JP6709487B2 - Iridium complex, and light emitting material and organic light emitting device using the compound - Google Patents
Iridium complex, and light emitting material and organic light emitting device using the compound Download PDFInfo
- Publication number
- JP6709487B2 JP6709487B2 JP2015224456A JP2015224456A JP6709487B2 JP 6709487 B2 JP6709487 B2 JP 6709487B2 JP 2015224456 A JP2015224456 A JP 2015224456A JP 2015224456 A JP2015224456 A JP 2015224456A JP 6709487 B2 JP6709487 B2 JP 6709487B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- compound
- iridium complex
- present
- emission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 150000001875 compounds Chemical class 0.000 title claims description 201
- 229910052741 iridium Inorganic materials 0.000 title claims description 77
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 title claims description 75
- 239000000463 material Substances 0.000 title claims description 54
- 125000000217 alkyl group Chemical group 0.000 claims description 73
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 63
- 125000003545 alkoxy group Chemical group 0.000 claims description 39
- 125000004104 aryloxy group Chemical group 0.000 claims description 31
- 125000003118 aryl group Chemical group 0.000 claims description 28
- 125000005843 halogen group Chemical group 0.000 claims description 24
- 125000000623 heterocyclic group Chemical group 0.000 claims description 24
- 229910052757 nitrogen Inorganic materials 0.000 claims description 23
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 22
- 125000003277 amino group Chemical group 0.000 claims description 18
- 239000003446 ligand Substances 0.000 claims description 17
- 125000001153 fluoro group Chemical group F* 0.000 claims description 13
- 229910052731 fluorine Inorganic materials 0.000 claims description 8
- 239000011737 fluorine Substances 0.000 claims description 6
- 125000001424 substituent group Chemical group 0.000 claims description 5
- 125000005594 diketone group Chemical group 0.000 claims description 4
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 claims description 2
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 160
- 239000010410 layer Substances 0.000 description 124
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 104
- -1 n-octyl group Chemical group 0.000 description 86
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 75
- 238000005160 1H NMR spectroscopy Methods 0.000 description 72
- 239000000243 solution Substances 0.000 description 69
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 66
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 66
- 238000006862 quantum yield reaction Methods 0.000 description 63
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 57
- 229910052786 argon Inorganic materials 0.000 description 52
- 239000007789 gas Substances 0.000 description 52
- 238000006243 chemical reaction Methods 0.000 description 51
- 230000015572 biosynthetic process Effects 0.000 description 50
- 238000003786 synthesis reaction Methods 0.000 description 50
- 239000002904 solvent Substances 0.000 description 40
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 34
- 238000000295 emission spectrum Methods 0.000 description 31
- 239000003480 eluent Substances 0.000 description 29
- 238000010898 silica gel chromatography Methods 0.000 description 29
- 239000012300 argon atmosphere Substances 0.000 description 27
- 238000001816 cooling Methods 0.000 description 26
- 230000005284 excitation Effects 0.000 description 25
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 25
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 24
- 239000000203 mixture Substances 0.000 description 21
- 239000007787 solid Substances 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 238000002347 injection Methods 0.000 description 19
- 239000007924 injection Substances 0.000 description 19
- 230000000903 blocking effect Effects 0.000 description 18
- 230000005525 hole transport Effects 0.000 description 18
- 239000012044 organic layer Substances 0.000 description 18
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 17
- 125000004432 carbon atom Chemical group C* 0.000 description 17
- 229910000027 potassium carbonate Inorganic materials 0.000 description 17
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 16
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 16
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- 238000001914 filtration Methods 0.000 description 14
- 239000000758 substrate Substances 0.000 description 14
- 239000000460 chlorine Substances 0.000 description 13
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 13
- 239000000706 filtrate Substances 0.000 description 13
- 238000004020 luminiscence type Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 239000010409 thin film Substances 0.000 description 12
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 12
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 11
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 11
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 10
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 10
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 229910021638 Iridium(III) chloride Inorganic materials 0.000 description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 9
- 238000000605 extraction Methods 0.000 description 9
- SIOXPEMLGUPBBT-UHFFFAOYSA-N picolinic acid Chemical class OC(=O)C1=CC=CC=N1 SIOXPEMLGUPBBT-UHFFFAOYSA-N 0.000 description 9
- DANYXEHCMQHDNX-UHFFFAOYSA-K trichloroiridium Chemical compound Cl[Ir](Cl)Cl DANYXEHCMQHDNX-UHFFFAOYSA-K 0.000 description 9
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 8
- 235000017557 sodium bicarbonate Nutrition 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 239000010408 film Substances 0.000 description 7
- 239000010453 quartz Substances 0.000 description 7
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 7
- CSCPPACGZOOCGX-MICDWDOJSA-N 1-deuteriopropan-2-one Chemical compound [2H]CC(C)=O CSCPPACGZOOCGX-MICDWDOJSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000005401 electroluminescence Methods 0.000 description 6
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 6
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 6
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 6
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 6
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 6
- 235000019798 tripotassium phosphate Nutrition 0.000 description 6
- 150000000094 1,4-dioxanes Chemical class 0.000 description 5
- BGLLZQRUXJGTAD-UHFFFAOYSA-N 2-chloro-5-ethylpyrimidine Chemical compound CCC1=CN=C(Cl)N=C1 BGLLZQRUXJGTAD-UHFFFAOYSA-N 0.000 description 5
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 5
- 229940093475 2-ethoxyethanol Drugs 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- IPWKHHSGDUIRAH-UHFFFAOYSA-N bis(pinacolato)diboron Chemical compound O1C(C)(C)C(C)(C)OB1B1OC(C)(C)C(C)(C)O1 IPWKHHSGDUIRAH-UHFFFAOYSA-N 0.000 description 5
- CZKMPDNXOGQMFW-UHFFFAOYSA-N chloro(triethyl)germane Chemical compound CC[Ge](Cl)(CC)CC CZKMPDNXOGQMFW-UHFFFAOYSA-N 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 235000011056 potassium acetate Nutrition 0.000 description 5
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 5
- 125000005810 2,5-xylyl group Chemical group [H]C1=C([H])C(=C(*)C([H])=C1C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- VQGHOUODWALEFC-UHFFFAOYSA-N 2-phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=CC=N1 VQGHOUODWALEFC-UHFFFAOYSA-N 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- NXQGGXCHGDYOHB-UHFFFAOYSA-L cyclopenta-1,4-dien-1-yl(diphenyl)phosphane;dichloropalladium;iron(2+) Chemical compound [Fe+2].Cl[Pd]Cl.[CH-]1C=CC(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1.[CH-]1C=CC(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 NXQGGXCHGDYOHB-UHFFFAOYSA-L 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 150000002220 fluorenes Chemical class 0.000 description 4
- 150000002503 iridium Chemical class 0.000 description 4
- 125000000040 m-tolyl group Chemical group [H]C1=C([H])C(*)=C([H])C(=C1[H])C([H])([H])[H] 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 125000003261 o-tolyl group Chemical group [H]C1=C([H])C(*)=C(C([H])=C1[H])C([H])([H])[H] 0.000 description 4
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 4
- 229940081066 picolinic acid Drugs 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229920000123 polythiophene Chemical class 0.000 description 4
- ZLMJMSJWJFRBEC-OUBTZVSYSA-N potassium-40 Chemical compound [40K] ZLMJMSJWJFRBEC-OUBTZVSYSA-N 0.000 description 4
- 238000001771 vacuum deposition Methods 0.000 description 4
- ADGHSWFUZUADDH-UHFFFAOYSA-N (2,6-dimethoxypyridin-3-yl)boronic acid Chemical compound COC1=CC=C(B(O)O)C(OC)=N1 ADGHSWFUZUADDH-UHFFFAOYSA-N 0.000 description 3
- FAAQGONYZKWBKC-UHFFFAOYSA-N 5-bromo-2-tert-butylpyrimidine Chemical compound CC(C)(C)C1=NC=C(Br)C=N1 FAAQGONYZKWBKC-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical class C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 125000001309 chloro group Chemical group Cl* 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 230000001815 facial effect Effects 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 3
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 3
- 238000007699 photoisomerization reaction Methods 0.000 description 3
- 229920000767 polyaniline Polymers 0.000 description 3
- KZVLNAGYSAKYMG-UHFFFAOYSA-N pyridine-2-sulfonic acid Chemical class OS(=O)(=O)C1=CC=CC=N1 KZVLNAGYSAKYMG-UHFFFAOYSA-N 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- RLEBKHAOAHYZHT-UHFFFAOYSA-M sodium;pyridine-2-carboxylate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=N1 RLEBKHAOAHYZHT-UHFFFAOYSA-M 0.000 description 3
- 125000005259 triarylamine group Chemical group 0.000 description 3
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical class C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 2
- BHAKRVSCGILCEW-UHFFFAOYSA-N 2-chloro-4-methylpyrimidine Chemical compound CC1=CC=NC(Cl)=N1 BHAKRVSCGILCEW-UHFFFAOYSA-N 0.000 description 2
- NSMJMUQZRGZMQC-UHFFFAOYSA-N 2-naphthalen-1-yl-1H-imidazo[4,5-f][1,10]phenanthroline Chemical class C12=CC=CN=C2C2=NC=CC=C2C2=C1NC(C=1C3=CC=CC=C3C=CC=1)=N2 NSMJMUQZRGZMQC-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical group C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- MXZHPYDNEWOCJM-UHFFFAOYSA-N N1=CN=CC=C1.[Ir] Chemical compound N1=CN=CC=C1.[Ir] MXZHPYDNEWOCJM-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910052774 Proactinium Inorganic materials 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000011000 absolute method Methods 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 150000001454 anthracenes Chemical class 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 150000001556 benzimidazoles Chemical class 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 150000001716 carbazoles Chemical class 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000007806 chemical reaction intermediate Substances 0.000 description 2
- 150000001846 chrysenes Chemical class 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- YMWUJEATGCHHMB-DICFDUPASA-N dichloromethane-d2 Chemical compound [2H]C([2H])(Cl)Cl YMWUJEATGCHHMB-DICFDUPASA-N 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 150000002790 naphthalenes Chemical class 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 150000007978 oxazole derivatives Chemical class 0.000 description 2
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 150000003220 pyrenes Chemical class 0.000 description 2
- 125000000714 pyrimidinyl group Chemical group 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- AIWZOHBYSFSQGV-LNKPDPKZSA-M sodium;(z)-4-oxopent-2-en-2-olate Chemical compound [Na+].C\C([O-])=C\C(C)=O AIWZOHBYSFSQGV-LNKPDPKZSA-M 0.000 description 2
- VNFWTIYUKDMAOP-UHFFFAOYSA-N sphos Chemical compound COC1=CC=CC(OC)=C1C1=CC=CC=C1P(C1CCCCC1)C1CCCCC1 VNFWTIYUKDMAOP-UHFFFAOYSA-N 0.000 description 2
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 238000013022 venting Methods 0.000 description 2
- AKYHKWQPZHDOBW-UHFFFAOYSA-N (5-ethenyl-1-azabicyclo[2.2.2]octan-7-yl)-(6-methoxyquinolin-4-yl)methanol Chemical compound OS(O)(=O)=O.C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 AKYHKWQPZHDOBW-UHFFFAOYSA-N 0.000 description 1
- UWRZIZXBOLBCON-VOTSOKGWSA-N (e)-2-phenylethenamine Chemical class N\C=C\C1=CC=CC=C1 UWRZIZXBOLBCON-VOTSOKGWSA-N 0.000 description 1
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 description 1
- SHXHPUAKLCCLDV-UHFFFAOYSA-N 1,1,1-trifluoropentane-2,4-dione Chemical compound CC(=O)CC(=O)C(F)(F)F SHXHPUAKLCCLDV-UHFFFAOYSA-N 0.000 description 1
- 125000003363 1,3,5-triazinyl group Chemical group N1=C(N=CN=C1)* 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- YGRSXJJORLXYPT-UHFFFAOYSA-N 1-naphthalen-1-ylisoquinoline Chemical class C1=CC=C2C(C=3C4=CC=CC=C4C=CC=3)=NC=CC2=C1 YGRSXJJORLXYPT-UHFFFAOYSA-N 0.000 description 1
- IIMMYPSINSFUBX-UHFFFAOYSA-N 1-naphthalen-2-ylisoquinoline Chemical class C1=CC=C2C(C3=CC4=CC=CC=C4C=C3)=NC=CC2=C1 IIMMYPSINSFUBX-UHFFFAOYSA-N 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- 150000004842 1-phenylimidazoles Chemical class 0.000 description 1
- AZQJQRTZFPAGNV-UHFFFAOYSA-N 1-phenylindazole Chemical class C12=CC=CC=C2C=NN1C1=CC=CC=C1 AZQJQRTZFPAGNV-UHFFFAOYSA-N 0.000 description 1
- LPCWDYWZIWDTCV-UHFFFAOYSA-N 1-phenylisoquinoline Chemical class C1=CC=CC=C1C1=NC=CC2=CC=CC=C12 LPCWDYWZIWDTCV-UHFFFAOYSA-N 0.000 description 1
- 150000002397 1-phenylpyrazoles Chemical class 0.000 description 1
- VSKZGHVPGOMFAV-UHFFFAOYSA-N 1-pyridin-2-ylindole Chemical class C1=CC2=CC=CC=C2N1C1=CC=CC=N1 VSKZGHVPGOMFAV-UHFFFAOYSA-N 0.000 description 1
- 125000001462 1-pyrrolyl group Chemical group [*]N1C([H])=C([H])C([H])=C1[H] 0.000 description 1
- YRAJNWYBUCUFBD-UHFFFAOYSA-N 2,2,6,6-tetramethylheptane-3,5-dione Chemical compound CC(C)(C)C(=O)CC(=O)C(C)(C)C YRAJNWYBUCUFBD-UHFFFAOYSA-N 0.000 description 1
- RSNQVABHABAKEZ-UHFFFAOYSA-N 2,3-diphenylquinoxaline Chemical class C1=CC=CC=C1C1=NC2=CC=CC=C2N=C1C1=CC=CC=C1 RSNQVABHABAKEZ-UHFFFAOYSA-N 0.000 description 1
- CEGGECULKVTYMM-UHFFFAOYSA-N 2,6-dimethylheptane-3,5-dione Chemical compound CC(C)C(=O)CC(=O)C(C)C CEGGECULKVTYMM-UHFFFAOYSA-N 0.000 description 1
- GOOJXIXLPNPOQI-UHFFFAOYSA-N 2,7-bis(diphenylphosphoryl)-9-phenylcarbazole Chemical compound C=1C=CC=CC=1P(C=1C=C2C(C3=CC=C(C=C3N2C=2C=CC=CC=2)P(=O)(C=2C=CC=CC=2)C=2C=CC=CC=2)=CC=1)(=O)C1=CC=CC=C1 GOOJXIXLPNPOQI-UHFFFAOYSA-N 0.000 description 1
- DZYGAGZGZOLVCI-UHFFFAOYSA-N 2-(1-benzofuran-2-yl)pyridine Chemical class O1C2=CC=CC=C2C=C1C1=CC=CC=N1 DZYGAGZGZOLVCI-UHFFFAOYSA-N 0.000 description 1
- NRSBAUDUBWMTGL-UHFFFAOYSA-N 2-(1-benzothiophen-2-yl)pyridine Chemical class S1C2=CC=CC=C2C=C1C1=CC=CC=N1 NRSBAUDUBWMTGL-UHFFFAOYSA-N 0.000 description 1
- RIAJQFIZKHZWMP-UHFFFAOYSA-N 2-(furan-2-yl)pyridine Chemical class C1=COC(C=2N=CC=CC=2)=C1 RIAJQFIZKHZWMP-UHFFFAOYSA-N 0.000 description 1
- PCFUWBOSXMKGIP-UHFFFAOYSA-N 2-benzylpyridine Chemical class C=1C=CC=NC=1CC1=CC=CC=C1 PCFUWBOSXMKGIP-UHFFFAOYSA-N 0.000 description 1
- PGFIHORVILKHIA-UHFFFAOYSA-N 2-bromopyrimidine Chemical compound BrC1=NC=CC=N1 PGFIHORVILKHIA-UHFFFAOYSA-N 0.000 description 1
- OMPXZZNLSYCISQ-UHFFFAOYSA-N 2-chloro-n,n,5-trimethylpyrimidin-4-amine Chemical compound CN(C)C1=NC(Cl)=NC=C1C OMPXZZNLSYCISQ-UHFFFAOYSA-N 0.000 description 1
- VLRSADZEDXVUPG-UHFFFAOYSA-N 2-naphthalen-1-ylpyridine Chemical class N1=CC=CC=C1C1=CC=CC2=CC=CC=C12 VLRSADZEDXVUPG-UHFFFAOYSA-N 0.000 description 1
- IXVWMXLBXQAMMW-UHFFFAOYSA-N 2-naphthalen-1-ylquinoline Chemical class C1=CC=C2C(C3=NC4=CC=CC=C4C=C3)=CC=CC2=C1 IXVWMXLBXQAMMW-UHFFFAOYSA-N 0.000 description 1
- DBENTMPUKROOOE-UHFFFAOYSA-N 2-naphthalen-2-ylpyridine Chemical class N1=CC=CC=C1C1=CC=C(C=CC=C2)C2=C1 DBENTMPUKROOOE-UHFFFAOYSA-N 0.000 description 1
- LPNLFJKYHYLXPE-UHFFFAOYSA-N 2-naphthalen-2-ylquinoline Chemical class C1=CC=CC2=NC(C3=CC4=CC=CC=C4C=C3)=CC=C21 LPNLFJKYHYLXPE-UHFFFAOYSA-N 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- MEAAWTRWNWSLPF-UHFFFAOYSA-N 2-phenoxypyridine Chemical compound C=1C=CC=NC=1OC1=CC=CC=C1 MEAAWTRWNWSLPF-UHFFFAOYSA-N 0.000 description 1
- XBHOUXSGHYZCNH-UHFFFAOYSA-N 2-phenyl-1,3-benzothiazole Chemical class C1=CC=CC=C1C1=NC2=CC=CC=C2S1 XBHOUXSGHYZCNH-UHFFFAOYSA-N 0.000 description 1
- FIISKTXZUZBTRC-UHFFFAOYSA-N 2-phenyl-1,3-benzoxazole Chemical class C1=CC=CC=C1C1=NC2=CC=CC=C2O1 FIISKTXZUZBTRC-UHFFFAOYSA-N 0.000 description 1
- RQCBPOPQTLHDFC-UHFFFAOYSA-N 2-phenyl-1,3-oxazole Chemical class C1=COC(C=2C=CC=CC=2)=N1 RQCBPOPQTLHDFC-UHFFFAOYSA-N 0.000 description 1
- WYKHSBAVLOPISI-UHFFFAOYSA-N 2-phenyl-1,3-thiazole Chemical class C1=CSC(C=2C=CC=CC=2)=N1 WYKHSBAVLOPISI-UHFFFAOYSA-N 0.000 description 1
- DWYHDSLIWMUSOO-UHFFFAOYSA-N 2-phenyl-1h-benzimidazole Chemical class C1=CC=CC=C1C1=NC2=CC=CC=C2N1 DWYHDSLIWMUSOO-UHFFFAOYSA-N 0.000 description 1
- 150000005360 2-phenylpyridines Chemical class 0.000 description 1
- OXPDQFOKSZYEMJ-UHFFFAOYSA-N 2-phenylpyrimidine Chemical compound C1=CC=CC=C1C1=NC=CC=N1 OXPDQFOKSZYEMJ-UHFFFAOYSA-N 0.000 description 1
- FSEXLNMNADBYJU-UHFFFAOYSA-N 2-phenylquinoline Chemical class C1=CC=CC=C1C1=CC=C(C=CC=C2)C2=N1 FSEXLNMNADBYJU-UHFFFAOYSA-N 0.000 description 1
- QWNCDHYYJATYOG-UHFFFAOYSA-N 2-phenylquinoxaline Chemical class C1=CC=CC=C1C1=CN=C(C=CC=C2)C2=N1 QWNCDHYYJATYOG-UHFFFAOYSA-N 0.000 description 1
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- QLPKTAFPRRIFQX-UHFFFAOYSA-N 2-thiophen-2-ylpyridine Chemical class C1=CSC(C=2N=CC=CC=2)=C1 QLPKTAFPRRIFQX-UHFFFAOYSA-N 0.000 description 1
- DMEVMYSQZPJFOK-UHFFFAOYSA-N 3,4,5,6,9,10-hexazatetracyclo[12.4.0.02,7.08,13]octadeca-1(18),2(7),3,5,8(13),9,11,14,16-nonaene Chemical group N1=NN=C2C3=CC=CC=C3C3=CC=NN=C3C2=N1 DMEVMYSQZPJFOK-UHFFFAOYSA-N 0.000 description 1
- TUJVGHCSNXCAFE-UHFFFAOYSA-N 3-bromo-2,6-dimethylpyridine Chemical compound CC1=CC=C(Br)C(C)=N1 TUJVGHCSNXCAFE-UHFFFAOYSA-N 0.000 description 1
- MBXOOYPCIDHXGH-UHFFFAOYSA-N 3-butylpentane-2,4-dione Chemical compound CCCCC(C(C)=O)C(C)=O MBXOOYPCIDHXGH-UHFFFAOYSA-N 0.000 description 1
- GUARKOVVHJSMRW-UHFFFAOYSA-N 3-ethylpentane-2,4-dione Chemical compound CCC(C(C)=O)C(C)=O GUARKOVVHJSMRW-UHFFFAOYSA-N 0.000 description 1
- GSOHKPVFCOWKPU-UHFFFAOYSA-N 3-methylpentane-2,4-dione Chemical compound CC(=O)C(C)C(C)=O GSOHKPVFCOWKPU-UHFFFAOYSA-N 0.000 description 1
- YTTYNMGFPQYWKE-UHFFFAOYSA-N 3-naphthalen-1-ylisoquinoline Chemical class C1=CC=C2C(C3=CC4=CC=CC=C4C=N3)=CC=CC2=C1 YTTYNMGFPQYWKE-UHFFFAOYSA-N 0.000 description 1
- CKUOKPSIXGRHSY-UHFFFAOYSA-N 3-naphthalen-2-ylisoquinoline Chemical class C1=CC=C2C=NC(C3=CC4=CC=CC=C4C=C3)=CC2=C1 CKUOKPSIXGRHSY-UHFFFAOYSA-N 0.000 description 1
- XNCMQRWVMWLODV-UHFFFAOYSA-O 3-phenyl-1h-benzimidazol-3-ium Chemical class C=1NC2=CC=CC=C2[N+]=1C1=CC=CC=C1 XNCMQRWVMWLODV-UHFFFAOYSA-O 0.000 description 1
- SEULWJSKCVACTH-UHFFFAOYSA-O 3-phenyl-1h-imidazol-3-ium Chemical class C1=NC=C[NH+]1C1=CC=CC=C1 SEULWJSKCVACTH-UHFFFAOYSA-O 0.000 description 1
- RBJOTRVJJWIIER-UHFFFAOYSA-N 3-phenylisoquinoline Chemical class C1=CC=CC=C1C1=CC2=CC=CC=C2C=N1 RBJOTRVJJWIIER-UHFFFAOYSA-N 0.000 description 1
- LUEYUHCBBXWTQT-UHFFFAOYSA-N 4-phenyl-2h-triazole Chemical class C1=NNN=C1C1=CC=CC=C1 LUEYUHCBBXWTQT-UHFFFAOYSA-N 0.000 description 1
- OFKWIQJLYCKDNY-UHFFFAOYSA-N 5-bromo-2-methylpyridine Chemical compound CC1=CC=C(Br)C=N1 OFKWIQJLYCKDNY-UHFFFAOYSA-N 0.000 description 1
- NYMLZIFRPNYAHS-UHFFFAOYSA-N 5-phenyl-1h-1,2,4-triazole Chemical class C1=NNC(C=2C=CC=CC=2)=N1 NYMLZIFRPNYAHS-UHFFFAOYSA-N 0.000 description 1
- XHLKOHSAWQPOFO-UHFFFAOYSA-N 5-phenyl-1h-imidazole Chemical class N1C=NC=C1C1=CC=CC=C1 XHLKOHSAWQPOFO-UHFFFAOYSA-N 0.000 description 1
- OEDUIFSDODUDRK-UHFFFAOYSA-N 5-phenyl-1h-pyrazole Chemical class N1N=CC=C1C1=CC=CC=C1 OEDUIFSDODUDRK-UHFFFAOYSA-N 0.000 description 1
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical class C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 1
- IGMOYJSFRIASIE-UHFFFAOYSA-N 6-Methylheptan-2,4-dione Chemical compound CC(C)CC(=O)CC(C)=O IGMOYJSFRIASIE-UHFFFAOYSA-N 0.000 description 1
- QCRWZQPISCKABP-UHFFFAOYSA-N 6-naphthalen-1-ylphenanthridine Chemical class C1=CC=C2C(C=3C4=CC=CC=C4C=CC=3)=NC3=CC=CC=C3C2=C1 QCRWZQPISCKABP-UHFFFAOYSA-N 0.000 description 1
- RBIMXMFIMHZNFR-UHFFFAOYSA-N 6-naphthalen-2-ylphenanthridine Chemical class C1=CC=C2C(C3=CC4=CC=CC=C4C=C3)=NC3=CC=CC=C3C2=C1 RBIMXMFIMHZNFR-UHFFFAOYSA-N 0.000 description 1
- XXWONCALJGBUFK-UHFFFAOYSA-N 6-phenylphenanthridine Chemical class C1=CC=CC=C1C1=NC2=CC=CC=C2C2=CC=CC=C12 XXWONCALJGBUFK-UHFFFAOYSA-N 0.000 description 1
- CFNMUZCFSDMZPQ-GHXNOFRVSA-N 7-[(z)-3-methyl-4-(4-methyl-5-oxo-2h-furan-2-yl)but-2-enoxy]chromen-2-one Chemical compound C=1C=C2C=CC(=O)OC2=CC=1OC/C=C(/C)CC1OC(=O)C(C)=C1 CFNMUZCFSDMZPQ-GHXNOFRVSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- FCNCGHJSNVOIKE-UHFFFAOYSA-N 9,10-diphenylanthracene Chemical class C1=CC=CC=C1C(C1=CC=CC=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 FCNCGHJSNVOIKE-UHFFFAOYSA-N 0.000 description 1
- MZYDBGLUVPLRKR-UHFFFAOYSA-N 9-(3-carbazol-9-ylphenyl)carbazole Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC(N2C3=CC=CC=C3C3=CC=CC=C32)=CC=C1 MZYDBGLUVPLRKR-UHFFFAOYSA-N 0.000 description 1
- JDINBEDUGBFLEC-UHFFFAOYSA-N 9-pyridin-2-ylcarbazole Chemical class N1=CC=CC=C1N1C2=CC=CC=C2C2=CC=CC=C21 JDINBEDUGBFLEC-UHFFFAOYSA-N 0.000 description 1
- BPMFPOGUJAAYHL-UHFFFAOYSA-N 9H-Pyrido[2,3-b]indole Chemical class C1=CC=C2C3=CC=CC=C3NC2=N1 BPMFPOGUJAAYHL-UHFFFAOYSA-N 0.000 description 1
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- OAPPEBNXKAKQGS-UHFFFAOYSA-N Benz[c]acridine Chemical class C1=CC=C2C3=NC4=CC=CC=C4C=C3C=CC2=C1 OAPPEBNXKAKQGS-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000001576 FEMA 2977 Substances 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910013856 LiPb Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241001139947 Mida Species 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N N-phenyl amine Natural products NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- 229920000265 Polyparaphenylene Chemical class 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical class N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- JHYLKGDXMUDNEO-UHFFFAOYSA-N [Mg].[In] Chemical compound [Mg].[In] JHYLKGDXMUDNEO-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- FZEYVTFCMJSGMP-UHFFFAOYSA-N acridone Chemical class C1=CC=C2C(=O)C3=CC=CC=C3NC2=C1 FZEYVTFCMJSGMP-UHFFFAOYSA-N 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 125000005605 benzo group Chemical group 0.000 description 1
- SEXRCKWGFSXUOO-UHFFFAOYSA-N benzo[a]phenazine Chemical class C1=CC=C2N=C3C4=CC=CC=C4C=CC3=NC2=C1 SEXRCKWGFSXUOO-UHFFFAOYSA-N 0.000 description 1
- FCEUOTOBJMBWHC-UHFFFAOYSA-N benzo[f]cinnoline Chemical class N1=CC=C2C3=CC=CC=C3C=CC2=N1 FCEUOTOBJMBWHC-UHFFFAOYSA-N 0.000 description 1
- WZJYKHNJTSNBHV-UHFFFAOYSA-N benzo[h]quinoline Chemical class C1=CN=C2C3=CC=CC=C3C=CC2=C1 WZJYKHNJTSNBHV-UHFFFAOYSA-N 0.000 description 1
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical class C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 125000006269 biphenyl-2-yl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C1=C(*)C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000006268 biphenyl-3-yl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C1=C([H])C(*)=C([H])C([H])=C1[H] 0.000 description 1
- 125000000319 biphenyl-4-yl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 150000001882 coronenes Chemical class 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 125000004431 deuterium atom Chemical group 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Natural products CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 1
- 150000004826 dibenzofurans Chemical class 0.000 description 1
- IYYZUPMFVPLQIF-ALWQSETLSA-N dibenzothiophene Chemical class C1=CC=CC=2[34S]C3=C(C=21)C=CC=C3 IYYZUPMFVPLQIF-ALWQSETLSA-N 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001194 electroluminescence spectrum Methods 0.000 description 1
- 229920000775 emeraldine polymer Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 150000002219 fluoranthenes Chemical class 0.000 description 1
- 150000008376 fluorenones Chemical class 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical class O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- DGCTVLNZTFDPDJ-UHFFFAOYSA-N heptane-3,5-dione Chemical compound CCC(=O)CC(=O)CC DGCTVLNZTFDPDJ-UHFFFAOYSA-N 0.000 description 1
- SHWNDUJCIYUZRF-UHFFFAOYSA-N imidazo[1,2-f]phenanthridine Chemical class C1=CC=C2N3C=CN=C3C3=CC=CC=C3C2=C1 SHWNDUJCIYUZRF-UHFFFAOYSA-N 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- LHJOPRPDWDXEIY-UHFFFAOYSA-N indium lithium Chemical compound [Li].[In] LHJOPRPDWDXEIY-UHFFFAOYSA-N 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- VVVPGLRKXQSQSZ-UHFFFAOYSA-N indolo[3,2-c]carbazole Chemical class C1=CC=CC2=NC3=C4C5=CC=CC=C5N=C4C=CC3=C21 VVVPGLRKXQSQSZ-UHFFFAOYSA-N 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- KZLHPYLCKHJIMM-UHFFFAOYSA-K iridium(3+);triacetate Chemical compound [Ir+3].CC([O-])=O.CC([O-])=O.CC([O-])=O KZLHPYLCKHJIMM-UHFFFAOYSA-K 0.000 description 1
- UEEXRMUCXBPYOV-UHFFFAOYSA-N iridium;2-phenylpyridine Chemical compound [Ir].C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1 UEEXRMUCXBPYOV-UHFFFAOYSA-N 0.000 description 1
- KZEYRHDSWHSHIR-UHFFFAOYSA-N iridium;2-phenylpyrimidine Chemical compound [Ir].C1=CC=CC=C1C1=NC=CC=N1 KZEYRHDSWHSHIR-UHFFFAOYSA-N 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- COLNWNFTWHPORY-UHFFFAOYSA-M lithium;8-hydroxyquinoline-2-carboxylate Chemical compound [Li+].C1=C(C([O-])=O)N=C2C(O)=CC=CC2=C1 COLNWNFTWHPORY-UHFFFAOYSA-M 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000005186 naphthyloxy group Chemical group C1(=CC=CC2=CC=CC=C12)O* 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- VOFUROIFQGPCGE-UHFFFAOYSA-N nile red Chemical compound C1=CC=C2C3=NC4=CC=C(N(CC)CC)C=C4OC3=CC(=O)C2=C1 VOFUROIFQGPCGE-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- UQPUONNXJVWHRM-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 UQPUONNXJVWHRM-UHFFFAOYSA-N 0.000 description 1
- 150000002987 phenanthrenes Chemical class 0.000 description 1
- KBBSSGXNXGXONI-UHFFFAOYSA-N phenanthro[9,10-b]pyrazine Chemical class C1=CN=C2C3=CC=CC=C3C3=CC=CC=C3C2=N1 KBBSSGXNXGXONI-UHFFFAOYSA-N 0.000 description 1
- RIYPENPUNLHEBK-UHFFFAOYSA-N phenanthro[9,10-b]pyridine Chemical class C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=N1 RIYPENPUNLHEBK-UHFFFAOYSA-N 0.000 description 1
- GUZBPGZOTDAWBO-UHFFFAOYSA-N phenanthro[9,10-b]quinoline Chemical class C1=CC=C2C3=CC4=CC=CC=C4N=C3C3=CC=CC=C3C2=C1 GUZBPGZOTDAWBO-UHFFFAOYSA-N 0.000 description 1
- KHPYJVQRBJJYSF-UHFFFAOYSA-N phenanthro[9,10-b]quinoxaline Chemical class C1=CC=C2C3=NC4=CC=CC=C4N=C3C3=CC=CC=C3C2=C1 KHPYJVQRBJJYSF-UHFFFAOYSA-N 0.000 description 1
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- RPGWZZNNEUHDAQ-UHFFFAOYSA-N phenylphosphine Chemical compound PC1=CC=CC=C1 RPGWZZNNEUHDAQ-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 150000003057 platinum Chemical class 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 150000004033 porphyrin derivatives Chemical class 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 125000004309 pyranyl group Chemical class O1C(C=CC=C1)* 0.000 description 1
- 150000003216 pyrazines Chemical class 0.000 description 1
- 125000002206 pyridazin-3-yl group Chemical group [H]C1=C([H])C([H])=C(*)N=N1 0.000 description 1
- 125000004940 pyridazin-4-yl group Chemical group N1=NC=C(C=C1)* 0.000 description 1
- 125000004941 pyridazin-5-yl group Chemical group N1=NC=CC(=C1)* 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 229960003110 quinine sulfate Drugs 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 150000003252 quinoxalines Chemical class 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000005394 sealing glass Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 150000003518 tetracenes Chemical class 0.000 description 1
- 150000007979 thiazole derivatives Chemical class 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 125000005580 triphenylene group Chemical group 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Electroluminescent Light Sources (AREA)
Description
本発明は、有機発光素子(有機電界発光素子、有機電気化学発光素子等)の発光材料として有用な新規イリジウム錯体ならびに該化合物を用いた有機発光素子に関するものである。 The present invention relates to a novel iridium complex useful as a light emitting material for an organic light emitting device (organic electroluminescent device, organic electrochemiluminescent device, etc.) and an organic light emitting device using the compound.
近年、有機電界発光素子に代表される有機発光素子はディスプレイまたは照明技術として注目されており、実用化に向けた研究が活発に進められている。特に発光効率向上は重要な研究課題であり、現在では発光材料として、励起三重項状態からの発光を利用する燐光材料に注目が集まっている。 In recent years, an organic light emitting device represented by an organic electroluminescent device has been attracting attention as a display or lighting technique, and research for practical use has been actively pursued. In particular, improvement of light emission efficiency is an important research subject, and as a light emitting material, attention is now focused on a phosphorescent material that utilizes light emission from an excited triplet state.
励起一重項状態からの発光を用いる場合、一重項励起子と三重項励起子との生成比が1:3であるため発光性励起子の生成確率が25%であるとされている。また、光の取り出し効率が約20%であるため、外部取り出し量子効率の限界は5%とされている。一方で、これに励起三重項状態をも利用できると、内部量子効率の上限が100%となるため、励起一重項の場合に比べて原理的に発光効率が4倍となる。このような背景から、これまで燐光材料の開発が活発に行われてきた。 When the light emission from the excited singlet state is used, the generation ratio of the singlet excitons and the triplet excitons is 1:3, and thus the generation probability of the luminescent excitons is said to be 25%. Further, since the light extraction efficiency is about 20%, the limit of the external extraction quantum efficiency is set to 5%. On the other hand, if the excited triplet state can also be used for this, the upper limit of the internal quantum efficiency will be 100%, and therefore the emission efficiency will in principle be four times that of the case of the excited singlet. Against this background, phosphorescent materials have been actively developed so far.
例えば、化4に示す2−フェニルピリミジンイリジウム錯体が開示されている(例えば、特許文献1を参照)。このイリジウム錯体は緑色発光性であり、当該イリジウム錯体を用いることで緑色発光素子を作製できることが開示されている。
また、化5に示す2−フェニルピリミジン配位子のフェニル基にフッ素置換基を導入した青色発光性イリジウム錯体が開示されている(例えば、特許文献2を参照)。
さらに、本発明と類似の化合物として、化6に示すイリジウムと炭素で結合するピリジン環またはピリミジン環にフッ素置換基を導入した青色発光性のピリミジンイリジウム錯体が開示されている(例えば、特許文献3を参照)。
前述したように、従来公知の青色発光性のピリミジンイリジウム錯体は、フッ素置換基が導入されたものである。しかし、フッ素置換基が導入されたイリジウム錯体は加熱によりフッ素が脱離しやすいことが知られており(例えば、Inorg.Chem.,2012,51,290−297.(非特許文献1)および、J.Flu.Chem.,2009,130,640−649.(非特許文献2)を参照。)、熱的安定性に問題があることから、フッ素置換基を使用しない青色発光性のイリジウム錯体の開発が強く望まれている。 As described above, the conventionally known blue light-emitting pyrimidine iridium complex has a fluorine substituent introduced therein. However, it is known that fluorine is easily desorbed by heating an iridium complex having a fluorine substituent introduced therein (for example, Inorg. Chem., 2012, 51, 290-297. (Non-patent Document 1) and J. Flu. Chem., 2009, 130, 640-649. (Non-patent document 2)), and since there is a problem in thermal stability, development of a blue-emitting iridium complex that does not use a fluorine substituent. Is strongly desired.
本発明の目的は、有機電界発光素子や有機電気化学発光素子等に適用でき、可視光領域(特に青色領域)に良好な発光特性を示す新規イリジウム錯体を提供することである。 An object of the present invention is to provide a novel iridium complex that can be applied to an organic electroluminescence device, an organic electrochemiluminescence device, and the like, and exhibits good emission characteristics in the visible light region (particularly in the blue region).
本発明者らは上記実状に鑑み、鋭意研究を重ねた結果、一般式(1)で表される新規イリジウム錯体が、青色領域に強い発光を示すことを見出した。そして本発明のイリジウム錯体を用いることで、高い発光効率を示す青色有機発光素子を作製できることを実証し、本発明を完成するに至った。 In view of the above situation, the present inventors have conducted extensive studies and found that the novel iridium complex represented by the general formula (1) exhibits strong light emission in the blue region. Then, by using the iridium complex of the present invention, it was demonstrated that a blue organic light emitting device exhibiting high luminous efficiency can be produced, and the present invention has been completed.
すなわち、この出願によれば、以下の発明が提供される。 That is, according to this application, the following inventions are provided.
本発明に係るイリジウム錯体は、下記一般式(1)で表されることを特徴とする。
本発明に係るイリジウム錯体では、R1〜R3が水素原子、または、アルキル基であることが好ましい。 In the iridium complex according to the present invention, R 1 to R 3 are preferably hydrogen atoms or alkyl groups.
本発明に係るイリジウム錯体では、R4とR5がアルキル基であることが好ましい。 In the iridium complex according to the present invention, R 4 and R 5 are preferably alkyl groups.
本発明に係るイリジウム錯体では、XがC(R6)であることが好ましい。 In the iridium complex according to the present invention, X is preferably C(R 6 ).
本発明に係るイリジウム錯体では、Xが窒素原子であることが好ましい。 In the iridium complex according to the present invention, X is preferably a nitrogen atom.
本発明に係るイリジウム錯体では、Lが含窒素ヘテロ環配位子またはジケトン配位子であることが好ましい。 In the iridium complex according to the present invention, L is preferably a nitrogen-containing heterocyclic ligand or a diketone ligand.
本発明に係るイリジウム錯体では、Lが一般式(2)〜(10)の中から選ばれる少なくとも一つであることが好ましい。
本発明に係るイリジウム錯体では、mが3であることが好ましい。 In the iridium complex according to the present invention, m is preferably 3.
本発明に係るイリジウム錯体では、mが2でありnが1であることが好ましい。 In the iridium complex according to the present invention, it is preferable that m is 2 and n is 1.
本発明に係る発光材料は、本発明に係る記載のイリジウム錯体を含むことを特徴とする。 The luminescent material according to the present invention is characterized by containing the iridium complex described in the present invention.
本発明に係る有機発光素子は、本発明に係る発光材料を含むことを特徴とする。 The organic light emitting device according to the present invention is characterized by including the light emitting material according to the present invention.
本発明に係る化合物は、一般式(11)で表される。
本発明は、有機電界発光素子および有機電気化学発光素子などに適用でき、可視光領域(特に青色領域)に優れた発光特性を示す新規構造のイリジウム錯体を提供することができる。 INDUSTRIAL APPLICABILITY The present invention can be applied to an organic electroluminescence device, an organic electrochemiluminescence device, and the like, and can provide an iridium complex having a novel structure that exhibits excellent emission characteristics in the visible light region (particularly in the blue region).
本発明の新規イリジウム錯体は、室温下で主に青色領域に強い発光を示し、また熱的安定性に優れていることから、各種用途の発光素子材料として好適に用いることができる。また該化合物を用いた有機発光素子は、可視光領域に高輝度発光を示すことから、表示素子、ディスプレイ、バックライトまたは照明光源などの分野に好適である。 INDUSTRIAL APPLICABILITY The novel iridium complex of the present invention exhibits strong light emission mainly in the blue region at room temperature and is excellent in thermal stability, and thus can be suitably used as a light emitting element material for various applications. Further, an organic light-emitting device using the compound exhibits high-intensity light emission in the visible light region, and is therefore suitable for fields such as display devices, displays, backlights and illumination light sources.
次に本発明について実施形態を示して詳細に説明するが、本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。 Next, the present invention will be described in detail by showing embodiments, but the present invention is not construed as being limited to these descriptions. The embodiments may be variously modified as long as the effects of the present invention are exhibited.
本発明の一般式の説明における水素原子は同位体(重水素原子等)も含み、また更に置換基を構成する原子は、その同位体も含んでいることを表す。 In the description of the general formula of the present invention, the hydrogen atom also includes an isotope (deuterium atom, etc.), and the atom constituting the substituent also includes that isotope.
本発明に係るイリジウム錯体は前記一般式(1)で表され、これらイリジウム錯体を真空蒸着法やスピンコート法等によって、有機発光素子の発光層もしくは発光層を含む複数の有機化合物層に含有させることで、可視光領域(特に青色領域)に発光を示す有機発光素子が得られる。 The iridium complex according to the present invention is represented by the above general formula (1), and these iridium complexes are contained in a light emitting layer of an organic light emitting device or a plurality of organic compound layers including a light emitting layer by a vacuum deposition method, a spin coating method, or the like. Thus, an organic light emitting device that emits light in the visible light region (particularly in the blue region) can be obtained.
以下、本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.
本発明のイリジウム錯体は一般式(1)で表され、イリジウムと炭素で結合するピリジン環またはピリミジン環の置換基(すなわち、一般式(1)中のR4〜R6)にフッ素置換基を導入することなく青色領域に発光を示すという、従来技術にはない優位な特長がある。 The iridium complex of the present invention is represented by the general formula (1), and a fluorine substituent is added to a substituent of a pyridine ring or a pyrimidine ring bonded to iridium with carbon (that is, R 4 to R 6 in the general formula (1)). It has an advantageous feature that does not exist in the prior art that it emits light in the blue region without introducing it.
一般式(1)において、Lが一般式(2)〜(10)の中から選ばれる少なくとも一つであることが好ましい。 In the general formula (1), L is preferably at least one selected from the general formulas (2) to (10).
本発明の化合物は、一般式(11)で表され、イリジウム1原子あたり2分子の配位子が配位したイリジウム錯体がハロゲン原子で架橋して2量体を形成している。この化合物は、本発明に係るイリジウム錯体を合成するときの中間物質として好適である。 The compound of the present invention is represented by the general formula (11), and an iridium complex in which two molecules of ligand are coordinated per atom of iridium is crosslinked with a halogen atom to form a dimer. This compound is suitable as an intermediate substance when synthesizing the iridium complex according to the present invention.
一般式(1)〜(11)に記載した記号(N、Ir、X、X2、m、n、L、Y、R1〜R70)について以下に説明する。
Formula (1) symbols described to (11) will be described (N, Ir, X, X 2, m, n, L, Y,
一般式(1)〜(11)中、Nは窒素原子を表す。 In general formulas (1) to (11), N represents a nitrogen atom.
一般式(1)〜(11)中、Irはイリジウムを表す。 In general formulas (1) to (11), Ir represents iridium.
一般式(1)〜(11)中、XはC(R6)または窒素原子を表す。 In formulas (1) to (11), X represents C(R 6 ) or a nitrogen atom.
一般式(1)〜(11)中、X2はC(R70)または窒素原子を表す。 In the general formula (1) ~ (11), X 2 represents C (R 70) or a nitrogen atom.
一般式(1)〜(11)中、mは1〜3の整数であり、nは0〜2の整数であり、m+nは3である。すなわち、mが3のときはnが0であり、mが2のときはnが1であり、mが1のときはnが2である。このうち、mが3でありnが0である組合せ、mが2でありnが1である組合せがより好ましい。 In general formulas (1) to (11), m is an integer of 1 to 3, n is an integer of 0 to 2, and m+n is 3. That is, when m is 3, n is 0, when m is 2, n is 1, and when m is 1, n is 2. Among these, a combination in which m is 3 and n is 0, and a combination in which m is 2 and n is 1 are more preferable.
一般式(1)〜(11)中、Lはモノアニオン性2座配位子を表す。モノアニオン性2座配位子の中でも、含窒素ヘテロ環配位子またはジケトン配位子であることが好ましい。 In formulas (1) to (11), L represents a monoanionic bidentate ligand. Among the monoanionic bidentate ligands, a nitrogen-containing heterocyclic ligand or a diketone ligand is preferable.
含窒素ヘテロ環配位子の中でも含窒素ヘテロ環2座配位子が好ましく、例えば、2−フェニルピリジン誘導体、2−フェニルキノリン誘導体、1−フェニルイソキノリン誘導体、3−フェニルイソキノリン誘導体、2−(2−ベンゾチオフェニル)ピリジン誘導体、2−チエニルピリジン誘導体、1−フェニルピラゾール誘導体、1−フェニル−1H−インダゾール誘導体、2−フェニルベンゾチアゾール誘導体、2−フェニルチアゾール誘導体、2−フェニルベンゾオキサゾール誘導体、2−フェニルオキサゾール誘導体、2−フラニルピリジン誘導体、2−(2−ベンゾフラニル)ピリジン誘導体、7,8−ベンゾキノリン誘導体、7,8−ベンゾキノキサリン誘導体、ジベンゾ[f,h]キノリン誘導体、ジベンゾ[f,h]キノキサリン誘導体、ベンゾ[h]−5,6−ジヒドロキノリン誘導体、9−(2−ピリジル)カルバゾール誘導体、1−(2−ピリジル)インドール誘導体、1−(1−ナフチル)イソキノリン誘導体、1−(2−ナフチル)イソキノリン誘導体、2−(2−ナフチル)キノリン誘導体、2−(1−ナフチル)キノリン誘導体、3−(1−ナフチル)イソキノリン誘導体、3−(2−ナフチル)イソキノリン誘導体、2−(1−ナフチル)ピリジン誘導体、2−(2−ナフチル)ピリジン誘導体、6−フェニルフェナントリジン誘導体、6−(1−ナフチル)フェナントリジン誘導体、6−(2−ナフチル)フェナントリジン誘導体、ベンゾ[c]アクリジン誘導体、ベンゾ[c]フェナジン誘導体、ジベンゾ[a,c]アクリジン誘導体、ジベンゾ[a,c]フェナジン誘導体、2−フェニルキノキサリン誘導体、2,3−ジフェニルキノキサリン誘導体、2−ベンジルピリジン誘導体、2−フェニルベンゾイミダゾール誘導体、3−フェニルピラゾール誘導体、4−フェニルイミダゾール誘導体、1−フェニルイミダゾール誘導体、4−フェニルトリアゾール誘導体、5−フェニルテトラゾール誘導体、2−アルケニルピリジン誘導体、5−フェニル−1,2,4−トリアゾール誘導体、イミダゾ[1,2−f]フェナントリジン誘導体、1−フェニルベンズイミダゾリウム塩誘導体、1−フェニルイミダゾリウム塩誘導体、ピコリン酸誘導体、ピリジンスルホン酸誘導体、または、ピラザボール誘導体がある。 Among the nitrogen-containing heterocyclic ligands, nitrogen-containing heterocyclic bidentate ligands are preferable, and examples thereof include 2-phenylpyridine derivative, 2-phenylquinoline derivative, 1-phenylisoquinoline derivative, 3-phenylisoquinoline derivative, 2-( 2-benzothiophenyl)pyridine derivative, 2-thienylpyridine derivative, 1-phenylpyrazole derivative, 1-phenyl-1H-indazole derivative, 2-phenylbenzothiazole derivative, 2-phenylthiazole derivative, 2-phenylbenzoxazole derivative, 2-phenyloxazole derivative, 2-furanylpyridine derivative, 2-(2-benzofuranyl)pyridine derivative, 7,8-benzoquinoline derivative, 7,8-benzoquinoxaline derivative, dibenzo[f,h]quinoline derivative, dibenzo[ f,h]quinoxaline derivative, benzo[h]-5,6-dihydroquinoline derivative, 9-(2-pyridyl)carbazole derivative, 1-(2-pyridyl)indole derivative, 1-(1-naphthyl)isoquinoline derivative, 1-(2-naphthyl)isoquinoline derivative, 2-(2-naphthyl)quinoline derivative, 2-(1-naphthyl)quinoline derivative, 3-(1-naphthyl)isoquinoline derivative, 3-(2-naphthyl)isoquinoline derivative, 2-(1-naphthyl)pyridine derivative, 2-(2-naphthyl)pyridine derivative, 6-phenylphenanthridine derivative, 6-(1-naphthyl)phenanthridine derivative, 6-(2-naphthyl)phenanthridine Derivatives, benzo[c]acridine derivatives, benzo[c]phenazine derivatives, dibenzo[a,c]acridine derivatives, dibenzo[a,c]phenazine derivatives, 2-phenylquinoxaline derivatives, 2,3-diphenylquinoxaline derivatives, 2- Benzylpyridine derivative, 2-phenylbenzimidazole derivative, 3-phenylpyrazole derivative, 4-phenylimidazole derivative, 1-phenylimidazole derivative, 4-phenyltriazole derivative, 5-phenyltetrazole derivative, 2-alkenylpyridine derivative, 5-phenyl -1,2,4-triazole derivative, imidazo[1,2-f]phenanthridine derivative, 1-phenylbenzimidazolium salt derivative, 1-phenylimidazolium salt derivative, picolinic acid derivative, pyridinesulfonic acid derivative, or , There is a pyrazabol derivative.
ジケトン配位子の中でもβ−ジケトン配位子が好ましく、例えば、アセチルアセトン、3−エチル−2,4−ペンタンジオン、3,5−ヘプタンジオン、3−ブチル−2,4−ペンタンジオン、2,6−ジメチル−3,5−ヘプタンジオン、6−メチル−2,4−ヘプタンジオン、3−メチル−2,4−ペンタンジオン、ジピバロイルメタンなどがある。 Among the diketone ligands, β-diketone ligands are preferable, and examples thereof include acetylacetone, 3-ethyl-2,4-pentanedione, 3,5-heptanedione, 3-butyl-2,4-pentanedione, 2, 6-Dimethyl-3,5-heptanedione, 6-methyl-2,4-heptanedione, 3-methyl-2,4-pentanedione, dipivaloylmethane and the like.
一般式(1)〜(11)中、Yはハロゲン原子を表す。ハロゲン子の中でも塩素原子、臭素原子、ヨウ素原子が好ましく、塩素原子より好ましい。 In formulas (1) to (11), Y represents a halogen atom. Among the halogen atoms, chlorine atom, bromine atom and iodine atom are preferable, and chlorine atom is more preferable.
R1〜R3は、各々独立に、水素原子、アルキル基、アリール基、ヘテロ環基、アルコキシ基、アミノ基、アリールオキシ基、または、ハロゲン原子を表す。好ましくは、水素原子、アルキル基、アリール基、アミノ基、または、ハロゲン原子であり、より好ましくは、水素原子、アミノ基、または、アルキル基である。特に好ましくは、水素原子、または、アルキル基である。なお、R1とR2、R2とR3は各々結合して環構造を形成してもよい。 R 1 to R 3 each independently represent a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group, an alkoxy group, an amino group, an aryloxy group, or a halogen atom. A hydrogen atom, an alkyl group, an aryl group, an amino group or a halogen atom is preferable, and a hydrogen atom, an amino group or an alkyl group is more preferable. Particularly preferred is a hydrogen atom or an alkyl group. In addition, R 1 and R 2 , and R 2 and R 3 may be bonded to each other to form a ring structure.
R4〜R6は、各々独立に、水素原子、アルキル基、アルコキシ基、または、アリールオキシ基を表す。但し、R4とR5の少なくとも1つが、アルキル基、または、アルコキシ基である。R4〜R6のアルキル基、アルコキシ基、または、アリールオキシ基はフッ素で置換されることはない。XがC(R6)のときは、R4とR5とがアルキル基、R4が水素原子でR5がアルキル基、または、R4とR5とがアルコキシ基であることが好ましい。Xが窒素原子のときは、R4が水素原子でR5がアルキル基であることが好ましい。 R 4 to R 6 each independently represent a hydrogen atom, an alkyl group, an alkoxy group, or an aryloxy group. However, at least one of R 4 and R 5 is an alkyl group or an alkoxy group. The alkyl group, alkoxy group or aryloxy group of R 4 to R 6 is not substituted with fluorine. When X is C(R 6 ), it is preferable that R 4 and R 5 are alkyl groups, R 4 is a hydrogen atom and R 5 is an alkyl group, or R 4 and R 5 are alkoxy groups. When X is a nitrogen atom, it is preferable that R 4 is a hydrogen atom and R 5 is an alkyl group.
R7〜R64は、各々独立に、水素原子、アルキル基、アリール基、ヘテロ環基、アルコキシ基、アミノ基、アリールオキシ基、または、ハロゲン原子を表す。また、隣接する置換基は結合して環構造を形成してもよい。R7〜R64として好ましくは、水素原子、アルキル基、アリール基、ヘテロ環基、またはハロゲン原子であり、より好ましくは、水素原子、アルキル基、またはアリール基である。 R 7 to R 64 each independently represent a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group, an alkoxy group, an amino group, an aryloxy group, or a halogen atom. Further, adjacent substituents may be bonded to each other to form a ring structure. R 7 to R 64 are preferably a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group or a halogen atom, and more preferably a hydrogen atom, an alkyl group or an aryl group.
R65はR1と同義であり望ましい範囲も同様である。R66はR2と同義であり望ましい範囲も同様である。R67はR3と同義であり望ましい範囲も同様である。R68はR4と同義であり望ましい範囲も同様である。R69はR5と同義であり望ましい範囲も同様である。R70はR6と同義であり望ましい範囲も同様である。 R 65 has the same meaning as R 1 and the desirable range is also the same. R 66 has the same meaning as R 2 and the desirable range is also the same. R 67 has the same meaning as R 3 and the desirable range is also the same. R 68 has the same meaning as R 4 and the desirable range is also the same. R 69 has the same meaning as R 5 and the desirable range is also the same. R 70 has the same meaning as R 6 and the desirable range is also the same.
X2がC(R70)のときは、R68とR69とがアルキル基、R68が水素原子でR69がアルキル基、または、R68とR69とがアルコキシ基であることが好ましい。Xが窒素原子のときは、R68が水素原子でR69がアルキル基であることが好ましい。 When X 2 is C(R 70 ), R 68 and R 69 are preferably an alkyl group, R 68 is a hydrogen atom and R 69 is an alkyl group, or R 68 and R 69 are preferably an alkoxy group. .. When X is a nitrogen atom, R 68 is preferably a hydrogen atom and R 69 is preferably an alkyl group.
前記アルキル基は、アリール基、ヘテロ環基、アルコキシ基、アミノ基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。 The alkyl group may be substituted with an aryl group, a heterocyclic group, an alkoxy group, an amino group, an aryloxy group, or a halogen atom.
前記アリール基は、アルキル基、ヘテロ環基、アルコキシ基、アミノ基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。 The aryl group may be substituted with an alkyl group, a heterocyclic group, an alkoxy group, an amino group, an aryloxy group, or a halogen atom.
前記ヘテロ環基は、アルキル基、アリール基、アルコキシ基、アミノ基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。 The heterocyclic group may be substituted with an alkyl group, an aryl group, an alkoxy group, an amino group, an aryloxy group or a halogen atom.
前記アルコキシ基は、アルキル基、アリール基、ヘテロ環基、アミノ基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。 The alkoxy group may be substituted with an alkyl group, an aryl group, a heterocyclic group, an amino group, an aryloxy group, or a halogen atom.
前記アミノ基は、アルキル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、または、ハロゲン原子で置換されてもよい。 The amino group may be substituted with an alkyl group, an aryl group, a heterocyclic group, an alkoxy group, an aryloxy group, or a halogen atom.
前記アリールオキシ基は、アルキル基、アリール基、ヘテロ環基、アルコキシ基、アミノ基、または、ハロゲン原子で置換されてもよい。 The aryloxy group may be substituted with an alkyl group, an aryl group, a heterocyclic group, an alkoxy group, an amino group, or a halogen atom.
前記アルキル基は、炭素数1〜30のアルキル基であることが好ましく、炭素数1〜20のアルキル基であることがより好ましく、炭素数1〜10のアルキル基であることが特に好ましく、炭素数1〜5のアルキル基であることが最も好ましい。
The alkyl group is preferably an alkyl group having 1 to 30 carbon atoms, more preferably an alkyl group having 1 to 20 carbon atoms, and particularly preferably an alkyl group having 1 to 10 carbon atoms. Most preferably, it is an alkyl group of the
前記アルキル基として、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、ネオペンチル基、1−メチルペンチル基、1−ペンチルヘキシル基、1−ブチルペンチル基、1−ヘプチルオクチル基、シクロヘキシル基、シクロオクチル基、または3,5−テトラメチルシクロヘキシル基がある。好ましくは、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、ネオペンチル基、または1−メチルペンチル基である。より好ましくは、メチル基またはエチル基である。 Examples of the alkyl group include, for example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group. Group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group Group, n-octadecyl group, neopentyl group, 1-methylpentyl group, 1-pentylhexyl group, 1-butylpentyl group, 1-heptyloctyl group, cyclohexyl group, cyclooctyl group, or 3,5-tetramethylcyclohexyl group There is. Preferred are methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, neopentyl group, or 1-methylpentyl group. More preferably, it is a methyl group or an ethyl group.
前記アリール基は、炭素数6〜30のアリール基であることが好ましく、炭素数6〜20のアリール基であることがより好ましく、炭素数6〜12のアリール基であることが特に好ましい。 The aryl group is preferably an aryl group having 6 to 30 carbon atoms, more preferably an aryl group having 6 to 20 carbon atoms, and particularly preferably an aryl group having 6 to 12 carbon atoms.
前記アリール基として、例えば、フェニル基、ビフェニル−2−イル基、ビフェニル−3−イル基、ビフェニル−4−イル基、p−ターフェニル−4−イル基、p−ターフェニル−3−イル基、p−ターフェニル−2−イル基、m−ターフェニル−4−イル基、m−ターフェニル−3−イル基、m−ターフェニル−2−イル基、o−トリル基、m−トリル基、p−トリル基、p−t−ブチルフェニル基、p−(2−フェニルプロピル)フェニル基、4’−メチルビフェニルイル基、4”−t−ブチル−p−ターフェニル−4−イル基、o−クメニル基、m−クメニル基、p−クメニル基、2,3−キシリル基、2,4−キシリル基、2,5−キシリル基、2,6−キシリル基、3,4−キシリル基、3,5−キシリル基、メシチル基、m−クウォーターフェニル基、1−ナフチル基、または2−ナフチル基がある。好ましくは、フェニル基、o−トリル基、m−トリル基、p−トリル基、2,3−キシリル基、2,4−キシリル基、2,5−キシリル基、2,6−キシリル基、3,4−キシリル基、3,5−キシリル基、またはメシチル基である。特にアルキル基で置換されたフェニル基は、イリジウム錯体の昇華性が向上することから特に好ましい。 Examples of the aryl group include a phenyl group, a biphenyl-2-yl group, a biphenyl-3-yl group, a biphenyl-4-yl group, a p-terphenyl-4-yl group, and a p-terphenyl-3-yl group. , P-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl-2-yl group, o-tolyl group, m-tolyl group , P-tolyl group, pt-butylphenyl group, p-(2-phenylpropyl)phenyl group, 4'-methylbiphenylyl group, 4"-t-butyl-p-terphenyl-4-yl group, o-cumenyl group, m-cumenyl group, p-cumenyl group, 2,3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, mesityl group, m-quatphenyl group, 1-naphthyl group, or 2-naphthyl group, preferably phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2,3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, or mesityl group, especially alkyl. A phenyl group substituted with a group is particularly preferable because the sublimability of the iridium complex is improved.
前記ヘテロ環基は、炭素数1〜30のヘテロ環基であることが好ましく、炭素数1〜20のヘテロ環基であることがより好ましく、炭素数1〜10のヘテロ環基であることが特に好ましく、炭素数1〜5のヘテロ環基であることが最も好ましい。 The heterocyclic group is preferably a heterocyclic group having 1 to 30 carbon atoms, more preferably a heterocyclic group having 1 to 20 carbon atoms, and preferably a heterocyclic group having 1 to 10 carbon atoms. Particularly preferred is a heterocyclic group having 1 to 5 carbon atoms, and most preferred is a heterocyclic group.
前記ヘテロ環基として、例えば、2−ピリジニル基、3−ピリジニル基、4−ピリジニル基、2−ピリミジル基、4−ピリミジル基、5−ピリミジル基、2−ピラジル基、3−ピリダジニル基、4−ピリダジニル基、5−ピリダジニル基、キノリニル基、1−ピロリル基、1−イミダゾリル基、2−イミダゾピリジニル基、1−インドリル基、2−ベンゾフラニル基、7−イソベンゾフラニル基、2−キノリル基、1−イソキノリル基、1−フェナントリジニル基、1−アクリジニル基、1−フェナジニル基、2−チエニル基、1−ジベンゾフラニル基、1,3,5−トリアジニル基等が挙げられる。これらの中でも好ましくは、2−ピリジニル基、3−ピリジニル基、4−ピリジニル基、2−ピリミジル基、4−ピリミジル基、5−ピリミジル基である。 Examples of the heterocyclic group include 2-pyridinyl group, 3-pyridinyl group, 4-pyridinyl group, 2-pyrimidyl group, 4-pyrimidyl group, 5-pyrimidyl group, 2-pyrazyl group, 3-pyridazinyl group, 4- Pyridazinyl group, 5-pyridazinyl group, quinolinyl group, 1-pyrrolyl group, 1-imidazolyl group, 2-imidazopyridinyl group, 1-indolyl group, 2-benzofuranyl group, 7-isobenzofuranyl group, 2-quinolyl Group, 1-isoquinolyl group, 1-phenanthridinyl group, 1-acridinyl group, 1-phenazinyl group, 2-thienyl group, 1-dibenzofuranyl group, 1,3,5-triazinyl group and the like. Of these, a 2-pyridinyl group, a 3-pyridinyl group, a 4-pyridinyl group, a 2-pyrimidyl group, a 4-pyrimidyl group, and a 5-pyrimidyl group are preferable.
前記アルコキシ基は、炭素数1〜30のアルコキシ基であることが好ましく、炭素数1〜20のアルコキシ基であることがより好ましく、炭素数1〜10のアルコキシ基であることが特に好ましく、炭素数1〜5のアルコキシ基であることが最も好ましい。
The alkoxy group is preferably an alkoxy group having 1 to 30 carbon atoms, more preferably an alkoxy group having 1 to 20 carbon atoms, and particularly preferably an alkoxy group having 1 to 10 carbon atoms. Most preferably, it is an alkoxy group of the
前記アルコキシ基として、例えば、メトキシ基、エトキシ基、t−ブトキシ基等があり、メトキシ基が好ましい。 Examples of the alkoxy group include a methoxy group, an ethoxy group, and a t-butoxy group, and a methoxy group is preferable.
前記アリールオキシ基は、炭素数6〜30のアリールオキシ基であることが好ましく、炭素数6〜20のアリールオキシ基であることがより好ましく、炭素数6〜10のアリールオキシ基であることが特に好ましい。 The aryloxy group is preferably an aryloxy group having 6 to 30 carbon atoms, more preferably an aryloxy group having 6 to 20 carbon atoms, and preferably an aryloxy group having 6 to 10 carbon atoms. Particularly preferred.
前記アリールオキシ基として、例えば、フェノキシ基、ナフチルオキシ基等があり、フェノキシ基が好ましい。 Examples of the aryloxy group include a phenoxy group and a naphthyloxy group, and a phenoxy group is preferable.
ハロゲン原子は、好ましくは塩素原子、臭素原子またはフッ素原子である。より好ましくは臭素原子またはフッ素原子であり、特に好ましくは臭素原子である。 The halogen atom is preferably a chlorine atom, a bromine atom or a fluorine atom. A bromine atom or a fluorine atom is more preferable, and a bromine atom is particularly preferable.
R1とR2、R2とR3は各々結合して環構造を形成してもよい。R1とR2、R2とR3は各々結合して飽和または不飽和の6員環を形成することが好ましい。 R 1 and R 2 , and R 2 and R 3 may be bonded to each other to form a ring structure. R 1 and R 2 , and R 2 and R 3 are preferably bonded to each other to form a saturated or unsaturated 6-membered ring.
この中でもR1として好ましくは、水素原子、または、メチル基であり、より好ましくは、水素原子である。 Of these, R 1 is preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
この中でもR2およびR3として好ましくは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、イソブチル基、または、ターシャルブチル基であり、より好ましくは、水素原子、メチル基、または、エチル基である。 Of these, R 2 and R 3 are preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, an isobutyl group, or a tertiary butyl group, and more preferably a hydrogen atom, a methyl group, or It is an ethyl group.
この中でもR4およびR5として好ましくは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、イソブチル基、または、ターシャルブチル基であり、より好ましくは、水素原子、メチル基、または、ターシャルブチル基である。 Of these, R 4 and R 5 are preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, an isobutyl group, or a tertiary butyl group, and more preferably a hydrogen atom, a methyl group, or It is a tertiary butyl group.
この中でもR6として好ましくは、水素原子、または、メチル基であり、より好ましくは、水素原子である。 Of these, R 6 is preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
R7およびR9としては、上記の中でもアルキル基がより好ましい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、ネオペンチル基、または1−メチルペンチル基が好ましく、メチル基またはt−ブチル基がより好ましく、メチル基が特に好ましい。 Of the above, an alkyl group is more preferable as R 7 and R 9 . Specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, a neopentyl group, or a 1-methylpentyl group is A methyl group or a t-butyl group is more preferable, and a methyl group is particularly preferable.
R8、R10〜R29としては、上記の中でも水素原子、またはアルキル基がより好ましい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、ネオペンチル基、1−メチルペンチル基、または水素原子が好ましく、メチル基、または水素原子が特に好ましく、水素原子であることが最も好ましい。 As R 8 and R 10 to R 29 , a hydrogen atom or an alkyl group is more preferable among the above. Specifically, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, neopentyl group, 1-methylpentyl group, or A hydrogen atom is preferable, a methyl group or a hydrogen atom is particularly preferable, and a hydrogen atom is most preferable.
R30〜R46、R48〜R50、R52〜R56、R58〜R64としては、上記の中でも水素原子、アルキル基、またはアリール基がより好ましい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、ネオペンチル基、1−メチルペンチル基、フェニル基、o−トリル基、m−トリル基、p−トリル基、2,3−キシリル基、2,4−キシリル基、2,5−キシリル基、2,6−キシリル基、3,4−キシリル基、3,5−キシリル基、メシチル基、または水素原子が好ましく、メチル基、または水素原子が特に好ましく、水素原子であることが最も好ましい。 The R 30 ~R 46, R 48 ~R 50, R 52 ~R 56, R 58 ~R 64, a hydrogen atom among the above-mentioned alkyl group or aryl group, and more preferable. Specifically, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, neopentyl group, 1-methylpentyl group, phenyl Group, o-tolyl group, m-tolyl group, p-tolyl group, 2,3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group A group, a 3,5-xylyl group, a mesityl group or a hydrogen atom is preferable, a methyl group or a hydrogen atom is particularly preferable, and a hydrogen atom is most preferable.
R47、R51としては、上記の中でもアルキル基がより好ましい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、ネオペンチル基、または1−メチルペンチル基が好ましく、メチル基またはイソプロピル基がより好ましく、メチル基が特に好ましい。 Of the above, R 47 and R 51 are more preferably alkyl groups. Specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, a neopentyl group, or a 1-methylpentyl group is A methyl group or an isopropyl group is more preferable, and a methyl group is particularly preferable.
R57としては、上記の中でも水素原子、または、アリール基がより好ましい。具体的には、フェニル基、o−トリル基、m−トリル基、p−トリル基、2,3−キシリル基、2,4−キシリル基、2,5−キシリル基、2,6−キシリル基、3,4−キシリル基、3,5−キシリル基、メシチル基、または水素原子が好ましく、2,6−キシリル基、またはメシチル基が特に好ましい。 As R 57 , a hydrogen atom or an aryl group is more preferable among the above. Specifically, phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2,3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, 2,6-xylyl group A 3,4-xylyl group, a 3,5-xylyl group, a mesityl group or a hydrogen atom is preferable, and a 2,6-xylyl group or a mesityl group is particularly preferable.
R65とR66、R66とR67は各々結合して環構造を形成してもよい。R65とR66、R66とR67は各々結合して飽和または不飽和の6員環を形成することが好ましい。 R 65 and R 66 , and R 66 and R 67 may be bonded to each other to form a ring structure. R 65 and R 66 , and R 66 and R 67 are preferably bonded to each other to form a saturated or unsaturated 6-membered ring.
この中でもR65として好ましくは、水素原子、または、メチル基であり、より好ましくは、水素原子である。 Of these, R 65 is preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
この中でもR66およびR67として好ましくは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、イソブチル基、または、ターシャルブチル基であり、より好ましくは、水素原子、メチル基、または、エチル基である。 Of these, R 66 and R 67 are preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, an isobutyl group, or a tertiary butyl group, and more preferably a hydrogen atom, a methyl group, or It is an ethyl group.
この中でもR68およびR69として好ましくは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、イソブチル基、または、ターシャルブチル基であり、より好ましくは、水素原子、メチル基、または、ターシャルブチル基である。 Of these, R 68 and R 69 are preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, an isobutyl group, or a tertiary butyl group, and more preferably a hydrogen atom, a methyl group, or It is a tertiary butyl group.
この中でもR70として好ましくは、水素原子、または、メチル基であり、より好ましくは、水素原子である。 Of these, R 70 is preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
本発明に係る一般式(1)で表されるイリジウム錯体の中でも、室温下、溶液中または薄膜状態での発光量子収率が、0.01以上であることが好ましく、0.1以上であることがより好ましく、0.5以上であることが特に好ましく、0.7以上であることが最も好ましい。 Among the iridium complexes represented by the general formula (1) according to the present invention, the emission quantum yield in a solution or in a thin film state at room temperature is preferably 0.01 or more, and 0.1 or more. More preferably, it is particularly preferably 0.5 or more, and most preferably 0.7 or more.
溶液中の発光量子収率の測定は、溶存酸素を取り除くため、イリジウム錯体が溶解した溶液にアルゴンガスもしくは窒素ガスを通気した後に行うか、または、発光材料が溶解した溶液を凍結脱気した後に行うのが良い。発光量子収率の測定法としては、絶対法または相対法のどちらを用いてもよい。相対法においては、標準物質(キニン硫酸塩など)との発光スペクトルの比較によって、発光量子収率を測定することができる。絶対法においては、市販の装置(例えば、浜松ホトニクス株式会社製、絶対PL量子収率測定装置(C9920−02))を用いることで、固体状態または溶液中での発光量子収率の測定が可能である。溶液中での発光量子収率は種々の溶媒を用いて測定できるが、本発明に係わるイリジウム錯体は、任意の溶媒のいずれかにおいて上記発光量子収率が達成されればよい。 In order to remove dissolved oxygen, the measurement of the luminescence quantum yield in the solution is performed after the solution in which the iridium complex is dissolved is bubbled with argon gas or nitrogen gas, or after the solution in which the luminescent material is dissolved is frozen and deaerated. Good to do. Either an absolute method or a relative method may be used as a method for measuring the emission quantum yield. In the relative method, the emission quantum yield can be measured by comparing the emission spectrum with a standard substance (quinine sulfate, etc.). In the absolute method, a commercially available device (for example, an absolute PL quantum yield measuring device (C9920-02) manufactured by Hamamatsu Photonics KK) can be used to measure the emission quantum yield in a solid state or in a solution. Is. The luminescence quantum yield in a solution can be measured using various solvents, but the iridium complex according to the present invention may be any one of the arbitrary solvents as long as the above luminescence quantum yield is achieved.
薄膜状態での発光量子収率の測定は、例えば石英ガラスの上に本発明のイリジウム錯体を真空蒸着し、市販の装置(例えば、浜松ホトニクス株式会社製、絶対PL量子収率測定装置(C9920))を用いて行うことができる。薄膜での発光量子収率は、本発明のイリジウム錯体を単独で蒸着するか、または種々のホスト材料と共蒸着し測定できるが、本発明に係わるイリジウム錯体は、いずれかの条件において上記発光量子収率が達成されればよい。 The emission quantum yield in a thin film state is measured, for example, by vacuum-depositing the iridium complex of the present invention on quartz glass and using a commercially available device (eg, absolute PL quantum yield measuring device (C9920, manufactured by Hamamatsu Photonics KK). ) Can be used. The emission quantum yield in a thin film can be measured by vapor-depositing the iridium complex of the present invention alone or co-evaporating with various host materials. It suffices if the yield is achieved.
本発明に係る一般式(1)で表されるイリジウム錯体は主に可視光領域(特に青色領域)に発光を示すが、その波長領域は配位子の種類または構造に依存する。特に室温下、溶液中または薄膜での発光スペクトルの発光極大波長(発光極大波長が複数ある場合は、最も短波長側の発光極大波長)については、350nm〜800nmの範囲であることが好ましく、400nm〜600nmの範囲であることがより好ましく、450nm〜550nmの範囲であることが特に好ましく、450nm〜530nmの範囲であることがより特に好ましく、450nm〜500nmの範囲であることが最も好ましい。 The iridium complex represented by the general formula (1) according to the present invention mainly emits light in the visible light region (particularly in the blue region), but the wavelength region thereof depends on the type or structure of the ligand. Particularly, at room temperature, the maximum emission wavelength of the emission spectrum in a solution or in a thin film (when there are a plurality of emission maximum wavelengths, the emission maximum wavelength on the shortest wavelength side) is preferably in the range of 350 nm to 800 nm, and 400 nm. To 600 nm is more preferred, 450 nm to 550 nm is particularly preferred, 450 nm to 530 nm is more preferred, and 450 nm to 500 nm is most preferred.
本発明に係る一般式(1)で表される中でも、特に好ましいイリジウム錯体は、例えば、式(A)〜(O)のうちいずれかのルートで製造することができる。 Among the compounds represented by the general formula (1) according to the present invention, a particularly preferable iridium complex can be produced, for example, by any route of the formulas (A) to (O).
m=3、n=0のケースは、例えば、式(A)のルートである。
m=2、n=1のケースは、例えば、式(B)〜(J)の各ルートである。
m=1、n=2のケースは、例えば、式(K)〜(O)の各ルートである。
本発明に係る一般式(1)で表されるイリジウム錯体については、この他にも、特開2009−40728号公報(特許文献4)、国際公開2011/024737号公報(特許文献5)、国際公開2012/166608号公報(特許文献6)、国際公開2010/056669号公報(特許文献7)、国際公開2010/111755号公報(特許文献8)、または国際公開2012/158851号公報(特許文献9)などの公知文献を参考に合成できる。 Regarding the iridium complex represented by the general formula (1) according to the present invention, in addition to this, Japanese Patent Application Laid-Open No. 2009-40728 (Patent Document 4), International Publication No. 2011/024737 (Patent Document 5), and International Publication 2012/166608 (Patent Document 6), International Publication 2010/056669 (Patent Document 7), International Publication 2010/111755 (Patent Document 8), or International Publication 2012/158851 (Patent Document 9) It can be synthesized with reference to publicly known documents such as ).
本発明に係る一般式(1)で表されるイリジウム錯体については、通常の合成反応の後処理に従って処理した後、必要があれば精製してあるいは精製せずに供することができる。後処理の方法としては、例えば、抽出、冷却、水若しくは有機溶媒を添加することによる晶析、または反応混合物からの溶媒を留去する操作などを単独あるいは組み合わせて行うことができる。精製の方法としては再結晶、蒸留、昇華またはカラムクロマトグラフィーなどを単独あるいは組み合わせて行うことができる。 The iridium complex represented by the general formula (1) according to the present invention can be used after purification according to a usual post-treatment of a synthetic reaction and, if necessary, with or without purification. As a method of the post-treatment, for example, extraction, cooling, crystallization by adding water or an organic solvent, or operation of distilling off the solvent from the reaction mixture can be performed alone or in combination. As a purification method, recrystallization, distillation, sublimation, column chromatography, or the like can be performed alone or in combination.
以下に、本発明に係る、一般式(1)で示されるイリジウム錯体の代表例を表1〜表7に示すが、本発明はこれらに限定されない。 Representative examples of the iridium complex represented by the general formula (1) according to the present invention are shown below in Tables 1 to 7, but the present invention is not limited thereto.
なお、前述したように本発明に係る一般式(1)で表されるイリジウム錯体は、室温下で高効率に燐光を発光することが可能であるため、発光材料または有機発光素子の発光物質として利用できる。また本発明のイリジウム錯体からなる発光材料を用いて有機発光素子(好ましくは有機電界発光素子)を作製することができる。 As described above, since the iridium complex represented by the general formula (1) according to the present invention can emit phosphorescence with high efficiency at room temperature, it can be used as a light emitting material or a light emitting substance of an organic light emitting element. Available. In addition, an organic light emitting device (preferably an organic electroluminescent device) can be produced using the light emitting material comprising the iridium complex of the present invention.
また、本発明に係る一般式(1)で表されるイリジウム錯体を用いることで、発光効率の高い有機発光素子、発光装置、または照明装置を実現することができる。さらに消費電力が低い有機発光素子、発光装置、または照明装置を実現することができる。 Further, by using the iridium complex represented by the general formula (1) according to the present invention, an organic light emitting element, a light emitting device, or a lighting device having high luminous efficiency can be realized. Further, an organic light emitting element, a light emitting device, or a lighting device with low power consumption can be realized.
次に本発明の一般式(1)で表されるイリジウム錯体を用いて作製される有機電界発光素子について説明する。有機電界発光素子は、陽極と陰極との間に複数層の有機化合物を積層した素子であり、発光層の発光材料として、一般式(1)で表されるイリジウム錯体を含有することが好ましい。また一般的に発光層は発光材料とホスト材料とから構成される。 Next, the organic electroluminescent element produced by using the iridium complex represented by the general formula (1) of the present invention will be described. The organic electroluminescent element is an element in which a plurality of layers of organic compounds are laminated between an anode and a cathode, and preferably contains an iridium complex represented by the general formula (1) as a light emitting material of the light emitting layer. The light emitting layer is generally composed of a light emitting material and a host material.
本発明の有機電界発光素子における代表的な素子構成としては、例えば以下の構成があるが、本発明はこれらに限定されるものではない。
(1)陽極/発光層/陰極
(2)陽極/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/陰極
(4)陽極/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(6)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(7)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
Typical element configurations of the organic electroluminescent element of the present invention include, for example, the following configurations, but the present invention is not limited thereto.
(1) Anode/light emitting layer/cathode (2) Anode/light emitting layer/electron transport layer/cathode (3) Anode/hole transport layer/light emitting layer/cathode (4) Anode/hole transport layer/light emitting layer/electron Transport layer/cathode (5) Anode/hole transport layer/light emitting layer/electron transport layer/electron injection layer/cathode (6) Anode/hole injection layer/hole transport layer/light emitting layer/electron transport layer/cathode ( 7) Anode/hole injection layer/hole transport layer/light emitting layer/electron transport layer/electron injection layer/cathode
また発光層と陰極との間に正孔阻止層(正孔障壁層ともいう)を設けてもよい。また発光層と陽極との間に電子阻止層(電子障壁層ともいう)を設けてもよい。 A hole blocking layer (also referred to as a hole blocking layer) may be provided between the light emitting layer and the cathode. An electron blocking layer (also referred to as an electron barrier layer) may be provided between the light emitting layer and the anode.
以下、本発明の有機電界発光素子を構成する各層について説明する。 Hereinafter, each layer constituting the organic electroluminescent element of the present invention will be described.
<発光層>
発光層は、電極から注入された電子および正孔が再結合し、励起子を経由して発光する層であり、発光する部分は発光層の層内であっても、発光層と隣接層との界面であってもよい。
<Light emitting layer>
The light emitting layer is a layer in which electrons and holes injected from the electrode are recombined and emits light via excitons. Even if the light emitting portion is in the layer of the light emitting layer, the light emitting layer and the adjacent layer are May be the interface.
発光層の膜厚としては、2nm〜1000nmの範囲が好ましく、より好ましくは2〜200nmの範囲であり、更に好ましくは3〜150nmの範囲である。 The thickness of the light emitting layer is preferably in the range of 2 nm to 1000 nm, more preferably in the range of 2 to 200 nm, and further preferably in the range of 3 to 150 nm.
本発明では、発光層は、発光材料とホスト材料とを含有することが好ましい。 In the present invention, the light emitting layer preferably contains a light emitting material and a host material.
発光材料としては、本発明に係る一般式(1)で表されるイリジウム錯体が単独もしくは複数種含まれていてもよく、その他の発光材料が含まれてもよい。発光層に含有される化合物のうち、本発明に係る一般式(1)で表されるイリジウム錯体の合計含有量は、質量比で1〜50%であることが好ましく、1〜30%であることがより好ましく、5〜20%であることが特に好ましい。 As the light emitting material, the iridium complex represented by the general formula (1) according to the present invention may be contained alone or in combination, and other light emitting materials may be contained. Among the compounds contained in the light emitting layer, the total content of the iridium complex represented by the general formula (1) according to the present invention is preferably 1 to 50% by mass ratio, and 1 to 30%. Is more preferable, and 5 to 20% is particularly preferable.
その他の発光材料としては、具体的には、アントラセン誘導体、ピレン誘導体、クリセン誘導体、フルオランテン誘導体、ペリレン誘導体、フルオレン誘導体、アリールアセチレン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体、スクアリウム誘導体、オキソベンツアントラセン誘導体、フルオレセイン誘導体、ペリレン誘導体、ポリチオフェン誘導体、希土類錯体系化合物、イリジウム錯体、または白金錯体などが挙げられる。 Specific examples of the other light emitting material include anthracene derivative, pyrene derivative, chrysene derivative, fluoranthene derivative, perylene derivative, fluorene derivative, arylacetylene derivative, styrylarylene derivative, styrylamine derivative, arylamine derivative, boron complex, squarylium. Examples thereof include derivatives, oxobenzanthracene derivatives, fluorescein derivatives, perylene derivatives, polythiophene derivatives, rare earth complex compounds, iridium complexes, and platinum complexes.
ホスト材料は、発光層において主に電荷の注入および輸送を担う化合物である。また、発光層に含有される化合物の内で、その層中での質量比が20%以上であることが好ましい。より好ましくは50%以上であり、特に好ましくは80%以上である。発光層に含有される化合物のうち、ホスト材料の含有量の上限は、質量比で99%以下であることが好ましく、95%以下であることがより好ましく、90%以下であることが特に好ましい。 The host material is a compound mainly responsible for charge injection and transport in the light emitting layer. Further, among the compounds contained in the light emitting layer, the mass ratio in the layer is preferably 20% or more. It is more preferably 50% or more, and particularly preferably 80% or more. Among the compounds contained in the light emitting layer, the upper limit of the content of the host material is preferably 99% or less by mass ratio, more preferably 95% or less, and particularly preferably 90% or less. ..
ホスト材料の励起状態エネルギー(T1準位)は、同一層内に含有される本発明に係る一般式(1)で表されるイリジウム錯体の励起状態エネルギー(T1準位)よりも高いことが好ましい。 The excited state energy (T 1 level) of the host material is higher than the excited state energy (T 1 level) of the iridium complex represented by the general formula (1) according to the present invention contained in the same layer. Is preferred.
ホスト材料は、単独または複数種用いてもよい。ホスト化合物を複数種用いることで、電荷移動調整が可能であり有機電界発光素子を高効率化することができる。 A single host material or a plurality of host materials may be used. By using a plurality of host compounds, charge transfer can be adjusted and the efficiency of the organic electroluminescent device can be improved.
本発明で用いることができるホスト材料としては、特に制限はなく、低分子化合物でも繰り返し単位を有する高分子化合物でもよい。 The host material that can be used in the present invention is not particularly limited, and may be a low molecular compound or a high molecular compound having a repeating unit.
ホスト材料として、具体的には、トリアリールアミン誘導体、フェニレン誘導体、縮合環芳香族化合物(例えばナフタレン誘導体、フェナントレン誘導体、フルオレン誘導体、ピレン誘導体、テトラセン誘導体、コロネン誘導体、クリセン誘導体、ペリレン誘導体、9,10−ジフェニルアントラセン誘導体若しくはルブレン等)、キナクリドン誘導体、アクリドン誘導体、クマリン誘導体、ピラン誘導体、ナイルレッド、ピラジン誘導体、ベンゾイミダゾール誘導体、ベンゾチアゾール誘導体、ベンゾオキサゾール誘導体、スチルベン誘導体、有機金属錯体(例えば、トリス(8−キノリノラート)アルミニウムなどの有機アルミニウム錯体、有機ベリリウム錯体、有機イリジウム錯体、若しくは有機プラチナ錯体等)、またはポリ(フェニレンビニレン)誘導体、ポリ(フルオレン)誘導体、ポリ(フェニレン)誘導体、ポリ(チエニレンビニレン)誘導体若しくはポリ(アセチレン)誘導体などの高分子誘導体が挙げられる。 Specific examples of the host material include triarylamine derivatives, phenylene derivatives, condensed ring aromatic compounds (for example, naphthalene derivatives, phenanthrene derivatives, fluorene derivatives, pyrene derivatives, tetracene derivatives, coronene derivatives, chrysene derivatives, perylene derivatives, 9, 10-diphenylanthracene derivative or rubrene, etc.), quinacridone derivative, acridone derivative, coumarin derivative, pyran derivative, Nile red, pyrazine derivative, benzimidazole derivative, benzothiazole derivative, benzoxazole derivative, stilbene derivative, organometallic complex (for example, tris Organic aluminum complex such as (8-quinolinolato)aluminum, organic beryllium complex, organic iridium complex, or organic platinum complex), or poly(phenylene vinylene) derivative, poly(fluorene) derivative, poly(phenylene) derivative, poly(thienylene) Examples thereof include high molecular weight derivatives such as renvinylene) derivatives and poly(acetylene) derivatives.
<電子輸送層>
電子輸送層とは、電子を輸送する機能を有する材料からなり、陰極より注入された電子を発光層に伝達する機能を有していればよい。
<Electron transport layer>
The electron transport layer is made of a material having a function of transporting electrons, and may have a function of transmitting the electrons injected from the cathode to the light emitting layer.
電子輸送層の膜厚については特に制限はないが、通常は2nm〜5000nmの範囲であり、より好ましくは2〜500nmの範囲であり、さらに好ましくは5〜200nmの範囲である。 The thickness of the electron transport layer is not particularly limited, but is usually in the range of 2 nm to 5000 nm, more preferably in the range of 2 to 500 nm, and further preferably in the range of 5 to 200 nm.
電子輸送層に用いられる材料(以下、電子輸送材料という)としては、電子の注入性または輸送性、または正孔の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。 The material used for the electron-transporting layer (hereinafter referred to as electron-transporting material) has only to have an electron injecting property or a transporting property or a hole blocking property. Any one can be selected and used.
電子輸送性材料として、具体的には、含窒素芳香族複素環誘導体(カルバゾール誘導体、トリス(8−キノリノラート)アルミニウムなどの有機アルミニウム錯体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の1つ以上が窒素原子に置換されたもの)、ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体若しくはベンズオキサゾール誘導体等)、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、または芳香族炭化水素環誘導体(ナフタレン誘導体、アントラセン誘導体若しくはトリフェニレン等)等が挙げられる。 Specific examples of the electron-transporting material include nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, organoaluminum complexes such as tris(8-quinolinolato)aluminum, azacarbazole derivatives (one or more carbon atoms constituting the carbazole ring). Is substituted with a nitrogen atom), pyridine derivative, pyrimidine derivative, triazine derivative, quinoline derivative, quinoxaline derivative, phenanthroline derivative, oxazole derivative, thiazole derivative, oxadiazole derivative, triazole derivative, benzimidazole derivative or benzoxazole derivative, etc. ), a dibenzofuran derivative, a dibenzothiophene derivative, or an aromatic hydrocarbon ring derivative (such as a naphthalene derivative, an anthracene derivative or triphenylene).
<正孔阻止層>
正孔阻止層とは広い意味では電子輸送層の機能を有する層であり、好ましくは電子を輸送する機能を有しつつ正孔を輸送する能力が小さい材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔との再結合確率を向上させることができる。
<Hole blocking layer>
The hole blocking layer is a layer having a function of an electron transporting layer in a broad sense, and is preferably made of a material having a function of transporting an electron and a small ability to transport a hole. Blocking the electrons can improve the recombination probability of electrons and holes.
正孔阻止層は、発光層の陰極側に隣接して設けられることが好ましい。 The hole blocking layer is preferably provided adjacent to the cathode side of the light emitting layer.
正孔阻止層の膜厚としては、好ましくは3〜100nmの範囲であり、更に好ましくは5〜30nmの範囲である。 The thickness of the hole blocking layer is preferably in the range of 3 to 100 nm, more preferably 5 to 30 nm.
正孔阻止層に用いられる材料としては、前述の電子輸送層に用いられる材料が好ましく用いられ、また、前述のホスト材料も正孔阻止層の材料として好ましく用いられる。 As the material used for the hole blocking layer, the material used for the electron transport layer described above is preferably used, and the host material described above is also preferably used for the hole blocking layer.
<電子注入層>
電子注入層(「陰極バッファー層」ともいう。)とは、駆動電圧低下または発光輝度向上のために陰極と発光層との間に設けられる層のことである。
<Electron injection layer>
The electron-injection layer (also referred to as “cathode buffer layer”) is a layer provided between the cathode and the light-emitting layer in order to reduce the driving voltage or improve the emission luminance.
電子注入層の膜厚は0.1〜5nmの範囲が好ましい。より好ましくは0.1〜1nmの範囲である。 The thickness of the electron injection layer is preferably in the range of 0.1 to 5 nm. The range is more preferably 0.1 to 1 nm.
電子注入層に好ましく用いられる材料として、具体的には、金属(ストロンチウム若しくはアルミニウム等)、アルカリ金属化合物(フッ化リチウム若しくはフッ化ナトリウム等)、アルカリ土類金属化合物(フッ化マグネシウム若しくはフッ化カルシウム等)、金属酸化物(酸化アルミニウム等)、または金属錯体(リチウム8−ヒドロキシキノレート(Liq)等)などが挙げられる。また、前述の電子輸送材料を用いることも可能である。さらに電子注入材料としては、フェナントロリン誘導体のリチウム錯体(LiPB)、またはフェノキシピリジンのリチウム錯体(LiPP)などが挙げられる。 Specific examples of materials that are preferably used for the electron injection layer include metals (strontium or aluminum), alkali metal compounds (lithium fluoride, sodium fluoride, etc.), alkaline earth metal compounds (magnesium fluoride, calcium fluoride, etc.). Etc.), metal oxides (aluminum oxide, etc.), metal complexes (lithium 8-hydroxyquinolate (Liq), etc.) and the like. It is also possible to use the above-mentioned electron transport material. Further, examples of the electron injection material include a lithium complex of phenanthroline derivative (LiPB) and a lithium complex of phenoxypyridine (LiPP).
<正孔輸送層>
正孔輸送層とは、正孔を輸送する機能を有する材料からなり、陽極より注入された正孔を発光層に伝達する機能を有していればよい。正孔輸送層は複数あってもよい。
<Hole transport layer>
The hole transport layer is made of a material having a function of transporting holes, and may have a function of transmitting the holes injected from the anode to the light emitting layer. There may be a plurality of hole transport layers.
正孔輸送層の膜厚については特に制限はないが、通常は2nm〜5000nmの範囲であり、より好ましくは5〜500nmの範囲であり、さらに好ましくは5〜200nmの範囲である。 The film thickness of the hole transport layer is not particularly limited, but is usually in the range of 2 nm to 5000 nm, more preferably in the range of 5 to 500 nm, and further preferably in the range of 5 to 200 nm.
正孔輸送層に用いられる材料(以下、正孔輸送材料という。)としては、正孔の注入性または輸送性、または電子の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。 The material used for the hole-transporting layer (hereinafter referred to as the hole-transporting material) may have any of a hole-injecting property or a transporting property or an electron-blocking property, and is a conventionally known compound. Any of these can be selected and used.
正孔輸送性材料として、具体的には、ポルフィリン誘導体;フタロシアニン誘導体;オキサゾール誘導体;フェニレンジアミン誘導体;スチルベン誘導体;トリアリールアミン誘導体;カルバゾール誘導体;インドロカルバゾール誘導体;アントラセン若しくはナフタレンなどのアセン系誘導体;フルオレン誘導体;フルオレノン誘導体;ポリビニルカルバゾール若しくは芳香族アミンを主鎖または側鎖に導入した高分子材料またはオリゴマー;ポリシラン;導電性ポリマーまたはオリゴマー(例えばPEDOT:PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。 As the hole transporting material, specifically, a porphyrin derivative; a phthalocyanine derivative; an oxazole derivative; a phenylenediamine derivative; a stilbene derivative; a triarylamine derivative; a carbazole derivative; an indolocarbazole derivative; an acene derivative such as anthracene or naphthalene; Fluorene derivative; Fluorenone derivative; Polymeric material or oligomer having polyvinylcarbazole or aromatic amine introduced in the main chain or side chain; Polysilane; Conductive polymer or oligomer (eg PEDOT:PSS, aniline copolymer, polyaniline, polythiophene, etc.) ) And the like.
<電子阻止層>
電子阻止層とは広い意味では正孔輸送層の機能を有する層であり、好ましくは正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
<Electron blocking layer>
The electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and is preferably made of a material having a function of transporting holes and having a small ability to transport electrons. By blocking the above, the recombination probability of electrons and holes can be improved.
電子阻止層の膜厚としては、好ましくは3〜100nmの範囲であり、より好ましくは5〜30nmの範囲である。 The thickness of the electron blocking layer is preferably in the range of 3 to 100 nm, more preferably 5 to 30 nm.
また、前述の正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。 Further, the structure of the hole transport layer described above can be used as an electron blocking layer, if necessary.
<正孔注入層>
本発明では、正孔注入層(「陽極バッファー層」ともいう)とは、駆動電圧低下または発光輝度向上のために陽極と発光層との間に設けられる層のことである。
<Hole injection layer>
In the present invention, the hole injection layer (also referred to as “anode buffer layer”) is a layer provided between the anode and the light emitting layer in order to reduce the driving voltage or improve the emission brightness.
正孔注入層に用いられる材料としては、例えば、銅フタロシアニンに代表されるフタロシアニン誘導体、ヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)若しくはポリチオフェンなどの導電性高分子、トリス(2−フェニルピリジン)イリジウム錯体に代表されるシクロメタル化錯体、またはトリアリールアミン誘導体などが好ましい。 Materials used for the hole injection layer include, for example, phthalocyanine derivatives represented by copper phthalocyanine, hexaazatriphenylene derivatives, metal oxides represented by vanadium oxide, amorphous carbon, polyaniline (emeraldine), polythiophene, and other conductive materials. Polymers, cyclometallated complexes represented by tris(2-phenylpyridine)iridium complex, triarylamine derivatives and the like are preferable.
本発明の有機電界発光素子は基板に支持されていることが好ましい。基板の素材については特に制限はなく、例えば、従来の有機電界発光素子において慣用されている、アルカリガラス、無アルカリガラス若しくは石英ガラスなどのガラス、または透明プラスチックなどが挙げられる。 The organic electroluminescent element of the present invention is preferably supported on a substrate. The material of the substrate is not particularly limited, and examples thereof include glass such as alkali glass, non-alkali glass or quartz glass, or transparent plastic, which is commonly used in conventional organic electroluminescent elements.
陽極を構成する材料として、具体的には、金、白金、銀、銅、ニッケル、パラジウム、コバルト、セレン、バナジウム若しくはタングステンなどの金属単体またはこれらの合金;酸化錫、酸化亜鉛、酸化インジウム、酸化錫インジウム(ITO)若しくは酸化亜鉛インジウムなどの金属酸化物が使用できる。また、ポリアニリン、ポリピロール、ポリチオフェンまたはポリフェニレンスルフィドなどの導電性ポリマーも使用できる。これらの電極物質は単独で使用してもよいし、複数併用して使用してもよい。また、陽極は一層で構成されていてもよく、複数の層で構成されていてもよい。 Specific examples of the material constituting the anode include simple metals such as gold, platinum, silver, copper, nickel, palladium, cobalt, selenium, vanadium, or tungsten, or alloys thereof; tin oxide, zinc oxide, indium oxide, oxidation. A metal oxide such as tin indium (ITO) or zinc indium oxide can be used. Also, a conductive polymer such as polyaniline, polypyrrole, polythiophene or polyphenylene sulfide can be used. These electrode substances may be used alone or in combination. The anode may be composed of a single layer or a plurality of layers.
陰極を構成する材料として、具体的には、リチウム、ナトリウム、カリウム、カルシウム、マグネシウム、アルミニウム、インジウム、ルテニウム、チタニウム、マンガン、イットリウム、銀、鉛、錫またはクロムなどの金属単体が挙げられる。また、これらの金属を組み合わせて合金にしてもよい。例えば、リチウム−インジウム、ナトリウム−カリウム、マグネシウム−銀、アルミニウム−リチウム、アルミニウム−マグネシウム、またはマグネシウム−インジウムなどの合金が使用できる。さらに、酸化錫インジウム(ITO)などの金属酸化物の利用も可能である。これらの電極物質は単独で使用してもよいし、複数併用して使用してもよい。また、陰極は一層構造でもよく、多層構造でもよい。 Specific examples of the material forming the cathode include simple metals such as lithium, sodium, potassium, calcium, magnesium, aluminum, indium, ruthenium, titanium, manganese, yttrium, silver, lead, tin or chromium. Further, these metals may be combined to form an alloy. For example, alloys such as lithium-indium, sodium-potassium, magnesium-silver, aluminum-lithium, aluminum-magnesium, or magnesium-indium can be used. Further, a metal oxide such as indium tin oxide (ITO) can be used. These electrode substances may be used alone or in combination. The cathode may have a single layer structure or a multilayer structure.
本発明に係る一般式(1)で表されるイリジウム錯体を含む有機発光素子は、真空蒸着法、溶液塗布法若しくはレーザーなどを用いた転写法、またはスプレー法によって作製することができる。特に、本発明に係る一般式(1)で表されるイリジウム錯体を含む発光層を、真空蒸着法によって形成することが望ましい。 The organic light-emitting device containing the iridium complex represented by the general formula (1) according to the present invention can be produced by a vacuum deposition method, a solution coating method, a transfer method using a laser or the like, or a spray method. In particular, it is desirable to form the light emitting layer containing the iridium complex represented by the general formula (1) according to the present invention by a vacuum vapor deposition method.
真空蒸着法によってホール輸送層、発光層または電子輸送層などの各層を形成する場合の真空蒸着条件は特に限定されないが、10−4〜10−5Pa程度の真空下で50〜500℃程度のボート温度、−50〜300℃程度の基板温度で、0.01〜50nm/秒程度で蒸着することが好ましい。正孔輸送層、発光層または電子輸送層などの各層を複数の材料を使用して形成する場合、材料を入れたボートをそれぞれ温度制御しながら共蒸着することが好ましい。 The vacuum deposition conditions for forming the respective layers such as the hole transport layer, the light emitting layer, and the electron transport layer by the vacuum deposition method are not particularly limited, but at a temperature of about 50 to 500° C. under a vacuum of about 10 −4 to 10 −5 Pa. It is preferable to deposit at a boat temperature of about -50 to 300° C. and a substrate temperature of about 0.01 to 50 nm/sec. When each layer such as the hole transport layer, the light emitting layer or the electron transport layer is formed by using a plurality of materials, it is preferable to co-evaporate the boats containing the materials while controlling the temperature of each boat.
以降、実施例を示しながら本発明についてさらに詳細に説明するが、本発明は実施例に限定して解釈されない。なお、実施例に対応する化合物を「本発明化合物」といい、比較例に対応する化合物を「比較化合物」という。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples. The compounds corresponding to the examples are referred to as “invention compounds”, and the compounds corresponding to comparative examples are referred to as “comparative compounds”.
<実施例I−1>
本発明化合物(Ir−4)の合成
<Example I-1>
Synthesis of compound (Ir-4) of the present invention
ステップ1 化合物(A)の合成
3−ブロモ−2,6−ジメチルピリジン3.01g、ビス(ピナコラト)ジボロン4.30g、酢酸カリウム3.34g、および、脱水1,4−ジオキサン60mlを、三口フラスコに入れ、アルゴンガスを通気した後、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物0.391gを加え、アルゴン雰囲気下、100℃で17時間加熱反応させた。反応溶液を室温まで冷却した後、2Mリン酸三カリウム水溶液20ml、エタノール6ml、2−クロロ−5−エチルピリミジン2.90g、トリス(ジベンジリデンアセトン)ジパラジウム(0)0.370g、および、トリフェニルホスフィン0.676gを加え、アルゴン雰囲気下、110℃で24時間加熱反応させた。反応溶液を室温まで冷却した後に、セライトろ過を行い、得られた濾液に酢酸エチルを加え抽出し有機層を回収した。この溶液を減圧濃縮し、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチルとヘキサン)を用いて精製し、化合物(A)を収率74%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/Acetone−d6)δ:8.76(s,2H),8.14(d,1H),7.16(d,1H),2.72−2.76(m,5H),2.49(s,3H),1.31(t,3H).
3.01 g of 3-bromo-2,6-dimethylpyridine, 4.30 g of bis(pinacolato)diboron, 3.34 g of potassium acetate, and 60 ml of dehydrated 1,4-dioxane were placed in a three-necked flask, and argon gas was bubbled through the flask. After that, [1,1′-bis(diphenylphosphino)ferrocene]palladium(II) dichloride dichloromethane adduct 0.391 g was added, and the mixture was heated and reacted at 100° C. for 17 hours in an argon atmosphere. After cooling the reaction solution to room temperature, 20 ml of 2M aqueous solution of tripotassium phosphate, 6 ml of ethanol, 2.90 g of 2-chloro-5-ethylpyrimidine, 0.370 g of tris(dibenzylideneacetone)dipalladium(0), and tri Phenylphosphine (0.676 g) was added, and the mixture was heated and reacted at 110° C. for 24 hours under an argon atmosphere. After the reaction solution was cooled to room temperature, it was filtered through Celite, and ethyl acetate was added to the obtained filtrate for extraction to collect an organic layer. This solution was concentrated under reduced pressure and purified using silica gel column chromatography (eluent: ethyl acetate and hexane) to obtain compound (A) in a yield of 74%. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/Acetone-d 6 ) δ: 8.76 (s, 2H), 8.14 (d, 1H), 7.16 (d, 1H), 2.72-2.76 (m , 5H), 2.49 (s, 3H), 1.31 (t, 3H).
ステップ2 化合物(B)の合成
3塩化イリジウムn水和物0.774g、化合物(A)1.30g、および、DMF30mlをフラスコに入れ、アリーン冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、700W)を30分間照射した。反応溶液を室温まで冷却させた後、溶媒を減圧留去した。得られた固体をジクロロメタンに溶解させ、10%炭酸水素ナトリウム水溶液を用いて洗浄した後、有機層を回収し減圧濃縮した。これをジクロロメタンとヘキサンを用いて再結晶させ、化合物(B)を収率77%で得た。 0.774 g of iridium trichloride n-hydrate, 1.30 g of compound (A), and 30 ml of DMF were placed in a flask, equipped with an arene condenser, and microwaved (2450 MHz, 700 W) for 30 minutes while aerating argon gas. Irradiated. After cooling the reaction solution to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and washed with a 10% aqueous sodium hydrogen carbonate solution, then the organic layer was collected and concentrated under reduced pressure. This was recrystallized using dichloromethane and hexane to obtain the compound (B) in a yield of 77%.
ステップ3 (Ir−4)の合成
化合物(B)0.314g、化合物(A)0.516g、炭酸カリウム0.314g、および、グリセリン3mlを三口フラスコへ入れ、アルゴン雰囲気下、150℃で14時間加熱反応させた。反応溶液を室温まで冷却した後に、ジクロロメタンと水を加え抽出した。有機層を減圧濃縮して析出した固体をシリカゲルカラムクロマトグラフィー(溶離液:酢酸エチルとジクロロメタン)を用いて精製し、メリジオナル体の(Ir−4)を収率35%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CD2Cl2)δ:8.67(d,1H),8.58(d,2H),8.04(d,1H),7.84(d,1H),7.53(d,1H),6.59(s,1H),6.23(s,1H),6.08(s,1H),2.93−2.96(m,9H),2.46−2.50(m,6H),2.27−2.28(m,9H),1.07−1.13(m,9H).
0.314 g of the compound (B), 0.516 g of the compound (A), 0.314 g of potassium carbonate, and 3 ml of glycerin were placed in a three-necked flask, and heated and reacted at 150° C. for 14 hours under an argon atmosphere. After cooling the reaction solution to room temperature, dichloromethane and water were added for extraction. The organic layer was concentrated under reduced pressure and the precipitated solid was purified by silica gel column chromatography (eluent: ethyl acetate and dichloromethane) to obtain a meridional (Ir-4) in a yield of 35%. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CD 2 Cl 2 ) δ: 8.67 (d, 1H), 8.58 (d, 2H), 8.04 (d, 1H), 7.84 (d, 1H), 7.53 (d, 1H), 6.59 (s, 1H), 6.23 (s, 1H), 6.08 (s, 1H), 2.93-2.96 (m, 9H), 2 .46-2.50 (m, 6H), 2.27-2.28 (m, 9H), 1.07-1.13 (m, 9H).
ステップ4 メリジオナル体(Ir−4)の光異性化反応
メリジオナル体である本発明化合物(Ir−4)0.5mgをジクロロメタン−d20.75mlに溶解させ、NMRチューブに入れた。これにUVランプ(波長:365nm)を5時間照射した。1H−NMRで分析したところ、メリジオナル体は消失し、完全にフェイシャル体(Ir−4)に光異性化していることがわかった。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CD2Cl2)δ:8.73(d,1H),7.44(d,1H),6.54(s,1H),3.00(s,3H),2.52(q,2H),2.29(s,3H),1.13(t,3H).
Step 4 Photoisomerization Reaction of Meridional Form (Ir-4) 0.5 mg of the compound (Ir-4) of the present invention, which is a meridional form, was dissolved in 0.75 ml of dichloromethane-d 2 and placed in an NMR tube. This was irradiated with a UV lamp (wavelength: 365 nm) for 5 hours. When analyzed by 1 H-NMR, it was found that the meridional form disappeared and photoisomerization was completed into the facial form (Ir-4). The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CD 2 Cl 2 ) δ: 8.73 (d, 1H), 7.44 (d, 1H), 6.54 (s, 1H), 3.00 (s, 3H), 2.52 (q, 2H), 2.29 (s, 3H), 1.13 (t, 3H).
<実施例I−2>
本発明化合物(Ir−38)の合成
Synthesis of compound of the present invention (Ir-38)
化合物(B)0.061g、ナトリウムアセチルアセトナート0.0364g、および、2−エトキシエタノール15mlを三口フラスコに入れ、アルゴン雰囲気下で15時間加熱還流した。反応溶液を室温まで冷却し、溶媒を減圧留去し得られた固体をシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンと酢酸エチル)を用いて精製し、(Ir−38)を収率53%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CD2Cl2)δ:8.75(d,2H),8.46(d,2H),5.99(s,2H),5.33(s,1H),2.93(s,6H),2.75(q,4H),2.22(s,6H),1.82(s,6H),1.33(t,6H).
0.061 g of compound (B), 0.0364 g of sodium acetylacetonate, and 15 ml of 2-ethoxyethanol were placed in a three-necked flask, and heated under reflux for 15 hours under an argon atmosphere. The reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure, and the obtained solid was purified by silica gel column chromatography (eluent: dichloromethane and ethyl acetate) to obtain (Ir-38) in a yield of 53%. It was The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CD 2 Cl 2 ) δ: 8.75 (d, 2H), 8.46 (d, 2H), 5.99 (s, 2H), 5.33 (s, 1H), 2.93 (s, 6H), 2.75 (q, 4H), 2.22 (s, 6H), 1.82 (s, 6H), 1.33 (t, 6H).
<実施例I−3>
本発明化合物(Ir−52)の合成
Synthesis of compound of the present invention (Ir-52)
化合物(B)0.051g、ピコリン酸ナトリウム0.033g、DMF15mlをフラスコに入れ、アリーン冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、700W)を30分間照射した。反応溶液を室温まで冷却させた後、溶媒を減圧濃縮し、水を加えた。析出した生成物をろ過により回収し、シリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとメタノール)を用いて精製し、(Ir−52)を収率59%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/Acetone−d6)δ:8.71−8.75(m,3H),8.27(d,1H),7.98(t,1H),7.75(d,1H),7.39−7.44(m,2H),6.10(s,1H),5.89(s,1H),2.96(s,3H),2.94(s,3H),2.69(q,2H),2.54(q,2H),2.28(s,3H),2.23(s,3H),1.27(t,3H),1.13(t,3H).
0.051 g of the compound (B), 0.033 g of sodium picolinate, and 15 ml of DMF were placed in a flask, an Aren condenser was attached, and microwaves (2450 MHz, 700 W) were irradiated for 30 minutes while aerating argon gas. The reaction solution was cooled to room temperature, the solvent was concentrated under reduced pressure, and water was added. The precipitated product was collected by filtration and purified by silica gel column chromatography (eluent: dichloromethane and methanol) to obtain (Ir-52) with a yield of 59%. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/Acetone-d 6 ) δ:8.71-8.75 (m, 3H), 8.27 (d, 1H), 7.98 (t, 1H), 7.75 (d. , 1H), 7.39-7.44 (m, 2H), 6.10 (s, 1H), 5.89 (s, 1H), 2.96 (s, 3H), 2.94 (s, 3H), 2.69 (q, 2H), 2.54 (q, 2H), 2.28 (s, 3H), 2.23 (s, 3H), 1.27 (t, 3H), 1. 13 (t, 3H).
<実施例I−4>
本発明化合物(Ir−60)の合成
Synthesis of compound of the present invention (Ir-60)
化合物(B)0.072g、ピリジン−2−スルホン酸0.091g、炭酸カリウム0.080g、および、DMF20mlをフラスコに入れ、アリーン冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、700W)を30分間照射した。反応溶液を室温まで冷却させた後、溶媒を減圧濃縮し水を加えた。析出した生成物をろ過により回収し、ジクロロメタンとヘキサンを用いて再結晶し、(Ir−60)を収率47%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CD2Cl2)δ:9.06(s,1H),8.78(t,1H),8.72(s,1H),8.02−8.07(m,2H),7.71(s,1H),7.64(d,1H),7.38(t,1H),6.02(s,1H),5.81(s,1H),2.96(s,3H),2.92(s,3H),2.73(q,2H),2.60(q,2H),2.27(s,3H),2.21(s,3H),1.30(t,3H),1.18(t,3H).
Compound (B) 0.072 g, pyridine-2-sulfonic acid 0.091 g, potassium carbonate 0.080 g, and
1 H-NMR (400 MHz/CD 2 Cl 2 )δ: 9.06 (s, 1H), 8.78 (t, 1H), 8.72 (s, 1H), 8.02-8.07 (m , 2H), 7.71 (s, 1H), 7.64 (d, 1H), 7.38 (t, 1H), 6.02 (s, 1H), 5.81 (s, 1H), 2 .96 (s, 3H), 2.92 (s, 3H), 2.73 (q, 2H), 2.60 (q, 2H), 2.27 (s, 3H), 2.21 (s, 3H), 1.30 (t, 3H), 1.18 (t, 3H).
<実施例I−5>
本発明化合物(Ir−67)の合成
Synthesis of the compound of the present invention (Ir-67)
化合物(B)0.309g、トリフルオロメタンスルホン酸銀0.128g、メタノール5ml、および、ジクロロメタン10mlを三口フラスコへ入れ、アルゴン雰囲気下、50℃で5時間加熱反応させた。反応溶液を室温まで冷却後に、セライトろ過を行い、溶媒を減圧留去した。ここへ、2−フェニルピリジン0.104g、メタノール5ml、および、エタノール10mlを加え、アルゴン雰囲気下、80℃で24時間加熱反応させた。反応溶液を室温まで冷却した後に、溶媒を減圧留去した。これをシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとメタノール)を用いて精製し、メリジオナル体の(Ir−67)を収率70%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CD2Cl2)δ:8.54(t,2H),8.05(d,1H),7.98(d,1H),7.85(t,1H),7.78(d,1H),7.70−7.75(m,1H),7.60(d,1H),6.96−7.04(m,3H),6.82(dd,1H),6.31(s,1H),6.17(s,1H),2.98(s,3H),2.94(s,3H),2.38−2.51(m,4H),2.30−2.30(m,6H),1.08(t,3H),1.02(t,3H).
0.309 g of compound (B), 0.128 g of silver trifluoromethanesulfonate, 5 ml of methanol, and 10 ml of dichloromethane were placed in a three-necked flask, and heated and reacted at 50° C. for 5 hours under an argon atmosphere. The reaction solution was cooled to room temperature, filtered through Celite, and the solvent was evaporated under reduced pressure. 2-phenyl pyridine 0.104g, methanol 5ml, and ethanol 10ml were added here, and it was made to heat-react at 80 degreeC for 24 hours under argon atmosphere. After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. This was purified using silica gel column chromatography (eluent: dichloromethane and methanol) to obtain a meridional (Ir-67) in a yield of 70%. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CD 2 Cl 2 ) δ: 8.54 (t, 2H), 8.05 (d, 1H), 7.98 (d, 1H), 7.85 (t, 1H), 7.78 (d, 1H), 7.70-7.75 (m, 1H), 7.60 (d, 1H), 6.96-7.04 (m, 3H), 6.82 (dd, 1H), 6.31 (s, 1H), 6.17 (s, 1H), 2.98 (s, 3H), 2.94 (s, 3H), 2.38-2.51 (m, 4H). ), 2.30-2.30 (m, 6H), 1.08 (t, 3H), 1.02 (t, 3H).
ステップ2 メリジオナル体(Ir−67)の光異性化反応
メリジオナル体である本発明化合物(Ir−67)0.5mgをジクロロメタン−d20.75mlに溶解させ、NMRチューブに入れた。これにUVランプ(波長:365nm)を7時間照射した。1H−NMRで分析したところ、メリジオナル体は消失し、完全にフェイシャル体(Ir−67)に光異性化していることがわかった。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CD2Cl2)δ:8.72(d,1H),8.68(d,1H),7.98(d,1H),7.71−7.76(m,2H),7.54(d,1H),7.44−7.47(m,2H),6.97−7.00(m,2H),6.86(t,1H),6.70(t,1H),6.58(s,2H),3.00(s,3H),2.98(s,3H),2.48−2.54(m,4H),2.27(s,3H),2.25(s,3H),1.15(t,3H),1.09(t,3H).
Step 2 Photoisomerization Reaction of Meridional Form (Ir-67) 0.5 mg of the compound (Ir-67) of the present invention, which is a meridional form, was dissolved in 0.75 ml of dichloromethane-d 2 and placed in an NMR tube. This was irradiated with a UV lamp (wavelength: 365 nm) for 7 hours. As a result of 1 H-NMR analysis, it was found that the meridional form disappeared and the photoisomer was completely converted to the facial form (Ir-67). The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CD 2 Cl 2 ) δ: 8.72 (d, 1H), 8.68 (d, 1H), 7.98 (d, 1H), 7.71-7.76 (m , 2H), 7.54 (d, 1H), 7.44-7.47 (m, 2H), 6.97-7.00 (m, 2H), 6.86 (t, 1H), 6. 70 (t, 1H), 6.58 (s, 2H), 3.00 (s, 3H), 2.98 (s, 3H), 2.48-2.54 (m, 4H), 2.27. (S, 3H), 2.25 (s, 3H), 1.15 (t, 3H), 1.09 (t, 3H).
<実施例I−6>
本発明化合物(Ir−42)の合成
<Example I-6>
Synthesis of the compound of the present invention (Ir-42)
ステップ1 化合物(C)の合成
5−ブロモ−2−メチルピリジン3.09g、ビス(ピナコラト)ジボロン4.87g、酢酸カリウム5.64g、および、脱水1,4−ジオキサン100mlを三口フラスコに入れ、アルゴンガスを通気した後、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物0.213gを加え、アルゴン雰囲気下、100℃で20時間加熱反応させた。反応溶液を室温まで冷却させた後、2Mリン酸三カリウム水溶液40ml、トルエン40ml、2−クロロ−5−エチルピリミジン2.44g、トリス(ジベンジリデンアセトン)ジパラジウム(0)0.407g、および、トリフェニルホスフィン0.744gを加え、アルゴン雰囲気下、110℃で17時間加熱反応させた。反応溶液を室温まで冷却させた後にセライトろ過を行い、濾液へ酢酸エチルを加え抽出し、有機層を回収した。溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチル)を用いて精製し、さらに減圧蒸留することで化合物(C)を収率82%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CDCl3)δ:9.49(d,1H),8.64(s,2H),8.54(dd,1H),7.26(d,1H),2.69(q,2H),2.63(s,3H),1.32(t,3H).
5-Bromo-2-methylpyridine (3.09 g), bis(pinacolato)diboron (4.87 g), potassium acetate (5.64 g), and dehydrated 1,4-dioxane (100 ml) were placed in a three-necked flask, and an argon gas was passed through the flask. 1,1′-Bis(diphenylphosphino)ferrocene]palladium(II) dichloride 0.213 g of a dichloromethane adduct was added, and the mixture was heated and reacted at 100° C. for 20 hours under an argon atmosphere. After cooling the reaction solution to room temperature, 40 ml of a 2M aqueous solution of tripotassium phosphate, 40 ml of toluene, 2.44 g of 2-chloro-5-ethylpyrimidine, 0.407 g of tris(dibenzylideneacetone)dipalladium(0), and 0.744 g of triphenylphosphine was added, and the mixture was heated and reacted at 110° C. for 17 hours in an argon atmosphere. The reaction solution was cooled to room temperature and then filtered through Celite, ethyl acetate was added to the filtrate for extraction, and the organic layer was collected. The solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (eluent: ethyl acetate), and further distilled under reduced pressure to obtain the compound (C) in a yield of 82%. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CDCl 3 ) δ: 9.49 (d, 1 H), 8.64 (s, 2 H), 8.54 (dd, 1 H), 7.26 (d, 1 H), 2. 69 (q, 2H), 2.63 (s, 3H), 1.32 (t, 3H).
ステップ2 化合物(D)の合成
3塩化イリジウムn水和物0.271g、化合物(C)0.301g、DMF15ml、および、炭酸カリウム0.271gをフラスコに入れ、アリーン冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、700W)を30分間照射した。反応溶液を室温まで冷却後に、溶媒を減圧留去した。得られた生成物をジクロロメタンに溶解させ、10%炭酸水素ナトリウム水溶液を用いて洗浄した後、有機層を回収し溶媒を減圧留去した。得られた固体をジクロロメタンとヘキサンを用いて再結晶を行い、化合物(D)を収率67%で得た。 0.271 g of iridium trichloride n hydrate, 0.301 g of compound (C), 15 ml of DMF, and 0.271 g of potassium carbonate were placed in a flask, and an Aren condenser was attached to the flask. , 700 W) for 30 minutes. After cooling the reaction solution to room temperature, the solvent was distilled off under reduced pressure. The obtained product was dissolved in dichloromethane and washed with a 10% aqueous sodium hydrogen carbonate solution, then the organic layer was recovered and the solvent was evaporated under reduced pressure. The obtained solid was recrystallized using dichloromethane and hexane to obtain the compound (D) in a yield of 67%.
ステップ3 (Ir−42)の合成
化合物(D)0.159g、アセチルアセトン0.147g、炭酸カリウム0.313g、および、DMF20mlをフラスコに入れ、アリーン冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、700W)を30分間照射した。反応溶液を室温まで冷却させた後、溶媒を減圧留去し水を加えた。析出した生成物をろ過により回収し、ジクロロメタンとヘキサンを用いて再結晶した。さらにシリカゲルカラムクロマトグラフィー(溶離液:酢酸エチルとメタノール)を用いて精製し、(Ir−42)を収率5%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/アセトン−d6)δ:8.84(d,2H),8.73(s,2H),8.55(d,2H),6.20(s,2H),5.36(s,1H),2.83(q,4H),2.18(s,6H),1.77(s,6H),1.33(t,6H).
0.159 g of compound (D), 0.147 g of acetylacetone, 0.313 g of potassium carbonate, and 20 ml of DMF were put in a flask, equipped with an Arene condenser, and microwaved (2450 MHz, 700 W) for 30 minutes while aerating argon gas. Irradiated. After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure and water was added. The precipitated product was collected by filtration and recrystallized using dichloromethane and hexane. Further purification was performed using silica gel column chromatography (eluent: ethyl acetate and methanol) to obtain (Ir-42) in a yield of 5%. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/acetone-d 6 )δ: 8.84 (d, 2H), 8.73 (s, 2H), 8.55 (d, 2H), 6.20 (s, 2H), 5.36 (s, 1H), 2.83 (q, 4H), 2.18 (s, 6H), 1.77 (s, 6H), 1.33 (t, 6H).
<実施例I−7>
本発明化合物(Ir−53)の合成
Synthesis of compound of the present invention (Ir-53)
化合物(D)0.20g、ピコリン酸0.20g、炭酸カリウム0.22g、および、DMF40mlをフラスコに入れ、アリーン冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、700W)を30分間照射した。反応溶液を室温まで冷却させた後、溶媒を減圧濃縮し、水を加えた。析出した生成物をろ過により回収し、シリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとメタノール)を用いて精製し、(Ir−53)を収率45%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CD2CL2)δ:8.87(d,2H),8.74(d,1H),8.69(dd,2H),8.30(d,1H),8.01(t,1H),7.80(d,1H),7.45−7.49(m,1H),7.34(d,1H),6.31(s,1H),6.17(s,1H),2.72(q,2H),2.56(q,2H),2.38(s,3H),2.36(s,3H),1.29(t,3H),1.14(t,3H).
0.20 g of compound (D), 0.20 g of picolinic acid, 0.22 g of potassium carbonate, and 40 ml of DMF were put in a flask, equipped with an arene condenser, and microwave (2450 MHz, 700 W) was applied to the flask while aerating argon gas. Irradiated for minutes. The reaction solution was cooled to room temperature, the solvent was concentrated under reduced pressure, and water was added. The precipitated product was collected by filtration and purified by silica gel column chromatography (eluent: dichloromethane and methanol) to obtain (Ir-53) in a yield of 45%. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CD 2 CL 2 ) δ: 8.87 (d, 2H), 8.74 (d, 1H), 8.69 (dd, 2H), 8.30 (d, 1H), 8.01 (t, 1H), 7.80 (d, 1H), 7.45-7.49 (m, 1H), 7.34 (d, 1H), 6.31 (s, 1H), 6 .17 (s, 1H), 2.72 (q, 2H), 2.56 (q, 2H), 2.38 (s, 3H), 2.36 (s, 3H), 1.29 (t, 3H), 1.14 (t, 3H).
<実施例I−8>
本発明化合物(Ir−47)の合成
<Example I-8>
Synthesis of the compound of the present invention (Ir-47)
ステップ1 化合物(E)の合成
5−ブロモ−2−ターシャル−ブチルピリミジン3.67g、ビス(ピナコラト)ジボロン4.54g、酢酸カリウム5.36g、および、脱水1,4−ジオキサン100mlを三口フラスコに入れ、アルゴンガスを通気した後、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物0.263gを加え、アルゴン雰囲気下、100℃で17時間加熱反応させた。反応溶液を室温まで冷却した後、2Mリン酸三カリウム水溶液30mL、トルエン20mL、2−クロロ−4−メチルピリミジン2.32g、および、テトラキストリフェニルホスフィンパラジウム(0)0.314gを加え、アルゴン雰囲気下、110℃で24時間加熱反応させた。反応溶液を室温まで冷却した後にセライトろ過を行い、濾液へ酢酸エチルを加え抽出した。有機層を減圧濃縮し得られた生成物をシリカゲルカラムクロマトグラフィー(溶離液:酢酸エチルとヘキサン)を用いて精製し、化合物(E)を収率87%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CDCl3)δ:9.60(s,2H),8.65(d,1H),7.11(d,1H),2.59(s,3H),1.47(s,9H).
3.67 g of 5-bromo-2-tert-butylpyrimidine, 4.54 g of bis(pinacolato)diboron, 5.36 g of potassium acetate, and 100 ml of dehydrated 1,4-dioxane were placed in a three-necked flask, and then argon gas was bubbled. [1,1′-bis(diphenylphosphino)ferrocene]palladium(II) dichloride 0.263 g of a dichloromethane adduct was added, and the mixture was heated and reacted at 100° C. for 17 hours in an argon atmosphere. After the reaction solution was cooled to room temperature, 30 mL of a 2 M aqueous solution of tripotassium phosphate, 20 mL of toluene, 2.32 g of 2-chloro-4-methylpyrimidine, and 0.314 g of tetrakistriphenylphosphine palladium (0) were added, and an argon atmosphere was added. The mixture was heated at 110° C. for 24 hours under heating. The reaction solution was cooled to room temperature, filtered through Celite, and ethyl acetate was added to the filtrate for extraction. The product obtained by concentrating the organic layer under reduced pressure was purified by silica gel column chromatography (eluent: ethyl acetate and hexane) to obtain the compound (E) in a yield of 87%. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CDCl 3 ) δ: 9.60 (s, 2H), 8.65 (d, 1H), 7.11 (d, 1H), 2.59 (s, 3H), 1. 47 (s, 9H).
ステップ2 化合物(F)の合成
3塩化イリジウムn水和物0.071g、化合物(E)0.10g、炭酸カリウム0.060g、および、DMF20mlをフラスコに入れ、アリーン冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、700W)を3分間照射した。室温まで冷却し、炭酸カリウム0.136gを加え、アルゴンガスを通気しながら、マイクロ波(2450MHz、700W)を30分間照射した。反応溶液を室温まで冷却させた後、溶媒を減圧留去した。得られた固体をジクロロメタンに溶解させ、10%炭酸水素ナトリウム水溶液を用いて洗浄した後、有機層を回収し減圧濃縮した。これをジクロロメタンとヘキサンを用いて再結晶を行い、化合物(F)を収率67%で得た。 0.071 g of iridium trichloride n hydrate, 0.10 g of compound (E), 0.060 g of potassium carbonate, and 20 ml of DMF were placed in a flask, an Arene condenser was attached, and while microwaves (2450 MHz , 700 W) for 3 minutes. After cooling to room temperature, 0.136 g of potassium carbonate was added, and microwaves (2450 MHz, 700 W) were irradiated for 30 minutes while aerating argon gas. After cooling the reaction solution to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and washed with a 10% aqueous sodium hydrogen carbonate solution, then the organic layer was collected and concentrated under reduced pressure. This was recrystallized using dichloromethane and hexane to obtain the compound (F) in a yield of 67%.
ステップ3 (Ir−47)の合成
化合物(F)0.739g、アセチルアセトン0.535g、炭酸カリウム0.731g、および、DMF80mlをフラスコに入れ、アリーン冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、700W)を40分間照射した。反応溶液を室温まで冷却させた後、溶媒を減圧濃縮し水を加えた。析出した生成物をろ過により回収し、ジクロロメタンとヘキサンを用いて再結晶した。さらにシリカゲルカラムクロマトグラフィー(溶離液:酢酸エチルとヘキサン)を用いて精製し、(Ir−47)を収率40%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/アセトン−d6)δ:8.65(d,2H),8.55(s,2H),7.43(d,2H),5.35(s,1H),2.76(s,6H),1.80(s,6H),1.06(s,18H).
0.739 g of compound (F), 0.535 g of acetylacetone, 0.731 g of potassium carbonate, and 80 ml of DMF were placed in a flask, equipped with an Aren condenser, and microwaved (2450 MHz, 700 W) for 40 minutes while aerating argon gas. Irradiated. After cooling the reaction solution to room temperature, the solvent was concentrated under reduced pressure and water was added. The precipitated product was collected by filtration and recrystallized using dichloromethane and hexane. Further purification was carried out using silica gel column chromatography (eluent: ethyl acetate and hexane) to obtain (Ir-47) with a yield of 40%. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/acetone-d 6 )δ: 8.65 (d, 2H), 8.55 (s, 2H), 7.43 (d, 2H), 5.35 (s, 1H), 2.76 (s, 6H), 1.80 (s, 6H), 1.06 (s, 18H).
<実施例I−9>
本発明化合物(Ir−49)の合成
<Example I-9>
Synthesis of compound of the present invention (Ir-49)
化合物(F)0.1533g、トリフルオロメタンスルホン酸銀0.0615g、アセトニトリル5ml、ジクロロメタン10mlを三口フラスコに入れ、50℃で3時間撹拌した。反応溶液を室温まで冷却し、セライトろ過した。濾液を減圧濃縮した。ここへ、トリフルオロアセチルアセトン0.0456g、炭酸カリウム0.1356g、および、エタノール10mlを入れ、アルゴンガス雰囲気下、50℃で5時間加熱反応させた。溶媒を減圧濃縮し得られた固体を、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチルとジクロロメタン)を用いて精製し、(Ir−49)を収率18%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CD2Cl2)δ:8.57(s,2H),8.42(d,1H),8.40(d,1H),7.18(d,1H),7.16(d,1H),5.72(s,1H),2.76(s,6H),2.01(s,3H),1.07(s,18H).
0.1533 g of compound (F), 0.0615 g of silver trifluoromethanesulfonate, 5 ml of acetonitrile and 10 ml of dichloromethane were placed in a three-necked flask and stirred at 50° C. for 3 hours. The reaction solution was cooled to room temperature and filtered through Celite. The filtrate was concentrated under reduced pressure. To this, 0.0456 g of trifluoroacetylacetone, 0.1356 g of potassium carbonate, and 10 ml of ethanol were put, and the mixture was heated and reacted at 50° C. for 5 hours in an argon gas atmosphere. The solvent was concentrated under reduced pressure, and the obtained solid was purified by silica gel column chromatography (eluent: ethyl acetate and dichloromethane) to obtain (Ir-49) in a yield of 18%. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CD 2 Cl 2 ) δ: 8.57 (s, 2H), 8.42 (d, 1H), 8.40 (d, 1H), 7.18 (d, 1H), 7.16 (d, 1H), 5.72 (s, 1H), 2.76 (s, 6H), 2.01 (s, 3H), 1.07 (s, 18H).
<実施例I−10>
本発明化合物(Ir−59)の合成
Synthesis of the compound of the present invention (Ir-59)
化合物(F)0.61g、ピコリン酸0.60g、炭酸カリウム0.60g、および、DMF100mlをフラスコに入れ、アリーン冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、700W)を30分間照射した。反応溶液を室温まで冷却させた後、溶媒を減圧濃縮し、水を加えた。析出した生成物をろ過により回収し、シリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとメタノール)により精製し、(Ir−59)を収率45%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CD2Cl2)δ:8.66−8.72(m,3H),8.29(d,1H),7.99(dd,1H),7.83(d,1H),7.63(d,1H),7.48(dd,1H),7.14(d,1H),6.97(d,1H),2.71(s,3H),2.70(s,3H),1.15(s,9H),1.10(s,9H).
0.61 g of compound (F), 0.60 g of picolinic acid, 0.60 g of potassium carbonate, and 100 ml of DMF were put in a flask, equipped with an Arene condenser, and microwaved (2450 MHz, 700 W) at 30 while aerating argon gas. Irradiated for minutes. The reaction solution was cooled to room temperature, the solvent was concentrated under reduced pressure, and water was added. The precipitated product was collected by filtration and purified by silica gel column chromatography (eluent: dichloromethane and methanol) to obtain (Ir-59) in a yield of 45%. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CD 2 Cl 2 ) δ:8.66-8.72 (m, 3H), 8.29 (d, 1H), 7.99 (dd, 1H), 7.83 (d. , 1H), 7.63 (d, 1H), 7.48 (dd, 1H), 7.14 (d, 1H), 6.97 (d, 1H), 2.71 (s, 3H), 2 .70 (s, 3H), 1.15 (s, 9H), 1.10 (s, 9H).
<実施例I−11>
本発明化合物(Ir−22)の合成
Synthesis of the compound of the present invention (Ir-22)
酢酸イリジウム(ChemPur GmbH製)0.101g、化合物(E)0.3722g、および、ジエチレングリコール20mlを三口フラスコに入れ、アルゴン雰囲気下、235℃で12時間、加熱反応させた。反応溶液を室温まで冷却させた後、得られた固体をジクロロメタンに溶解させ、10%炭酸水素ナトリウム水溶液を用いて洗浄した後、有機層を回収し減圧濃縮した。これをシリカゲルカラムクロマトグラフィー(溶離液:酢酸エチルとヘキサン)を用いて精製し、メリジオナル体の(Ir−22)を収率15%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CD2Cl2)δ:8.87(s,1H),8.81(s,1H),8.65(s,1H),8.14(d,1H),7.88(d,1H),7.75(d,1H),6.97(d,1H),6.85(d,1H),6.82(d,1H),2.63(s,3H),2.61(s,6H),1.26(s,9H),1.18(s,18H).
0.101 g of iridium acetate (manufactured by ChemPur GmbH), 0.3722 g of compound (E), and 20 ml of diethylene glycol were placed in a three-necked flask, and heated and reacted at 235° C. for 12 hours under an argon atmosphere. After cooling the reaction solution to room temperature, the obtained solid was dissolved in dichloromethane and washed with a 10% aqueous sodium hydrogen carbonate solution, and then the organic layer was collected and concentrated under reduced pressure. This was purified using silica gel column chromatography (eluent: ethyl acetate and hexane) to obtain a meridional (Ir-22) in a yield of 15%. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CD 2 Cl 2 ) δ:8.87 (s,1H),8.81 (s,1H),8.65 (s,1H),8.14 (d,1H), 7.88 (d, 1H), 7.75 (d, 1H), 6.97 (d, 1H), 6.85 (d, 1H), 6.82 (d, 1H), 2.63 (s , 3H), 2.61 (s, 6H), 1.26 (s, 9H), 1.18 (s, 18H).
<実施例I−12>
本発明化合物(Ir−48)の合成
<Example I-12>
Synthesis of compound of the present invention (Ir-48)
ステップ1 化合物(G)の合成
5−ブロモ−2−ターシャル−ブチルピリミジン3.87g、ビス(ピナコラト)ジボロン5.48g、酢酸カリウム2.11g、および、脱水1,4−ジオキサン50mlを三口フラスコに入れ、アルゴンガスを通気した後、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物0.602gを加え、アルゴン雰囲気下、110℃で5時間加熱反応させた。室温まで冷却し、セライトろ過を行った後、溶媒を減圧留去させた。得られた生成物をシリカゲルカラムクロマトグラフィー(溶離液:酢酸エチルとヘキサン)を用いて精製し、反応中間体を2.68g得た。この反応中間体2.68g、2Mリン酸三カリウム水溶液20mL、トルエン30mL、エタノール10mL、2−クロロ−5−エチルピリミジン1.29gを三口フラスコへ入れ、アルゴンガスを30分間通気した後、テトラキストリフェニルホスフィンパラジウム(0)0.588gを入れ、アルゴン雰囲気下、110℃で24時間加熱反応させた。反応溶液を室温まで冷却した後にセライトろ過を行い、濾液へ酢酸エチルを加え抽出した。有機層を減圧濃縮し得られた生成物をシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンと酢酸エチル)を用いて精製し、化合物(G)を収率73%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CD2Cl2)δ:9.57(s,2H),8.69(s,2H),2.71(q,2H),1.46(s,3H),1.32(t,9H).
5.87 g of 5-bromo-2-tert-butylpyrimidine, 5.48 g of bis(pinacolato)diboron, 2.11 g of potassium acetate, and 50 ml of dehydrated 1,4-dioxane were put into a three-necked flask, and after aeration with argon gas , [1,1′-bis(diphenylphosphino)ferrocene]palladium(II) dichloride dichloromethane adduct 0.602 g was added, and the mixture was heated and reacted at 110° C. for 5 hours in an argon atmosphere. After cooling to room temperature and filtration with Celite, the solvent was distilled off under reduced pressure. The obtained product was purified by silica gel column chromatography (eluent: ethyl acetate and hexane) to obtain 2.68 g of a reaction intermediate. This reaction intermediate 2.68 g, 2 M aqueous solution of
1 H-NMR (400 MHz/CD 2 Cl 2 ) δ: 9.57 (s, 2H), 8.69 (s, 2H), 2.71 (q, 2H), 1.46 (s, 3H), 1.32 (t, 9H).
ステップ2 化合物(H)の合成
3塩化イリジウムn水和物0.877g、化合物(G)1.20g、および、DMF50mlをフラスコに入れ、アリーン冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、700W)を30分間照射した。さらに反応溶液を室温まで冷却させた後、溶媒を減圧留去した。得られた固体をジクロロメタンに溶解させ、10%炭酸水素ナトリウム水溶液を用いて洗浄した後、有機層を回収し減圧濃縮した。これをジクロロメタンとヘキサンを用いて再結晶を行い、化合物(H)を収率77%で得た。 0.877 g of iridium trichloride n hydrate, 1.20 g of compound (G), and 50 ml of DMF were placed in a flask, equipped with an arene condenser, and microwaved (2450 MHz, 700 W) for 30 minutes while aerating argon gas. Irradiated. After further cooling the reaction solution to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and washed with a 10% aqueous sodium hydrogen carbonate solution, then the organic layer was collected and concentrated under reduced pressure. This was recrystallized using dichloromethane and hexane to obtain the compound (H) in a yield of 77%.
ステップ3 (Ir−48)の合成
化合物(H)0.120g、ナトリウムアセチルアセトナート0.0414g、および、2−エトキシエタノール15mlを三口フラスコへ入れ、アルゴン雰囲気下、120℃で17時間加熱反応させた。反応溶液を室温まで冷却後に、反応溶液を濃縮し、水を入れ、析出物をろ過により回収した。これをシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンと酢酸エチル)を用いて精製し、(Ir−48)を収率60%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/アセトン−d6)δ:8.85(d,2H),8.67(d,2H),8.53(s,2H),5.36(s,1H),2.85(q,4H),1.35(t,6H),1.81(s,6H),1.05(s,18H).
0.120 g of compound (H), 0.0414 g of sodium acetylacetonate, and 15 ml of 2-ethoxyethanol were put into a three-necked flask, and heated and reacted at 120° C. for 17 hours under an argon atmosphere. After cooling the reaction solution to room temperature, the reaction solution was concentrated, water was added, and the precipitate was collected by filtration. This was purified using silica gel column chromatography (eluent: dichloromethane and ethyl acetate) to obtain (Ir-48) in a yield of 60%. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/acetone-d 6 )δ: 8.85 (d, 2H), 8.67 (d, 2H), 8.53 (s, 2H), 5.36 (s, 1H), 2.85 (q, 4H), 1.35 (t, 6H), 1.81 (s, 6H), 1.05 (s, 18H).
<実施例I−13>
本発明化合物(Ir−56)の合成
Synthesis of compound of the present invention (Ir-56)
化合物(H)0.100g、アセトニトリル10ml、および、トリフルオロメタンスルホン酸銀0.0381gを三口フラスコへ入れ、アルゴン雰囲気下、50℃で3時間加熱反応させた。反応溶液を室温まで冷却後に、セライトろ過を行い、濾液を減圧濃縮した。ここへピコリン酸ナトリウム0.0422g、アセトニトリル10mlを加え、アルゴン雰囲気下、5時間加熱還流させた。反応溶液を室温まで冷却後に、溶媒を減圧留去した。得られた固体をシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとメタノール)を用いて精製し、(Ir−56)を収率19%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CD2Cl2)δ:8.77(d,1H),8.64−8.67(m,4H),8.31(d,1H),8.01(dd,1H),7.82(d,1H),7.61(d,1H),7.49(dd,1H),2.72(q,2H),2.52−2.60(m,2H),1.32(t,3H),1.17(t,3H),1.14(s,9H),1.08(s,9H).
0.100 g of compound (H), 10 ml of acetonitrile, and 0.0381 g of silver trifluoromethanesulfonate were placed in a three-necked flask, and heated and reacted at 50° C. for 3 hours under an argon atmosphere. The reaction solution was cooled to room temperature, filtered through Celite, and the filtrate was concentrated under reduced pressure. To this, 0.0422 g of sodium picolinate and 10 ml of acetonitrile were added, and the mixture was heated under reflux for 5 hours under an argon atmosphere. After cooling the reaction solution to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was purified using silica gel column chromatography (eluent: dichloromethane and methanol) to obtain (Ir-56) in a yield of 19%. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CD 2 Cl 2 ) δ: 8.77 (d, 1H), 8.64-8.67 (m, 4H), 8.31 (d, 1H), 8.01 (dd). , 1H), 7.82 (d, 1H), 7.61 (d, 1H), 7.49 (dd, 1H), 2.72 (q, 2H), 2.52-2.60 (m, 2H), 1.32 (t, 3H), 1.17 (t, 3H), 1.14 (s, 9H), 1.08 (s, 9H).
<実施例I−14>
本発明化合物(Ir−61)の合成
Synthesis of compound of the present invention (Ir-61)
化合物(H)0.061g、ピリジン−2−スルホン酸0.0265g、炭酸ナトリウム0.0158g、および、DMF15mlをフラスコに入れ、アリーン冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、700W)を30分間照射した。反応溶液を室温まで冷却させた後、ろ過した。濾液を減圧濃縮し析出した固体をジクロロメタンに溶解し、不溶物をろ過により除去した。濾液を減圧濃縮して得られた固体をシリカゲルカラムクロマトグラフィー(溶離液:酢酸エチルとメタノール)で精製し、(Ir−61)を収率48%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/アセトン−d6)δ:9.15(d,1H),8.89(dd,2H),8.61(d,2H),8.27(t,1H),8.17(s,1H),8.08(d,1H),7.88(d,1H),7.68(t,1H),2.83(q,2H),2.68(q,2H),1.35(t,6H),1.05(s,18H).
Compound (H) 0.061 g, pyridine-2-sulfonic acid 0.0265 g, sodium carbonate 0.0158 g, and DMF 15 ml were placed in a flask, an Aren condenser was attached, and microwaves (2450 MHz, while venting an argon gas, (700 W) was irradiated for 30 minutes. The reaction solution was cooled to room temperature and then filtered. The filtrate was concentrated under reduced pressure, the precipitated solid was dissolved in dichloromethane, and the insoluble material was removed by filtration. The solid obtained by concentrating the filtrate under reduced pressure was purified by silica gel column chromatography (eluent: ethyl acetate and methanol) to obtain (Ir-61) in a yield of 48%. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/acetone-d 6 )δ: 9.15 (d, 1H), 8.89 (dd, 2H), 8.61 (d, 2H), 8.27 (t, 1H), 8.17 (s, 1H), 8.08 (d, 1H), 7.88 (d, 1H), 7.68 (t, 1H), 2.83 (q, 2H), 2.68 (q , 2H), 1.35 (t, 6H), 1.05 (s, 18H).
<参考例I−15>
本発明化合物(Ir−62)の合成
< Reference Example I-15>
Synthesis of compound of the present invention (Ir-62)
ステップ1 化合物(I)の合成
2−クロロ−5−エチルピリミジン0.679g、2,6−ジメトキシピリジン−3−ボロン酸MIDAエステル1.406g、2Mリン酸三カリウム水溶液10ml、および、ジオキサン60mlを、三口フラスコに入れ、アルゴンガスを通気した後、テトラキストリフェニルホスフィンパラジウム(0)0.291gを加え、アルゴン雰囲気下、60℃で24時間加熱反応させた。反応溶液を室温まで冷却した後、セライトろ過を行い、得られた濾液を減圧濃縮し、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチルとヘキサン)を用いて精製し、化合物(I)を収率69%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CDCl3)δ:8.65(s,2H),8.18(d,1H),6.43(d,1H),4.06(s,3H),3.98(s,3H),2.67(q,2H),1.31(t,3H).
0.679 g of 2-chloro-5-ethylpyrimidine, 1.406 g of 2,6-dimethoxypyridine-3-boronic acid MIDA ester, 10 ml of 2M aqueous solution of tripotassium phosphate, and 60 ml of dioxane were placed in a three-necked flask, and argon gas was introduced. Was bubbled, 0.291 g of tetrakistriphenylphosphine palladium (0) was added, and the mixture was heated and reacted at 60° C. for 24 hours in an argon atmosphere. The reaction solution was cooled to room temperature, filtered through Celite, and the obtained filtrate was concentrated under reduced pressure and purified by silica gel column chromatography (eluent: ethyl acetate and hexane) to give compound (I) in a yield of 69. Earned in %. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CDCl 3 ) δ: 8.65 (s, 2H), 8.18 (d, 1H), 6.43 (d, 1H), 4.06 (s, 3H), 3. 98 (s, 3H), 2.67 (q, 2H), 1.31 (t, 3H).
ステップ2 化合物(J)の合成
3塩化イリジウムn水和物0.294g、化合物(I)0.402g、炭酸カリウム0.068g、および、DMF30mlをフラスコに入れ、アリーン冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、700W)を5分間照射した。反応溶液を室温まで冷却させた後、炭酸カリウム0.250gを加え、マイクロ波(2450MHz、700W)をさらに25分間照射した。反応溶液を室温まで冷却させた後、溶媒を減圧留去した。得られた固体をジクロロメタンに溶解させ、10%炭酸水素ナトリウム水溶液を用いて洗浄した後、有機層を回収し減圧濃縮した。これをジクロロメタンとヘキサンを用いて再結晶させ、化合物(J)を収率67%で得た。 0.294 g of iridium trichloride n hydrate, 0.402 g of compound (I), 0.068 g of potassium carbonate, and 30 ml of DMF were placed in a flask, equipped with an Arene condenser, and microwaved (2450 MHz) while aerating argon gas. , 700 W) for 5 minutes. After the reaction solution was cooled to room temperature, 0.250 g of potassium carbonate was added, and microwave (2450 MHz, 700 W) was irradiated for another 25 minutes. After cooling the reaction solution to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and washed with a 10% aqueous sodium hydrogen carbonate solution, then the organic layer was collected and concentrated under reduced pressure. This was recrystallized using dichloromethane and hexane to obtain the compound (J) with a yield of 67%.
ステップ3 (Ir−62)の合成
化合物(I)0.308g、ピコリン酸0.266g、炭酸カリウム0.301g、および、DMF40mlをフラスコに入れ、アリーン冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、700W)を30分間照射した。反応溶液を室温まで冷却させた後、溶媒を減圧濃縮し、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチルとメタノール)を用いて精製し、(Ir−62)を収率40%で得た。1H−NMRのデータを以下に示す。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CD2Cl2)δ:8.67(d,1H),8.63(d,1H),8.59(d,1H),8.25(d,1H),7.95(dd,1H),7.89(d,1H),7.42(dd,1H),7.26(d,1H),5.37(s,1H),5.18(s,1H),4.05(s,3H),4.02(s,3H),3.81(s,3H),3.77(s,3H),2.63(q,2H),2.45(q,2H),1.23(t,3H),1.08(t,3H).
0.308 g of compound (I), 0.266 g of picolinic acid, 0.301 g of potassium carbonate, and 40 ml of DMF were placed in a flask, an Aren condenser was attached, and microwaves (2450 MHz, 700 W) were applied while aerating argon gas. Irradiated for minutes. After the reaction solution was cooled to room temperature, the solvent was concentrated under reduced pressure and purified by silica gel column chromatography (eluent: ethyl acetate and methanol) to obtain (Ir-62) in a yield of 40%. The data of 1 H-NMR is shown below. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CD 2 Cl 2 )δ: 8.67 (d, 1H), 8.63 (d, 1H), 8.59 (d, 1H), 8.25 (d, 1H), 7.95 (dd, 1H), 7.89 (d, 1H), 7.42 (dd, 1H), 7.26 (d, 1H), 5.37 (s, 1H), 5.18 (s , 1H), 4.05 (s, 3H), 4.02 (s, 3H), 3.81 (s, 3H), 3.77 (s, 3H), 2.63 (q, 2H), 2 .45 (q, 2H), 1.23 (t, 3H), 1.08 (t, 3H).
<参考例I−16>
本発明化合物(Ir−65)の合成
< Reference Example I-16>
Synthesis of the compound of the present invention (Ir-65)
ステップ1 化合物(K)の合成
2−クロロ−4−メチルピリミジン0.0799g、2,6−ジメトキシ−3−(4,4,5,5−テトラメチル−1,3,2−ジオギザボロラン−2−イル)ピリジン0.151g、2M炭酸カリウム水溶液20ml、SPhos0.0091g、および、トルエン20mlを、三口フラスコに入れ、アルゴンガスを通気した後、トリス(ジベンジリデンアセトン)ジパラジウム(0)0.0051g、を加え、アルゴン雰囲気下、100℃で17時間加熱反応させた。反応溶液を室温まで冷却した後、セライトろ過を行い、得られた濾液を減圧濃縮し、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチルとヘキサン)を用いて精製し、化合物(K)を収率85%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CDCl3)δ:8.66(d,1H),8.16(d,1H),7.01(d,1H),6.42(d,1H),4.04(s,3H),3.98(s,3H),2.57(s,3H).
2-chloro-4-methylpyrimidine 0.0799 g, 2,6-dimethoxy-3-(4,4,5,5-tetramethyl-1,3,2-diogizaborolan-2-yl)pyridine 0.151 g,
1 H-NMR (400 MHz/CDCl 3 ) δ:8.66 (d,1H),8.16 (d,1H),7.01 (d,1H),6.42 (d,1H),4. 04 (s, 3H), 3.98 (s, 3H), 2.57 (s, 3H).
ステップ2 化合物(L)の合成
3塩化イリジウムn水和物0.339g、化合物(K)0.434g、炭酸カリウム1.03g、および、DMF40mlをフラスコに入れ、アリーン冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、700W)を30分間照射した。反応溶液を室温まで冷却させた後、溶媒を減圧留去した。得られた固体をジクロロメタンに溶解させ、10%炭酸水素ナトリウム水溶液を用いて洗浄した後、有機層を回収し減圧濃縮した。これをジクロロメタンとヘキサンを用いて再結晶させ、化合物(L)を収率78%で得た。 0.339 g of iridium trichloride n hydrate, 0.434 g of compound (K), 1.03 g of potassium carbonate, and 40 ml of DMF were placed in a flask, and an Aren condenser was attached to the flask. , 700 W) for 30 minutes. After cooling the reaction solution to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane and washed with a 10% aqueous sodium hydrogen carbonate solution, then the organic layer was collected and concentrated under reduced pressure. This was recrystallized using dichloromethane and hexane to obtain the compound (L) in a yield of 78%.
ステップ3 (Ir−65)の合成
化合物(L)0.401g、ピコリン酸0.358g、炭酸カリウム0.403g、DMF40mlをフラスコに入れ、アリーン冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、700W)を30分間照射した。反応溶液を室温まで冷却させた後、溶媒を減圧濃縮し、水を加えた。析出した生成物をろ過により回収し、ジクロロメタンとヘキサンを用いて再結晶し、さらに、シリカゲルカラムクロマトグラフィー(溶離液:酢酸エチルとメタノール)を用いて精製し、(Ir−65)を収率86%で得た。
1H−NMR(400MHz/CD2CL2)δ:8.53(d,1H),8.21(d,1H),7.92(t,1H),7.85(d,1H),7.38(dd,1H),7.34(d,1H),6.88(d,1H),6.71(d,1H),5.42(s,1H),5.24(s,1H),4.04(s,3H),4.02(s,3H),3.82(s,3H),3.78(s,3H),2.68(s,3H),2.65(s,3H).
0.401 g of compound (L), 0.358 g of picolinic acid, 0.403 g of potassium carbonate, and 40 ml of DMF were placed in a flask, an Arene condenser was attached, and microwaves (2450 MHz, 700 W) were irradiated for 30 minutes while aerating argon gas. did. The reaction solution was cooled to room temperature, the solvent was concentrated under reduced pressure, and water was added. The precipitated product was collected by filtration, recrystallized using dichloromethane and hexane, and further purified by silica gel column chromatography (eluent: ethyl acetate and methanol) to give (Ir-65) in a yield of 86. Earned in %.
1 H-NMR (400 MHz/CD 2 CL 2 ) δ: 8.53 (d, 1H), 8.21 (d, 1H), 7.92 (t, 1H), 7.85 (d, 1H), 7.38 (dd, 1H), 7.34 (d, 1H), 6.88 (d, 1H), 6.71 (d, 1H), 5.42 (s, 1H), 5.24 (s , 1H), 4.04 (s, 3H), 4.02 (s, 3H), 3.82 (s, 3H), 3.78 (s, 3H), 2.68 (s, 3H), 2 .65 (s, 3H).
<参考例I−17>
本発明化合物(Ir−25)の合成
< Reference Example I-17>
Synthesis of compound of the present invention (Ir-25)
ステップ1 化合物(M)の合成
2−ブロモ−ピリミジン8.02g、2,6−ジメトキシ−3−ピリジンボロン酸9.95g、2M炭酸カリウム水溶液120mlおよびテトラヒドロフラン100mlを三口フラスコに入れ、アルゴンガスを通気した後、テトラキス(トリフェニルホスフィン)パラジウム(0)3.86g、を加え、アルゴン雰囲気下、70〜77℃で45時間加熱反応させた。反応溶液を室温まで冷却した後、有機層を回収し、溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタン)を用いて精製し、化合物(M)を収率32%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CDCl3)δ:8.82(d,2H),8.24(d,1H),7.15(t,1H),6.44(d,1H),4.06(s,3H),3.99(s,3H).
2-Bromo-pyrimidine (8.02 g), 2,6-dimethoxy-3-pyridineboronic acid (9.95 g), 2M aqueous potassium carbonate solution (120 ml) and tetrahydrofuran (100 ml) were placed in a three-necked flask, and argon gas was bubbled through the mixture, followed by tetrakis(triphenylphosphine). ) Palladium (0) 3.86 g was added, and the mixture was heated and reacted at 70 to 77° C. for 45 hours under an argon atmosphere. After cooling the reaction solution to room temperature, the organic layer was collected, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: dichloromethane) to obtain the compound (M) in a yield of 32%. .. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CDCl 3 ) δ: 8.82 (d, 2H), 8.24 (d, 1H), 7.15 (t, 1H), 6.44 (d, 1H), 4. 06 (s, 3H), 3.99 (s, 3H).
ステップ2 化合物(N)の合成
3塩化イリジウムn水和物1.86g、化合物(M)2.50g、DMF50ml、および純水10mlをフラスコに入れ、ジムロート冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、500W)を45分間照射した。反応溶液を室温まで冷却させた後、溶媒を減圧留去した。これにメタノールおよび純水を投入後、これをろ過、純水で洗浄した。得られた固体をジクロロメタンに溶解させ、10%炭酸カリウム水溶液を用いて洗浄した後、有機層を回収し減圧留去した。これをジクロロメタンとヘキサンを用いて再結晶させ、化合物(N)を収率73%で得た。 1.86 g of iridium trichloride n hydrate, 2.50 g of compound (M), 50 ml of DMF, and 10 ml of pure water were placed in a flask, equipped with a Dimroth condenser, and microwaved (2450 MHz, 500 W) while aerating argon gas. For 45 minutes. After cooling the reaction solution to room temperature, the solvent was distilled off under reduced pressure. After adding methanol and pure water to this, this was filtered and washed with pure water. The obtained solid was dissolved in dichloromethane and washed with a 10% aqueous potassium carbonate solution, and then the organic layer was collected and evaporated under reduced pressure. This was recrystallized using dichloromethane and hexane to obtain the compound (N) in a yield of 73%.
ステップ3 (Ir−25)の合成
化合物(N)0.60g、化合物(M)4.98gおよびジグリム46mlを三口フラスコに入れ、ジムロート冷却器を取り付け、アルゴンガス雰囲気下、180℃で48時間加熱反応させた。反応溶液を室温まで冷却させた後、溶媒を減圧留去した。これにジエチルエーテル50ml投入し分散後、セライトろ過を行った。さらに、シリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとアセトン)を用いて精製し、粗生成物を0.172gを得た。この粗生成物0.105gを取り出し、THF100ml、純水25mlを投入した後、アルゴン雰囲気下、高圧水銀灯(400W)を用いて紫外可視光(>300nm)を45分間照射した。溶媒を減圧留去し、エタノールを投入し固体をろ過にて回収した。これをジクロロメタンとヘキサンを用いて再結晶させ、フェイシャル体の(Ir−25)を収率10.1%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CDCl3)δ:8.78(dd,3H),7.59(dd,3H),6.75(t,3H),5.99(s,3H),4.10(s,9H),3.81(s,9H).
0.60 g of compound (N), 4.98 g of compound (M) and 46 ml of diglyme were placed in a three-necked flask, equipped with a Dimroth condenser, and heated and reacted at 180° C. for 48 hours under an argon gas atmosphere. After cooling the reaction solution to room temperature, the solvent was distilled off under reduced pressure. 50 ml of diethyl ether was added to this and dispersed, and then filtered through Celite. Further, it was purified by silica gel column chromatography (eluent: dichloromethane and acetone) to obtain 0.172 g of a crude product. 0.105 g of this crude product was taken out, 100 ml of THF and 25 ml of pure water were added thereto, and then UV-visible light (>300 nm) was irradiated for 45 minutes using a high pressure mercury lamp (400 W) in an argon atmosphere. The solvent was distilled off under reduced pressure, ethanol was added, and the solid was collected by filtration. This was recrystallized using dichloromethane and hexane to obtain a facial compound (Ir-25) with a yield of 10.1%. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CDCl 3 ) δ: 8.78 (dd, 3H), 7.59 (dd, 3H), 6.75 (t, 3H), 5.99 (s, 3H), 4. 10 (s, 9H), 3.81 (s, 9H).
<参考例I−18>
本発明化合物(Ir−50)の合成
< Reference Example I-18>
Synthesis of compound of the present invention (Ir-50)
ステップ1 化合物(O)の合成
2−クロロ−5−エチルピリミジン2.44g、2,6−ジメトキシ−3−ピリジンボロン酸5.00g、2M炭酸カリウム水溶液60mlおよびテトラヒドロフラン50mlを、三口フラスコに入れ、アルゴンガスを通気した後、テトラキス(トリフェニルホスフィン)パラジウム(0)3.86g、を加え、アルゴン雰囲気下、70〜77℃で23時間加熱反応させた。反応溶液を室温まで冷却した後、有機層を回収し、溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとメタノール)を用いて精製し、化合物(O)を収率99%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CDCl3)δ:8.66(s,2H),8.19(d,1H),6.43(d,1H),4.06(s,3H),3.99(s,3H),2.67(q,2H),1.31(t,3H).
2-Chloro-5-ethylpyrimidine (2.44 g), 2,6-dimethoxy-3-pyridineboronic acid (5.00 g), 2M aqueous potassium carbonate solution (60 ml) and tetrahydrofuran (50 ml) were placed in a three-necked flask, and argon gas was bubbled through the mixture, followed by tetrakis. (Triphenylphosphine)palladium(0) (3.86 g) was added, and the mixture was heated and reacted at 70 to 77°C for 23 hours under an argon atmosphere. The reaction solution was cooled to room temperature, the organic layer was collected, the solvent was evaporated under reduced pressure, and the residue was purified by silica gel column chromatography (eluent: dichloromethane and methanol) to give compound (O) in a yield of 99%. Got with. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CDCl 3 ) δ: 8.66 (s, 2H), 8.19 (d, 1H), 6.43 (d, 1H), 4.06 (s, 3H), 3. 99 (s, 3H), 2.67 (q, 2H), 1.31 (t, 3H).
ステップ2 化合物(P)の合成
3塩化イリジウムn水和物1.86g、化合物(M)2.86g、DMF60mlおよび純水12mlをフラスコに入れ、ジムロート冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、500W)を40分間照射した。反応溶液を室温まで冷却させた後、溶媒を減圧留去した。これに純水を投入し、懸濁液をろ過、純水で洗浄し、化合物(P)を収率83%で得た。 1.86 g of iridium trichloride n hydrate, 2.86 g of compound (M), 60 ml of DMF and 12 ml of pure water were placed in a flask, a Dimroth condenser was attached, and a microwave (2450 MHz, 500 W) was applied while aerating argon gas. Irradiate for 40 minutes. After cooling the reaction solution to room temperature, the solvent was distilled off under reduced pressure. Pure water was added thereto, and the suspension was filtered and washed with pure water to obtain the compound (P) with a yield of 83%.
ステップ3 (Ir−50)の合成
化合物(P)1.42g、(2,4−ペンタンジオナト)ナトリウム0.38gおよび2−エトキシエタノール75mlを三口フラスコに入れ、ジムロート冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、500W)を15分間照射した。反応溶液を室温まで冷却させた後、溶媒を減圧留去した。これに純水50ml投入し懸濁させ、ろ過にて固体を回収した。ジクロロメタンに溶解後、活性アルミナを充填したカラムを通し、溶媒を減圧留去した。これをメタノールに懸濁させ、ろ過し、(Ir−50)を収率58%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CDCl3)δ:8.71(d,2H),8.35(d,2H),5.31(s,2H),5.23(s,1H),4.07(s,6H),3.75(s,6H),2.68(q,4H),1.79(s,6H),1.29(t,6H).
1.42 g of compound (P), 0.38 g of (2,4-pentanedionato)sodium and 75 ml of 2-ethoxyethanol were placed in a three-necked flask, a Dimroth condenser was attached, and a microwave (2450 MHz) was passed while aerating argon gas. , 500 W) for 15 minutes. After cooling the reaction solution to room temperature, the solvent was distilled off under reduced pressure. Then, 50 ml of pure water was added and suspended, and the solid was collected by filtration. After dissolving in dichloromethane, the solvent was distilled off under reduced pressure through a column packed with activated alumina. This was suspended in methanol and filtered to obtain (Ir-50) in a yield of 58%. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CDCl 3 ) δ: 8.71 (d, 2H), 8.35 (d, 2H), 5.31 (s, 2H), 5.23 (s, 1H), 4. 07 (s, 6H), 3.75 (s, 6H), 2.68 (q, 4H), 1.79 (s, 6H), 1.29 (t, 6H).
<参考例I−19>
本発明化合物(Ir−51)の合成
Synthesis of the compound of the present invention (Ir-51)
化合物(N)0.54g、(2,4−ペンタンジオナト)ナトリウム0.15gおよび2−エトキシエタノール25mlを三口フラスコに入れ、ジムロート冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、400W)を15分間照射した。反応溶液を室温まで冷却させた後、溶媒を減圧留去した。これにメタノール10ml,純水10mlを投入し懸濁させ、ろ過にて固体を回収した。これをジクロロメタンとヘキサンを用いて再結晶させ、(Ir−51)を収率62%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CDCl3)δ:8.84(dd,2H),8.51(dd,2H),7.01(t,2H),5.32(s,2H),5.22(s,1H),4.08(s,6H),3.76(s,6H),1.79(s,6H).
0.54 g of compound (N), 0.15 g of (2,4-pentanedionato)sodium and 25 ml of 2-ethoxyethanol were placed in a three-necked flask, a Dimroth condenser was attached, and microwaves (2450 MHz) were passed while aerating argon gas. , 400 W) for 15 minutes. After cooling the reaction solution to room temperature, the solvent was distilled off under reduced pressure. To this, 10 ml of methanol and 10 ml of pure water were added and suspended, and a solid was collected by filtration. This was recrystallized using dichloromethane and hexane to obtain (Ir-51) in a yield of 62%. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CDCl 3 ) δ: 8.84 (dd, 2H), 8.51 (dd, 2H), 7.01 (t, 2H), 5.32 (s, 2H), 5. 22 (s, 1H), 4.08 (s, 6H), 3.76 (s, 6H), 1.79 (s, 6H).
<参考例I−20>
本発明化合物(Ir−66)の合成
Synthesis of compound (Ir-66) of the present invention
化合物(N)0.38g、ピコリン酸ナトリウム0.10gおよび2−エトキシエタノール20mlを三口フラスコに入れ、ジムロート冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、300W)を7分間照射した。反応溶液を室温まで冷却させ、溶媒を減圧留去した。これに純水15mlを投入し懸濁させた後、ろ過にて固体を回収した。これをジクロロメタンとヘキサンを用いて3回再結晶させ、(Ir−66)を収率74%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CDCl3)δ:8.82−8.85(m,2H),8.78(d,1H),8.33(d,1H),7.95(t,1H),7.88(d,1H),7.49−7.52(m,1H),7.42(t,1H),7.01(t,1H),6.80(t,1H),5.44(s,1H),5.25(s,1H),4.13(s,3H),4.08(s,3H),3.84(s,3H),3.79(s,3H).
0.38 g of compound (N), 0.10 g of sodium picolinate and 20 ml of 2-ethoxyethanol were placed in a three-necked flask, a Dimroth condenser was attached, and microwaves (2450 MHz, 300 W) were irradiated for 7 minutes while aerating argon gas. did. The reaction solution was cooled to room temperature, and the solvent was evaporated under reduced pressure. To this, 15 ml of pure water was added and suspended, and then the solid was collected by filtration. This was recrystallized three times using dichloromethane and hexane to obtain (Ir-66) with a yield of 74%. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CDCl 3 ) δ: 8.82-8.85 (m, 2H), 8.78 (d, 1H), 8.33 (d, 1H), 7.95 (t, 1H). ), 7.88 (d, 1H), 7.49-7.52 (m, 1H), 7.42 (t, 1H), 7.01 (t, 1H), 6.80 (t, 1H). , 5.44 (s, 1H), 5.25 (s, 1H), 4.13 (s, 3H), 4.08 (s, 3H), 3.84 (s, 3H), 3.79 ( s, 3H).
<参考例I−21>
本発明化合物(Ir−81)の合成
Synthesis of compound of the present invention (Ir-81)
化合物(N)1.52g、トリフルオロメタンスルホン酸銀0.62g、メタノール100mlおよびジクロロメタン150mlを三口フラスコに入れ、アルゴンガス雰囲気下、室温で36時間反応させた。反応溶液をセライトろ過し、溶媒を減圧留去した。ここへ2−フェニルピリジン0.37g、メタノール9mlおよびエタノール21mlを加え、アルゴン雰囲気下、85℃〜90℃で27時間加熱反応させた。反応溶液を室温まで冷却させた後に、溶媒を減圧留去した。これにジクロロメタンを100ml加え、セライトろ過し、ろ液を10%炭酸カリウム水溶液で洗浄した後、有機層を回収し減圧留去した。これをシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとメタノール)を用いて精製し、メリジオナル体の(Ir−81)を収率1.6%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CDCl3)δ:8.60−8.64(m,2H),8.13(dd,1H),7.95(d,1H),7.92(d,1H),7.73(d,1H),7.63−7.69(m,2H),6.98−7.04(m,3H),6.93(t,1H),6.61(q,2H),5.69(s,1H),5.47(s,1H),4.12(d,6H),3.84(s,3H),3.81(s,3H).
1.52 g of compound (N), 0.62 g of silver trifluoromethanesulfonate, 100 ml of methanol and 150 ml of dichloromethane were placed in a three-necked flask, and reacted under an argon gas atmosphere at room temperature for 36 hours. The reaction solution was filtered through Celite, and the solvent was evaporated under reduced pressure. To this, 0.37 g of 2-phenylpyridine, 9 ml of methanol and 21 ml of ethanol were added, and the mixture was heated and reacted at 85°C to 90°C for 27 hours under an argon atmosphere. After the reaction solution was cooled to room temperature, the solvent was distilled off under reduced pressure. To this, 100 ml of dichloromethane was added, and the mixture was filtered through Celite, and the filtrate was washed with a 10% aqueous potassium carbonate solution, and then the organic layer was collected and evaporated under reduced pressure. This was purified by silica gel column chromatography (eluent: dichloromethane and methanol) to obtain a meridional (Ir-81) in a yield of 1.6%. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CDCl 3 ) δ: 8.60-8.64 (m, 2H), 8.13 (dd, 1H), 7.95 (d, 1H), 7.92 (d, 1H). ), 7.73 (d, 1H), 7.63-7.69 (m, 2H), 6.98-7.04 (m, 3H), 6.93 (t, 1H), 6.61 ( q, 2H), 5.69 (s, 1H), 5.47 (s, 1H), 4.12 (d, 6H), 3.84 (s, 3H), 3.81 (s, 3H).
<参考例I−22>
本発明化合物(Ir−72)の合成
Synthesis of compound (Ir-72) of the present invention
化合物(R)0.509g、化合物(E)0.294g、トリフルオロメタンスルホン酸銀0.267g、エタノール20ml、および、ジクロロメタン10mlを三口フラスコへ入れ、アルゴン雰囲気下、62時間加熱還流させた。反応溶液を室温まで冷却後に減圧留去した。これをジクロロメタンに溶解させ、セライトろ過を行った。濾液に10%炭酸水素ナトリウム水溶液を加え洗浄した。溶媒を減圧留去した。これをシリカゲルカラムクロマトグラフィー(溶離液:酢酸エチルとメタノール)を用いて精製し、メリジオナル体の(Ir−72)を収率70%で得た。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CD2Cl2)δ:9.35(s,1H),8.19(d,1H),8.16(d,1H),8.12(d,1H),7.37−7.42(m,2H),7.24(d,1H),7.10−7.16(m,3H),7.03(dd,2H),6.96(d,1H),6.51−6.63(m,4H),2.75(s,3H),1.30(s,9H).
0.509 g of compound (R), 0.294 g of compound (E), 0.267 g of silver trifluoromethanesulfonate, 20 ml of ethanol, and 10 ml of dichloromethane were placed in a three-necked flask, and heated under reflux for 62 hours under an argon atmosphere. The reaction solution was cooled to room temperature and evaporated under reduced pressure. This was dissolved in dichloromethane and filtered through Celite. The filtrate was washed with a 10% aqueous sodium hydrogen carbonate solution. The solvent was distilled off under reduced pressure. This was purified using silica gel column chromatography (eluent: ethyl acetate and methanol) to obtain a meridional (Ir-72) in a yield of 70%. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CD 2 Cl 2 )δ: 9.35 (s, 1H), 8.19 (d, 1H), 8.16 (d, 1H), 8.12 (d, 1H), 7.37-7.42 (m, 2H), 7.24 (d, 1H), 7.10-7.16 (m, 3H), 7.03 (dd, 2H), 6.96 (d, 1H), 6.51-6.63 (m, 4H), 2.75 (s, 3H), 1.30 (s, 9H).
<実施例I−23>
本発明化合物(Ir−46)の合成
<Example I-23>
Synthesis of the compound of the present invention (Ir-46)
ステップ1 化合物(S)の合成
5−ブロモ−2−ターシャル−ブチルピリミジン0.936g、ビス(ピナコラト)ジボロン1.22g、酢酸カリウム1.45g、および、脱水1,4−ジオキサン20mlを三口フラスコに入れ、アルゴンガスを通気した後、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物0.0575gを加え、アルゴン雰囲気下、100℃で24時間加熱反応させた。反応溶液を室温まで冷却した後、2Mリン酸三カリウム水溶液20mL、トルエン20mL、2−クロロ−N,N,5−トリメチルピリミジン−4−アミン0.414g、および、トリス(ジベンジリデンアセトン)ジパラジウム(0)0.0554g、SPhos0.0796gを加え、アルゴン雰囲気下、110℃で24時間加熱反応させた。反応溶液を室温まで冷却した後にセライトろ過を行い、濾液へ酢酸エチルを加え抽出した。有機層を減圧濃縮し得られた生成物をシリカゲルカラムクロマトグラフィー(溶離液:酢酸エチルとジクロロメタン)を用いて精製し、化合物(S)を収率42%で得た。1H−NMRのデータを以下に示す。
1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CDCl3)δ:9.55(s,2H),8.10(s,1H),3.18(s,6H),2.34(s,3H),1.46(9H).
0.936 g of 5-bromo-2-tert-butylpyrimidine, 1.22 g of bis(pinacolato)diboron, 1.45 g of potassium acetate, and 20 ml of dehydrated 1,4-dioxane were placed in a three-necked flask, and after aeration with argon gas , [1,1′-Bis(diphenylphosphino)ferrocene]palladium(II) dichloride Dichloromethane adduct 0.0575 g was added, and the mixture was heated and reacted at 100° C. for 24 hours in an argon atmosphere. After cooling the reaction solution to room temperature, 20 mL of a 2 M aqueous solution of tripotassium phosphate, 20 mL of toluene, 0.414 g of 2-chloro-N,N,5-trimethylpyrimidin-4-amine, and tris(dibenzylideneacetone)dipalladium. (0) 0.0554 g and SPhos 0.0796 g were added, and the mixture was heated and reacted at 110° C. for 24 hours in an argon atmosphere. The reaction solution was cooled to room temperature, filtered through Celite, and ethyl acetate was added to the filtrate for extraction. The product obtained by concentrating the organic layer under reduced pressure was purified by silica gel column chromatography (eluent: ethyl acetate and dichloromethane) to obtain the compound (S) in a yield of 42%. The data of 1 H-NMR is shown below.
The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CDCl 3 ) δ: 9.55 (s, 2H), 8.10 (s, 1H), 3.18 (s, 6H), 2.34 (s, 3H), 1. 46 (9H).
ステップ2 化合物(T)の合成
3塩化イリジウムn水和物0.0603g、化合物(S)0.102g、炭酸カリウム0.077g、および、DMF15mlをフラスコに入れ、アリーン冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、700W)を30分間照射した。反応溶液を室温まで冷却させた後、溶媒を減圧留去した。得られた固体をジクロロメタンとヘキサンを用いて再結晶を行い、化合物(T)を収率86%で得た。 0.0603 g of iridium trichloride n hydrate, 0.102 g of compound (S), 0.077 g of potassium carbonate, and 15 ml of DMF were placed in a flask, equipped with an Aren condenser, and microwaved at 2450 MHz while aerating argon gas. , 700 W) for 30 minutes. After cooling the reaction solution to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was recrystallized using dichloromethane and hexane to obtain the compound (T) in a yield of 86%.
ステップ3 (Ir−46)の合成
化合物(T)0.107g、アセチルアセトン0.0771g、炭酸カリウム0.0947g、および、DMF15mlをフラスコに入れ、アリーン冷却器を取り付け、アルゴンガスを通気しながら、マイクロ波(2450MHz、700W)を30分間照射した。反応溶液を室温まで冷却させた後、溶媒を減圧留去した。得られた固体をジクロロメタンで溶解し、水で洗浄後に、溶液を減圧留去した。さらにシリカゲルカラムクロマトグラフィー(溶離液:酢酸エチルとジクロロメタン)を用いて精製し、(Ir−46)を収率30%で得た。1H−NMRのデータを以下に示す。1H−NMRのデータを以下に示す。
1H−NMR(400MHz/CDCl3)δ:8.43(s,2H),7.86(s,2H),5.23(s,1H),3.25(s,12H),2.35(s,6H),1.88(s,6H),1.09(s,18H).
0.107 g of compound (T), 0.0771 g of acetylacetone, 0.0947 g of potassium carbonate, and 15 ml of DMF were placed in a flask, equipped with an arene condenser, and microwaved (2450 MHz, 700 W) for 30 minutes while aerating argon gas. Irradiated. After cooling the reaction solution to room temperature, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in dichloromethane, washed with water, and the solution was evaporated under reduced pressure. Further purification was performed using silica gel column chromatography (eluent: ethyl acetate and dichloromethane) to obtain (Ir-46) in a yield of 30%. The data of 1 H-NMR is shown below. The data of 1 H-NMR is shown below.
1 H-NMR (400 MHz/CDCl 3 ) δ: 8.43 (s, 2H), 7.86 (s, 2H), 5.23 (s, 1H), 3.25 (s, 12H), 2. 35 (s, 6H), 1.88 (s, 6H), 1.09 (s, 18H).
次に本発明に係るイリジウム錯体の溶液中の発光特性について記載する。 Next, the emission characteristics of the iridium complex according to the present invention in a solution will be described.
<実施例II−1>
本発明化合物(Ir−4)のTHF中の発光特性
本発明化合物(Ir−4)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定したところ、青緑色発光(発光極大波長:507nm)を示した。発光量子収率は0.62であった。
<Example II-1>
Luminescence characteristics of the compound of the present invention (Ir-4) in THF The compound of the present invention (Ir-4) was dissolved in THF and argon gas was passed through, and then an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics K.K. Was used to measure an emission spectrum (excitation wavelength: 350 nm) at room temperature, it showed blue-green emission (emission maximum wavelength: 507 nm). The emission quantum yield was 0.62.
<参考例II−2>
本発明化合物(Ir−25)のクロロホルム中の発光特性
本発明化合物(Ir−25)をクロロホルムに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定したところ、青緑色発光(発光極大波長:492nm)を示した。発光量子収率は0.78であった。
< Reference Example II-2>
Luminescence characteristics of the compound of the present invention (Ir-25) in chloroform After dissolving the compound of the present invention (Ir-25) in chloroform and ventilating an argon gas, an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics KK Was used to measure the emission spectrum (excitation wavelength: 350 nm) at room temperature, it showed blue-green emission (emission maximum wavelength: 492 nm). The emission quantum yield was 0.78.
<実施例II−3>
本発明化合物(Ir−38)のTHF中の発光特性
本発明化合物(Ir−38)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定したところ、青緑色発光(発光極大波長:496nm)を示した。発光量子収率は0.83であった。
<Example II-3>
Luminescent properties of the compound of the present invention (Ir-38) in THF The compound of the present invention (Ir-38) was dissolved in THF, and after ventilating with argon gas, an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics K.K. Was used to measure the emission spectrum (excitation wavelength: 350 nm) at room temperature, which showed blue-green emission (emission maximum wavelength: 496 nm). The emission quantum yield was 0.83.
<実施例II−4>
本発明化合物(Ir−42)のTHF中の発光特性
本発明化合物(Ir−42)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定したところ、青緑色発光(発光極大波長:489nm)を示した。発光量子収率は0.62であった。
<Example II-4>
Luminescence characteristics of the compound of the present invention (Ir-42) in THF After dissolving the compound of the present invention (Ir-42) in THF and ventilating an argon gas, an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics K.K. Was used to measure the emission spectrum at room temperature (excitation wavelength: 350 nm), it showed blue-green emission (emission maximum wavelength: 489 nm). The emission quantum yield was 0.62.
<実施例II−5>
本発明化合物(Ir−47)のTHF中の発光特性
本発明化合物(Ir−47)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定したところ、青色発光(発光極大波長:475,504nm)を示した。発光量子収率は0.55であった。
<Example II-5>
Luminescence characteristics of the compound of the present invention (Ir-47) in THF The compound of the present invention (Ir-47) was dissolved in THF, and argon gas was passed through the device, and then an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics K.K. Was used to measure the emission spectrum (excitation wavelength: 350 nm) at room temperature, and blue emission (maximum emission wavelength: 475,504 nm) was observed. The emission quantum yield was 0.55.
<実施例II−6>
本発明化合物(Ir−48)のTHF中の発光特性
本発明化合物(Ir−48)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定したところ、青色発光(発光極大波長:476,504nm)を示した。発光量子収率は0.55であった。
<Example II-6>
Luminescent Properties of Compound of the Present Invention (Ir-48) in THF After dissolving the compound of the present invention (Ir-48) in THF and ventilating with argon gas, an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics K.K. Was used to measure the emission spectrum (excitation wavelength: 350 nm) at room temperature, and blue emission (maximum emission wavelength: 476,504 nm) was observed. The emission quantum yield was 0.55.
<参考例II−7>
本発明化合物(Ir−50)のクロロホルム中の発光特性
本発明化合物(Ir−50)をクロロホルムに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定したところ、青色発光(発光極大波長:481,504nm)を示した。発光量子収率は0.85であった。
< Reference Example II-7>
Luminescence characteristics of the compound of the present invention (Ir-50) in chloroform After dissolving the compound of the present invention (Ir-50) in chloroform and ventilating an argon gas, an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics KK Was used to measure an emission spectrum (excitation wavelength: 350 nm) at room temperature, and blue emission (maximum emission wavelength: 481,504 nm) was shown. The emission quantum yield was 0.85.
<参考例II−8>
本発明化合物(Ir−51)のクロロホルム中の発光特性
本発明化合物(Ir−51)をクロロホルムに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定したところ、青色発光(発光極大波長:478,500nm)を示した。発光量子収率は0.80であった。
< Reference Example II-8>
Luminescent Properties of Compound of the Present Invention (Ir-51) in Chloroform The compound of the present invention (Ir-51) was dissolved in chloroform, and argon gas was passed through the device, and then an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics KK Was used to measure the emission spectrum (excitation wavelength: 350 nm) at room temperature, and blue emission (maximum emission wavelength: 478,500 nm) was observed. The emission quantum yield was 0.80.
<実施例II−9>
本発明化合物(Ir−52)のTHF中の発光特性
本発明化合物(Ir−52)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定したところ、青緑色発光(発光極大波長:480nm)を示した。発光量子収率は0.87であった。
<Example II-9>
Luminescence characteristics of the compound of the present invention (Ir-52) in THF The compound of the present invention (Ir-52) was dissolved in THF, and after ventilating with argon gas, an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics K.K. Was used to measure the emission spectrum at room temperature (excitation wavelength: 350 nm), which showed blue-green emission (emission maximum wavelength: 480 nm). The emission quantum yield was 0.87.
<実施例II−10>
本発明化合物(Ir−53)のTHF中の発光特性
本発明化合物(Ir−53)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定したところ、図1に示すように、青色発光(発光極大波長:471,497nm)を示した。発光量子収率は0.72であった。
<Example II-10>
Luminescence characteristics of the compound of the present invention (Ir-53) in THF The compound of the present invention (Ir-53) was dissolved in THF, and argon gas was passed through the device, and then an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics KK Was used to measure an emission spectrum (excitation wavelength: 350 nm) at room temperature, and as a result, blue emission (maximum emission wavelength: 471, 497 nm) was shown as shown in FIG. The emission quantum yield was 0.72.
<実施例II−11>
本発明化合物(Ir−56)のTHF中の発光特性
本発明化合物(Ir−56)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定したところ、青色発光(発光極大波長:462,494nm)を示した。発光量子収率は0.53であった。
<Example II-11>
Luminescence characteristics of the compound of the present invention (Ir-56) in THF The compound of the present invention (Ir-56) was dissolved in THF and an argon gas was passed through, and then an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics KK Was used to measure the emission spectrum at room temperature (excitation wavelength: 350 nm), and blue emission (maximum emission wavelength: 462, 494 nm) was shown. The emission quantum yield was 0.53.
<実施例II−12>
本発明化合物(Ir−59)のTHF中の発光特性
本発明化合物(Ir−59)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定したところ、図2に示すように、青色発光(発光極大波長:462,491nm)を示した。発光量子収率は0.53であった。
<Example II-12>
Luminescence characteristics of the compound of the present invention (Ir-59) in THF The compound of the present invention (Ir-59) was dissolved in THF and an argon gas was passed through the device, and then an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics K.K. Was used to measure an emission spectrum (excitation wavelength: 350 nm) at room temperature, and as a result, blue emission (maximum emission wavelength: 462, 491 nm) was shown as shown in FIG. The emission quantum yield was 0.53.
<実施例II−13>
本発明化合物(Ir−60)のTHF中の発光特性
本発明化合物(Ir−60)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定したところ、青色発光(発光極大波長:470,500nm)を示した。発光量子収率は0.03であった。
<Example II-13>
Luminescent properties of the compound of the present invention (Ir-60) in THF The compound of the present invention (Ir-60) was dissolved in THF, and after ventilating with argon gas, an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics K.K. Was used to measure the emission spectrum (excitation wavelength: 350 nm) at room temperature, and blue emission (maximum emission wavelength: 470, 500 nm) was observed. The emission quantum yield was 0.03.
<実施例II−14>
本発明化合物(Ir−61)のTHF中の発光特性
本発明化合物(Ir−61)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定したところ、青色発光(発光極大波長:457,489nm)を示した。発光量子収率は0.03であった。
<Example II-14>
Luminescent Properties of Compound of the Present Invention (Ir-61) in THF After dissolving the compound of the present invention (Ir-61) in THF and ventilating with argon gas, an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics KK Was used to measure the emission spectrum (excitation wavelength: 350 nm) at room temperature, and blue emission (maximum emission wavelength: 457,489 nm) was shown. The emission quantum yield was 0.03.
<参考例II−15>
本発明化合物(Ir−62)のTHF中の発光特性
本発明化合物(Ir−62)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定したところ、青色発光(発光極大波長:473,498nm)を示した。発光量子収率は0.88であった。
< Reference Example II-15>
Luminescent properties of the compound of the present invention (Ir-62) in THF The compound of the present invention (Ir-62) was dissolved in THF, and after ventilating with argon gas, an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics K.K. Was used to measure an emission spectrum (excitation wavelength: 350 nm) at room temperature, and it showed blue emission (emission maximum wavelength: 473, 498 nm). The emission quantum yield was 0.88.
<参考例II−16>
本発明化合物(Ir−65)のTHF中の発光特性
本発明化合物(Ir−65)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定したところ、青色発光(発光極大波長:462,489nm)を示した。発光量子収率は0.81であった。
< Reference Example II-16>
Luminescent Properties of Compound of the Present Invention (Ir-65) in THF After dissolving the compound of the present invention (Ir-65) in THF and ventilating with argon gas, an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics K.K. Was used to measure the emission spectrum (excitation wavelength: 350 nm) at room temperature, and blue emission (maximum emission wavelength: 462, 489 nm) was observed. The emission quantum yield was 0.81.
<参考例II−17>
本発明化合物(Ir−66)のクロロホルム中の発光特性
本発明化合物(Ir−66)をクロロホルムに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定したところ、青色発光(発光極大波長:463,489nm)を示した。発光量子収率は0.83であった。
< Reference Example II-17>
Luminescent Properties of Compound of the Present Invention (Ir-66) in Chloroform The compound of the present invention (Ir-66) was dissolved in chloroform, and an argon gas was bubbled through the device, followed by an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics K.K. Was used to measure the emission spectrum (excitation wavelength: 350 nm) at room temperature, and blue emission (maximum emission wavelength: 463,489 nm) was observed. The emission quantum yield was 0.83.
<比較例II−1>
比較化合物(A)のTHF中の発光特性
国際公開第2011/024737号公報(特許文献5)に記載の比較化合物(A)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:350nm)を測定したところ、緑色発光(発光極大波長:532nm)を示した。発光量子収率は0.67であった。
Luminescent Properties of Comparative Compound (A) in THF The comparative compound (A) described in International Publication No. 2011/024737 (Patent Document 5) is dissolved in THF, and an argon gas is passed through the product, which is manufactured by Hamamatsu Photonics K.K. When an emission spectrum (excitation wavelength: 350 nm) at room temperature was measured by using the absolute PL quantum yield measuring apparatus (C9920), a green emission (maximum emission wavelength: 532 nm) was shown. The emission quantum yield was 0.67.
本発明化合物(Ir−42)および(Ir−48)と、比較化合物(A)の発光極大波長を比較すると、表8に示すように、本発明化合物の発光は43〜56nmブルーシフトしていることがわかる。したがって、本発明化合物の方が青色発光材料として優れていることが明らかとなった。
次に本発明に係るイリジウム錯体の薄膜中での発光特性について記載する。 Next, the light emission characteristics of the thin film of the iridium complex according to the present invention will be described.
<実施例III−1>
本発明化合物(Ir−47)の薄膜中の発光特性
本発明のイリジウム錯体(Ir−47)と1,3-ビス(N−カルバゾリル)ベンゼン(以降、mCPという)とを、真空度1×10−4Paで、石英基板上に5:95(質量濃度比)で共蒸着(30nm)し、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:340nm)を測定したところ、青色発光(発光極大波長:472,502nm)を示した。発光量子収率は0.89であった。
<Example III-1>
Luminescent Properties of Thin Film of Compound (Ir-47) of the Present Invention Iridium complex (Ir-47) of the present invention and 1,3-bis(N-carbazolyl)benzene (hereinafter, referred to as mCP) were used at a vacuum degree of 1×10. -4 Pa, co-deposited (30 nm) at 5:95 (mass concentration ratio) on a quartz substrate, and using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics KK, emission spectrum at room temperature. When the (excitation wavelength: 340 nm) was measured, blue light emission (emission maximum wavelength: 472, 502 nm) was shown. The emission quantum yield was 0.89.
<参考例III−2>
本発明化合物(Ir−51)の薄膜中の発光特性
本発明のイリジウム錯体(Ir−51)とmCPとを、真空度1×10−4Paで、石英基板上に5:95(質量濃度比)で共蒸着(30nm)し、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:340nm)を測定したところ、青色発光(発光極大波長:474,499nm)を示した。発光量子収率は0.89であった。
< Reference Example III-2>
Light-Emitting Properties in Thin Film of Compound (Ir-51) of the Present Invention The iridium complex (Ir-51) of the present invention and mCP were mixed at a vacuum degree of 1×10 −4 Pa on a quartz substrate at a ratio of 5:95 (mass concentration ratio). ) Was co-deposited (30 nm), and the emission spectrum (excitation wavelength: 340 nm) at room temperature was measured using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. Wavelength: 474,499 nm) was shown. The emission quantum yield was 0.89.
<実施例III−3>
本発明化合物(Ir−52)の薄膜中の発光特性
本発明のイリジウム錯体(Ir−52)とmCPとを、真空度1×10−4Paで、石英基板上に5:95(質量濃度比)で共蒸着(30nm)し、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:340nm)を測定したところ、青色発光(発光極大波長:474,501nm)を示した。発光量子収率は0.90であった。
<Example III-3>
Light-Emitting Properties in Thin Film of Compound (Ir-52) of the Present Invention The iridium complex (Ir-52) of the present invention and mCP were applied at a vacuum degree of 1×10 −4 Pa on a quartz substrate at a ratio of 5:95 (mass concentration ratio). ) Was co-deposited (30 nm), and the emission spectrum (excitation wavelength: 340 nm) at room temperature was measured using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. Wavelength: 474, 501 nm). The emission quantum yield was 0.90.
<実施例III−4>
本発明化合物(Ir−53)の薄膜中の発光特性
本発明のイリジウム錯体(Ir−53)とmCPとを、真空度1×10−4Paで、石英基板上に5:95(質量濃度比)で共蒸着(30nm)し、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:340nm)を測定したところ、図3に示すように、青色発光(発光極大波長:468,496nm)を示した。発光量子収率は0.88であった。
<Example III-4>
Light-Emitting Properties in Thin Film of Compound (Ir-53) of the Present Invention The iridium complex (Ir-53) of the present invention and mCP were mixed at a vacuum degree of 1×10 −4 Pa on a quartz substrate at a ratio of 5:95 (mass concentration ratio). ), and the emission spectrum (excitation wavelength: 340 nm) at room temperature was measured using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics KK, as shown in FIG. Blue emission (maximum emission wavelength: 468, 496 nm). The emission quantum yield was 0.88.
<実施例III−5>
本発明化合物(Ir−59)の薄膜中の発光特性
本発明のイリジウム錯体(Ir−59)とmCPとを、真空度1×10−4Paで、石英基板上に5:95(質量濃度比)で共蒸着(30nm)し、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:340nm)を測定したところ、図4に示すように、青色発光(発光極大波長:460,489nm)を示した。発光量子収率は0.62であった。
<Example III-5>
Light-Emitting Properties in Thin Film of Compound of the Present Invention (Ir-59) The iridium complex (Ir-59) of the present invention and mCP were mixed on a quartz substrate at 5:95 (mass concentration ratio) at a vacuum degree of 1×10 −4 Pa. ), co-evaporation (30 nm) was performed, and the emission spectrum (excitation wavelength: 340 nm) at room temperature was measured using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics KK, as shown in FIG. Blue emission (maximum emission wavelength: 460, 489 nm) was exhibited. The emission quantum yield was 0.62.
<実施例III−6>
本発明化合物(Ir−59)の薄膜中の発光特性
本発明のイリジウム錯体(Ir−59)と2,7−ビス(ジフェニルホスホリル)−9−フェニル−9H−カルバゾールとを、真空度1×10−4Paで、石英基板上に5:95(質量濃度比)で共蒸着(30nm)し、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:340nm)を測定したところ、青色発光(発光極大波長:462,489nm)を示した。発光量子収率は0.74であった。
<Example III-6>
Luminescent properties of the compound (Ir-59) of the present invention in a thin film The iridium complex (Ir-59) of the present invention and 2,7-bis(diphenylphosphoryl)-9-phenyl-9H-carbazole were used at a vacuum degree of 1×10. -4 Pa, co-deposited (30 nm) at 5:95 (mass concentration ratio) on a quartz substrate, and using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics KK, emission spectrum at room temperature. When the (excitation wavelength: 340 nm) was measured, blue light emission (emission maximum wavelength: 462, 489 nm) was shown. The emission quantum yield was 0.74.
<参考例III−7>
本発明化合物(Ir−66)の薄膜中の発光特性
本発明のイリジウム錯体(Ir−66)とmCPとを、真空度1×10−4Paで、石英基板上に5:95(質量濃度比)で共蒸着(30nm)し、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温での発光スペクトル(励起波長:340nm)を測定したところ、青色発光(発光極大波長:465,492nm)を示した。発光量子収率は0.72であった。
< Reference Example III-7>
Light-Emitting Properties in Thin Film of Compound (Ir-66) of the Present Invention The iridium complex (Ir-66) of the present invention and mCP were applied at a vacuum degree of 1×10 −4 Pa on a quartz substrate at a ratio of 5:95 (mass concentration ratio). ) Was co-deposited (30 nm), and the emission spectrum (excitation wavelength: 340 nm) at room temperature was measured using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. Wavelength: 465, 492 nm). The emission quantum yield was 0.72.
次に本発明に係る一般式(1)で表されるイリジウム錯体を用いて作製した有機電界発光素子の特性について記載する。 Next, the characteristics of the organic electroluminescence device produced by using the iridium complex represented by the general formula (1) according to the present invention will be described.
本実施例で使用した化合物(E−1)〜(E−9)の構造式を以下に示す。 The structural formulas of the compounds (E-1) to (E-9) used in this example are shown below.
<実施例IV−1>
本発明化合物(Ir−47)を用いて作製した有機電界発光素子の特性評価
陽極として、酸化錫インジウム(ITO)を100nmの膜厚で線幅2mmの櫛形にパターニングして成膜された無アルカリガラス基板(厚木ミクロ社製)を透明導電性支持基板として用いた。これを超純水、アセトン、イソプロピルアルコール(IPA)で順次超音波洗浄し、次いでIPAで煮沸洗浄後乾燥した。次いで、UV/オゾン洗浄したものを透明導電性支持基板として使用した。
<Example IV-1>
Characteristic Evaluation of Organic Electroluminescent Device Produced Using Compound of the Present Invention (Ir-47) As an anode, an indium tin oxide (ITO) film having a film thickness of 100 nm was patterned into a comb shape having a line width of 2 mm to form a non-alkali film. A glass substrate (manufactured by Atsugi Micro Co., Ltd.) was used as a transparent conductive support substrate. This was ultrasonically cleaned successively with ultrapure water, acetone, and isopropyl alcohol (IPA), then washed by boiling with IPA and then dried. Then, what was washed with UV/ozone was used as a transparent conductive support substrate.
上記透明導電性支持基板上に、以下の有機層(正孔注入層、正孔輸送層、ホスト材料層、発光層、正孔阻止層および電子輸送層)を1×10−4Paの真空チャンバー内で抵抗加熱による真空蒸着で順次製膜し、次いでマスク交換して線幅2mmの電極層(電子注入層および金属電極層)を順次製膜して、有機電界発光素子を作製した。次いで、素子が大気に曝されないよう窒素雰囲気のグローブボックス内で封止する作業を行った。厚さ3mmのガラス板の中央部に1.5mmの掘り込みを付けた封止ガラス(泉陽商事社製)の周囲にUV硬化性エポキシ樹脂デナタイトR(ナガセケミテック社製)を塗布して蒸着済素子に被せ圧着した後、素子部分をアルミニウム板で覆ってマスキングしシャッター付きUV照射装置で1分間照射後1分間遮蔽のサイクルを5回繰り返して封止した。 On the transparent conductive support substrate, the following organic layers (hole injection layer, hole transport layer, host material layer, light emitting layer, hole blocking layer, and electron transport layer) were placed in a vacuum chamber of 1×10 −4 Pa. The film was sequentially formed by vacuum evaporation by resistance heating in the chamber, and then the mask was replaced to sequentially form electrode layers (electron injection layer and metal electrode layer) having a line width of 2 mm to produce an organic electroluminescence device. Next, a work of sealing the device in a glove box under a nitrogen atmosphere so as not to be exposed to the atmosphere was performed. UV curable epoxy resin Denatite R (manufactured by Nagase Chemitech) is applied to the periphery of a sealing glass (manufactured by Senyo Shoji Co., Ltd.) in which a 1.5 mm cutout is attached to the center of a 3 mm thick glass plate and vapor deposition After covering the finished element and pressure bonding, the element portion was covered with an aluminum plate for masking, irradiation with a UV irradiation device with a shutter for 1 minute, and then a shielding cycle of 1 minute was repeated 5 times for sealing.
正孔注入層(10nm):化合物(E−1)
第1正孔輸送層(40nm):化合物(E−2)
第2正孔輸送層(10nm):化合物(E−3)
発光層(20nm):本発明化合物(Ir−47)(質量濃度15%)と化合物(E−3)(質量濃度85%)とを共蒸着
正孔阻止層(10nm):化合物(E−4)
電子輸送層(30nm):化合物(E−5)
電子注入層(1nm):化合物(E−6)
金属電極層(100nm):Al
Hole injection layer (10 nm): Compound (E-1)
First hole transport layer (40 nm): Compound (E-2)
Second hole transport layer (10 nm): Compound (E-3)
Light-emitting layer (20 nm): Inventive compound (Ir-47) (mass concentration 15%) and compound (E-3) (mass concentration 85%) are co-deposited Hole blocking layer (10 nm): Compound (E-4) )
Electron transport layer (30 nm): Compound (E-5)
Electron injection layer (1 nm): Compound (E-6)
Metal electrode layer (100 nm): Al
得られた有機電界発光素子を浜松ホトニクス社製のEL外部量子収率計測用積分球ユニットA10094のサンプルホルダーにセットし、Keithley社製ソースメーター2400を用いて、直流定電圧を印加し、発光させ、その輝度、発光波長およびCIE色度座標を、浜松ホトニクス社製マルチチャンネル分光器PMA−12を用いて測定した。その結果、CIE色度が(x,y)=(0.21,0.44)、発光ピーク波長が475,503nmの青色発光が得られ、最高輝度は34500cd/m2、外部量子効率は4.8%(1000cd/cm2のとき)の発光特性が得られた。 The obtained organic electroluminescent element was set in a sample holder of an integrating sphere unit A10094 for measuring EL external quantum yield manufactured by Hamamatsu Photonics KK, and a constant DC voltage was applied using a source meter 2400 manufactured by Keithley to emit light. , Its luminance, emission wavelength and CIE chromaticity coordinates were measured using a multi-channel spectroscope PMA-12 manufactured by Hamamatsu Photonics. As a result, blue light emission with CIE chromaticity (x, y)=(0.21, 0.44), emission peak wavelength of 475, 503 nm was obtained, maximum luminance was 34500 cd/m 2 , and external quantum efficiency was 4 Emission characteristics of 0.8% (at 1000 cd/cm 2 ) were obtained.
<実施例IV−2>
本発明化合物(Ir−52)を用いて作製した有機電界発光素子の特性評価
実施例IV−1で用いた本発明化合物(Ir−47)の代わりに本発明化合物(Ir−52)を用いて、本発明化合物(Ir−52)と化合物(E−3)との質量濃度をそれぞれ5%と95%に変更した以外は、同様に有機電界発光素子を作製し、特性評価を行った。その結果、CIE色度が(x,y)=(0.18,0.42)、発光ピーク波長が477,503nmの青色発光が得られ、最高輝度は30300cd/m2、外部量子効率は4.9%(1000cd/cm2のとき)の発光特性が得られた。
<Example IV-2>
Characteristic Evaluation of Organic Electroluminescent Device Produced Using Inventive Compound (Ir-52) Using Inventive Compound (Ir-52) Instead of Inventive Compound (Ir-47) Used in Example IV-1 An organic electroluminescence device was prepared in the same manner except that the mass concentrations of the compound (Ir-52) of the present invention and the compound (E-3) were changed to 5% and 95%, respectively, and the characteristics were evaluated. As a result, blue light emission with CIE chromaticity (x, y)=(0.18, 0.42), emission peak wavelengths of 477, 503 nm was obtained, the maximum luminance was 30300 cd/m 2 , and the external quantum efficiency was 4 A luminescence property of 0.9% (at 1000 cd/cm 2 ) was obtained.
<実施例IV−3>
本発明化合物(Ir−53)を用いて作製した有機電界発光素子の特性評価
実施例IV−1で用いた本発明化合物(Ir−47)の代わりに本発明化合物(Ir−53)を用いて、本発明化合物(Ir−53)と化合物(E−3)との質量濃度をそれぞれ5%と95%に変更した以外は、同様に有機電界発光素子を作製し、特性評価を行った。その結果、CIE色度が(x,y)=(0.18,0.39)、発光ピーク波長が469,497nmの青色発光が得られ、最高輝度は21000cd/m2、外部量子効率は5.4%(1000cd/cm2のとき)の発光特性が得られた。
<Example IV-3>
Characteristic Evaluation of Organic Electroluminescent Device Produced Using Compound of the Present Invention (Ir-53) The compound of the present invention (Ir-53) was used instead of the compound of the present invention (Ir-47) used in Example IV-1. An organic electroluminescence device was prepared in the same manner except that the mass concentrations of the compound (Ir-53) of the present invention and the compound (E-3) were changed to 5% and 95%, respectively, and the characteristics were evaluated. As a result, blue emission with CIE chromaticity (x, y)=(0.18, 0.39), emission peak wavelength of 469, 497 nm was obtained, maximum luminance was 21000 cd/m 2 , and external quantum efficiency was 5 A light emission characteristic of 0.4% (at 1000 cd/cm 2 ) was obtained.
<実施例IV−4>
本発明化合物(Ir−59)を用いて作製した有機電界発光素子の特性評価
実施例IV−1の発光素子を以下のような構成に変更し、同様に有機電界発光素子を作製し、特性評価を行った。
<Example IV-4>
Characteristic Evaluation of Organic Electroluminescent Device Produced Using Compound of the Present Invention (Ir-59) The light emitting device of Example IV-1 was changed to the following constitution, and an organic electroluminescent device was similarly prepared, and characteristic evaluation was performed. I went.
正孔注入層(10nm):化合物(E−1)
第1正孔輸送層(30nm):化合物(E−7)
第2正孔輸送層(10nm):化合物(E−3)
発光層(30nm):本発明化合物(Ir−59)(質量濃度15%)と化合物(E−8)(質量濃度85%)とを共蒸着
電子輸送層(30nm):化合物(E−9)
電子注入層(1nm):化合物(E−6)
金属電極層(100nm):Al
Hole injection layer (10 nm): Compound (E-1)
First hole transport layer (30 nm): Compound (E-7)
Second hole transport layer (10 nm): Compound (E-3)
Light-emitting layer (30 nm): Compound (Ir-59) of the present invention (mass concentration 15%) and compound (E-8) (mass concentration 85%) are co-deposited Electron transport layer (30 nm): Compound (E-9)
Electron injection layer (1 nm): Compound (E-6)
Metal electrode layer (100 nm): Al
その結果、CIE色度が(x,y)=(0.17,0.31)、図5に示すように発光ピーク波長が462,490nmの青色発光が得られ、最高輝度は4720cd/m2、外部量子効率は10.1%(1000cd/m2のとき)の発光特性が得られた。 As a result, CIE chromaticity was (x, y)=(0.17, 0.31), blue light emission with an emission peak wavelength of 462, 490 nm was obtained as shown in FIG. 5, and the maximum luminance was 4720 cd/m 2. The external quantum efficiency was 10.1% (at 1000 cd/m 2 ) and the emission characteristics were obtained.
以上述べてきたように、本発明に係わる一般式(1)で表されるイリジウム錯体は、熱的安定性および昇華性に優れ、可視光領域(特に青色領域)に高い発光量子収率を示す新規化合物であり、有機発光素子に用いた場合、良好な発光特性を有する有機発光素子を作ることができる。また該化合物を用いた有機発光素子は、可視光領域(特に青色領域)に高輝度発光を示すことから、表示素子、ディスプレイ、バックライト、照明光源等の分野に好適である。 As described above, the iridium complex represented by the general formula (1) according to the present invention is excellent in thermal stability and sublimation property and exhibits a high emission quantum yield in the visible light region (particularly in the blue region). When it is a novel compound and is used for an organic light emitting device, an organic light emitting device having good light emitting characteristics can be produced. Further, an organic light emitting device using the compound exhibits high-luminance emission in the visible light region (particularly in the blue region), and is therefore suitable for fields such as display devices, displays, backlights, and illumination light sources.
Claims (12)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015224456A JP6709487B2 (en) | 2015-11-17 | 2015-11-17 | Iridium complex, and light emitting material and organic light emitting device using the compound |
PCT/JP2016/083303 WO2017086225A1 (en) | 2015-11-17 | 2016-11-10 | Iridium complex, light-emitting material using compound, and organic light-emitting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015224456A JP6709487B2 (en) | 2015-11-17 | 2015-11-17 | Iridium complex, and light emitting material and organic light emitting device using the compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017088581A JP2017088581A (en) | 2017-05-25 |
JP6709487B2 true JP6709487B2 (en) | 2020-06-17 |
Family
ID=58718913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015224456A Active JP6709487B2 (en) | 2015-11-17 | 2015-11-17 | Iridium complex, and light emitting material and organic light emitting device using the compound |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6709487B2 (en) |
WO (1) | WO2017086225A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115010766B (en) * | 2022-07-21 | 2024-01-09 | 西安交通大学 | Rigid coordination-based overlapping red light iridium (III) complex |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009040728A (en) * | 2007-08-09 | 2009-02-26 | Canon Inc | Organometallic complex and organic light-emitting element using the same |
JP5382887B2 (en) * | 2009-08-27 | 2014-01-08 | 独立行政法人産業技術総合研究所 | Iridium complex and light-emitting material comprising the compound |
JP4729642B1 (en) * | 2010-07-09 | 2011-07-20 | 富士フイルム株式会社 | Organic electroluminescence device |
CN103012492A (en) * | 2013-01-18 | 2013-04-03 | 中国科学院长春应用化学研究所 | Blue-ray metal complex and organic electroluminescent device thereof |
CN104178118A (en) * | 2013-05-22 | 2014-12-03 | 海洋王照明科技股份有限公司 | Blue ray organic electroluminescent material and preparation method and application thereof |
CN104177424A (en) * | 2013-05-22 | 2014-12-03 | 海洋王照明科技股份有限公司 | Blue light organic electroluminescent material, and preparation method and application thereof |
CN104178111A (en) * | 2013-05-22 | 2014-12-03 | 海洋王照明科技股份有限公司 | Blue light organic electroluminescent material, and preparation method and application thereof |
CN104177410A (en) * | 2013-05-22 | 2014-12-03 | 海洋王照明科技股份有限公司 | Blue electrophosphorescent material iridium metal complex, preparation method and organic electroluminescent device |
CN104178103A (en) * | 2013-05-22 | 2014-12-03 | 海洋王照明科技股份有限公司 | Organic electroluminescence material and preparation method and application |
CN104177425A (en) * | 2013-05-22 | 2014-12-03 | 海洋王照明科技股份有限公司 | Blue light organic electrophosphorescent material iridium metal complex, preparation method thereof, and organic electroluminescent device |
CN104178116A (en) * | 2013-05-22 | 2014-12-03 | 海洋王照明科技股份有限公司 | Blue ray organic electroluminescent material and preparation method and application thereof |
CN104177446A (en) * | 2013-05-22 | 2014-12-03 | 海洋王照明科技股份有限公司 | Organic electroluminescent material, and preparation method and application thereof |
CN104178110A (en) * | 2013-05-22 | 2014-12-03 | 海洋王照明科技股份有限公司 | Organic electroluminescent material, and preparation method and application thereof |
CN104177411A (en) * | 2013-05-22 | 2014-12-03 | 海洋王照明科技股份有限公司 | Blue electrophosphorescent material iridium metal complex, preparation method and organic electroluminescent device |
CN104177409A (en) * | 2013-05-22 | 2014-12-03 | 海洋王照明科技股份有限公司 | Organic electroluminescence material and preparation method and application |
KR102343144B1 (en) * | 2014-10-17 | 2021-12-27 | 삼성디스플레이 주식회사 | Organic light-emitting devices |
US20160111665A1 (en) * | 2014-10-17 | 2016-04-21 | Samsung Display Co., Ltd. | Organic light-emitting device |
US20160111663A1 (en) * | 2014-10-17 | 2016-04-21 | Samsung Display Co., Ltd. | Organic light-emitting device |
-
2015
- 2015-11-17 JP JP2015224456A patent/JP6709487B2/en active Active
-
2016
- 2016-11-10 WO PCT/JP2016/083303 patent/WO2017086225A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP2017088581A (en) | 2017-05-25 |
WO2017086225A1 (en) | 2017-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101867235B1 (en) | Organic electroluminescence device | |
TWI429650B (en) | Organic electroluminescent elements | |
JP6326251B2 (en) | Luminescent material and organic EL device using the same | |
KR101838689B1 (en) | Hetero-cyclic compound and organic light emitting device using the same | |
TWI485228B (en) | Organic electroluminescent elements | |
KR102189766B1 (en) | Donor-acceptor compounds with nitrogen containing polyaromatics as the acceptor | |
JP5082230B2 (en) | Organic compounds, charge transport materials, and organic electroluminescent devices | |
WO2015159541A1 (en) | Compound having tetraazatriphenylene ring structure, light-emitting material, and organic electroluminescent element | |
WO2013154064A1 (en) | Organic light emitting element, and light emitting material and compound used in same | |
JP6196554B2 (en) | Material for organic electroluminescence device and organic electroluminescence device using the same | |
JP5753658B2 (en) | Charge transport material and organic electroluminescent device | |
JP2006199679A (en) | Organic compound, charge-transporting material, and organic electroluminescent element | |
KR20120085827A (en) | Organic electroluminescent element | |
JP2012019173A (en) | Organic electroluminescent element | |
JP6332890B2 (en) | Spiro-type compound and organic light-emitting device containing the same | |
JP2013108015A (en) | Material for organic electroluminescent element | |
JP6863590B2 (en) | Red light emitting iridium complex and light emitting material and organic light emitting device using the compound | |
JP6732190B2 (en) | Heteroleptic iridium complex, and light emitting material and organic light emitting device using the compound | |
JP6709487B2 (en) | Iridium complex, and light emitting material and organic light emitting device using the compound | |
JP5746713B2 (en) | Luminescent compounds for organic light-emitting diodes | |
TW202030193A (en) | Compound having azabenzoxazole ring structure and organic electroluminescent element | |
JP6656636B2 (en) | Fluorine-substituted iridium complex, light emitting material and organic light emitting device using the compound | |
JP6835326B2 (en) | Heteroreptic iridium complex, and light emitting materials and organic light emitting devices using the compound. | |
JP6451140B2 (en) | Triazine compound, production method thereof, and use thereof | |
JP2024027099A (en) | Compound with two pyridoindole rings and organic electroluminescent device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181005 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191002 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200421 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200501 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6709487 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |