、環Cyは、下記式(3)~式(5)のいずれかで表されるナフチリジン構造であり、
Figure JPOXMLDOC01-appb-C000009
 式(3)~(5)のX~X18はそれぞれ独立に、炭素原子又は窒素原子を表し、
 環Cyは炭素原子CおよびCを含む芳香環又は複素芳香環を表し、
 環Cyは炭素原子Cおよび窒素原子Nを含む複素芳香環を表す。]
[1] An iridium complex compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000007
[In formula (1), Ir represents an iridium atom,
C 1 to C 6 represent carbon atoms, and N 1 and N 2 represent nitrogen atoms.
R 1 to R 4 each independently represent a hydrogen atom or a substituent,
and a, b, c and d respectively represent the maximum number of integers that can be substituted on the rings Cy 1 , Cy 2 , Cy 3 and Cy 4 ,
m and n represent 1 or 2, and m + n is 3.
The ring Cy 1 is a fluorene structure represented by the following formula (2) or (2 ′),
Figure JPOXMLDOC01-appb-C000008
When the ring Cy 1 is represented by the formula (2), the ring Cy 2 is a quinoline or naphthyridine structure represented by any one of the following formulas (3) to (5):
When the ring Cy 1 is represented by the formula ( 2 ′ ), the ring Cy 2 is a naphthyridine structure represented by any one of the following formulas (3) to (5):
Figure JPOXMLDOC01-appb-C000009
X 1 to X 18 in formulas (3) to (5) each independently represent a carbon atom or a nitrogen atom,
Ring Cy 3 represents an aromatic ring or heteroaromatic ring containing carbon atoms C 4 and C 5 ,
The ring Cy 4 represents a heteroaromatic ring containing carbon atom C 6 and nitrogen atom N 2 . ]
[2] 環Cyが下記式(6)で表される構造である、[1]に記載のイリジウム錯体化合物。
Figure JPOXMLDOC01-appb-C000010
[式(6)において、
 X19~X22はそれぞれ独立に、炭素原子又は窒素原子を表し、
 Yは、N(-R)、酸素原子又は硫黄原子を表し、Rは水素原子又は置換基を表す。]
[2] The iridium complex compound according to [1], in which ring Cy 4 is a structure represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000010
[In formula (6),
And each of X 19 to X 22 independently represents a carbon atom or a nitrogen atom,
Y represents N (-R 5 ), an oxygen atom or a sulfur atom, and R 5 represents a hydrogen atom or a substituent. ]
[3] 環Cyが式(2)で表されるフルオレン構造であり、且つ、環Cyが下記式(8)で表されるものである、[1]又は[2]に記載のイリジウム錯体化合物。
Figure JPOXMLDOC01-appb-C000011
[3] The iridium according to [1] or [2], wherein ring Cy 1 is a fluorene structure represented by formula (2), and ring Cy 3 is a compound represented by the following formula (8) Complex compound.
Figure JPOXMLDOC01-appb-C000011
[4] 式(6)のYが、硫黄原子である、[1]~[3]のいずれかに記載のイリジウム錯体化合物。 [4] The iridium complex compound according to any one of [1] to [3], wherein Y in the formula (6) is a sulfur atom.
[5] 環Cyを構成する窒素原子の数が2である、[1]~[4]のいずれかに記載のイリジウム錯体化合物。 [5] The iridium complex compound according to any one of [1] to [4], wherein the number of nitrogen atoms constituting ring Cy 2 is 2.
[6] [1]~[5]のいずれかに記載のイリジウム錯体化合物および溶剤を含有する組成物。 [6] A composition comprising the iridium complex compound according to any one of [1] to [5] and a solvent.
[7] [1]~[5]のいずれかに記載のイリジウム錯体化合物を含む有機電界発光素子。 [7] An organic electroluminescent device comprising the iridium complex compound according to any one of [1] to [5].
[8] [7]に記載の有機電界発光素子を有する表示装置。 [8] A display device having the organic electroluminescent device according to [7].
[9] [7]に記載の有機電界発光素子を有する照明装置。 [9] A lighting device comprising the organic electroluminescent device according to [7].
[10] 下記式(7)で表されるイリジウム錯体化合物。
Figure JPOXMLDOC01-appb-C000012
[式(7)において、Irはイリジウム原子を表す。
 C~Cは炭素原子を表し、N及びNは窒素原子を表す。
 環Cyは炭素原子CおよびCを含む芳香環又は複素芳香環を表し、
 環Cyは炭素原子Cおよび窒素原子Nを含む複素芳香環を表し、
 X23~X26はそれぞれ独立に、置換基を有していてもよい炭素原子、又は窒素原子を表し、
 Yは酸素原子、硫黄原子又はセレン原子を表し、
 R10~R12は、それぞれ独立に、水素原子又は置換基を表す。
 a´およびb´は、それぞれ環CyおよびCyに置換しうる最大数の整数を表し、c´は8である。
 m´およびn´は1又は2を表し、m´+n´は3である。]
[10] An iridium complex compound represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000012
[In Formula (7), Ir represents an iridium atom.
C 7 to C 9 represent carbon atoms, and N 3 and N 4 represent nitrogen atoms.
Ring Cy 5 represents an aromatic ring or heteroaromatic ring containing carbon atoms C 7 and C 8 ,
Ring Cy 6 represents a heteroaromatic ring containing carbon atom C 9 and nitrogen atom N 3 ,
X 23 to X 26 each independently represent a carbon atom which may have a substituent, or a nitrogen atom,
Y 2 represents an oxygen atom, a sulfur atom or a selenium atom,
Each of R 10 to R 12 independently represents a hydrogen atom or a substituent.
a ′ and b ′ represent the maximum number of integers that can be substituted on the rings Cy 5 and Cy 6 respectively, and c ′ is 8.
m 'and n' represent 1 or 2, and m '+ n' is 3. ]
 本発明のイリジウム錯体化合物は高い溶剤溶解性を有するため、湿式成膜法によって有機電界発光素子の作製が可能である。本発明の有機電界発光素子は、有機EL表示装置及び照明装置用として有用である。
 また、本発明のイリジウム錯体化合物は、赤色発光材料として従来材料に比べて発光スペクトルの半値幅が広く、照明用途に使用される場合に色再現率を高くすることができる。
 また、本発明のイリジウム錯体化合物は、発光量子収率が高く、発光特性に優れた有機電界発光素子を提供し得る。
The iridium complex compound of the present invention has high solvent solubility, so that it is possible to manufacture an organic electroluminescent device by a wet film formation method. The organic electroluminescent device of the present invention is useful for organic EL display devices and lighting devices.
In addition, the iridium complex compound of the present invention has a wider half width of the emission spectrum as a red light emitting material as compared with a conventional material, and can increase the color reproduction rate when used for lighting applications.
In addition, the iridium complex compound of the present invention can provide an organic electroluminescent device having a high luminescence quantum yield and excellent luminescence characteristics.
図1は、本発明の有機電界発光素子の構造の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of the structure of the organic electroluminescent device of the present invention. 図2は、実施例3、4及び比較例3、4の化合物の最大発光波長と半値幅の関係を表す図である。FIG. 2 is a graph showing the relationship between the maximum emission wavelength and the half width of the compounds of Examples 3 and 4 and Comparative Examples 3 and 4. 図3は、実施例5及び比較例5~7の化合物の最大発光波長と発光量子収率との関係を表す図である。FIG. 3 is a graph showing the relationship between the maximum emission wavelength and the emission quantum yield of the compounds of Example 5 and Comparative Examples 5 to 7.
 以下に、本発明の実施の形態を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変形して実施することができる。 Hereinafter, the embodiments of the present invention will be described in detail, but the present invention is not limited to the following embodiments, and various modifications can be made within the scope of the present invention.
 本明細書において、「芳香環」とは「芳香族炭化水素環」をさし、環構成原子としてヘテロ原子を含む「複素芳香環」とは区別される。同様に、「芳香族基」とは「芳香族炭化水素環基」をさし、「複素芳香族基」とは「複素芳香族環基」をさす。 In the present specification, "aromatic ring" refers to "aromatic hydrocarbon ring" and is distinguished from "heteroaromatic ring" containing a hetero atom as a ring constituent atom. Likewise, "aromatic group" refers to "aromatic hydrocarbon ring group", and "heteroaromatic group" refers to "heteroaromatic ring group".
[イリジウム錯体化合物]
 本発明のイリジウム錯体化合物は、下記式(1)で表される化合物である。
[Iridium complex compound]
The iridium complex compound of the present invention is a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[式(1)において、Irはイリジウム原子を表し、
 C~Cは炭素原子を表し、N及びNは窒素原子を表す。
 R~Rは、それぞれ独立に水素原子又は置換基を表し、
 a、b、cおよびdは、それぞれ環Cy、Cy、CyおよびCyに置換しうる最大数の整数を表し、
 m及びnは、1又は2を表し、m+nは3である。]
[In formula (1), Ir represents an iridium atom,
C 1 to C 6 represent carbon atoms, and N 1 and N 2 represent nitrogen atoms.
R 1 to R 4 each independently represent a hydrogen atom or a substituent,
and a, b, c and d respectively represent the maximum number of integers that can be substituted on the rings Cy 1 , Cy 2 , Cy 3 and Cy 4 ,
m and n represent 1 or 2, and m + n is 3. ]
 本発明のイリジウム錯体化合物が高い溶剤溶解性と目標色度とを両立させる理由は以下の通り推測される。 The reason why the iridium complex compound of the present invention achieves both high solvent solubility and target chromaticity is presumed as follows.
 フルオレン骨格を配位子に導入することは、環Cy骨格との組み合わせにより発光波長を容易に目的とする赤色領域にできるため好ましいが、逆に、2つのベンゼン環の自由回転運動が阻害された極度に平面性の高い構造のために、溶剤への溶解性およびインクとして均一状態を保持し析出を生じないという溶解安定性が極めて悪化するのが通常である。溶剤溶解性を改善させるために、例えばフルオレンの9位に長鎖アルキル基などを導入することが行われているが、このようなものを有機電界発光素子の発光材料として用いた場合、絶縁性の長鎖アルキル基が錯体分子のHOMO軌道を大きく遮蔽するため、分子の酸化が阻害され、錯体上での電荷再結合が起こりにくくなり、結果として素子性能が悪化することが予想される。 It is preferable to introduce a fluorene skeleton into the ligand because the emission wavelength can be easily made into the target red region by combination with the ring Cy 2 skeleton, but conversely, the free rotational movement of the two benzene rings is inhibited. Due to the extremely flat structure, the solubility in a solvent and the dissolution stability in maintaining a uniform state as an ink and not causing precipitation are generally extremely deteriorated. In order to improve the solvent solubility, for example, a long chain alkyl group or the like is introduced at the 9 position of fluorene, but when such a material is used as a light emitting material of an organic electroluminescent device, it has an insulating property. It is expected that the long-chain alkyl group of the compound significantly blocks the HOMO orbital of the complex molecule, thereby inhibiting the oxidation of the molecule and making charge recombination on the complex less likely to occur, resulting in deterioration of the device performance.
 本発明の好ましい形態の1つとしては、特定の配位子を組み合わせてヘテロレプチック型とすることにより、該長鎖アルキル基を必ずしも必要とすることなく、溶剤溶解性を改善することができることが挙げられる。 As one of the preferable forms of the present invention, by combining specific ligands into heteroleptic type, it is possible to improve solvent solubility without necessarily requiring the long chain alkyl group. Can be mentioned.
 本発明のイリジウム錯体化合物が高い溶剤溶解性と発光量子収率とを両立させる理由は以下の通り推測される。 The reason why the iridium complex compound of the present invention achieves both high solvent solubility and light emission quantum yield is presumed as follows.
 量子収率を向上させるには発光材料の燐光放射速度定数krを大きくする必要がある。そのためには、化学構造を剛直なものとして熱振動へのエネルギー散逸を防ぐ、配位子に電子求引性置換基を導入するなどしてLUMOを低くし励起状態のMLCT性を高める、などの方法が用いられる。
 この観点から、例えば、フルオレン構造は、二つのベンゼン環を直接結合と置換基を有していてもよいメチレン基の2つで結合させているのでかなり剛直であり、好ましいと考えられる。剛直な構造が大きすぎると分子間同士の相互作用が強くなり溶解性を大きく損なうため、フルオレン環にさらに縮環構造を導入することは避けなければならない。フルオレン基自体はメチレン基の存在により若干の電子供与性を有すると考えられるが、本発明の別の好ましい形態の一つであるイリジウム錯体化合物のように、フルオレン環の3位に複素芳香環を有する配位子構造であれば、複素芳香環とフルオレン環の2つのベンゼン環は一直線上ではないために共役は強くならず、配位子のLUMOは低められずMLCT性が高く保たれる。
In order to improve the quantum yield, it is necessary to increase the phosphorescence rate constant kr of the light emitting material. For that purpose, the chemical structure is made rigid and energy dissipation to thermal vibration is prevented, the electron-withdrawing substituent is introduced into the ligand, and LUMO is lowered to enhance the MLCT property of the excited state. The method is used.
From this point of view, for example, the fluorene structure is considered to be preferable since it is fairly rigid since two benzene rings are directly bonded to each other and two methylene groups which may have a substituent. If the rigid structure is too large, the interaction between molecules becomes strong and the solubility is greatly impaired. Therefore, it is necessary to avoid introducing a condensed ring structure to the fluorene ring. Although the fluorene group itself is considered to have some electron donating properties due to the presence of the methylene group, as in the iridium complex compound which is one of the other preferable forms of the present invention, a heteroaromatic ring is placed at the 3-position of the fluorene ring. If it has a ligand structure, the conjugation is not strong because the two aromatic rings of the heteroaromatic ring and the fluorene ring are not on a straight line, and the LUMO of the ligand is not lowered and the MLCT property is kept high.
<環Cy
 環Cyはイリジウム原子に配位する炭素原子CおよびCを含む下記式(2)又は(2´)で表される構造である。なお、下記式(2),(2´)において、置換基(R-は省略されているが、後掲の本発明のイリジウム錯体化合物の具体例に示されるように、環Cyは、置換基(R-も含めて、9,9-ジメチルフルオレン環であることが好ましい。
<Ring Cy 1 >
The ring Cy 1 is a structure represented by the following formula (2) or (2 ′) containing carbon atoms C 1 and C 2 coordinated to an iridium atom. In the following formulas (2) and (2 ′), the substituent (R 1 ) a − is omitted, but as shown in the specific example of the iridium complex compound of the present invention described later, the ring Cy 1 Is preferably a 9,9-dimethylfluorene ring, including the substituent (R 1 ) a- .
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 本発明のイリジウム錯体化合物の高い溶剤溶解性と目標色度とを特に両立させる場合は、環Cyは式(2)で表される構造の方が好ましい。本発明のイリジウム錯体化合物の高い溶剤溶解性と発光量子収率とを特に両立させる場合は、環Cyは式(2´)で表される構造の方が好ましい。 In the case where the high solvent solubility of the iridium complex compound of the present invention and the target chromaticity are particularly compatible, the ring Cy 1 is preferably a structure represented by Formula (2). In the case where the high solvent solubility and emission quantum yield of the iridium complex compound of the present invention are particularly compatible, the ring Cy 1 is preferably a structure represented by Formula (2 ′).
<環Cy
 環Cyは下記式(3)~(5)のいずれかで表される構造である。環Cyが式(2)で表される構造の場合、環Cyは、下記式(3)~式(5)のいずれかで表される、キノリン又はナフチリジン構造であることが好ましい。環Cyが式(2´)で表される構造の場合、環Cyは、下記式(3)~式(5)のいずれかで表されるナフチリジン構造であることが好ましい。
 なお、下記式(3)~(5)において、置換基(R-は省略されている。
<Ring Cy 2 >
The ring Cy 2 is a structure represented by any one of the following formulas (3) to (5). When ring Cy 1 is a structure represented by formula (2), ring Cy 2 is preferably a quinoline or naphthyridine structure represented by any of the following formulas (3) to (5). When the ring Cy 1 is a structure represented by the formula ( 2 ′), the ring Cy 2 is preferably a naphthyridine structure represented by any one of the following formulas (3) to (5).
In the following formulas (3) to (5), the substituent (R 2 ) b -is omitted.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(3)~(5)のX~X18はそれぞれ独立に、炭素原子又は窒素原子を表す。 X 1 to X 18 in formulas (3) to (5) each independently represent a carbon atom or a nitrogen atom.
 環Cyに含まれる窒素原子の数は窒素原子Nを含め好ましくは3個以下、より好ましくは2個以下である。窒素原子の数が3個以下であることで、イリジウム錯体化合物の有するHOMOおよびLUMOが深くなり過ぎず、正孔及び電子の両方が錯体分子に注入されやすくなる。そのため再結合が起こりにくくなり、有機電界発光素子の発光材料として好ましい傾向となる。 The number of nitrogen atoms contained in the ring Cy 2 is preferably 3 or less, more preferably 2 or less, including the nitrogen atom N 1 . When the number of nitrogen atoms is 3 or less, the HOMO and LUMO of the iridium complex compound do not become too deep, and both holes and electrons are easily injected into the complex molecule. Therefore, recombination is less likely to occur, which tends to be preferable as a light emitting material of the organic electroluminescent device.
 環Cyとしては、上記構造の中でも、有機ELディスプレイにおける赤色発光の好ましい色度を示すという観点から、式(3)又は式(5)で表される構造が好ましく、式(3)で表される構造が特に好ましい。赤色としてより色純度を高くするという観点、および配位子をより電子求引的としてMLCT性を高めるという観点から、環Cyは環を構成する窒素原子がNのみであるキノリン構造よりも環を構成する窒素原子がNを含み2つである、キナゾリンやキノキサリンなどのナフチリジン構造であることが好ましい。 Among the above structures, the ring Cy 2 is preferably a structure represented by the formula (3) or the formula (5) from the viewpoint of showing preferable chromaticity of red light emission in the organic EL display, and the formula (3) The structure is particularly preferred. From the viewpoint of enhancing color purity as red and the viewpoint of enhancing MLCT property by making the ligand more electron attractive, the ring Cy 2 is more than a quinoline structure in which the nitrogen atom constituting the ring is only N 1. It is preferable that it is a naphthyridine structure, such as quinazoline and quinoxaline, whose nitrogen atom which comprises a ring is N 1 and is two.
<環Cy
 環Cyはイリジウム原子に配位する炭素原子CおよびCを含む芳香環又は複素芳香環を表す。
<Ring Cy 3 >
Ring Cy 3 represents an aromatic ring or a heteroaromatic ring containing carbon atoms C 4 and C 5 coordinating to the iridium atom.
 環Cyは、単環であってもよく、複数の環が結合している縮合環であってもよい。縮合環の場合、環の数は特に限定されないが、6以下が好ましく、5以下が、錯体の溶剤溶解性を損なわない傾向にあるため好ましい。 The ring Cy 3 may be a single ring or may be a fused ring to which a plurality of rings are linked. In the case of a fused ring, the number of rings is not particularly limited, but 6 or less is preferable, and 5 or less is preferable because it tends not to impair the solvent solubility of the complex.
 特に限定されないが、環Cyが複素芳香環の場合、環構成原子として炭素原子の他に含まれるヘテロ原子は、窒素原子、酸素原子、硫黄原子、ケイ素原子、リン原子およびセレン原子から選ばれることが、錯体の化学的安定性の観点から好ましい。 Although there is no particular limitation, when the ring Cy 3 is a heteroaromatic ring, the hetero atom contained in addition to the carbon atom as a ring constituent atom is selected from nitrogen atom, oxygen atom, sulfur atom, silicon atom, phosphorus atom and selenium atom Is preferable from the viewpoint of the chemical stability of the complex.
 環Cyの具体例としては、芳香環では、単環のベンゼン環;2環のナフタレン環;3環以上のフルオレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環等が挙げられる。複素芳香環では、含酸素原子のフラン環、ベンゾフラン環、ジベンゾフラン環;含硫黄原子のチオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環;含窒素原子のピロール環、ピラゾール環、イミダゾール環、ベンゾイミダゾール環、インドール環、インダゾール環、カルバゾール環、インドロカルバゾール環、インデノカルバゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シンノリン環、フタラジン環、キノキサリン環、キナゾリン環、キナゾリノン環、アクリジン環、フェナンスリジン環、カルボリン環、プリン環;複数種類のヘテロ原子を含むオキサゾール環、オキサジアゾール環、イソオキサゾール環、ベンゾイソオキサゾール環、チアゾール環、ベンゾチアゾール環、イソチアゾール環、ベンゾイソチアゾール環等が挙げられる。 Specific examples of the ring Cy 3 include, in the aromatic ring, a single-ring benzene ring; two-ring naphthalene ring; three or more rings fluorene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, The chrysene ring, triphenylene ring, fluoranthene ring and the like can be mentioned. In heteroaromatic rings, furan ring of an oxygen-containing atom, benzofuran ring, dibenzofuran ring; thiophene ring of a sulfur-containing atom, benzothiophene ring, dibenzothiophene ring; pyrrole ring of a nitrogen-containing atom, pyrazole ring, imidazole ring, benzimidazole ring, Indole ring, indazole ring, carbazole ring, indolocarbazole ring, indenocarbazole ring, pyridine ring, pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, cinnoline ring, phthalazine ring, quinoxaline ring, quinazoline Ring, quinazolinone ring, acridine ring, phenanthridine ring, carboline ring, purine ring; oxazole ring containing plural kinds of hetero atoms, oxadiazole ring, isoxazole ring, benzoisoxazole ring, thiazole ring, benzothi ring Tetrazole ring, an isothiazole ring, a benzisothiazole ring, and the like.
 これらの中でも、発光波長を制御したり、有機溶剤への溶解性を向上させたり、有機電界発光素子としての耐久性を向上させるためには、これらの環上に適切な置換基が導入されることが多く、そのような置換基の導入方法が多く知られている環であることが好ましい。そのため上記具体例のうち、イリジウム原子に直結する炭素原子Cが構成する一つの環がベンゼン環であるものが好ましい。その例としては、上述した芳香環の他に、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、インドロカルバゾール環、インデノカルバゾール環等が挙げられる。このうち、ベンゼン環、ナフタレン環、フルオレン環、ジベンゾフラン環、ジベンゾチオフェン環およびカルバゾール環がさらに好ましい。特に、溶剤溶解性を保ちつつ半値幅を広幅化させるという観点から、環Cyは、下記式(8)で表されるフルオレン環が最も好ましい。なお、下記式(8)において、置換基(R-は省略されている。 Among these, in order to control the emission wavelength, improve the solubility in an organic solvent, or improve the durability as an organic electroluminescent device, an appropriate substituent is introduced onto these rings. In many cases, it is preferable that the ring be a known method for introducing such a substituent. Therefore, among the above-mentioned specific examples, it is preferable that one ring constituted by carbon atom C 4 directly linked to an iridium atom is a benzene ring. Examples thereof include dibenzofuran ring, dibenzothiophene ring, carbazole ring, indolocarbazole ring, indenocarbazole ring and the like in addition to the above-mentioned aromatic ring. Among these, a benzene ring, a naphthalene ring, a fluorene ring, a dibenzofuran ring, a dibenzothiophene ring and a carbazole ring are more preferable. In particular, from the viewpoint of widening the half width while maintaining solvent solubility, the ring Cy 3 is most preferably a fluorene ring represented by the following formula (8). In the following formula (8), the substituent (R 3 ) c -is omitted.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 環Cyを構成する原子数には特に制限は無いが、イリジウム錯体化合物の溶剤溶解性を維持する観点から、該環の構成原子数は5以上が好ましく、より好ましくは6以上である。該環の構成原子数は30以下が好ましく、より好ましくは20以下である。 The number of atoms constituting the ring Cy 3 is not particularly limited, but from the viewpoint of maintaining the solvent solubility of the iridium complex compound, the number of constituting atoms of the ring is preferably 5 or more, more preferably 6 or more. The number of constituent atoms of the ring is preferably 30 or less, more preferably 20 or less.
<環Cy
 環Cyは、炭素原子Cおよび、イリジウム原子に配位する窒素原子Nを含む複素芳香環を表す。
<Ring Cy 4 >
The ring Cy 4 represents a heteroaromatic ring containing a carbon atom C 6 and a nitrogen atom N 2 coordinating to an iridium atom.
 環Cyとしては、具体的には、単環のピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ピロール環、ピラゾール環、イソオキサゾール環、チアゾール環、オキサゾール環、オキサジアゾール環、チアゾール環、プリン環;2環縮環のキノリン環、イソキノリン環、シンノリン環、フタラジン環、キナゾリン環、キノキサリン環、ナフチリジン環、インドール環、インダゾール環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環;3環縮環のアクリジン環、フェナントロリン環、カルバゾール環、カルボリン環;4環以上縮環のベンゾフェナンスリジン環、ベンゾアクリジン環又はインドロカルボリン環などが挙げられる。さらに、これらの環を構成する炭素原子がさらに窒素原子に置き換わっていてもよい。 Specific examples of the ring Cy 4 include a monocyclic pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, a pyrrole ring, a pyrazole ring, an isoxazole ring, a thiazole ring, an oxazole ring, an oxadiazole ring, Thiazole ring, purine ring; quinoline ring of two ring condensation ring, isoquinoline ring, cinnoline ring, phthalazine ring, quinazoline ring, quinoxaline ring, naphthyridine ring, indole ring, indazole ring, benzoisoxazole ring, benzisothiazole ring, benzimidazole Ring, benzoxazole ring, benzothiazole ring; acridine ring of 3-ring ring ring ring, phenanthroline ring, carbazole ring, carboline ring; benzophenanthricine ring ring of 4 or more rings ring condensed, benzoacridine ring or indolocarboline ring Be Furthermore, carbon atoms that constitute these rings may be further replaced by nitrogen atoms.
 これらの中でも、置換基を導入しやすく発光波長や溶剤溶解性の調整がしやすいこと、及び、イリジウムと錯体化する際に収率よく合成できる手法が多く知られていることから、環Cyとしては単環又は4環以下の縮合環が好ましく、単環又は3環以下の縮合環がより好ましく、単環又は2環の縮合環が最も好ましい。具体的には、イミダゾール環、オキサゾール環、チアゾール環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ピリジン環、キノリン環、イソキノリン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、シンノリン環、フタラジン環、キナゾリン環、キノキサリン環又はナフチリジン環が好ましく、さらに、イミダゾール環、オキサゾール環、キノリン環、イソキノリン環、ピリダジン環、ピリミジン環又はピラジン環が好ましく、特に、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ピリジン環、イソキノリン環、ピリダジン環、ピリミジン環又はピラジン環が好ましく、最も好ましくは、下記式(6)で表される構造である。式(6)において、置換基(R-は省略されている。 Among these, it is easy to introduce a substituent and to easily adjust the emission wavelength and solvent solubility, and from the fact that many methods are known that can be synthesized with good yield when complexed with iridium, ring Cy 4 Is preferably a single ring or a fused ring having 4 or less rings, more preferably a single ring or a fused ring having 3 or less rings, and most preferably a single ring or a two-ring fused ring. Specifically, imidazole ring, oxazole ring, thiazole ring, benzimidazole ring, benzoxazole ring, benzothiazole ring, pyridine ring, quinoline ring, isoquinoline ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, cinnoline ring, Phthalazine ring, quinazoline ring, quinoxaline ring or naphthyridine ring is preferable, and further, an imidazole ring, oxazole ring, quinoline ring, isoquinoline ring, pyridazine ring, pyrimidine ring or pyrazine ring is preferable, and in particular, benzoimidazole ring, benzoxazole ring, benzo A thiazole ring, a pyridine ring, an isoquinoline ring, a pyridazine ring, a pyrimidine ring or a pyrazine ring is preferable, and a structure represented by the following formula (6) is most preferable. In formula (6), the substituent (R 4 ) d -is omitted.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(6)のX19~X22はそれぞれ独立に、炭素原子又は窒素原子を表す。発光波長を特に赤色領域に調節すること、および錯体の合成のしやすさの観点から、X19~X22のうちの窒素原子の好ましい数は0又は1である。 X 19 to X 22 in the formula (6) each independently represent a carbon atom or a nitrogen atom. The preferred number of nitrogen atoms of X 19 to X 22 is 0 or 1 from the viewpoint of adjusting the emission wavelength particularly to the red region and the ease of synthesis of the complex.
 X19~X22が炭素原子の場合、この炭素原子には水素原子が結合していてもよく、後述のR~Rの置換基として例示したもの、好ましくはF、アルキル基、芳香族基または複素芳香族基が置換していてもよい。イリジウム錯体化合物の溶解性を損なわないという観点から、環Cyを構成する原子数は14以下であることが好ましく、より好ましくは13以下である。 When X 19 to X 22 are a carbon atom, a hydrogen atom may be bonded to this carbon atom, and those exemplified as the substituents of R 1 to R 5 described later, preferably F, an alkyl group, an aromatic group The group or heteroaromatic group may be substituted. From the viewpoint of not impairing the solubility of the iridium complex compound, the number of atoms constituting the ring Cy 4 is preferably 14 or less, more preferably 13 or less.
 Yは、N(-R)、酸素原子又は硫黄原子を表す。Rは、水素原子又は置換基を表す。 Y represents N (-R 5 ), an oxygen atom or a sulfur atom. R 5 represents a hydrogen atom or a substituent.
 式(6)において、5員環部分の芳香族性が高い方が化学的により安定な構造であり、錯体の安定性にも好ましいため、Yとしては、N(-R)又は硫黄原子であることが好ましく、最も好ましくは硫黄原子である。 In Formula (6), the higher the aromaticity of the five-membered ring part is the more chemically stable structure, and is preferable also for the stability of the complex, Y may be N (—R 5 ) or a sulfur atom. Preferably it is a sulfur atom.
 Rが置換基の場合、特に限定されないが具体的には後述するR~Rの置換基と同義であり、好ましい範囲等も同義である。 When R 5 is a substituent, it is not particularly limited, but specifically, it has the same meaning as the substituent of R 1 to R 4 described later, and the preferable range is also the same.
<R~R及びa~d>
 式(1)中のR~Rは水素原子又は置換基を表す。R~Rはそれぞれ独立であり、同じでも異なっていてもよい。
<R 1 to R 4 and a to d>
R 1 to R 4 in the formula (1) represent a hydrogen atom or a substituent. R 1 to R 4 are each independently, and may be the same or different.
 a~dは、それぞれ環Cy~環Cyに置換しうる最大数の整数であり、aは8であ
る。a~dが2以上の場合、複数個あるR~Rはそれぞれ同一であっても異なっていてもよい。
a to d are integers of the maximum number that can be substituted on the rings Cy 1 to Cy 4 respectively, and a is 8. When a to d are 2 or more, a plurality of R 1 to R 4 may be the same or different.
 2つ以上の隣接するR~R同士が、互いに結合して、脂肪族又は芳香族もしくは複素芳香族の、単環又は縮合環を形成してもよいが、溶剤溶解性の低下を抑制するため、Rは、2つ以上の隣接するRが互いに結合して脂肪族、芳香族又はヘテロ芳香族を形成し、環Cyに対して縮合しないことが好ましい。 Two or more adjacent R 1 to R 4 may be bonded to each other to form an aliphatic or aromatic or heteroaromatic single ring or a fused ring, but the decrease in solvent solubility is suppressed Preferably, R 1 is such that two or more adjacent R 1 's combine with each other to form an aliphatic, aromatic or heteroaromatic, and are not fused to the ring Cy 1 .
 R~Rが置換基である場合、その種類に特に限定はなく、目的とする発光波長の精密な制御や用いる溶剤との相性、有機電界発光素子にする場合のホスト化合物との相性などを考慮して最適な置換基を選択することができる。それら最適化の検討に際して、好ましい置換基は以下に記述される範囲である。 When R 1 to R 4 are a substituent, the type thereof is not particularly limited, and precise control of the target emission wavelength, compatibility with the solvent used, compatibility with the host compound in forming an organic electroluminescent device, etc. An optimal substituent can be selected in consideration of Preferred substituents for the optimization studies are the ranges described below.
 R~Rは、それぞれ独立に、水素原子、D、F、Cl、Br、I、-N(R’)、-CN、-NO、-OH、-COOR’、-C(=O)R’、-C(=O)NR’、-P(=O)(R’)、-S(=O)R’、-S(=O)R’、-OS(=O)R’、炭素数1以上30以下の、直鎖、分岐もしくは環状アルキル基、炭素数1以上30以下の、直鎖、分岐もしくは環状アルコキシ基、炭素数1以上30以下の、直鎖、分岐もしくは環状アルキルチオ基、炭素数2以上30以下の、直鎖、分岐もしくは環状アルケニル基、炭素数2以上30以下の、直鎖、分岐もしくは環状アルキニル基、炭素数5以上60以下の芳香族基、炭素数5以上60以下の複素芳香族基、炭素数5以上40以下のアリールオキシ基、炭素数5以上40以下のアリールチオ基、炭素数5以上60以下のアラルキル基、炭素数5以上60以下のヘテロアラルキル基、炭素数10以上40以下のジアリールアミノ基、炭素数10以上40以下のアリールヘテロアリールアミノ基又は炭素数10以上40以下のジヘテロアリールアミノ基から選ばれる。 R 1 to R 4 are each independently a hydrogen atom, D, F, Cl, Br, I, -N (R ') 2 , -CN, -NO 2 , -OH, -COOR', -C (= O) R ', -C (= O) NR', -P (= O) (R ') 2 , -S (= O) R', -S (= O) 2 R ', -OS (= O 2 ) R ′ is a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 30 carbon atoms, a linear chain having 1 to 30 carbon atoms, Branched or cyclic alkylthio group, linear or branched alkenyl group having 2 to 30 carbon atoms, linear or branched or cyclic alkynyl group having 2 to 30 carbon atoms, aromatic group having 5 to 60 carbon atoms A heteroaromatic group having 5 to 60 carbon atoms, an aryloxy group having 5 to 40 carbon atoms, and 5 to 40 carbon atoms The arylthio group, the aralkyl group having 5 to 60 carbon atoms, the heteroaralkyl group having 5 to 60 carbon atoms, the diarylamino group having 10 to 40 carbon atoms, the arylheteroarylamino group having 10 to 40 carbon atoms, or carbon It is selected from several tens to forty di-heteroarylamino groups.
 該アルキル基、該アルコキシ基、該アルキルチオ基、該アルケニル基および該アルキニル基は、さらに1つ以上のR’で置換されていてもよく、これらの基における1つの-CH-基あるいは2以上の隣接していない-CH-基が、-C(-R’)=C(-R’)-、-C≡C-、-Si(-R’)-、-C(=O)-、-NR’-、-O-、-S-、-CONR’-もしくは2価の芳香族基に置き換えられていてもよい。これらの基における一つ以上の水素原子が、D、F、Cl、Br、I又は-CNで置換されていてもよい。 The alkyl group, the alkoxy group, the alkylthio group, the alkenyl group and the alkynyl group may be further substituted by one or more R ′, and one —CH 2 — group or two or more in these groups Non-adjacent -CH 2 -groups of -C (-R ') = C (-R')-, -C≡C-, -Si (-R ') 2- , -C (= O) -, -NR'-, -O-, -S-, -CONR'- or a divalent aromatic group may be substituted. One or more hydrogen atoms in these groups may be substituted by D, F, Cl, Br, I or -CN.
 該芳香族基、該複素芳香族基、該アリールオキシ基、該アリールチオ基、該アラルキル基、該ヘテロアラルキル基、該ジアリールアミノ基、該アリールヘテロアリールアミノ基および該ジヘテロアリールアミノ基は、それぞれ独立に、さらに1つ以上のR’で置換されていてもよい。 The aromatic group, the heteroaromatic group, the aryloxy group, the arylthio group, the aralkyl group, the heteroaralkyl group, the diarylamino group, the arylheteroarylamino group and the diheteroarylamino group respectively Independently, it may be further substituted by one or more R ′.
 R’については後述する。 R 'will be described later.
 炭素数1以上30以下の、直鎖、分岐もしくは環状アルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、2-エチルヘキシル基、イソプロピル基、イソブチル基、シクロペンチル基、シクロヘキシル基、n-オクチル基、ノルボルニル基、アダマンチル基などが挙げられる。耐久性の観点から、炭素数は1以上が好ましく、30以下が好ましく、20以下がより好ましく、12以下が最も好ましい。 Examples of the linear, branched or cyclic alkyl group having 1 to 30 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an n-pentyl group and an n-hexyl group Examples include n-octyl group, 2-ethylhexyl group, isopropyl group, isobutyl group, cyclopentyl group, cyclohexyl group, n-octyl group, norbornyl group, adamantyl group and the like. From the viewpoint of durability, the number of carbon atoms is preferably 1 or more, preferably 30 or less, more preferably 20 or less, and most preferably 12 or less.
 炭素数1以上30以下の、直鎖、分岐もしくは環状アルコキシ基の例としては、メトキシ基、エトキシ基、n-プロピルオキシ基、n-ブトキシ基、n-ヘキシルオキシ基、イソプロピルオキシ基、シクロヘキシルオキシ基、2-エトキシエトキシ基、2-エトキシエトキシエトキシ基などが挙げられる。耐久性の観点から、炭素数は1以上が好ましく、30以下が好ましく、20以下がより好ましく、12以下が最も好ましい。 Examples of the linear, branched or cyclic alkoxy group having 1 to 30 carbon atoms include methoxy, ethoxy, n-propyloxy, n-butoxy, n-hexyloxy, isopropyloxy and cyclohexyloxy And 2-ethoxyethoxy and 2-ethoxyethoxyethoxy groups. From the viewpoint of durability, the number of carbon atoms is preferably 1 or more, preferably 30 or less, more preferably 20 or less, and most preferably 12 or less.
 炭素数1以上30以下の、直鎖、分岐もしくは環状アルキルチオ基の例としては、メチルチオ基、エチルチオ基、n-プロピルチオ基、n-ブチルチオ基、n-ヘキシルチオ基、イソプロピルチオ基、シクロヘキシルチオ基、2-メチルブチルチオ基、n-ヘキシルチオ基などが挙げられる。耐久性の観点から、炭素数は1以上が好ましく、30以下が好ましく、20以下がより好ましく、12以下が最も好ましい。 Examples of the linear, branched or cyclic alkylthio group having 1 to 30 carbon atoms include a methylthio group, an ethylthio group, an n-propylthio group, an n-butylthio group, an n-hexylthio group, an isopropylthio group, and a cyclohexylthio group. Examples include 2-methylbutylthio and n-hexylthio. From the viewpoint of durability, the number of carbon atoms is preferably 1 or more, preferably 30 or less, more preferably 20 or less, and most preferably 12 or less.
 炭素数2以上30以下の、直鎖、分岐もしくは環状アルケニル基の例としては、ビニル基、アリル基、プロぺニル基、ヘプテニル基、シクロペンテニル基、シクロヘキセニル基、シクロオクテニル基などが挙げられる。耐久性の観点から、炭素数は2以上が好ましく、30以下が好ましく、20以下がより好ましく、12以下が最も好ましい。 Examples of linear or branched or cyclic alkenyl groups having 2 to 30 carbon atoms include vinyl, allyl, propenyl, heptenyl, cyclopentenyl, cyclohexenyl and cyclooctenyl groups. From the viewpoint of durability, the number of carbon atoms is preferably 2 or more, preferably 30 or less, more preferably 20 or less, and most preferably 12 or less.
 炭素数2以上30以下の、直鎖、分岐もしくは環状アルキニル基の例としては、エチニル基、プロピオニル基、ブチニル基、ペンチニル基、ヘキシニル基、ヘプチニル基、オクチニル基などが挙げられる。耐久性の観点から、炭素数は2以上が好ましく、30以下が好ましく、20以下がより好ましく、12以下が最も好ましい。 Examples of linear or branched or cyclic alkynyl groups having 2 to 30 carbon atoms include ethynyl group, propionyl group, butynyl group, pentynyl group, hexynyl group, heptynyl group, octynyl group and the like. From the viewpoint of durability, the number of carbon atoms is preferably 2 or more, preferably 30 or less, more preferably 20 or less, and most preferably 12 or less.
 炭素数5以上60以下の芳香族基及び炭素数5以上60以下の複素芳香族基は、単一の環あるいは縮合環として存在していてもよいし、一つの環にさらに別の種類の芳香族基又は複素芳香族基が結合あるいは縮環してできる基であってもよい。 The aromatic group having 5 to 60 carbon atoms and the heteroaromatic group having 5 to 60 carbon atoms may be present as a single ring or a fused ring, and one ring may have another type of aromatic ring The group or heteroaromatic group may be a group formed by bonding or condensation.
 これらの例としては、フェニル基、ナフチル基、アントラセニル基、ベンゾアントラセニル基、フェナントレニル基、ベンゾフェナントレニル基、ピレニル基、クリセニル基、フルオランテニル基、ペリレニル基、ベンゾピレニル基、ベンゾフルオランテニル基、ナフタセニル基、ペンタセニル基、ビフェニル基、ターフェニル基、フルオレニル基、スピロビフルオレニル基、ジヒドロフェナントレニル基、ジヒドロピレニル基、テトラヒドロピレニル基、インデノフルオレニル基、フリル基、ベンゾフリル基、イソベンゾフリル基、ジベンゾフラニル基、チオフェン基、ベンゾチオフェニル基、ジベンゾチオフェニル基、ピロリル基、インドリル基、イソインドリル基、カルバゾリル基、ベンゾカルバゾリル基、インドロカルバゾリル基、インデノカルバゾリル基、ピリジル基、シンノリル基、イソシンノリル基、アクリジル基、フェナンスリジル基、フェノチアジニル基、フェノキサジル基、ピラゾリル基、インダゾリル基、イミダゾリル基、ベンズイミダゾリル基、ナフトイミダゾリル基、フェナンスロイミダゾリル基、ピリジンイミダゾリル基、オキサゾリル基、ベンゾオキサゾリル基、ナフトオキサゾリル基、チアゾリル基、ベンゾチアゾリル基、ピリミジル基、ベンゾピリミジル基、ピリダジニル基、キノキサリニル基、ジアザアントラセニル基、ジアザピレニル基、ピラジニル基、フェノキサジニル基、フェノチアジニル基、ナフチリジニル基、アザカルバゾリル基、ベンゾカルボリニル基、フェナンスロリニル基、トリアゾリル基、ベンゾトリアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアジニル基、2,6-ジフェニル-1,3,5-トリアジン-4-イル基、テトラゾリル基、プリニル基、ベンゾチアジアゾリル基などが挙げられる。 Examples of these include phenyl, naphthyl, anthracenyl, benzoanthracenyl, phenanthrenyl, benzophenanthrenyl, pyrenyl, chrysenyl, fluoranthenyl, perylenyl, benzopyrenyl and benzofur. Orantenyl group, naphthacenyl group, pentacenyl group, biphenyl group, terphenyl group, fluorenyl group, spirobifluorenyl group, dihydrophenanthrenyl group, dihydropyrenyl group, tetrahydropyrenyl group, indenofluorenyl group, furyl Group, benzofuryl group, isobenzofuryl group, dibenzofuranyl group, thiophene group, benzothiophenyl group, dibenzothiophenyl group, pyrrolyl group, indolyl group, isoindolyl group, carbazolyl group, benzocarbazolyl group, indolocarbazolyl Le basis Indenocarbazolyl group, pyridyl group, cinnoyl group, isocinnolyl group, acridyl group, phenanthridyl group, phenothiazinyl group, phenoxazyl group, pyrazolyl group, indazolyl group, imidazolyl group, benzimidazolyl group, naphthoimidazolyl group, phenanthroimidazolyl Group, pyridine imidazolyl group, oxazolyl group, benzoxazolyl group, naphthoxazolyl group, thiazolyl group, benzothiazolyl group, pyrimidyl group, benzopyrimidyl group, pyridazinyl group, quinoxalinyl group, diazaanthracenyl group, diazapyrenyl group, pyrazinyl Group, phenoxazinyl group, phenothiazinyl group, naphthyridinyl group, azacarbazolyl group, benzocarbolinyl group, phenanthrolinyl group, triazolyl group, benzotriazolyl group, Diazolyl group, thiadiazolyl group, triazinyl group, 2,6-diphenyl-1,3,5-triazin-4-yl group, a tetrazolyl group, purinyl group, etc. benzothiadiazolyl group.
 溶解性と耐久性のバランスの観点から、これらの基の炭素数は5以上であることが好ましく、50以下であることが好ましく、40以下であることがより好ましく、30以下であることが最も好ましい。 From the viewpoint of the balance between solubility and durability, the carbon number of these groups is preferably 5 or more, preferably 50 or less, more preferably 40 or less, and most preferably 30 or less. preferable.
 炭素数5以上40以下のアリールオキシ基の例としては、フェノキシ基、メチルフェノキシ基、ナフトキシ基、メトキシフェノキシ基などが挙げられる。溶解性と耐久性のバランスの観点から、これらのアリールオキシ基の炭素数は5以上が好ましく、30以下が好ましく、25以下がより好ましく、20以下が最も好ましい。 Examples of the aryloxy group having 5 to 40 carbon atoms include a phenoxy group, a methylphenoxy group, a naphthoxy group, a methoxyphenoxy group and the like. From the viewpoint of the balance between solubility and durability, the carbon number of these aryloxy groups is preferably 5 or more, preferably 30 or less, more preferably 25 or less, and most preferably 20 or less.
 炭素数5以上40以下のアリールチオ基の例としては、フェニルチオ基、メチルフェニルチオ基、ナフチルチオ基、メトキシフェニルチオ基などが挙げられる。溶解性と耐久性のバランスの観点から、これらのアリールチオ基の炭素数は5以上が好ましく、30以下が好ましく、25以下がより好ましく、20以下が最も好ましい。 Examples of the arylthio group having 5 to 40 carbon atoms include a phenylthio group, a methylphenylthio group, a naphthylthio group, a methoxyphenylthio group and the like. From the viewpoint of the balance between solubility and durability, the carbon number of these arylthio groups is preferably 5 or more, preferably 30 or less, more preferably 25 or less, and most preferably 20 or less.
 炭素数5以上60以下のアラルキル基の例としては、1,1-ジメチル-1-フェニルメチル基、1,1-ジ(n-ブチル)-1-フェニルメチル基、1,1-ジ(n-ヘキシル)-1-フェニルメチル基、1,1-ジ(n-オクチル)-1-フェニルメチル基、フェニルメチル基、フェニルエチル基、3-フェニル-1-プロピル基、4-フェニル-1-n-ブチル基、1-メチル-1-フェニルエチル基、5-フェニル-1-n-プロピル基、6-フェニル-1-n-ヘキシル基、6-ナフチル-1-n-ヘキシル基、7-フェニル-1-n-ヘプチル基、8-フェニル-1-n-オクチル基、4-フェニルシクロヘキシル基などが挙げられる。溶解性と耐久性のバランスの観点から、これらのアラルキル基の炭素数は5以上が好ましく、40以下であることがより好ましい。 Examples of the aralkyl group having 5 to 60 carbon atoms include a 1,1-dimethyl-1-phenylmethyl group, a 1,1-di (n-butyl) -1-phenylmethyl group and a 1,1-di (n) group. -Hexyl) -1-phenylmethyl group, 1,1-di (n-octyl) -1-phenylmethyl group, phenylmethyl group, phenylethyl group, 3-phenyl-1-propyl group, 4-phenyl-1-phenyl group n-butyl group, 1-methyl-1-phenylethyl group, 5-phenyl-1-n-propyl group, 6-phenyl-1-n-hexyl group, 6-naphthyl-1-n-hexyl group, 7- Examples include phenyl-1-n-heptyl group, 8-phenyl-1-n-octyl group, 4-phenylcyclohexyl group and the like. From the viewpoint of the balance between solubility and durability, the carbon number of these aralkyl groups is preferably 5 or more, and more preferably 40 or less.
 炭素数5以上60以下のヘテロアラルキル基の例としては、1,1-ジメチル-1-(2-ピリジル)メチル基、1,1-ジ(n-ヘキシル)-1-(2-ピリジル)メチル基、(2-ピリジル)メチル基、(2-ピリジル)エチル基、3-(2-ピリジル)-1-プロピル基、4-(2-ピリジル)-1-n-ブチル基、1-メチル-1-(2-ピリジル)エチル基、5-(2-ピリジル)-1-n-プロピル基、6-(2-ピリジル)-1-n-ヘキシル基、6-(2-ピリミジル)-1-n-ヘキシル基、6-(2,6-ジフェニル-1,3,5-トリアジン-4-イル)-1-n-ヘキシル基、7-(2-ピリジル)-1-n-ヘプチル基、8-(2-ピリジル)-1-n-オクチル基、4-(2-ピリジル)シクロヘキシル基などが挙げられる。溶解性と耐久性のバランスの観点から、これらのヘテロアラルキル基の炭素数は5以上であることが好ましく、50以下であることが好ましく、40以下であることがより好ましく、30以下であることが最も好ましい。 Examples of heteroaralkyl groups having 5 to 60 carbon atoms include a 1,1-dimethyl-1- (2-pyridyl) methyl group and 1,1-di (n-hexyl) -1- (2-pyridyl) methyl Group, (2-pyridyl) methyl group, (2-pyridyl) ethyl group, 3- (2-pyridyl) -1-propyl group, 4- (2-pyridyl) -1-n-butyl group, 1-methyl- 1- (2-pyridyl) ethyl group, 5- (2-pyridyl) -1-n-propyl group, 6- (2-pyridyl) -1-n-hexyl group, 6- (2-pyrimidyl) -1- group n-hexyl group, 6- (2,6-diphenyl-1,3,5-triazin-4-yl) -1-n-hexyl group, 7- (2-pyridyl) -1-n-heptyl group, 8 -(2-pyridyl) -1-n-octyl group, 4- (2-pyridyl) cyclohexyl group And the like. From the viewpoint of the balance between solubility and durability, the carbon number of these heteroaralkyl groups is preferably 5 or more, preferably 50 or less, more preferably 40 or less, and 30 or less. Is most preferred.
 炭素数10以上40以下のジアリールアミノ基の例としては、ジフェニルアミノ基、フェニル(ナフチル)アミノ基、ジ(ビフェニル)アミノ基、ジ(p-ターフェニル)アミノ基などが挙げられる。溶解性と耐久性のバランスの観点から、これらのジアリールアミノ基の炭素数は10以上であることが好ましく、36以下であることが好ましく、30以下であることがより好ましく、25以下であることが最も好ましい。 Examples of the diarylamino group having 10 to 40 carbon atoms include a diphenylamino group, a phenyl (naphthyl) amino group, a di (biphenyl) amino group, and a di (p-terphenyl) amino group. From the viewpoint of the balance between solubility and durability, the carbon number of these diarylamino groups is preferably 10 or more, preferably 36 or less, more preferably 30 or less, and 25 or less. Is most preferred.
 炭素数10以上40以下のアリールヘテロアリールアミノ基の例としては、フェニル(2-ピリジル)アミノ基、フェニル(2,6-ジフェニル-1,3,5-トリアジン-4-イル)アミノ基などが挙げられる。溶解性と耐久性のバランスの観点から、これらのアリールヘテロアリールアミノ基の炭素数は10以上であることが好ましく、36以下であることが好ましく、30以下であることがより好ましく、25以下であることが最も好ましい。 Examples of the arylheteroarylamino group having 10 to 40 carbon atoms include phenyl (2-pyridyl) amino group, phenyl (2,6-diphenyl-1,3,5-triazin-4-yl) amino group and the like It can be mentioned. From the viewpoint of the balance between solubility and durability, the carbon number of these arylheteroarylamino groups is preferably 10 or more, preferably 36 or less, more preferably 30 or less, and 25 or less. Most preferably.
 炭素数10以上40以下のジヘテロアリールアミノ基としては、ジ(2-ピリジル)アミノ基、ジ(2,6-ジフェニル-1,3,5-トリアジン-4-イル)アミノ基などが挙げられる。溶解性と耐久性のバランスの観点から、これらのジヘテロアリールアミノ基の炭素数は10以上であることが好ましく、36以下であることが好ましく、30以下であることがより好ましく、25以下であることが最も好ましい。 Examples of the diheteroarylamino group having 10 to 40 carbon atoms include di (2-pyridyl) amino group and di (2,6-diphenyl-1,3,5-triazin-4-yl) amino group. . From the viewpoint of the balance between solubility and durability, the carbon number of these diheteroarylamino groups is preferably 10 or more, preferably 36 or less, more preferably 30 or less, and 25 or less. Most preferably.
 R~Rとしては特に有機電界発光素子における発光材料としての耐久性を損なわないという観点から、それぞれ独立に、水素原子、F、-CN、炭素数1以上30以下の、直鎖、分岐もしくは環状アルキル基、炭素数5以上40以下のアリールオキシ基、炭素数5以上40以下のアリールチオ基、炭素数10以上40以下のジアリールアミノ基、炭素数5以上60以下のアラルキル基、炭素数5以上60以下の芳香族基また炭素数5以上60以下の複素芳香族基が好ましく、水素原子、F、-CN、アルキル基、アラルキル基、芳香族基又は複素芳香族基が特に好ましく、水素原子、F、-CN、アルキル基、芳香族基、複素芳香族基が最も好ましい。 R 1 to R 4 each independently represent a hydrogen atom, F, -CN, a linear or branched C 1 -C 30 chain, from the viewpoint of not impairing the durability as a light emitting material in an organic electroluminescent device. Or a cyclic alkyl group, an aryloxy group having 5 to 40 carbon atoms, an arylthio group having 5 to 40 carbon atoms, a diarylamino group having 10 to 40 carbon atoms, an aralkyl group having 5 to 60 carbon atoms, 5 carbon atoms An aromatic group having 60 or less and a heteroaromatic group having 5 to 60 carbon atoms are preferable, and a hydrogen atom, F, -CN, an alkyl group, an aralkyl group, an aromatic group or a heteroaromatic group is particularly preferable, and a hydrogen atom , F, -CN, an alkyl group, an aromatic group and a heteroaromatic group are most preferable.
 R~Rが置換基である場合、その置換位置は特に限定されない。但し、置換基であるRは、環Cyがベンゼン環である場合において、錯体の耐久性を特に重視する場合には、該ベンゼン環の4位又は5位に少なくとも一つのRが置換されることが好ましく、4位に置換されることがさらに好ましい。この場合のRは、上述の芳香族基又は複素芳香族基であることが好ましい。 When R 1 to R 4 are substituents, the substitution position is not particularly limited. However, R 3 is a substituent, when the ring Cy 3 is a benzene ring, particularly when emphasis on durability of the complex, at least one of R 3 in the 4-position or 5-position of the benzene ring substituted It is preferable to be substituted, and more preferable to be substituted at the 4-position. In this case, R 3 is preferably the above-mentioned aromatic group or heteroaromatic group.
 置換基であるRは、環Cyにおいてイリジウム原子に配位しない窒素原子が存在する場合には、その窒素原子の隣接位に、少なくとも一つ存在することが好ましい。この場合、該窒素原子を立体障害により遮蔽することにより、溶媒和などの外部からの影響を緩和し、発光波長その他物性への影響を抑制できる傾向がある。 When a nitrogen atom which is not coordinated to the iridium atom in the ring Cy 2 is present, at least one R 2 substituent is preferably present at a position adjacent to the nitrogen atom. In this case, by shielding the nitrogen atom by steric hindrance, there is a tendency to be able to alleviate the external influence such as solvation and to suppress the influence on the emission wavelength and other physical properties.
<R’>
 R’はそれぞれ独立に、水素原子、D、F、Cl、Br、I、-N(R'')、-CN、-NO、-Si(R'')、-B(OR'')、-C(=O)R''、-P(=O)(R'')、-S(=O)R''、-OSOR''、炭素数1以上30以下の、直鎖、分岐もしくは環状アルキル基、炭素数1以上30以下の、直鎖、分岐もしくは環状アルコキシ基、炭素数1以上30以下の、直鎖、分岐もしくは環状アルキルチオ基、炭素数2以上30以下の、直鎖、分岐もしくは環状アルケニル基、炭素数2以上30以下の、直鎖、分岐もしくは環状アルキニル基、炭素数5以上60以下の芳香族基、炭素数5以上60以下の複素芳香族基、炭素数5以上40以下のアリールオキシ基、炭素数5以上40以下のアリールチオ基、炭素数5以上60以下のアラルキル基、炭素数5以上60以下のヘテロアラルキル基、炭素数10以上40以下のジアリールアミノ基、炭素数10以上40以下のアリールヘテロアリールアミノ基又は炭素数10以上40以下のジヘテロアリールアミノ基から選ばれる。
<R '>
Wherein each R 'is independently a hydrogen atom, D, F, Cl, Br , I, -N (R'') 2, -CN, -NO 2, -Si (R'') 3, -B (OR'') 2 , -C (= O) R'', -P (= O) (R'') 2 , -S (= O) 2 R'', -OSO 2 R'', having 1 to 30 carbon atoms The following linear, branched or cyclic alkyl group, linear or branched alkoxy group having 1 to 30 carbon atoms, linear or branched alkyl cyclic group having 1 to 30 carbon atoms, 2 or more carbon atoms 30 or less linear, branched or cyclic alkenyl groups, 2 to 30 carbon atoms, linear, branched or cyclic alkynyl groups, 5 to 60 carbon atoms, aromatic groups, 5 to 60 carbon atoms Group, aryloxy group having 5 to 40 carbon atoms, arylthio group having 5 to 40 carbon atoms, 5 or more carbon atoms An aralkyl group of 0 or less, a heteroaralkyl group having 5 to 60 carbon atoms, a diarylamino group having 10 to 40 carbon atoms, an arylheteroarylamino group having 10 to 40 carbon atoms, or a dihetero having 10 to 40 carbon atoms It is selected from an arylamino group.
 該アルキル基、該アルコキシ基、該アルキルチオ基、該アルケニル基および該アルキニル基は、さらに1つ以上のR''で置換されていてもよく、これらの基における1つの-CH-基あるいは2以上の隣接していない-CH-基が、-C(-R'')=C(-R'')-、-C≡C-、-Si(-R'')-、-C(=O)-、-NR''-、-O-、-S-、-CONR''-もしくは2価の芳香族基に置き換えられていてもよい。また、これらの基における一つ以上の水素原子が、D、F、Cl、Br、I又は-CNで置換されていてもよい。 The alkyl group, the alkoxy group, the alkylthio group, the alkenyl group and the alkynyl group may be further substituted by one or more R ′ ′, and one —CH 2 — group in these groups or 2 The above non-adjacent -CH 2 -group is -C (-R '') = C (-R '')-, -C≡C-, -Si (-R '') 2- , -C (= O)-, -NR ''-, -O-, -S-, -CONR ''-or a divalent aromatic group may be substituted. In addition, one or more hydrogen atoms in these groups may be substituted with D, F, Cl, Br, I or -CN.
 また、該芳香族基、該複素芳香族基、該アリールオキシ基、該アリールチオ基、該アラルキル基、該ヘテロアラルキル基、該ジアリールアミノ基、該アリールヘテロアリールアミノ基および該ジヘテロアリールアミノ基は、さらに1つ以上のR''で置換されていてもよい。R''については後述する。 Also, the aromatic group, the heteroaromatic group, the aryloxy group, the arylthio group, the aralkyl group, the heteroaralkyl group, the diarylamino group, the arylheteroarylamino group and the diheteroarylamino group , And may be further substituted by one or more R ′ ′. The details of R ′ ′ will be described later.
 また、2つ以上の隣接するR’が互いに結合して、脂肪族又は芳香族もしくはヘテロ芳香族の、単環もしくは縮合環を形成してもよい。 In addition, two or more adjacent R's may be bonded to each other to form an aliphatic or aromatic or heteroaromatic single ring or fused ring.
 上述の基の例はいずれも、R~Rの項の記載と同義である。 All the examples of the above-mentioned groups are as defined in the section of R 1 to R 4 .
<R''>
 R''はそれぞれ独立に、水素原子、D、F、-CN、炭素数1以上20以下の脂肪族炭化水素基、炭素数1以上20以下の芳香族基又は炭素数1以上20以下の複素芳香族基から選ばれる。
<R ''>
R ′ ′ each independently represents a hydrogen atom, D, F, —CN, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an aromatic group having 1 to 20 carbon atoms, or a complex having 1 to 20 carbon atoms It is selected from aromatic groups.
 2つ以上の隣接するR''が互いに結合して、脂肪族又は芳香族もしくはヘテロ芳香族の、単環もしくは縮合環を形成してもよい。 Two or more adjacent R ′ ′ may bond to each other to form an aliphatic or aromatic or heteroaromatic single ring or fused ring.
<環Cyと環Cyの組み合わせ>
 発光スペクトルにおける半値幅を広くし、照明用途として最も好ましい性能を示しうる補助配位子としての環Cyと環Cyの組み合わせは、2-(9H-フルオレン-2-イル)ベンゾチアゾールである。
<Combination of ring Cy 3 and ring Cy 4>
The combination of the ring Cy 3 and the ring Cy 4 as an auxiliary ligand capable of widening the half bandwidth in the emission spectrum and exhibiting the most preferable performance as a lighting application is 2- (9H-fluoren-2-yl) benzothiazole .
<具体例>
 以下に、後掲の実施例に示した以外の本発明のイリジウム錯体化合物の好ましい具体例を示すが、本発明はこれらに限定されるものではない。
<Specific example>
Preferred specific examples of the iridium complex compound of the present invention other than those shown in the following examples are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
<新規イリジウム錯体化合物>
 本発明は下記式(7)で表される新規のイリジウム錯体化合物を提供するものである。
<New iridium complex compounds>
The present invention provides a novel iridium complex compound represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000025
[式(7)において、Irはイリジウム原子を表す。
 C~Cは炭素原子を表し、
 N及びNは窒素原子を表す。
 環Cyは炭素原子CおよびCを含む芳香環又は複素芳香環を表し、
 環Cyは炭素原子Cおよび窒素原子Nを含む複素芳香環を表し
 X23~X26はそれぞれ独立に、置換基を有していてもよい炭素原子、又は窒素原子を表し、
 Yは酸素原子、硫黄原子又はセレン原子を表し、
 R10~R12は、それぞれ独立に、水素原子又は置換基を表す。
 a´およびb´は、それぞれ環CyおよびCyに置換しうる最大数の整数を表し、c´は8である。
 m´およびn´は1又は2を表し、m´+n´は3である。]
Figure JPOXMLDOC01-appb-C000025
[In Formula (7), Ir represents an iridium atom.
C 7 to C 9 represent a carbon atom,
N 3 and N 4 represents a nitrogen atom.
Ring Cy 5 represents an aromatic ring or heteroaromatic ring containing carbon atoms C 7 and C 8 ,
The ring Cy 6 represents a heteroaromatic ring containing a carbon atom C 9 and a nitrogen atom N 3, and X 23 to X 26 each independently represent a carbon atom which may have a substituent, or a nitrogen atom,
Y 2 represents an oxygen atom, a sulfur atom or a selenium atom,
Each of R 10 to R 12 independently represents a hydrogen atom or a substituent.
a ′ and b ′ represent the maximum number of integers that can be substituted on the rings Cy 5 and Cy 6 respectively, and c ′ is 8.
m 'and n' represent 1 or 2, and m '+ n' is 3. ]
 式(7)で表されるイリジウム錯体化合物は、特定の配位子を組み合わせてヘテロレプチック型とすることにより、長鎖アルキル基を必ずしも必要とすることなく、溶剤溶解性を改善することができる。 The iridium complex compound represented by the formula (7) can improve solvent solubility without necessarily requiring a long-chain alkyl group by combining specific ligands into a heteroleptic type. it can.
 本発明者は、式(7)において、補助配位子環としてR12を有するフルオレン構造を有する場合に、特に発光スペクトルの半値幅が広幅化することを見出した。特に、これは主配位子環Cyおよび環Cyの種類に依らず、窒素原子Nを有する環がベンゾチアゾール環であるときに特に著しいことを見出した。
 この現象の理由は明らかではないが、補助配位子側のHOMOレベルが浅くなることによって励起状態の電子が失活する際、一部補助配位子側の軌道にも遷移するため、主配位子内での遷移と競合するため、複数のエネルギーギャップによる発光を示すためと推測する。
The inventors of the present invention have found that particularly in the case of having a fluorene structure having R 12 as an auxiliary ligand ring in the formula (7), the half bandwidth of the emission spectrum is broadened. In particular, it has been found that this is particularly remarkable when the ring having the nitrogen atom N 4 is a benzothiazole ring, regardless of the type of main ligand ring Cy 5 and the ring Cy 6 .
Although the reason for this phenomenon is not clear, when the excited state electron is deactivated by the HOMO level on the auxiliary ligand side becoming shallow, it partially transits to the orbital on the auxiliary ligand side as well. In order to compete with the transition in the order, we speculate that it is to show light emission by multiple energy gaps.
<環Cy
 環Cyはイリジウム原子に配位する炭素原子CおよびCを含む芳香環又は複素芳香環を表す。その具体例および好ましい範囲は式(1)の環Cyと同義である。これらの中でも、特に式(1)の環Cyとして挙げた式(2)で表されるフルオレン構造が好ましい。
<Ring Cy 5 >
Ring Cy 5 represents an aromatic ring or a heteroaromatic ring containing carbon atoms C 7 and C 8 coordinating to the iridium atom. Specific examples and preferred ranges are the same as the ring Cy 3 of formula (1). Among these, the fluorene structure represented by Formula (2) mentioned as ring Cy 1 of Formula (1) is particularly preferable.
<環Cy
 環Cyはイリジウム原子に配位する炭素原子Cおよび窒素原子Nを含む複素芳香環を表す。その具体例としては、式(1)の環Cyの複素芳香環で示したものが挙げられる。これらの中でも、特に式(1)の環Cyとして挙げた複素芳香環が好ましい。
<Ring Cy 6 >
The ring Cy 6 represents a heteroaromatic ring containing a carbon atom C 9 coordinating to an iridium atom and a nitrogen atom N 3 . Specific examples thereof include those shown as the heteroaromatic ring of the ring Cy 3 of the formula (1). Among these, heteroaromatic rings mentioned as ring Cy 2 of formula (1) are particularly preferable.
<X23~X26
 X23~X26はそれぞれ独立に、炭素原子又は窒素原子を表す。発光波長を特に赤色領域に調節すること、および錯体の合成のしやすさの観点から、X23~X26のうちの窒素原子の好ましい数は0又は1である。
<X 23 to X 26 >
Each of X 23 to X 26 independently represents a carbon atom or a nitrogen atom. From the viewpoint of adjusting the emission wavelength particularly to the red region and the ease of synthesis of the complex, the preferred number of nitrogen atoms among X 23 to X 26 is 0 or 1.
 X23~X26が炭素原子の場合、この炭素原子には水素原子が結合していてもよく、前述のR~Rの置換基として例示したもの、好ましくはF、アルキル基、芳香族基または複素芳香族基が置換していてもよい。イリジウム錯体化合物の溶解性を損なわないという観点から、X23~X26を含むベンゾチアゾール環を構成する原子数は13以下が好ましい。 When X 23 to X 26 are a carbon atom, a hydrogen atom may be bonded to this carbon atom, and those exemplified as the aforementioned substituent of R 1 to R 4 , preferably F, an alkyl group, an aromatic group The group or heteroaromatic group may be substituted. From the viewpoint of not impairing the solubility of the iridium complex compound, the number of atoms constituting the benzothiazole ring containing X 23 to X 26 is preferably 13 or less.
<Y
 Yは酸素原子、硫黄原子又はセレン原子を表す。錯体の安定性の点から、Yは好ましくは硫黄原子である。
<Y 2 >
Y 2 represents an oxygen atom, a sulfur atom or a selenium atom. From the viewpoint of the stability of the complex, Y 2 is preferably a sulfur atom.
<R10~R12
 R10~R12は水素原子又は置換基を表す。R10~R12はそれぞれ独立であり、同じでも異なっていてもよい。
<R 10 to R 12 >
R 10 to R 12 represent a hydrogen atom or a substituent. R 10 to R 12 are each independently, and may be the same or different.
 a´およびb´は、それぞれ環CyおよびCyに置換しうる最大数の整数を表し、c´は8である。 a ′ and b ′ represent the maximum number of integers that can be substituted on the rings Cy 5 and Cy 6 respectively, and c ′ is 8.
 R10~R12は、それらが複数個ある場合、それぞれ同一であっても異なっていてもよい。
 2つ以上隣接するR10~R12同士が、互いに結合して、脂肪族又は芳香族もしくは複素芳香族の、単環又は縮合環を形成してもよい。
When there are a plurality of R 10 to R 12 , they may be the same or different.
Two or more adjacent R 10 to R 12 may be bonded to each other to form an aliphatic or aromatic or heteroaromatic single ring or a fused ring.
 R10~R12の置換基の具体例及びその好適例は、式(1)のR~Rと同義である。 Specific examples of the substituents of R 10 to R 12 and preferred examples thereof are the same as R 1 to R 4 in formula (1).
<最大発光波長>
 本発明のイリジウム錯体化合物は、発光波長をより長波長にすることができる。発光波長の長さを示す指標としては、以下に示す手順で測定した最大発光波長が580nm以上が好ましく、590nm以上がより好ましく、600nm以上がさらに好ましく、700nm以下が好ましく、680nm以下がより好ましい。最大発光波長がこの範囲であることで、有機電界発光素子として好適な赤色発光材料の好ましい色を発現できる傾向にある。
<Maximum emission wavelength>
The iridium complex compound of the present invention can make the emission wavelength longer. The index indicating the length of the emission wavelength is preferably 580 nm or more, more preferably 590 nm or more, still more preferably 600 nm or more, still more preferably 700 nm or less, and most preferably 680 nm or less. When the maximum emission wavelength is in this range, it tends to be able to express the preferable color of the red light emitting material suitable as the organic electroluminescent element.
 (最大発光波長の測定方法)
 常温下で、2-メチルテトラヒドロフランに、イリジウム錯体化合物を濃度1×10-4mol/L以下で溶解した溶液について、分光光度計(浜松ホトニクス社製 有機EL量子収率測定装置C9920-02)で燐光スペクトルを測定する。得られた燐光スペクトル強度の最大値を示す波長を、最大発光波長とす。
(How to measure the maximum emission wavelength)
A solution of an iridium complex compound dissolved in 2-methyltetrahydrofuran at a concentration of 1 × 10 -4 mol / L or less at normal temperature using a spectrophotometer (manufactured by Hamamatsu Photonics Co., Ltd., organic EL quantum yield measurement device C9920-02) Measure the phosphorescence spectrum. The wavelength showing the maximum value of the obtained phosphorescence spectrum intensity is taken as the maximum emission wavelength.
<イリジウム錯体化合物の合成方法>
<配位子の合成方法>
 本発明のイリジウム錯体化合物の配位子は、既知の方法の組み合わせなどにより合成され得る。特に、環Cyのフルオレン環は、例えば、フルオレン環の2-位又は3-位に臭素、-B(OH)基、アセチル基あるいはカルボキシ基を有する化合物を原料として用いることにより容易に導入できる。
<Method of synthesizing iridium complex compound>
<Method of synthesizing ligand>
The ligand of the iridium complex compound of the present invention can be synthesized by a combination of known methods and the like. In particular, the fluorene ring of ring Cy 1 is easily introduced, for example, by using a compound having bromine, -B (OH) 2 group, an acetyl group or a carboxy group at the 2- or 3-position of the fluorene ring as a raw material it can.
 環Cyと環Cyを含む配位子の合成は、これらの原料をさらに、ハロゲン化キノリン類との鈴木-宮浦カップリング反応、2-ホルミル又はアシルアニリン類あるいは互いにオルト位にあるアシルーアミノピリジン類等とのFriedlaender環化反応(Chem.Rev.2009、109、2652、又は、Organic Reactions,28(2),37-201)など既知の反応により合成することができる。 Synthesis of a ligand containing a ring Cy 1 and a ring Cy 2 may be carried out by further subjecting these raw materials to Suzuki-Miyaura coupling reaction with halogenated quinolines, 2-formyl or acylanilines, or acyls in an ortho position to each other. They can be synthesized by known reactions such as Friedlaender cyclization reaction (Chem. Rev. 2009, 109, 2652 or Organic Reactions, 28 (2), 37-201) with aminopyridines and the like.
<イリジウム錯体化合物の合成方法>>
 本発明のイリジウム錯体化合物は、既知の方法の組み合わせなどにより合成できる。以下に詳しく説明する。
<Method of synthesizing iridium complex compound>
The iridium complex compound of the present invention can be synthesized by a combination of known methods and the like. Details will be described below.
 イリジウム錯体化合物の合成方法としては、判りやすさのためにフェニルピリジン配位子を例として用いた下記式[A]に示すような塩素架橋イリジウム二核錯体を経由する方法(M.G.Colombo,T.C.Brunold,T.Riedener,H.U.GudelInorg.Chem.,1994,33,545-550)、下記式[B]二核錯体からさらに塩素架橋をアセチルアセトナートと交換させ単核錯体へ変換したのち目的物を得る方法(S.Lamansky,P.Djurovich,D.Murphy,F.Abdel-Razzaq,R.Kwong,I.Tsyba,M.Borz,B.Mui,R.Bau,M.Thompson,Inorg.Chem.,2001,40,1704-1711)等が例示できるが、これらに限定されるものではない。 As a synthesis method of the iridium complex compound, a method via a chlorine-bridged iridium binuclear complex as shown in the following formula [A] using a phenylpyridine ligand as an example for the sake of clarity (M. G. Colombo , T. C. Brunold, T. Riedener, H. U. Gudel Inorg. Chem., 1994, 33, 545-550), a chlorine bridge is further exchanged with acetylacetonate from the following formula [B] dinuclear complex, and mononuclear Method for obtaining the desired substance after conversion to a complex (S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, R. Kwong, I. Tsyba, M. Borz, B. Mui, R. Bau, M. Thompson, Inorg. Chem., 2001, 40, 1704-1711). Although but it can be exemplified, but the invention is not limited thereto.
 例えば、下記式[A]で表される典型的な反応の条件は以下のとおりである。
 第一段階として、第一の配位子2当量と塩化イリジウムn水和物1当量の反応により塩素架橋イリジウム二核錯体を合成する。溶媒は通常2-エトキシエタノールと水の混合溶媒が用いられるが、無溶媒あるいは他の溶媒を用いてもよい。配位子を過剰量用いたり、塩基等の添加剤を用いて反応を促進することもできる。塩素に代えて臭素など他の架橋性陰イオン配位子を使用することもできる。
For example, conditions of a typical reaction represented by the following formula [A] are as follows.
As a first step, a chlorine-bridged iridium binuclear complex is synthesized by the reaction of two equivalents of the first ligand and one equivalent of iridium chloride n-hydrate. As the solvent, a mixed solvent of 2-ethoxyethanol and water is usually used, but no solvent or another solvent may be used. The reaction can also be promoted by using an excess amount of a ligand or using an additive such as a base. Instead of chlorine, other crosslinkable anionic ligands such as bromine can also be used.
 反応温度に特に制限はないが、通常は0℃以上が好ましく、50℃以上がより好ましい。また、250℃以下が好ましく、150℃以下がより好ましい。反応温度がこの範囲であることで副生物や分解反応を伴うことなく目的の反応のみが進行し、高い選択性が得られる傾向にある。 The reaction temperature is not particularly limited, but generally, 0 ° C. or more is preferable, and 50 ° C. or more is more preferable. Moreover, 250 degrees C or less is preferable and 150 degrees C or less is more preferable. When the reaction temperature is in this range, only the desired reaction proceeds without by-products or decomposition reactions, and high selectivity tends to be obtained.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 二段階目は、トリフルオロメタンスルホン酸銀のようなハロゲンイオン捕捉剤を添加し第二の配位子と接触させることにより目的とする錯体を得る。溶媒は通常エトキシエタノール又はジグリムが用いられるが、配位子の種類により無溶媒あるいは他の溶媒を使用することができ、複数の溶媒を混合して使用することもできる。ハロゲンイオン捕捉剤を添加しなくても反応が進行する場合があるので必ずしも必要ではないが、反応収率を高め、より量子収率が高いフェイシャル異性体を選択的に合成するには該捕捉剤の添加が有利である。反応温度に特に制限はないが、通常0℃~250℃の範囲で行われる。 In the second step, a halide ion scavenger such as silver trifluoromethanesulfonate is added and brought into contact with the second ligand to obtain the target complex. The solvent is usually ethoxyethanol or diglyme, but depending on the type of ligand, no solvent or other solvent can be used, and a plurality of solvents can be mixed and used. Although the reaction may proceed without the addition of a halogen ion scavenger, it is not always necessary, but in order to selectively synthesize facial isomers having higher reaction yield and higher quantum yield, the scavenger The addition of is preferred. Although the reaction temperature is not particularly limited, the reaction is usually carried out in the range of 0 ° C to 250 ° C.
 下記式[B]で表される典型的な反応条件を説明する。
 第一段階の二核錯体は式[A]と同様に合成できる。
 第二段階は、該二核錯体にアセチルアセトンのような1,3-ジオン化合物を1当量以上、及び、炭酸ナトリウムのような該1,3-ジオン化合物の活性水素を引き抜き得る塩基性化合物を1当量以上反応させることにより、1,3-ジオナト配位子が配位する単核錯体へと変換する。通常原料の二核錯体を溶解しうるエトキシエタノールやジクロロメタンなどの溶媒が使用されるが、配位子が液状である場合無溶媒で実施することも可能である。反応温度に特に制限はないが、通常は0℃~200℃の範囲内で行われる。
Typical reaction conditions represented by the following formula [B] will be described.
The first stage binuclear complex can be synthesized in the same manner as in the formula [A].
In the second step, one or more equivalents of a 1,3-dione compound such as acetylacetone and the active hydrogen of the 1,3-dione compound such as sodium carbonate can be extracted to the binuclear complex; The reaction is converted to a mononuclear complex in which a 1,3-dionato ligand is coordinated by reaction with an equivalent or more. Usually, a solvent such as ethoxyethanol or dichloromethane capable of dissolving the starting binuclear complex is used, but if the ligand is liquid, it can be carried out without a solvent. While the reaction temperature is not particularly limited, it is usually carried out in the range of 0 ° C to 200 ° C.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 第三段階は、第二の配位子を1当量以上反応させる。溶媒の種類と量は特に制限はなく、第二の配位子が反応温度で液状である場合には無溶媒でもよい。反応温度も特に制限はないが、反応性が若干乏しいため100℃~300℃の比較的高温下で反応させることが多い。そのため、グリセリンなど高沸点の溶媒が好ましく用いられる。 The third step is to react the second ligand with one or more equivalents. The type and amount of solvent are not particularly limited, and may be solventless if the second ligand is liquid at the reaction temperature. The reaction temperature is also not particularly limited, but it is often reacted at a relatively high temperature of 100 ° C. to 300 ° C. because the reactivity is somewhat poor. Therefore, a high boiling point solvent such as glycerin is preferably used.
 最終反応後は未反応原料や反応副生物及び溶媒を除くために精製を行う。通常の有機合成化学における精製操作を適用することができるが、上記の非特許文献記載のように主として順相のシリカゲルカラムクロマトグラフィーによる精製が行われる。展開液にはヘキサン、ヘプタン、ジクロロメタン、クロロホルム、酢酸エチル、トルエン、メチルエチルケトン、メタノールの単一又は混合液を使用できる。精製は条件を変え複数回行ってもよい。その他のクロマトグラフィー技術(逆相シリカゲルクロマトグラフィー、サイズ排除クロマトグラフィー、ペーパークロマトグラフィー)や、分液洗浄、再沈殿、再結晶、粉体の懸濁洗浄、減圧乾燥などの精製操作を必要に応じて施すことができる。 After the final reaction, purification is performed to remove unreacted starting materials, reaction byproducts and solvents. Although purification procedures in ordinary organic synthesis chemistry can be applied, purification by silica gel column chromatography mainly in normal phase is carried out as described in the above non-patent literature. As a developing solution, single or mixed liquid of hexane, heptane, dichloromethane, chloroform, ethyl acetate, toluene, methyl ethyl ketone and methanol can be used. Purification may be performed multiple times under different conditions. Other chromatography techniques (reverse phase silica gel chromatography, size exclusion chromatography, paper chromatography), and separation operations such as separation washing, reprecipitation, recrystallization, suspension washing of powder, vacuum drying, etc. as necessary. Can be applied.
<イリジウム錯体化合物の用途>
 本発明のイリジウム錯体化合物は、有機電界発光素子に用いられる材料、すなわち有機電界発光素子の赤色発光材料として好適に使用可能であり、有機電界発光素子やその他の発光素子等の発光材料としても好適に使用可能である。
<Uses of iridium complex compounds>
The iridium complex compound of the present invention can be suitably used as a material used for an organic electroluminescent device, that is, as a red light emitting material of an organic electroluminescent device, and also as a light emitting material for an organic electroluminescent device and other light emitting devices. It can be used for
[イリジウム錯体化合物含有組成物]
 本発明のイリジウム錯体化合物は、溶剤溶解性に優れることから、溶剤とともに使用することが好ましい。以下、本発明のイリジウム錯体化合物と溶剤とを含有する本発明の組成物(以下、「イリジウム錯体化合物含有組成物」と称す場合がある。)について説明する。
[Iridium Complex Compound-Containing Composition]
The iridium complex compound of the present invention is preferably used together with a solvent since it is excellent in solvent solubility. Hereinafter, the composition of the present invention containing the iridium complex compound of the present invention and a solvent (hereinafter sometimes referred to as “iridium complex compound-containing composition”) will be described.
 本発明のイリジウム錯体化合物含有組成物は、本発明のイリジウム錯体化合物および溶剤を含有する。本発明のイリジウム錯体化合物含有組成物は通常湿式成膜法で層や膜を形成するために用いられ、特に有機電界発光素子の有機層を形成するために用いられることが好ましい。該有機層は、特に発光層であることが好ましい The iridium complex compound containing composition of this invention contains the iridium complex compound of this invention, and a solvent. The iridium complex compound-containing composition of the present invention is generally used to form a layer or a film by a wet film formation method, and is particularly preferably used to form an organic layer of an organic electroluminescent device. The organic layer is particularly preferably a light emitting layer
 イリジウム錯体化合物含有組成物は、有機電界発光素子用組成物であることが好ましく、更に発光層形成用組成物として用いられることが特に好ましい。 The iridium complex compound-containing composition is preferably a composition for an organic electroluminescent device, and is particularly preferably used as a composition for forming a light emitting layer.
 イリジウム錯体化合物含有組成物における本発明のイリジウム錯体化合物の含有量は、通常0.001質量%以上、好ましくは0.01質量%以上、通常99.9質量%以下、好ましくは99質量%以下である。組成物中のイリジウム錯体化合物の含有量をこの範囲とすることにより、隣接する層(例えば、正孔輸送層や正孔阻止層)から発光層へ効率よく、正孔や電子の注入が行われ、駆動電圧を低減することができる。
 本発明のイリジウム錯体化合物はイリジウム錯体化合物含有組成物中に、1種のみ含まれていてもよく、2種以上が組み合わされて含まれていてもよい。
The content of the iridium complex compound of the present invention in the iridium complex compound-containing composition is usually 0.001% by mass or more, preferably 0.01% by mass or more, and usually 99.9% by mass or less, preferably 99% by mass or less is there. By setting the content of the iridium complex compound in the composition in this range, injection of holes and electrons is efficiently performed from the adjacent layer (for example, the hole transport layer or the hole blocking layer) to the light emitting layer. The drive voltage can be reduced.
The iridium complex compound of the present invention may be contained singly or in combination of two or more kinds in the iridium complex compound-containing composition.
 イリジウム錯体化合物含有組成物を例えば有機電界発光素子用に用いる場合には、本発明のイリジウム錯体化合物や溶剤の他、有機電界発光素子、特に発光層に用いられる電荷輸送性化合物を含有してもよい。 When the iridium complex compound-containing composition is used for, for example, an organic electroluminescent device, the charge transportable compound used in the organic electroluminescent device, particularly the light emitting layer, may be contained in addition to the iridium complex compound of the present invention and the solvent. Good.
 本発明のイリジウム錯体化合物含有組成物を用いて、有機電界発光素子の発光層を形成する場合には、本発明のイリジウム錯体化合物を発光材料とし、他の電荷輸送性化合物を電荷輸送ホスト材料として含むことが好ましい。 When the light emitting layer of an organic electroluminescent device is formed using the iridium complex compound-containing composition of the present invention, the iridium complex compound of the present invention is used as a light emitting material, and another charge transporting compound is used as a charge transporting host material It is preferable to include.
 本発明のイリジウム錯体化合物含有組成物に含有される溶剤は、湿式成膜によりイリジウム錯体化合物を含む層を形成するために用いる、揮発性を有する液体成分である。 The solvent contained in the iridium complex compound-containing composition of the present invention is a volatile liquid component used to form a layer containing an iridium complex compound by wet film formation.
 該溶剤は、溶質である本発明のイリジウム錯体化合物が高い溶剤溶解性を有するために、むしろ後述の電荷輸送性化合物が良好に溶解する有機溶剤であれば特に限定されない。 The solvent is not particularly limited as long as it is an organic solvent in which the charge transport compound described later dissolves well because the iridium complex compound of the present invention, which is a solute, has high solvent solubility.
 好ましい溶剤としては、例えば、n-デカン、シクロヘキサン、エチルシクロヘキサン、デカリン、ビシクロヘキサン等のアルカン類;トルエン、キシレン、メシチレン、フェニルシクロヘキサン、テトラリン等の芳香族炭化水素類;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素類;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール、ジフェニルエーテル等の芳香族エーテル類;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル類、シクロヘキサノン、シクロオクタノン、フェンコン等の脂環族ケトン類;シクロヘキサノール、シクロオクタノール等の脂環族アルコール類;メチルエチルケトン、ジブチルケトン等の脂肪族ケトン類;ブタノール、ヘキサノール等の脂肪族アルコール類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル類;等が挙げられる。 Preferred solvents include, for example, alkanes such as n-decane, cyclohexane, ethylcyclohexane, decalin and bicyclohexane; aromatic hydrocarbons such as toluene, xylene, mesitylene, phenylcyclohexane and tetralin; chlorobenzene, dichlorobenzene and trichlorobenzene Halogenated aromatic hydrocarbons such as 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, Aromatic ethers such as 2,4-dimethyl anisole, diphenyl ether; Aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, n-butyl benzoate, Alicyclic ketones such as chlorohexanone, cyclooctanone and phencone; alicyclic alcohols such as cyclohexanol and cyclooctanol; aliphatic ketones such as methyl ethyl ketone and dibutyl ketone; aliphatic alcohols such as butanol and hexanol; Aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); and the like.
 中でも好ましくは、アルカン類や芳香族炭化水素類である。特に、フェニルシクロヘキサンは湿式成膜プロセスにおいて好ましい粘度と沸点を有している。 Among them, alkanes and aromatic hydrocarbons are preferable. In particular, phenylcyclohexane has desirable viscosity and boiling point in the wet film formation process.
 これらの溶剤は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、および比率で用いてもよい。 One of these solvents may be used alone, or two or more thereof may be used in any combination and ratio.
 用いる溶剤の沸点は通常80℃以上、好ましくは100℃以上、より好ましくは120℃以上で、通常270℃以下、好ましくは250℃以下、より好ましくは沸点230℃以下である。この範囲を下回ると、湿式成膜時において、組成物からの溶剤蒸発により、成膜安定性が低下する可能性がある。 The boiling point of the solvent used is usually 80 ° C. or more, preferably 100 ° C. or more, more preferably 120 ° C. or more, and usually 270 ° C. or less, preferably 250 ° C. or less, more preferably 230 ° C. or less. If it is less than this range, the film formation stability may be reduced by solvent evaporation from the composition during wet film formation.
 溶剤の含有量は、イリジウム錯体化合物含有組成物中好ましくは1質量%以上、より好ましくは10質量%以上、特に好ましくは50質量%以上で、好ましくは99.99質量%以下、より好ましくは99.9質量%以下、特に好ましくは99質量%以下である。通常発光層の厚みは3~200nm程度であるが、溶剤の含有量がこの下限を下回ると、組成物の粘性が高くなりすぎ、成膜作業性が低下する可能性がある。溶剤の含有量がこの上限を上回ると、成膜後、溶剤を除去して得られる膜の厚みが稼げなくなるため、成膜が困難となる傾向がある。 The content of the solvent in the iridium complex compound-containing composition is preferably 1% by mass or more, more preferably 10% by mass or more, particularly preferably 50% by mass or more, preferably 99.99% by mass or less, more preferably 99 It is not more than 9% by mass, particularly preferably not more than 99% by mass. Usually, the thickness of the light emitting layer is about 3 to 200 nm, but if the content of the solvent is below this lower limit, the viscosity of the composition becomes too high, and the film forming workability may be lowered. If the content of the solvent exceeds this upper limit, the thickness of the film obtained by removing the solvent after film formation can not be obtained, so that film formation tends to be difficult.
 本発明のイリジウム錯体化合物含有組成物が含有し得る他の電荷輸送性化合物としては、従来有機電界発光素子用材料として用いられているものを使用することができる。例えば、ピリジン、カルバゾール、ナフタレン、ペリレン、ピレン、アントラセン、クリセン、ナフタセン、フェナントレン、コロネン、フルオランテン、ベンゾフェナントレン、フルオレン、アセトナフトフルオランテン、クマリン、p-ビス(2-フェニルエテニル)ベンゼンおよびそれらの誘導体、キナクリドン誘導体、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテン、アリールアミノ基が置換された縮合芳香族環化合物、アリールアミノ基が置換されたスチリル誘導体等が挙げられる。 As another charge transportable compound which can be contained in the iridium complex compound-containing composition of the present invention, those conventionally used as materials for organic electroluminescent devices can be used. For example, pyridine, carbazole, naphthalene, perylene, pyrene, anthracene, chrysene, naphthacene, phenanthrene, coronene, fluoranthene, benzophenanthrene, fluorene, acetonaphthofluoranthene, coumarin, p-bis (2-phenylethenyl) benzene and those Derivatives, quinacridone derivatives, DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, benzothioxanthene derivatives, azabenzothioxanthenes, aryls A fused aromatic ring compound in which an amino group is substituted, a styryl derivative in which an arylamino group is substituted, and the like can be mentioned.
 これらは1種類を単独で用いてもよく、2種類以上を任意の組み合わせ、および比率で用いてもよい。 One of these may be used alone, or two or more of them may be used in any combination and ratio.
 イリジウム錯体化合物含有組成物中の他の電荷輸送性化合物の含有量は、イリジウム錯体化合物含有組成物中の本発明のイリジウム錯体化合物1質量部に対して、通常1000質量部以下、好ましくは100質量部以下、さらに好ましくは50質量部以下であり、通常0.01質量部以上、好ましくは0.1質量部以上、さらに好ましくは1質量部以上である。 The content of the other charge transporting compound in the iridium complex compound-containing composition is usually 1000 parts by mass or less, preferably 100 parts by mass, relative to 1 part by mass of the iridium complex compound of the present invention in the iridium complex compound containing composition. Or less, more preferably 50 parts by weight or less, usually 0.01 parts by weight or more, preferably 0.1 parts by weight or more, and more preferably 1 part by weight or more.
 本発明のイリジウム錯体化合物含有組成物には、必要に応じて、上記の化合物等の他に、更に他の化合物を含有していてもよい。例えば、上記の溶剤の他に、別の溶剤を含有してもよい。別の溶剤としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類、ジメチルスルホキシド等が挙げられる。これらは1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、および比率で用いてもよい。 If necessary, the iridium complex compound-containing composition of the present invention may further contain other compounds in addition to the above compounds and the like. For example, in addition to the above-mentioned solvents, other solvents may be contained. As another solvent, for example, amides such as N, N-dimethylformamide, N, N-dimethylacetamide and the like, dimethyl sulfoxide and the like can be mentioned. One of these may be used alone, or two or more of them may be used in any combination and ratio.
[有機電界発光素子]
 本発明の有機電界発光素子は、本発明のイリジウム錯体化合物を含むものである。
[Organic electroluminescent device]
The organic electroluminescent device of the present invention comprises the iridium complex compound of the present invention.
 本発明の有機電界発光素子は、好ましくは、基板上に少なくとも陽極、陰極及び陽極と陰極の間に少なくとも1層の有機層を有するものであって、前記有機層のうち少なくとも1層が本発明のイリジウム錯体化合物を含む。前記有機層は発光層を含む。 The organic electroluminescent device of the present invention preferably has at least an anode, a cathode and at least one organic layer between the anode and the cathode on a substrate, and at least one of the organic layers is the present invention. Iridium complex compounds of The organic layer comprises a light emitting layer.
 本発明のイリジウム錯体化合物を含む有機層は、本発明の組成物を用いて形成された層であることがより好ましく、湿式成膜法により形成された層であることがさらに好ましい。湿式成膜法により形成された層は、発光層であることが好ましい。 The organic layer containing the iridium complex compound of the present invention is more preferably a layer formed using the composition of the present invention, and still more preferably a layer formed by a wet film formation method. The layer formed by the wet film formation method is preferably a light emitting layer.
 本発明において湿式成膜法とは、成膜方法、即ち、塗布方法として、例えば、スピンコート法、ディップコート法、ダイコート法、バーコート法、ブレードコート法、ロールコート法、スプレーコート法、キャピラリーコート法、インクジェット法、ノズルプリンティング法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法等、湿式で成膜される方法を採用し、これらの方法で成膜された膜を乾燥して膜形成を行う方法をいう。 In the present invention, the wet film forming method is a film forming method, that is, as a coating method, for example, spin coating method, dip coating method, die coating method, bar coating method, blade coating method, roll coating method, spray coating method, capillary Apply a wet film forming method such as coating method, inkjet method, nozzle printing method, screen printing method, gravure printing method, flexo printing method, etc., and dry the film formed by these methods to form a film It says how to do it.
 図1は本発明の有機電界発光素子10に好適な構造例を示す断面の模式図である。図1において、符号1は基板、符号2は陽極、符号3は正孔注入層、符号4は正孔輸送層、符号5は発光層、符号6は正孔阻止層、符号7は電子輸送層、符号8は電子注入層、符号9は陰極を各々表す。 FIG. 1 is a schematic cross-sectional view showing a structural example suitable for the organic electroluminescent device 10 of the present invention. In FIG. 1, reference numeral 1 denotes a substrate, 2 denotes an anode, 3 denotes a hole injection layer, 4 denotes a hole transport layer, 5 denotes a light emitting layer, 6 denotes a hole blocking layer, and 7 denotes an electron transport layer. Reference numeral 8 represents an electron injection layer, and reference numeral 9 represents a cathode.
 これらの構造に適用する材料は、公知の材料を適用することができ、特に制限はないが、各層に関しての代表的な材料や製法を一例として以下に記載する。以下において、公報や論文等を引用している場合、該当内容を当業者の常識の範囲で適宜、適用、応用することができるものとする。 As materials applied to these structures, known materials can be applied, and there is no particular limitation, but representative materials and production methods for each layer will be described below as an example. In the following, when a gazette, a paper or the like is cited, applicable contents can be applied and applied as appropriate within the common sense of those skilled in the art.
<基板1>
 基板1は、有機電界発光素子の支持体となるものであり、通常、石英やガラスの板、金属板又は金属箔、プラスチックフィルム又はシート等が用いられる。これらのうち、ガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホン等の透明な合成樹脂の板が好ましい。基板1は、外気による有機電界発光素子の劣化が起こり難いことからガスバリア性の高い材質とするのが好ましい。特に合成樹脂製の基板等のようにガスバリア性の低い材質を用いる場合は、基板1の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を上げるのが好ましい。
<Substrate 1>
The substrate 1 is a support of the organic electroluminescent device, and usually, a plate of quartz or glass, a metal plate or metal foil, a plastic film or sheet, or the like is used. Among these, a glass plate and a plate of a transparent synthetic resin such as polyester, polymethacrylate, polycarbonate or polysulfone are preferable. It is preferable that the substrate 1 be made of a material having high gas barrier properties because deterioration of the organic electroluminescent device due to external air hardly occurs. In particular, in the case of using a material having a low gas barrier property such as a synthetic resin substrate, it is preferable to provide a dense silicon oxide film or the like on at least one side of the substrate 1 to enhance the gas barrier property.
<陽極2>
 陽極2は、発光層側の層に正孔を注入する機能を担う。陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属;インジウム及び/又はスズの酸化物等の金属酸化物;ヨウ化銅等のハロゲン化金属;カーボンブラック或いはポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等により構成される。
<Anode 2>
The anode 2 has a function of injecting holes into the layer on the light emitting layer side. The anode 2 is usually a metal such as aluminum, gold, silver, nickel, palladium, platinum or the like; a metal oxide such as an oxide of indium and / or tin; a metal halide such as copper iodide; carbon black or poly (3 -Methylthiophene), polypyrrole, and conductive polymers such as polyaniline.
 陽極2の形成は、通常、スパッタリング法、真空蒸着法等の乾式法により行われることが多い。銀等の金属微粒子、ヨウ化銅等の微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末等を用いて陽極2を形成する場合には、適当なバインダー樹脂溶液に分散させて、基板上に塗布することにより形成することもできる。導電性高分子の場合は、電解重合により直接基板上に薄膜を形成したり、基板上に導電性高分子を塗布して陽極2を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。 The formation of the anode 2 is usually performed by a dry method such as a sputtering method or a vacuum evaporation method in many cases. When forming the anode 2 using metal fine particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, conductive polymer fine powder, etc., they are dispersed in a suitable binder resin solution It can also be formed by coating on a substrate. In the case of a conductive polymer, the thin film can be formed directly on the substrate by electrolytic polymerization, or the conductive polymer can be coated on the substrate to form the anode 2 (Appl. Phys. Lett., 60 volumes) , 2711 (1992).
 陽極2は、通常、単層構造であるが、適宜、積層構造としてもよい。陽極2が積層構造である場合、1層目の陽極上に異なる導電材料を積層してもよい。 The anode 2 usually has a single layer structure, but may have a laminated structure as appropriate. When the anode 2 has a laminated structure, different conductive materials may be laminated on the first-layer anode.
 陽極2の厚みは、必要とされる透明性と材質等に応じて、決めればよい。特に高い透明性が必要とされる場合は、可視光の透過率が60%以上となる厚みが好ましく、80%以上となる厚みが更に好ましい。陽極2の厚みは、通常5nm以上、好ましくは10nm以上であり、通常1000nm以下、好ましくは500nm以下とするのが好ましい。
 透明性が不要な場合は、陽極2の厚みは必要な強度等に応じて任意に厚みとすればよく、この場合、陽極2は基板1と同一の厚みでもよい。
The thickness of the anode 2 may be determined according to the required transparency and the material and the like. In particular, when high transparency is required, the thickness is preferably such that the visible light transmittance is 60% or more, and more preferably 80% or more. The thickness of the anode 2 is usually 5 nm or more, preferably 10 nm or more, and is usually 1000 nm or less, preferably 500 nm or less.
When the transparency is not necessary, the thickness of the anode 2 may be arbitrarily set in accordance with the required strength and the like, and in this case, the anode 2 may have the same thickness as the substrate 1.
 陽極2の表面に成膜を行う場合は、成膜前に、紫外線+オゾン、酸素プラズマ、アルゴンプラズマ等の処理を施すことにより、陽極上の不純物を除去すると共に、そのイオン化ポテンシャルを調整して正孔注入性を向上させておくのが好ましい。 When film formation is performed on the surface of the anode 2, the impurities on the anode are removed and the ionization potential is adjusted by performing treatment such as ultraviolet light + ozone, oxygen plasma, argon plasma or the like before film formation. It is preferable to improve the hole injection property.
<正孔注入層3>
 陽極2側から発光層5側に正孔を輸送する機能を担う層は、通常、正孔注入輸送層又は正孔輸送層と呼ばれる。陽極2側から発光層5側に正孔を輸送する機能を担う層が2層以上ある場合に、より陽極2側に近い方の層を正孔注入層3と呼ぶことがある。正孔注入層3は、陽極2から発光層5側に正孔を輸送する機能を強化する点で、用いることが好ましい。正孔注入層3を用いる場合、通常、正孔注入層3は、陽極2上に形成される。
<Hole injection layer 3>
The layer responsible for transporting holes from the anode 2 side to the light emitting layer 5 side is usually called a hole injecting and transporting layer or a hole transporting layer. When there are two or more layers responsible for transporting holes from the anode 2 side to the light emitting layer 5 side, the layer closer to the anode 2 side may be referred to as a hole injection layer 3. The hole injection layer 3 is preferably used in that it enhances the function of transporting holes from the anode 2 to the light emitting layer 5 side. When the hole injection layer 3 is used, the hole injection layer 3 is usually formed on the anode 2.
 正孔注入層3の膜厚は、通常1nm以上、好ましくは5nm以上で、通常1000nm以下、好ましくは500nm以下である。 The thickness of the hole injection layer 3 is usually 1 nm or more, preferably 5 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
 正孔注入層3の形成方法は、真空蒸着法でも、湿式成膜法でもよい。成膜性が優れる点では、湿式成膜法により形成することが好ましい。 The hole injection layer 3 may be formed by a vacuum evaporation method or a wet film formation method. It is preferable to form by a wet film-forming method at the point which is excellent in the film-forming property.
 正孔注入層3は、正孔輸送性化合物を含むことが好ましく、正孔輸送性化合物と電子受容性化合物とを含むことがより好ましい。更には、正孔注入層3中にカチオンラジカル化合物を含むことが好ましく、カチオンラジカル化合物と正孔輸送性化合物とを含むことが特に好ましい。 The hole injecting layer 3 preferably contains a hole transporting compound, and more preferably contains a hole transporting compound and an electron accepting compound. Furthermore, it is preferable to contain a cation radical compound in the hole injection layer 3, and it is particularly preferable to contain a cation radical compound and a hole transporting compound.
(正孔輸送性化合物)
 正孔注入層形成用組成物は、通常、正孔注入層3となる正孔輸送性化合物を含有する。
 湿式成膜法の場合は、通常、更に溶剤も含有する。正孔注入層形成用組成物は、正孔輸送性が高く、注入された正孔を効率よく輸送できるのが好ましい。このため、正孔移動度が大きく、トラップとなる不純物が製造時や使用時等に発生し難いのが好ましい。また、安定性に優れ、イオン化ポテンシャルが小さく、可視光に対する透明性が高いことが好ましい。特に、正孔注入層3が発光層5と接する場合は、発光層5からの発光を消光しないものや発光層5とエキサイプレックスを形成して、発光効率を低下させないものが好ましい。
(Hole transportable compound)
The composition for forming a hole injection layer usually contains a hole transportable compound to be the hole injection layer 3.
In the case of a wet film formation method, a solvent is usually further contained. The composition for forming a hole injection layer preferably has high hole transportability, and can efficiently transport injected holes. For this reason, it is preferable that the hole mobility is large and that an impurity serving as a trap is unlikely to be generated at the time of production or use. In addition, it is preferable that the stability be excellent, the ionization potential be small, and the transparency to visible light be high. In particular, in the case where the hole injection layer 3 is in contact with the light emitting layer 5, it is preferable that the light emission from the light emitting layer 5 is not quenched or that the light emitting layer 5 forms an exciplex so as not to reduce the light emission efficiency.
 正孔輸送性化合物としては、陽極2から正孔注入層3への電荷注入障壁の観点から、4.5eV~6.0eVのイオン化ポテンシャルを有する化合物が好ましい。正孔輸送性化合物の例としては、芳香族アミン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、オリゴチオフェン系化合物、ポリチオフェン系化合物、ベンジルフェニル系化合物、フルオレン基で3級アミンを連結した化合物、ヒドラゾン系化合物、シラザン系化合物、キナクリドン系化合物等が挙げられる。 From the viewpoint of charge injection barrier from the anode 2 to the hole injection layer 3, the hole transportable compound is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV. Examples of hole transporting compounds include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, compounds in which tertiary amines are linked by a fluorene group, hydrazones And compounds such as silazane compounds and quinacridone compounds.
 上述の例示化合物のうち、非晶質性及び可視光透過性の点から、芳香族アミン化合物が好ましく、芳香族三級アミン化合物が特に好ましい。芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。 Among the above-described exemplified compounds, aromatic amine compounds are preferable, and aromatic tertiary amine compounds are particularly preferable, from the viewpoint of amorphousness and visible light transparency. The aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and also includes a compound having a group derived from an aromatic tertiary amine.
 芳香族三級アミン化合物の種類は、特に制限されないが、表面平滑化効果により均一な発光を得やすい点から、重量平均分子量が1000以上1000000以下の高分子化合物(繰り返し単位が連なる重合型化合物)を用いるのが好ましい。芳香族三級アミン高分子化合物の好ましい例としては、下記式(I)で表される繰り返し単位を有する高分子化合物等が挙げられる。 The type of aromatic tertiary amine compound is not particularly limited, but a polymer compound having a weight average molecular weight of 1,000 to 1,000,000 (a polymerizable compound in which repeating units are continuous) from the viewpoint of obtaining uniform light emission due to the surface smoothing effect. It is preferred to use As a preferable example of an aromatic tertiary amine polymer compound, the polymer compound etc. which have a repeating unit represented by following formula (I) are mentioned.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(式(I)中、Ar及びArは、それぞれ独立して、置換基を有していてもよい芳香族基又は置換基を有していてもよい複素芳香族基を表す。Ar~Arは、それぞれ独立して、置換基を有していてもよい芳香族基又は置換基を有していてもよい複素芳香族基を表す。Qは、下記の連結基群の中から選ばれる連結基を表す。また、Ar~Arのうち、同一のN原子に結合する二つの基は互いに結合して環を形成してもよい。 (In the formula (I), Ar 1 and Ar 2 are each independently, .Ar 3 representing a good heteroaromatic group optionally having an optionally substituted aromatic group or a substituted group To Ar 5 each independently represent an aromatic group which may have a substituent or a heteroaromatic group which may have a substituent Q is selected from the following group of linking groups Among Ar 1 to Ar 5 , two groups bonded to the same N atom may be bonded to each other to form a ring.
 下記に連結基を示す。 The linking group is shown below.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(上記各式中、Ar~Ar16は、それぞれ独立して、置換基を有していてもよい芳香族基又は置換基を有していてもよい複素芳香族基を表す。R~Rは、それぞれ独立して、水素原子又は任意の置換基を表す。) (In the above formulas, Ar 6 - Ar 16 are each independently, .R a represents an heteroaromatic group optionally having an optionally substituted aromatic group or a substituted group; Each R b independently represents a hydrogen atom or any substituent.)
 Ar~Ar16の芳香族基及び複素芳香族基としては、高分子化合物の溶解性、耐熱性、正孔注入輸送性の点から、ベンゼン環、ナフタレン環、フェナントレン環、チオフェン環、ピリジン環由来の基が好ましく、ベンゼン環、ナフタレン環由来の基がさらに好ましい。 As the aromatic group and heteroaromatic group of Ar 1 to Ar 16 , a benzene ring, a naphthalene ring, a phenanthrene ring, a thiophene ring, a pyridine ring, from the viewpoint of solubility of a polymer compound, heat resistance and hole injection transportability The group derived from is preferable and the group derived from a benzene ring and a naphthalene ring is more preferable.
 式(I)で表される繰り返し単位を有する芳香族三級アミン高分子化合物の具体例としては、国際公開第2005/089024号パンフレットに記載のもの等が挙げられる。 Specific examples of the aromatic tertiary amine polymer compound having a repeating unit represented by the formula (I) include those described in WO 2005/089024.
(電子受容性化合物)
 正孔注入層3は、正孔輸送性化合物の酸化により、正孔注入層3の導電率を向上させることができるため、電子受容性化合物を含有していることが好ましい。
(Electron-accepting compound)
The hole injection layer 3 can improve the conductivity of the hole injection layer 3 by oxidation of the hole transport compound, and therefore, preferably contains an electron accepting compound.
 電子受容性化合物としては、酸化力を有し、上述の正孔輸送性化合物から一電子受容する能力を有する化合物が好ましく、具体的には、電子親和力が4eV以上である化合物が好ましく、電子親和力が5eV以上である化合物が更に好ましい。 The electron accepting compound is preferably a compound having an oxidizing power and capable of accepting one electron from the above-mentioned hole transporting compound, specifically, a compound having an electron affinity of 4 eV or more, and an electron affinity More preferred is a compound having a 5 eV or more.
 このような電子受容性化合物としては、例えば、トリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、オニウム塩、アリールアミンとハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種又は2種以上の化合物等が挙げられる。具体的には、4-イソプロピル-4’-メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラート、トリフェニルスルホニウムテトラフルオロボラート等の有機基の置換したオニウム塩(国際公開第2005/089024号);塩化鉄(III)(特開平11-251067号公報)、ペルオキソ二硫酸アンモニウム等の高原子価の無機化合物;テトラシアノエチレン等のシアノ化合物;トリス(ペンタフルオロフェニル)ボラン(特開2003-31365号公報)等の芳香族ホウ素化合物;フラーレン誘導体及びヨウ素等が挙げられる。 Such electron accepting compounds include, for example, triaryl boron compounds, metal halides, Lewis acids, organic acids, onium salts, salts of arylamines and metal halides, and salts of arylamines and Lewis acids. One or two or more compounds selected from the group can be mentioned. Specifically, substituted onium salts of organic groups such as 4-isopropyl-4'-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate, triphenylsulfonium tetrafluoroborate, etc. (WO 2005/089024); High valent inorganic compounds such as iron (III) (Japanese Patent Laid-Open No. 11-251067), ammonium peroxodisulfate; cyano compounds such as tetracyanoethylene; tris (pentafluorophenyl) borane (Japanese Patent Laid-Open No. 2003-31365) Aromatic boron compounds such as: fullerene derivatives and iodine.
(カチオンラジカル化合物)
 カチオンラジカル化合物としては、正孔輸送性化合物から一電子取り除いた化学種であるカチオンラジカルと、対アニオンとからなるイオン化合物が好ましい。カチオンラジカルが正孔輸送性の高分子化合物由来である場合、カチオンラジカルは高分子化合物の繰り返し単位から一電子取り除いた構造となる。
(Cation radical compound)
As a cation radical compound, the ionic compound which consists of a cation radical which is a chemical species which removed one electron from a hole transportable compound, and counter anion is preferable. When the cation radical is derived from a hole transporting polymer compound, the cation radical has a structure in which one electron is removed from the repeating unit of the polymer compound.
 カチオンラジカルとしては、正孔輸送性化合物として前述した化合物から一電子取り除いた化学種であることが好ましい。正孔輸送性化合物として好ましい化合物から一電子取り除いた化学種であることが、非晶質性、可視光の透過率、耐熱性、及び溶解性などの点から好適である。 The cation radical is preferably a chemical species obtained by removing one electron from the compound described above as the hole transporting compound. Chemical species obtained by removing one electron from a compound preferable as the hole transporting compound is preferable from the viewpoints of amorphousness, transmittance of visible light, heat resistance, and solubility.
 カチオンラジカル化合物は、前述の正孔輸送性化合物と電子受容性化合物を混合することにより生成させることができる。前述の正孔輸送性化合物と電子受容性化合物とを混合することにより、正孔輸送性化合物から電子受容性化合物へと電子移動が起こり、正孔輸送性化合物のカチオンラジカルと対アニオンとからなるカチオンイオン化合物が生成する。 The cation radical compound can be generated by mixing the above-mentioned hole transporting compound and the electron accepting compound. By mixing the above-mentioned hole transporting compound and the electron accepting compound, electron transfer occurs from the hole transporting compound to the electron accepting compound, and it consists of a cation radical and a counter anion of the hole transporting compound. A cation ion compound is formed.
 PEDOT/PSS(Adv.Mater.,2000年,12巻,481頁)やエメラルジン塩酸塩(J.Phys.Chem.,1990年,94巻,7716頁)等の高分子化合物由来のカチオンラジカル化合物は、酸化重合(脱水素重合)することによっても生成する。
 ここでいう酸化重合は、モノマーを酸性溶液中で、ペルオキソ二硫酸塩等を用いて化学的に、又は、電気化学的に酸化するものである。この酸化重合(脱水素重合)の場合、モノマーが酸化されることにより高分子化されるとともに、酸性溶液由来のアニオンを対アニオンとする、高分子の繰り返し単位から一電子取り除かれたカチオンラジカルが生成する。
Cationic radical compounds derived from high molecular weight compounds such as PEDOT / PSS (Adv. Mater., 2000, 12, 481) and emeraldine hydrochloride (J. Phys. Chem., 1990, 94, 7716) It is also produced by oxidative polymerization (dehydrogenation polymerization).
The oxidative polymerization referred to herein is to oxidize a monomer chemically or electrochemically in an acidic solution using a peroxodisulfate or the like. In the case of this oxidative polymerization (dehydrogenation polymerization), the monomer is polymerized by oxidation, and the cation radical which is obtained by removing one electron from the repeating unit of the polymer having the anion derived from the acidic solution as a counter anion is Generate
(湿式成膜法による正孔注入層3の形成)
 湿式成膜法により正孔注入層3を形成する場合、通常、正孔注入層3となる材料を可溶な溶剤(正孔注入層用溶剤)と混合して成膜用の組成物(正孔注入層形成用組成物)を調製し、この正孔注入層形成用組成物を正孔注入層3の下層に該当する層(通常は、陽極2)上に湿式成膜法により成膜し、乾燥させることにより形成させる。成膜した膜の乾燥は、湿式成膜法による発光層5の形成における乾燥方法と同様に行うことができる。
(Formation of hole injection layer 3 by wet film formation method)
In the case of forming the hole injection layer 3 by a wet film formation method, a composition for forming a film (positive film) is usually prepared by mixing the material to be the hole injection layer 3 with a soluble solvent (solvent for the hole injection layer). The composition for forming a hole injection layer is prepared, and the composition for forming a hole injection layer is formed into a film by a wet film formation method on a layer (usually, the anode 2) corresponding to the lower layer of the hole injection layer 3. , Formed by drying. Drying of the formed film can be performed in the same manner as the drying method in the formation of the light emitting layer 5 by a wet film formation method.
 正孔注入層形成用組成物中における正孔輸送性化合物の濃度は、本発明の効果を著しく損なわない限り任意であるが、膜厚の均一性の点では、低い方が好ましく、正孔注入層3に欠陥が生じ難い点では、高い方が好ましい。正孔注入層形成用組成物中における正孔輸送性化合物の濃度は、0.01質量%以上が好ましく、0.1質量%以上が更に好ましく、0.5質量%以上が特に好ましく、70質量%以下が好ましく、60質量%以下が更に好ましく、50質量%以下が特に好ましい。 The concentration of the hole transporting compound in the composition for forming a hole injection layer is optional as long as the effects of the present invention are not significantly impaired, but a lower one is preferable in terms of film thickness uniformity, and hole injection is preferable. It is preferable that the height is high in that defects in the layer 3 are not easily generated. The concentration of the hole transporting compound in the composition for forming a hole injection layer is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, particularly preferably 0.5% by mass or more, and 70% by mass. % Or less is preferable, 60 mass% or less is more preferable, and 50 mass% or less is particularly preferable.
 溶剤としては、例えば、エーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤などが挙げられる。 Examples of the solvent include ether solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents and the like.
 エーテル系溶剤としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル及び1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテル等が挙げられる。 Examples of ether solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA), and 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole And aromatic ethers such as phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole and the like.
 エステル系溶剤としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル等が挙げられる。 Examples of ester solvents include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, n-butyl benzoate and the like.
 芳香族炭化水素系溶剤としては、例えば、トルエン、キシレン、シクロヘキシルベンゼン、3-イソプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、メチルナフタレン等が挙げられる。 Examples of the aromatic hydrocarbon solvent include toluene, xylene, cyclohexylbenzene, 3-isopropylbiphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, methylnaphthalene and the like.
 アミド系溶剤としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。 Examples of the amide solvents include N, N-dimethylformamide, N, N-dimethylacetamide and the like.
 これらの他、ジメチルスルホキシド等も用いることができる。 Besides these, dimethyl sulfoxide and the like can also be used.
 正孔注入層3の湿式成膜法による形成は、通常、正孔注入層形成用組成物を調製後に、これを、正孔注入層3の下層に該当する層(通常は、陽極2)上に塗布成膜し、乾燥することにより行われる。正孔注入層3は、通常、成膜後に、加熱や減圧乾燥等により塗布膜を乾燥させる。 The formation of the hole injection layer 3 by the wet film formation method usually prepares a composition for forming the hole injection layer, and then forms the layer on the layer corresponding to the lower layer of the hole injection layer 3 (usually, the anode 2). The film is formed by coating and drying. The hole injection layer 3 usually dries the coating film by heating, reduced-pressure drying, or the like after film formation.
(真空蒸着法による正孔注入層3の形成)
 真空蒸着法により正孔注入層3を形成する場合には、通常、正孔注入層3の構成材料(前述の正孔輸送性化合物、電子受容性化合物等)の1種類又は2種類以上を真空容器内に設置された坩堝に入れ(2種類以上の材料を用いる場合は、通常各々を別々の坩堝に入れ)、真空容器内を真空ポンプで10-4Pa程度まで排気した後、坩堝を加熱して(2種類以上の材料を用いる場合は、通常各々の坩堝を加熱して)、坩堝内の材料の蒸発量を制御しながら蒸発させ(2種類以上の材料を用いる場合は、通常各々独立に蒸発量を制御しながら蒸発させ)、坩堝に向き合って置かれた基板上の陽極2上に正孔注入層3を形成させる。2種類以上の材料を用いる場合は、それらの混合物を坩堝に入れ、加熱、蒸発させて正孔注入層3を形成することもできる。
(Formation of hole injection layer 3 by vacuum evaporation)
When forming the hole injection layer 3 by a vacuum evaporation method, usually, one or two or more of the constituent materials of the hole injection layer 3 (the above-mentioned hole transportable compound, electron accepting compound, etc.) are vacuumed. Put in a crucible installed in the container (if using two or more types of materials, put each one in a separate crucible), evacuate the vacuum container to about 10 -4 Pa with a vacuum pump, and then heat the crucible And (if two or more materials are used, usually each crucible is heated) and evaporated while controlling the evaporation amount of the material in the crucible (when two or more materials are used, they are usually independent of each other) To control the amount of evaporation) to form the hole injection layer 3 on the anode 2 on the substrate placed facing the crucible. When two or more kinds of materials are used, the mixture of them may be put in a crucible, heated and evaporated to form the hole injection layer 3.
 蒸着時の真空度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1×10-6Torr(0.13×10-4Pa)以上、9.0×10-6Torr(12.0×10-4Pa)以下である。蒸着速度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1Å/秒以上、5.0Å/秒以下である。蒸着時の成膜温度は、本発明の効果を著しく損なわない限り限定されないが、好ましくは10℃以上、50℃以下で行われる。 The degree of vacuum at the time of deposition is not limited as long as the effects of the present invention are not significantly impaired, but usually 0.1 × 10 −6 Torr (0.13 × 10 −4 Pa) or more and 9.0 × 10 −6 Torr (0.13 × 10 −4 Pa). 12.0 × 10 -4 Pa) or less. The deposition rate is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 Å / sec or more and 5.0 Å / sec or less. The film forming temperature at the time of vapor deposition is not limited as long as the effects of the present invention are not significantly impaired, but it is preferably performed at 10 ° C. or more and 50 ° C. or less.
<正孔輸送層4>
 正孔輸送層4は、陽極2側から発光層5側に正孔を輸送する機能を担う層である。正孔輸送層4は、本発明の有機電界発光素子では、必須の層では無いが、陽極2から発光層5に正孔を輸送する機能を強化する点では、この層を設けることが好ましい。正孔輸送層4を設ける場合、通常、正孔輸送層4は、陽極2と発光層5の間に形成される。正孔注入層3がある場合、正孔輸送層4は正孔注入層3と発光層5の間に形成される。
Hole Transport Layer 4
The hole transport layer 4 is a layer responsible for transporting holes from the anode 2 side to the light emitting layer 5 side. The hole transport layer 4 is not an essential layer in the organic electroluminescent device of the present invention, but it is preferable to provide this layer in order to strengthen the function of transporting holes from the anode 2 to the light emitting layer 5. When the hole transport layer 4 is provided, the hole transport layer 4 is generally formed between the anode 2 and the light emitting layer 5. When the hole injection layer 3 is present, the hole transport layer 4 is formed between the hole injection layer 3 and the light emitting layer 5.
 正孔輸送層4の膜厚は、通常5nm以上、好ましくは10nm以上で、通常300nm以下、好ましくは100nm以下である。 The film thickness of the hole transport layer 4 is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
 正孔輸送層4の形成方法は、真空蒸着法でも、湿式成膜法でもよい。成膜性が優れる点では、湿式成膜法により形成することが好ましい。 The method of forming the hole transport layer 4 may be vacuum evaporation or wet film formation. It is preferable to form by a wet film-forming method at the point which is excellent in film-forming property.
 正孔輸送層4は、通常、正孔輸送層4となる正孔輸送性化合物を含有する。正孔輸送層4に含まれる正孔輸送性化合物としては、特に、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニルで代表される、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(特開平5-234681号公報)、4,4’,4''-トリス(1-ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン化合物(J.Lumin.,72-74巻、985頁、1997年)、トリフェニルアミンの四量体から成る芳香族アミン化合物(Chem.Commun.,2175頁、1996年)、2,2’,7,7’-テトラキス-(ジフェニルアミノ)-9,9’-スピロビフルオレン等のスピロ化合物(Synth.Metals,91巻、209頁、1997年)、4,4’-N,N’-ジカルバゾールビフェニルなどのカルバゾール誘導体などが挙げられる。ポリビニルカルバゾール、ポリビニルトリフェニルアミン(特開平7-53953号公報)、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン(Polym.Adv.Tech.,7巻、33頁、1996年)等も好ましく使用できる。 The hole transport layer 4 usually contains a hole transportable compound to be the hole transport layer 4. The hole transporting compound contained in the hole transporting layer 4 is, in particular, a secondary or more tertiary compound represented by 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl. Aromatic diamines containing an amine and having two or more fused aromatic rings substituted by nitrogen atoms (JP-A-5-234681), 4,4 ′, 4 ′ ′-tris (1-naphthylphenylamino) triphenylamine Et al. (J. Lumin., Vol. 72-74, 985, 1997), and aromatic amine compounds composed of tetramer of triphenylamine (Chem. Commun., P. 2175). , 1996), spiro compounds such as 2,2 ', 7,7'-tetrakis- (diphenylamino) -9,9'-spirobifluorene (Synth. Metals, vol. 91) 209 pp., 1997), 4,4'-N, carbazole derivatives such as N'- dicarbazole biphenyl. Polyvinyl carbazole, polyvinyl triphenylamine (Japanese Patent Application Laid-Open No. 7-53953), polyarylene ether sulfone containing tetraphenyl benzidine (Polym. Adv. Tech., Volume 7, page 33, 1996) and the like can also be preferably used. .
(湿式成膜法による正孔輸送層4の形成)
 湿式成膜法で正孔輸送層4を形成する場合は、通常、上述の正孔注入層3を湿式成膜法で形成する場合と同様にして、正孔注入層形成用組成物の代わりに正孔輸送層形成用組成物を用いて形成させる。
(Formation of hole transport layer 4 by wet film formation method)
In the case of forming the hole transport layer 4 by a wet film formation method, in place of the composition for forming a hole injection layer, in the same manner as in the case of forming the hole injection layer 3 described above by a wet film formation method. It forms using the composition for positive hole transport layer formation.
 湿式成膜法で正孔輸送層4を形成する場合は、通常、正孔輸送層形成用組成物は、更に溶剤を含有する。正孔輸送層形成用組成物に用いる溶剤は、上述の正孔注入層形成用組成物で用いる溶剤と同様の溶剤を使用することができる。 In the case of forming the hole transport layer 4 by a wet film formation method, generally, the composition for forming a hole transport layer further contains a solvent. As the solvent used for the composition for forming a hole transport layer, the same solvent as the solvent used for the composition for forming a hole injection layer described above can be used.
 正孔輸送層形成用組成物中の正孔輸送性化合物の濃度は、正孔注入層形成用組成物中の正孔輸送性化合物の濃度と同様の範囲とすることができる。 The concentration of the hole transportable compound in the composition for forming a hole transport layer can be in the same range as the concentration of the hole transportable compound in the composition for forming a hole injection layer.
 正孔輸送層4の湿式成膜法による形成は、前述の正孔注入層3の成膜法と同様に行うことができる。 The formation of the hole transport layer 4 by the wet film formation method can be performed in the same manner as the film formation method of the hole injection layer 3 described above.
(真空蒸着法による正孔輸送層4の形成)
 真空蒸着法で正孔輸送層4を形成する場合も、通常、上述の正孔注入層3を真空蒸着法で形成する場合と同様にして、正孔注入層3の構成材料の代わりに正孔輸送層4の構成材料を用いて形成させることができる。蒸着時の真空度、蒸着速度及び温度などの成膜条件などは、正孔注入層3の真空蒸着時と同様の条件で成膜することができる。
(Formation of hole transport layer 4 by vacuum evaporation)
Also in the case of forming the hole transport layer 4 by the vacuum evaporation method, holes are usually substituted for the constituent material of the hole injection layer 3 in the same manner as in the case of forming the hole injection layer 3 described above by the vacuum evaporation method. It can be formed using the constituent material of the transport layer 4. The film forming conditions such as the degree of vacuum at the time of vapor deposition, the vapor deposition rate, and the temperature can be formed under the same conditions as the vacuum vapor deposition of the hole injection layer 3.
<発光層5>
 発光層5は、一対の電極間に電界が与えられた時に、陽極2から注入される正孔と陰極9から注入される電子が再結合することにより励起され、発光する機能を担う層である。
<Light emitting layer 5>
The light emitting layer 5 is a layer having a function of emitting light by being excited by recombination of holes injected from the anode 2 and electrons injected from the cathode 9 when an electric field is applied between a pair of electrodes. .
 発光層5は、陽極2と陰極9の間に形成される層である。発光層5は、陽極2の上に正孔注入層3がある場合は、正孔注入層3と陰極9の間に形成され、陽極2の上に正孔輸送層4がある場合は、正孔輸送層4と陰極9との間に形成される。 The light emitting layer 5 is a layer formed between the anode 2 and the cathode 9. The light emitting layer 5 is formed between the hole injection layer 3 and the cathode 9 when the hole injection layer 3 is present on the anode 2, and is positive when the hole transport layer 4 is present on the anode 2. It is formed between the hole transport layer 4 and the cathode 9.
 発光層5の膜厚は、本発明の効果を著しく損なわない限り任意であるが、膜に欠陥が生じ難い点では厚い方が好ましく、一方、薄い方が低駆動電圧としやすい点で好ましい。発光層5の膜厚は、3nm以上が好ましく、5nm以上が更に好ましく、通常200nm以下が好ましく、100nm以下が更に好ましい。 The film thickness of the light emitting layer 5 is optional as long as the effects of the present invention are not significantly impaired, but a thicker film is preferable in that defects are not easily generated in the film, and a thinner film is preferable in that a low driving voltage is easily achieved. The thickness of the light emitting layer 5 is preferably 3 nm or more, more preferably 5 nm or more, usually 200 nm or less, and further preferably 100 nm or less.
 発光層5は、少なくとも、発光の性質を有する材料(発光材料)を含有するとともに、好ましくは、電荷輸送性を有する材料(電荷輸送性材料)を含有する。発光材料としては、いずれかの発光層に、本発明のイリジウム錯体化合物が含まれていればよく、適宜他の発光材料を用いてもよい。以下、本発明のイリジウム錯体化合物以外の他の発光材料について詳述する。 The light emitting layer 5 contains at least a material having a property of light emission (light emitting material), and preferably contains a material having a charge transporting property (charge transporting material). As the light emitting material, any light emitting layer may contain the iridium complex compound of the present invention, and another light emitting material may be used as appropriate. Hereinafter, other light emitting materials other than the iridium complex compound of the present invention will be described in detail.
(発光材料)
 発光材料は、所望の発光波長で発光し、本発明の効果を損なわない限り特に制限はなく、公知の発光材料を適用可能である。発光材料は、蛍光発光材料でも、燐光発光材料でもよいが、発光効率が良好である材料が好ましく、内部量子効率の観点から燐光発光材料が好ましい。
(Light emitting material)
The light emitting material emits light at a desired emission wavelength, and is not particularly limited as long as the effects of the present invention are not impaired, and known light emitting materials can be applied. The light emitting material may be a fluorescent light emitting material or a phosphorescent light emitting material, but a material having a good light emitting efficiency is preferable, and a phosphorescent light emitting material is preferable from the viewpoint of the internal quantum efficiency.
 蛍光発光材料としては、例えば、以下の材料が挙げられる。 Examples of the fluorescent material include the following materials.
 青色発光を与える蛍光発光材料(青色蛍光発光材料)としては、例えば、ナフタレン、ペリレン、ピレン、アントラセン、クマリン、クリセン、p-ビス(2-フェニルエテニル)ベンゼン及びそれらの誘導体等が挙げられる。 Examples of the fluorescent material (blue fluorescent material) giving blue emission include naphthalene, perylene, pyrene, anthracene, coumarin, chrysene, p-bis (2-phenylethenyl) benzene and derivatives thereof.
 緑色発光を与える蛍光発光材料(緑色蛍光発光材料)としては、例えば、キナクリドン誘導体、クマリン誘導体、Al(CNO)などのアルミニウム錯体等が挙げられる。 Examples of the fluorescent material (green fluorescent material) that emits green light include quinacridone derivatives, coumarin derivatives, aluminum complexes such as Al (C 9 H 6 NO) 3, and the like.
 黄色発光を与える蛍光発光材料(黄色蛍光発光材料)としては、例えば、ルブレン、ペリミドン誘導体等が挙げられる。 As a fluorescent light emitting material (yellow fluorescent light emitting material) which gives yellow light emission, rubrene, a perimidone derivative, etc. are mentioned, for example.
 赤色発光を与える蛍光発光材料(赤色蛍光発光材料)としては、例えば、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテン等が挙げられる。 As a fluorescent light emitting material (red fluorescent light emitting material) giving red light emission, for example, DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) based compound, benzopyran derivative, rhodamine derivative And benzothioxanthene derivatives, azabenzothioxanthene and the like.
 燐光発光材料としては、例えば、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)の第7~11族から選ばれる金属を含む有機金属錯体等が挙げられる。周期表の第7~11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金等が挙げられる。 As the phosphorescent light emitting material, for example, from Group 7 to Group 11 of the long period periodic table (hereinafter referred to as "long period periodic table" in the case of "periodic table" unless otherwise noted). The organic metal complex etc. which contain the metal chosen are mentioned. Preferred examples of the metal selected from Groups 7 to 11 of the periodic table include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, gold and the like.
 有機金属錯体の配位子としては、(ヘテロ)アリールピリジン配位子、(ヘテロ)アリールピラゾール配位子などの(ヘテロ)アリール基とピリジン、ピラゾール、フェナントロリンなどが連結した配位子が好ましく、特にフェニルピリジン配位子、フェニルピラゾール配位子が好ましい。ここで、(ヘテロ)アリールとは、アリール基又はヘテロアリール基を表す。 The ligand of the organometallic complex is preferably a ligand in which a (hetero) arylpyridine ligand, a (hetero) aryl group such as a (hetero) arylpyrazole ligand, etc. are linked to pyridine, pyrazole, phenanthroline, etc. In particular, phenylpyridine ligands and phenylpyrazole ligands are preferred. Here, (hetero) aryl represents an aryl group or a heteroaryl group.
 好ましい燐光発光材料として、具体的には、トリス(2-フェニルピリジン)イリジウム、トリス(2-フェニルピリジン)ルテニウム、トリス(2-フェニルピリジン)パラジウム、ビス(2-フェニルピリジン)白金、トリス(2-フェニルピリジン)オスミウム、トリス(2-フェニルピリジン)レニウム等のフェニルピリジン錯体及びオクタエチル白金ポルフィリン、オクタフェニル白金ポルフィリン、オクタエチルパラジウムポルフィリン、オクタフェニルパラジウムポルフィリン等のポルフィリン錯体等が挙げられる。 Specific examples of preferable phosphorescent materials include tris (2-phenylpyridine) iridium, tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, bis (2-phenylpyridine) platinum, tris (2 Phenylpyridine complexes such as -phenylpyridine) osmium and tris (2-phenylpyridine) rhenium; and porphyrin complexes such as octaethyl platinum porphyrin, octaphenyl platinum porphyrin, octaethyl palladium porphyrin and octaphenyl palladium porphyrin.
 高分子系の発光材料としては、ポリ(9,9-ジオクチルフルオレン-2,7-ジイル)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(4,4’-(N-(4-sec-ブチルフェニル))ジフェニルアミン)]、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(1,4-ベンゾ-2{2,1’-3}-トリアゾール)]などのポリフルオレン系材料、ポリ[2-メトキシ-5-(2-エチルヘキシルオキシ)-1,4-フェニレンビニレン]などのポリフェニレンビニレン系材料が挙げられる。 As a light emitting material of a polymer type, poly (9,9-dioctylfluorene-2,7-diyl), poly [(9,9-dioctylfluorene-2,7-diyl) -co- (4,4'-) (N- (4-sec-butylphenyl)) diphenylamine)], poly [(9,9-dioctylfluorene-2,7-diyl) -co- (1,4-benzo-2 {2,1'-3] And polyphenylene vinylene materials such as poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylene vinylene].
(電荷輸送性材料)
 電荷輸送性材料は、正電荷(正孔)又は負電荷(電子)輸送性を有する材料であり、本発明の効果を損なわない限り、特に制限はなく、公知の材料を適用可能である。
(Charge transportable material)
The charge transportable material is a material having positive charge (hole) or negative charge (electron) transportability, and is not particularly limited as long as the effects of the present invention are not impaired, and known materials can be applied.
 電荷輸送性材料は、従来、有機電界発光素子の発光層5に用いられている化合物等を用いることができ、特に、発光層5のホスト材料として使用されている化合物が好ましい。 As the charge transporting material, compounds conventionally used in the light emitting layer 5 of the organic electroluminescent device can be used, and in particular, compounds used as a host material of the light emitting layer 5 are preferable.
 電荷輸送性材料としては、具体的には、芳香族アミン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、オリゴチオフェン系化合物、ポリチオフェン系化合物、ベンジルフェニル系化合物、フルオレン基で3級アミンを連結した化合物、ヒドラゾン系化合物、シラザン系化合物、シラナミン系化合物、ホスファミン系化合物、キナクリドン系化合物等の正孔注入層3の正孔輸送性化合物として例示した化合物等が挙げられる他、アントラセン系化合物、ピレン系化合物、カルバゾール系化合物、ピリジン系化合物、フェナントロリン系化合物、オキサジアゾール系化合物、シロール系化合物等の電子輸送性化合物等が挙げられる。 Specific examples of the charge transporting material include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, and compounds in which tertiary amines are linked by a fluorene group. Other than the compounds exemplified as the hole transport compound of the hole injection layer 3 such as hydrazone compounds, silazane compounds, silanamine compounds, phosphamine compounds, quinacridone compounds etc., anthracene compounds, pyrene compounds And electron transporting compounds such as carbazole compounds, pyridine compounds, phenanthroline compounds, oxadiazole compounds, and silole compounds.
 電荷輸送性材料としては、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニルで代表される2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(特開平5-234681号公報)、4,4’,4''-トリス(1-ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン系化合物(J.Lumin.,72-74巻、985頁、1997年)、トリフェニルアミンの四量体から成る芳香族アミン系化合物(Chem.Commun.,2175頁、1996年)、2,2’,7,7’-テトラキス-(ジフェニルアミノ)-9,9’-スピロビフルオレン等のフルオレン系化合物(Synth.Metals,91巻、209頁、1997年)、4,4’-N,N’-ジカルバゾールビフェニルなどのカルバゾール系化合物等の正孔輸送層4の正孔輸送性化合物として例示した化合物等も好ましく用いることができる。その他、2-(4-ビフェニリル)-5-(p-ターシャルブチルフェニル)-1,3,4-オキサジアゾール(tBu-PBD)、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール(BND)などのオキサジアゾール系化合物、2,5-ビス(6’-(2’,2”-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロール(PyPySPyPy)等のシロール系化合物、バソフェナントロリン(BPhen)、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP、バソクプロイン)などのフェナントロリン系化合物等も挙げられる。 The charge transporting material includes two or more tertiary amines represented by 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl and two or more fused aromatic rings. Aromatic amine compounds having a starburst structure, such as aromatic diamines substituted by nitrogen atoms (JP-A-5-234681), 4,4 ′, 4 ′ ′-tris (1-naphthylphenylamino) triphenylamine, etc. (J. Lumin., 72-74, 985, 1997), aromatic amine compounds composed of tetramer of triphenylamine (Chem. Commun., 2175, 1996), 2, 2 ', Fluorene compounds such as 7,7'-tetrakis- (diphenylamino) -9,9'-spirobifluorene (Synth. Metals, vol. 91, p. 209, 1997) ), 4,4'-N, N'- compounds exemplified as hole-transporting compound of the hole transporting layer 4 of carbazole compounds such as di-biphenyl, or the like can be preferably used. In addition, 2- (4-biphenylyl) -5- (p-tertiary butylphenyl) -1,3,4-oxadiazole (tBu-PBD), 2,5-bis (1-naphthyl) -1,3 Oxadiazole compounds such as 4, 4-oxadiazole (BND), 2, 5-bis (6 '-(2', 2 ''-bipyridyl))-1, 1-dimethyl-3,4-diphenylsilole ( Also included are silole compounds such as PyPySPyPy), phenanthroline compounds such as bathophenanthroline (BPhen) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP, vasocuproin) and the like.
(湿式成膜法による発光層5の形成)
 発光層5の形成方法は、真空蒸着法でも、湿式成膜法でもよいが、成膜性に優れることから、湿式成膜法が好ましい。
(Formation of light emitting layer 5 by wet film formation method)
Although the formation method of the light emitting layer 5 may be a vacuum deposition method or a wet film formation method, the wet film formation method is preferable because of excellent film formability.
 湿式成膜法により発光層5を形成する場合は、通常、上述の正孔注入層3を湿式成膜法で形成する場合と同様にして、正孔注入層形成用組成物の代わりに、発光層5となる材料を可溶な溶剤(発光層用溶剤)と混合して調製した発光層形成用組成物を用いて形成させる。本発明においては、この発光層形成用組成物として、本発明のイリジウム錯体化合物含有組成物を用いることが好ましい。 When the light emitting layer 5 is formed by the wet film formation method, light emission is usually performed instead of the composition for forming the hole injection layer in the same manner as in the case where the above-mentioned hole injection layer 3 is formed by the wet film formation method. It forms using the composition for light emitting layer formation prepared by mixing the material used as the layer 5 with the soluble solvent (solvent for light emitting layers). In the present invention, it is preferable to use the iridium complex compound-containing composition of the present invention as the composition for forming a light emitting layer.
 溶剤としては、例えば、正孔注入層3の形成について挙げたエーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤の他、アルカン系溶剤、ハロゲン化芳香族炭化水系溶剤、脂肪族アルコール系溶剤、脂環族アルコール系溶剤、脂肪族ケトン系溶剤及び脂環族ケトン系溶剤などが挙げられる。用いる溶剤は、本発明のイリジウム錯体化合物含有組成物の溶剤としても例示した通りである。以下に溶剤の具体例を挙げるが、本発明の効果を損なわない限り、これらに限定されるものではない。 As the solvent, for example, ether solvents, ester solvents, aromatic hydrocarbon solvents, amide solvents mentioned for the formation of the hole injection layer 3, alkane solvents, halogenated aromatic carbonized water solvents, fat Group alcohol solvents, alicyclic alcohol solvents, aliphatic ketone solvents, and alicyclic ketone solvents. The solvent to be used is as illustrated also as a solvent of the iridium complex compound containing composition of this invention. Although the specific example of a solvent is given to the following, it will not be limited to these, unless the effect of the present invention is spoiled.
 例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル系溶剤;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール、ジフェニルエーテル等の芳香族エーテル系溶剤;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル系溶剤;トルエン、キシレン、メシチレン、シクロヘキシルベンゼン、テトラリン、3-イソプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、メチルナフタレン等の芳香族炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶剤;n-デカン、シクロヘキサン、エチルシクロヘキサン、デカリン、ビシクロヘキサン等のアルカン系溶剤;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素系溶剤;ブタノール、ヘキサノール等の脂肪族アルコール系溶剤;シクロヘキサノール、シクロオクタノール等の脂環族アルコール系溶剤;メチルエチルケトン、ジブチルケトン等の脂肪族ケトン系溶剤;シクロヘキサノン、シクロオクタノン、フェンコン等の脂環族ケトン系溶剤等が挙げられる。これらのうち、アルカン系溶剤及び芳香族炭化水素系溶剤が特に好ましい。 For example, aliphatic ether solvents such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2 Aromatic ether solvents such as-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, diphenyl ether; phenyl acetate, phenyl propionate, methyl benzoate, benzoic acid Aromatic ester solvents such as ethyl, propyl benzoate and n-butyl benzoate; toluene, xylene, mesitylene, cyclohexylbenzene, tetralin, 3-isopropylbiphenyl, 1,2,3,4- Aromatic hydrocarbon solvents such as tramethylbenzene, 1,4-diisopropylbenzene, methylnaphthalene; amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide; n-decane, cyclohexane, ethylcyclohexane, Alkane solvents such as decalin and bicyclohexane; halogenated aromatic hydrocarbon solvents such as chlorobenzene, dichlorobenzene and trichlorobenzene; aliphatic alcohol solvents such as butanol and hexanol; alicyclic alcohols such as cyclohexanol and cyclooctanol Aliphatic ketone solvents such as methyl ethyl ketone and dibutyl ketone; and alicyclic ketone solvents such as cyclohexanone, cyclooctanone and phencone. Among these, alkane solvents and aromatic hydrocarbon solvents are particularly preferable.
 より均一な膜を得るためには、成膜直後の液膜から溶剤が適当な速度で蒸発することが好ましい。このため、用いる溶剤の沸点は、前述の通り、通常80℃以上、好ましくは100℃以上、より好ましくは120℃以上で、通常270℃以下、好ましくは250℃以下、より好ましくは沸点230℃以下である。 In order to obtain a more uniform film, it is preferable that the solvent evaporates at an appropriate rate from the liquid film immediately after film formation. Therefore, as described above, the boiling point of the solvent used is usually 80 ° C. or more, preferably 100 ° C. or more, more preferably 120 ° C. or more, and usually 270 ° C. or less, preferably 250 ° C. or less, more preferably 230 ° C. or less It is.
 溶剤の使用量は、本発明の効果を著しく損なわない限り任意であるが、発光層形成用組成物、即ちイリジウム錯体化合物含有組成物中の合計含有量は、低粘性なために成膜作業が行いやすい点で多い方が好ましく、厚膜で成膜しやすい点では低い方が好ましい。前述の通り、溶剤の含有量は、イリジウム錯体化合物含有組成物において好ましくは1質量%以上、より好ましくは10質量%以上、特に好ましくは50質量%以上で、好ましくは99.99質量%以下、より好ましくは99.9質量%以下、特に好ましくは99質量%以下である。 Although the amount of the solvent used is optional as long as the effects of the present invention are not significantly impaired, the total content in the composition for forming a light emitting layer, that is, the composition containing an iridium complex compound is low in viscosity and thus film forming operation It is preferable that the number is large because it is easy to perform, and it is preferable that the thickness is low and it is easy to form a thick film. As described above, the content of the solvent is preferably 1% by mass or more, more preferably 10% by mass or more, particularly preferably 50% by mass or more, and preferably 99.99% by mass or less in the iridium complex compound-containing composition. More preferably, it is 99.9% by mass or less, particularly preferably 99% by mass or less.
 湿式成膜後の溶剤除去方法としては、加熱又は減圧を用いることができる。加熱方法において使用する加熱手段としては、膜全体に均等に熱を与えることから、クリーンオーブン、ホットプレートが好ましい。 Heating or depressurization can be used as a solvent removal method after wet film formation. As a heating means used in the heating method, a clean oven or a hot plate is preferable because heat is uniformly applied to the entire film.
 加熱工程における加熱温度は、本発明の効果を著しく損なわない限り任意であるが、乾燥時間を短くする点では温度が高いほうが好ましく、材料へのダメージが少ない点では低い方が好ましい。加温温度の上限は通常250℃以下であり、好ましくは200℃以下、さらに好ましくは150℃以下である。加温温度の下限は通常30℃以上であり、好ましくは50℃以上、さらに好ましくは80℃以上である。上記上限を超える温度は、通常用いられる電荷輸送材料又は燐光発光材料の耐熱性より高く、分解や結晶化する可能性があり好ましくない。加熱温度が上記下限未満では溶剤の除去に長時間を要するため、好ましくない。加熱工程における加熱時間は、発光層形成用組成物中の溶剤の沸点や蒸気圧、材料の耐熱性、および加熱条件によって適切に決定される。 The heating temperature in the heating step is optional as long as the effects of the present invention are not significantly impaired, but a higher temperature is preferable in terms of shortening the drying time, and a lower temperature is preferable in terms of less damage to the material. The upper limit of the heating temperature is usually 250 ° C. or less, preferably 200 ° C. or less, and more preferably 150 ° C. or less. The lower limit of the heating temperature is usually 30 ° C. or more, preferably 50 ° C. or more, and more preferably 80 ° C. or more. The temperature exceeding the above-mentioned upper limit is higher than the heat resistance of the charge transport material or phosphorescent light emitting material which is usually used, and is not preferable because it may be decomposed or crystallized. If the heating temperature is less than the above lower limit, it takes a long time to remove the solvent, which is not preferable. The heating time in the heating step is appropriately determined by the boiling point and vapor pressure of the solvent in the composition for forming a light emitting layer, the heat resistance of the material, and the heating conditions.
(真空蒸着法による発光層5の形成)
 真空蒸着法により発光層5を形成する場合には、通常、発光層5の構成材料(前述の発光材料、電荷輸送性化合物等)の1種類又は2種類以上を真空容器内に設置された坩堝に入れ(2種類以上の材料を用いる場合は、通常各々を別々の坩堝に入れ)、真空容器内を真空ポンプで10-4Pa程度まで排気した後、坩堝を加熱して(2種類以上の材料を用いる場合は、通常各々の坩堝を加熱して)、坩堝内の材料の蒸発量を制御しながら蒸発させ(2種類以上の材料を用いる場合は、通常各々独立に蒸発量を制御しながら蒸発させ)、坩堝に向き合って置かれた正孔注入層3又は正孔輸送層4の上に発光層5を形成させる。2種類以上の材料を用いる場合は、それらの混合物を坩堝に入れ、加熱、蒸発させて発光層5を形成することもできる。
(Formation of light emitting layer 5 by vacuum evaporation method)
When forming the light emitting layer 5 by a vacuum evaporation method, usually, one or two or more kinds of constituent materials of the light emitting layer 5 (the above-mentioned light emitting material, charge transporting compound, etc.) are placed in a vacuum vessel. (Equipment of two or more types of materials, usually put each in separate crucibles), evacuate the inside of the vacuum vessel to about 10 -4 Pa with a vacuum pump, then heat the crucible (two or more types of materials When using materials, it is usually evaporated while controlling the evaporation amount of the material in the crucible by heating each crucible) (when using two or more types of materials, the evaporation amount is usually controlled independently of each other) Evaporation) forms the light emitting layer 5 on the hole injection layer 3 or the hole transport layer 4 placed facing the crucible. When two or more types of materials are used, the mixture thereof may be put in a crucible, heated and evaporated to form the light emitting layer 5.
 蒸着時の真空度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1×10-6Torr(0.13×10-4Pa)以上、9.0×10-6Torr(12.0×10-4Pa)以下である。蒸着速度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1Å/秒以上、5.0Å/秒以下である。蒸着時の成膜温度は、本発明の効果を著しく損なわない限り限定されないが、好ましくは10℃以上、50℃以下で行われる。 The degree of vacuum at the time of deposition is not limited as long as the effects of the present invention are not significantly impaired, but usually 0.1 × 10 −6 Torr (0.13 × 10 −4 Pa) or more and 9.0 × 10 −6 Torr (0.13 × 10 −4 Pa). 12.0 × 10 -4 Pa) or less. The deposition rate is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 Å / sec or more and 5.0 Å / sec or less. The film forming temperature at the time of vapor deposition is not limited as long as the effects of the present invention are not significantly impaired, but it is preferably performed at 10 ° C. or more and 50 ° C. or less.
<正孔阻止層6>
 発光層5と後述の電子注入層8との間に、正孔阻止層6を設けてもよい。正孔阻止層6は、発光層5の上に、発光層5の陰極9側の界面に接するように積層される層である。
<Hole blocking layer 6>
The hole blocking layer 6 may be provided between the light emitting layer 5 and the electron injection layer 8 described later. The hole blocking layer 6 is a layer stacked on the light emitting layer 5 so as to be in contact with the interface of the light emitting layer 5 on the cathode 9 side.
 正孔阻止層6は、陽極2から移動してくる正孔を陰極9に到達するのを阻止する役割と、陰極9から注入された電子を効率よく発光層5の方向に輸送する役割とを有する。正孔阻止層6を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。 The hole blocking layer 6 has a role to block the transfer of holes transferred from the anode 2 to the cathode 9 and a role to efficiently transport electrons injected from the cathode 9 toward the light emitting layer 5. Have. The physical properties required for the material constituting the hole blocking layer 6 include high electron mobility and low hole mobility, large energy gap (difference between HOMO and LUMO), excited triplet level (T1) Is high.
 このような条件を満たす正孔阻止層6の材料としては、例えば、ビス(2-メチル-8-キノリノラト)(フェノラト)アルミニウム、ビス(2-メチル-8-キノリノラト)(トリフェニルシラノラト)アルミニウム等の混合配位子錯体、ビス(2-メチル-8-キノラト)アルミニウム-μ-オキソ-ビス-(2-メチル-8-キノリノラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフェニル誘導体等のスチリル化合物(特開平11-242996号公報)、3-(4-ビフェニルイル)-4-フェニル-5(4-tert-ブチルフェニル)-1,2,4-トリアゾール等のトリアゾール誘導体(特開平7-41759号公報)、バソクプロイン等のフェナントロリン誘導体(特開平10-79297号公報)などが挙げられる。国際公開第2005/022962号に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止層6の材料として好ましい。 As a material of the hole blocking layer 6 which satisfies such conditions, for example, bis (2-methyl-8-quinolinolato) (phenolato) aluminum, bis (2-methyl-8-quinolinolato) (triphenylsilanolato) aluminum Mixed ligand complexes, etc., metal complexes such as bis (2-methyl-8-quinolato) aluminum-μ-oxo-bis- (2-methyl-8-quinolinolato) aluminum binuclear metal complex, distyrylbiphenyl derivatives, etc. Styryl compounds (JP-A-11-242996), triazole derivatives such as 3- (4-biphenylyl) -4-phenyl-5 (4-tert-butylphenyl) -1,2,4-triazole 7-41759), phenanthroline derivatives such as basokuproin (Japanese Patent Laid-Open No. 10-79297), etc. It is below. A compound having at least one pyridine ring substituted with the 2, 4, 6 position described in WO 2005/022962 is also preferable as a material of the hole blocking layer 6.
 正孔阻止層6の形成方法に制限はなく、前述の発光層5の形成方法と同様にして形成することができる。 The formation method of the hole blocking layer 6 is not limited, and can be formed in the same manner as the formation method of the light emitting layer 5 described above.
 正孔阻止層6の膜厚は、本発明の効果を著しく損なわない限り任意であるが、通常0.3nm以上、好ましくは0.5nm以上で、通常100nm以下、好ましくは50nm以下である。 The thickness of the hole blocking layer 6 is arbitrary as long as the effects of the present invention are not significantly impaired, but is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less.
<電子輸送層7>
 電子輸送層7は素子の電流効率をさらに向上させることを目的として、発光層5又は正孔素子層6と電子注入層8との間に設けられる。
<Electron transport layer 7>
The electron transport layer 7 is provided between the light emitting layer 5 or the hole element layer 6 and the electron injection layer 8 for the purpose of further improving the current efficiency of the element.
 電子輸送層7は、電界を与えられた電極間において陰極9から注入された電子を効率よく発光層5の方向に輸送することができる化合物より形成される。電子輸送層7に用いられる電子輸送性化合物としては、陰極9又は電子注入層8からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物であることが必要である。 The electron transport layer 7 is formed of a compound capable of efficiently transporting electrons injected from the cathode 9 in the direction of the light emitting layer 5 between electrodes to which an electric field is applied. The electron transport compound used for the electron transport layer 7 has high electron injection efficiency from the cathode 9 or the electron injection layer 8 and can transport the injected electrons efficiently with high electron mobility. It is necessary to be a compound.
 このような条件を満たす電子輸送性化合物としては、例えば、8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体(特開昭59-194393号公報)、10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-ヒドロキシフラボン金属錯体、5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(特開平6-207169号公報)、フェナントロリン誘導体(特開平5-331459号公報)、2-t-ブチル-9,10-N,N’-ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。 Examples of the electron transporting compound satisfying such conditions include metal complexes such as aluminum complexes of 8-hydroxyquinoline (JP-A-59-194393), metal complexes of 10-hydroxybenzo [h] quinoline, and oxa Diazole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzene (US Patent No. 5645948), Quinoxaline compounds (JP-A-6-207169), phenanthroline derivatives (JP-A-5-313459), 2-t-butyl-9,10-N, N'-dicyanoanthraquinone diimine, n-type hydrogenated amorphous Silicon carbide, n-type sulfurization Lead, etc. n-type zinc selenide.
 電子輸送層7の膜厚は、通常1nm以上、好ましくは5nm以上で、通常300nm以下、好ましくは100nm以下である。 The film thickness of the electron transport layer 7 is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
 電子輸送層7は、発光層5と同様にして湿式成膜法、或いは真空蒸着法により発光層5又は正孔阻止層6上に積層することにより形成される。通常は、真空蒸着法が用いられる。 The electron transport layer 7 is formed by laminating on the light emitting layer 5 or the hole blocking layer 6 by a wet film forming method or a vacuum evaporation method in the same manner as the light emitting layer 5. Usually, a vacuum evaporation method is used.
<電子注入層8>
 電子注入層8は、陰極9から注入された電子を効率よく、電子輸送層7又は発光層5へ注入する役割を果たす。
<Electron injection layer 8>
The electron injection layer 8 plays a role of efficiently injecting electrons injected from the cathode 9 into the electron transport layer 7 or the light emitting layer 5.
 電子注入を効率よく行うには、電子注入層8を形成する材料は、仕事関数の低い金属が好ましい。例としては、ナトリウムやセシウム等のアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属等が用いられる。 For efficient electron injection, the material forming the electron injection layer 8 is preferably a metal having a low work function. As an example, an alkali metal such as sodium or cesium, an alkaline earth metal such as barium or calcium, or the like is used.
 電子注入層8の膜厚は、0.1~5nmが好ましい。 The film thickness of the electron injection layer 8 is preferably 0.1 to 5 nm.
 陰極9と電子輸送層7との界面に電子注入層8として、LiF、MgF、LiO、CsCO等の極薄絶縁膜(膜厚0.1~5nm程度)を挿入することも、素子の効率を向上させる有効な方法である(Appl.Phys.Lett.,70巻,152頁,1997年;特開平10-74586号公報;IEEETrans.Electron.Devices,44巻,1245頁,1997年;SID 04 Digest,154頁)。
 さらに、バソフェナントロリン等の含窒素複素環化合物や8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送材料に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープする(特開平10-270171号公報、特開2002-100478号公報、特開2002-100482号公報などに記載)ことにより、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。この場合の膜厚は通常5nm以上、好ましくは10nm以上で、通常200nm以下、好ましくは100nm以下である。
Inserting an ultrathin insulating film (film thickness of about 0.1 to 5 nm) of LiF, MgF 2 , Li 2 O, Cs 2 CO 3 or the like as the electron injection layer 8 at the interface between the cathode 9 and the electron transport layer 7 Is also an effective method to improve the efficiency of the device (Appl. Phys. Lett., 70, 152, 1997; JP 10-74586; IEEE Trans. Electron. Devices, 44, 1245, 1997; SID 04 Digest, page 154).
Furthermore, an alkali metal such as sodium, potassium, cesium, lithium or rubidium is doped to an organic electron transport material represented by a metal complex such as a nitrogen-containing heterocyclic compound such as bathophenanthroline or an aluminum complex of 8-hydroxyquinoline ( The electron injection / transportability is improved by the methods disclosed in JP-A-10-270171, JP-A-2002-100478, JP-A-2002-100482, etc., and it becomes possible to achieve both excellent film quality. preferable. The film thickness in this case is usually 5 nm or more, preferably 10 nm or more, and usually 200 nm or less, preferably 100 nm or less.
 電子注入層8は、発光層5と同様にして湿式成膜法或いは真空蒸着法により、発光層5或いはその上の正孔阻止層6又は電子輸送層7上に積層することにより形成される。
 湿式成膜法の場合の詳細は、前述の発光層5の場合と同様である。
The electron injection layer 8 is formed by laminating on the light emitting layer 5 or the hole blocking layer 6 or the electron transport layer 7 thereon by a wet film forming method or a vacuum evaporation method in the same manner as the light emitting layer 5.
The details of the wet film formation method are the same as those of the light emitting layer 5 described above.
<陰極9>
 陰極9は、発光層5側の層(電子注入層8又は発光層5など)に電子を注入する役割を果たす。陰極9の材料としては、前記の陽極2に使用される材料を用いることが可能であるが、効率よく電子注入を行なう上では、仕事関数の低い金属を用いることが好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の金属又はそれらの合金などが用いられる。陰極9の材料としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金等の低仕事関数の合金電極などが挙げられる。
<Cathode 9>
The cathode 9 plays a role of injecting electrons into a layer on the light emitting layer 5 side (the electron injection layer 8 or the light emitting layer 5 or the like). As a material of the cathode 9, although it is possible to use the material used for the above-mentioned anode 2, it is preferable to use a metal having a low work function in order to efficiently carry out electron injection, for example, tin, magnesium And metals such as indium, calcium, aluminum and silver, or alloys thereof. Examples of the material of the cathode 9 include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
 素子の安定性の点では、陰極9の上に、仕事関数が高く、大気に対して安定な金属層を積層して、低仕事関数の金属からなる陰極9を保護するのが好ましい。積層する金属としては、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が挙げられる。 From the viewpoint of the stability of the device, it is preferable to deposit a metal layer having a high work function and stable to the atmosphere on the cathode 9 to protect the cathode 9 made of a low work function metal. As a metal to laminate | stack, metals, such as aluminum, silver, copper, nickel, chromium, gold, platinum, are mentioned, for example.
 陰極の膜厚は通常、陽極2と同様である。 The film thickness of the cathode is usually the same as that of the anode 2.
<その他の構成層>
 以上、図1に示す層構成の素子を中心に説明したが、本発明の有機電界発光素子における陽極2及び陰極9と発光層5との間には、その性能を損なわない限り、上記説明にある層の他にも、任意の層を有していてもよく、また発光層5以外の任意の層を省略してもよい。
<Other component layers>
In the above, the element having the layer configuration shown in FIG. 1 has been mainly described, but in the organic electroluminescent element of the present invention, between the anode 2 and the cathode 9 and the light emitting layer 5, unless the performance is impaired, In addition to a certain layer, any layer may be included, and any layer other than the light emitting layer 5 may be omitted.
 例えば、正孔阻止層8と同様の目的で、正孔輸送層4と発光層5の間に電子阻止層を設けることも効果的である。電子阻止層は、発光層5から移動してくる電子が正孔輸送層4に到達することを阻止することで、発光層5内で正孔との再結合確率を増やし、生成した励起子を発光層5内に閉じこめる役割と、正孔輸送層4から注入された正孔を効率よく発光層5の方向に輸送する役割がある。 For example, it is also effective to provide an electron blocking layer between the hole transport layer 4 and the light emitting layer 5 for the same purpose as the hole blocking layer 8. The electron blocking layer prevents the electrons moving from the light emitting layer 5 from reaching the hole transporting layer 4, thereby increasing the probability of recombination with holes in the light emitting layer 5, thereby generating the generated excitons. It has a role of being confined in the light emitting layer 5 and a role of efficiently transporting holes injected from the hole transport layer 4 in the direction of the light emitting layer 5.
 電子阻止層に求められる特性としては、正孔輸送性が高く、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。 The characteristics required for the electron blocking layer include high hole transportability, large energy gap (difference between HOMO and LUMO), and high excited triplet level (T1).
 発光層5を湿式成膜法で形成する場合、電子阻止層も湿式成膜法で形成することが、素子製造が容易となるため、好ましい。
 このため、電子阻止層も湿式成膜適合性を有することが好ましく、このような電子阻止層に用いられる材料としては、F8-TFBに代表されるジオクチルフルオレンとトリフェニルアミンの共重合体(国際公開第2004/084260号)等が挙げられる。
In the case where the light emitting layer 5 is formed by a wet film formation method, it is preferable to also form the electron blocking layer by a wet film formation method because this facilitates the element production.
For this reason, it is preferable that the electron blocking layer also have wet film forming compatibility, and as a material used for such an electron blocking layer, a copolymer of dioctyl fluorene and triphenylamine represented by F8-TFB (International Publication No. 2004/084260) and the like can be mentioned.
 図1とは逆の構造、即ち、基板1上に陰極9、電子注入層8、電子輸送層7、正孔阻止層6、発光層5、正孔輸送層4、正孔注入層3、陽極2の順に積層することも可能である。少なくとも一方が透明性の高い2枚の基板の間に本発明の有機電界発光素子を設けることも可能である。 The structure reverse to that of FIG. 1, that is, on the substrate 1, the cathode 9, the electron injection layer 8, the electron transport layer 7, the hole blocking layer 6, the light emitting layer 5, the hole transport layer 4, the hole injection layer 3, the anode It is also possible to stack in the order of two. It is also possible to provide the organic electroluminescent device of the present invention between two substrates of which at least one is highly transparent.
 図1に示す層構成を複数段重ねた構造(発光ユニットを複数積層させた構造)とすることも可能である。その際には段間(発光ユニット間)の界面層(陽極がITO、陰極がAlの場合はその2層)の代わりに、例えばV等を電荷発生層として用いると段間の障壁が少なくなり、発光効率・駆動電圧の観点からより好ましい。 It is also possible to adopt a structure in which a plurality of layers are stacked (the structure in which a plurality of light emitting units are stacked) shown in FIG. In that case, if, for example, V 2 O 5 or the like is used as the charge generation layer instead of the interface layer between the steps (between the light emitting units) (the anode is ITO and the two layers if the cathode is Al), the barrier between the steps Is more preferable from the viewpoint of light emission efficiency and drive voltage.
 本発明は、有機電界発光素子が、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれにおいても適用することができる。 The present invention can be applied to any of organic electroluminescent devices, devices having a structure in which the organic electroluminescent devices are arranged in an array, and structures in which an anode and a cathode are arranged in an XY matrix.
[表示装置及び照明装置]
 本発明の表示装置及び照明装置は、上述のような本発明の有機電界発光素子を用いたものである。本発明の表示装置及び照明装置の形式や構造については特に制限はなく、本発明の有機電界発光素子を用いて常法に従って組み立てることができる。
[Display device and lighting device]
The display device and the illumination device of the present invention use the organic electroluminescent device of the present invention as described above. There are no particular restrictions on the type and structure of the display device and the lighting device of the present invention, and the display can be assembled according to a conventional method using the organic electroluminescent device of the present invention.
 例えば、「有機ELディスプレイ」(オーム社、平成16年8月20日発刊、時任静士、安達千波矢、村田英幸著)に記載されているような方法で、本発明の表示装置および照明装置を形成することができる。 For example, the display device and the lighting device according to the present invention can be described in the manner described in "Organic EL display" (Am Co., published on August 20, 2004, Toshitoshi Shitashi, Adachi Senya, Murata Hideyuki). Can be formed.
 以下、実施例を示して本発明について更に具体的に説明する。本発明は以下の実施例に限定されるものではなく、本発明はその要旨を逸脱しない限り任意に変更して実施できる。
 以下の合成例において、反応はすべて窒素気流下で実施した。
Hereinafter, the present invention will be more specifically described with reference to examples. The present invention is not limited to the following examples, and the present invention can be implemented with various modifications without departing from the scope of the invention.
In the following synthesis examples, all reactions were carried out under a nitrogen stream.
[イリジウム錯体化合物の合成]
<合成例1:化合物1の合成>
Figure JPOXMLDOC01-appb-C000030
[Synthesis of Iridium Complex Compound]
Synthesis Example 1: Synthesis of Compound 1
Figure JPOXMLDOC01-appb-C000030
 200mLフラスコに、9,9-ジメチルフルオレン-2-カルボン酸:5.0g、乾燥ジクロロメタン:100mL、塩化チオニル:3.3gおよびN,N-ジメチルホルムアミド:100μLをこの順で加え、室温で1.5時間撹拌した。溶媒を減圧除去し、残渣に乾燥テトラヒドロフラン:5mLを加え、さらに、2-アミノ-3-クロロベンゾニトリル:2.7gの乾燥ピリジン:10mL溶液を加え、室温で撹拌した。10分後、2-アミノ-3-クロロベンゾニトリル:0.7gをさらに加え、合計3時間室温で撹拌した。溶媒を減圧除去し、トルエン:300mLと1N塩酸:130mLで分液洗浄し、硫酸マグネシウムで乾燥後ろ過し減圧乾燥した。中間体1を8.8gの黄色固体として得た。中間体1は精製せず次の反応に供した。 In a 200 mL flask, 5.0 g of 9,9-dimethylfluorene-2-carboxylic acid, 100 mL of dry dichloromethane, 3.3 g of thionyl chloride, and 100 μL of N, N-dimethylformamide are added in this order at room temperature. Stir for 5 hours. The solvent was removed under reduced pressure, 5 ml of dry tetrahydrofuran was added to the residue, and further, a solution of 2-amino-3-chlorobenzonitrile: 2.7 g of dry pyridine: 10 ml was added and stirred at room temperature. After 10 minutes, an additional 0.7 g of 2-amino-3-chlorobenzonitrile was added, and the mixture was stirred at room temperature for a total of 3 hours. The solvent was removed under reduced pressure, and the solution was separated and washed with 300 mL of toluene and 130 mL of 1 N hydrochloric acid, dried over magnesium sulfate, filtered and dried under reduced pressure. Intermediate 1 was obtained as 8.8 g of yellow solid. Intermediate 1 was subjected to the next reaction without purification.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 1Lナスフラスコに、2,6-ジブロモ-m-キシレン:27.5g、3-(6-フェニル-n-ヘキシル)フェニルボロン酸:30.3g、テトラキス(トリフェニルホスフィン)パラジウム(0):2.5g、2Mリン酸三カリウム水溶液:2500mL、トルエン:300mLおよびエタノール:100mLを加え、100℃のオイルバスで3時間還流撹拌した。 In a 1 L eggplant flask, 27.5 g of 2,6-dibromo-m-xylene, 30.3 g of 3- (6-phenyl-n-hexyl) phenylboronic acid, tetrakis (triphenylphosphine) palladium (0): 2 .5 g, 2 M aqueous solution of tripotassium phosphate: 2500 mL, toluene: 300 mL and ethanol: 100 mL were added, and the mixture was stirred under reflux in an oil bath at 100 ° C. for 3 hours.
 その後室温に冷却し、水相を除去し溶媒を減圧除去した。残渣をシリカゲルカラムクロマトグラフィー(中性ゲル650mL、ヘキサンのみ)で精製し、中間体2を無色オイル状物質として39.4g得た。 After cooling to room temperature, the aqueous phase was removed and the solvent removed in vacuo. The residue was purified by silica gel column chromatography (neutral gel 650 mL, hexane only) to obtain 39.4 g of Intermediate 2 as a colorless oil.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 200mLフラスコに、削り状マグネシウム:2.2gを入れ、減圧下1時間撹拌した。その後中間体2:37.8gを乾燥テトラヒドロフラン:45mLに溶解した溶液を室温で30分かけて滴下した。その後室温でさらに1時間撹拌した。この反応液を、中間体1:8.8gを乾燥テトラヒドロフラン:35mLに溶解した溶液に室温で滴下し、85℃で3時間撹拌した。その後、飽和塩化アンモニウム水溶液:10mLを加えた後、溶媒を減圧除去し、残渣をシリカゲルカラムクロマトグラフィー(酸性ゲル500mL、ヘキサン→ヘキサン/酢酸エチル8/2)で精製したところ、中間体3を正味11.1g得た(但し中間体2の脱臭素水素化体が混入していて、全部で13.3gであった。次の反応に影響はないので、混合物のまま次の反応に供した)。 A 200 mL flask was charged with 2.2 g of sharp magnesium and stirred for 1 hour under reduced pressure. Thereafter, a solution of 37.8 g of Intermediate 2: 3 in dry tetrahydrofuran: 45 mL was added dropwise over 30 minutes at room temperature. Then, it stirred at room temperature for further 1 hour. The reaction mixture was added dropwise at room temperature to a solution of 8.8 g of Intermediate 1: 8 in dry tetrahydrofuran: 35 mL, and the mixture was stirred at 85 ° C. for 3 hours. Then, after adding 10 mL of saturated aqueous ammonium chloride solution, the solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography (Acid gel 500 mL, hexane → hexane / ethyl acetate 8/2), and intermediate 3 was removed 11.1 g was obtained (however, the dehydrobrominated intermediate 2 was mixed, and 13.3 g in total. The next reaction was not affected, so the mixture was subjected to the next reaction). .
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 1Lナスフラスコに、中間体3:正味11.1g、2-ナフタレンボロン酸:5.4g、酢酸パラジウム:183mg、S-Phos(2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル):656mg、リン酸三カリウム:6.6gおよび脱水脱酸素トルエン:100mLを加え、130℃のオイルバスで撹拌した。途中、3時間後に水酸化ナトリウム:2.0g、エタノール:25mLおよび水:25mLを加え、4時間後に水酸化カリウム:2.7g、酢酸パラジウム:100mg、S-Phos:400mgおよびテトラヒドロフラン:10mLを加え、5時間後に水酸化バリウム8水和物:3.0g、酢酸パラジウム:100mg、S-Phos:400mgおよびテトラヒドロフラン:10mLを加え、6時間後に2-ナフタレンボロン酸:2.3g、酢酸パラジウム:100mg、S-Phos:400mgおよびテトラヒドロフラン:10mLを加え、6.5時間後に水酸化カリウム:1.2g、エタノール:50mLおよび水:50mLを加え、合計11時間反応させたが低転化率であった。 Intermediate 3: Net 11.1 g, 2-naphthaleneboronic acid: 5.4 g, palladium acetate: 183 mg, S-Phos (2-dicyclohexylphosphino-2 ', 6'-dimethoxybiphenyl): 656 mg in a 1 L eggplant flask Tripotassium phosphate: 6.6 g and dehydrated deoxygenated toluene: 100 mL were added, and the mixture was stirred in a 130 ° C. oil bath. On the way, after 3 hours, add sodium hydroxide: 2.0 g, ethanol: 25 mL and water: 25 mL, and after 4 hours, add potassium hydroxide: 2.7 g, palladium acetate: 100 mg, S-Phos: 400 mg and tetrahydrofuran: 10 mL After 5 hours, add barium hydroxide octahydrate: 3.0 g, palladium acetate: 100 mg, S-Phos: 400 mg and tetrahydrofuran: 10 mL, and after 6 hours, 2-naphthaleneboronic acid: 2.3 g, palladium acetate: 100 mg S-Phos: 400 mg and tetrahydrofuran: 10 mL were added, and after 6.5 hours, potassium hydroxide: 1.2 g, ethanol: 50 mL and water: 50 mL were added and reacted for a total of 11 hours, but the conversion was low.
 翌日、テトラキストリフェニルホスフィンパラジウム(0):1.2gを加え、120℃で撹拌を再開した。1時間後、N,N-ジメチルホルムアミド:100mLを加え、2.5時間後に2-ナフタレンボロン酸:3.1g、酢酸パラジウム:100mg、S-Phos:400mgおよびN,N-ジメチルホルムアミド:15mLを加え、3.5時間後、酢酸パラジウム:100mg、S-Phos:400mgおよびN,N-ジメチルホルムアミド:15mLを加え、合計8時間反応させたところ、原料は消失した。その後溶媒を減圧除去し、得られた残渣をシリカゲルカラムクロマトグラフィー(中性ゲル700mL、ジクロロメタン/ヘキサン=2/8~1/1)で精製したところ、11.0gの中間体4を橙色固体として得た。 The next day, 1.2 g of tetrakistriphenylphosphine palladium (0) was added, and stirring was resumed at 120 ° C. After 1 hour, add N, N-dimethylformamide: 100 mL and after 2.5 hours, 2-naphthaleneboronic acid: 3.1 g, palladium acetate: 100 mg, S-Phos: 400 mg and N, N-dimethylformamide: 15 mL In addition, after 3.5 hours, 100 mg of palladium acetate, 400 mg of S-Phos and 15 mL of N, N-dimethylformamide were added and reacted for a total of 8 hours, and the raw materials disappeared. Thereafter, the solvent is removed under reduced pressure, and the obtained residue is purified by silica gel column chromatography (neutral gel 700 mL, dichloromethane / hexane = 2/8 to 1/1) to obtain 11.0 g of intermediate 4 as an orange solid Obtained.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 1Lナスフラスコに、2-(3-ブロモフェニル)ベンゾチアゾール:31.7g、B-[1,1’:3’,1''-テルフェニル]-3-イルボロン酸:33.7g、テトラキス(トリフェニルホスフィン)パラジウム(0):2.2gを入れ、さらに窒素バブリングしたトルエン:350mL、エタノール:100mLおよび2Mリン酸三カリウム水溶液:200mLを加え、100℃で4時間撹拌した。室温まで冷却後、水相を除去し、溶媒を除去して得られた残渣をシリカゲルカラムクロマトグラフィー(ゲル600mL、ジクロロメタン/ヘキサン=3/7→5/5)で精製し、中間体5を45.9g得た。 In a 1-L eggplant flask, 31.7 g of 2- (3-bromophenyl) benzothiazole, 33.7 g of B- [1,1 ': 3', 1 ''-terphenyl] -3-ylboronic acid, tetrakis ( Triphenylphosphine) palladium (0): 2.2 g was added, and further nitrogen-bubbled toluene: 350 mL, ethanol: 100 mL and 2 M aqueous solution of tripotassium phosphate: 200 mL were added and stirred at 100 ° C. for 4 hours. After cooling to room temperature, the aqueous phase is removed, the solvent is removed, and the residue thus obtained is purified by silica gel column chromatography (gel 600 mL, dichloromethane / hexane = 3/7 → 5/5), and Intermediate 5 is 45 I got .9g.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 1Lナスフラスコに、中間体5:28.9g、塩化イリジウムn水和物(フルヤ金属製、イリジウム含量52%):10.7gに、2-エトキシエタノール:0.7Lおよび水:60mLを加え、9時間還流撹拌した。析出物をろ過して得たケーキの半分量を500mLのナスフラスコに入れ、3,5-ヘプタンジオン:7.4g、炭酸カリウム:10.2gおよび2-エトキシエタノール:250mLを加え、8時間還流撹拌した。室温まで冷却後、ろ過した液の溶媒を減圧除去し、得られた残渣をシリカゲルカラムクロマトグラフィー(ゲル500mL、ジクロロメタンで展開)で精製したところ、中間体6を14.9g得た。 Intermediate 5: 28.9 g, iridium chloride n hydrate (made of Furuya metal, 52% iridium content): 10.7 g of 2-ethoxyethanol: 0.7 L and water: 60 mL are added to a 1 L eggplant flask, Stir at reflux for 9 hours. The precipitate is filtered and half of the cake obtained is placed in a 500 mL eggplant flask, and 3,4-heptanedione: 7.4 g, potassium carbonate: 10.2 g and 2-ethoxyethanol: 250 mL are added and refluxed for 8 hours It stirred. After cooling to room temperature, the solvent of the filtered solution was removed under reduced pressure, and the obtained residue was purified by silica gel column chromatography (gel 500 mL, developed with dichloromethane) to obtain 14.9 g of Intermediate 6.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 100mLナスフラスコに、中間体4:10.8g、中間体6:4.2g、トリフルオロメタンスルホン酸銀:1.5gおよびトルエン:7.5mLを加え、225℃のオイルバスで2時間撹拌した。反応中100mLナスに直結する三方コックに窒素をフローして揮発するトルエンを除去した。室温まで冷却後、得られた固体をシリカゲルカラムクロマトグラフィー(中性ゲル400mL、トルエン/ヘキサン=35/65~1/1で流した後、ジクロロメタン/ヘキサン=1/1で目的物を流下させた)で精製し、化合物1を赤色固体として0.96g得た。 In a 100 mL recovery flask, Intermediate 4: 10.8 g, Intermediate 6: 4.2 g, Silver trifluoromethanesulfonate: 1.5 g and toluene: 7.5 mL were added, and the mixture was stirred in an oil bath at 225 ° C. for 2 hours. During the reaction, nitrogen was flowed to a three-way cock connected directly to 100 mL eggplant to remove volatilized toluene. After cooling to room temperature, the obtained solid was flowed through silica gel column chromatography (neutral gel 400 mL, toluene / hexane = 35/65 to 1/1, and then the target substance was allowed to flow down with dichloromethane / hexane = 1/1. ) To give 0.96 g of Compound 1 as a red solid.
<合成例2:化合物2の合成>
Figure JPOXMLDOC01-appb-C000037
Synthesis Example 2: Synthesis of Compound 2
Figure JPOXMLDOC01-appb-C000037
 1Lナスフラスコに、9,9-ジメチルフルオレン-2-カルボン酸:4.9g、乾燥ジクロロメタン:100mL、塩化チオニル:2mLおよびN,N-ジメチルホルムアミド:100μLをこの順で加え、室温で2時間撹拌した。溶媒を減圧除去し、残渣に乾燥N-メチルピロリドン:50mLを加え、さらに、2-アミノチオフェノール:2.6gの乾燥N-メチルピロリドン:50mL溶液を加え、室温で2時間撹拌した。反応液を水:800mLに投入し、2Mリン酸三カリウム水溶液:100mLで中和後、ろ過し、水で洗浄後、減圧乾燥して中間体7を6.2gのクリーム色固体として得た。 In a 1-liter eggplant flask, 4.9 g of 9,9-dimethylfluorene-2-carboxylic acid, 100 mL of dry dichloromethane, 2 mL of thionyl chloride, and 100 μL of N, N-dimethylformamide are added in this order and stirred at room temperature for 2 hours did. The solvent was removed under reduced pressure, 50 mL of dry N-methylpyrrolidone was added to the residue, and a 50 mL solution of 2.6 g of dry N-methylpyrrolidone was further added, followed by stirring at room temperature for 2 hours. The reaction solution was poured into 800 mL of water, neutralized with 2 M aqueous solution of tripotassium phosphate: 100 mL, filtered, washed with water and dried under reduced pressure to obtain Intermediate 7 as a cream solid of 6.2 g.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 1Lナスフラスコに、中間体7:6.2g、塩化イリジウムn水和物(フルヤ金属製、イリジウム含量52%):3.2gに、2-エトキシエタノール:50mLおよび水:10mLを加え、6時間還流撹拌した。析出物をろ過して得たケーキ:9.1gのうち5.0gを1Lのナスフラスコに入れ、3,5-ヘプタンジオン:2.6g、炭酸カリウム:8.0gおよび2-エトキシエタノール:200mLを加え、1時間45分還流撹拌した。室温まで冷却後、溶媒を減圧除去し、得られた残渣をジクロロメタン:300mLと水:300mLで分液洗浄した後、油相の溶媒を除去して得られた残渣をシリカゲルカラムクロマトグラフィー(ゲル500mL、ジクロロメタン/ヘキサン=8/2で展開)で精製したところ、中間体8を2.0g得た。 In a 1-liter eggplant flask, 6.2 g of intermediate 7, iridium chloride n hydrate (made of Furuya metal, iridium content 52%): 3.2 g, 50 mL of 2-ethoxyethanol and 10 mL of water are added, and it is for 6 hours Stir at reflux. A cake obtained by filtering the deposit: 5.0 g of 9.1 g is put into a 1 L eggplant flask, 3,5-heptanedione: 2.6 g, potassium carbonate: 8.0 g and 2-ethoxyethanol: 200 mL Was added and stirred at reflux for 1 hour 45 minutes. After cooling to room temperature, the solvent is removed under reduced pressure, and the obtained residue is separated and washed with dichloromethane: 300 mL and water: 300 mL, and then the solvent of the oil phase is removed and the residue obtained is silica gel column chromatography (gel 500 mL The residue was purified with dichloromethane / hexane = 8/2 to give 2.0 g of Intermediate 8.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 100mLナスフラスコに、中間体8:1.4g、中間体4:4.3g、トリフルオロメタンスルホン酸銀:0.57gを加え、220℃のオイルバスで2時間撹拌した。室温まで冷却後、得られた固体をシリカゲルカラムクロマトグラフィー(中性ゲル400mL、トルエン/ヘキサン=4/6~1/1で流した後、ジクロロメタン/ヘキサン=1/1で目的物を流下させた)で精製し、化合物2を赤色固体として0.8g得た。 Intermediate 8: 1.4 g, Intermediate 4: 4.3 g, and silver trifluoromethanesulfonate: 0.57 g were added to a 100 mL recovery flask, and the mixture was stirred in an oil bath at 220 ° C. for 2 hours. After cooling to room temperature, the obtained solid was subjected to silica gel column chromatography (neutral gel 400 mL, toluene / hexane = 4/6 to 1/1, and then the target substance was allowed to flow down with dichloromethane / hexane = 1/1. ) To give 0.8 g of Compound 2 as a red solid.
[溶剤溶解性の比較]
<実施例1>
 化合物1をシクロヘキシルベンゼンに3質量%となるように混合した。室温で2分間手による振盪のみで溶解性を観察した。その後、100℃のホットプレートで5分加熱した後、室温で40時間静置してそれぞれ析出の有無等を観察した。
[Comparison of solvent solubility]
Example 1
Compound 1 was mixed with cyclohexylbenzene so as to be 3% by mass. Solubility was observed with only manual shaking for 2 minutes at room temperature. Then, after heating for 5 minutes with a 100 degreeC hot plate, it left still at room temperature for 40 hours, and observed the presence or absence of precipitation, etc., respectively.
<実施例2、比較例1,2>
 実施例1において、化合物1を、化合物2、下記化合物D-1、又は下記化合物D-2に代えた以外は同様の操作を行った。なお、化合物D-1は国際公開第2015/087961号、化合物D-2は国際公開第2014/024889号の記載をもとに合成した。
Example 2, Comparative Examples 1 and 2
The same procedure as in Example 1 was repeated except that Compound 1 was replaced with Compound 2, Compound D-1 below, or Compound D-2 below. Compound D-1 was synthesized based on WO 2015/087961, and Compound D-2 was synthesized based on WO 2014/024889.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 以上の結果を表1にまとめた。
 表1より、本発明のイリジウム錯体化合物は溶解時の溶解性にも、溶解後時間を経た場合の溶解安定性にも優れていることがわかる。
The above results are summarized in Table 1.
It can be seen from Table 1 that the iridium complex compound of the present invention is excellent in both the solubility upon dissolution and the dissolution stability after a lapse of time after dissolution.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
[最大発光波長および半値幅の測定]
<実施例3>
 化合物1を、常温下で、2-メチルテトラヒドロフラン(アルドリッチ社製、脱水、安定剤非添加)に溶解し、1×10-5mol/Lの溶液を調製した。この溶液をテフロン(登録商標)コック付きの石英セルに入れ、窒素バブリングを20分以上行った後、室温で燐光スペクトルを測定した。得られた燐光スペクトル強度の最大値を示す波長を、最大発光波長とした。また、最大発光波長の半分のスペクトル強度の幅を半値幅とした。
[Measurement of maximum emission wavelength and half width]
Example 3
Compound 1 was dissolved in 2-methyltetrahydrofuran (manufactured by Aldrich, dehydrated, with no stabilizer added) at room temperature to prepare a 1 × 10 −5 mol / L solution. This solution was put into a quartz cell equipped with a Teflon (registered trademark) cock, nitrogen bubbling was performed for 20 minutes or more, and then a phosphorescence spectrum was measured at room temperature. The wavelength showing the maximum value of the obtained phosphorescence spectrum intensity was taken as the maximum emission wavelength. Further, the width of the spectral intensity half of the maximum emission wavelength was taken as the half width.
 発光スペクトルの測定には、以下の機器を用いた。
  装置:浜松ホトニクス社製 有機EL量子収率測定装置C9920-02
  光源:モノクロ光源L9799-01
  検出器:マルチチャンネル検出器PMA-11
  励起光:380nm
The following equipment was used for the measurement of the emission spectrum.
Device: Hamamatsu Photonics Co., Ltd. Organic EL quantum yield measurement device C9920-02
Light source: monochrome light source L9799-01
Detector: Multi-channel detector PMA-11
Excitation light: 380 nm
<実施例4、比較例3,4>
 実施例3において、化合物1に代えて、化合物2、前記化合物D-1又は前記化合物D-2を用いた他は同様の操作を行った。
Example 4, Comparative Examples 3 and 4
The same procedure as in Example 3 was repeated, except that Compound 2, Compound D-1 or Compound D-2 was used instead of Compound 1.
 結果を表2および図2に示す。 The results are shown in Table 2 and FIG.
 実施例3および実施例4は、図2において、比較例3と比較例4のデータを結んだ線が示す実施例3および実施例4の最大発光波長における半値幅よりも、それぞれ広い半値幅値を示した。これらの結果から、本発明のイリジウム錯体化合物は、比較例3および比較例4の最大発光波長と半値幅の直線関係から外れた広い半値幅を示すものと言える。 In Example 3 and Example 4, the half width at the maximum emission wavelength of Example 3 and Example 4 indicated by the line connecting the data of Comparative Example 3 and Comparative Example 4 in FIG. showed that. From these results, it can be said that the iridium complex compound of the present invention exhibits a wide half width which deviates from the linear relationship between the maximum emission wavelength and the half width of Comparative Example 3 and Comparative Example 4.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
[イリジウム錯体化合物の合成]
<合成例3:化合物3の合成>
Figure JPOXMLDOC01-appb-C000043
[Synthesis of Iridium Complex Compound]
Synthesis Example 3: Synthesis of Compound 3
Figure JPOXMLDOC01-appb-C000043
(反応1)
 1Lナスフラスコに、3-ブロモ-4-ヒドロキシ安息香酸(50g)、メタノール(400mL)および硫酸(23mL)を入れ、95℃のオイルバスで3時間還流撹拌した。その後、炭酸ナトリウム(60g)と水(200mL)を入れ塩基性とした後、ジクロロメタン(250mL)で6回で抽出した。水相に35%塩酸(15mL)を加え、ジクロロメタン(250mL)で5回抽出した。油相を硫酸マグネシウム(50mL)で乾燥しろ過後、溶媒を減圧除去して53.6gのメチルエステル体を得た。
(Reaction 1)
In a 1 L eggplant flask, 3-bromo-4-hydroxybenzoic acid (50 g), methanol (400 mL) and sulfuric acid (23 mL) were added, and the mixture was stirred under reflux in an oil bath at 95 ° C. for 3 hours. Thereafter, sodium carbonate (60 g) and water (200 mL) were added to make basic, and then extracted with dichloromethane (250 mL) six times. The aqueous phase was added with 35% hydrochloric acid (15 mL) and extracted five times with dichloromethane (250 mL). The oil phase was dried over magnesium sulfate (50 mL) and filtered, and the solvent was removed under reduced pressure to obtain 53.6 g of methyl ester.
(反応2)
 反応1のメチルエステル体(27.7g)に、2-メチルフェニルボロン酸(16.5g)、酢酸パラジウム(0.50g)、S-Phos(2-ジシクロヘキシルホスフィノ-2’,6-ジメトキシビフェニル)(1.9g)、リン酸三カリウム(46.3g)および脱酸素トルエン(500mL)を加え、100℃で5時間撹拌した。その後、35%塩酸(40mL)、水(160mL)およびジクロロメタン(100mL)を加えて油相を回収し、熱エタノール(100mL)に溶解させた後、水(250mL)を加えて粉とした。
 これをシリカゲルカラムクロマトグラフィー(中性ゲル200mL、ジクロロメタン/ヘキサン=3/7~1/0)で精製して23.1gの中間体9を得た。
(Reaction 2)
2-methylphenylboronic acid (16.5 g), palladium acetate (0.50 g), S-Phos (2-dicyclohexylphosphino-2 ', 6-dimethoxybiphenyl) in the methyl ester form (27.7 g) of Reaction 1 ) (1.9 g), tripotassium phosphate (46.3 g) and deoxygenated toluene (500 mL) were added and stirred at 100 ° C. for 5 hours. Then, 35% hydrochloric acid (40 mL), water (160 mL) and dichloromethane (100 mL) were added to recover the oil phase, dissolved in hot ethanol (100 mL), and then water (250 mL) was added to make a powder.
The residue was purified by silica gel column chromatography (neutral gel 200 mL, dichloromethane / hexane = 3/7 to 1/0) to obtain 23.1 g of intermediate 9.
(反応3)
 1Lナスフラスコに、中間体9(23.1g)、ジクロロメタン(350mL)、トリフルオロメタンスルホン酸無水物(35mL)およびトリエチルアミン(30mL)を加え、室温で1時間撹拌した。その後、水(200mL)と炭酸ナトリウム(30g)を加え中和後、油相を硫酸マグネシウムで乾燥し、ろ過後溶媒を減圧除去した。
 得られた残渣をシリカゲルカラムクロマトグラフィー(直径9cmの円錐上に1cmの中性ゲルを積み、ジクロロメタン/ヘキサン=1/1で流出させた)で精製したところ、中間体10を38.3g得た。
(Reaction 3)
Intermediate 9 (23.1 g), dichloromethane (350 mL), trifluoromethanesulfonic anhydride (35 mL) and triethylamine (30 mL) were added to a 1 L eggplant flask, and stirred at room temperature for 1 hour. Thereafter, water (200 mL) and sodium carbonate (30 g) were added to neutralize, and then the oil phase was dried over magnesium sulfate, filtered and the solvent was removed under reduced pressure.
The resulting residue was purified by silica gel column chromatography (1 cm of neutral gel was loaded on a cone of 9 cm in diameter and eluted with dichloromethane / hexane = 1/1) to obtain 38.3 g of intermediate 10 .
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
(反応4)
 1Lナスフラスコに、中間体10(15.5g)、酢酸パラジウム(0.94g)、S-Phos(3.6g)、リン酸三カリウム(17.9g)および脱水テトラヒドロフラン(300mL)を加え、100℃のオイルバスで5時間撹拌した。反応液を冷却後ろ過し、減圧下溶媒除去して得られた残渣をシリカゲルカラムクロマトグラフィー(中性ゲル500mL、ジクロロメタン/ヘキサン=2/8~3/7)で精製し、中間体11を6.7g得た。
(Reaction 4)
Into a 1 L eggplant flask, add intermediate 10 (15.5 g), palladium acetate (0.94 g), S-Phos (3.6 g), tripotassium phosphate (17.9 g) and dehydrated tetrahydrofuran (300 mL), and add 100 Stir in oil bath for 5 hours. The reaction solution is cooled and filtered, and the solvent is removed under reduced pressure, and the residue thus obtained is purified by silica gel column chromatography (neutral gel 500 mL, dichloromethane / hexane = 2/8 to 3/7) to obtain intermediate 11 I got .7g.
(反応5)
 1Lナスフラスコに、中間体3(6.7g)、ヨウ化n-ヘキシル(15.6g)、臭化テトラブチルアンモニウム(1.9g)、ジメチルスルホキシド(40mL)を入れ、水酸化ナトリウム(7.0g)の水(10mL)溶液を滴下し室温で2.5時間撹拌した。次いで、水酸化ナトリウム(2.0g)の水(15mL)溶液を滴下し、さらに1.5時間撹拌した。その後、35%塩酸(50mL)と水(150mL)の水溶液を加え、酢酸エチル(200mL)で抽出し、硫酸マグネシウムで乾燥、ろ過後、シリカゲルカラムクロマトグラフィー(中性ゲル200mL、酢酸エチル/ヘキサン=1/9~3/7)で精製したところ、中間体12を9.9g得た。
(Reaction 5)
Intermediate 3 (6.7 g), n-hexyl iodide (15.6 g), tetrabutylammonium bromide (1.9 g), and dimethyl sulfoxide (40 mL) were placed in a 1 L eggplant flask, and sodium hydroxide (7. A solution of 0 g) in water (10 mL) was added dropwise and stirred at room temperature for 2.5 hours. Then, a solution of sodium hydroxide (2.0 g) in water (15 mL) was added dropwise and stirred for an additional 1.5 hours. Thereafter, an aqueous solution of 35% hydrochloric acid (50 mL) and water (150 mL) is added, extracted with ethyl acetate (200 mL), dried over magnesium sulfate, filtered, and silica gel column chromatography (neutral gel 200 mL, ethyl acetate / hexane = The residue was purified by 1/9 to 3/7) to obtain 9.9 g of Intermediate 12.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
(反応6)
 1Lのセパラブルフラスコに、2-アミノベンゾニトリル(23.4g)、酢酸(500mL)を入れ、室温で臭素(30mL)を20分かけて滴下した。もう一つの1Lセパラブルフラスコに、2-アミノベンゾニトリル(50.4g)、酢酸(1L)を入れ、臭素(65mL)を20分かけて滴下した。室温で5時間反応させた後、水(50mL)を加えろ過した。
 ろ物を合一し、水(500mL)で懸濁洗浄を行い加熱しながら減圧乾燥したところ、2-アミノ-3,5-ジブロモベンゾニトリル(141.8g)を得た。
(Reaction 6)
In a 1-L separable flask, 2-aminobenzonitrile (23.4 g) and acetic acid (500 mL) were added, and bromine (30 mL) was added dropwise over 20 minutes at room temperature. In another 1 L separable flask, 2-aminobenzonitrile (50.4 g) and acetic acid (1 L) were added, and bromine (65 mL) was added dropwise over 20 minutes. After reacting for 5 hours at room temperature, water (50 mL) was added and filtered.
The filtrate was combined, suspension washed with water (500 mL) and dried under reduced pressure while heating to give 2-amino-3,5-dibromobenzonitrile (141.8 g).
(反応7)
 1Lナスフラスコに、2-アミノ-3,5-ジブロモベンゾニトリル(28.9g)、2-ナフタレンボロン酸(37.7g)、テトラキス(トリフェニルホスフィン)パラジウム(5.2g)、2Mリン酸三カリウム(300mL)、トルエン(300mL)およびエタノール(100mL)を入れ、105℃のオイルバスで4.5時間撹拌した。途中、2-ナフチルボロン酸(12.5g)を追加投入した。その後、室温で水相を除去し、溶媒を減圧除去して得られた残渣をシリカゲルカラムクロマトグラフィー(中性ゲル650mL、ジクロロメタン/ヘキサン=65/35~6/4)で精製したところ、中間体13を37.1g得た。
(Reaction 7)
In a 1 L eggplant flask, 2-amino-3,5-dibromobenzonitrile (28.9 g), 2-naphthaleneboronic acid (37.7 g), tetrakis (triphenylphosphine) palladium (5.2 g), 2 M phosphoric acid Potassium (300 mL), toluene (300 mL) and ethanol (100 mL) were added, and the mixture was stirred in a 105 ° C. oil bath for 4.5 hours. During the addition, 2-naphthylboronic acid (12.5 g) was additionally charged. Thereafter, the aqueous phase is removed at room temperature, the solvent is removed under reduced pressure, and the residue thus obtained is purified by silica gel column chromatography (neutral gel 650 mL, dichloromethane / hexane = 65/35 to 6/4), and an intermediate is obtained Obtained 37.1 g of 13.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
(反応8)
 1Lナスフラスコに、中間体12(9.9g)、乾燥ジクロロメタン(100mL)、塩化チオニル(2.4mL)およびN,N-ジメチルホルムアミド(100μL)を入れ、室温で1.5時間撹拌した。その後、溶媒を除去し酸塩化物を得た。
 別の1Lナスフラスコに、中間体13(10.2g)、脱水ピリジン(40mL)を入れ、これに先に調製した酸塩化物のテトラヒドロフラン(8mL)溶液を滴下し、室温で4時間撹拌した。その後、ジクロロメタン(200mL)を加え1N塩酸(120mL)で3回洗浄し、油相を硫酸マグネシウムで乾燥後ろ過し、減圧下に溶媒を除去して中間体14を20.1g得た。
(Reaction 8)
Intermediate 12 (9.9 g), dry dichloromethane (100 mL), thionyl chloride (2.4 mL) and N, N-dimethylformamide (100 μL) were placed in a 1 L eggplant flask, and stirred at room temperature for 1.5 hours. Thereafter, the solvent was removed to obtain an acid chloride.
Intermediate 13 (10.2 g) and dehydrated pyridine (40 mL) were placed in another 1 L eggplant flask, and a solution of the acid chloride in tetrahydrofuran (8 mL) prepared above was added dropwise thereto, and stirred at room temperature for 4 hours. Thereafter, dichloromethane (200 mL) was added and the mixture was washed three times with 1N hydrochloric acid (120 mL), the oil phase was dried over magnesium sulfate and filtered, and the solvent was removed under reduced pressure to obtain 20.1 g of Intermediate 14.
(反応9)
 100mLフラスコに、削り状マグネシウム(5.0g)を入れ、減圧下1時間撹拌した。その後2-ブロモ-m-キシレン35.0gを乾燥テトラヒドロフラン(50mL)に溶解した溶液を室温で30分かけて滴下した。その後室温でさらに1時間撹拌した。この反応液を、中間体14(18.9g)を乾燥テトラヒドロフラン(100mL)に溶解した溶液に室温で滴下し、85℃で2時間撹拌した。次いで、飽和塩化アンモニウム水溶液(100mL)を加えた後、ジクロロメタン(200mL)で抽出し、有機相の溶媒を減圧除去し、残渣をシリカゲルカラムクロマトグラフィー(酸性ゲル500mL、ヘキサン/ジクロロメタン=6/4)および逆相シリカゲルカラムクロマトグラフィーで精製したところ、中間体15を11.5g得た。
(Reaction 9)
In a 100 mL flask, charged magnesium (5.0 g) was added and stirred for 1 hour under reduced pressure. Thereafter, a solution of 35.0 g of 2-bromo-m-xylene in dry tetrahydrofuran (50 mL) was added dropwise over 30 minutes at room temperature. Then, it stirred at room temperature for further 1 hour. The reaction mixture was added dropwise to a solution of Intermediate 14 (18.9 g) in dry tetrahydrofuran (100 mL) at room temperature, and stirred at 85 ° C. for 2 hours. Then, after adding saturated aqueous ammonium chloride solution (100 mL), extraction is performed with dichloromethane (200 mL), the solvent of the organic phase is removed under reduced pressure, and the residue is silica gel column chromatography (Acid gel 500 mL, hexane / dichloromethane = 6/4) The residue was purified by silica gel column chromatography to obtain 11.5 g of Intermediate 15.
(反応10)
Figure JPOXMLDOC01-appb-C000047
(Reaction 10)
Figure JPOXMLDOC01-appb-C000047
 1Lナスフラスコに、2-(3-ブロモフェニル)ベンゾチアゾール(31.7g)、B-[1,1’:3’,1’’-テルフェニル]-3-イルボロン酸(33.7g)、テトラキス(トリフェニルホスフィン)パラジウム(0)(2.2g)を入れ、さらに窒素バブリングしたトルエン(350mL)、エタノール(100mL)および2Mリン酸三カリウム水溶液(200mL)を加え、100℃で4時間撹拌した。室温まで冷却後、水相を除去し、溶媒を除去して得られた残渣をシリカゲルカラムクロマトグラフィー(ゲル600mL、ジクロロメタン/ヘキサン=3/7→5/5)で精製し、中間体16を45.9g得た。 In a 1 L eggplant flask, 2- (3-bromophenyl) benzothiazole (31.7 g), B- [1,1 ': 3', 1 ''-terphenyl] -3-ylboronic acid (33.7 g), Add tetrakis (triphenylphosphine) palladium (0) (2.2 g), add nitrogen-bubbled toluene (350 mL), ethanol (100 mL) and 2M aqueous solution of tripotassium phosphate (200 mL), and stir at 100 ° C for 4 hours did. After cooling to room temperature, the aqueous phase is removed, the solvent is removed, and the residue thus obtained is purified by silica gel column chromatography (gel 600 mL, dichloromethane / hexane = 3/7 → 5/5), and intermediate 16 is 45 I got .9g.
(反応11)
Figure JPOXMLDOC01-appb-C000048
(Reaction 11)
Figure JPOXMLDOC01-appb-C000048
 1Lナスフラスコに、中間体16(28.9g)、塩化イリジウムn水和物(フルヤ金属製、イリジウム含量52%)(10.7g)に、2-エトキシエタノール(0.7L)および水(60mL)を加え、9時間還流撹拌した。析出物をろ過して得たケーキの半分量を500mLのナスフラスコに入れ、3,5-ヘプタンジオン(7.4g)、炭酸カリウム(10.2g)および2-エトキシエタノール(250mL)を加え、8時間還流撹拌した。室温まで冷却後、ろ過した液の溶媒を減圧除去し、得られた残渣をシリカゲルカラムクロマトグラフィー(ゲル500mL、ジクロロメタンで展開)で精製したところ、中間体17を14.9g得た。 Intermediate 16 (28.9 g), iridium chloride n-hydrate (furuya metal, 52% iridium content) (10.7 g), 2-ethoxyethanol (0.7 L) and water (60 mL) in a 1 L eggplant flask ) Was added and stirred at reflux for 9 hours. The precipitate is filtered and half of the cake obtained is placed in a 500 mL eggplant flask and 3,5-heptanedione (7.4 g), potassium carbonate (10.2 g) and 2-ethoxyethanol (250 mL) are added. Stir at reflux for 8 hours. After cooling to room temperature, the solvent of the filtered solution was removed under reduced pressure, and the obtained residue was purified by silica gel column chromatography (gel 500 mL, developed with dichloromethane) to obtain 14.9 g of Intermediate 17.
(反応12)
Figure JPOXMLDOC01-appb-C000049
(Reaction 12)
Figure JPOXMLDOC01-appb-C000049
 100mLナスフラスコに、中間体15(11.5g)、中間体17(4.2g)を入れ、オイルバスに投入し、室温から220℃へ昇温した。バスの温度が210℃を超えたときにトリフルオロメタンスルホン酸銀(1.5g)を入れ、ここから3時間撹拌した。途中2時間後に中間体17(1.0g)を追加した。反応後得られた固体をシリカゲルカラムクロマトグラフィー(ゲル中性600mL、ジクロロメタン/ヘキサン=3/7)で精製し、化合物3を0.8g得た。 Intermediate 15 (11.5 g) and Intermediate 17 (4.2 g) were placed in a 100 mL eggplant-shaped flask, charged in an oil bath, and the temperature was raised from room temperature to 220.degree. When the bath temperature exceeded 210 ° C., silver trifluoromethanesulfonate (1.5 g) was added, and the mixture was stirred for 3 hours. Intermediate 2 (1.0 g) was added after 2 hours on the way. The solid obtained after the reaction was purified by silica gel column chromatography (gel neutral 600 mL, dichloromethane / hexane = 3/7) to obtain 0.8 g of compound 3.
[溶剤溶解性及び溶解後の溶解安定性の確認]
 化合物3を、シクロヘキシルベンゼンに3質量%となるように混合した。室温にて、手による振盪のみで溶解性を観察したところ、いずれも速やかに溶解した。その後、100℃のホットプレートで5分加熱し、室温で50時間静置して析出の有無を観察したところ、いずれの溶液も均一状態を維持していた。
[Confirmation of solvent solubility and dissolution stability after dissolution]
Compound 3 was mixed with cyclohexylbenzene to 3% by mass. When the solubility was observed only by hand shaking at room temperature, all dissolved rapidly. Then, the solution was heated for 5 minutes on a hot plate at 100 ° C., allowed to stand at room temperature for 50 hours, and observed for the presence or absence of precipitation.
[実施例5]
 本発明のイリジウム錯体化合物である化合物3について、以下の方法で、発光量子収率、および最大発光波長の測定を行なった。結果を表3に示す。
[Example 5]
The emission quantum yield and the maximum emission wavelength of Compound 3, which is the iridium complex compound of the present invention, were measured by the following method. The results are shown in Table 3.
<発光量子収率の評価>
 化合物3を、室温下、2-メチルテトラヒドロフラン(アルドリッチ社製、脱水、安定剤非添加)に溶解し、1×10-5mol/lの溶液を調製した。この溶液をテフロン(登録商標)コック付きの石英セルに入れ、窒素バブリングを20分以上行い、室温で絶対量子収率を測定し、後述の比較例5の値を1.00とした相対値を算出した。
<Evaluation of luminescence quantum yield>
Compound 3 was dissolved in 2-methyltetrahydrofuran (manufactured by Aldrich, dehydrated, with no stabilizer added) at room temperature to prepare a 1 × 10 −5 mol / l solution. This solution is put into a quartz cell with a Teflon (registered trademark) cock, nitrogen bubbling is performed for 20 minutes or more, an absolute quantum yield is measured at room temperature, and the relative value is set to 1.00 of Comparative Example 5 described below. Calculated.
 発光量子収率の測定には、以下の機器を用いた。
  装置:浜松ホトニクス社製 有機EL量子収率測定装置C9920-02
  光源:モノクロ光源L9799-01
  検出器:マルチチャンネル検出器PMA-11
  励起光:380nm
The following equipment was used for measurement of light emission quantum yield.
Device: Hamamatsu Photonics Co., Ltd. Organic EL quantum yield measurement device C9920-02
Light source: monochrome light source L9799-01
Detector: Multi-channel detector PMA-11
Excitation light: 380 nm
<最大発光波長の測定>
 化合物3を、常温下で、2-メチルテトラヒドロフランに、濃度1×10-5mol/Lで溶解した溶液について、分光光度計(浜松ホトニクス社製 有機EL量子収率測定装置C9920-02)で燐光スペクトルを測定した。得られた燐光スペクトル強度の最大値を示す波長を、最大発光波長とした。
<Measurement of maximum emission wavelength>
A solution of compound 3 dissolved in 2-methyltetrahydrofuran at a concentration of 1 × 10 -5 mol / L at normal temperature and phosphorescent with a spectrophotometer (Hamamatsu Photonics Co., Ltd., organic EL quantum yield measurement device C9920-02) The spectrum was measured. The wavelength showing the maximum value of the obtained phosphorescence spectrum intensity was taken as the maximum emission wavelength.
[比較例5~7]
 実施例5において、化合物3に代えて以下に示す化合物D-3、化合物D-4又は化合物D-5を用いた他は同様に溶液を調製し、発光量子収率、および最大発光波長を測定した。発光量子収率は、比較例5の値を1.00とした相対値で示した。化合物D-3~D-5は国際公開第2015/087961号の記載をもとに合成した。結果を表3に示す。
[Comparative Examples 5 to 7]
A solution is prepared in the same manner as in Example 5 except that the compound D-3, the compound D-4, or the compound D-5 shown below is used instead of the compound 3 to measure an emission quantum yield and a maximum emission wavelength. did. The light emission quantum yield was shown by the relative value which set the value of the comparative example 5 to 1.00. Compounds D-3 to D-5 were synthesized based on the description of WO 2015/087961. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
 図3に、実施例5と比較例5~7における最大発光波長と発光量子収率の関係を表す。
 化学的に類似する構造であるイリジウム錯体化合物に関して、特に赤色発光領域においては発光波長と量子収率は多くの場合直線関係を示すことが知られている(例として、S.Okada,et al,Dalton Trans.,2005,1583-1590)。比較例5~7はフェニル-キナゾリン型配位子とフェニル-ベンゾチアゾール型配位子とが組み合わされたイリジウム錯体化合物であり、これらの間にも同様の関係があると考えられる。
 実施例5の本発明のイリジウム錯体化合物は、比較例5~7のデータを結んだ線が示す実施例5(化合物3)の最大発光波長における発光量子効率よりも高い量子収率を示した。
FIG. 3 shows the relationship between the maximum emission wavelength and the emission quantum yield in Example 5 and Comparative Examples 5 to 7.
With regard to iridium complex compounds that are chemically similar structures, it is known that the emission wavelength and quantum yield often show a linear relationship, particularly in the red emission region (for example, S. Okada, et al, Dalton Trans., 2005, 1583-1590). Comparative Examples 5 to 7 are iridium complex compounds in which a phenyl-quinazoline type ligand and a phenyl-benzothiazole type ligand are combined, and it is considered that there is a similar relationship among them.
The iridium complex compound of the present invention of Example 5 exhibited a quantum yield higher than the emission quantum efficiency at the maximum emission wavelength of Example 5 (compound 3) indicated by the line connecting the data of Comparative Examples 5 to 7.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2017年11月7日付で出願された日本特許出願2017-214771及び2017年11月7日付で出願された日本特許出願2017-214772に基づいており、その全体が引用により援用される。
Although the invention has been described in detail with particular embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese patent application 2017-214771 filed on November 7, 2017 and Japanese patent application 2017-214772 filed on November 7, 2017, which is incorporated by reference in its entirety. .
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 正孔阻止層
 7 電子輸送層
 8 電子注入層
 9 陰極
 10 有機電界発光素子
Reference Signs List 1 substrate 2 anode 3 hole injection layer 4 hole transport layer 5 light emitting layer 6 hole blocking layer 7 electron transport layer 8 electron injection layer 9 cathode 10 organic electroluminescent element

Claims (10)

  1.  下記式(1)で表されるイリジウム錯体化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)において、Irはイリジウム原子を表し、
     C~Cは炭素原子を表し、N及びNは窒素原子を表す。
     R~Rは、それぞれ独立に水素原子又は置換基を表し、
     a、b、cおよびdは、それぞれ環Cy、Cy、CyおよびCyに置換しうる最大数の整数を表し、
     m及びnは、1又は2を表し、m+nは3である。
     環Cyは下記式(2)又は(2´)で表されるフルオレン構造であり、
    Figure JPOXMLDOC01-appb-C000002
     環Cyが式(2)で表される場合、環Cyは、下記式(3)~式(5)のいずれかで表されるキノリン又はナフチリジン構造であり、
     環Cyが式(2´)で表される場合、環Cyは、下記式(3)~式(5)のいずれかで表されるナフチリジン構造であり、
    Figure JPOXMLDOC01-appb-C000003
     式(3)~(5)のX~X18はそれぞれ独立に、炭素原子又は窒素原子を表し、
     環Cyは炭素原子CおよびCを含む芳香環又は複素芳香環を表し、
     環Cyは炭素原子Cおよび窒素原子Nを含む複素芳香環を表す。]
    The iridium complex compound represented by following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In formula (1), Ir represents an iridium atom,
    C 1 to C 6 represent carbon atoms, and N 1 and N 2 represent nitrogen atoms.
    R 1 to R 4 each independently represent a hydrogen atom or a substituent,
    and a, b, c and d respectively represent the maximum number of integers that can be substituted on the rings Cy 1 , Cy 2 , Cy 3 and Cy 4 ,
    m and n represent 1 or 2, and m + n is 3.
    The ring Cy 1 is a fluorene structure represented by the following formula (2) or (2 ′),
    Figure JPOXMLDOC01-appb-C000002
    When the ring Cy 1 is represented by the formula (2), the ring Cy 2 is a quinoline or naphthyridine structure represented by any one of the following formulas (3) to (5):
    When the ring Cy 1 is represented by the formula ( 2 ′ ), the ring Cy 2 is a naphthyridine structure represented by any one of the following formulas (3) to (5):
    Figure JPOXMLDOC01-appb-C000003
    X 1 to X 18 in formulas (3) to (5) each independently represent a carbon atom or a nitrogen atom,
    Ring Cy 3 represents an aromatic ring or heteroaromatic ring containing carbon atoms C 4 and C 5 ,
    The ring Cy 4 represents a heteroaromatic ring containing carbon atom C 6 and nitrogen atom N 2 . ]
  2.  環Cyが下記式(6)で表される構造である、請求項1に記載のイリジウム錯体化合物。
    Figure JPOXMLDOC01-appb-C000004
    [式(6)において、
     X19~X22はそれぞれ独立に、炭素原子又は窒素原子を表し、
     Yは、N(-R)、酸素原子又は硫黄原子を表し、Rは水素原子又は置換基を表す。]
    The iridium complex compound according to claim 1, wherein the ring Cy 4 is a structure represented by the following formula (6).
    Figure JPOXMLDOC01-appb-C000004
    [In formula (6),
    And each of X 19 to X 22 independently represents a carbon atom or a nitrogen atom,
    Y represents N (-R 5 ), an oxygen atom or a sulfur atom, and R 5 represents a hydrogen atom or a substituent. ]
  3.  環Cyが式(2)で表されるフルオレン構造であり、且つ、環Cyが下記式(8)で表されるものである、請求項1又は2に記載のイリジウム錯体化合物。
    Figure JPOXMLDOC01-appb-C000005
    The iridium complex compound according to claim 1 or 2, wherein the ring Cy 1 is a fluorene structure represented by the formula (2), and the ring Cy 3 is one represented by the following formula (8).
    Figure JPOXMLDOC01-appb-C000005
  4.  式(6)のYが、硫黄原子である、請求項1~3のいずれか1項に記載のイリジウム錯体化合物。 The iridium complex compound according to any one of claims 1 to 3, wherein Y in the formula (6) is a sulfur atom.
  5.  環Cyを構成する窒素原子の数が2である、請求項1~4のいずれか1項に記載のイリジウム錯体化合物。 The iridium complex compound according to any one of claims 1 to 4, wherein the number of nitrogen atoms constituting the ring Cy 2 is 2.
  6.  請求項1~5のいずれか1項に記載のイリジウム錯体化合物および溶剤を含有する組成物。 A composition comprising the iridium complex compound according to any one of claims 1 to 5 and a solvent.
  7.  請求項1~5のいずれか1項に記載のイリジウム錯体化合物を含む有機電界発光素子。 An organic electroluminescent device comprising the iridium complex compound according to any one of claims 1 to 5.
  8.  請求項7に記載の有機電界発光素子を有する表示装置。 A display comprising the organic electroluminescent device according to claim 7.
  9.  請求項7に記載の有機電界発光素子を有する照明装置。 A lighting device comprising the organic electroluminescent device according to claim 7.
  10.  下記式(7)で表されるイリジウム錯体化合物。
    Figure JPOXMLDOC01-appb-C000006
    [式(7)において、Irはイリジウム原子を表す。
     C~Cは炭素原子を表し、N及びNは窒素原子を表す。
     環Cyは炭素原子CおよびCを含む芳香環又は複素芳香環を表し、
     環Cyは炭素原子Cおよび窒素原子Nを含む複素芳香環を表し、
     X23~X26はそれぞれ独立に、置換基を有していてもよい炭素原子、又は窒素原子を表し、
     Yは酸素原子、硫黄原子又はセレン原子を表し、
     R10~R12は、それぞれ独立に、水素原子又は置換基を表す。
     a´およびb´は、それぞれ環CyおよびCyに置換しうる最大数の整数を表し、c´は8である。
     m´およびn´は1又は2を表し、m´+n´は3である。]
    The iridium complex compound represented by following formula (7).
    Figure JPOXMLDOC01-appb-C000006
    [In Formula (7), Ir represents an iridium atom.
    C 7 to C 9 represent carbon atoms, and N 3 and N 4 represent nitrogen atoms.
    Ring Cy 5 represents an aromatic ring or heteroaromatic ring containing carbon atoms C 7 and C 8 ,
    Ring Cy 6 represents a heteroaromatic ring containing carbon atom C 9 and nitrogen atom N 3 ,
    X 23 to X 26 each independently represent a carbon atom which may have a substituent, or a nitrogen atom,
    Y 2 represents an oxygen atom, a sulfur atom or a selenium atom,
    Each of R 10 to R 12 independently represents a hydrogen atom or a substituent.
    a ′ and b ′ represent the maximum number of integers that can be substituted on the rings Cy 5 and Cy 6 respectively, and c ′ is 8.
    m 'and n' represent 1 or 2, and m '+ n' is 3. ]
PCT/JP2018/041327 2017-11-07 2018-11-07 Iridium complex compound, composition containing said compound and solvent, organic electroluminescent element containing said compound, display device, and illumination device WO2019093369A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP18876308.0A EP3708571A4 (en) 2017-11-07 2018-11-07 Iridium complex compound, composition containing said compound and solvent, organic electroluminescent element containing said compound, display device, and illumination device
KR1020237042759A KR20230173735A (en) 2017-11-07 2018-11-07 Iridium complex compound, composition containing said compound and solvent, organic electroluminescent element containing said compound, display device, and illumination device
JP2019552345A JP7238782B2 (en) 2017-11-07 2018-11-07 Iridium complex compound, composition containing said compound and solvent, organic electroluminescence device containing said compound, display device and lighting device
CN202310494916.6A CN116655702A (en) 2017-11-07 2018-11-07 Iridium complex compound and composition containing the same and solvent
KR1020207011382A KR20200078499A (en) 2017-11-07 2018-11-07 Iridium complex compound, composition containing the compound and solvent, organic electroluminescent element containing the compound, display device and lighting device
CN201880068822.XA CN111263766B (en) 2017-11-07 2018-11-07 Iridium complex compound, composition containing the compound and solvent, organic electroluminescent element containing the compound, display device and lighting device
US16/852,815 US20200317706A1 (en) 2017-11-07 2020-04-20 Iridium complex compound, composition containing the compound and solvent, organic electroluminescent element containing the compound, display device, and illumination device
JP2022199402A JP7439891B2 (en) 2017-11-07 2022-12-14 Iridium complex compound, composition containing the compound and solvent, organic electroluminescent device, display device, and lighting device containing the compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-214772 2017-11-07
JP2017214772 2017-11-07
JP2017-214771 2017-11-07
JP2017214771 2017-11-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/852,815 Continuation US20200317706A1 (en) 2017-11-07 2020-04-20 Iridium complex compound, composition containing the compound and solvent, organic electroluminescent element containing the compound, display device, and illumination device

Publications (1)

Publication Number Publication Date
WO2019093369A1 true WO2019093369A1 (en) 2019-05-16

Family

ID=66437827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/041327 WO2019093369A1 (en) 2017-11-07 2018-11-07 Iridium complex compound, composition containing said compound and solvent, organic electroluminescent element containing said compound, display device, and illumination device

Country Status (6)

Country Link
US (1) US20200317706A1 (en)
EP (1) EP3708571A4 (en)
JP (2) JP7238782B2 (en)
KR (2) KR20230173735A (en)
CN (2) CN111263766B (en)
WO (1) WO2019093369A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145294A1 (en) * 2019-01-10 2020-07-16 三菱ケミカル株式会社 Iridium complex compound

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111344295A (en) 2017-11-29 2020-06-26 三菱化学株式会社 Iridium complex compound, composition containing iridium complex compound and solvent, organic electroluminescent element containing iridium complex compound, display device, and lighting device
KR20220007827A (en) * 2020-07-10 2022-01-19 삼성디스플레이 주식회사 Purifying method for light emitting device material and light emitting device with the material

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194393A (en) 1983-03-25 1984-11-05 イ−ストマン コダツク カンパニ− Organic electroluminescent device having inproved power conversion efficiency
JPH05234681A (en) 1990-07-26 1993-09-10 Eastman Kodak Co Electroluminescent device having organic electroluminescent medium
JPH05331459A (en) 1992-04-03 1993-12-14 Pioneer Electron Corp Organic electroluminescent element
JPH06207169A (en) 1992-11-17 1994-07-26 Idemitsu Kosan Co Ltd Organic electroluminescence element
JPH0741759A (en) 1993-03-26 1995-02-10 Sumitomo Electric Ind Ltd Organic electroluminescent element
JPH0753953A (en) 1993-08-19 1995-02-28 Mitsubishi Chem Corp Organic electroluminescent element
US5645948A (en) 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
JPH1074586A (en) 1996-07-29 1998-03-17 Eastman Kodak Co Two layer electron injection electrode used in electroluminescence device
JPH1079297A (en) 1996-07-09 1998-03-24 Sony Corp Electroluminescent element
JPH10270171A (en) 1997-01-27 1998-10-09 Junji Kido Organic electroluminescent element
JPH11242996A (en) 1998-02-25 1999-09-07 Mitsubishi Chemical Corp Organic electroluminescent element
JPH11251067A (en) 1998-03-02 1999-09-17 Junji Kido Organic electroluminescence element
JP2002100482A (en) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp Organic electroluminescence element
JP2002100478A (en) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp Organic electroluminescence element and its method of manufacture
WO2002044189A1 (en) * 2000-11-30 2002-06-06 Canon Kabushiki Kaisha Luminescent element and display
JP2002332291A (en) 2001-03-08 2002-11-22 Canon Inc Metal coordination compound, electroluminescent device, and display unit
JP2003031365A (en) 2001-05-02 2003-01-31 Junji Kido Organic electroluminescent element
WO2004084260A2 (en) 2003-03-20 2004-09-30 Cambridge Display Technology Limited Electroluminescent device
WO2005022962A1 (en) 2003-07-31 2005-03-10 Mitsubishi Chemical Corporation Compound, charge transport material and organic electroluminescent device
WO2005089024A1 (en) 2004-03-11 2005-09-22 Mitsubishi Chemical Corporation Composition for charge-transporting film and ion compound, charge-transporting film and organic electroluminescent device using same, and method for manufacturing organic electroluminescent device and method for producing charge-transporting film
JP2006151888A (en) 2004-11-30 2006-06-15 Canon Inc Metal complex, light emitting device and image display device
TW200844103A (en) * 2007-05-04 2008-11-16 Gracel Display Inc Red electroluminescent compounds and organic electroluminescent device using the same
JP2008297382A (en) * 2007-05-30 2008-12-11 Canon Inc Phosphorescent light-emitting material, and organic electroluminescent device and image-displaying device by using the same
WO2014024889A1 (en) 2012-08-08 2014-02-13 三菱化学株式会社 Iridium complex compound, composition containing iridium complex compound, organic electroluminescent element, display device and lighting device
WO2015087961A1 (en) 2013-12-12 2015-06-18 三菱化学株式会社 Iridium complex compound, method for producing said compound, composition containing said compound, organic electroluminescent element, display device, and lighting device
JP2016064998A (en) 2014-09-24 2016-04-28 住友化学株式会社 Metal complex and light emitting element prepared therewith
US20160233442A1 (en) 2015-02-11 2016-08-11 Luminescence Technology Corporation Iridium complexes and organic electroluminescence device using the same
US20160351835A1 (en) 2015-06-01 2016-12-01 Feng-wen Yen Indenotriphenylene-based iridium complexes for organic electroluminescence device
WO2017104839A1 (en) * 2015-12-18 2017-06-22 国立研究開発法人産業技術総合研究所 Red-emitting iridium complex, and light-emitting material and organic light-emitting element each utilizing said compound
CN107236006A (en) * 2017-07-10 2017-10-10 中国科学院长春应用化学研究所 A kind of feux rouges metal complex and its organic electroluminescence device
JP2017214771A (en) 2016-05-31 2017-12-07 新日鐵住金株式会社 Connection load bearing capacity evaluation method for column-beam connection structure, design method for column-beam connection structure, and column-beam connection structure
JP2017214772A (en) 2016-05-31 2017-12-07 株式会社鶴見製作所 Water fence
CN107973823A (en) * 2016-10-21 2018-05-01 上海和辉光电有限公司 The electroluminescent organic material of a kind of quinolyl dibenzo substitution as ligand and application thereof

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194393A (en) 1983-03-25 1984-11-05 イ−ストマン コダツク カンパニ− Organic electroluminescent device having inproved power conversion efficiency
JPH05234681A (en) 1990-07-26 1993-09-10 Eastman Kodak Co Electroluminescent device having organic electroluminescent medium
JPH05331459A (en) 1992-04-03 1993-12-14 Pioneer Electron Corp Organic electroluminescent element
JPH06207169A (en) 1992-11-17 1994-07-26 Idemitsu Kosan Co Ltd Organic electroluminescence element
JPH0741759A (en) 1993-03-26 1995-02-10 Sumitomo Electric Ind Ltd Organic electroluminescent element
JPH0753953A (en) 1993-08-19 1995-02-28 Mitsubishi Chem Corp Organic electroluminescent element
JPH1079297A (en) 1996-07-09 1998-03-24 Sony Corp Electroluminescent element
JPH1074586A (en) 1996-07-29 1998-03-17 Eastman Kodak Co Two layer electron injection electrode used in electroluminescence device
US5645948A (en) 1996-08-20 1997-07-08 Eastman Kodak Company Blue organic electroluminescent devices
JPH10270171A (en) 1997-01-27 1998-10-09 Junji Kido Organic electroluminescent element
JPH11242996A (en) 1998-02-25 1999-09-07 Mitsubishi Chemical Corp Organic electroluminescent element
JPH11251067A (en) 1998-03-02 1999-09-17 Junji Kido Organic electroluminescence element
JP2002100482A (en) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp Organic electroluminescence element
JP2002100478A (en) 2000-09-20 2002-04-05 Mitsubishi Chemicals Corp Organic electroluminescence element and its method of manufacture
WO2002044189A1 (en) * 2000-11-30 2002-06-06 Canon Kabushiki Kaisha Luminescent element and display
JP2002332291A (en) 2001-03-08 2002-11-22 Canon Inc Metal coordination compound, electroluminescent device, and display unit
JP2003031365A (en) 2001-05-02 2003-01-31 Junji Kido Organic electroluminescent element
WO2004084260A2 (en) 2003-03-20 2004-09-30 Cambridge Display Technology Limited Electroluminescent device
WO2005022962A1 (en) 2003-07-31 2005-03-10 Mitsubishi Chemical Corporation Compound, charge transport material and organic electroluminescent device
WO2005089024A1 (en) 2004-03-11 2005-09-22 Mitsubishi Chemical Corporation Composition for charge-transporting film and ion compound, charge-transporting film and organic electroluminescent device using same, and method for manufacturing organic electroluminescent device and method for producing charge-transporting film
JP2006151888A (en) 2004-11-30 2006-06-15 Canon Inc Metal complex, light emitting device and image display device
TW200844103A (en) * 2007-05-04 2008-11-16 Gracel Display Inc Red electroluminescent compounds and organic electroluminescent device using the same
JP2008297382A (en) * 2007-05-30 2008-12-11 Canon Inc Phosphorescent light-emitting material, and organic electroluminescent device and image-displaying device by using the same
WO2014024889A1 (en) 2012-08-08 2014-02-13 三菱化学株式会社 Iridium complex compound, composition containing iridium complex compound, organic electroluminescent element, display device and lighting device
WO2015087961A1 (en) 2013-12-12 2015-06-18 三菱化学株式会社 Iridium complex compound, method for producing said compound, composition containing said compound, organic electroluminescent element, display device, and lighting device
JP2016064998A (en) 2014-09-24 2016-04-28 住友化学株式会社 Metal complex and light emitting element prepared therewith
US20160233442A1 (en) 2015-02-11 2016-08-11 Luminescence Technology Corporation Iridium complexes and organic electroluminescence device using the same
US20160351835A1 (en) 2015-06-01 2016-12-01 Feng-wen Yen Indenotriphenylene-based iridium complexes for organic electroluminescence device
WO2017104839A1 (en) * 2015-12-18 2017-06-22 国立研究開発法人産業技術総合研究所 Red-emitting iridium complex, and light-emitting material and organic light-emitting element each utilizing said compound
JP2017214771A (en) 2016-05-31 2017-12-07 新日鐵住金株式会社 Connection load bearing capacity evaluation method for column-beam connection structure, design method for column-beam connection structure, and column-beam connection structure
JP2017214772A (en) 2016-05-31 2017-12-07 株式会社鶴見製作所 Water fence
CN107973823A (en) * 2016-10-21 2018-05-01 上海和辉光电有限公司 The electroluminescent organic material of a kind of quinolyl dibenzo substitution as ligand and application thereof
CN107236006A (en) * 2017-07-10 2017-10-10 中国科学院长春应用化学研究所 A kind of feux rouges metal complex and its organic electroluminescence device

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
ADV. MATER., vol. 12, 2000, pages 481
APPL. PHYS. LETT., vol. 60, 1992, pages 2711
APPL. PHYS. LETT., vol. 70, 1997, pages 152
CHEM. COMMUN., 1996, pages 2175
CHEM. REV., vol. 109, 2009, pages 2652
IEEE TRANS. ELECTRON. DEVICES, vol. 44, 1997, pages 1245
J. LUMIN., vol. 72-74, 1997, pages 985
J. PHYS. CHEM., vol. 94, 1990, pages 7716
M.G. COLOMBOT.C. BRUNOLDT. RIEDENERH.U. GUDEL, INORG. CHEM., vol. 33, 1994, pages 545 - 550
ORGANIC REACTIONS, vol. 28, no. 2, pages 37 - 201
POLYM. ADV. TECH., vol. 7, 1996, pages 33
S. LAMANSKYP. DJUROVICHD. MURPHYF. ABDEL-RAZZAQR. KWONGI. TSYBAM. BORZB. MUIR. BAUM. THOMPSON, INORG. CHEM., vol. 40, 2001, pages 1704 - 1711
S. OKADA ET AL., DALTON TRANS., 2005, pages 1583 - 1590
S. OKADA ET AL., DALTON TRANSACTIONS, 2005, pages 1583 - 1590
SHIZUO TOKITOCHIHAYA ADACHIHIDEYUKI MURATA: "Organic EL Display", 20 August 2004, OHMSHA, LTD.
SYNTH. METALS, vol. 91, 1997, pages 209

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145294A1 (en) * 2019-01-10 2020-07-16 三菱ケミカル株式会社 Iridium complex compound

Also Published As

Publication number Publication date
JP7439891B2 (en) 2024-02-28
CN111263766B (en) 2024-04-02
CN116655702A (en) 2023-08-29
CN111263766A (en) 2020-06-09
EP3708571A1 (en) 2020-09-16
KR20200078499A (en) 2020-07-01
JP2023036713A (en) 2023-03-14
KR20230173735A (en) 2023-12-27
JP7238782B2 (en) 2023-03-14
US20200317706A1 (en) 2020-10-08
EP3708571A4 (en) 2020-11-18
JPWO2019093369A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
JP7439891B2 (en) Iridium complex compound, composition containing the compound and solvent, organic electroluminescent device, display device, and lighting device containing the compound
JP7388508B2 (en) Iridium complex compound, composition containing the compound and solvent, organic electroluminescent device, display device, and lighting device containing the compound
JP7409428B2 (en) Method for producing iridium complex compound
WO2020230811A1 (en) Iridium complex compound, composition containing said compound and solvent, organic electroluminescent element containing said compound, display device and lighting device
JP2020152746A (en) Composition for organic electroluminescent element, organic electroluminescent element, display device, and lighting device
US20210323986A1 (en) Iridium complex compound
JP2022121412A (en) Iridium complex compound, iridium complex compound-containing composition, organic electroluminescent device and method for producing the same, organic el display device, and organic el illumination device
JP7047355B2 (en) Iridium complex compound, composition containing the compound and solvent, organic electroluminescent element containing the compound, display device and lighting device.
WO2023136252A1 (en) Iridium complex compound, composition for organic electroluminescent element, organic electroluminescent element and method for producing same, and display device
WO2023182184A1 (en) Light-emitting layer composition, organic electroluminescent element, and production method therefor
WO2021161974A1 (en) Iridium complex compound, iridium complex compound-containing composition, organic electroluminescent element and production method therefor, organic el display device, and organic el lighting device
JP2024055580A (en) Composition for organic electroluminescent device, organic electroluminescent device and method for producing the same, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18876308

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552345

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018876308

Country of ref document: EP

Effective date: 20200608