WO2017104839A1 - Red-emitting iridium complex, and light-emitting material and organic light-emitting element each utilizing said compound - Google Patents

Red-emitting iridium complex, and light-emitting material and organic light-emitting element each utilizing said compound Download PDF

Info

Publication number
WO2017104839A1
WO2017104839A1 PCT/JP2016/087675 JP2016087675W WO2017104839A1 WO 2017104839 A1 WO2017104839 A1 WO 2017104839A1 JP 2016087675 W JP2016087675 W JP 2016087675W WO 2017104839 A1 WO2017104839 A1 WO 2017104839A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
iridium complex
alkyl group
hydrogen atom
Prior art date
Application number
PCT/JP2016/087675
Other languages
French (fr)
Japanese (ja)
Inventor
今野 英雄
吉朗 杉田
伊藤 賢
Original Assignee
国立研究開発法人産業技術総合研究所
株式会社フルヤ金属
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, 株式会社フルヤ金属 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2017556484A priority Critical patent/JP6863590B2/en
Publication of WO2017104839A1 publication Critical patent/WO2017104839A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present disclosure relates to a novel red-emitting iridium complex useful as a light-emitting material for organic light-emitting devices (such as organic electroluminescent devices and organic electrochemiluminescent devices) and an organic light-emitting device using the compound.
  • organic light-emitting devices such as organic electroluminescence devices have been attracting attention as display or illumination technology, and research for practical application is being actively promoted.
  • improvement of luminous efficiency is an important research subject, and attention is currently focused on phosphorescent materials that utilize light emission from an excited triplet state as light emitting materials.
  • the generation ratio of singlet excitons and triplet excitons is 1: 3, and the generation probability of luminescent excitons is 25%. Further, since the light extraction efficiency is about 20%, the limit of the external extraction quantum efficiency is set to 5%. On the other hand, if the excited triplet state can also be used for this, the upper limit of the internal quantum efficiency is 100%, so that in principle, the luminous efficiency is four times that of the excited singlet. Against this background, phosphorescent materials have been actively developed so far.
  • an iridium complex having a dibenzo [f, h] quinoxaline ligand represented by Chemical Formula 2 has been reported as a red phosphorescent material used in an organic light-emitting device (see, for example, Non-Patent Document 1).
  • the luminescence of this iridium complex contains a lot of orange components, and it is difficult to obtain red with good color purity. Therefore, in order to reduce the orange component, there is a strong demand to shift the emission spectrum of an iridium complex having a dibenzo [f, h] quinoxaline ligand by a long wavelength.
  • Non-Patent Document 1 describes that this iridium complex (Chemical Formula 2) has an emission maximum wavelength at 608 nm in dichloromethane.
  • an iridium complex in which an aryl group is introduced into the dibenzo [f, h] quinoxaline ligand shown in Chemical Formula 3 in order to shift the emission of the iridium complex having a dibenzo [f, h] quinoxaline ligand by a long wavelength.
  • This document describes that this iridium complex (Chemical Formula 3) has an emission maximum wavelength at 640 nm in dichloromethane.
  • Patent Document 1 an iridium complex represented by Chemical Formula 4 in which an aryl group is introduced into a dibenzo [f, h] quinoxaline ligand is disclosed (for example, see Patent Document 2).
  • This document describes that this iridium complex (Chemical Formula 4) has an emission maximum wavelength at 614 nm in toluene.
  • the iridium complex having a dibenzo [f, h] quinoxaline ligand emits light in the orange-red region, but in the future, development of an iridium complex having strong light emission in the red region and excellent sublimation properties. Is strongly desired.
  • An object of the present disclosure is to provide a novel iridium complex that can be applied to an organic electroluminescence device, an organic electrochemiluminescence device, and the like and that exhibits excellent light emission characteristics in a red region and has excellent sublimation properties.
  • the present inventors have surprisingly found one ligand having a dibenzo [f, h] quinoxaline skeleton and two ligands having a 2-phenylpyridine skeleton. It has been found that the iridium complex having a specific structure having one has high efficiency in the red region. Specifically, the novel iridium complex represented by the general formula (1) introduces an aryl group into the specific position of the dibenzo [f, h] quinoxaline ligand as described in Patent Documents 1 and 2 above.
  • the iridium complex according to the present invention is represented by the following general formula (1).
  • N represents a nitrogen atom.
  • Ir represents iridium.
  • R 1 to R 9 each independently represents a hydrogen atom, an alkyl group, or a halogen atom.
  • R 10 to R 17. Each independently represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, a cyano group, or a halogen atom, wherein the alkyl group is an aryl group, an alkoxy group, or a heterocyclic group.
  • the aryl group may be substituted with an alkyl group (excluding trifluoromethyl group), an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom. (Excluding a fluorine atom) may be substituted with an aralkyl group, and the alkoxy group may be an aryl group, an alkoxy group, or a hetero group.
  • the heterocyclic group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom.
  • the aryloxy group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom, and adjacent R 10 to R 17 are each bonded to form a ring structure. It may be formed.
  • R 1 to R 9 are preferably each independently a hydrogen atom or an alkyl group.
  • R 10 to R 17 are preferably each independently a hydrogen atom, an alkyl group, or an aryl group.
  • R 10 to R 17 is an alkyl group.
  • R 10 to R 17 is an aryl group.
  • the iridium complex according to the present invention is preferably represented by the following general formula (2).
  • N represents a nitrogen atom.
  • Ir represents iridium.
  • R 1 to R 9 each independently represents a hydrogen atom, an alkyl group, or a halogen atom.
  • R 18 to R 27. Each independently represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, a cyano group, or a halogen atom, wherein the alkyl group is an aryl group, an alkoxy group, or a heterocyclic group.
  • the aryl group may be substituted with an alkyl group (excluding trifluoromethyl group), an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom. (Excluding a fluorine atom) may be substituted with an aralkyl group, and the alkoxy group may be an aryl group, an alkoxy group, or a hetero group.
  • the heterocyclic group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom.
  • the aryloxy group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom, and adjacent R 18 to R 27 are each bonded to form a ring structure. It may be formed.
  • each of R 18 to R 27 is preferably independently a hydrogen atom, an alkyl group, or an aryl group.
  • R 18 to R 27 is an alkyl group.
  • R 18 to R 27 is an aryl group.
  • the iridium complex according to the present invention is preferably represented by the following general formula (4).
  • N represents a nitrogen atom.
  • Ir represents iridium.
  • R 1 to R 9 each independently represents a hydrogen atom, an alkyl group, or a halogen atom.
  • R 38 to R 47. Each independently represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, a cyano group, or a halogen atom, wherein the alkyl group is an aryl group, an alkoxy group, or a heterocyclic group.
  • the aryl group may be substituted with an alkyl group (excluding trifluoromethyl group), an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom. (Excluding a fluorine atom) may be substituted with an aralkyl group, and the alkoxy group may be an aryl group, an alkoxy group, or a hetero group.
  • the heterocyclic group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom.
  • the aryloxy group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom, and adjacent R 38 to R 47 are each bonded to form a ring structure. It may be formed.
  • R 38 to R 47 are preferably each independently a hydrogen atom, an alkyl group, or an aryl group.
  • R 38 to R 47 is an alkyl group.
  • R 38 to R 47 is an aryl group.
  • the luminescent material according to the present invention includes the iridium complex according to the present invention.
  • the organic light emitting device according to the present invention includes the light emitting material according to the present invention.
  • the present disclosure can be applied to an organic electroluminescence device, an organic electrochemiluminescence device, and the like, and can provide a novel iridium complex that is excellent in thermal stability and sublimation properties and exhibits red light emission with high efficiency.
  • the novel iridium complex of the present disclosure exhibits red light emission with good color purity at room temperature and is excellent in thermal stability and sublimation, and thus can be suitably used as a light emitting device material for various applications.
  • An organic light emitting device using the compound exhibits high luminance light emission in a red region, and thus is suitable for fields such as a display device, a display, a backlight, or an illumination light source.
  • 2 is an emission spectrum of the compound (Ir-10) of the present invention in THF under an argon atmosphere.
  • 2 is an emission spectrum of an organic electroluminescence device produced using the compound (Ir-10) of the present invention.
  • a hydrogen atom includes an isotope (such as a deuterium atom), and an atom constituting a substituent further includes the isotope.
  • the iridium complex according to the present invention is represented by the following general formula (1).
  • N represents a nitrogen atom.
  • Ir represents iridium.
  • R 1 to R 9 each independently represents a hydrogen atom, an alkyl group, or a halogen atom.
  • R 10 to R 17. Each independently represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, a cyano group, or a halogen atom, wherein the alkyl group is an aryl group, an alkoxy group, or a heterocyclic group.
  • the aryl group may be substituted with an alkyl group (excluding trifluoromethyl group), an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom. (Excluding a fluorine atom) may be substituted with an aralkyl group, and the alkoxy group may be an aryl group, an alkoxy group, or a hetero group.
  • the heterocyclic group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom.
  • the aryloxy group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom, and adjacent R 10 to R 17 are each bonded to form a ring structure. It may be formed.
  • the iridium complex according to the present invention includes, for example, organic luminescence that exhibits good light emission in the red region by including these iridium complexes in a light emitting layer of an organic light emitting device or a plurality of organic compound layers including a light emitting layer by a vacuum deposition method. An element is obtained.
  • N represents a nitrogen atom.
  • Ir represents iridium
  • R 1 to R 9 each independently represents a hydrogen atom, an alkyl group, or a halogen atom, preferably a hydrogen atom or an alkyl group.
  • R 10 to R 17 each independently represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, a cyano group, or a halogen atom, ,
  • An alkyl group, an aryl group, a heterocyclic group, a cyano group, or a halogen atom a hydrogen atom, an alkyl group, an aryl group, or a halogen atom is more preferable, and a hydrogen atom, an alkyl group, or an aryl group is particularly preferable
  • a hydrogen atom or an alkyl group is more preferable.
  • the alkyl group is preferably an alkyl group having 1 to 30 carbon atoms, more preferably an alkyl group having 1 to 20 carbon atoms, particularly preferably an alkyl group having 1 to 10 carbon atoms, Most preferably, it is an alkyl group of 1 to 5.
  • the alkyl group may be a linear alkyl group or a branched alkyl group.
  • the alkyl group may be substituted with an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom.
  • alkyl group examples include methyl, ethyl, propyl, isopropyl, n-butyl, s-butyl, isobutyl, t-butyl, n-pentyl, n-hexyl, and n-heptyl.
  • n-octyl group n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group Group, n-octadecyl group, neopentyl group, 1-methylpentyl group, 1-pentylhexyl group, 1-butylpentyl group, 1-heptyloctyl group, cyclohexyl group, cyclooctyl group, or 3,5-tetramethylcyclohexyl group There is.
  • methyl group ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, neopentyl group, or 1-methylpentyl group.
  • a methyl group or a t-butyl group is more preferable, and a methyl group is particularly preferable.
  • the aryl group is preferably an aryl group having 6 to 30 carbon atoms, more preferably an aryl group having 6 to 20 carbon atoms, and particularly preferably an aryl group having 6 to 12 carbon atoms.
  • the aryl group may be substituted with an alkyl group (excluding a trifluoromethyl group), an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom (excluding a fluorine atom). It will not be replaced.
  • the aryl group may be substituted with an unsubstituted alkyl group, aryl group, alkoxy group, heterocyclic group, aryloxy group, chlorine atom, bromine atom, or iodine atom.
  • An aryl group substituted with an alkyl group is particularly preferable because the sublimation property of the iridium complex is improved.
  • aryl group examples include a phenyl group, a biphenyl-2-yl group, a biphenyl-3-yl group, a biphenyl-4-yl group, a p-terphenyl-4-yl group, and a p-terphenyl-3-yl group.
  • the alkoxy group is preferably an alkoxy group having 1 to 30 carbon atoms, more preferably an alkoxy group having 1 to 20 carbon atoms, particularly preferably an alkoxy group having 1 to 10 carbon atoms, Most preferably, it is an alkoxy group having a number of 1 to 5.
  • the alkoxy group may be substituted with an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom.
  • alkoxy group examples include a methoxy group, an ethoxy group, a proxy group, an isoproxy group, an n-butoxy group, and a t-butoxy group, and a methoxy group is preferable.
  • the heterocyclic group is preferably a heterocyclic group having 1 to 30 carbon atoms, more preferably a heterocyclic group having 1 to 20 carbon atoms, and preferably a heterocyclic group having 1 to 10 carbon atoms. Particularly preferred is a heterocyclic group having 1 to 5 carbon atoms.
  • the heterocyclic group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom.
  • heterocyclic group examples include 2-pyridinyl group, 3-pyridinyl group, 4-pyridinyl group, 2-pyrimidyl group, 4-pyrimidyl group, 5-pyrimidyl group, 2-pyrazyl group, 3-pyridazinyl group, 4- Pyridazinyl, 5-pyridazinyl, quinolinyl, 1-pyrrolyl, 1-imidazolyl, 2-imidazolpyridinyl, 1-indolyl, 2-benzofuranyl, 7-isobenzofuranyl, 2-quinolyl Group, 1-isoquinolyl group, 1-phenanthridinyl group, 1-acridinyl group, 1-phenazinyl group, 2-thienyl group, 1-dibenzofuranyl group, 1,3,5-triazinyl group and the like.
  • the aryloxy group is preferably an aryloxy group having 6 to 30 carbon atoms, more preferably an aryloxy group having 6 to 20 carbon atoms, and an aryloxy group having 6 to 10 carbon atoms. Particularly preferred.
  • the aryloxy group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom.
  • aryloxy group examples include a phenoxy group and a naphthyloxy group, and a phenoxy group is preferable.
  • the halogen atom is preferably a chlorine atom, a bromine atom, an iodine atom or a fluorine atom.
  • a bromine atom or a fluorine atom is more preferred, and a bromine atom is particularly preferred.
  • R 1 to R 17 More desirable forms of R 1 to R 17 will be specifically described below.
  • R 1 and R 3 to R 9 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, particularly preferably a hydrogen atom or a methyl group, and most preferably a hydrogen atom.
  • R 2 is preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, particularly preferably a hydrogen atom or a methyl group, and most preferably a methyl group.
  • R 10 and R 13 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, particularly preferably a hydrogen atom or a methyl group, and most preferably a hydrogen atom.
  • R 11 and R 12 are preferably a hydrogen atom, an alkyl group or an aryl group, more preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and a hydrogen atom or a methyl group Is particularly preferred, and a hydrogen atom is most preferred.
  • R 14 is preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and particularly preferably a hydrogen atom.
  • R 15 is preferably a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group, more preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms, a hydrogen atom, or An alkyl group having 1 to 10 carbon atoms is particularly preferable, and a hydrogen atom or a methyl group is particularly preferable.
  • R 16 is preferably a hydrogen atom, an alkyl group or an aryl group, more preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms, a hydrogen atom or 1 carbon atom.
  • An alkyl group of ⁇ 10 is particularly preferred, and a hydrogen atom, a methyl group, or a t-butyl group is particularly preferred.
  • R 17 is preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, particularly preferably a hydrogen atom or a methyl group, and most preferably a hydrogen atom.
  • R 10 to R 17 is an alkyl group.
  • At least one is preferably an aryl group.
  • Adjacent R 10 to R 17 may be bonded to each other to form a ring structure, and R 10 and R 11 , R 11 and R 12 , or R 12 and R 13 may be bonded to each other to form a ring structure. It is particularly preferable that R 10 and R 11 , or R 12 and R 13 are bonded to form a ring structure.
  • the ring structure represents a saturated ring or an unsaturated ring, and an unsaturated ring is preferable.
  • an unsaturated ring a carbocycle or a heterocycle is preferable, and a carbocycle is more preferable.
  • the saturated ring or unsaturated ring is preferably a 5-membered ring or 6-membered ring, particularly preferably a 6-membered ring, and most preferably a benzene ring.
  • the benzene ring is preferably substituted with an alkyl group (preferably having 1 to 5 carbon atoms).
  • R 10 and R 11 , R 11 and R 12 , or R 12 and R 13 are preferably bonded to each other to form a benzene ring, and R 10 and R 11 , or R 12 and More preferably, R 13 is bonded to form a benzene ring.
  • R 1 ⁇ R 9 in the general formula (1) have the same meanings as R 1 ⁇ R 9, and is the same desirable ranges.
  • R 18 to R 47 in the general formulas (2) to (4) each independently represent a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, a cyano group, or a halogen atom.
  • a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group, a cyano group, or a halogen atom is preferable, a hydrogen atom, an alkyl group, an aryl group, or a halogen atom is more preferable, and a hydrogen atom, an alkyl group, or An aryl group is particularly preferable, and a hydrogen atom or an alkyl group is more particularly preferable.
  • R 1 ⁇ R 17 in general formula (1) For the desired range as these substituents is the same as R 1 ⁇ R 17 in general formula (1).
  • Adjacent R 18 to R 47 may be bonded to each other to form a ring structure.
  • the ring structure represents a saturated ring or an unsaturated ring, and an unsaturated ring is preferable.
  • an unsaturated ring a carbocycle or a heterocycle is preferable, and a carbocycle is more preferable.
  • the saturated ring or unsaturated ring is preferably a 5-membered ring or 6-membered ring, particularly preferably a 6-membered ring, and most preferably a benzene ring.
  • the benzene ring is preferably substituted with an alkyl group (preferably having 1 to 5 carbon atoms).
  • R 18 to R 47 More desirable forms of R 18 to R 47 will be specifically described below.
  • R 18 , R 19 , R 21 , R 23 , R 28 to R 33 , R 38 to R 43 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, An atom or a methyl group is particularly preferred, and a hydrogen atom is most preferred.
  • R 20 and R 22 are preferably a hydrogen atom, an alkyl group or an aryl group, more preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms, a hydrogen atom or An alkyl group having 1 to 10 carbon atoms is particularly preferable, a hydrogen atom or a methyl group is more particularly preferable, and a hydrogen atom is most preferable.
  • R 24 , R 34 and R 44 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and particularly preferably a hydrogen atom.
  • R 25 , R 27 , R 35 , R 37 , R 45 , R 47 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, a hydrogen atom, a methyl group, or The t-butyl group is particularly preferred.
  • R 26 , R 36 and R 46 are preferably a hydrogen atom, an alkyl group or an aryl group, more preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms, and a hydrogen atom Or an alkyl group having 1 to 10 carbon atoms, particularly preferably a hydrogen atom, a methyl group, or a t-butyl group.
  • At least one of R 18 to R 27 is preferably an alkyl group, more preferably at least one of R 23 , R 25 , and R 27 is an alkyl group, and R 25 is particularly preferably an alkyl group.
  • R 23 , R 25 and R 27 is an alkyl group, red light emission with particularly good color purity can be obtained.
  • R 28 to R 37 is an alkyl group.
  • R 28 to R 37 is an aryl group.
  • R 38 to R 47 is an alkyl group.
  • R 38 to R 47 is an aryl group.
  • the iridium complex represented by the general formulas (2) to (4) is preferable in order to obtain red light emission with good color purity.
  • any of the forms ⁇ 1> to ⁇ 15> shown below is particularly desirable.
  • R 20 and iridium complex represented by the general formula R 23 is an alkyl group (2).
  • any of the forms ⁇ 16> to ⁇ 19> shown below is particularly desirable.
  • the emission quantum yield in a solution or in a thin film state at room temperature is preferably 0.1 or more, and is 0.2 or more. More preferably, it is particularly preferably 0.3 or more.
  • the measurement of the luminescence quantum yield in the solution is performed after passing argon gas or nitrogen gas through the solution in which the iridium complex is dissolved, or after freezing and degassing the solution in which the luminescent material is dissolved. Good to do.
  • a method for measuring the luminescence quantum yield either an absolute method or a relative method may be used. In the relative method, the luminescence quantum yield can be measured by comparing the emission spectrum with a standard substance (such as quinine sulfate).
  • the absolute method it is possible to measure the emission quantum yield in a solid state or in a solution by using a commercially available device (for example, an absolute PL quantum yield measuring device (C9920-02) manufactured by Hamamatsu Photonics Co., Ltd.). It is.
  • the luminescence quantum yield in the solution can be measured using various solvents (for example, tetrahydrofuran, 2-methyltetrahydrofuran, dichloromethane, chloroform, acetonitrile, toluene, 1,2-dichloroethane, benzene, DMF, DMSO, etc.)
  • the iridium complex according to the present invention only needs to achieve the above-mentioned emission quantum yield in any solvent.
  • the measurement of the luminescence quantum yield in a thin film state is performed by, for example, vacuum-depositing the iridium complex of the present invention on quartz glass, and a commercially available device (for example, Hamamatsu Photonics Co., Ltd., absolute PL quantum yield measurement device (C9920)). ) Can be used.
  • the luminescence quantum yield in a thin film can be measured by vapor-depositing the iridium complex of the present invention alone or co-deposited with various host materials. It is sufficient that the yield is achieved.
  • the iridium complex represented by the general formula (1) according to the present invention emits light mainly in the red region, but its wavelength region depends on the type or structure of the ligand.
  • the emission maximum wavelength of the emission spectrum in solution or in a thin film at room temperature is preferably in the range of 580 nm to 700 nm, and 600 nm It is more preferably in the range of ⁇ 680 nm, particularly preferably in the range of 610 nm to 650 nm, and particularly preferably in the range of 615 nm to 640 nm.
  • X is 0 in the CIE color coordinates of the emission spectrum in the solution, in the thin film, or in the organic light emitting device. 0.62 to 0.68, and Y is preferably 0.32 to 0.38. Furthermore, it is particularly preferable that X is 0.64 to 0.66 and Y is 0.34 to 0.36 because red is a good color purity.
  • Non-Patent Document 1 Japanese Patent Application Laid-Open No. 2008-179607
  • Patent Document 2 Japanese Patent Publication No. 2011-511821
  • the iridium complex represented by the general formula (1) according to the present invention can be synthesized, for example, by the method of the formula (A).
  • the iridium complex represented by the general formula (2) according to the present invention can be synthesized, for example, by the method of the formula (B).
  • the iridium complex represented by the general formula (3) according to the present invention can be synthesized, for example, by the method of the formula (C).
  • the iridium complex represented by the general formula (4) according to the present invention can be synthesized, for example, by the method of the formula (D).
  • the iridium complex represented by the general formula (1) according to the present invention can be used after being treated according to the post-treatment of a normal synthesis reaction, and if necessary, purified or not purified.
  • a post-treatment method for example, extraction, cooling, crystallization by adding water or an organic solvent, or an operation of distilling off the solvent from the reaction mixture can be performed alone or in combination.
  • a purification method recrystallization, distillation, sublimation, column chromatography or the like can be performed alone or in combination.
  • the iridium complex represented by the general formula (1) according to the present invention has geometric isomers (facial isomers, meridional isomers), and any geometric isomer may be used as long as the object of the present invention can be achieved. It may be a mixture of geometric isomers.
  • the iridium complex represented by the general formula (1) according to the present invention can emit red phosphorescence with high efficiency at room temperature
  • the light-emitting material or the light-emitting substance of the organic light-emitting element is used.
  • an organic light-emitting element preferably an organic electroluminescent element
  • an organic light-emitting element, a light-emitting device, or a lighting device with high luminous efficiency can be realized.
  • an organic light-emitting element, a light-emitting device, or a lighting device with low power consumption can be realized.
  • the organic electroluminescent element is an element in which a plurality of organic compounds are laminated between an anode and a cathode, and preferably contains an iridium complex represented by the general formula (1) as a light emitting material of the light emitting layer.
  • the light emitting layer is composed of a light emitting material and a host material.
  • Anode / light emitting layer / cathode (2) Anode / light emitting layer / electron transport layer / cathode (3) Anode / hole transport layer / light emitting layer / cathode (4) Anode / hole transport layer / light emitting layer / electron Transport layer / cathode (5) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (6) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode ( 7) Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode ( 7) Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode
  • a hole blocking layer (also referred to as a hole blocking layer) may be provided between the light emitting layer and the cathode.
  • an electron blocking layer (also referred to as an electron barrier layer) may be provided between the light emitting layer and the anode.
  • the light-emitting layer is a layer that recombines electrons and holes injected from the electrode and emits light via excitons. Even if the light-emitting portion is within the layer of the light-emitting layer, It may be an interface.
  • the film thickness of the light emitting layer is preferably in the range of 2 to 1000 nm, more preferably in the range of 2 to 200 nm, and still more preferably in the range of 3 to 150 nm.
  • the light emitting layer preferably contains a light emitting material and a host material.
  • the iridium complex represented by the general formula (1) according to the present invention may be contained singly or in plural kinds, and other luminescent materials may be contained.
  • the total content of the iridium complex represented by the general formula (1) according to the present invention is preferably 1 to 50% by mass ratio, and preferably 1 to 30%. More preferred is 5 to 20%.
  • light-emitting materials include anthracene derivatives, pyrene derivatives, chrysene derivatives, fluoranthene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylarylene derivatives, styrylamine derivatives, arylamine derivatives, boron complexes, squalium.
  • the host material is a compound mainly responsible for charge injection and transport in the light emitting layer. Moreover, it is preferable that the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer. More preferably, it is 50% or more, and particularly preferably 80% or more. Among the compounds contained in the light emitting layer, the upper limit of the content of the host material is preferably 99% or less, more preferably 95% or less, and particularly preferably 90% or less in terms of mass ratio. .
  • the excited state energy (T 1 level) of the host material is higher than the excited state energy (T 1 level) of the iridium complex represented by the general formula (1) according to the present invention contained in the same layer. Is preferred.
  • the host material may be used alone or in combination. By using a plurality of types of host compounds, charge transfer can be adjusted and the organic electroluminescence device can be made highly efficient.
  • the host material that can be used in the present invention is not particularly limited, and may be a low molecular compound or a high molecular compound having a repeating unit.
  • host materials include triarylamine derivatives, phenylene derivatives, condensed ring aromatic compounds (for example, naphthalene derivatives, phenanthrene derivatives, fluorene derivatives, pyrene derivatives, tetracene derivatives, coronene derivatives, chrysene derivatives, perylene derivatives, 9, 10-diphenylanthracene derivatives or rubrene), quinacridone derivatives, acridone derivatives, coumarin derivatives, pyran derivatives, nile red, pyrazine derivatives, benzimidazole derivatives, benzothiazole derivatives, benzoxazole derivatives, stilbene derivatives, organometallic complexes (for example, tris (8-quinolinolato) organic aluminum complexes such as aluminum, organic beryllium complexes, organic iridium complexes, or organic platinum complexes), or poly (fluoro Nirenbiniren) derivatives, poly (fluoro Ni
  • the electron transport layer is made of a material having a function of transporting electrons, and only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • the thickness of the electron transport layer is not particularly limited, but is usually in the range of 2 to 5000 nm, more preferably in the range of 2 to 500 nm, and still more preferably in the range of 5 to 200 nm.
  • an electron transport material As a material used for the electron transport layer (hereinafter referred to as an electron transport material), any material that has either an electron injection property or a transport property or a hole barrier property may be used. Any one can be selected and used.
  • the electron transporting material include nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, organoaluminum complexes such as tris (8-quinolinolato) aluminum, azacarbazole derivatives (one or more carbon atoms constituting the carbazole ring) Substituted with a nitrogen atom), pyridine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, triazole derivatives, benzimidazole derivatives or benzoxazole derivatives, etc. ), Dibenzofuran derivatives, dibenzothiophene derivatives, or aromatic hydrocarbon ring derivatives (such as naphthalene derivatives, anthracene derivatives, or triphenylene).
  • aromatic heterocyclic derivatives such as tris (8-quinolinolato) aluminum, azac
  • the hole blocking layer is a layer having a function of an electron transport layer in a broad sense, and is preferably made of a material having a function of transporting electrons while having a small ability to transport holes, and transporting electrons while transporting holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the hole blocking layer is preferably provided adjacent to the cathode side of the light emitting layer.
  • the film thickness of the hole blocking layer is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the material used for the hole blocking layer is preferably used, and the host material is also preferably used as the material for the hole blocking layer.
  • An electron injection layer (also referred to as a “cathode buffer layer”) is a layer provided between a cathode and a light emitting layer in order to reduce driving voltage or improve light emission luminance.
  • the thickness of the electron injection layer is preferably in the range of 0.1 to 5 nm. More preferably, it is in the range of 0.1 to 1 nm.
  • materials that are preferably used for the electron injection layer include metals (strontium or aluminum), alkali metal compounds (lithium fluoride or sodium fluoride, etc.), alkaline earth metal compounds (magnesium fluoride or calcium fluoride). Etc.), metal oxides (such as aluminum oxide), or metal complexes (such as lithium 8-hydroxyquinolate (Liq)).
  • the above-described electron transport material can also be used.
  • examples of the electron injecting material include a phenanthroline derivative lithium complex (LiPB) and a phenoxypyridine lithium complex (LiPP).
  • the hole transport layer is made of a material having a function of transporting holes, and may have a function of transmitting holes injected from the anode to the light emitting layer. There may be a plurality of hole transport layers.
  • the thickness of the hole transport layer is not particularly limited, but is usually in the range of 2 to 5000 nm, more preferably in the range of 5 to 500 nm, and still more preferably in the range of 5 to 200 nm.
  • a material used for the hole transport layer may have any of a hole injection property or a transport property, or an electron barrier property. Any one can be selected and used.
  • hole transporting materials include porphyrin derivatives; phthalocyanine derivatives; oxazole derivatives; phenylenediamine derivatives; stilbene derivatives; triarylamine derivatives; carbazole derivatives; indolocarbazole derivatives; acene derivatives such as anthracene or naphthalene; Fluorene derivatives; fluorenone derivatives; polymer materials or oligomers in which polyvinyl carbazole or aromatic amine is introduced into the main chain or side chain; polysilanes; conductive polymers or oligomers (eg PEDOT: PSS, aniline copolymers, polyaniline, polythiophene, etc.) ) And the like.
  • PEDOT PSS, aniline copolymers, polyaniline, polythiophene, etc.
  • the electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and is preferably made of a material having a function of transporting holes and a small ability to transport electrons, and transporting electrons while transporting holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the thickness of the electron blocking layer is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the above-described structure of the hole transport layer can be used as an electron blocking layer as necessary.
  • the hole injection layer (also referred to as “anode buffer layer”) is a layer provided between the anode and the light emitting layer in order to lower the driving voltage or improve the light emission luminance.
  • Examples of materials used for the hole injection layer include conductive materials such as phthalocyanine derivatives represented by copper phthalocyanine, hexaazatriphenylene derivatives, metal oxides represented by vanadium oxide, amorphous carbon, polyaniline (emeraldine), and polythiophene.
  • conductive materials such as phthalocyanine derivatives represented by copper phthalocyanine, hexaazatriphenylene derivatives, metal oxides represented by vanadium oxide, amorphous carbon, polyaniline (emeraldine), and polythiophene.
  • Preferred are high molecular weight polymers, cyclometalated complexes represented by tris (2-phenylpyridine) iridium complexes, and triarylamine derivatives.
  • the organic electroluminescent element of the present invention is preferably supported on a substrate.
  • a substrate There is no restriction
  • substrate For example, glass, such as alkali glass, alkali free glass, or quartz glass, or a transparent plastic currently used in the conventional organic electroluminescent element is mentioned.
  • anode examples include gold, platinum, silver, copper, nickel, palladium, cobalt, selenium, vanadium, tungsten, and the like, or alloys thereof; tin oxide, zinc oxide, indium oxide, and oxide. Metal oxides such as indium tin (ITO) or zinc indium oxide can be used. Further, conductive polymers such as polyaniline, polypyrrole, polythiophene or polyphenylene sulfide can also be used. These electrode materials may be used alone or in combination. Moreover, the anode may be composed of a single layer or a plurality of layers.
  • the material constituting the cathode include simple metals such as lithium, sodium, potassium, calcium, magnesium, aluminum, indium, ruthenium, titanium, manganese, yttrium, silver, lead, tin, or chromium. Further, these metals may be combined to form an alloy. For example, alloys such as lithium-indium, sodium-potassium, magnesium-silver, aluminum-lithium, aluminum-magnesium, or magnesium-indium can be used. In addition, metal oxides such as indium tin oxide (ITO) can be used. These electrode materials may be used alone or in combination.
  • the cathode may have a single layer structure or a multilayer structure.
  • the organic light-emitting device containing the iridium complex represented by the general formula (1) according to the present invention can be manufactured by a vacuum deposition method, a solution coating method, a transfer method using a laser, or the like, or a spray method.
  • a vacuum deposition method it is desirable to form the light emitting layer containing the iridium complex represented by the general formula (1) according to the present invention by a vacuum deposition method.
  • Hole transport layer by a vacuum deposition method in the case of forming the respective layers such as a light emitting layer or the electron transporting layer but vacuum deposition conditions are not particularly limited, 10 -4 ⁇ 10 -5 Pa approximately about 50 ⁇ 500 ° C. under a vacuum of Vapor deposition is preferably performed at a boat temperature of about ⁇ 50 to 300 ° C. and a substrate temperature of about 0.01 to 50 nm / second.
  • a boat temperature of about ⁇ 50 to 300 ° C.
  • a substrate temperature of about 0.01 to 50 nm / second.
  • Step 1 Microwave (2450 MHz, 1000 W) with 21.7 g of iridium trichloride nhydrate, 28.4 g of 1-phenylisoquinoline, 440 ml of DMF and 60 ml of pure water placed in a three-necked flask, fitted with a Dimroth condenser, and vented with argon gas was irradiated for 30 minutes. After the reaction solution was cooled to room temperature, the precipitate was collected by filtration and washed with pure water and methanol to obtain (Ir-62-A) in a yield of 95%.
  • Step 2 12.2 g of the compound (Ir-62-A) obtained in Step 1, 5.15 g of silver trifluoromethanesulfonate, 400 ml of methanol and 1250 ml of dichloromethane were placed in a three-necked flask and reacted at room temperature in an argon gas atmosphere for 24 hours. It was. The reaction solution was filtered through Celite, and the solvent was distilled off under reduced pressure to obtain (Ir-62-B) in a yield of 94%.
  • Step 3 1.99 g of the compound (Ir-62-B) obtained in Step 2, 2.46 g of 2-methyldibenzo [f, h] quinoxaline, and 100 ml of ethanol were added, and the mixture was heated at 100 ° C. for 48 hours under an argon atmosphere. I let you. After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and filtered through Celite. Methanol was added to the filtrate, and the precipitate was collected by filtration.
  • Step 1 1.40 g of iridium trichloride nhydrate, 2.17 g of 1- (p-tolyl) isoquinoline, 34 ml of 2-ethoxyethanol, and 11 ml of pure water were placed in a three-necked flask and heated at 120 ° C. for 20 hours in an argon atmosphere. It was. After the reaction solution was cooled to room temperature, the precipitate was collected by filtration and washed with methanol and pure water to obtain Compound (Ir-63-A) in a yield of 62%.
  • Step 2 500 mg of the compound (Ir-63-A) obtained in Step 1, 212.7 mg of silver trifluoromethanesulfonate, 1 ml of methanol and 48 ml of dichloromethane were placed in a three-necked flask and reacted at room temperature for 24 hours in an argon gas atmosphere. The reaction solution was filtered through celite, and the solvent was evaporated under reduced pressure to obtain compound (Ir-63-B) in a yield of 99%.
  • Step 3> The total amount of the compound (Ir-63-B) obtained in Step 2 and 459.3 mg of 2-methyldibenzo [f, h] quinoxaline and 24 ml of ethanol were added, and the mixture was heated and reacted at 90 ° C. for 87 hours in an argon atmosphere. . After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and filtered through Celite. Methanol was added to the filtrate, and the precipitate was collected by filtration. This was recrystallized from dichloromethane and methanol to obtain (Ir-63) in a yield of 22.3%. The 1 H-NMR data is shown below.
  • Step 1 1.40 g of iridium trichloride nhydrate, 2.73 g of 3-methyl-2-phenylquinoline, 34 ml of 2-ethoxyethanol and 11 ml of pure water are placed in a three-necked flask and heated at 120 ° C. for 20 hours in an argon atmosphere. It was. After the reaction solution was cooled to room temperature, the precipitate was collected by filtration and washed with methanol and pure water to obtain Compound (Ir-33-A) in a yield of 41%.
  • Step 2 995.3 mg of the compound (Ir-33-A) obtained in step 1, 423.4 mg of silver trifluoromethanesulfonate, 1 ml of methanol and 136 ml of dichloromethane were placed in a three-necked flask and reacted at room temperature for 24 hours under an argon gas atmosphere. . The reaction solution was filtered through celite, and the solvent was evaporated under reduced pressure to give compound (Ir-33-B) in 99% yield.
  • Step 3> The total amount of the compound (Ir-33-B) obtained in Step 2 and 914.1 mg of 2-methyldibenzo [f, h] quinoxaline and 51 ml of ethanol were added, and the mixture was reacted by heating at 90 ° C. for 72 hours in an argon atmosphere. . After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and filtered through Celite. Methanol was added to the filtrate, and the precipitate was collected by filtration. This was recrystallized from dichloromethane and methanol to obtain (Ir-33) in a yield of 42.0%. The 1 H-NMR data is shown below.
  • Step 1 1.41 g of iridium trichloride n-hydrate, 2.61 g of 2- (3- (t-butyl) phenyl) quinoline, 34 ml of 2-ethoxyethanol and 11 ml of pure water were placed in a three-necked flask at 120 ° C. under an argon atmosphere. The reaction was heated for 20 hours. After the reaction solution was cooled to room temperature, the precipitate was collected by filtration and washed with methanol and pure water to obtain Compound (Ir-38-A) in a yield of 55%.
  • Step 2 1.3 g of the compound (Ir-38-A) obtained in Step 1, 490.7 mg of silver trifluoromethanesulfonate, 1.2 ml of methanol and 202 ml of dichloromethane were placed in a three-necked flask and reacted at room temperature for 24 hours under an argon gas atmosphere. I let you. The reaction solution was filtered through celite, and the solvent was evaporated under reduced pressure to give compound (Ir-38-B) in a yield of 99%.
  • Step 3 The total amount of compound (Ir-38-B) obtained in Step 2, 1.06 g of 2-methyldibenzo [f, h] quinoxaline, and 55 ml of ethanol were added, and the mixture was heated and reacted at 90 ° C. for 72 hours under an argon atmosphere. . After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and filtered through Celite. Methanol was added to the filtrate, and the precipitate was collected by filtration. This was recrystallized twice using dichloromethane and methanol to obtain (Ir-38) in a yield of 23.1%. The 1 H-NMR data is shown below.
  • Step 1 1.40 g of iridium trichloride nhydrate, 2.17 g of 2- (3- (t-butyl) phenyl) -3-methylquinoline, 34 ml of 2-ethoxyethanol and 11 ml of pure water were placed in a three-necked flask under an argon atmosphere. The reaction was conducted at 120 ° C. for 20 hours. After the reaction solution was cooled to room temperature, the precipitate was collected by filtration and washed with methanol and pure water to obtain Compound (Ir-55-A) in a yield of 38%.
  • Step 2 1.256 g of the compound (Ir-55-A) obtained in Step 1, 415.6 mg of silver trifluoromethanesulfonate, 1.1 ml of methanol and 39 ml of dichloromethane were placed in a three-necked flask and reacted at room temperature for 24 hours under an argon gas atmosphere. I let you. The reaction solution was filtered through celite, and the solvent was evaporated under reduced pressure to give compound (Ir-55-B) in a yield of 99%.
  • Step 3 The total amount of the compound (Ir-55-B) obtained in Step 2, 650 mg of 2-methyldibenzo [f, h] quinoxaline, and 55 ml of ethanol were added, and the mixture was reacted by heating at 90 ° C. for 72 hours in an argon atmosphere. After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and filtered through Celite. Methanol was added to the filtrate, and the precipitate was collected by filtration. This was purified by silica gel column chromatography (eluent: dichloromethane and hexane) to obtain (Ir-55) in a yield of 31.6%.
  • Step 2 452.1 mg of the compound (Ir-58-A) obtained in Step 1, 147.3 mg of silver trifluoromethanesulfonate, 1 ml of methanol and 30 ml of dichloromethane were placed in a three-necked flask and reacted at room temperature for 24 hours in an argon gas atmosphere. . The reaction solution was filtered through celite, and the solvent was evaporated under reduced pressure to give compound (Ir-58-B) in a yield of 99%.
  • Step 3 The total amount of the compound (Ir-58-B) obtained in Step 2 was added to 279.9 mg of 2-methyldibenzo [f, h] quinoxaline, 6 ml of 2-ethoxyethanol, and 6 ml of DMF. The reaction was heated for an hour. After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and filtered through Celite. Methanol was added to the filtrate, and the precipitate was collected by filtration.
  • Step 1 1.40 g of iridium trichloride n-hydrate, 3.21 g of 2- (9,9-dimethyl-9H-fluoren-2-yl) quinoline, 34 ml of 2-ethoxyethanol and 11 ml of pure water were placed in a three-necked flask, and an argon atmosphere Then, the reaction was performed by heating at 120 ° C. for 20 hours. After the reaction solution was cooled to room temperature, the precipitate was collected by filtration and washed with methanol and pure water to obtain Compound (Ir-60-A) in a yield of 332 mg.
  • Step 2 624.4 mg of the compound (Ir-60-A) obtained in Step 1, 203.1 mg of silver trifluoromethanesulfonate, 0.5 ml of methanol and 18 ml of dichloromethane were placed in a three-necked flask and reacted at room temperature under an argon gas atmosphere for 24 hours. I let you. The reaction solution was filtered through celite, and the solvent was evaporated under reduced pressure to give compound (Ir-60-B) in a yield of 99%.
  • Step 3 The total amount of (Ir-60-B) obtained in Step 2 was added to 438.6 mg of 2-methyldibenzo [f, h] quinoxaline and 24 ml of ethanol, and the mixture was reacted by heating at 90 ° C. for 72 hours in an argon atmosphere. After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and filtered through Celite. Methanol was added to the filtrate, and the precipitate was collected by filtration. This was purified by silica gel column chromatography (eluent: dichloromethane and hexane) to obtain (Ir-60) in a yield of 9.7%.
  • Step 1> Put 0.857 g of iridium trichloride nhydrate, 1.13 g of 3-phenylisoquinoline, 40 ml of DMF and 10 ml of pure water into a three-necked flask, attach a Dimroth cooler, and ventilate argon gas, microwave (2450 MHz, 300 W) Were irradiated for 45 minutes. After the reaction solution was cooled to room temperature, the precipitate was collected by filtration and washed with pure water and methanol to obtain (Ir-77-A) in a yield of 88.8%.
  • Step 2 The total amount of the compound (Ir-77-A) obtained in Step 1, 0.578 g of silver trifluoromethanesulfonate, 40 ml of methanol and 60 ml of dichloromethane were placed in a three-necked flask and reacted at room temperature in an argon gas atmosphere for 24 hours. . The reaction solution was filtered through Celite, and the solvent was distilled off under reduced pressure to obtain (Ir-77-B) in a yield of 100%.
  • Step 3 The total amount of compound (Ir-77-B) obtained in Step 2 and 2.10 g of 2-methyldibenzo [f, h] quinoxaline, 18 ml of methanol and 42 ml of ethanol were added, and the mixture was heated at 95 ° C. for 48 hours under an argon atmosphere. Reacted. After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and filtered through Celite. Methanol was added to the filtrate, and the precipitate was collected by filtration.
  • Step 1 Place 2.00 g of iridium trichloride n-hydrate, 5.70 g of 3-biphenylisoquinoline, 66 ml of DMF and 10 ml of pure water in a three-necked flask, attach a Dimroth condenser, and ventilate argon gas, microwave (2450 MHz, 400 W) Was irradiated for 25 minutes.
  • the reaction solution was cooled to room temperature and pure water was added, and then the precipitate was collected by filtration and washed with pure water, methanol and acetone to obtain (Ir-95-A) in a yield of 91.5%.
  • Step 2 1.11 g of the compound (Ir-95-A) obtained in Step 1 and 0.370 g of silver trifluoromethanesulfonate, 55 ml of methanol and 55 ml of dichloromethane were placed in a three-necked flask and reacted at room temperature for 24 hours in an argon gas atmosphere. I let you. The reaction solution was filtered through Celite, and the solvent was distilled off under reduced pressure to obtain (Ir-95-B) in a yield of 89.7%.
  • Step 3 Add the total amount of compound (Ir-95-B) obtained in Step 2, 1.38 g of 2-methyldibenzo [f, h] quinoxaline, 15 ml of methanol, and 35 ml of ethanol, and heat at 95 ° C. for 48 hours under an argon atmosphere. Reacted. After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and filtered through Celite. Methanol was added to the filtrate, and the precipitate was collected by filtration.
  • Luminescence characteristics of the compound (Ir-62) of the present invention in THF After dissolving the compound (Ir-62) of the present invention in THF and venting with argon gas, an absolute PL quantum yield measuring apparatus (C9920 manufactured by Hamamatsu Photonics Co., Ltd.) ) was used to measure the emission spectrum at room temperature (excitation wavelength: 340 nm), and showed red emission (emission maximum wavelength: 619 nm).
  • the emission quantum yield was 0.59.
  • Luminescence characteristics of the compound of the present invention (Ir-63) in THF After dissolving the compound of the present invention (Ir-63) in THF and venting with argon gas, an absolute PL quantum yield measuring apparatus (C9920 manufactured by Hamamatsu Photonics Co., Ltd.) ) was used to measure the emission spectrum at room temperature (excitation wavelength: 340 nm), and showed red emission (emission maximum wavelength: 625 nm).
  • the emission quantum yield was 0.61.
  • Luminescence characteristics of the compound of the present invention (Ir-77) in chloroform After dissolving the compound of the present invention (Ir-77) in chloroform and venting with argon gas, an absolute PL quantum yield measuring apparatus (C9920 manufactured by Hamamatsu Photonics Co., Ltd.) ) was used to measure the emission spectrum (excitation wavelength: 340 nm) at room temperature, and showed red emission (emission maximum wavelength: 656 nm).
  • the emission quantum yield was 0.22.
  • Luminescence characteristics of the compound of the present invention (Ir-95) in chloroform After dissolving the compound of the present invention (Ir-95) in chloroform and venting with argon gas, an absolute PL quantum yield measuring apparatus (C9920 manufactured by Hamamatsu Photonics Co., Ltd.) ) was used to measure the emission spectrum at room temperature (excitation wavelength: 340 nm), and showed red emission (emission maximum wavelength: 625 nm).
  • the emission quantum yield was 0.47.
  • Luminescence characteristics of Comparative Compound (1) Regarding the luminescence characteristics of Comparative Compound (1) in solution, see Adv. Mater. 2003, Vol. 15, pp. 224-228 (Non-patent Document 1). That is, the emission maximum wavelength in dichloromethane is 608 nm, which shows orange-red emission.
  • an emission spectrum (excitation wavelength: 340 nm) at room temperature was measured using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. When measured, it showed weak deep red light emission (emission maximum wavelength: 687 nm). The emission quantum yield was 0.028.
  • an emission spectrum (excitation wavelength: 340 nm) at room temperature was obtained using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. When measured, it showed weak deep red light emission (emission maximum wavelength: 691 nm). The emission quantum yield was 0.017.
  • Example II-1 to Example II-8 it was revealed that all of the compounds of the present invention emitted red light in THF or chloroform at room temperature.
  • the emission spectrum of the compound of the present invention was shifted by a longer wavelength than that of the comparative compound (1), and it was revealed that pure red emission could be realized from the CIE chromaticity.
  • the luminescence of the comparative compounds (2) and (3) was a faint deep red, and it was revealed that the compound of the present invention showed superior red luminescence characteristics.
  • Example III-1 Sublimation purification of the compound (Ir-2) of the present invention 116 mg of the compound (Ir-2) of the present invention was placed in a sublimation purification apparatus (P-200, manufactured by ALS Technology Co., Ltd.), and the degree of vacuum was 1 ⁇ 10 ⁇ 4 Pa and the temperature was 300 to When sublimation purification was performed over 9 hours under the condition of 320 ° C., the yield of the sublimation product was 99.5%. There was no sublimation residue, and no decomposition by sublimation purification was observed. 0.5% was estimated to be a low-boiling component such as a residual solvent, and the material balance was 99.5%.
  • Example III-2 Sublimation purification of the compound (Ir-10) of the present invention 139 mg of the compound (Ir-10) of the present invention was put into a sublimation purification apparatus (P-200, manufactured by ALS Technology Co., Ltd.), and the degree of vacuum was 1 ⁇ 10 ⁇ 4 Pa and the temperature was from 315 to When sublimation purification was performed over 9 hours under the condition of 320 ° C., the yield of the sublimation product was 88%. Sublimation residue was as small as 12% of the input. No decomposition by sublimation purification was observed, and the material balance was 100%.
  • Example III-3 Sublimation purification of the compound (Ir-38) of the present invention 187 mg of the compound (Ir-38) of the present invention was put into a sublimation purification apparatus (P-200, manufactured by ALS Technology), and the degree of vacuum was 1 ⁇ 10 ⁇ 4 Pa, the temperature was 300 to When sublimation purification was performed over 9 hours under the condition of 320 ° C., the yield of the sublimation product was 85%. Sublimation residue was as small as 2% of the input. Decomposition by sublimation purification was not observed, and the material balance was 87%.
  • P-200 sublimation purification apparatus
  • Example III-4 Sublimation purification of the compound (Ir-77) of the present invention 159 mg of the compound (Ir-77) of the present invention was placed in a sublimation purification apparatus (P-200, manufactured by ALS Technology Co., Ltd.), with a vacuum degree of 1 ⁇ 10 ⁇ 4 Pa, a temperature of 300 to When sublimation purification was performed for 9 hours under the condition of 330 ° C., the yield of the sublimation product was 93%. Sublimation residue was as small as 4% of the input. Decomposition by sublimation purification was not observed, and the material balance was 97%.
  • a sublimation purification apparatus P-200, manufactured by ALS Technology Co., Ltd.
  • Example III-5 Sublimation purification of the compound (Ir-95) of the present invention 125 mg of the compound (Ir-95) of the present invention was placed in a sublimation purification apparatus (P-200, manufactured by ALS Technology Co., Ltd.), and the degree of vacuum was 1 ⁇ 10 ⁇ 4 Pa and the temperature was 340 to When sublimation purification was performed over 9 hours under the condition of 360 ° C., the yield of the sublimation product was 84%. Sublimation residue was as small as 9% of the input. No decomposition due to sublimation purification was observed, and the material balance was 93%.
  • P-200 sublimation purification apparatus
  • Example III Comparison of the results of sublimation purification in Example III and Comparative Example III revealed that the compound of the present invention can be purified by sublimation with a higher yield than Comparative Compound (1).
  • the thermal stability and sublimation properties of phosphorescent materials are dramatically improved by changing the acetylacetone ligand used in comparative compound (1) to a cyclometalated ligand with a strong iridium-carbon bond. It was revealed that the sublimation residue was greatly reduced.
  • Luminescence characteristics of the compound (Ir-10) of the present invention in a thin film The compound (Ir-10) of the present invention and 4,4′-N, N′-dicarbazole biphenyl (hereinafter referred to as CBP) were combined at a degree of vacuum of 1 ⁇ 10. -4 Pa, co-evaporated (30 nm) on a quartz substrate at 10:90 (mass concentration ratio), and emission spectrum at room temperature using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. When measured (excitation wavelength: 340 nm), it showed red light emission (emission maximum wavelength: 630 nm) with good color purity. The emission quantum yield was 0.61.
  • Example IV-2 Luminescent properties of the compound (Ir-62) of the present invention in a thin film
  • the compound (Ir-62) of the present invention and 4,4′-N, N′-dicarbazole biphenyl (hereinafter referred to as CBP) were combined at a degree of vacuum of 1 ⁇ 10. -4 Pa, co-evaporated (30 nm) on a quartz substrate at 10:90 (mass concentration ratio), and emission spectrum at room temperature using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. When measured (excitation wavelength: 340 nm), it showed red light emission (emission maximum wavelength: 619 nm) with good color purity. The emission quantum yield was 0.69.
  • Example IV-3 Luminescent properties of the compound (Ir-63) of the present invention in a thin film
  • the compound (Ir-63) of the present invention and 4,4′-N, N′-dicarbazole biphenyl (hereinafter referred to as CBP) were combined at a degree of vacuum of 1 ⁇ 10. -4 Pa, co-evaporated (30 nm) on a quartz substrate at 10:90 (mass concentration ratio), and emission spectrum at room temperature using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. When measured (excitation wavelength: 340 nm), it showed red light emission (emission maximum wavelength: 627 nm) with good color purity. The emission quantum yield was 0.74.
  • Luminescence characteristics of comparative compound (1) For luminescence characteristics of comparative compound (1), see Adv. Mater. 2003, Vol. 15, pp. 224-228 (Non-patent Document 1). That is, the maximum wavelength of light emission in the CBP thin film is 600 to 614 nm, indicating orange-red light emission.
  • Example IV-1 to Example IV-3 From Example IV-1 to Example IV-3, it was revealed that the compound of the present invention emits red light in a CBP thin film at room temperature. It has been clarified that the compound of the present invention has a longer emission wavelength than that of the comparative compound (1) and can realize red light emission with good color purity.
  • Example V-1 Evaluation of characteristics of organic electroluminescence device prepared using compound (Ir-10) of the present invention
  • an alkali-free film was formed by patterning indium tin oxide (ITO) into a comb shape having a film thickness of 100 nm and a line width of 2 mm.
  • a glass substrate manufactured by Atsugi Micro
  • the following organic layers are placed on the transparent conductive support substrate in a vacuum chamber of 1 ⁇ 10 ⁇ 4 Pa.
  • the film was sequentially formed by vacuum vapor deposition using resistance heating, and then the mask was changed, and electrode layers (electron injection layer and metal electrode layer) having a line width of 2 mm were sequentially formed to produce an organic electroluminescent device.
  • an operation of sealing in a glove box in a nitrogen atmosphere was performed so that the element was not exposed to the air.
  • a UV curable epoxy resin denatite R (manufactured by Nagase Chemitech) is applied to the periphery of a sealing glass (manufactured by Senyo Shoji Co., Ltd.) with a 1.5 mm dug in the center of a 3 mm thick glass plate and vapor deposited. After the element was covered and pressure-bonded, the element portion was covered with an aluminum plate and masked, and then irradiated with a UV irradiation apparatus with a shutter for 1 minute and then sealed for 1 minute by repeating the shielding cycle 5 times.
  • the obtained organic electroluminescence device is set in a sample holder of an integrating sphere unit A10094 for EL external quantum yield measurement manufactured by Hamamatsu Photonics, and a direct current constant voltage is applied to emit light by using a source meter 2400 manufactured by Keithley.
  • the luminance, emission wavelength, and CIE chromaticity coordinates were measured using a multichannel spectrometer PMA-12 manufactured by Hamamatsu Photonics.
  • luminescent properties of 4% when 1000 cd / m 2) was obtained.
  • the emission spectrum is shown in FIG.
  • Example V-2 Evaluation of characteristics of organic electroluminescence device produced using compound (Ir-62) of the present invention
  • the present invention in the light emitting layer was obtained by using (Ir-62) instead of (Ir-10) used in Example V-1.
  • An organic electroluminescent device was produced under the same conditions except that the mass concentration of the compound (Ir-62) was 20%, and the device characteristics were evaluated.
  • An emission characteristic of 5% when 1000 cd / m 2 ) was obtained.
  • Example V-3 Evaluation of characteristics of organic electroluminescence device produced using compound (Ir-63) of the present invention
  • the present invention in the light emitting layer was obtained by using (Ir-63) instead of (Ir-10) used in Example V-1.
  • An organic electroluminescent device was produced under the same conditions except that the mass concentration of the compound (Ir-63) was 20%, and the device characteristics were evaluated.
  • An emission characteristic of 3% (when 1000 cd / m 2 ) was obtained.
  • Example V-4 Evaluation of characteristics of organic electroluminescent device prepared using compound (Ir-95) of the present invention Under the same conditions except that (Ir-95) was used instead of (Ir-10) used in Example V-1.
  • An organic electroluminescent device was prepared and the device characteristics were evaluated.
  • a light emission characteristic of 0% when 1000 cd / m 2 ) was obtained.
  • the iridium complex represented by the general formula (1) according to the present invention is a novel compound that is particularly excellent in thermal stability and sublimation, and exhibits a high emission quantum yield in the red region.
  • an organic light emitting device having good light emitting characteristics can be produced.
  • an organic light-emitting device using the compound exhibits high luminance light emission, and thus is suitable for fields such as a display device, a display, a backlight, and an illumination light source.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The purpose of the present invention is to provide a novel iridium complex which can be used in an organic electroluminescent element, an organic electrochemical light-emitting element and the like, exhibits properties of emitting red light having better color purity compared with the conventional compounds, and has excellent sublimation properties. The iridium complex according to the present invention is characterized by being represented by general formula (1). (In general formula (1), N represents a nitrogen atom; Ir represents an iridium atom; R1 to R9 independently represent a hydrogen atom, an alkyl group or a halogen atom; and R10 to R17 independently represent a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, a cyano group or a halogen atom.)

Description

赤色発光性イリジウム錯体ならびに該化合物を用いた発光材料および有機発光素子Red light emitting iridium complex, light emitting material and organic light emitting device using the compound
 本開示は、有機発光素子(有機電界発光素子、有機電気化学発光素子等)の発光材料として有用な赤色発光性の新規イリジウム錯体ならびに該化合物を用いた有機発光素子に関するものである。 The present disclosure relates to a novel red-emitting iridium complex useful as a light-emitting material for organic light-emitting devices (such as organic electroluminescent devices and organic electrochemiluminescent devices) and an organic light-emitting device using the compound.
 近年、有機電界発光素子に代表される有機発光素子はディスプレイまたは照明技術として注目されており、実用化に向けた研究が活発に進められている。特に発光効率向上は重要な研究課題であり、現在では発光材料として、励起三重項状態からの発光を利用する燐光材料に注目が集まっている。 In recent years, organic light-emitting devices such as organic electroluminescence devices have been attracting attention as display or illumination technology, and research for practical application is being actively promoted. In particular, improvement of luminous efficiency is an important research subject, and attention is currently focused on phosphorescent materials that utilize light emission from an excited triplet state as light emitting materials.
 励起一重項状態からの発光を用いる場合、一重項励起子と三重項励起子との生成比が1:3であるため発光性励起子の生成確率が25%であるとされている。また、光の取り出し効率が約20%であるため、外部取り出し量子効率の限界は5%とされている。一方で、これに励起三重項状態をも利用できると、内部量子効率の上限が100%となるため、励起一重項の場合に比べて原理的に発光効率が4倍となる。このような背景から、これまで燐光材料の開発が活発に行われてきた。 When light emission from an excited singlet state is used, the generation ratio of singlet excitons and triplet excitons is 1: 3, and the generation probability of luminescent excitons is 25%. Further, since the light extraction efficiency is about 20%, the limit of the external extraction quantum efficiency is set to 5%. On the other hand, if the excited triplet state can also be used for this, the upper limit of the internal quantum efficiency is 100%, so that in principle, the luminous efficiency is four times that of the excited singlet. Against this background, phosphorescent materials have been actively developed so far.
 例えば、有機発光素子に使用される赤色燐光材料として、化2に示すジベンゾ[f,h]キノキサリン配位子を有するイリジウム錯体が報告されている(例えば、非特許文献1を参照)。しかしながら、このイリジウム錯体の発光には橙色成分が多く含まれており、色純度の良好な赤色を得ることは困難である。したがって、橙色成分を減らすために、ジベンゾ[f,h]キノキサリン配位子を有するイリジウム錯体の発光スペクトルを長波長シフトさせることが強く求められている。非特許文献1には、このイリジウム錯体(化2)はジクロロメタン中で608nmに発光極大波長を有することが記載されている。
Figure JPOXMLDOC01-appb-C000004
For example, an iridium complex having a dibenzo [f, h] quinoxaline ligand represented by Chemical Formula 2 has been reported as a red phosphorescent material used in an organic light-emitting device (see, for example, Non-Patent Document 1). However, the luminescence of this iridium complex contains a lot of orange components, and it is difficult to obtain red with good color purity. Therefore, in order to reduce the orange component, there is a strong demand to shift the emission spectrum of an iridium complex having a dibenzo [f, h] quinoxaline ligand by a long wavelength. Non-Patent Document 1 describes that this iridium complex (Chemical Formula 2) has an emission maximum wavelength at 608 nm in dichloromethane.
Figure JPOXMLDOC01-appb-C000004
 また、ジベンゾ[f,h]キノキサリン配位子を有するイリジウム錯体の発光を長波長シフトさせるために、化3に示すジベンゾ[f,h]キノキサリン配位子にアリール基を導入したイリジウム錯体が開示されている(例えば、特許文献1を参照)。当該文献には、このイリジウム錯体(化3)はジクロロメタン中で640nmに発光極大波長を有することが記載されている。
Figure JPOXMLDOC01-appb-C000005
Also disclosed is an iridium complex in which an aryl group is introduced into the dibenzo [f, h] quinoxaline ligand shown in Chemical Formula 3 in order to shift the emission of the iridium complex having a dibenzo [f, h] quinoxaline ligand by a long wavelength. (For example, refer to Patent Document 1). This document describes that this iridium complex (Chemical Formula 3) has an emission maximum wavelength at 640 nm in dichloromethane.
Figure JPOXMLDOC01-appb-C000005
 さらに、特許文献1と同様に、ジベンゾ[f,h]キノキサリン配位子にアリール基を導入した化4に示すイリジウム錯体が開示されている(例えば、特許文献2を参照)。当該文献には、このイリジウム錯体(化4)はトルエン中で614nmに発光極大波長を有することが記載されている。
Figure JPOXMLDOC01-appb-C000006
Further, as in Patent Document 1, an iridium complex represented by Chemical Formula 4 in which an aryl group is introduced into a dibenzo [f, h] quinoxaline ligand is disclosed (for example, see Patent Document 2). This document describes that this iridium complex (Chemical Formula 4) has an emission maximum wavelength at 614 nm in toluene.
Figure JPOXMLDOC01-appb-C000006
特開2008-179607号公報JP 2008-179607 A 特表2011-511821号公報JP-T-2011-511821
 前述したように、ジベンゾ[f,h]キノキサリン配位子を有するイリジウム錯体は、橙赤色領域に発光を示すが、今後は赤色領域に強く発光を示し、かつ昇華性に優れたイリジウム錯体の開発が強く望まれている。 As described above, the iridium complex having a dibenzo [f, h] quinoxaline ligand emits light in the orange-red region, but in the future, development of an iridium complex having strong light emission in the red region and excellent sublimation properties. Is strongly desired.
 しかし、特許文献1,2のように、ジベンゾ[f,h]キノキサリン配位子を用いて、色純度の良好な赤色燐光材料を開発するためには、ジベンゾ[f,h]キノキサリン配位子の特定位置にアリール基を導入しなければならず、赤色燐光材料の分子設計指針は大きく限定されていた。 However, as in Patent Documents 1 and 2, in order to develop a red phosphorescent material with good color purity using a dibenzo [f, h] quinoxaline ligand, a dibenzo [f, h] quinoxaline ligand The aryl group had to be introduced at a specific position of the red phosphorescent material, and the molecular design guidelines for the red phosphorescent material were greatly limited.
 また、真空蒸着法を用いて有機電界発光素子を製造するためには、使用する燐光材料については昇華性が高いことが求められているが、特許文献1,2及び非特許文献1に記載されたイリジウム錯体の昇華性は、実用上十分に満足できるレベルとはいえない。したがって、今後の実用化に向けて、昇華性が良好な赤色燐光材料が渇望されている。 Moreover, in order to manufacture an organic electroluminescent element using a vacuum evaporation method, it is calculated | required that the sublimation property is high about the phosphorescent material to be used, but it is described in patent documents 1, 2 and nonpatent literature 1. Further, the sublimation property of the iridium complex is not sufficiently satisfactory for practical use. Therefore, a red phosphorescent material having a good sublimation property is craved for future practical use.
 本開示の目的は、有機電界発光素子や有機電気化学発光素子等に適用でき、赤色領域に良好な発光特性を示す、昇華性に優れた新規イリジウム錯体を提供することである。 An object of the present disclosure is to provide a novel iridium complex that can be applied to an organic electroluminescence device, an organic electrochemiluminescence device, and the like and that exhibits excellent light emission characteristics in a red region and has excellent sublimation properties.
 本発明者らは上記実状に鑑み、鋭意研究を重ねた結果、意外にも、ジベンゾ[f,h]キノキサリン骨格を有する配位子を1つと、2-フェニルピリジン骨格を有する配位子を2つ有する特定構造のイリジウム錯体が、赤色領域に高効率発光することを見出した。具体的には、一般式(1)で表される新規イリジウム錯体が、前記特許文献1および2に示された方法、すなわちジベンゾ[f,h]キノキサリン配位子の特定位置にアリール基を導入することなく、非特許文献1に示されるイリジウム錯体(化2)よりも発光が長波長シフトし、色純度の良好な赤色発光を示すことを見出した。さらに、本発明化合物はイリジウム錯体(化2)よりも熱安定性ならびに昇華性が良好であることを見出し、本発明に想到した。以上の実験結果は、従来公知技術から予測しえないものであり、本発明者らの数多くの緻密な実験による研究成果である。 As a result of intensive studies in view of the above circumstances, the present inventors have surprisingly found one ligand having a dibenzo [f, h] quinoxaline skeleton and two ligands having a 2-phenylpyridine skeleton. It has been found that the iridium complex having a specific structure having one has high efficiency in the red region. Specifically, the novel iridium complex represented by the general formula (1) introduces an aryl group into the specific position of the dibenzo [f, h] quinoxaline ligand as described in Patent Documents 1 and 2 above. Without doing so, it was found that the emission was shifted by a longer wavelength than that of the iridium complex (Chemical Formula 2) shown in Non-Patent Document 1, and that red emission with good color purity was exhibited. Furthermore, the present compound was found to have better thermal stability and sublimation than the iridium complex (Chemical Formula 2), and the present invention was conceived. The above experimental results are unpredictable from the prior art, and are the result of numerous detailed experiments conducted by the present inventors.
 すなわち、この出願によれば、以下の発明が提供される。 That is, according to this application, the following invention is provided.
 本発明に係るイリジウム錯体は、下記一般式(1)で表されることを特徴とする。
Figure JPOXMLDOC01-appb-C000007
(一般式(1)中、Nは窒素原子を表す。Irはイリジウムを表す。R~Rは、各々独立に、水素原子、アルキル基、または、ハロゲン原子を表す。R10~R17は、各々独立に、水素原子、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、シアノ基、または、ハロゲン原子を表す。前記アルキル基は、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。前記アリール基は、アルキル基(トリフルオロメチル基を除く)、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子(フッ素原子は除く)で置換されてもよく、アラルキル基で置換されることはない。前記アルコキシ基は、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。前記ヘテロ環基は、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。前記アリールオキシ基は、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。隣り合ったR10~R17は各々結合し環構造を形成してもよい。)
The iridium complex according to the present invention is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000007
(In general formula (1), N represents a nitrogen atom. Ir represents iridium. R 1 to R 9 each independently represents a hydrogen atom, an alkyl group, or a halogen atom. R 10 to R 17. Each independently represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, a cyano group, or a halogen atom, wherein the alkyl group is an aryl group, an alkoxy group, or a heterocyclic group. The aryl group may be substituted with an alkyl group (excluding trifluoromethyl group), an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom. (Excluding a fluorine atom) may be substituted with an aralkyl group, and the alkoxy group may be an aryl group, an alkoxy group, or a hetero group. The heterocyclic group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom. The aryloxy group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom, and adjacent R 10 to R 17 are each bonded to form a ring structure. It may be formed.)
 本発明に係るイリジウム錯体では、前記R~Rが、各々独立に、水素原子、または、アルキル基であることが好ましい。 In the iridium complex according to the present invention, R 1 to R 9 are preferably each independently a hydrogen atom or an alkyl group.
 本発明に係るイリジウム錯体では、前記R10~R17が、各々独立に、水素原子、アルキル基、または、アリール基であることが好ましい。 In the iridium complex according to the present invention, R 10 to R 17 are preferably each independently a hydrogen atom, an alkyl group, or an aryl group.
 本発明に係るイリジウム錯体では、前記R10~R17の少なくとも1つが、アルキル基であることが好ましい。 In the iridium complex according to the present invention, it is preferable that at least one of R 10 to R 17 is an alkyl group.
 本発明に係るイリジウム錯体では、前記R10~R17の少なくとも1つが、アリール基であることが好ましい。 In the iridium complex according to the present invention, it is preferable that at least one of R 10 to R 17 is an aryl group.
 本発明に係るイリジウム錯体は、下記一般式(2)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 (一般式(2)中、Nは窒素原子を表す。Irはイリジウムを表す。R~Rは、各々独立に、水素原子、アルキル基、または、ハロゲン原子を表す。R18~R27は、各々独立に、水素原子、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、シアノ基、または、ハロゲン原子を表す。前記アルキル基は、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。前記アリール基は、アルキル基(トリフルオロメチル基を除く)、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子(フッ素原子は除く)で置換されてもよく、アラルキル基で置換されることはない。前記アルコキシ基は、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。前記ヘテロ環基は、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。前記アリールオキシ基は、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。隣り合ったR18~R27は各々結合し環構造を形成してもよい。)
The iridium complex according to the present invention is preferably represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000008
(In General Formula (2), N represents a nitrogen atom. Ir represents iridium. R 1 to R 9 each independently represents a hydrogen atom, an alkyl group, or a halogen atom. R 18 to R 27. Each independently represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, a cyano group, or a halogen atom, wherein the alkyl group is an aryl group, an alkoxy group, or a heterocyclic group. The aryl group may be substituted with an alkyl group (excluding trifluoromethyl group), an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom. (Excluding a fluorine atom) may be substituted with an aralkyl group, and the alkoxy group may be an aryl group, an alkoxy group, or a hetero group. The heterocyclic group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom. The aryloxy group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom, and adjacent R 18 to R 27 are each bonded to form a ring structure. It may be formed.)
 本発明に係るイリジウム錯体では、前記R18~R27は、各々独立に、水素原子、アルキル基、または、アリール基であることが好ましい。 In the iridium complex according to the present invention, each of R 18 to R 27 is preferably independently a hydrogen atom, an alkyl group, or an aryl group.
 本発明に係るイリジウム錯体では、前記R18~R27のうち、少なくとも一つが、アルキル基であることが好ましい。 In the iridium complex according to the present invention, it is preferable that at least one of R 18 to R 27 is an alkyl group.
 本発明に係るイリジウム錯体では、前記R18~R27のうち、少なくとも一つが、アリール基であることが好ましい。 In the iridium complex according to the present invention, it is preferable that at least one of R 18 to R 27 is an aryl group.
 本発明に係るイリジウム錯体は、下記一般式(4)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000009
 (一般式(4)中、Nは窒素原子を表す。Irはイリジウムを表す。R~Rは、各々独立に、水素原子、アルキル基、または、ハロゲン原子を表す。R38~R47は、各々独立に、水素原子、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、シアノ基、または、ハロゲン原子を表す。前記アルキル基は、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。前記アリール基は、アルキル基(トリフルオロメチル基を除く)、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子(フッ素原子は除く)で置換されてもよく、アラルキル基で置換されることはない。前記アルコキシ基は、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。前記ヘテロ環基は、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。前記アリールオキシ基は、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。隣り合ったR38~R47は各々結合し環構造を形成してもよい。)
The iridium complex according to the present invention is preferably represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000009
(In general formula (4), N represents a nitrogen atom. Ir represents iridium. R 1 to R 9 each independently represents a hydrogen atom, an alkyl group, or a halogen atom. R 38 to R 47. Each independently represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, a cyano group, or a halogen atom, wherein the alkyl group is an aryl group, an alkoxy group, or a heterocyclic group. The aryl group may be substituted with an alkyl group (excluding trifluoromethyl group), an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom. (Excluding a fluorine atom) may be substituted with an aralkyl group, and the alkoxy group may be an aryl group, an alkoxy group, or a hetero group. The heterocyclic group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom. The aryloxy group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom, and adjacent R 38 to R 47 are each bonded to form a ring structure. It may be formed.)
 本発明に係るイリジウム錯体では、前記R38~R47は、各々独立に、水素原子、アルキル基、または、アリール基であることが好ましい。 In the iridium complex according to the present invention, R 38 to R 47 are preferably each independently a hydrogen atom, an alkyl group, or an aryl group.
 本発明に係るイリジウム錯体では、前記R38~R47のうち、少なくとも一つが、アルキル基であることが好ましい。 In the iridium complex according to the present invention, it is preferable that at least one of R 38 to R 47 is an alkyl group.
 本発明に係るイリジウム錯体では、前記R38~R47のうち、少なくとも一つが、アリール基であることが好ましい。 In the iridium complex according to the present invention, it is preferable that at least one of R 38 to R 47 is an aryl group.
 本発明に係る発光材料は、本発明に係るイリジウム錯体を含むことを特徴とする。 The luminescent material according to the present invention includes the iridium complex according to the present invention.
 本発明に係る有機発光素子は、本発明に係る発光材料を含むことを特徴とする。 The organic light emitting device according to the present invention includes the light emitting material according to the present invention.
 本開示は、有機電界発光素子および有機電気化学発光素子などに適用でき、熱安定性と昇華性に優れ、高効率に赤色発光を示す新規イリジウム錯体を提供することができる。 The present disclosure can be applied to an organic electroluminescence device, an organic electrochemiluminescence device, and the like, and can provide a novel iridium complex that is excellent in thermal stability and sublimation properties and exhibits red light emission with high efficiency.
 本開示の新規イリジウム錯体は、室温下で色純度の良好な赤色発光を示し、また熱的安定性及び昇華性に優れていることから、各種用途の発光素子材料として好適に用いることができる。また該化合物を用いた有機発光素子は、赤色領域に高輝度発光を示すことから、表示素子、ディスプレイ、バックライトまたは照明光源などの分野に好適である。 The novel iridium complex of the present disclosure exhibits red light emission with good color purity at room temperature and is excellent in thermal stability and sublimation, and thus can be suitably used as a light emitting device material for various applications. An organic light emitting device using the compound exhibits high luminance light emission in a red region, and thus is suitable for fields such as a display device, a display, a backlight, or an illumination light source.
本発明化合物(Ir-10)のTHF中、アルゴン雰囲気下での発光スペクトルである。2 is an emission spectrum of the compound (Ir-10) of the present invention in THF under an argon atmosphere. 本発明化合物(Ir-10)を用いて作製した有機電界発光素子の発光スペクトルである。2 is an emission spectrum of an organic electroluminescence device produced using the compound (Ir-10) of the present invention.
 次に本発明について実施形態を示して詳細に説明するが、本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。 Next, the present invention will be described in detail with reference to embodiments, but the present invention is not construed as being limited to these descriptions. As long as the effect of the present invention is exhibited, the embodiment may be variously modified.
 本発明の一般式の説明における水素原子は同位体(重水素原子等)も含み、また更に置換基を構成する原子は、その同位体も含んでいることを表す。 In the description of the general formula of the present invention, a hydrogen atom includes an isotope (such as a deuterium atom), and an atom constituting a substituent further includes the isotope.
 本発明に係るイリジウム錯体は下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000010
(一般式(1)中、Nは窒素原子を表す。Irはイリジウムを表す。R~Rは、各々独立に、水素原子、アルキル基、または、ハロゲン原子を表す。R10~R17は、各々独立に、水素原子、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、シアノ基、または、ハロゲン原子を表す。前記アルキル基は、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。前記アリール基は、アルキル基(トリフルオロメチル基を除く)、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子(フッ素原子は除く)で置換されてもよく、アラルキル基で置換されることはない。前記アルコキシ基は、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。前記ヘテロ環基は、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。前記アリールオキシ基は、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。隣り合ったR10~R17は各々結合し環構造を形成してもよい。)
The iridium complex according to the present invention is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000010
(In general formula (1), N represents a nitrogen atom. Ir represents iridium. R 1 to R 9 each independently represents a hydrogen atom, an alkyl group, or a halogen atom. R 10 to R 17. Each independently represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, a cyano group, or a halogen atom, wherein the alkyl group is an aryl group, an alkoxy group, or a heterocyclic group. The aryl group may be substituted with an alkyl group (excluding trifluoromethyl group), an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom. (Excluding a fluorine atom) may be substituted with an aralkyl group, and the alkoxy group may be an aryl group, an alkoxy group, or a hetero group. The heterocyclic group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom. The aryloxy group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom, and adjacent R 10 to R 17 are each bonded to form a ring structure. It may be formed.)
 本発明に係るイリジウム錯体は、例えばこれらイリジウム錯体を真空蒸着法によって、有機発光素子の発光層もしくは発光層を含む複数の有機化合物層に含有させることで、赤色領域に良好な発光を示す有機発光素子が得られる。 The iridium complex according to the present invention includes, for example, organic luminescence that exhibits good light emission in the red region by including these iridium complexes in a light emitting layer of an organic light emitting device or a plurality of organic compound layers including a light emitting layer by a vacuum deposition method. An element is obtained.
 以下、本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.
 一般式(1)に記載した記号(N、Ir、R~R17)について以下に説明する。 The symbols (N, Ir, R 1 to R 17 ) described in the general formula (1) will be described below.
 一般式(1)中、Nは窒素原子を表す。 In general formula (1), N represents a nitrogen atom.
 一般式(1)中、Irはイリジウムを表す。 In general formula (1), Ir represents iridium.
 一般式(1)中、R~Rは、各々独立に、水素原子、アルキル基、または、ハロゲン原子を表し、水素原子、または、アルキル基が好ましい。 In the general formula (1), R 1 to R 9 each independently represents a hydrogen atom, an alkyl group, or a halogen atom, preferably a hydrogen atom or an alkyl group.
 一般式(1)中、R10~R17は、各々独立に、水素原子、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、シアノ基、または、ハロゲン原子を表し、水素原子、アルキル基、アリール基、ヘテロ環基、シアノ基、または、ハロゲン原子が好ましく、水素原子、アルキル基、アリール基、または、ハロゲン原子がより好ましく、水素原子、アルキル基、または、アリール基が特に好ましく、水素原子、または、アルキル基がより特に好ましい。 In the general formula (1), R 10 to R 17 each independently represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, a cyano group, or a halogen atom, , An alkyl group, an aryl group, a heterocyclic group, a cyano group, or a halogen atom, a hydrogen atom, an alkyl group, an aryl group, or a halogen atom is more preferable, and a hydrogen atom, an alkyl group, or an aryl group is particularly preferable Preferably, a hydrogen atom or an alkyl group is more preferable.
 前記アルキル基は、炭素数1~30のアルキル基であることが好ましく、炭素数1~20のアルキル基であることがより好ましく、炭素数1~10のアルキル基であることが特に好ましく、炭素数1~5のアルキル基であることが最も好ましい。 The alkyl group is preferably an alkyl group having 1 to 30 carbon atoms, more preferably an alkyl group having 1 to 20 carbon atoms, particularly preferably an alkyl group having 1 to 10 carbon atoms, Most preferably, it is an alkyl group of 1 to 5.
 前記アルキル基は、直鎖状のアルキル基でも分岐状のアルキル基でも構わない。 The alkyl group may be a linear alkyl group or a branched alkyl group.
 前記アルキル基は、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。 The alkyl group may be substituted with an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom.
 前記アルキル基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、ネオペンチル基、1-メチルペンチル基、1-ペンチルヘキシル基、1-ブチルペンチル基、1-ヘプチルオクチル基、シクロヘキシル基、シクロオクチル基、または3,5-テトラメチルシクロヘキシル基がある。好ましくは、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基、または1-メチルペンチル基である。より好ましくは、メチル基またはt-ブチル基であり、特に好ましくはメチル基である。 Examples of the alkyl group include methyl, ethyl, propyl, isopropyl, n-butyl, s-butyl, isobutyl, t-butyl, n-pentyl, n-hexyl, and n-heptyl. Group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group Group, n-octadecyl group, neopentyl group, 1-methylpentyl group, 1-pentylhexyl group, 1-butylpentyl group, 1-heptyloctyl group, cyclohexyl group, cyclooctyl group, or 3,5-tetramethylcyclohexyl group There is. Preferred are methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, neopentyl group, or 1-methylpentyl group. A methyl group or a t-butyl group is more preferable, and a methyl group is particularly preferable.
 前記アリール基は、炭素数6~30のアリール基であることが好ましく、炭素数6~20のアリール基であることがより好ましく、炭素数6~12のアリール基であることが特に好ましい。 The aryl group is preferably an aryl group having 6 to 30 carbon atoms, more preferably an aryl group having 6 to 20 carbon atoms, and particularly preferably an aryl group having 6 to 12 carbon atoms.
 前記アリール基は、アルキル基(トリフルオロメチル基を除く)、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子(フッ素原子は除く)で置換されてもよく、アラルキル基で置換されることはない。好ましくは、前記アリール基は、無置換のアルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、塩素原子、臭素原子、または、ヨウ素原子で置換されても良い。特にアルキル基で置換されたアリール基は、イリジウム錯体の昇華性が向上することから特に好ましい。 The aryl group may be substituted with an alkyl group (excluding a trifluoromethyl group), an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom (excluding a fluorine atom). It will not be replaced. Preferably, the aryl group may be substituted with an unsubstituted alkyl group, aryl group, alkoxy group, heterocyclic group, aryloxy group, chlorine atom, bromine atom, or iodine atom. An aryl group substituted with an alkyl group is particularly preferable because the sublimation property of the iridium complex is improved.
 前記アリール基として、例えば、フェニル基、ビフェニル-2-イル基、ビフェニル-3-イル基、ビフェニル-4-イル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、o-トリル基、m-トリル基、p-トリル基、p-t-ブチルフェニル基、p-(2-フェニルプロピル)フェニル基、4’-メチルビフェニルイル基、4”-t-ブチル-p-ターフェニル-4-イル基、o-クメニル基、m-クメニル基、p-クメニル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、メシチル基、m-クウォーターフェニル基、1-ナフチル基、または2-ナフチル基がある。好ましくは、フェニル基、o-トリル基、m-トリル基、p-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、またはメシチル基である。 Examples of the aryl group include a phenyl group, a biphenyl-2-yl group, a biphenyl-3-yl group, a biphenyl-4-yl group, a p-terphenyl-4-yl group, and a p-terphenyl-3-yl group. P-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl-2-yl group, o-tolyl group, m-tolyl group P-tolyl group, pt-butylphenyl group, p- (2-phenylpropyl) phenyl group, 4′-methylbiphenylyl group, 4 ″ -t-butyl-p-terphenyl-4-yl group, o-cumenyl, m-cumenyl, p-cumenyl, 2,3-xylyl, 2,4-xylyl, 2,5-xylyl, 2,6-xylyl, 3,4-xylyl, 3,5-xylyl group, mesityl group, m-quarter -Phenyl group, 1-naphthyl group or 2-naphthyl group, preferably phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2,3-xylyl group, 2,4-xylyl group A 2,5-xylyl group, a 2,6-xylyl group, a 3,4-xylyl group, a 3,5-xylyl group, or a mesityl group.
 前記アルコキシ基は、炭素数1~30のアルコキシ基であることが好ましく、炭素数1~20のアルコキシ基であることがより好ましく、炭素数1~10のアルコキシ基であることが特に好ましく、炭素数1~5のアルコキシ基であることが最も好ましい。 The alkoxy group is preferably an alkoxy group having 1 to 30 carbon atoms, more preferably an alkoxy group having 1 to 20 carbon atoms, particularly preferably an alkoxy group having 1 to 10 carbon atoms, Most preferably, it is an alkoxy group having a number of 1 to 5.
 前記アルコキシ基は、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。 The alkoxy group may be substituted with an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom.
 前記アルコキシ基として、例えば、メトキシ基、エトキシ基、プロキシ基、イソプロキシ基、n-ブトキシ基、t-ブトキシ基等があり、メトキシ基が好ましい。 Examples of the alkoxy group include a methoxy group, an ethoxy group, a proxy group, an isoproxy group, an n-butoxy group, and a t-butoxy group, and a methoxy group is preferable.
 前記ヘテロ環基は、炭素数1~30のヘテロ環基であることが好ましく、炭素数1~20のヘテロ環基であることがより好ましく、炭素数1~10のヘテロ環基であることが特に好ましく、炭素数1~5のヘテロ環基であることが最も好ましい。 The heterocyclic group is preferably a heterocyclic group having 1 to 30 carbon atoms, more preferably a heterocyclic group having 1 to 20 carbon atoms, and preferably a heterocyclic group having 1 to 10 carbon atoms. Particularly preferred is a heterocyclic group having 1 to 5 carbon atoms.
 前記ヘテロ環基は、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。 The heterocyclic group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom.
 前記ヘテロ環基として、例えば、2-ピリジニル基、3-ピリジニル基、4-ピリジニル基、2-ピリミジル基、4-ピリミジル基、5-ピリミジル基、2-ピラジル基、3-ピリダジニル基、4-ピリダジニル基、5-ピリダジニル基、キノリニル基、1-ピロリル基、1-イミダゾリル基、2-イミダゾピリジニル基、1-インドリル基、2-ベンゾフラニル基、7-イソベンゾフラニル基、2-キノリル基、1-イソキノリル基、1-フェナントリジニル基、1-アクリジニル基、1-フェナジニル基、2-チエニル基、1-ジベンゾフラニル基、1,3,5-トリアジニル基等が挙げられる。これらの中でも好ましくは、2-ピリジニル基、3-ピリジニル基、4-ピリジニル基、2-ピリミジル基、4-ピリミジル基、5-ピリミジル基である。 Examples of the heterocyclic group include 2-pyridinyl group, 3-pyridinyl group, 4-pyridinyl group, 2-pyrimidyl group, 4-pyrimidyl group, 5-pyrimidyl group, 2-pyrazyl group, 3-pyridazinyl group, 4- Pyridazinyl, 5-pyridazinyl, quinolinyl, 1-pyrrolyl, 1-imidazolyl, 2-imidazolpyridinyl, 1-indolyl, 2-benzofuranyl, 7-isobenzofuranyl, 2-quinolyl Group, 1-isoquinolyl group, 1-phenanthridinyl group, 1-acridinyl group, 1-phenazinyl group, 2-thienyl group, 1-dibenzofuranyl group, 1,3,5-triazinyl group and the like. Among these, 2-pyridinyl group, 3-pyridinyl group, 4-pyridinyl group, 2-pyrimidyl group, 4-pyrimidyl group and 5-pyrimidyl group are preferable.
 前記アリールオキシ基は、炭素数6~30のアリールオキシ基であることが好ましく、炭素数6~20のアリールオキシ基であることがより好ましく、炭素数6~10のアリールオキシ基であることが特に好ましい。 The aryloxy group is preferably an aryloxy group having 6 to 30 carbon atoms, more preferably an aryloxy group having 6 to 20 carbon atoms, and an aryloxy group having 6 to 10 carbon atoms. Particularly preferred.
 前記アリールオキシ基は、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。 The aryloxy group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom.
 前記アリールオキシ基として、例えば、フェノキシ基、ナフチルオキシ基等があり、フェノキシ基が好ましい。 Examples of the aryloxy group include a phenoxy group and a naphthyloxy group, and a phenoxy group is preferable.
 前記ハロゲン原子は、好ましくは塩素原子、臭素原子、ヨウ素原子またはフッ素原子である。より好ましくは臭素原子またはフッ素原子であり、特に好ましくは臭素原子である。 The halogen atom is preferably a chlorine atom, a bromine atom, an iodine atom or a fluorine atom. A bromine atom or a fluorine atom is more preferred, and a bromine atom is particularly preferred.
 R~R17のさらに望ましい形態について、以下、具体的に説明する。 More desirable forms of R 1 to R 17 will be specifically described below.
 R、R~Rとしては、水素原子またはアルキル基が好ましく、水素原子または炭素数1~10のアルキル基がより好ましく、水素原子またはメチル基が特に好ましく、水素原子が最も好ましい。 R 1 and R 3 to R 9 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, particularly preferably a hydrogen atom or a methyl group, and most preferably a hydrogen atom.
 Rとしては、水素原子またはアルキル基が好ましく、水素原子または炭素数1~10のアルキル基がより好ましく、水素原子またはメチル基が特に好ましく、メチル基が最も好ましい。 R 2 is preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, particularly preferably a hydrogen atom or a methyl group, and most preferably a methyl group.
 R10およびR13としては、水素原子またはアルキル基が好ましく、水素原子または炭素数1~10のアルキル基がより好ましく、水素原子またはメチル基が特に好ましく、水素原子が最も好ましい。 R 10 and R 13 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, particularly preferably a hydrogen atom or a methyl group, and most preferably a hydrogen atom.
 R11およびR12としては、水素原子、アルキル基またはアリール基が好ましく、水素原子、炭素数1~10のアルキル基、または、炭素数6~12のアリール基がより好ましく、水素原子またはメチル基が特に好ましく、水素原子が最も好ましい。 R 11 and R 12 are preferably a hydrogen atom, an alkyl group or an aryl group, more preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms, and a hydrogen atom or a methyl group Is particularly preferred, and a hydrogen atom is most preferred.
 R14としては、水素原子またはアルキル基が好ましく、水素原子または炭素数1~10のアルキル基がより好ましく、水素原子が特に好ましい。 R 14 is preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and particularly preferably a hydrogen atom.
 R15としては、水素原子、アルキル基、アリール基またはヘテロ環基が好ましく、水素原子、炭素数1~10のアルキル基、または、炭素数6~12のアリール基がより好ましく、水素原子、または、炭素数1~10のアルキル基が特に好ましく、水素原子またはメチル基がより特に好ましい。 R 15 is preferably a hydrogen atom, an alkyl group, an aryl group or a heterocyclic group, more preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms, a hydrogen atom, or An alkyl group having 1 to 10 carbon atoms is particularly preferable, and a hydrogen atom or a methyl group is particularly preferable.
 R16としては、水素原子、アルキル基またはアリール基が好ましく、水素原子、炭素数1~10のアルキル基、または、炭素数6~12のアリール基がより好ましく、水素原子、または、炭素数1~10のアルキル基が特に好ましく、水素原子、メチル基、または、t-ブチル基がより特に好ましい。 R 16 is preferably a hydrogen atom, an alkyl group or an aryl group, more preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms, a hydrogen atom or 1 carbon atom. An alkyl group of ˜10 is particularly preferred, and a hydrogen atom, a methyl group, or a t-butyl group is particularly preferred.
 R17としては、水素原子またはアルキル基が好ましく、水素原子または炭素数1~10のアルキル基がより好ましく、水素原子またはメチル基が特に好ましく、水素原子が最も好ましい。 R 17 is preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, particularly preferably a hydrogen atom or a methyl group, and most preferably a hydrogen atom.
 R10~R17のうち、少なくとも一つが、アルキル基であることが好ましい。 It is preferable that at least one of R 10 to R 17 is an alkyl group.
 R10~R17のうち、少なくとも一つが、アリール基であることが好ましい。 Of R 10 to R 17 , at least one is preferably an aryl group.
 隣り合ったR10~R17は各々結合し環構造を形成してもよく、R10とR11、R11とR12、または、R12とR13が各々結合し環構造を形成することが好ましく、R10とR11、または、R12とR13が結合し環構造を形成することが特に好ましい。 Adjacent R 10 to R 17 may be bonded to each other to form a ring structure, and R 10 and R 11 , R 11 and R 12 , or R 12 and R 13 may be bonded to each other to form a ring structure. It is particularly preferable that R 10 and R 11 , or R 12 and R 13 are bonded to form a ring structure.
 前記環構造とは飽和環または不飽和環を表し、不飽和環が好ましい。不飽和環としては、炭素環またはヘテロ環が好ましく、炭素環であることがより好ましい。飽和環または不飽和環は、5員環または6員環であることが好ましく、6員環であることが特に好ましく、ベンゼン環であることが最も好ましい。当該ベンゼン環はアルキル基(好ましくは炭素数1~5)で置換されることも好ましい。 The ring structure represents a saturated ring or an unsaturated ring, and an unsaturated ring is preferable. As the unsaturated ring, a carbocycle or a heterocycle is preferable, and a carbocycle is more preferable. The saturated ring or unsaturated ring is preferably a 5-membered ring or 6-membered ring, particularly preferably a 6-membered ring, and most preferably a benzene ring. The benzene ring is preferably substituted with an alkyl group (preferably having 1 to 5 carbon atoms).
 すなわち望ましい一形態としては、R10とR11、R11とR12、または、R12とR13が各々結合しベンゼン環を形成することが好ましく、R10とR11、または、R12とR13が結合しベンゼン環を形成することがより好ましい。 That is, as one desirable mode, R 10 and R 11 , R 11 and R 12 , or R 12 and R 13 are preferably bonded to each other to form a benzene ring, and R 10 and R 11 , or R 12 and More preferably, R 13 is bonded to form a benzene ring.
 一般式(1)で表される本発明のイリジウム錯体の中でも、R10とR11が環構造を形成した望ましい構造は、具体的に一般式(2)で表される。
Figure JPOXMLDOC01-appb-C000011
Among the iridium complexes of the present invention represented by the general formula (1), a desirable structure in which R 10 and R 11 form a ring structure is specifically represented by the general formula (2).
Figure JPOXMLDOC01-appb-C000011
 一般式(1)で表される本発明のイリジウム錯体の中でも、R11とR12が環構造を形成した望ましい構造は、具体的に一般式(3)で表される。
Figure JPOXMLDOC01-appb-C000012
Among the iridium complexes of the present invention represented by the general formula (1), a desirable structure in which R 11 and R 12 form a ring structure is specifically represented by the general formula (3).
Figure JPOXMLDOC01-appb-C000012
 一般式(1)で表される本発明のイリジウム錯体の中でも、R12とR13が環構造を形成した望ましい構造は、具体的に一般式(4)で表される。
Figure JPOXMLDOC01-appb-C000013
Among the iridium complexes of the present invention represented by the general formula (1), a desirable structure in which R 12 and R 13 form a ring structure is specifically represented by the general formula (4).
Figure JPOXMLDOC01-appb-C000013
 一般式(2)~(4)中のR~Rは、一般式(1)中のR~Rと同義であり、望ましい範囲も同様である。 Formula (2) ~ (4) R 1 ~ R 9 in the general formula (1) have the same meanings as R 1 ~ R 9, and is the same desirable ranges.
 一般式(2)~(4)中のR18~R47は、各々独立に、水素原子、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、シアノ基、または、ハロゲン原子を表し、水素原子、アルキル基、アリール基、ヘテロ環基、シアノ基、または、ハロゲン原子が好ましく、水素原子、アルキル基、アリール基、または、ハロゲン原子がより好ましく、水素原子、アルキル基、または、アリール基が特に好ましく、水素原子、または、アルキル基がより特に好ましい。これらの置換基として望ましい範囲については、一般式(1)中のR~R17と同様である。 R 18 to R 47 in the general formulas (2) to (4) each independently represent a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, a cyano group, or a halogen atom. And a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group, a cyano group, or a halogen atom is preferable, a hydrogen atom, an alkyl group, an aryl group, or a halogen atom is more preferable, and a hydrogen atom, an alkyl group, or An aryl group is particularly preferable, and a hydrogen atom or an alkyl group is more particularly preferable. For the desired range as these substituents is the same as R 1 ~ R 17 in general formula (1).
 隣り合ったR18~R47は各々結合し環構造を形成してもよい。 Adjacent R 18 to R 47 may be bonded to each other to form a ring structure.
 前記環構造とは飽和環または不飽和環を表し、不飽和環が好ましい。不飽和環としては、炭素環またはヘテロ環が好ましく、炭素環であることがより好ましい。飽和環または不飽和環は、5員環または6員環であることが好ましく、6員環であることが特に好ましく、ベンゼン環であることが最も好ましい。当該ベンゼン環はアルキル基(好ましくは炭素数1~5)で置換されることも好ましい。 The ring structure represents a saturated ring or an unsaturated ring, and an unsaturated ring is preferable. As the unsaturated ring, a carbocycle or a heterocycle is preferable, and a carbocycle is more preferable. The saturated ring or unsaturated ring is preferably a 5-membered ring or 6-membered ring, particularly preferably a 6-membered ring, and most preferably a benzene ring. The benzene ring is preferably substituted with an alkyl group (preferably having 1 to 5 carbon atoms).
 R18~R47のさらに望ましい形態について、以下、具体的に説明する。 More desirable forms of R 18 to R 47 will be specifically described below.
 R18、R19、R21、R23、R28~R33、R38~R43としては、水素原子またはアルキル基が好ましく、水素原子または炭素数1~10のアルキル基がより好ましく、水素原子またはメチル基が特に好ましく、水素原子が最も好ましい。 R 18 , R 19 , R 21 , R 23 , R 28 to R 33 , R 38 to R 43 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, An atom or a methyl group is particularly preferred, and a hydrogen atom is most preferred.
 R20、R22としては、水素原子、アルキル基またはアリール基が好ましく、水素原子、炭素数1~10のアルキル基、または、炭素数6~12のアリール基がより好ましく、水素原子、または、炭素数1~10のアルキル基が特に好ましく、水素原子またはメチル基がより特に好ましく、水素原子が最も好ましい。 R 20 and R 22 are preferably a hydrogen atom, an alkyl group or an aryl group, more preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 12 carbon atoms, a hydrogen atom or An alkyl group having 1 to 10 carbon atoms is particularly preferable, a hydrogen atom or a methyl group is more particularly preferable, and a hydrogen atom is most preferable.
 R24、R34、R44としては、水素原子またはアルキル基が好ましく、水素原子または炭素数1~10のアルキル基がより好ましく、水素原子が特に好ましい。 R 24 , R 34 and R 44 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and particularly preferably a hydrogen atom.
 R25、R27、R35、R37、R45、R47としては、水素原子またはアルキル基が好ましく、水素原子または炭素数1~10のアルキル基がより好ましく、水素原子、メチル基、または、t-ブチル基が特に好ましい。 R 25 , R 27 , R 35 , R 37 , R 45 , R 47 are preferably a hydrogen atom or an alkyl group, more preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, a hydrogen atom, a methyl group, or The t-butyl group is particularly preferred.
 R26、R36、R46としては、水素原子、アルキル基またはアリール基が好ましく、水素原子、炭素数1~10のアルキル基、または、炭素数6~12のアリール基がより好ましく、水素原子、または、炭素数1~10のアルキル基が特に好ましく、水素原子、メチル基、または、t-ブチル基がより特に好ましい。 R 26 , R 36 and R 46 are preferably a hydrogen atom, an alkyl group or an aryl group, more preferably a hydrogen atom, an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms, and a hydrogen atom Or an alkyl group having 1 to 10 carbon atoms, particularly preferably a hydrogen atom, a methyl group, or a t-butyl group.
 R18~R27の少なくとも1つがアルキル基であることが好ましく、R23、R25、R27の少なくとも1つがアルキル基であることがより好ましく、R25がアルキル基であることが特に好ましい。R23、R25、R27の少なくとも1つがアルキル基であると、特に良好な色純度の赤色発光を得ることができる。 At least one of R 18 to R 27 is preferably an alkyl group, more preferably at least one of R 23 , R 25 , and R 27 is an alkyl group, and R 25 is particularly preferably an alkyl group. When at least one of R 23 , R 25 and R 27 is an alkyl group, red light emission with particularly good color purity can be obtained.
 R28~R37の少なくとも1つがアルキル基であることが好ましい。 It is preferable that at least one of R 28 to R 37 is an alkyl group.
 R28~R37の少なくとも1つがアリール基であることが好ましい。 It is preferable that at least one of R 28 to R 37 is an aryl group.
 R38~R47の少なくとも1つがアルキル基であることが好ましい。 It is preferable that at least one of R 38 to R 47 is an alkyl group.
 R38~R47の少なくとも1つがアリール基であることが好ましい。 It is preferable that at least one of R 38 to R 47 is an aryl group.
 一般式(2)~(4)で表されるイリジウム錯体の中でも、色純度の良好な赤色発光を得るためには、一般式(2)および(4)で表されるイリジウム錯体が好ましい。 Among the iridium complexes represented by the general formulas (2) to (4), the iridium complex represented by the general formulas (2) and (4) is preferable in order to obtain red light emission with good color purity.
 一般式(2)で表されるイリジウム錯体のうち、以下に示す<1>~<15>のいずれかの形態が特に望ましい。 Among the iridium complexes represented by the general formula (2), any of the forms <1> to <15> shown below is particularly desirable.
 <1> R23がアルキル基である一般式(2)で表されるイリジウム錯体。 <1> An iridium complex represented by the general formula (2) in which R 23 is an alkyl group.
 <2> R25がアルキル基である一般式(2)で表されるイリジウム錯体。 <2> An iridium complex represented by the general formula (2), wherein R 25 is an alkyl group.
 <3> R23、および、R25がアルキル基である一般式(2)で表されるイリジウム錯体。 <3> An iridium complex represented by the general formula (2) in which R 23 and R 25 are alkyl groups.
 <4> R25、および、R27がアルキル基である一般式(2)で表されるイリジウム錯体。 <4> An iridium complex represented by the general formula (2) in which R 25 and R 27 are alkyl groups.
 <5> R23、R25、および、R27がアルキル基である一般式(2)で表されるイリジウム錯体。 <5> An iridium complex represented by the general formula (2) in which R 23 , R 25 , and R 27 are alkyl groups.
 <6> R20がアルキル基である一般式(2)で表されるイリジウム錯体。 <6> An iridium complex represented by the general formula (2) in which R 20 is an alkyl group.
 <7> R20、および、R23がアルキル基である一般式(2)で表されるイリジウム錯体。 <7> R 20 and iridium complex represented by the general formula R 23 is an alkyl group (2).
 <8> R20、および、R25がアルキル基である一般式(2)で表されるイリジウム錯体。 <8> An iridium complex represented by the general formula (2) in which R 20 and R 25 are alkyl groups.
 <9> R20、R23、および、R25がアルキル基である一般式(2)で表されるイリジウム錯体。 <9> An iridium complex represented by the general formula (2) in which R 20 , R 23 , and R 25 are alkyl groups.
 <10> R20、R25、および、R27がアルキル基である一般式(2)で表されるイリジウム錯体。 <10> An iridium complex represented by the general formula (2) in which R 20 , R 25 , and R 27 are alkyl groups.
 <11> R20、R23、R25、および、R27がアルキル基である一般式(2)で表されるイリジウム錯体。 <11> An iridium complex represented by the general formula (2) in which R 20 , R 23 , R 25 , and R 27 are alkyl groups.
 <12> R20がアリール基である一般式(2)で表されるイリジウム錯体。 <12> An iridium complex represented by the general formula (2), wherein R 20 is an aryl group.
 <13> R22がアリール基である一般式(2)で表されるイリジウム錯体。 <13> An iridium complex represented by the general formula (2), wherein R 22 is an aryl group.
 <14> R25がアリール基である一般式(2)で表されるイリジウム錯体。 <14> An iridium complex represented by the general formula (2), wherein R 25 is an aryl group.
 <15> R26がアリール基である一般式(2)で表されるイリジウム錯体。 <15> An iridium complex represented by the general formula (2), wherein R 26 is an aryl group.
 一般式(4)で表されるイリジウム錯体のうち、以下に示す<16>~<19>のいずれかの形態が特に望ましい。 Among the iridium complexes represented by the general formula (4), any of the forms <16> to <19> shown below is particularly desirable.
 <16> R45がアリール基である一般式(4)で表されるイリジウム錯体。 <16> An iridium complex represented by the general formula (4), wherein R 45 is an aryl group.
 <17> R45がアルキル基である一般式(4)で表されるイリジウム錯体。 <17> An iridium complex represented by the general formula (4), wherein R 45 is an alkyl group.
 <18> R46がアルキル基である一般式(4)で表されるイリジウム錯体。 <18> An iridium complex represented by the general formula (4), wherein R 46 is an alkyl group.
 <19> R45、および、R47がアルキル基である一般式(4)で表されるイリジウム錯体。 <19> An iridium complex represented by the general formula (4) in which R 45 and R 47 are alkyl groups.
 本発明に係る一般式(1)で表されるイリジウム錯体の中でも、室温下、溶液中または薄膜状態での発光量子収率が、0.1以上であることが好ましく、0.2以上であることがより好ましく、0.3以上であることが特に好ましい。 Among the iridium complexes represented by the general formula (1) according to the present invention, the emission quantum yield in a solution or in a thin film state at room temperature is preferably 0.1 or more, and is 0.2 or more. More preferably, it is particularly preferably 0.3 or more.
 溶液中の発光量子収率の測定は、溶存酸素を取り除くため、イリジウム錯体が溶解した溶液にアルゴンガスもしくは窒素ガスを通気した後に行うか、または、発光材料が溶解した溶液を凍結脱気した後に行うのが良い。発光量子収率の測定法としては、絶対法または相対法のどちらを用いてもよい。相対法においては、標準物質(キニン硫酸塩など)との発光スペクトルの比較によって、発光量子収率を測定することができる。絶対法においては、市販の装置(例えば、浜松ホトニクス株式会社製、絶対PL量子収率測定装置(C9920-02))を用いることで、固体状態または溶液中での発光量子収率の測定が可能である。溶液中での発光量子収率は種々の溶媒(例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジクロロメタン、クロロホルム、アセトニトリル、トルエン、1,2-ジクロロエタン、ベンゼン、DMF、DMSOなど)を用いて測定できるが、本発明に係わるイリジウム錯体は、任意の溶媒のいずれかにおいて上記発光量子収率が達成されればよい。 In order to remove dissolved oxygen, the measurement of the luminescence quantum yield in the solution is performed after passing argon gas or nitrogen gas through the solution in which the iridium complex is dissolved, or after freezing and degassing the solution in which the luminescent material is dissolved. Good to do. As a method for measuring the luminescence quantum yield, either an absolute method or a relative method may be used. In the relative method, the luminescence quantum yield can be measured by comparing the emission spectrum with a standard substance (such as quinine sulfate). In the absolute method, it is possible to measure the emission quantum yield in a solid state or in a solution by using a commercially available device (for example, an absolute PL quantum yield measuring device (C9920-02) manufactured by Hamamatsu Photonics Co., Ltd.). It is. The luminescence quantum yield in the solution can be measured using various solvents (for example, tetrahydrofuran, 2-methyltetrahydrofuran, dichloromethane, chloroform, acetonitrile, toluene, 1,2-dichloroethane, benzene, DMF, DMSO, etc.) The iridium complex according to the present invention only needs to achieve the above-mentioned emission quantum yield in any solvent.
 薄膜状態での発光量子収率の測定は、例えば石英ガラスの上に本発明のイリジウム錯体を真空蒸着し、市販の装置(例えば、浜松ホトニクス株式会社製、絶対PL量子収率測定装置(C9920))を用いて行うことができる。薄膜での発光量子収率は、本発明のイリジウム錯体を単独で蒸着するか、または種々のホスト材料と共蒸着し測定できるが、本発明に係わるイリジウム錯体は、いずれかの条件において上記発光量子収率が達成されればよい。 The measurement of the luminescence quantum yield in a thin film state is performed by, for example, vacuum-depositing the iridium complex of the present invention on quartz glass, and a commercially available device (for example, Hamamatsu Photonics Co., Ltd., absolute PL quantum yield measurement device (C9920)). ) Can be used. The luminescence quantum yield in a thin film can be measured by vapor-depositing the iridium complex of the present invention alone or co-deposited with various host materials. It is sufficient that the yield is achieved.
 本発明に係る一般式(1)で表されるイリジウム錯体は主に赤色領域に発光を示すが、その波長領域は配位子の種類または構造に依存する。特に室温下、溶液中または薄膜での発光スペクトルの発光極大波長(発光極大波長が複数ある場合は、最も短波長側の発光極大波長)については、580nm~700nmの範囲であることが好ましく、600nm~680nmの範囲であることがより好ましく、610nm~650nmの範囲であることが特に好ましく、615nm~640nmの範囲であることがより特に好ましい。 The iridium complex represented by the general formula (1) according to the present invention emits light mainly in the red region, but its wavelength region depends on the type or structure of the ligand. In particular, the emission maximum wavelength of the emission spectrum in solution or in a thin film at room temperature (when there are a plurality of emission maximum wavelengths, the emission maximum wavelength on the shortest wavelength side) is preferably in the range of 580 nm to 700 nm, and 600 nm It is more preferably in the range of ˜680 nm, particularly preferably in the range of 610 nm to 650 nm, and particularly preferably in the range of 615 nm to 640 nm.
 本発明に係る一般式(1)で表されるイリジウム錯体は主に赤色領域に発光を示すが、溶液中、薄膜中、または、有機発光素子中における発光スペクトルのCIE色座標は、Xが0.62~0.68であり、かつ、Yが0.32~0.38であることが好ましい。さらに、Xが0.64~0.66であり、かつ、Yが0.34~0.36であると、色純度の良好な赤色であるため特に好ましい。 Although the iridium complex represented by the general formula (1) according to the present invention emits light mainly in the red region, X is 0 in the CIE color coordinates of the emission spectrum in the solution, in the thin film, or in the organic light emitting device. 0.62 to 0.68, and Y is preferably 0.32 to 0.38. Furthermore, it is particularly preferable that X is 0.64 to 0.66 and Y is 0.34 to 0.36 because red is a good color purity.
 本発明に係る一般式(1)で表されるイリジウム錯体の配位子であるジベンゾ[f,h]キノキサリンについては、Adv.Mater.2003年、15巻、224-228頁(非特許文献1)、特開2008-179607号公報(特許文献1)、特許公表2011-511821号公報(特許文献2)を参考に合成することができる。 Dibenzo [f, h] quinoxaline which is a ligand of the iridium complex represented by the general formula (1) according to the present invention is described in Adv. Mater. 2003, Volume 15, pp. 224-228 (Non-Patent Document 1), Japanese Patent Application Laid-Open No. 2008-179607 (Patent Document 1), and Japanese Patent Publication No. 2011-511821 (Patent Document 2). .
 本発明に係る一般式(1)で表されるイリジウム錯体は、例えば式(A)の方法で合成することができる。 The iridium complex represented by the general formula (1) according to the present invention can be synthesized, for example, by the method of the formula (A).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 本発明に係る一般式(2)で表されるイリジウム錯体は、例えば式(B)の方法で合成することができる。 The iridium complex represented by the general formula (2) according to the present invention can be synthesized, for example, by the method of the formula (B).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 本発明に係る一般式(3)で表されるイリジウム錯体は、例えば式(C)の方法で合成することができる。 The iridium complex represented by the general formula (3) according to the present invention can be synthesized, for example, by the method of the formula (C).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 本発明に係る一般式(4)で表されるイリジウム錯体は、例えば式(D)の方法で合成することができる。 The iridium complex represented by the general formula (4) according to the present invention can be synthesized, for example, by the method of the formula (D).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 本発明に係る一般式(1)で表されるイリジウム錯体については、通常の合成反応の後処理に従って処理した後、必要があれば精製してあるいは精製せずに供することができる。後処理の方法としては、例えば、抽出、冷却、水若しくは有機溶媒を添加することによる晶析、または反応混合物からの溶媒を留去する操作などを単独あるいは組み合わせて行うことができる。精製の方法としては再結晶、蒸留、昇華またはカラムクロマトグラフィーなどを単独あるいは組み合わせて行うことができる。 The iridium complex represented by the general formula (1) according to the present invention can be used after being treated according to the post-treatment of a normal synthesis reaction, and if necessary, purified or not purified. As a post-treatment method, for example, extraction, cooling, crystallization by adding water or an organic solvent, or an operation of distilling off the solvent from the reaction mixture can be performed alone or in combination. As a purification method, recrystallization, distillation, sublimation, column chromatography or the like can be performed alone or in combination.
 本発明に係る一般式(1)で表されるイリジウム錯体については、幾何異性体(フェイシャル体、メリジオナル体)が存在するが、本発明の目的を達成できればどちらの幾何異性体でも良く、これらの幾何異性体の混合物でも構わない。 The iridium complex represented by the general formula (1) according to the present invention has geometric isomers (facial isomers, meridional isomers), and any geometric isomer may be used as long as the object of the present invention can be achieved. It may be a mixture of geometric isomers.
 以下に、本発明に係る、一般式(1)で示されるイリジウム錯体の代表例を表1~表7に示すが、本発明はこれらに限定されない。 Hereinafter, representative examples of the iridium complex represented by the general formula (1) according to the present invention are shown in Tables 1 to 7, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 なお、前述したように本発明に係る一般式(1)で表されるイリジウム錯体は、室温下で高効率に赤色燐光を発光することが可能であるため、発光材料または有機発光素子の発光物質として利用できる。また本発明のイリジウム錯体からなる発光材料を用いて有機発光素子(好ましくは有機電界発光素子)を作製することができる。 As described above, since the iridium complex represented by the general formula (1) according to the present invention can emit red phosphorescence with high efficiency at room temperature, the light-emitting material or the light-emitting substance of the organic light-emitting element is used. Available as In addition, an organic light-emitting element (preferably an organic electroluminescent element) can be manufactured using a light-emitting material including the iridium complex of the present invention.
 また、本発明に係る一般式(1)で表されるイリジウム錯体を用いることで、発光効率の高い有機発光素子、発光装置、または照明装置を実現することができる。さらに消費電力が低い有機発光素子、発光装置、または照明装置を実現することができる。 Further, by using the iridium complex represented by the general formula (1) according to the present invention, an organic light-emitting element, a light-emitting device, or a lighting device with high luminous efficiency can be realized. Furthermore, an organic light-emitting element, a light-emitting device, or a lighting device with low power consumption can be realized.
 次に本発明の一般式(1)で表されるイリジウム錯体を用いて作製される有機電界発光素子について説明する。有機電界発光素子は、陽極と陰極との間に複数層の有機化合物を積層した素子であり、発光層の発光材料として、一般式(1)で表されるイリジウム錯体を含有することが好ましい。また一般的に発光層は発光材料とホスト材料とから構成される。 Next, an organic electroluminescent device produced using the iridium complex represented by the general formula (1) of the present invention will be described. The organic electroluminescent element is an element in which a plurality of organic compounds are laminated between an anode and a cathode, and preferably contains an iridium complex represented by the general formula (1) as a light emitting material of the light emitting layer. In general, the light emitting layer is composed of a light emitting material and a host material.
 本発明の有機電界発光素子における代表的な素子構成としては、例えば以下の構成があるが、本発明はこれらに限定されるものではない。
(1)陽極/発光層/陰極
(2)陽極/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/陰極
(4)陽極/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(6)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(7)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
As typical device configurations in the organic electroluminescent device of the present invention, for example, there are the following configurations, but the present invention is not limited thereto.
(1) Anode / light emitting layer / cathode (2) Anode / light emitting layer / electron transport layer / cathode (3) Anode / hole transport layer / light emitting layer / cathode (4) Anode / hole transport layer / light emitting layer / electron Transport layer / cathode (5) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (6) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode ( 7) Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode
 また発光層と陰極との間に正孔阻止層(正孔障壁層ともいう)を設けてもよい。また発光層と陽極との間に電子阻止層(電子障壁層ともいう)を設けてもよい。 Further, a hole blocking layer (also referred to as a hole blocking layer) may be provided between the light emitting layer and the cathode. Further, an electron blocking layer (also referred to as an electron barrier layer) may be provided between the light emitting layer and the anode.
 以下、本発明の有機電界発光素子を構成する各層について説明する。 Hereinafter, each layer constituting the organic electroluminescent element of the present invention will be described.
<発光層>
 発光層は、電極から注入された電子および正孔が再結合し、励起子を経由して発光する層であり、発光する部分は発光層の層内であっても、発光層と隣接層との界面であってもよい。
<Light emitting layer>
The light-emitting layer is a layer that recombines electrons and holes injected from the electrode and emits light via excitons. Even if the light-emitting portion is within the layer of the light-emitting layer, It may be an interface.
 発光層の膜厚としては、2~1000nmの範囲が好ましく、より好ましくは2~200nmの範囲であり、更に好ましくは3~150nmの範囲である。 The film thickness of the light emitting layer is preferably in the range of 2 to 1000 nm, more preferably in the range of 2 to 200 nm, and still more preferably in the range of 3 to 150 nm.
 本発明では、発光層は、発光材料とホスト材料とを含有することが好ましい。 In the present invention, the light emitting layer preferably contains a light emitting material and a host material.
 発光材料としては、本発明に係る一般式(1)で表されるイリジウム錯体が単独もしくは複数種含まれていてもよく、その他の発光材料が含まれてもよい。発光層に含有される化合物のうち、本発明に係る一般式(1)で表されるイリジウム錯体の合計含有量は、質量比で1~50%であることが好ましく、1~30%であることがより好ましく、5~20%であることが特に好ましい。 As the luminescent material, the iridium complex represented by the general formula (1) according to the present invention may be contained singly or in plural kinds, and other luminescent materials may be contained. Of the compounds contained in the light emitting layer, the total content of the iridium complex represented by the general formula (1) according to the present invention is preferably 1 to 50% by mass ratio, and preferably 1 to 30%. More preferred is 5 to 20%.
 その他の発光材料としては、具体的には、アントラセン誘導体、ピレン誘導体、クリセン誘導体、フルオランテン誘導体、ペリレン誘導体、フルオレン誘導体、アリールアセチレン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体、スクアリウム誘導体、オキソベンツアントラセン誘導体、フルオレセイン誘導体、ペリレン誘導体、ポリチオフェン誘導体、希土類錯体系化合物、イリジウム錯体、または白金錯体などが挙げられる。 Specific examples of other light-emitting materials include anthracene derivatives, pyrene derivatives, chrysene derivatives, fluoranthene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylarylene derivatives, styrylamine derivatives, arylamine derivatives, boron complexes, squalium. Derivatives, oxobenzanthracene derivatives, fluorescein derivatives, perylene derivatives, polythiophene derivatives, rare earth complex compounds, iridium complexes, platinum complexes, and the like.
 ホスト材料は、発光層において主に電荷の注入および輸送を担う化合物である。また、発光層に含有される化合物の内で、その層中での質量比が20%以上であることが好ましい。より好ましくは50%以上であり、特に好ましくは80%以上である。発光層に含有される化合物のうち、ホスト材料の含有量の上限は、質量比で99%以下であることが好ましく、95%以下であることがより好ましく、90%以下であることが特に好ましい。 The host material is a compound mainly responsible for charge injection and transport in the light emitting layer. Moreover, it is preferable that the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer. More preferably, it is 50% or more, and particularly preferably 80% or more. Among the compounds contained in the light emitting layer, the upper limit of the content of the host material is preferably 99% or less, more preferably 95% or less, and particularly preferably 90% or less in terms of mass ratio. .
 ホスト材料の励起状態エネルギー(T準位)は、同一層内に含有される本発明に係る一般式(1)で表されるイリジウム錯体の励起状態エネルギー(T準位)よりも高いことが好ましい。 The excited state energy (T 1 level) of the host material is higher than the excited state energy (T 1 level) of the iridium complex represented by the general formula (1) according to the present invention contained in the same layer. Is preferred.
 ホスト材料は、単独または複数種用いてもよい。ホスト化合物を複数種用いることで、電荷移動調整が可能であり有機電界発光素子を高効率化することができる。 The host material may be used alone or in combination. By using a plurality of types of host compounds, charge transfer can be adjusted and the organic electroluminescence device can be made highly efficient.
 本発明で用いることができるホスト材料としては、特に制限はなく、低分子化合物でも繰り返し単位を有する高分子化合物でもよい。 The host material that can be used in the present invention is not particularly limited, and may be a low molecular compound or a high molecular compound having a repeating unit.
 ホスト材料として、具体的には、トリアリールアミン誘導体、フェニレン誘導体、縮合環芳香族化合物(例えばナフタレン誘導体、フェナントレン誘導体、フルオレン誘導体、ピレン誘導体、テトラセン誘導体、コロネン誘導体、クリセン誘導体、ペリレン誘導体、9,10-ジフェニルアントラセン誘導体若しくはルブレン等)、キナクリドン誘導体、アクリドン誘導体、クマリン誘導体、ピラン誘導体、ナイルレッド、ピラジン誘導体、ベンゾイミダゾール誘導体、ベンゾチアゾール誘導体、ベンゾオキサゾール誘導体、スチルベン誘導体、有機金属錯体(例えば、トリス(8-キノリノラート)アルミニウムなどの有機アルミニウム錯体、有機ベリリウム錯体、有機イリジウム錯体、若しくは有機プラチナ錯体等)、またはポリ(フェニレンビニレン)誘導体、ポリ(フルオレン)誘導体、ポリ(フェニレン)誘導体、ポリ(チエニレンビニレン)誘導体若しくはポリ(アセチレン)誘導体などの高分子誘導体が挙げられる。 Specific examples of host materials include triarylamine derivatives, phenylene derivatives, condensed ring aromatic compounds (for example, naphthalene derivatives, phenanthrene derivatives, fluorene derivatives, pyrene derivatives, tetracene derivatives, coronene derivatives, chrysene derivatives, perylene derivatives, 9, 10-diphenylanthracene derivatives or rubrene), quinacridone derivatives, acridone derivatives, coumarin derivatives, pyran derivatives, nile red, pyrazine derivatives, benzimidazole derivatives, benzothiazole derivatives, benzoxazole derivatives, stilbene derivatives, organometallic complexes (for example, tris (8-quinolinolato) organic aluminum complexes such as aluminum, organic beryllium complexes, organic iridium complexes, or organic platinum complexes), or poly (fluoro Nirenbiniren) derivatives, poly (fluorene) derivatives, poly (phenylene) derivatives, poly (polymer derivatives such as thienylene vinylene) derivatives or poly (acetylene) derivatives.
<電子輸送層>
 電子輸送層とは、電子を輸送する機能を有する材料からなり、陰極より注入された電子を発光層に伝達する機能を有していればよい。
<Electron transport layer>
The electron transport layer is made of a material having a function of transporting electrons, and only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer.
 電子輸送層の膜厚については特に制限はないが、通常は2~5000nmの範囲であり、より好ましくは2~500nmの範囲であり、さらに好ましくは5~200nmの範囲である。 The thickness of the electron transport layer is not particularly limited, but is usually in the range of 2 to 5000 nm, more preferably in the range of 2 to 500 nm, and still more preferably in the range of 5 to 200 nm.
 電子輸送層に用いられる材料(以下、電子輸送材料という)としては、電子の注入性または輸送性、または正孔の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。 As a material used for the electron transport layer (hereinafter referred to as an electron transport material), any material that has either an electron injection property or a transport property or a hole barrier property may be used. Any one can be selected and used.
 電子輸送性材料として、具体的には、含窒素芳香族複素環誘導体(カルバゾール誘導体、トリス(8-キノリノラート)アルミニウムなどの有機アルミニウム錯体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の1つ以上が窒素原子に置換されたもの)、ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体若しくはベンズオキサゾール誘導体等)、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、または芳香族炭化水素環誘導体(ナフタレン誘導体、アントラセン誘導体若しくはトリフェニレン等)等が挙げられる。 Specific examples of the electron transporting material include nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, organoaluminum complexes such as tris (8-quinolinolato) aluminum, azacarbazole derivatives (one or more carbon atoms constituting the carbazole ring) Substituted with a nitrogen atom), pyridine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, triazole derivatives, benzimidazole derivatives or benzoxazole derivatives, etc. ), Dibenzofuran derivatives, dibenzothiophene derivatives, or aromatic hydrocarbon ring derivatives (such as naphthalene derivatives, anthracene derivatives, or triphenylene).
<正孔阻止層>
 正孔阻止層とは広い意味では電子輸送層の機能を有する層であり、好ましくは電子を輸送する機能を有しつつ正孔を輸送する能力が小さい材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔との再結合確率を向上させることができる。
<Hole blocking layer>
The hole blocking layer is a layer having a function of an electron transport layer in a broad sense, and is preferably made of a material having a function of transporting electrons while having a small ability to transport holes, and transporting electrons while transporting holes. The probability of recombination of electrons and holes can be improved by blocking.
 正孔阻止層は、発光層の陰極側に隣接して設けられることが好ましい。 The hole blocking layer is preferably provided adjacent to the cathode side of the light emitting layer.
 正孔阻止層の膜厚としては、好ましくは3~100nmの範囲であり、更に好ましくは5~30nmの範囲である。 The film thickness of the hole blocking layer is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
 正孔阻止層に用いられる材料としては、前述の電子輸送層に用いられる材料が好ましく用いられ、また、前述のホスト材料も正孔阻止層の材料として好ましく用いられる。 As the material used for the hole blocking layer, the material used for the electron transport layer is preferably used, and the host material is also preferably used as the material for the hole blocking layer.
<電子注入層>
 電子注入層(「陰極バッファー層」ともいう。)とは、駆動電圧低下または発光輝度向上のために陰極と発光層との間に設けられる層のことである。
<Electron injection layer>
An electron injection layer (also referred to as a “cathode buffer layer”) is a layer provided between a cathode and a light emitting layer in order to reduce driving voltage or improve light emission luminance.
 電子注入層の膜厚は0.1~5nmの範囲が好ましい。より好ましくは0.1~1nmの範囲である。 The thickness of the electron injection layer is preferably in the range of 0.1 to 5 nm. More preferably, it is in the range of 0.1 to 1 nm.
 電子注入層に好ましく用いられる材料として、具体的には、金属(ストロンチウム若しくはアルミニウム等)、アルカリ金属化合物(フッ化リチウム若しくはフッ化ナトリウム等)、アルカリ土類金属化合物(フッ化マグネシウム若しくはフッ化カルシウム等)、金属酸化物(酸化アルミニウム等)、または金属錯体(リチウム8-ヒドロキシキノレート(Liq)等)などが挙げられる。また、前述の電子輸送材料を用いることも可能である。さらに電子注入材料としては、フェナントロリン誘導体のリチウム錯体(LiPB)、またはフェノキシピリジンのリチウム錯体(LiPP)などが挙げられる。 Specific examples of materials that are preferably used for the electron injection layer include metals (strontium or aluminum), alkali metal compounds (lithium fluoride or sodium fluoride, etc.), alkaline earth metal compounds (magnesium fluoride or calcium fluoride). Etc.), metal oxides (such as aluminum oxide), or metal complexes (such as lithium 8-hydroxyquinolate (Liq)). Further, the above-described electron transport material can also be used. Furthermore, examples of the electron injecting material include a phenanthroline derivative lithium complex (LiPB) and a phenoxypyridine lithium complex (LiPP).
<正孔輸送層>
 正孔輸送層とは、正孔を輸送する機能を有する材料からなり、陽極より注入された正孔を発光層に伝達する機能を有していればよい。正孔輸送層は複数あってもよい。
<Hole transport layer>
The hole transport layer is made of a material having a function of transporting holes, and may have a function of transmitting holes injected from the anode to the light emitting layer. There may be a plurality of hole transport layers.
 正孔輸送層の膜厚については特に制限はないが、通常は2~5000nmの範囲であり、より好ましくは5~500nmの範囲であり、さらに好ましくは5~200nmの範囲である。 The thickness of the hole transport layer is not particularly limited, but is usually in the range of 2 to 5000 nm, more preferably in the range of 5 to 500 nm, and still more preferably in the range of 5 to 200 nm.
 正孔輸送層に用いられる材料(以下、正孔輸送材料という。)としては、正孔の注入性または輸送性、または電子の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。 A material used for the hole transport layer (hereinafter referred to as a hole transport material) may have any of a hole injection property or a transport property, or an electron barrier property. Any one can be selected and used.
 正孔輸送性材料として、具体的には、ポルフィリン誘導体;フタロシアニン誘導体;オキサゾール誘導体;フェニレンジアミン誘導体;スチルベン誘導体;トリアリールアミン誘導体;カルバゾール誘導体;インドロカルバゾール誘導体;アントラセン若しくはナフタレンなどのアセン系誘導体;フルオレン誘導体;フルオレノン誘導体;ポリビニルカルバゾール若しくは芳香族アミンを主鎖または側鎖に導入した高分子材料またはオリゴマー;ポリシラン;導電性ポリマーまたはオリゴマー(例えばPEDOT:PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。 Specific examples of hole transporting materials include porphyrin derivatives; phthalocyanine derivatives; oxazole derivatives; phenylenediamine derivatives; stilbene derivatives; triarylamine derivatives; carbazole derivatives; indolocarbazole derivatives; acene derivatives such as anthracene or naphthalene; Fluorene derivatives; fluorenone derivatives; polymer materials or oligomers in which polyvinyl carbazole or aromatic amine is introduced into the main chain or side chain; polysilanes; conductive polymers or oligomers (eg PEDOT: PSS, aniline copolymers, polyaniline, polythiophene, etc.) ) And the like.
<電子阻止層>
 電子阻止層とは広い意味では正孔輸送層の機能を有する層であり、好ましくは正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
<Electron blocking layer>
The electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and is preferably made of a material having a function of transporting holes and a small ability to transport electrons, and transporting electrons while transporting holes. The probability of recombination of electrons and holes can be improved by blocking.
 電子阻止層の膜厚としては、好ましくは3~100nmの範囲であり、より好ましくは5~30nmの範囲である。 The thickness of the electron blocking layer is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
 また、前述の正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。 Further, the above-described structure of the hole transport layer can be used as an electron blocking layer as necessary.
<正孔注入層>
 本発明では、正孔注入層(「陽極バッファー層」ともいう)とは、駆動電圧低下または発光輝度向上のために陽極と発光層との間に設けられる層のことである。
<Hole injection layer>
In the present invention, the hole injection layer (also referred to as “anode buffer layer”) is a layer provided between the anode and the light emitting layer in order to lower the driving voltage or improve the light emission luminance.
 正孔注入層に用いられる材料としては、例えば、銅フタロシアニンに代表されるフタロシアニン誘導体、ヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)若しくはポリチオフェンなどの導電性高分子、トリス(2-フェニルピリジン)イリジウム錯体に代表されるシクロメタル化錯体、またはトリアリールアミン誘導体などが好ましい。 Examples of materials used for the hole injection layer include conductive materials such as phthalocyanine derivatives represented by copper phthalocyanine, hexaazatriphenylene derivatives, metal oxides represented by vanadium oxide, amorphous carbon, polyaniline (emeraldine), and polythiophene. Preferred are high molecular weight polymers, cyclometalated complexes represented by tris (2-phenylpyridine) iridium complexes, and triarylamine derivatives.
 本発明の有機電界発光素子は基板に支持されていることが好ましい。基板の素材については特に制限はなく、例えば、従来の有機電界発光素子において慣用されている、アルカリガラス、無アルカリガラス若しくは石英ガラスなどのガラス、または透明プラスチックなどが挙げられる。 The organic electroluminescent element of the present invention is preferably supported on a substrate. There is no restriction | limiting in particular about the raw material of a board | substrate, For example, glass, such as alkali glass, alkali free glass, or quartz glass, or a transparent plastic currently used in the conventional organic electroluminescent element is mentioned.
 陽極を構成する材料として、具体的には、金、白金、銀、銅、ニッケル、パラジウム、コバルト、セレン、バナジウム若しくはタングステンなどの金属単体またはこれらの合金;酸化錫、酸化亜鉛、酸化インジウム、酸化錫インジウム(ITO)若しくは酸化亜鉛インジウムなどの金属酸化物が使用できる。また、ポリアニリン、ポリピロール、ポリチオフェンまたはポリフェニレンスルフィドなどの導電性ポリマーも使用できる。これらの電極物質は単独で使用してもよいし、複数併用して使用してもよい。また、陽極は一層で構成されていてもよく、複数の層で構成されていてもよい。 Specific examples of materials constituting the anode include gold, platinum, silver, copper, nickel, palladium, cobalt, selenium, vanadium, tungsten, and the like, or alloys thereof; tin oxide, zinc oxide, indium oxide, and oxide. Metal oxides such as indium tin (ITO) or zinc indium oxide can be used. Further, conductive polymers such as polyaniline, polypyrrole, polythiophene or polyphenylene sulfide can also be used. These electrode materials may be used alone or in combination. Moreover, the anode may be composed of a single layer or a plurality of layers.
 陰極を構成する材料として、具体的には、リチウム、ナトリウム、カリウム、カルシウム、マグネシウム、アルミニウム、インジウム、ルテニウム、チタニウム、マンガン、イットリウム、銀、鉛、錫またはクロムなどの金属単体が挙げられる。また、これらの金属を組み合わせて合金にしてもよい。例えば、リチウム-インジウム、ナトリウム-カリウム、マグネシウム-銀、アルミニウム-リチウム、アルミニウム-マグネシウム、またはマグネシウム-インジウムなどの合金が使用できる。さらに、酸化錫インジウム(ITO)などの金属酸化物の利用も可能である。これらの電極物質は単独で使用してもよいし、複数併用して使用してもよい。また、陰極は一層構造でもよく、多層構造でもよい。 Specific examples of the material constituting the cathode include simple metals such as lithium, sodium, potassium, calcium, magnesium, aluminum, indium, ruthenium, titanium, manganese, yttrium, silver, lead, tin, or chromium. Further, these metals may be combined to form an alloy. For example, alloys such as lithium-indium, sodium-potassium, magnesium-silver, aluminum-lithium, aluminum-magnesium, or magnesium-indium can be used. In addition, metal oxides such as indium tin oxide (ITO) can be used. These electrode materials may be used alone or in combination. The cathode may have a single layer structure or a multilayer structure.
 本発明に係る一般式(1)で表されるイリジウム錯体を含む有機発光素子は、真空蒸着法、溶液塗布法若しくはレーザーなどを用いた転写法、またはスプレー法によって作製することができる。特に、本発明に係る一般式(1)で表されるイリジウム錯体を含む発光層を、真空蒸着法によって形成することが望ましい。 The organic light-emitting device containing the iridium complex represented by the general formula (1) according to the present invention can be manufactured by a vacuum deposition method, a solution coating method, a transfer method using a laser, or the like, or a spray method. In particular, it is desirable to form the light emitting layer containing the iridium complex represented by the general formula (1) according to the present invention by a vacuum deposition method.
 真空蒸着法によってホール輸送層、発光層または電子輸送層などの各層を形成する場合の真空蒸着条件は特に限定されないが、10-4~10-5Pa程度の真空下で50~500℃程度のボート温度、-50~300℃程度の基板温度で、0.01~50nm/秒程度で蒸着することが好ましい。正孔輸送層、発光層または電子輸送層などの各層を複数の材料を使用して形成する場合、材料を入れたボートをそれぞれ温度制御しながら共蒸着することが好ましい。 Hole transport layer by a vacuum deposition method, in the case of forming the respective layers such as a light emitting layer or the electron transporting layer but vacuum deposition conditions are not particularly limited, 10 -4 ~ 10 -5 Pa approximately about 50 ~ 500 ° C. under a vacuum of Vapor deposition is preferably performed at a boat temperature of about −50 to 300 ° C. and a substrate temperature of about 0.01 to 50 nm / second. When each layer such as a hole transport layer, a light-emitting layer, or an electron transport layer is formed using a plurality of materials, it is preferable to co-evaporate the boats containing the materials while controlling the temperature.
 以降、実施例を示しながら本発明についてさらに詳細に説明するが、本発明は実施例に限定して解釈されない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not construed as being limited to the examples.
<実施例I-1>
 本発明化合物(Ir-2)の合成
<Example I-1>
Synthesis of Compound (Ir-2) of the Present Invention
 ステップ1 化合物(A)の合成
Figure JPOXMLDOC01-appb-C000025
Step 1 Synthesis of Compound (A)
Figure JPOXMLDOC01-appb-C000025
 9,10-フェナントレンキノン86.7g、1,2-ジアミノプロパン35.8g、およびエチレングリコール460mlを三口フラスコに入れ、ジムロート冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、500W~1kW)を40分間照射した。反応溶液を150℃程度まで冷却させた後、2-エトキシエタノール300mlおよびDMF200mlの混合溶媒中に投入した。これに純水1000mlを投入し、析出物をろ過にて回収した。これをアセトンと純水を用いて3回再結晶させた。得られた固体をアルミナカラムクロマトグラフィー(溶離液:ジクロロメタンとヘキサン)を用いて精製し、化合物(A)を収率40%で得た。H-NMRのデータを以下に示す。
H-NMR(400MHz/CDCl)δ:9.27(dd,1H),9.19(dd,1H),8.78(s,1H),8.63(d,2H),7.71-7.80(m,4H),2.85(s,3H).
Place 96.7 g of 9,10-phenanthrenequinone, 35.8 g of 1,2-diaminopropane, and 460 ml of ethylene glycol in a three-necked flask, attach a Dimroth condenser, and ventilate the argon gas. 1 kW) for 40 minutes. The reaction solution was cooled to about 150 ° C., and then poured into a mixed solvent of 300 ml of 2-ethoxyethanol and 200 ml of DMF. To this was added 1000 ml of pure water, and the precipitate was collected by filtration. This was recrystallized three times using acetone and pure water. The obtained solid was purified using alumina column chromatography (eluent: dichloromethane and hexane) to obtain Compound (A) in a yield of 40%. The 1 H-NMR data is shown below.
1 H-NMR (400 MHz / CDCl 3 ) δ: 9.27 (dd, 1H), 9.19 (dd, 1H), 8.78 (s, 1H), 8.63 (d, 2H), 7. 71-7.80 (m, 4H), 2.85 (s, 3H).
 ステップ2 化合物(B)の合成
Figure JPOXMLDOC01-appb-C000026
Step 2 Synthesis of compound (B)
Figure JPOXMLDOC01-appb-C000026
 3塩化イリジウムn水和物25.68g、2-フェニルピリジン35.3g、2-エトキシエタノール400mlおよび純水60mlを三口フラスコに入れ、アルゴン雰囲気下、120℃で18時間加熱反応させた。反応溶液を室温まで冷却させた後、析出物をろ過することで回収した。得られた固体をメタノールと純水で洗浄して、化合物(B)を収率97%で得た。 25.68 g of iridium trichloride nhydrate, 35.3 g of 2-phenylpyridine, 400 ml of 2-ethoxyethanol, and 60 ml of pure water were placed in a three-necked flask and reacted by heating at 120 ° C. for 18 hours in an argon atmosphere. After the reaction solution was cooled to room temperature, the precipitate was collected by filtration. The obtained solid was washed with methanol and pure water to obtain Compound (B) in a yield of 97%.
 ステップ3 化合物(C)の合成
Figure JPOXMLDOC01-appb-C000027
Step 3 Synthesis of Compound (C)
Figure JPOXMLDOC01-appb-C000027
 化合物(B)10.00g、トリフルオロメタンスルホン酸銀5.03g、メタノール500mlおよびジクロロメタン1000mlを三口フラスコに入れ、アルゴンガス雰囲気下、室温で24時間反応させた。反応溶液をセライトろ過した後、溶媒を減圧留去して、化合物(C)を収率100%で得た。 Compound (B) (10.00 g), silver trifluoromethanesulfonate (5.03 g), methanol (500 ml) and dichloromethane (1000 ml) were placed in a three-necked flask and reacted at room temperature in an argon gas atmosphere for 24 hours. The reaction solution was filtered through Celite, and then the solvent was distilled off under reduced pressure to obtain Compound (C) in a yield of 100%.
 ステップ4 (Ir-2)の合成
Figure JPOXMLDOC01-appb-C000028
Step 4 Synthesis of (Ir-2)
Figure JPOXMLDOC01-appb-C000028
 化合物(C)1.63g、化合物(A)2.72g、メタノール24mlおよびエタノール56mlを加え、アルゴン雰囲気下、85℃~90℃で20時間加熱反応させた。反応溶液を室温まで冷却させた後に、溶媒を減圧留去した。得られた固体をジクロロメタンに溶解しセライトろ過した。ろ液にメタノールを投入し、析出物をろ取した。これをジクロロメタンとヘキサンを用いて3回再結晶させ、さらにシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタン)を用いて精製し、(Ir-2)を収率7%で得た。H-NMRのデータを以下に示す。
H-NMR(400MHz/CDCl)δ:9.17(d,1H),8.60(d,1H),8.07(d,1H),7.94(d,1H),7.89(d,1H),7.76(t,1H),7.65-7.72(m,5H),7.64(s,1H),7.56(t,1H),7.42(d,1H),7.29(d,1H),7.05(d,1H),6.93-6.98(m,2H),6.86-6.92(m,3H),6.71-6.77(m,2H),6.66(d,1H),2.70(s,3H).
1.63 g of compound (C), 2.72 g of compound (A), 24 ml of methanol and 56 ml of ethanol were added, and the mixture was heated and reacted at 85 ° C. to 90 ° C. for 20 hours in an argon atmosphere. After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and filtered through Celite. Methanol was added to the filtrate, and the precipitate was collected by filtration. This was recrystallized three times using dichloromethane and hexane, and further purified using silica gel column chromatography (eluent: dichloromethane) to obtain (Ir-2) in a yield of 7%. The 1 H-NMR data is shown below.
1 H-NMR (400 MHz / CDCl 3 ) δ: 9.17 (d, 1H), 8.60 (d, 1H), 8.07 (d, 1H), 7.94 (d, 1H), 7. 89 (d, 1H), 7.76 (t, 1H), 7.65-7.72 (m, 5H), 7.64 (s, 1H), 7.56 (t, 1H), 7.42 (D, 1H), 7.29 (d, 1H), 7.05 (d, 1H), 6.93-6.98 (m, 2H), 6.86-6.92 (m, 3H), 6.71-6.77 (m, 2H), 6.66 (d, 1H), 2.70 (s, 3H).
<実施例I-2>
 本発明化合物(Ir-10)の合成
<Example I-2>
Synthesis of Compound (Ir-10) of the Present Invention
 ステップ1 化合物(D)の合成
Figure JPOXMLDOC01-appb-C000029
Step 1 Synthesis of Compound (D)
Figure JPOXMLDOC01-appb-C000029
 3塩化イリジウムn水和物3.70g、2-(4-tert-ブチルフェニル)ピリジン4.71g、DMF135mlおよび純水15mlを三口フラスコに入れ、ジムロート冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、500W)を30分間照射した。反応溶液を室温まで冷却させた後、メタノールおよび純水を投入した。析出物をろ取し、純水およびメタノールで洗浄して、化合物(D)を収率84%で得た。 3.70 g of iridium trichloride n-hydrate, 4.71 g of 2- (4-tert-butylphenyl) pyridine, 135 ml of DMF and 15 ml of pure water were placed in a three-necked flask, a Dimroth condenser was attached, and argon gas was bubbled. Microwave (2450 MHz, 500 W) was irradiated for 30 minutes. After the reaction solution was cooled to room temperature, methanol and pure water were added. The precipitate was collected by filtration and washed with pure water and methanol to obtain Compound (D) in a yield of 84%.
 ステップ2 化合物(E)の合成
Figure JPOXMLDOC01-appb-C000030
Step 2 Synthesis of Compound (E)
Figure JPOXMLDOC01-appb-C000030
 化合物(D)3.85g、トリフルオロメタンスルホン酸銀1.59g、メタノール200mlおよびジクロロメタン250mlを三口フラスコに入れ、アルゴン雰囲気下、室温で14時間反応させた。反応溶液をセライトろ過した後、溶媒を減圧留去して、化合物(E)を収率100%で得た。 Compound (D) 3.85 g, silver trifluoromethanesulfonate 1.59 g, methanol 200 ml and dichloromethane 250 ml were placed in a three-necked flask and reacted at room temperature for 14 hours in an argon atmosphere. The reaction solution was filtered through Celite, and then the solvent was distilled off under reduced pressure to obtain Compound (E) in a yield of 100%.
 ステップ3 (Ir-10)の合成
Figure JPOXMLDOC01-appb-C000031
Step 3 Synthesis of (Ir-10)
Figure JPOXMLDOC01-appb-C000031
 化合物(E)2.00g、化合物(A)2.72g、メタノール30mlおよびエタノール70mlを加え、アルゴン雰囲気下、95℃で24時間加熱反応させた。反応溶液の液温を50℃まで冷却後、アセトンを50ml投入した。反応溶液を室温まで冷却させた後に、析出物をろ取し、メタノールで洗浄した。これをジクロロメタンとメタノールを用いて3回再結晶させ、(Ir-10)を収率32%で得た。H-NMRのデータを以下に示す。
H-NMR(400MHz/(CDSO)δ:9.10(dd,1H),8.74(d,1H),8.14(d,1H),8.11(d,1H),8.05(d,1H),7.81(m,2H),7.80(s,1H),7.71-7.76(m,2H),7.65-7.68(m,3H),7.59(d,1H),7.18-7.23(m,2H),6.95-6.98(m,2H),6.86(dd,1H),6.81(dd,1H),6.79(d,1H),6.65(d,1H),2.72(s,3H),1.03(s,9H),0.88(s,9H).
2.00 g of compound (E), 2.72 g of compound (A), 30 ml of methanol and 70 ml of ethanol were added, and the mixture was heated and reacted at 95 ° C. for 24 hours under an argon atmosphere. After cooling the reaction solution to 50 ° C., 50 ml of acetone was added. After the reaction solution was cooled to room temperature, the precipitate was collected by filtration and washed with methanol. This was recrystallized three times using dichloromethane and methanol to obtain (Ir-10) in a yield of 32%. The 1 H-NMR data is shown below.
1 H-NMR (400 MHz / (CD 3 ) 2 SO) δ: 9.10 (dd, 1H), 8.74 (d, 1H), 8.14 (d, 1H), 8.11 (d, 1H ), 8.05 (d, 1H), 7.81 (m, 2H), 7.80 (s, 1H), 7.71-7.76 (m, 2H), 7.65-7.68 ( m, 3H), 7.59 (d, 1H), 7.18-7.23 (m, 2H), 6.95-6.98 (m, 2H), 6.86 (dd, 1H), 6 .81 (dd, 1H), 6.79 (d, 1H), 6.65 (d, 1H), 2.72 (s, 3H), 1.03 (s, 9H), 0.88 (s, 9H).
<実施例I-3>
 本発明化合物(Ir-32)の合成
<Example I-3>
Synthesis of the compound of the present invention (Ir-32)
 ステップ1 化合物(F)の合成
Figure JPOXMLDOC01-appb-C000032
Step 1 Synthesis of Compound (F)
Figure JPOXMLDOC01-appb-C000032
 3塩化イリジウムn水和物3.00g、2-フェニルキノリン3.74g、2-エトキシエタノール80mlおよび純水20mlを三口フラスコに入れ、アルゴン雰囲気下、120℃で18時間加熱反応させた。反応溶液を室温まで冷却させた後、析出物をろ取し、メタノールと純水で洗浄して、化合物(F)を収率69%で得た。 3. 3.00 g of iridium trichloride n-hydrate, 3.74 g of 2-phenylquinoline, 80 ml of 2-ethoxyethanol, and 20 ml of pure water were placed in a three-necked flask and reacted by heating at 120 ° C. for 18 hours in an argon atmosphere. After the reaction solution was cooled to room temperature, the precipitate was collected by filtration and washed with methanol and pure water to obtain Compound (F) in a yield of 69%.
 ステップ2 化合物(G)の合成
Figure JPOXMLDOC01-appb-C000033
Step 2 Synthesis of Compound (G)
Figure JPOXMLDOC01-appb-C000033
 化合物(F)2.62g、トリフルオロメタンスルホン酸銀1.15g、メタノール140mlおよびジクロロメタン220mlを三口フラスコに入れ、アルゴンガス雰囲気下、室温で24時間反応させた。反応溶液をセライトろ過した後、溶媒を減圧留去して、化合物(G)を収率99%で得た。 Compound (F) 2.62 g, silver trifluoromethanesulfonate 1.15 g, methanol 140 ml and dichloromethane 220 ml were placed in a three-necked flask and reacted at room temperature for 24 hours in an argon gas atmosphere. The reaction solution was filtered through Celite, and then the solvent was distilled off under reduced pressure to obtain Compound (G) in a yield of 99%.
 ステップ3 (Ir-32)の合成
Figure JPOXMLDOC01-appb-C000034
Step 3 Synthesis of (Ir-32)
Figure JPOXMLDOC01-appb-C000034
 化合物(G)2.00g、化合物(A)2.50g、メタノール30mlおよびエタノール70mlを加え、アルゴン雰囲気下、95℃で24時間加熱反応させた。反応溶液の溶媒を減圧留去した後、得られた固体をジクロロメタンとメタノールとアセトンを用いて再結晶させた。さらにジクロロメタンに溶解させ、不溶物をろ過にて除去した。ろ液にヘキサンを加え、析出物をろ取し、ヘキサンで洗浄した。さらにシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとヘキサン)を用いて精製し、(Ir-32)を収率17%で得た。H-NMRのデータを以下に示す。
H-NMR(400MHz/CDCl)δ:9.11(dd,1H),8.49(d,1H),8.24(q,2H),8.17(d,1H),8.10(d,1H),8.02(d,1H),7.93(d,2H),7.90(d,1H),7.78(s,1H),7.74(d,1H),7.69(t,1H),7.61(t,1H),7.56(d,1H),7.50(d,1H),7.23(d,1H),7.14(t,1H),7.09(t,1H),6.99(t,1H),6.92(t,1H),6.82(t,1H),6.70-6.76(m,3H),6.63(d,1H),6.58(t,1H),6.26(d,1H),2.63(s,3H).
Compound (G) 2.00g, compound (A) 2.50g, methanol 30ml and ethanol 70ml were added, and it was made to heat-react at 95 degreeC under argon atmosphere for 24 hours. After the solvent of the reaction solution was distilled off under reduced pressure, the obtained solid was recrystallized using dichloromethane, methanol and acetone. Further, it was dissolved in dichloromethane, and insoluble matters were removed by filtration. Hexane was added to the filtrate, and the precipitate was collected by filtration and washed with hexane. Further purification was performed using silica gel column chromatography (eluent: dichloromethane and hexane) to obtain (Ir-32) in a yield of 17%. The 1 H-NMR data is shown below.
1 H-NMR (400 MHz / CDCl 3 ) δ: 9.11 (dd, 1H), 8.49 (d, 1H), 8.24 (q, 2H), 8.17 (d, 1H), 8. 10 (d, 1H), 8.02 (d, 1H), 7.93 (d, 2H), 7.90 (d, 1H), 7.78 (s, 1H), 7.74 (d, 1H) ), 7.69 (t, 1H), 7.61 (t, 1H), 7.56 (d, 1H), 7.50 (d, 1H), 7.23 (d, 1H), 7.14 (T, 1H), 7.09 (t, 1H), 6.99 (t, 1H), 6.92 (t, 1H), 6.82 (t, 1H), 6.70-6.76 ( m, 3H), 6.63 (d, 1H), 6.58 (t, 1H), 6.26 (d, 1H), 2.63 (s, 3H).
<実施例I-4>
 本発明化合物(Ir-62)の合成
Figure JPOXMLDOC01-appb-C000035
<Example I-4>
Synthesis of the present compound (Ir-62)
Figure JPOXMLDOC01-appb-C000035
 <ステップ1>
 3塩化イリジウムn水和物21.7g、1-フェニルイソキノリン28.4g、DMF440mlおよび純水60mlを三口フラスコに入れ、ジムロート冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、1000W)を30分間照射した。反応溶液を室温まで冷却させた後、沈殿をろ取し、純水およびメタノールで洗浄して、(Ir-62-A)を収率95%で得た。
<Step 1>
Microwave (2450 MHz, 1000 W) with 21.7 g of iridium trichloride nhydrate, 28.4 g of 1-phenylisoquinoline, 440 ml of DMF and 60 ml of pure water placed in a three-necked flask, fitted with a Dimroth condenser, and vented with argon gas Was irradiated for 30 minutes. After the reaction solution was cooled to room temperature, the precipitate was collected by filtration and washed with pure water and methanol to obtain (Ir-62-A) in a yield of 95%.
 <ステップ2>
 ステップ1で得られた化合物(Ir-62-A)を12.2g、トリフルオロメタンスルホン酸銀5.15g、メタノール400mlおよびジクロロメタン1250mlを三口フラスコに入れ、アルゴンガス雰囲気下、室温で24時間反応させた。反応溶液をセライトろ過し、溶媒を減圧留去して、(Ir-62-B)を収率94%で得た。
<Step 2>
12.2 g of the compound (Ir-62-A) obtained in Step 1, 5.15 g of silver trifluoromethanesulfonate, 400 ml of methanol and 1250 ml of dichloromethane were placed in a three-necked flask and reacted at room temperature in an argon gas atmosphere for 24 hours. It was. The reaction solution was filtered through Celite, and the solvent was distilled off under reduced pressure to obtain (Ir-62-B) in a yield of 94%.
 <ステップ3>
 ステップ2で得られた化合物(Ir-62-B)を1.99gと、2-メチルジベンゾ[f,h]キノキサリン2.46g、エタノール100mlを加え、アルゴン雰囲気下、100℃で48時間加熱反応させた。反応溶液を室温まで冷却させた後に、溶媒を減圧留去した。得られた固体をジクロロメタンに溶解しセライトろ過した。ろ液にメタノールを投入し、析出物をろ取した。これをジクロロメタンとヘキサンを用いて再結晶させた後、シリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとヘキサン)で精製し、(Ir-62)を収率29.8%で得た。H-NMRのデータを以下に示す。
H-NMR(400MHz/(CDSO)δ:9.10(d,1H),8.92-8.98(m,2H),8.74(d,1H),8.21(d,2H),8.14(d,1H),7.74-7.99(m,9H),7.50-7.56(m,3H),7.42(d,1H),7.19(t,1H),6.90-6.98(m,3H),6.79-6.86(m,2H),6.63(t,1H),6.54(d,1H),2.62(s,3H).
<Step 3>
1.99 g of the compound (Ir-62-B) obtained in Step 2, 2.46 g of 2-methyldibenzo [f, h] quinoxaline, and 100 ml of ethanol were added, and the mixture was heated at 100 ° C. for 48 hours under an argon atmosphere. I let you. After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and filtered through Celite. Methanol was added to the filtrate, and the precipitate was collected by filtration. This was recrystallized from dichloromethane and hexane and purified by silica gel column chromatography (eluent: dichloromethane and hexane) to obtain (Ir-62) in a yield of 29.8%. The 1 H-NMR data is shown below.
1 H-NMR (400 MHz / (CD 3 ) 2 SO) δ: 9.10 (d, 1H), 8.92-8.98 (m, 2H), 8.74 (d, 1H), 8.21 (D, 2H), 8.14 (d, 1H), 7.74-7.99 (m, 9H), 7.50-7.56 (m, 3H), 7.42 (d, 1H), 7.19 (t, 1H), 6.90-6.98 (m, 3H), 6.79-6.86 (m, 2H), 6.63 (t, 1H), 6.54 (d, 1H), 2.62 (s, 3H).
<実施例I-5>
 本発明化合物(Ir-63)の合成
Figure JPOXMLDOC01-appb-C000036
<Example I-5>
Synthesis of the compound of the present invention (Ir-63)
Figure JPOXMLDOC01-appb-C000036
 <ステップ1>
 3塩化イリジウムn水和物1.40g、1-(p-トリル)イソキノリン2.17g、2-エトキシエタノール34mlおよび純水11mlを三口フラスコに入れ、アルゴン雰囲気下、120℃で20時間加熱反応させた。反応溶液を室温まで冷却させた後、析出物をろ取し、メタノールと純水で洗浄して、化合物(Ir-63-A)を収率62%で得た。
<Step 1>
1.40 g of iridium trichloride nhydrate, 2.17 g of 1- (p-tolyl) isoquinoline, 34 ml of 2-ethoxyethanol, and 11 ml of pure water were placed in a three-necked flask and heated at 120 ° C. for 20 hours in an argon atmosphere. It was. After the reaction solution was cooled to room temperature, the precipitate was collected by filtration and washed with methanol and pure water to obtain Compound (Ir-63-A) in a yield of 62%.
 <ステップ2>
 ステップ1で得られた化合物(Ir-63-A)500mg、トリフルオロメタンスルホン酸銀212.7mg、メタノール1mlおよびジクロロメタン48mlを三口フラスコに入れ、アルゴンガス雰囲気下、室温で24時間反応させた。反応溶液をセライトろ過した後、溶媒を減圧留去して、化合物(Ir-63-B)を収率99%で得た。
<Step 2>
500 mg of the compound (Ir-63-A) obtained in Step 1, 212.7 mg of silver trifluoromethanesulfonate, 1 ml of methanol and 48 ml of dichloromethane were placed in a three-necked flask and reacted at room temperature for 24 hours in an argon gas atmosphere. The reaction solution was filtered through celite, and the solvent was evaporated under reduced pressure to obtain compound (Ir-63-B) in a yield of 99%.
 <ステップ3>
 ステップ2で得られた化合物(Ir-63-B)を全量と、2-メチルジベンゾ[f,h]キノキサリン459.3mg、エタノール24mlを加え、アルゴン雰囲気下、90℃で87時間加熱反応させた。反応溶液を室温まで冷却させた後に、溶媒を減圧留去した。得られた固体をジクロロメタンに溶解しセライトろ過した。ろ液にメタノールを投入し、析出物をろ取した。これをジクロロメタンとメタノールを用いて再結晶させ、(Ir-63)を収率22.3%で得た。H-NMRのデータを以下に示す。
H-NMR(400MHz/CDCl)δ:9.18(d,1H),8.94-9.17(m,2H),8.62(d,1H),8.14(d,2H),8.06(d,1H),7.62-7.82(m,9H),7.46(d,1H),7.29(d,1H),7.24(t,1H),7.20(d,1H),7.07(d,1H),6.99(d,1H),6.86(s,1H),6.85(d,1H),6.79(d,1H),6.57(s,1H),2.60(s,3H),2.16(s,3H),2.00(s,3H).
<Step 3>
The total amount of the compound (Ir-63-B) obtained in Step 2 and 459.3 mg of 2-methyldibenzo [f, h] quinoxaline and 24 ml of ethanol were added, and the mixture was heated and reacted at 90 ° C. for 87 hours in an argon atmosphere. . After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and filtered through Celite. Methanol was added to the filtrate, and the precipitate was collected by filtration. This was recrystallized from dichloromethane and methanol to obtain (Ir-63) in a yield of 22.3%. The 1 H-NMR data is shown below.
1 H-NMR (400 MHz / CD 2 Cl 2 ) δ: 9.18 (d, 1H), 8.94-9.17 (m, 2H), 8.62 (d, 1H), 8.14 (d , 2H), 8.06 (d, 1H), 7.62-7.82 (m, 9H), 7.46 (d, 1H), 7.29 (d, 1H), 7.24 (t, 1H), 7.20 (d, 1H), 7.07 (d, 1H), 6.99 (d, 1H), 6.86 (s, 1H), 6.85 (d, 1H), 6. 79 (d, 1H), 6.57 (s, 1H), 2.60 (s, 3H), 2.16 (s, 3H), 2.00 (s, 3H).
<実施例I-6>
 本発明化合物(Ir-33)の合成
Figure JPOXMLDOC01-appb-C000037
<Example I-6>
Synthesis of the compound of the present invention (Ir-33)
Figure JPOXMLDOC01-appb-C000037
 <ステップ1>
 3塩化イリジウムn水和物1.40g、3-メチル-2-フェニルキノリン2.73g、2-エトキシエタノール34mlおよび純水11mlを三口フラスコに入れ、アルゴン雰囲気下、120℃で20時間加熱反応させた。反応溶液を室温まで冷却させた後、析出物をろ取し、メタノールと純水で洗浄して、化合物(Ir-33-A)を収率41%で得た。
<Step 1>
1.40 g of iridium trichloride nhydrate, 2.73 g of 3-methyl-2-phenylquinoline, 34 ml of 2-ethoxyethanol and 11 ml of pure water are placed in a three-necked flask and heated at 120 ° C. for 20 hours in an argon atmosphere. It was. After the reaction solution was cooled to room temperature, the precipitate was collected by filtration and washed with methanol and pure water to obtain Compound (Ir-33-A) in a yield of 41%.
 <ステップ2>
 ステップ1で得られた化合物(Ir-33-A)995.3mg、トリフルオロメタンスルホン酸銀423.4mg、メタノール1mlおよびジクロロメタン136mlを三口フラスコに入れ、アルゴンガス雰囲気下、室温で24時間反応させた。反応溶液をセライトろ過した後、溶媒を減圧留去して、化合物(Ir-33-B)を収率99%で得た。
<Step 2>
995.3 mg of the compound (Ir-33-A) obtained in step 1, 423.4 mg of silver trifluoromethanesulfonate, 1 ml of methanol and 136 ml of dichloromethane were placed in a three-necked flask and reacted at room temperature for 24 hours under an argon gas atmosphere. . The reaction solution was filtered through celite, and the solvent was evaporated under reduced pressure to give compound (Ir-33-B) in 99% yield.
 <ステップ3>
 ステップ2で得られた化合物(Ir-33-B)を全量と、2-メチルジベンゾ[f,h]キノキサリン914.1mg、エタノール51mlを加え、アルゴン雰囲気下、90℃で72時間加熱反応させた。反応溶液を室温まで冷却させた後に、溶媒を減圧留去した。得られた固体をジクロロメタンに溶解しセライトろ過した。ろ液にメタノールを投入し、析出物をろ取した。これをジクロロメタンとメタノールを用いて再結晶させ、(Ir-33)を収率42.0%で得た。H-NMRのデータを以下に示す。
H-NMR(400MHz/CDCl)δ:8.98(d,1H),8.42(d,1H),8.24(s,1H),8.06-8.11(m,3H),7.88(d,1H),7.79(d,1H),7.76(s,1H),7.65(t,1H),7.56(t,1H),7.40(d,1H),7.32(d,1H),7.31(s,1H),7.27(t,1H),7.17(t,1H),6.99(t,1H),6.93-6.96(m,2H),6.88(t,1H),6.74-6.81(m,2H),6.51-6.59(m,3H),6.44(d,1H),3.12(s,3H),3.01(s,3H),2.60(s,3H).
<Step 3>
The total amount of the compound (Ir-33-B) obtained in Step 2 and 914.1 mg of 2-methyldibenzo [f, h] quinoxaline and 51 ml of ethanol were added, and the mixture was reacted by heating at 90 ° C. for 72 hours in an argon atmosphere. . After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and filtered through Celite. Methanol was added to the filtrate, and the precipitate was collected by filtration. This was recrystallized from dichloromethane and methanol to obtain (Ir-33) in a yield of 42.0%. The 1 H-NMR data is shown below.
1 H-NMR (400 MHz / CD 2 Cl 2 ) δ: 8.98 (d, 1H), 8.42 (d, 1H), 8.24 (s, 1H), 8.06-8.11 (m 3H), 7.88 (d, 1H), 7.79 (d, 1H), 7.76 (s, 1H), 7.65 (t, 1H), 7.56 (t, 1H), 7 .40 (d, 1H), 7.32 (d, 1H), 7.31 (s, 1H), 7.27 (t, 1H), 7.17 (t, 1H), 6.99 (t, 1H), 6.93-6.96 (m, 2H), 6.88 (t, 1H), 6.74-6.81 (m, 2H), 6.51-6.59 (m, 3H) , 6.44 (d, 1H), 3.12 (s, 3H), 3.01 (s, 3H), 2.60 (s, 3H).
<実施例I-7>
 本発明化合物(Ir-38)の合成
Figure JPOXMLDOC01-appb-C000038
<Example I-7>
Synthesis of the compound of the present invention (Ir-38)
Figure JPOXMLDOC01-appb-C000038
 <ステップ1>
 3塩化イリジウムn水和物1.41g、2-(3-(t-ブチル)フェニル)キノリン2.61g、2-エトキシエタノール34mlおよび純水11mlを三口フラスコに入れ、アルゴン雰囲気下、120℃で20時間加熱反応させた。反応溶液を室温まで冷却させた後、析出物をろ取し、メタノールと純水で洗浄して、化合物(Ir-38-A)を収率55%で得た。
<Step 1>
1.41 g of iridium trichloride n-hydrate, 2.61 g of 2- (3- (t-butyl) phenyl) quinoline, 34 ml of 2-ethoxyethanol and 11 ml of pure water were placed in a three-necked flask at 120 ° C. under an argon atmosphere. The reaction was heated for 20 hours. After the reaction solution was cooled to room temperature, the precipitate was collected by filtration and washed with methanol and pure water to obtain Compound (Ir-38-A) in a yield of 55%.
 <ステップ2>
 ステップ1で得られた化合物(Ir-38-A)1.3g、トリフルオロメタンスルホン酸銀490.7mg、メタノール1.2mlおよびジクロロメタン202mlを三口フラスコに入れ、アルゴンガス雰囲気下、室温で24時間反応させた。反応溶液をセライトろ過した後、溶媒を減圧留去して、化合物(Ir-38-B)を収率99%で得た。
<Step 2>
1.3 g of the compound (Ir-38-A) obtained in Step 1, 490.7 mg of silver trifluoromethanesulfonate, 1.2 ml of methanol and 202 ml of dichloromethane were placed in a three-necked flask and reacted at room temperature for 24 hours under an argon gas atmosphere. I let you. The reaction solution was filtered through celite, and the solvent was evaporated under reduced pressure to give compound (Ir-38-B) in a yield of 99%.
 <ステップ3>
 ステップ2で得られた化合物(Ir-38-B)を全量と、2-メチルジベンゾ[f,h]キノキサリン1.06g、エタノール55mlを加え、アルゴン雰囲気下、90℃で72時間加熱反応させた。反応溶液を室温まで冷却させた後に、溶媒を減圧留去した。得られた固体をジクロロメタンに溶解しセライトろ過した。ろ液にメタノールを投入し、析出物をろ取した。これをジクロロメタンとメタノールを用いて2回再結晶させ、(Ir-38)を収率23.1%で得た。H-NMRのデータを以下に示す。
H-NMR(400MHz/DMSO-d)δ:9.01(d,1H),8.62(d,1H),8.53(d,2H),8.48(d,2H),8.30(d,1H),7.97-8.08(m,5H),7.91(s,1H),7.78-7.81(m,2H),7.70(t,1H),7.50(d,1H),7.32(t,1H),7.18(t,1H),7.08(t,1H),6.88(t,1H),6.78(d,1H),6.72(t,1H),6.54-6.59(m,2H),6.30(d,1H),5.91(d,1H),2.63(s,3H),1.28(s,9H),1.23(s,9H).
<Step 3>
The total amount of compound (Ir-38-B) obtained in Step 2, 1.06 g of 2-methyldibenzo [f, h] quinoxaline, and 55 ml of ethanol were added, and the mixture was heated and reacted at 90 ° C. for 72 hours under an argon atmosphere. . After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and filtered through Celite. Methanol was added to the filtrate, and the precipitate was collected by filtration. This was recrystallized twice using dichloromethane and methanol to obtain (Ir-38) in a yield of 23.1%. The 1 H-NMR data is shown below.
1 H-NMR (400 MHz / DMSO-d 6 ) δ: 9.01 (d, 1H), 8.62 (d, 1H), 8.53 (d, 2H), 8.48 (d, 2H), 8.30 (d, 1H), 7.97-8.08 (m, 5H), 7.91 (s, 1H), 7.78-7.81 (m, 2H), 7.70 (t, 1H), 7.50 (d, 1H), 7.32 (t, 1H), 7.18 (t, 1H), 7.08 (t, 1H), 6.88 (t, 1H), 6. 78 (d, 1H), 6.72 (t, 1H), 6.54-6.59 (m, 2H), 6.30 (d, 1H), 5.91 (d, 1H), 2.63 (S, 3H), 1.28 (s, 9H), 1.23 (s, 9H).
<実施例I-8>
 本発明化合物(Ir-55)の合成
Figure JPOXMLDOC01-appb-C000039
<Example I-8>
Synthesis of the compound of the present invention (Ir-55)
Figure JPOXMLDOC01-appb-C000039
 <ステップ1>
 3塩化イリジウムn水和物1.40g、2-(3-(t-ブチル)フェニル)-3-メチルキノリン2.17g、2-エトキシエタノール34mlおよび純水11mlを三口フラスコに入れ、アルゴン雰囲気下、120℃で20時間加熱反応させた。反応溶液を室温まで冷却させた後、析出物をろ取し、メタノールと純水で洗浄して、化合物(Ir-55-A)を収率38%で得た。
<Step 1>
1.40 g of iridium trichloride nhydrate, 2.17 g of 2- (3- (t-butyl) phenyl) -3-methylquinoline, 34 ml of 2-ethoxyethanol and 11 ml of pure water were placed in a three-necked flask under an argon atmosphere. The reaction was conducted at 120 ° C. for 20 hours. After the reaction solution was cooled to room temperature, the precipitate was collected by filtration and washed with methanol and pure water to obtain Compound (Ir-55-A) in a yield of 38%.
 <ステップ2>
 ステップ1で得られた化合物(Ir-55-A)1.256g、トリフルオロメタンスルホン酸銀415.6mg、メタノール1.1mlおよびジクロロメタン39mlを三口フラスコに入れ、アルゴンガス雰囲気下、室温で24時間反応させた。反応溶液をセライトろ過した後、溶媒を減圧留去して、化合物(Ir-55-B)を収率99%で得た。
<Step 2>
1.256 g of the compound (Ir-55-A) obtained in Step 1, 415.6 mg of silver trifluoromethanesulfonate, 1.1 ml of methanol and 39 ml of dichloromethane were placed in a three-necked flask and reacted at room temperature for 24 hours under an argon gas atmosphere. I let you. The reaction solution was filtered through celite, and the solvent was evaporated under reduced pressure to give compound (Ir-55-B) in a yield of 99%.
 <ステップ3>
 ステップ2で得られた化合物(Ir-55-B)を全量と、2-メチルジベンゾ[f,h]キノキサリン650mg、エタノール55mlを加え、アルゴン雰囲気下、90℃で72時間加熱反応させた。反応溶液を室温まで冷却させた後に、溶媒を減圧留去した。得られた固体をジクロロメタンに溶解しセライトろ過した。ろ液にメタノールを投入し、析出物をろ取した。これをシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとヘキサン)で精製し、(Ir-55)を収率31.6%で得た。H-NMRのデータを以下に示す。
H-NMR(400MHz/CDCl)δ:8.98(d,1H),8.41(d,1H),8.25(s,1H),8.18(d,1H),8.14(s,1H),8.11(s,1H),7.87(d,1H),7.81(d,1H),7.76(s,1H),7.63(t,1H),7.55(t,1H),7.39(d,1H),7.35(d,1H),7.28(t,1H),7.23(s,1H),7.16(t,1H),6.82-6.96(m,4H),6.64(d,1H),6.55(t,1H),6.41(d,1H),6.29(d,1H),3.13(s,3H),3.04(s,3H),2.59(s,3H),1.35(s,9H),1.26(s,9H).
<Step 3>
The total amount of the compound (Ir-55-B) obtained in Step 2, 650 mg of 2-methyldibenzo [f, h] quinoxaline, and 55 ml of ethanol were added, and the mixture was reacted by heating at 90 ° C. for 72 hours in an argon atmosphere. After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and filtered through Celite. Methanol was added to the filtrate, and the precipitate was collected by filtration. This was purified by silica gel column chromatography (eluent: dichloromethane and hexane) to obtain (Ir-55) in a yield of 31.6%. The 1 H-NMR data is shown below.
1 H-NMR (400 MHz / CD 2 Cl 2 ) δ: 8.98 (d, 1H), 8.41 (d, 1H), 8.25 (s, 1H), 8.18 (d, 1H), 8.14 (s, 1H), 8.11 (s, 1H), 7.87 (d, 1H), 7.81 (d, 1H), 7.76 (s, 1H), 7.63 (t , 1H), 7.55 (t, 1H), 7.39 (d, 1H), 7.35 (d, 1H), 7.28 (t, 1H), 7.23 (s, 1H), 7 .16 (t, 1H), 6.82-6.96 (m, 4H), 6.64 (d, 1H), 6.55 (t, 1H), 6.41 (d, 1H), 6. 29 (d, 1H), 3.13 (s, 3H), 3.04 (s, 3H), 2.59 (s, 3H), 1.35 (s, 9H), 1.26 (s, 9H) ).
<実施例I-9>
 本発明化合物(Ir-58)の合成
Figure JPOXMLDOC01-appb-C000040
<Example I-9>
Synthesis of the compound of the present invention (Ir-58)
Figure JPOXMLDOC01-appb-C000040
 <ステップ1>
 3塩化イリジウムn水和物424mg、2,6-ジフェニルキノリン745mg、2-エトキシエタノール11mlおよび純水3.6mlを三口フラスコに入れ、アルゴン雰囲気下、120℃で20時間加熱反応させた。反応溶液を室温まで冷却させた後、析出物をろ取し、メタノールと純水で洗浄して、化合物(Ir-58-A)を収量452mg得た。
<Step 1>
424 mg of iridium trichloride n-hydrate, 745 mg of 2,6-diphenylquinoline, 11 ml of 2-ethoxyethanol, and 3.6 ml of pure water were placed in a three-necked flask, and reacted by heating at 120 ° C. for 20 hours in an argon atmosphere. After the reaction solution was cooled to room temperature, the precipitate was collected by filtration and washed with methanol and pure water to obtain 452 mg of Compound (Ir-58-A).
 <ステップ2>
 ステップ1で得られた化合物(Ir-58-A)452.1mg、トリフルオロメタンスルホン酸銀147.3mg、メタノール1mlおよびジクロロメタン30mlを三口フラスコに入れ、アルゴンガス雰囲気下、室温で24時間反応させた。反応溶液をセライトろ過した後、溶媒を減圧留去して、化合物(Ir-58-B)を収率99%で得た。
<Step 2>
452.1 mg of the compound (Ir-58-A) obtained in Step 1, 147.3 mg of silver trifluoromethanesulfonate, 1 ml of methanol and 30 ml of dichloromethane were placed in a three-necked flask and reacted at room temperature for 24 hours in an argon gas atmosphere. . The reaction solution was filtered through celite, and the solvent was evaporated under reduced pressure to give compound (Ir-58-B) in a yield of 99%.
 <ステップ3>
 ステップ2で得られた化合物(Ir-58-B)を全量と、2-メチルジベンゾ[f,h]キノキサリン279.9mg、2-エトキシエタノール6ml、DMF6mlを加え、アルゴン雰囲気下、130℃で62時間加熱反応させた。反応溶液を室温まで冷却させた後に、溶媒を減圧留去した。得られた固体をジクロロメタンに溶解しセライトろ過した。ろ液にメタノールを投入し、析出物をろ取した。これをシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとヘキサン)で精製し、さらに、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチルとヘキサン)で精製し、(Ir-58)を収率1%で得た。H-NMRのデータを以下に示す。
H-NMR(400MHz/CDCl)δ:9.10(d,1H),8.51(d,1H),8.35(d,1H),8.33(d,1H),8.26(d,1H),8.16-8.19(m,2H),7.93-8.01(m,5H),7.86(s,1H),7.71(t,1H),7.63(d,1H),7.62(t,1H),7.51(d,2H),7.44(d,2H),7.26-7.39(m,6H),7.16(t,1H),7.07-7.11(m,2H),6.99(t,1H),6.92(t,1H),6.79(t,1H),6.74(d,1H),6.59(d,1H),6.55(t,1H),6.17(d,1H),2.67(s,3H).
<Step 3>
The total amount of the compound (Ir-58-B) obtained in Step 2 was added to 279.9 mg of 2-methyldibenzo [f, h] quinoxaline, 6 ml of 2-ethoxyethanol, and 6 ml of DMF. The reaction was heated for an hour. After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and filtered through Celite. Methanol was added to the filtrate, and the precipitate was collected by filtration. This was purified by silica gel column chromatography (eluent: dichloromethane and hexane), and further purified by silica gel column chromatography (eluent: ethyl acetate and hexane) to obtain (Ir-58) in a yield of 1%. . The 1 H-NMR data is shown below.
1 H-NMR (400 MHz / CD 2 Cl 2 ) δ: 9.10 (d, 1H), 8.51 (d, 1H), 8.35 (d, 1H), 8.33 (d, 1H), 8.26 (d, 1H), 8.16-8.19 (m, 2H), 7.93-8.01 (m, 5H), 7.86 (s, 1H), 7.71 (t, 1H), 7.63 (d, 1H), 7.62 (t, 1H), 7.51 (d, 2H), 7.44 (d, 2H), 7.26-7.39 (m, 6H) ), 7.16 (t, 1H), 7.07-7.11 (m, 2H), 6.99 (t, 1H), 6.92 (t, 1H), 6.79 (t, 1H) 6.74 (d, 1 H), 6.59 (d, 1 H), 6.55 (t, 1 H), 6.17 (d, 1 H), 2.67 (s, 3 H).
<実施例I-10>
 本発明化合物(Ir-60)の合成
Figure JPOXMLDOC01-appb-C000041
<Example I-10>
Synthesis of Compound (Ir-60) of the Present Invention
Figure JPOXMLDOC01-appb-C000041
 <ステップ1>
 3塩化イリジウムn水和物1.40g、2-(9,9-ジメチル-9H-フルオレン-2-イル)キノリン3.21g、2-エトキシエタノール34mlおよび純水11mlを三口フラスコに入れ、アルゴン雰囲気下、120℃で20時間加熱反応させた。反応溶液を室温まで冷却させた後、析出物をろ取し、メタノールと純水で洗浄して、化合物(Ir-60-A)を収量332mgで得た。
<Step 1>
1.40 g of iridium trichloride n-hydrate, 3.21 g of 2- (9,9-dimethyl-9H-fluoren-2-yl) quinoline, 34 ml of 2-ethoxyethanol and 11 ml of pure water were placed in a three-necked flask, and an argon atmosphere Then, the reaction was performed by heating at 120 ° C. for 20 hours. After the reaction solution was cooled to room temperature, the precipitate was collected by filtration and washed with methanol and pure water to obtain Compound (Ir-60-A) in a yield of 332 mg.
 <ステップ2>
 ステップ1で得られた化合物(Ir-60-A)624.4mg、トリフルオロメタンスルホン酸銀203.1mg、メタノール0.5mlおよびジクロロメタン18mlを三口フラスコに入れ、アルゴンガス雰囲気下、室温で24時間反応させた。反応溶液をセライトろ過した後、溶媒を減圧留去して、化合物(Ir-60-B)を収率99%で得た。
<Step 2>
624.4 mg of the compound (Ir-60-A) obtained in Step 1, 203.1 mg of silver trifluoromethanesulfonate, 0.5 ml of methanol and 18 ml of dichloromethane were placed in a three-necked flask and reacted at room temperature under an argon gas atmosphere for 24 hours. I let you. The reaction solution was filtered through celite, and the solvent was evaporated under reduced pressure to give compound (Ir-60-B) in a yield of 99%.
 <ステップ3>
 ステップ2で得られた(Ir-60-B)を全量と、2-メチルジベンゾ[f,h]キノキサリン438.6mg、エタノール24mlを加え、アルゴン雰囲気下、90℃で72時間加熱反応させた。反応溶液を室温まで冷却させた後に、溶媒を減圧留去した。得られた固体をジクロロメタンに溶解しセライトろ過した。ろ液にメタノールを投入し、析出物をろ取した。これをシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとヘキサン)で精製し、(Ir-60)を収率9.7%で得た。H-NMRのデータを以下に示す。
H-NMR(400MHz/CDCl)δ:9.10(d,1H),8.56(d,1H),8.41(d,1H),8.31(d,1H),8.29(d,1H),8.21(d,1H),8.10(d,1H),8.09(s,1H),8.06(d,1H),8.05(s,1H),7.93(s,1H),7.79(d,1H),7.72(t,1H),7.58-7.65(m,3H),7.33(d,2H),7.27(t,1H),7.20(t,1H),7.09-7.17(m,3H),6.94-7.00(m,3H),6.76-6.87(m,5H),6.56(s,1H),2.64(s,3H),1.64(s,3H),1.57(s,3H),1.49(s,3H),1.43(s,3H).
<Step 3>
The total amount of (Ir-60-B) obtained in Step 2 was added to 438.6 mg of 2-methyldibenzo [f, h] quinoxaline and 24 ml of ethanol, and the mixture was reacted by heating at 90 ° C. for 72 hours in an argon atmosphere. After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and filtered through Celite. Methanol was added to the filtrate, and the precipitate was collected by filtration. This was purified by silica gel column chromatography (eluent: dichloromethane and hexane) to obtain (Ir-60) in a yield of 9.7%. The 1 H-NMR data is shown below.
1 H-NMR (400 MHz / CD 2 Cl 2 ) δ: 9.10 (d, 1H), 8.56 (d, 1H), 8.41 (d, 1H), 8.31 (d, 1H), 8.29 (d, 1H), 8.21 (d, 1H), 8.10 (d, 1H), 8.09 (s, 1H), 8.06 (d, 1H), 8.05 (s , 1H), 7.93 (s, 1H), 7.79 (d, 1H), 7.72 (t, 1H), 7.58-7.65 (m, 3H), 7.33 (d, 2H), 7.27 (t, 1H), 7.20 (t, 1H), 7.09-7.17 (m, 3H), 6.94-7.00 (m, 3H), 6.76 -6.87 (m, 5H), 6.56 (s, 1H), 2.64 (s, 3H), 1.64 (s, 3H), 1.57 (s, 3H), 1.49 ( s, 3H), 1.43 (s, 3H).
<実施例I-11>
 本発明化合物(Ir-77)の合成
Figure JPOXMLDOC01-appb-C000042
<Example I-11>
Synthesis of the compound of the present invention (Ir-77)
Figure JPOXMLDOC01-appb-C000042
 <ステップ1>
 3塩化イリジウムn水和物0.857g、3-フェニルイソキノリン1.13g、DMF40mlおよび純水10mlを三口フラスコに入れ、ジムロート冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、300W)を45分間照射した。反応溶液を室温まで冷却させた後、沈殿をろ取し、純水およびメタノールで洗浄して、(Ir-77-A)を収率88.8%で得た。
<Step 1>
Put 0.857 g of iridium trichloride nhydrate, 1.13 g of 3-phenylisoquinoline, 40 ml of DMF and 10 ml of pure water into a three-necked flask, attach a Dimroth cooler, and ventilate argon gas, microwave (2450 MHz, 300 W) Were irradiated for 45 minutes. After the reaction solution was cooled to room temperature, the precipitate was collected by filtration and washed with pure water and methanol to obtain (Ir-77-A) in a yield of 88.8%.
 <ステップ2>
 ステップ1で得られた化合物(Ir-77-A)を全量と、トリフルオロメタンスルホン酸銀0.578g、メタノール40mlおよびジクロロメタン60mlを三口フラスコに入れ、アルゴンガス雰囲気下、室温で24時間反応させた。反応溶液をセライトろ過し、溶媒を減圧留去して、(Ir-77-B)を収率100%で得た。
<Step 2>
The total amount of the compound (Ir-77-A) obtained in Step 1, 0.578 g of silver trifluoromethanesulfonate, 40 ml of methanol and 60 ml of dichloromethane were placed in a three-necked flask and reacted at room temperature in an argon gas atmosphere for 24 hours. . The reaction solution was filtered through Celite, and the solvent was distilled off under reduced pressure to obtain (Ir-77-B) in a yield of 100%.
 <ステップ3>
 ステップ2で得られた化合物(Ir-77-B)を全量と、2-メチルジベンゾ[f,h]キノキサリン2.10g、メタノール18ml、エタノール42mlを加え、アルゴン雰囲気下、95℃で48時間加熱反応させた。反応溶液を室温まで冷却させた後に、溶媒を減圧留去した。得られた固体をジクロロメタンに溶解しセライトろ過した。ろ液にメタノールを投入し、析出物をろ取した。これをジクロロメタンとヘキサンを用いて再結晶させた後、シリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとヘキサン)で精製し、(Ir-77)を収率19.3%で得た。H-NMRのデータを以下に示す。
H-NMR(400MHz/(CDSO)δ:9.12(d,1H),8.72(d,1H),8.63(d,2H),8.55(d,2H),8.12(d,1H),7.92-8.05(m,3H),7.69-7.92(m,8H),7.42-7.49(m,2H),7.16(t,1H),6.91(d,1H),6.86(t,1H),6.81(t,1H),6.66-6.73(m,2H),6.53(t,1H),6.28(d,1H),2.69(s,3H).
<Step 3>
The total amount of compound (Ir-77-B) obtained in Step 2 and 2.10 g of 2-methyldibenzo [f, h] quinoxaline, 18 ml of methanol and 42 ml of ethanol were added, and the mixture was heated at 95 ° C. for 48 hours under an argon atmosphere. Reacted. After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and filtered through Celite. Methanol was added to the filtrate, and the precipitate was collected by filtration. This was recrystallized from dichloromethane and hexane and purified by silica gel column chromatography (eluent: dichloromethane and hexane) to obtain (Ir-77) in a yield of 19.3%. The 1 H-NMR data is shown below.
1 H-NMR (400MHz / ( CD 3) 2 SO) δ: 9.12 (d, 1H), 8.72 (d, 1H), 8.63 (d, 2H), 8.55 (d, 2H ), 8.12 (d, 1H), 7.92-8.05 (m, 3H), 7.69-7.92 (m, 8H), 7.42-7.49 (m, 2H), 7.16 (t, 1H), 6.91 (d, 1H), 6.86 (t, 1H), 6.81 (t, 1H), 6.66-6.73 (m, 2H), 6 .53 (t, 1H), 6.28 (d, 1H), 2.69 (s, 3H).
<実施例I-12>
 本発明化合物(Ir-95)の合成
Figure JPOXMLDOC01-appb-C000043
<Example I-12>
Synthesis of the compound of the present invention (Ir-95)
Figure JPOXMLDOC01-appb-C000043
 <ステップ1>
 3塩化イリジウムn水和物2.00g、3-ビフェニルイソキノリン5.70g、DMF66mlおよび純水10mlを三口フラスコに入れ、ジムロート冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、400W)を25分間照射した。反応溶液を室温まで冷却させ、純水を投入した後、沈殿をろ取し、純水、メタノールおよびアセトンで洗浄して、(Ir-95-A)を収率91.5%で得た。
<Step 1>
Place 2.00 g of iridium trichloride n-hydrate, 5.70 g of 3-biphenylisoquinoline, 66 ml of DMF and 10 ml of pure water in a three-necked flask, attach a Dimroth condenser, and ventilate argon gas, microwave (2450 MHz, 400 W) Was irradiated for 25 minutes. The reaction solution was cooled to room temperature and pure water was added, and then the precipitate was collected by filtration and washed with pure water, methanol and acetone to obtain (Ir-95-A) in a yield of 91.5%.
 <ステップ2>
 ステップ1で得られた化合物(Ir-95-A)を1.11gと、トリフルオロメタンスルホン酸銀0.370g、メタノール55mlおよびジクロロメタン55mlを三口フラスコに入れ、アルゴンガス雰囲気下、室温で24時間反応させた。反応溶液をセライトろ過し、溶媒を減圧留去して、(Ir-95-B)を収率89.7%で得た。
<Step 2>
1.11 g of the compound (Ir-95-A) obtained in Step 1 and 0.370 g of silver trifluoromethanesulfonate, 55 ml of methanol and 55 ml of dichloromethane were placed in a three-necked flask and reacted at room temperature for 24 hours in an argon gas atmosphere. I let you. The reaction solution was filtered through Celite, and the solvent was distilled off under reduced pressure to obtain (Ir-95-B) in a yield of 89.7%.
 <ステップ3>
 ステップ2で得られた化合物(Ir-95-B)を全量と、2-メチルジベンゾ[f,h]キノキサリン1.38g、メタノール15ml、エタノール35mlを加え、アルゴン雰囲気下、95℃で48時間加熱反応させた。反応溶液を室温まで冷却させた後に、溶媒を減圧留去した。得られた固体をジクロロメタンに溶解しセライトろ過した。ろ液にメタノールを投入し、析出物をろ取した。これをジクロロメタンとヘキサンを用いて再結晶させた後、シリカゲルカラムクロマトグラフィー(溶離液:クロロホルムとヘキサン)で精製し、(Ir-95)を収率15.3%で得た。H-NMRのデータを以下に示す。
H-NMR(400MHz/(CDSO)δ:9.02-9.13(m,2H),9.02(d,1H),8.76(d,1H),8.44(s,2H),8.17(d,1H),7.97-8.03(m,2H),7.75-7.92(m,7H),7.57-7.71(m,7H),7.48(d,1H),7.38-7.44(m,4H),7.18-7.31(m,4H),7.10(d,1H),7.01(d,1H),6.96(d,1H),6.70(d,1H),2.64(s,3H).
<Step 3>
Add the total amount of compound (Ir-95-B) obtained in Step 2, 1.38 g of 2-methyldibenzo [f, h] quinoxaline, 15 ml of methanol, and 35 ml of ethanol, and heat at 95 ° C. for 48 hours under an argon atmosphere. Reacted. After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and filtered through Celite. Methanol was added to the filtrate, and the precipitate was collected by filtration. This was recrystallized from dichloromethane and hexane and purified by silica gel column chromatography (eluent: chloroform and hexane) to obtain (Ir-95) in a yield of 15.3%. The 1 H-NMR data is shown below.
1 H-NMR (400 MHz / (CD 3 ) 2 SO) δ: 9.02-9.13 (m, 2H), 9.02 (d, 1H), 8.76 (d, 1H), 8.44 (S, 2H), 8.17 (d, 1H), 7.97-8.03 (m, 2H), 7.75-7.92 (m, 7H), 7.57-7.71 (m 7H), 7.48 (d, 1H), 7.38-7.44 (m, 4H), 7.18-7.31 (m, 4H), 7.10 (d, 1H), 7. 01 (d, 1H), 6.96 (d, 1H), 6.70 (d, 1H), 2.64 (s, 3H).
<比較例I-1>
 比較化合物(1)の合成
Figure JPOXMLDOC01-appb-C000044
<Comparative Example I-1>
Synthesis of comparative compound (1)
Figure JPOXMLDOC01-appb-C000044
 ステップ1 化合物(H)の合成
Figure JPOXMLDOC01-appb-C000045
Step 1 Synthesis of Compound (H)
Figure JPOXMLDOC01-appb-C000045
 3塩化イリジウムn水和物8.06g、化合物(A)13.08g、DMF161mlおよび純水11mlを三口フラスコに入れ、ジムロート冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、500W~700W)を45分間照射した。反応溶液を減圧留去した後、メタノールおよびアセトンを投入し、析出物をろ取した。純水、メタノール、アセトンで洗浄して、化合物(H)を収率56%で得た。 Put iridium trichloride nhydrate 8.06 g, compound (A) 13.08 g, DMF 161 ml and pure water 11 ml in a three-necked flask, attach a Dimroth condenser and ventilate argon gas, and microwave (2450 MHz, 500 W- 700W) for 45 minutes. After the reaction solution was distilled off under reduced pressure, methanol and acetone were added, and the precipitate was collected by filtration. Washing with pure water, methanol, and acetone gave Compound (H) in a yield of 56%.
 ステップ2 比較化合物(1)の合成 Step 2: Synthesis of comparative compound (1)
 化合物(H)4.24g、2,4-ペンタンジオナトナトリウム5.43g、2-エトキシエタノール150mlおよびDMF100mlを三口フラスコに入れ、アルゴンガスを通気しながら、マイクロ波(2450MHz、450W)を15分間照射した。反応溶液に純水125mlを投入し懸濁させ、ろ過にて析出物を回収して、比較化合物(1)を収率70%で得た。H-NMRのデータを以下に示す。
H-NMR(400MHz/(CDSO)δ:9.18(d,2H),8.75(s,2H),8.71(d,2H),8.05(d,2H),7.81-7.90(m,4H),6.99(t,2H),6.25(d,2H),5.39(s,1H),3.03(s,6H),1.81(s,6H).
4.24 g of compound (H), 5.43 g of sodium 2,4-pentanedionate, 150 ml of 2-ethoxyethanol and 100 ml of DMF were placed in a three-necked flask, and microwaves (2450 MHz, 450 W) were applied for 15 minutes while venting argon gas. Irradiated. 125 ml of pure water was added to the reaction solution to suspend it, and the precipitate was collected by filtration to obtain Comparative Compound (1) in a yield of 70%. The 1 H-NMR data is shown below.
1 H-NMR (400 MHz / (CD 3 ) 2 SO) δ: 9.18 (d, 2H), 8.75 (s, 2H), 8.71 (d, 2H), 8.05 (d, 2H) ), 7.81-7.90 (m, 4H), 6.99 (t, 2H), 6.25 (d, 2H), 5.39 (s, 1H), 3.03 (s, 6H) , 1.81 (s, 6H).
 次に本発明に係るイリジウム錯体の溶液中の発光特性について記載する。 Next, the emission characteristics in the solution of the iridium complex according to the present invention will be described.
<実施例II-1>
 本発明化合物(Ir-2)のTHF中の発光特性
 本発明化合物(Ir-2)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:340nm)を測定したところ、赤色発光(発光極大波長:630nm)を示した。CIE色度は(x,y)=(0.65,0.34)であった。発光量子収率は0.17であった。
<Example II-1>
Luminescence characteristics of the present compound (Ir-2) in THF After dissolving the present compound (Ir-2) in THF and venting with argon gas, an absolute PL quantum yield measuring apparatus (C9920 manufactured by Hamamatsu Photonics Co., Ltd.) ) Was used to measure the emission spectrum at room temperature (excitation wavelength: 340 nm), and showed red emission (emission maximum wavelength: 630 nm). The CIE chromaticity was (x, y) = (0.65, 0.34). The emission quantum yield was 0.17.
<実施例II-2>
 本発明化合物(Ir-10)のTHF中の発光特性
 本発明化合物(Ir-10)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:340nm)を測定したところ、赤色発光(発光極大波長:632nm)を示した。CIE色度は(x,y)=(0.65,0.34)であった。発光量子収率は0.27であった。発光スペクトルを図1に示す。
<Example II-2>
Luminescence characteristics of the present compound (Ir-10) in THF The present compound (Ir-10) was dissolved in THF and aerated with argon gas, and then an absolute PL quantum yield measuring apparatus (C9920 manufactured by Hamamatsu Photonics Co., Ltd.). ) Was used to measure the emission spectrum at room temperature (excitation wavelength: 340 nm), and showed red emission (emission maximum wavelength: 632 nm). The CIE chromaticity was (x, y) = (0.65, 0.34). The emission quantum yield was 0.27. The emission spectrum is shown in FIG.
<実施例II-3>
 本発明化合物(Ir-62)のTHF中の発光特性
 本発明化合物(Ir-62)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:340nm)を測定したところ、赤色発光(発光極大波長:619nm)を示した。CIE色度は(x,y)=(0.66,0.34)であった。発光量子収率は0.59であった。
<Example II-3>
Luminescence characteristics of the compound (Ir-62) of the present invention in THF After dissolving the compound (Ir-62) of the present invention in THF and venting with argon gas, an absolute PL quantum yield measuring apparatus (C9920 manufactured by Hamamatsu Photonics Co., Ltd.) ) Was used to measure the emission spectrum at room temperature (excitation wavelength: 340 nm), and showed red emission (emission maximum wavelength: 619 nm). The CIE chromaticity was (x, y) = (0.66, 0.34). The emission quantum yield was 0.59.
<実施例II-4>
 本発明化合物(Ir-63)のTHF中の発光特性
 本発明化合物(Ir-63)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:340nm)を測定したところ、赤色発光(発光極大波長:625nm)を示した。CIE色度は(x,y)=(0.66,0.34)であった。発光量子収率は0.61であった。
<Example II-4>
Luminescence characteristics of the compound of the present invention (Ir-63) in THF After dissolving the compound of the present invention (Ir-63) in THF and venting with argon gas, an absolute PL quantum yield measuring apparatus (C9920 manufactured by Hamamatsu Photonics Co., Ltd.) ) Was used to measure the emission spectrum at room temperature (excitation wavelength: 340 nm), and showed red emission (emission maximum wavelength: 625 nm). The CIE chromaticity was (x, y) = (0.66, 0.34). The emission quantum yield was 0.61.
<実施例II-5>
 本発明化合物(Ir-38)のTHF中の発光特性
 本発明化合物(Ir-38)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:340nm)を測定したところ、赤色発光(発光極大波長:615nm)を示した。CIE色度は(x,y)=(0.65,0.35)であった。発光量子収率は0.71であった。
<Example II-5>
Luminescence characteristics of the compound (Ir-38) of the present invention in THF The compound (Ir-38) of the present invention was dissolved in THF and aerated with argon gas, and then an absolute PL quantum yield measuring apparatus (C9920 manufactured by Hamamatsu Photonics Co., Ltd.). ) Was used to measure the emission spectrum at room temperature (excitation wavelength: 340 nm), and showed red emission (emission maximum wavelength: 615 nm). The CIE chromaticity was (x, y) = (0.65, 0.35). The emission quantum yield was 0.71.
<実施例II-6>
 本発明化合物(Ir-60)のクロロホルム中の発光特性
 本発明化合物(Ir-60)をクロロホルムに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:340nm)を測定したところ、赤色発光(発光極大波長:630nm)を示した。CIE色度は(x,y)=(0.65,0.35)であった。発光量子収率は0.69であった。
<Example II-6>
Luminescence characteristics of the compound of the present invention (Ir-60) in chloroform After dissolving the compound of the present invention (Ir-60) in chloroform and venting with argon gas, an absolute PL quantum yield measuring apparatus (C9920 manufactured by Hamamatsu Photonics Co., Ltd.) ) Was used to measure the emission spectrum at room temperature (excitation wavelength: 340 nm), and showed red emission (emission maximum wavelength: 630 nm). The CIE chromaticity was (x, y) = (0.65, 0.35). The emission quantum yield was 0.69.
<実施例II-7>
 本発明化合物(Ir-77)のクロロホルム中の発光特性
 本発明化合物(Ir-77)をクロロホルムに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:340nm)を測定したところ、赤色発光(発光極大波長:656nm)を示した。CIE色度は(x,y)=(0.66,0.33)であった。発光量子収率は0.22であった。
<Example II-7>
Luminescence characteristics of the compound of the present invention (Ir-77) in chloroform After dissolving the compound of the present invention (Ir-77) in chloroform and venting with argon gas, an absolute PL quantum yield measuring apparatus (C9920 manufactured by Hamamatsu Photonics Co., Ltd.) ) Was used to measure the emission spectrum (excitation wavelength: 340 nm) at room temperature, and showed red emission (emission maximum wavelength: 656 nm). The CIE chromaticity was (x, y) = (0.66, 0.33). The emission quantum yield was 0.22.
<実施例II-8>
 本発明化合物(Ir-95)のクロロホルム中の発光特性
 本発明化合物(Ir-95)をクロロホルムに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:340nm)を測定したところ、赤色発光(発光極大波長:625nm)を示した。CIE色度は(x,y)=(0.66,0.33)であった。発光量子収率は0.47であった。
<Example II-8>
Luminescence characteristics of the compound of the present invention (Ir-95) in chloroform After dissolving the compound of the present invention (Ir-95) in chloroform and venting with argon gas, an absolute PL quantum yield measuring apparatus (C9920 manufactured by Hamamatsu Photonics Co., Ltd.) ) Was used to measure the emission spectrum at room temperature (excitation wavelength: 340 nm), and showed red emission (emission maximum wavelength: 625 nm). The CIE chromaticity was (x, y) = (0.66, 0.33). The emission quantum yield was 0.47.
<比較例II-1>
 比較化合物(1)の発光特性
 比較化合物(1)の溶液中の発光特性については、Adv.Mater.2003年、15巻、224-228頁(非特許文献1)に記載がある。すなわち、ジクロロメタン中での発光極大波長は608nmであり、橙赤色発光を示すことが示されている。
<Comparative Example II-1>
Luminescence characteristics of Comparative Compound (1) Regarding the luminescence characteristics of Comparative Compound (1) in solution, see Adv. Mater. 2003, Vol. 15, pp. 224-228 (Non-patent Document 1). That is, the emission maximum wavelength in dichloromethane is 608 nm, which shows orange-red emission.
<比較例II-2>
 比較化合物(2)の発光特性
Figure JPOXMLDOC01-appb-C000046
<Comparative Example II-2>
Luminescent properties of comparative compound (2)
Figure JPOXMLDOC01-appb-C000046
 比較化合物(2)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:340nm)を測定したところ、微弱な深赤色発光(発光極大波長:687nm)を示した。発光量子収率は0.028であった。 After the comparative compound (2) was dissolved in THF and argon gas was passed through, an emission spectrum (excitation wavelength: 340 nm) at room temperature was measured using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. When measured, it showed weak deep red light emission (emission maximum wavelength: 687 nm). The emission quantum yield was 0.028.
<比較例II-3>
 比較化合物(3)の発光特性
Figure JPOXMLDOC01-appb-C000047
<Comparative Example II-3>
Luminescent properties of comparative compound (3)
Figure JPOXMLDOC01-appb-C000047
 比較化合物(3)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:340nm)を測定したところ、微弱な深赤色発光(発光極大波長:691nm)を示した。発光量子収率は0.017であった。 After the comparative compound (3) was dissolved in THF and argon gas was passed through, an emission spectrum (excitation wavelength: 340 nm) at room temperature was obtained using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. When measured, it showed weak deep red light emission (emission maximum wavelength: 691 nm). The emission quantum yield was 0.017.
 実施例II-1~実施例II-8より、本発明化合物はいずれも室温下、THFまたはクロロホルム中で赤色発光を示すことが明らかとなった。本発明化合物の発光スペクトルは、比較化合物(1)よりも長波長シフトし、またそのCIE色度から純赤色発光を実現できたことが明らかとなった。一方、比較化合物(2)および(3)の発光は微弱な深赤色であり、本発明化合物の方が優れた赤色発光特性を示すことが明らかになった。 From Example II-1 to Example II-8, it was revealed that all of the compounds of the present invention emitted red light in THF or chloroform at room temperature. The emission spectrum of the compound of the present invention was shifted by a longer wavelength than that of the comparative compound (1), and it was revealed that pure red emission could be realized from the CIE chromaticity. On the other hand, the luminescence of the comparative compounds (2) and (3) was a faint deep red, and it was revealed that the compound of the present invention showed superior red luminescence characteristics.
 次に本発明に係る一般式(1)で表されるイリジウム錯体の熱的安定性および昇華性を確認するため、昇華精製実験について説明する。 Next, a sublimation purification experiment will be described in order to confirm the thermal stability and sublimation property of the iridium complex represented by the general formula (1) according to the present invention.
<実施例III-1>
 本発明化合物(Ir-2)の昇華精製
 本発明化合物(Ir-2)116mgを昇華精製装置(P-200、エイエルエス・テクノロジー社製)に入れ、真空度1×10-4Pa、温度300~320℃の条件下で、9時間かけて昇華精製したところ、昇華精製品の収率は99.5%であった。なお昇華残渣はなく、昇華精製による分解は観測されなかった。0.5%は残留溶媒等の低沸点成分であると推測され、マテリアルバランスは99.5%であった。
<Example III-1>
Sublimation purification of the compound (Ir-2) of the present invention 116 mg of the compound (Ir-2) of the present invention was placed in a sublimation purification apparatus (P-200, manufactured by ALS Technology Co., Ltd.), and the degree of vacuum was 1 × 10 −4 Pa and the temperature was 300 to When sublimation purification was performed over 9 hours under the condition of 320 ° C., the yield of the sublimation product was 99.5%. There was no sublimation residue, and no decomposition by sublimation purification was observed. 0.5% was estimated to be a low-boiling component such as a residual solvent, and the material balance was 99.5%.
<実施例III-2>
 本発明化合物(Ir-10)の昇華精製
 本発明化合物(Ir-10)139mgを昇華精製装置(P-200、エイエルエス・テクノロジー社製)に入れ、真空度1×10-4Pa、温度315~320℃の条件下で、9時間かけて昇華精製したところ、昇華精製品の収率は88%であった。昇華残渣は投入量の12%と少なかった。昇華精製による分解は観測されず、マテリアルバランスは100%であった。
<Example III-2>
Sublimation purification of the compound (Ir-10) of the present invention 139 mg of the compound (Ir-10) of the present invention was put into a sublimation purification apparatus (P-200, manufactured by ALS Technology Co., Ltd.), and the degree of vacuum was 1 × 10 −4 Pa and the temperature was from 315 to When sublimation purification was performed over 9 hours under the condition of 320 ° C., the yield of the sublimation product was 88%. Sublimation residue was as small as 12% of the input. No decomposition by sublimation purification was observed, and the material balance was 100%.
<実施例III-3>
 本発明化合物(Ir-38)の昇華精製
 本発明化合物(Ir-38)187mgを昇華精製装置(P-200、エイエルエス・テクノロジー社製)に入れ、真空度1×10-4Pa、温度300~320℃の条件下で、9時間かけて昇華精製したところ、昇華精製品の収率は85%であった。昇華残渣は投入量の2%と少なかった。昇華精製による分解は観測されず、マテリアルバランスは87%であった。
<Example III-3>
Sublimation purification of the compound (Ir-38) of the present invention 187 mg of the compound (Ir-38) of the present invention was put into a sublimation purification apparatus (P-200, manufactured by ALS Technology), and the degree of vacuum was 1 × 10 −4 Pa, the temperature was 300 to When sublimation purification was performed over 9 hours under the condition of 320 ° C., the yield of the sublimation product was 85%. Sublimation residue was as small as 2% of the input. Decomposition by sublimation purification was not observed, and the material balance was 87%.
<実施例III-4>
 本発明化合物(Ir-77)の昇華精製
 本発明化合物(Ir-77)159mgを昇華精製装置(P-200、エイエルエス・テクノロジー社製)に入れ、真空度1×10-4Pa、温度300~330℃の条件下で、9時間かけて昇華精製したところ、昇華精製品の収率は93%であった。昇華残渣は投入量の4%と少なかった。昇華精製による分解は観測されず、マテリアルバランスは97%であった。
<Example III-4>
Sublimation purification of the compound (Ir-77) of the present invention 159 mg of the compound (Ir-77) of the present invention was placed in a sublimation purification apparatus (P-200, manufactured by ALS Technology Co., Ltd.), with a vacuum degree of 1 × 10 −4 Pa, a temperature of 300 to When sublimation purification was performed for 9 hours under the condition of 330 ° C., the yield of the sublimation product was 93%. Sublimation residue was as small as 4% of the input. Decomposition by sublimation purification was not observed, and the material balance was 97%.
<実施例III-5>
 本発明化合物(Ir-95)の昇華精製
 本発明化合物(Ir-95)125mgを昇華精製装置(P-200、エイエルエス・テクノロジー社製)に入れ、真空度1×10-4Pa、温度340~360℃の条件下で、9時間かけて昇華精製したところ、昇華精製品の収率は84%であった。昇華残渣は投入量の9%と少なかった。昇華精製による分解は観測されず、マテリアルバランスは93%であった。
<Example III-5>
Sublimation purification of the compound (Ir-95) of the present invention 125 mg of the compound (Ir-95) of the present invention was placed in a sublimation purification apparatus (P-200, manufactured by ALS Technology Co., Ltd.), and the degree of vacuum was 1 × 10 −4 Pa and the temperature was 340 to When sublimation purification was performed over 9 hours under the condition of 360 ° C., the yield of the sublimation product was 84%. Sublimation residue was as small as 9% of the input. No decomposition due to sublimation purification was observed, and the material balance was 93%.
<比較例III-1>
 比較化合物(1)の昇華精製
 比較化合物(1)4.23gを昇華精製装置(P-200、エイエルエス・テクノロジー社製)に入れ、真空度1×10-4Pa、温度300~320℃の条件下で、32時間かけて昇華精製したところ、昇華精製品の収率は26%であった。昇華残渣は投入量の70%と非常に多かった。昇華残渣をHPLCで分析したところ、分解反応も進行していることがわかった。さらにマテリアルバランスは96%であり、これは分解により生じた低沸点成分が留去されたことによる結果であると推測された。
<Comparative Example III-1>
Sublimation purification of comparative compound (1) 4.23 g of comparative compound (1) was placed in a sublimation purification apparatus (P-200, manufactured by ALS Technology Co., Ltd.), under conditions of a vacuum degree of 1 × 10 −4 Pa and a temperature of 300 to 320 ° C. When the product was purified by sublimation over 32 hours, the yield of the sublimated product was 26%. Sublimation residue was very large at 70% of the input. When the sublimation residue was analyzed by HPLC, it was found that the decomposition reaction was also progressing. Furthermore, the material balance was 96%, which was presumed to be a result of distilling off low-boiling components generated by decomposition.
 実施例IIIおよび比較例IIIの昇華精製の結果を比較すると、本発明化合物は、比較化合物(1)と比較して、収率良く昇華精製できることが明らかになった。今回、比較化合物(1)で使用されているアセチルアセトン配位子を、強固なイリジウム-炭素結合を有するシクロメタル化配位子に変更することで、燐光材料の熱安定性と昇華性が劇的に改善され、昇華残渣は大きく減少することが明らかになった。 Comparison of the results of sublimation purification in Example III and Comparative Example III revealed that the compound of the present invention can be purified by sublimation with a higher yield than Comparative Compound (1). The thermal stability and sublimation properties of phosphorescent materials are dramatically improved by changing the acetylacetone ligand used in comparative compound (1) to a cyclometalated ligand with a strong iridium-carbon bond. It was revealed that the sublimation residue was greatly reduced.
 次に本発明に係るイリジウム錯体の薄膜中の発光特性について記載する。 Next, the light emission characteristics in the thin film of the iridium complex according to the present invention will be described.
<実施例IV-1>
 本発明化合物(Ir-10)の薄膜中の発光特性
 本発明化合物(Ir-10)と4,4’-N,N’-ジカルバゾールビフェニル(以降、CBPという)とを、真空度1×10-4Paで、石英基板上に10:90(質量濃度比)で共蒸着(30nm)し、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:340nm)を測定したところ、色純度の良好な赤色発光(発光極大波長:630nm)を示した。発光量子収率は0.61であった。
<Example IV-1>
Luminescence characteristics of the compound (Ir-10) of the present invention in a thin film The compound (Ir-10) of the present invention and 4,4′-N, N′-dicarbazole biphenyl (hereinafter referred to as CBP) were combined at a degree of vacuum of 1 × 10. -4 Pa, co-evaporated (30 nm) on a quartz substrate at 10:90 (mass concentration ratio), and emission spectrum at room temperature using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. When measured (excitation wavelength: 340 nm), it showed red light emission (emission maximum wavelength: 630 nm) with good color purity. The emission quantum yield was 0.61.
<実施例IV-2>
 本発明化合物(Ir-62)の薄膜中の発光特性
 本発明化合物(Ir-62)と4,4’-N,N’-ジカルバゾールビフェニル(以降、CBPという)とを、真空度1×10-4Paで、石英基板上に10:90(質量濃度比)で共蒸着(30nm)し、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:340nm)を測定したところ、色純度の良好な赤色発光(発光極大波長:619nm)を示した。発光量子収率は0.69であった。CIE色度は(x,y)=(0.65,0.34)であった。
<Example IV-2>
Luminescent properties of the compound (Ir-62) of the present invention in a thin film The compound (Ir-62) of the present invention and 4,4′-N, N′-dicarbazole biphenyl (hereinafter referred to as CBP) were combined at a degree of vacuum of 1 × 10. -4 Pa, co-evaporated (30 nm) on a quartz substrate at 10:90 (mass concentration ratio), and emission spectrum at room temperature using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. When measured (excitation wavelength: 340 nm), it showed red light emission (emission maximum wavelength: 619 nm) with good color purity. The emission quantum yield was 0.69. The CIE chromaticity was (x, y) = (0.65, 0.34).
<実施例IV-3>
 本発明化合物(Ir-63)の薄膜中の発光特性
 本発明化合物(Ir-63)と4,4’-N,N’-ジカルバゾールビフェニル(以降、CBPという)とを、真空度1×10-4Paで、石英基板上に10:90(質量濃度比)で共蒸着(30nm)し、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:340nm)を測定したところ、色純度の良好な赤色発光(発光極大波長:627nm)を示した。発光量子収率は0.74であった。CIE色度は(x,y)=(0.65,0.34)であった。
<Example IV-3>
Luminescent properties of the compound (Ir-63) of the present invention in a thin film The compound (Ir-63) of the present invention and 4,4′-N, N′-dicarbazole biphenyl (hereinafter referred to as CBP) were combined at a degree of vacuum of 1 × 10. -4 Pa, co-evaporated (30 nm) on a quartz substrate at 10:90 (mass concentration ratio), and emission spectrum at room temperature using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. When measured (excitation wavelength: 340 nm), it showed red light emission (emission maximum wavelength: 627 nm) with good color purity. The emission quantum yield was 0.74. The CIE chromaticity was (x, y) = (0.65, 0.34).
<比較例IV-1>
 比較化合物(1)の発光特性
 比較化合物(1)の発光特性については、Adv.Mater.2003年、15巻、224-228頁(非特許文献1)に記載がある。すなわち、CBP薄膜中での発光極大波長は600~614nmであり、橙赤色発光を示すことが示されている。
<Comparative Example IV-1>
Luminescence characteristics of comparative compound (1) For luminescence characteristics of comparative compound (1), see Adv. Mater. 2003, Vol. 15, pp. 224-228 (Non-patent Document 1). That is, the maximum wavelength of light emission in the CBP thin film is 600 to 614 nm, indicating orange-red light emission.
 実施例IV-1~実施例IV-3より、本発明化合物は室温下、CBP薄膜中で赤色発光を示すことが明らかとなった。本発明化合物は、比較化合物(1)よりも発光波長が長波長シフトし、色純度の良好な赤色発光を実現できていることが明らかとなった。 From Example IV-1 to Example IV-3, it was revealed that the compound of the present invention emits red light in a CBP thin film at room temperature. It has been clarified that the compound of the present invention has a longer emission wavelength than that of the comparative compound (1) and can realize red light emission with good color purity.
 次に本発明に係る一般式(1)で表されるイリジウム錯体を用いて作製した有機電界発光素子の特性について記載する。 Next, the characteristics of the organic electroluminescence device produced using the iridium complex represented by the general formula (1) according to the present invention will be described.
 本実施例で使用した化合物(E-1)~(E-6)の構造式を以下に示す。 The structural formulas of the compounds (E-1) to (E-6) used in this example are shown below.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
<実施例V-1>
 本発明化合物(Ir-10)を用いて作製した有機電界発光素子の特性評価
 陽極として、酸化錫インジウム(ITO)を100nmの膜厚で線幅2mmの櫛形にパターニングして成膜された無アルカリガラス基板(厚木ミクロ社製)を透明導電性支持基板として用いた。これを超純水、アセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、次いでIPAで煮沸洗浄後乾燥した。次いで、UV/オゾン洗浄したものを透明導電性支持基板として使用した。
<Example V-1>
Evaluation of characteristics of organic electroluminescence device prepared using compound (Ir-10) of the present invention As an anode, an alkali-free film was formed by patterning indium tin oxide (ITO) into a comb shape having a film thickness of 100 nm and a line width of 2 mm. A glass substrate (manufactured by Atsugi Micro) was used as a transparent conductive support substrate. This was successively subjected to ultrasonic cleaning with ultrapure water, acetone and isopropyl alcohol (IPA), then boiled and washed with IPA and dried. Subsequently, what was UV / ozone cleaned was used as a transparent conductive support substrate.
 上記透明導電性支持基板上に、以下の有機層(正孔注入層、正孔輸送層、ホスト材料層、発光層、正孔阻止層および電子輸送層)を1×10-4Paの真空チャンバー内で抵抗加熱による真空蒸着で順次製膜し、次いでマスク交換して線幅2mmの電極層(電子注入層および金属電極層)を順次製膜して、有機電界発光素子を作製した。次いで、素子が大気に曝されないよう窒素雰囲気のグローブボックス内で封止する作業を行った。厚さ3mmのガラス板の中央部に1.5mmの掘り込みを付けた封止ガラス(泉陽商事社製)の周囲にUV硬化性エポキシ樹脂デナタイトR(ナガセケミテック社製)を塗布して蒸着済素子に被せ圧着した後、素子部分をアルミニウム板で覆ってマスキングしシャッター付きUV照射装置で1分間照射後1分間遮蔽のサイクルを5回繰り返して封止した。 The following organic layers (a hole injection layer, a hole transport layer, a host material layer, a light emitting layer, a hole blocking layer, and an electron transport layer) are placed on the transparent conductive support substrate in a vacuum chamber of 1 × 10 −4 Pa. The film was sequentially formed by vacuum vapor deposition using resistance heating, and then the mask was changed, and electrode layers (electron injection layer and metal electrode layer) having a line width of 2 mm were sequentially formed to produce an organic electroluminescent device. Next, an operation of sealing in a glove box in a nitrogen atmosphere was performed so that the element was not exposed to the air. A UV curable epoxy resin denatite R (manufactured by Nagase Chemitech) is applied to the periphery of a sealing glass (manufactured by Senyo Shoji Co., Ltd.) with a 1.5 mm dug in the center of a 3 mm thick glass plate and vapor deposited. After the element was covered and pressure-bonded, the element portion was covered with an aluminum plate and masked, and then irradiated with a UV irradiation apparatus with a shutter for 1 minute and then sealed for 1 minute by repeating the shielding cycle 5 times.
正孔注入層(10nm):化合物(E-1)
正孔輸送層(40nm):化合物(E-2)
発光層(20nm):本発明化合物(Ir-10)(質量濃度15%)と化合物(E-3)(質量濃度85%)とを共蒸着
正孔阻止層(10nm):化合物(E-4)
電子輸送層(30nm):化合物(E-5)
電子注入層(0.5nm):化合物(E-6)
金属電極層(100nm):Al
Hole injection layer (10 nm): Compound (E-1)
Hole transport layer (40 nm): Compound (E-2)
Light emitting layer (20 nm): Compound (Ir-10) of the present invention (mass concentration 15%) and compound (E-3) (mass concentration 85%) are co-deposited hole blocking layer (10 nm): Compound (E-4) )
Electron transport layer (30 nm): Compound (E-5)
Electron injection layer (0.5 nm): Compound (E-6)
Metal electrode layer (100 nm): Al
 得られた有機電界発光素子を浜松ホトニクス社製のEL外部量子収率計測用積分球ユニットA10094のサンプルホルダーにセットし、Keithley社製ソースメーター2400を用いて、直流定電圧を印加し、発光させ、その輝度、発光波長およびCIE色度座標を、浜松ホトニクス社製マルチチャンネル分光器PMA-12を用いて測定した。その結果、CIE色度が(x,y)=(0.64,0.36)、発光ピーク波長が625nmの純赤色発光が得られ、最高輝度は23200cd/m、外部量子効率は9.4%(1000cd/mのとき)の発光特性が得られた。発光スペクトルを図2に示す。 The obtained organic electroluminescence device is set in a sample holder of an integrating sphere unit A10094 for EL external quantum yield measurement manufactured by Hamamatsu Photonics, and a direct current constant voltage is applied to emit light by using a source meter 2400 manufactured by Keithley. The luminance, emission wavelength, and CIE chromaticity coordinates were measured using a multichannel spectrometer PMA-12 manufactured by Hamamatsu Photonics. As a result, pure red light emission having a CIE chromaticity of (x, y) = (0.64, 0.36), an emission peak wavelength of 625 nm, a maximum luminance of 23200 cd / m 2 , and an external quantum efficiency of 9. luminescent properties of 4% (when 1000 cd / m 2) was obtained. The emission spectrum is shown in FIG.
<実施例V-2>
 本発明化合物(Ir-62)を用いて作製した有機電界発光素子の特性評価
 実施例V-1で用いた(Ir-10)の代わりに(Ir-62)を用いて、発光層における本発明化合物(Ir-62)の質量濃度20%とした以外は同様の条件で有機電界発光素子を作製し、素子特性を評価した。その結果、CIE色度が(x,y)=(0.65,0.35)、発光ピーク波長が613nmの純赤色発光が得られ、最高輝度は28900cd/m、外部量子効率は8.5%(1000cd/mのとき)の発光特性が得られた。
<Example V-2>
Evaluation of characteristics of organic electroluminescence device produced using compound (Ir-62) of the present invention The present invention in the light emitting layer was obtained by using (Ir-62) instead of (Ir-10) used in Example V-1. An organic electroluminescent device was produced under the same conditions except that the mass concentration of the compound (Ir-62) was 20%, and the device characteristics were evaluated. As a result, pure red light emission having a CIE chromaticity of (x, y) = (0.65, 0.35), an emission peak wavelength of 613 nm, a maximum luminance of 28900 cd / m 2 , and an external quantum efficiency of 8. An emission characteristic of 5% (when 1000 cd / m 2 ) was obtained.
<実施例V-3>
 本発明化合物(Ir-63)を用いて作製した有機電界発光素子の特性評価
 実施例V-1で用いた(Ir-10)の代わりに(Ir-63)を用いて、発光層における本発明化合物(Ir-63)の質量濃度20%とした以外は同様の条件で有機電界発光素子を作製し、素子特性を評価した。その結果、CIE色度が(x,y)=(0.65,0.34)、発光ピーク波長が621nmの純赤色発光が得られ、最高輝度は16300cd/m、外部量子効率は8.3%(1000cd/mのとき)の発光特性が得られた。
<Example V-3>
Evaluation of characteristics of organic electroluminescence device produced using compound (Ir-63) of the present invention The present invention in the light emitting layer was obtained by using (Ir-63) instead of (Ir-10) used in Example V-1. An organic electroluminescent device was produced under the same conditions except that the mass concentration of the compound (Ir-63) was 20%, and the device characteristics were evaluated. As a result, pure red light emission having a CIE chromaticity of (x, y) = (0.65, 0.34), an emission peak wavelength of 621 nm, a maximum luminance of 16300 cd / m 2 , and an external quantum efficiency of 8. An emission characteristic of 3% (when 1000 cd / m 2 ) was obtained.
<実施例V-4>
 本発明化合物(Ir-95)を用いて作製した有機電界発光素子の特性評価
 実施例V-1で用いた(Ir-10)の代わりに(Ir-95)を用いた以外は同様の条件で有機電界発光素子を作製し、素子特性を評価した。その結果、CIE色度が(x,y)=(0.66,0.34)、発光ピーク波長が621nmの純赤色発光が得られ、最高輝度は23700cd/m、外部量子効率は8.0%(1000cd/mのとき)の発光特性が得られた。
<Example V-4>
Evaluation of characteristics of organic electroluminescent device prepared using compound (Ir-95) of the present invention Under the same conditions except that (Ir-95) was used instead of (Ir-10) used in Example V-1. An organic electroluminescent device was prepared and the device characteristics were evaluated. As a result, pure red light emission having a CIE chromaticity of (x, y) = (0.66, 0.34), an emission peak wavelength of 621 nm, a maximum luminance of 23700 cd / m 2 , and an external quantum efficiency of 8. A light emission characteristic of 0% (when 1000 cd / m 2 ) was obtained.
<比較例V-1>
 比較化合物(1)を用いて作製した有機電界発光素子の特性評価
 実施例V-1で用いた(Ir-10)の代わりに比較化合物(1)を用いた以外は同様の条件で有機電界発光素子を作製し、素子特性を評価した。その結果、CIE色度が(x,y)=(0.61,0.39)、発光ピーク波長が604nmの橙色発光が得られ、最高輝度は34200cd/mの発光特性が得られた。したがって、比較化合物(1)を用いた場合、色純度の良好な赤色発光素子を作製できないことが明らかになった。
<Comparative Example V-1>
Evaluation of characteristics of organic electroluminescence device produced using comparative compound (1) Organic electroluminescence under the same conditions except that comparative compound (1) was used instead of (Ir-10) used in Example V-1 An element was fabricated and element characteristics were evaluated. As a result, orange light emission with a CIE chromaticity of (x, y) = (0.61, 0.39), an emission peak wavelength of 604 nm, and an emission characteristic with a maximum luminance of 34200 cd / m 2 was obtained. Therefore, it was revealed that when the comparative compound (1) was used, a red light emitting device with good color purity could not be produced.
 以上述べてきたように、本発明に係わる一般式(1)で表されるイリジウム錯体は、熱的安定性および昇華性に特に優れ、赤色領域に高い発光量子収率を示す新規化合物であり、有機発光素子に用いた場合、良好な発光特性を有する有機発光素子を作ることができる。また該化合物を用いた有機発光素子は高輝度発光を示すことから、表示素子、ディスプレイ、バックライト、照明光源等の分野に好適である。 As described above, the iridium complex represented by the general formula (1) according to the present invention is a novel compound that is particularly excellent in thermal stability and sublimation, and exhibits a high emission quantum yield in the red region. When used in an organic light emitting device, an organic light emitting device having good light emitting characteristics can be produced. In addition, an organic light-emitting device using the compound exhibits high luminance light emission, and thus is suitable for fields such as a display device, a display, a backlight, and an illumination light source.

Claims (15)

  1.  下記一般式(1)で表されることを特徴とするイリジウム錯体。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、Nは窒素原子を表す。Irはイリジウムを表す。R~Rは、各々独立に、水素原子、アルキル基、または、ハロゲン原子を表す。R10~R17は、各々独立に、水素原子、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、シアノ基、または、ハロゲン原子を表す。前記アルキル基は、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。前記アリール基は、アルキル基(トリフルオロメチル基を除く)、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子(フッ素原子は除く)で置換されてもよく、アラルキル基で置換されることはない。前記アルコキシ基は、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。前記ヘテロ環基は、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。前記アリールオキシ基は、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。隣り合ったR10~R17は各々結合し環構造を形成してもよい。)
    An iridium complex represented by the following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (In general formula (1), N represents a nitrogen atom. Ir represents iridium. R 1 to R 9 each independently represents a hydrogen atom, an alkyl group, or a halogen atom. R 10 to R 17. Each independently represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, a cyano group, or a halogen atom, wherein the alkyl group is an aryl group, an alkoxy group, or a heterocyclic group. The aryl group may be substituted with an alkyl group (excluding trifluoromethyl group), an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom. (Excluding a fluorine atom) may be substituted with an aralkyl group, and the alkoxy group may be an aryl group, an alkoxy group, or a hetero group. The heterocyclic group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom. The aryloxy group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom, and adjacent R 10 to R 17 are each bonded to form a ring structure. It may be formed.)
  2.  前記R~Rが、各々独立に、水素原子、または、アルキル基であることを特徴とする請求項1に記載のイリジウム錯体。 2. The iridium complex according to claim 1, wherein each of R 1 to R 9 is independently a hydrogen atom or an alkyl group.
  3.  前記R10~R17が、各々独立に、水素原子、アルキル基、または、アリール基であることを特徴とする請求項1または2に記載のイリジウム錯体。 3. The iridium complex according to claim 1, wherein R 10 to R 17 are each independently a hydrogen atom, an alkyl group, or an aryl group.
  4.  前記R10~R17の少なくとも1つが、アルキル基であることを特徴とする請求項1~3のいずれか一つに記載のイリジウム錯体。 The iridium complex according to any one of claims 1 to 3, wherein at least one of the R 10 to R 17 is an alkyl group.
  5.  前記R10~R17の少なくとも1つが、アリール基であることを特徴とする請求項1~4のいずれか一つに記載のイリジウム錯体。 The iridium complex according to any one of claims 1 to 4, wherein at least one of R 10 to R 17 is an aryl group.
  6.  下記一般式(2)で表されることを特徴とする請求項1に記載のイリジウム錯体。
    Figure JPOXMLDOC01-appb-C000002
     (一般式(2)中、Nは窒素原子を表す。Irはイリジウムを表す。R~Rは、各々独立に、水素原子、アルキル基、または、ハロゲン原子を表す。R18~R27は、各々独立に、水素原子、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、シアノ基、または、ハロゲン原子を表す。前記アルキル基は、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。前記アリール基は、アルキル基(トリフルオロメチル基を除く)、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子(フッ素原子は除く)で置換されてもよく、アラルキル基で置換されることはない。前記アルコキシ基は、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。前記ヘテロ環基は、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。前記アリールオキシ基は、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。隣り合ったR18~R27は各々結合し環構造を形成してもよい。)
    The iridium complex according to claim 1, which is represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (In General Formula (2), N represents a nitrogen atom. Ir represents iridium. R 1 to R 9 each independently represents a hydrogen atom, an alkyl group, or a halogen atom. R 18 to R 27. Each independently represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, a cyano group, or a halogen atom, wherein the alkyl group is an aryl group, an alkoxy group, or a heterocyclic group. The aryl group may be substituted with an alkyl group (excluding trifluoromethyl group), an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom. (Excluding a fluorine atom) may be substituted with an aralkyl group, and the alkoxy group may be an aryl group, an alkoxy group, or a hetero group. The heterocyclic group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom. The aryloxy group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom, and adjacent R 18 to R 27 are each bonded to form a ring structure. It may be formed.)
  7.  R18~R27は、各々独立に、水素原子、アルキル基、または、アリール基であることを特徴とする請求項6に記載のイリジウム錯体。 7. The iridium complex according to claim 6, wherein R 18 to R 27 are each independently a hydrogen atom, an alkyl group, or an aryl group.
  8.  R18~R27のうち、少なくとも一つが、アルキル基であることを特徴とする請求項6または7に記載のイリジウム錯体。 8. The iridium complex according to claim 6, wherein at least one of R 18 to R 27 is an alkyl group.
  9.  R18~R27のうち、少なくとも一つが、アリール基であることを特徴とする請求項6~8のいずれか1つに記載のイリジウム錯体。 9. The iridium complex according to claim 6, wherein at least one of R 18 to R 27 is an aryl group.
  10.  下記一般式(4)で表されることを特徴とする請求項1に記載のイリジウム錯体。
    Figure JPOXMLDOC01-appb-C000003
     (一般式(4)中、Nは窒素原子を表す。Irはイリジウムを表す。R~Rは、各々独立に、水素原子、アルキル基、または、ハロゲン原子を表す。R38~R47は、各々独立に、水素原子、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、シアノ基、または、ハロゲン原子を表す。前記アルキル基は、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。前記アリール基は、アルキル基(トリフルオロメチル基を除く)、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子(フッ素原子は除く)で置換されてもよく、アラルキル基で置換されることはない。前記アルコキシ基は、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。前記ヘテロ環基は、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。前記アリールオキシ基は、アルキル基、アリール基、アルコキシ基、ヘテロ環基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。隣り合ったR38~R47は各々結合し環構造を形成してもよい。)
    The iridium complex according to claim 1, which is represented by the following general formula (4).
    Figure JPOXMLDOC01-appb-C000003
    (In general formula (4), N represents a nitrogen atom. Ir represents iridium. R 1 to R 9 each independently represents a hydrogen atom, an alkyl group, or a halogen atom. R 38 to R 47. Each independently represents a hydrogen atom, an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, a cyano group, or a halogen atom, wherein the alkyl group is an aryl group, an alkoxy group, or a heterocyclic group. The aryl group may be substituted with an alkyl group (excluding trifluoromethyl group), an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom. (Excluding a fluorine atom) may be substituted with an aralkyl group, and the alkoxy group may be an aryl group, an alkoxy group, or a hetero group. The heterocyclic group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom. The aryloxy group may be substituted with an alkyl group, an aryl group, an alkoxy group, a heterocyclic group, an aryloxy group, or a halogen atom, and adjacent R 38 to R 47 are each bonded to form a ring structure. It may be formed.)
  11.  R38~R47は、各々独立に、水素原子、アルキル基、または、アリール基であることを特徴とする請求項10に記載のイリジウム錯体。 The iridium complex according to claim 10, wherein R 38 to R 47 are each independently a hydrogen atom, an alkyl group, or an aryl group.
  12.  R38~R47のうち、少なくとも一つが、アルキル基であることを特徴とする請求項10または11に記載のイリジウム錯体。 12. The iridium complex according to claim 10, wherein at least one of R 38 to R 47 is an alkyl group.
  13.  R38~R47のうち、少なくとも一つが、アリール基であることを特徴とする請求項10~12のいずれか1つに記載のイリジウム錯体。 The iridium complex according to any one of claims 10 to 12, wherein at least one of R 38 to R 47 is an aryl group.
  14.  請求項1~13のいずれか一つに記載のイリジウム錯体を含むことを特徴とする発光材料。 A luminescent material comprising the iridium complex according to any one of claims 1 to 13.
  15.  請求項14に記載の発光材料を含むことを特徴とする有機発光素子。 An organic light emitting device comprising the light emitting material according to claim 14.
PCT/JP2016/087675 2015-12-18 2016-12-16 Red-emitting iridium complex, and light-emitting material and organic light-emitting element each utilizing said compound WO2017104839A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017556484A JP6863590B2 (en) 2015-12-18 2016-12-16 Red light emitting iridium complex and light emitting material and organic light emitting device using the compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015247374 2015-12-18
JP2015-247374 2015-12-18

Publications (1)

Publication Number Publication Date
WO2017104839A1 true WO2017104839A1 (en) 2017-06-22

Family

ID=59056769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087675 WO2017104839A1 (en) 2015-12-18 2016-12-16 Red-emitting iridium complex, and light-emitting material and organic light-emitting element each utilizing said compound

Country Status (2)

Country Link
JP (1) JP6863590B2 (en)
WO (1) WO2017104839A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093369A1 (en) * 2017-11-07 2019-05-16 三菱ケミカル株式会社 Iridium complex compound, composition containing said compound and solvent, organic electroluminescent element containing said compound, display device, and illumination device
WO2019207409A1 (en) * 2018-04-27 2019-10-31 株式会社半導体エネルギー研究所 Organic compound, light-emitting device, light-emitting equipment, electronic device, and illumination device
CN114605474A (en) * 2020-12-04 2022-06-10 广东阿格蕾雅光电材料有限公司 Iridium complex and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131973A (en) * 2012-12-06 2014-07-17 Mitsubishi Chemicals Corp Iridium complex compound, organic electroluminescent element, display device and illumination apparatus
CN104004026A (en) * 2014-06-09 2014-08-27 江西冠能光电材料有限公司 Electronegative phosphor material
WO2015104961A1 (en) * 2014-01-10 2015-07-16 独立行政法人産業技術総合研究所 Raw material and production method for cyclometallized iridium complex
CN105111243A (en) * 2015-08-27 2015-12-02 江西冠能光电材料有限公司 Light-emitting metal iridium complex and organic electroluminescence device prepared from same
WO2016143770A1 (en) * 2015-03-10 2016-09-15 国立研究開発法人産業技術総合研究所 Heteroleptic iridium complex, and light-emitting material and organic light-emitting element using compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131973A (en) * 2012-12-06 2014-07-17 Mitsubishi Chemicals Corp Iridium complex compound, organic electroluminescent element, display device and illumination apparatus
WO2015104961A1 (en) * 2014-01-10 2015-07-16 独立行政法人産業技術総合研究所 Raw material and production method for cyclometallized iridium complex
CN104004026A (en) * 2014-06-09 2014-08-27 江西冠能光电材料有限公司 Electronegative phosphor material
WO2016143770A1 (en) * 2015-03-10 2016-09-15 国立研究開発法人産業技術総合研究所 Heteroleptic iridium complex, and light-emitting material and organic light-emitting element using compound
CN105111243A (en) * 2015-08-27 2015-12-02 江西冠能光电材料有限公司 Light-emitting metal iridium complex and organic electroluminescence device prepared from same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093369A1 (en) * 2017-11-07 2019-05-16 三菱ケミカル株式会社 Iridium complex compound, composition containing said compound and solvent, organic electroluminescent element containing said compound, display device, and illumination device
JPWO2019093369A1 (en) * 2017-11-07 2021-01-14 三菱ケミカル株式会社 Iridium complex compound, composition containing the compound and solvent, organic electroluminescent device containing the compound, display device and lighting device.
JP7238782B2 (en) 2017-11-07 2023-03-14 三菱ケミカル株式会社 Iridium complex compound, composition containing said compound and solvent, organic electroluminescence device containing said compound, display device and lighting device
JP7439891B2 (en) 2017-11-07 2024-02-28 三菱ケミカル株式会社 Iridium complex compound, composition containing the compound and solvent, organic electroluminescent device, display device, and lighting device containing the compound
WO2019207409A1 (en) * 2018-04-27 2019-10-31 株式会社半導体エネルギー研究所 Organic compound, light-emitting device, light-emitting equipment, electronic device, and illumination device
CN112041326A (en) * 2018-04-27 2020-12-04 株式会社半导体能源研究所 Organic compound, light-emitting device, light-emitting apparatus, electronic device, and lighting apparatus
JPWO2019207409A1 (en) * 2018-04-27 2021-06-17 株式会社半導体エネルギー研究所 Organic compounds, light emitting devices, light emitting devices, electronic devices, and lighting devices
JP7287953B2 (en) 2018-04-27 2023-06-06 株式会社半導体エネルギー研究所 Organometallic complex, light-emitting device, light-emitting device, electronic device, and lighting device
CN114605474A (en) * 2020-12-04 2022-06-10 广东阿格蕾雅光电材料有限公司 Iridium complex and application thereof

Also Published As

Publication number Publication date
JP6863590B2 (en) 2021-04-21
JPWO2017104839A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
JP7226718B2 (en) Organic light-emitting device, composition and film
JP6781630B2 (en) Compounds with tetraazatriphenylene ring structure, light emitting materials and organic electroluminescence devices
JP6071569B2 (en) Organic light emitting device
WO2015136880A1 (en) Spiro compound having azafluorene ring structure, luminescent material and organic electroluminescent element
WO2013154064A1 (en) Organic light emitting element, and light emitting material and compound used in same
JP6815326B2 (en) Organic electroluminescence device
JP6222931B2 (en) Organic light emitting device
JP6846336B2 (en) Materials for organic electroluminescence devices, light emitting materials and organic electroluminescence devices
JP6815320B2 (en) Organic electroluminescence device
WO2017122813A1 (en) Organic electroluminescent element
JP4637253B2 (en) Novel organic compound, organic light emitting device and image display device
JP6732190B2 (en) Heteroleptic iridium complex, and light emitting material and organic light emitting device using the compound
WO2019054233A1 (en) Organic electroluminescent element
JP6863590B2 (en) Red light emitting iridium complex and light emitting material and organic light emitting device using the compound
US11925114B2 (en) Indenocarbazole compound and organic electroluminescence device
EP3511316B1 (en) N2,n2,n2&#39;,n2&#39;-tetrakis([1,1&#39;-biphenyl]-4-yl)-[1,1&#39;-biphenyl]-2,2&#39;-diamine derivatives and related compounds for use in electroluminescent devices
EP3269789B1 (en) Light emitting material and organic electroluminescent element
JP6709487B2 (en) Iridium complex, and light emitting material and organic light emitting device using the compound
JP6716138B2 (en) Terpyridine derivative, light emitting material comprising the same, and organic EL device using the same
JP6656636B2 (en) Fluorine-substituted iridium complex, light emitting material and organic light emitting device using the compound
JP6835326B2 (en) Heteroreptic iridium complex, and light emitting materials and organic light emitting devices using the compound.
JP2024027099A (en) Compound with two pyridoindole rings and organic electroluminescent device
WO2018181370A1 (en) Compound having azacarbazole structure, and organic electroluminescence device
CN113166165A (en) Heterocyclic compound and organic light emitting diode comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875813

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556484

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875813

Country of ref document: EP

Kind code of ref document: A1