WO2023182184A1 - Light-emitting layer composition, organic electroluminescent element, and production method therefor - Google Patents

Light-emitting layer composition, organic electroluminescent element, and production method therefor Download PDF

Info

Publication number
WO2023182184A1
WO2023182184A1 PCT/JP2023/010460 JP2023010460W WO2023182184A1 WO 2023182184 A1 WO2023182184 A1 WO 2023182184A1 JP 2023010460 W JP2023010460 W JP 2023010460W WO 2023182184 A1 WO2023182184 A1 WO 2023182184A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
emitting layer
formula
branched
Prior art date
Application number
PCT/JP2023/010460
Other languages
French (fr)
Japanese (ja)
Inventor
和弘 長山
茜 加藤
麻優子 上田
一毅 岡部
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2023182184A1 publication Critical patent/WO2023182184A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/037Printing inks characterised by features other than the chemical nature of the binder characterised by the pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • the present invention relates to a composition for a light-emitting layer containing two or more types of iridium complex compounds, and is particularly useful as an ink for an organic electroluminescent device (hereinafter sometimes referred to as an "organic EL device") that forms a light-emitting layer by coating.
  • the present invention relates to a composition for a light emitting layer containing two or more types of iridium complex compounds, and a composition for a light emitting layer further containing an organic solvent (hereinafter sometimes referred to as "ink for a light emitting layer").
  • Organic electroluminescent devices consume less power due to the low applied voltage and are capable of emitting light in three primary colors, so they are beginning to be applied not only to large display monitors but also to small and medium-sized displays such as mobile phones and smartphones. .
  • An organic electroluminescent device is manufactured by laminating multiple layers such as a light emitting layer, a charge injection layer, and a charge transport layer.
  • Currently, most organic electroluminescent devices are manufactured by depositing organic materials under vacuum, but the vacuum deposition method requires a complicated deposition process and is low in productivity.
  • the problem with organic electroluminescent devices is that it is extremely difficult to increase the size and definition of lighting and display panels. Therefore, in recent years, wet film forming methods (coating methods) have been actively researched as a process for efficiently manufacturing organic electroluminescent elements that can be used for large displays and lighting.
  • the wet film formation method has the advantage of being able to easily form a stable layer compared to the vacuum evaporation method, so it is expected to be applied to mass production of displays and lighting devices and large devices.
  • Phosphorescent materials that can efficiently convert excitons inside devices into light are widely used.
  • tris(phenylpyridine)iridium complex and its derivatives are used. It is known that organic EL devices using these complexes have an internal quantum yield close to 1, and there is a limit to the improvement of the luminous efficiency of the device by further improving the quantum yield.
  • Patent Document 1 As another promising method, the use of a combination of different phosphorescent materials is being considered.
  • Patent Document 1 by putting a plurality of phosphorescent materials into one boat of a vapor deposition machine, decomposition is suppressed by lowering the vapor deposition temperature, and the dispersibility of the vapor deposited film is further improved. It is disclosed that the characteristics of the device are improved as a result.
  • Patent Document 2 also discloses that device characteristics are improved by combining two types of iridium complex compounds in a vapor deposition device.
  • Patent Document 3 when an organic EL device is created by a coating method using two types of iridium complexes having a dendrimer type structure and different generations, an element using a single dendrimer type complex is It is disclosed that the luminous efficiency is higher than that of the conventional method.
  • Patent Documents 1 and 2 are based on a vapor deposition method, and in the coating method, the temperature applied to the material is lower than in the vapor deposition method, and the device characteristics are deteriorated due to thermal decomposition of the iridium complex compound during vapor deposition. Such problems cannot occur. Furthermore, the iridium complex compounds disclosed in these publications have low solvent solubility and cannot be used as materials for organic EL devices by coating. Patent Document 3 discloses a method of creating an element by a coating method. However, when this method is applied, the luminous efficiency may be lower when two types of dendrimer complexes with different generations are used than when a single dendrimer complex is used. It has been found.
  • the present invention aims to provide a composition for a light-emitting layer that can further improve the luminous efficiency of a device, and a composition for a light-emitting layer (for example, an ink for a light-emitting layer) containing an organic solvent.
  • a composition for a light-emitting layer containing two or more types of different iridium complex compounds having a specific chemical structure has been developed for use in organic EL devices, especially green light-emitting devices.
  • the present inventors have discovered that the present invention contributes to improving luminous efficiency, and have completed the present invention.
  • composition for a light-emitting layer comprising a compound represented by formula (1) and a compound represented by formula (2).
  • R represents a substituent, and a represents a number from 0 to the maximum integer that can be substituted by one ligand.
  • R' each independently represents D, F, -CN, a straight chain, branched or cyclic alkyl group having 1 to 5 carbon atoms, a straight chain or branched alkenyl group having 2 to 4 carbon atoms, and 2 or more carbon atoms. It is a straight chain or branched alkynyl group of up to 4. ]
  • m represents an integer from 0 to 10.
  • Q represents a substituent, and b represents from 0 to the maximum integer that can be substituted by one ligand.
  • X represents formula (3) or (4).
  • each Ar 1 independently represents a trivalent aromatic hydrocarbon group having 6 to 30 carbon atoms or a trivalent heteroaromatic group having 2 to 30 carbon atoms
  • Ar Each of 2 independently represents a monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms or a monovalent heteroaromatic group having 2 to 30 carbon atoms.
  • Ar 1 and Ar 2 in formulas (3) and (4) may be substituted with Q. ]]
  • Ar 1 each independently represents a trivalent aromatic hydrocarbon group having 6 to 30 carbon atoms
  • Ar 2 each independently represents a monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms.
  • the absolute value of the difference in maximum emission wavelength between the compound represented by formula (1) and the compound represented by formula (2), measured by the following measurement method, is 0 nm or more and 20 nm or less, [1] ⁇
  • a method for manufacturing an organic electroluminescent device having an anode, a light emitting layer, and a cathode in this order on a substrate comprising: A method for manufacturing an organic electroluminescent device, comprising a step of forming the light emitting layer by a wet film forming method using the composition for a light emitting layer according to [7].
  • An organic electroluminescent device having an anode, a light emitting layer, and a cathode in this order on a substrate, An organic electroluminescent device comprising a compound represented by formula (1) and a compound represented by formula (2) in a light emitting layer.
  • R represents a substituent, and a represents a number from 0 to the maximum integer that can be substituted by one ligand.
  • R' each independently represents D, F, -CN, a straight chain, branched or cyclic alkyl group having 1 to 5 carbon atoms, a straight chain or branched alkenyl group having 2 to 4 carbon atoms, and 2 or more carbon atoms. It is a straight chain or branched alkynyl group of up to 4. ]
  • m represents an integer from 0 to 10.
  • Q represents a substituent, and b represents from 0 to the maximum integer that can be substituted by one ligand.
  • X represents formula (3) or (4).
  • each Ar 1 independently represents a trivalent aromatic hydrocarbon group having 6 to 30 carbon atoms or a trivalent heteroaromatic group having 2 to 30 carbon atoms
  • Ar Each of 2 independently represents a monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms or a monovalent heteroaromatic group having 2 to 30 carbon atoms.
  • Ar 1 and Ar 2 in formulas (3) and (4) may be substituted with Q. ]]
  • composition for a light-emitting layer containing two or more types of iridium complex compounds that can further improve the luminous efficiency when used in an organic EL element, particularly the luminous efficiency in a green element.
  • FIG. 1 is a cross-sectional view schematically showing an example of the structure of an organic electroluminescent device of the present invention.
  • aromatic ring refers to an "aromatic hydrocarbon ring” and is distinguished from a “heteroaromatic ring” containing a hetero atom as a ring constituent atom.
  • aromatic group refers to "aromatic hydrocarbon ring group”
  • heteroaryomatic group refers to "heteroaromatic ring group”.
  • solvent and “solvent” have the same meaning.
  • the present invention relates to a composition for a light-emitting layer containing a compound represented by formula (1) and a compound represented by formula (2).
  • R represents a substituent, and a represents a number from 0 to the maximum integer that can be substituted by one ligand.
  • R' each independently represents D, F, -CN, a straight chain, branched or cyclic alkyl group having 1 to 5 carbon atoms, a straight chain or branched alkenyl group having 2 to 4 carbon atoms, and 2 or more carbon atoms. It is a straight chain or branched alkynyl group of up to 4. ]
  • m represents an integer from 0 to 10.
  • Q represents a substituent
  • b represents from 0 to the maximum integer that can be substituted by one ligand.
  • X represents formula (3) or (4).
  • each Ar 1 independently represents a trivalent aromatic hydrocarbon group having 6 to 30 carbon atoms or a trivalent heteroaromatic group having 2 to 30 carbon atoms
  • Ar Each of 2 independently represents a monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms or a monovalent heteroaromatic group having 2 to 30 carbon atoms.
  • Ar 1 and Ar 2 in formulas (3) and (4) may be substituted with Q. ]]
  • the reason why the present invention can further improve the luminous efficiency when used in an organic EL element, particularly the luminous efficiency in a green element, is estimated as follows.
  • it is also necessary to (a) improve the charge balance within the luminescent layer, that is, holes and electrons; (b) Eliminate leakage of charges and excitons from within the emissive layer and confine them within the emissive layer; (c) Triplet-triplet annihilation of triplet excitons.
  • the medium that accepts and transports electrons into the light-emitting layer is mainly played by the electron-transporting host material, while the medium that supplies holes is the hole-transporting material as well as the light-emitting material.
  • Iridium complexes used as materials may also play a role. This tendency is particularly strong in the case of iridium complexes having a shallow ionization potential, and this applies to iridium complexes having phenyl-pyridine type ligands such as those of the present invention.
  • This structure is widely known to have a high quantum yield and emit excellent green light.
  • the lack of shielding may also make undesirable deactivation processes between iridium complexes as shown in (c) more likely to occur.
  • the hole transport property is too large, holes will leak to the electron transport layer side, making it impossible to satisfy the condition (b), and the efficiency of the device will decrease.
  • the present invention uses an iridium complex having a branched aromatic hydrocarbon group or a ligand having a heteroaromatic group partially conjugated around an iridium atom, as shown in formula (2). This problem is solved. Compared to formula (1), this structure shields iridium atoms relatively highly due to its branched structure, and it is thought that the above-mentioned quenching process is also relatively unlikely to occur.
  • ⁇ Structure of the iridium complex of the present invention Three bidentate ligands such as 2-phenylpyridine can be bonded to the trivalent iridium complex compound.
  • a complex in which all three ligands are the same is called a homoleptic complex
  • a complex in which at least one ligand is different is called a heteroleptic complex.
  • the present invention requires a homoleptic complex capable of narrowing the half-width of the emission spectrum. This is because for display applications, it is required to make the half-width as narrow as possible from the viewpoint of color purity.
  • Two isomers of the homoleptic iridium complex compound are known: a facial form and a meridional form. In the present invention, it is necessary that the facial body has a narrow spectral half-value width and a high quantum yield.
  • R represents a substituent, and a represents a number from 0 to the maximum integer that can be substituted by one ligand.
  • R' each independently represents D, F, -CN, a straight chain, branched or cyclic alkyl group having 1 to 5 carbon atoms, a straight chain or branched alkenyl group having 2 to 4 carbon atoms, and 2 or more carbon atoms. It is a straight chain or branched alkynyl group of up to 4. ] ⁇ n> n is an integer from 0 to 10. When n is larger than 10, the size of the iridium complex becomes too large, and the distance between the vicinity of the iridium atom, which is responsible for the hole transport property, and the surface of the iridium complex molecule becomes large, and the hole transport property of the iridium complex is impaired.
  • n is preferably an integer of 0 to 8, more preferably an integer of 0 to 7, and still more preferably an integer of 1 to 6.
  • the bonding mode of the n phenylene groups is not particularly limited, and there are three types independently of each other: the ortho position, the meta position, and the para position. Bonds at the ortho and meta positions are highly flexible and improve solubility, and in addition, the conjugation of ⁇ electrons is interrupted, so the T1 level can be raised and the effect of quenching green light emission can be suppressed. From the viewpoint of solubility, bonding at the ortho position is more preferable since it can generate rotamers due to steric hindrance, and from the viewpoint of durability, bonding at the meta position is even more preferable.
  • the bond at the ortho position may change to a triphenylene structure due to oxidative coupling as shown in the following formula during operation of the organic EL device. This is because such a change may cause deterioration of the device due to an increase in the emission wavelength or a decrease in hole transportability.
  • the conjugation of ⁇ electrons becomes longer, so the oxidation state can be particularly stabilized, and as a result, the hole transport properties are further improved.
  • the hole transport property mainly originates from the electron-rich iridium atom, so if the electrons of the iridium atom can be distributed more widely toward the ligand side through the ⁇ -conjugated bonds of multiple paraphenylene groups, the hole transport property can be improved. The improvement is remarkable.
  • a preferred structure of the phenylene group is one in which the phenylene group directly connected to the para position of the iridium atom is bonded at the para position in the phenyl group of the phenylpyridine ligand, as shown in the following formula (5).
  • n 1 represents the number of consecutive para-phenylene groups and is an integer of 1 or more
  • all consecutive phenylene groups further bonded to the terminals of the paraphenylene ring are preferably metaphenylene groups.
  • the range of n 1 is preferably 1 to 3, more preferably 1 or 2, even more preferably 1, and the range of n 2 is preferably 1 to 8, more preferably The number is from 2 to 7, more preferably from 3 to 6.
  • formula (1) is expressed by the following formula (5).
  • Substituent R The type of substituent R that the formula (1) may have is selected from the following [substituent group W].
  • substituent group W the number of carbon atoms is limited to such an extent that the effect does not appear.
  • the alkyl group, the alkoxy group, the alkylthio group, the alkenyl group, the alkynyl group, the diarylamino group, the arylheteroarylamino group, and the diheteroarylamino group have one or more R' other than hydrogen atoms. may be replaced with . R' will be described later.
  • Examples of straight chain, branched or cyclic alkyl groups having 1 to 5 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, n-pentyl group, isopropyl group, isobutyl group. , cyclopentyl group, etc.
  • the number of carbon atoms is preferably 1 or more, preferably 4 or less, more preferably 3 or less, and 2 or less. More preferred.
  • linear, branched or cyclic alkoxy groups having 1 or more and 4 or less carbon atoms include methoxy, ethoxy, n-propyloxy, n-butoxy and the like. From the viewpoint of durability, the number of carbon atoms is preferably 1 or more, preferably 3 or less, more preferably 2 or less, and most preferably 1.
  • linear, branched or cyclic alkylthio groups having 1 to 4 carbon atoms include methylthio group, ethylthio group, n-propylthio group, n-butylthio group, and isopropylthio group.
  • the number of carbon atoms is preferably 1 or more, preferably 3 or less, more preferably 2 or less, and most preferably 1.
  • linear or branched alkenyl groups having 2 or more and 4 or less carbon atoms examples include vinyl groups, allyl groups, propenyl groups, butadiene groups, and the like. From the viewpoint of durability, the number of carbon atoms is preferably 2 or more, preferably 3 or less, and most preferably 2.
  • linear or branched alkynyl groups having 2 or more and 4 or less carbon atoms examples include ethynyl, propionyl, and butynyl groups. From the viewpoint of durability, the number of carbon atoms is preferably 2 or more, preferably 3 or less, and most preferably 2.
  • diarylamino group having 10 to 40 carbon atoms examples include diphenylamino group, phenyl(naphthyl)amino group, di(biphenyl)amino group, di(p-terphenyl)amino group, and the like. From the viewpoint of balance between solubility and durability, the number of carbon atoms in these diarylamino groups is preferably 10 or more, preferably 36 or less, more preferably 30 or less, and 25 or less. Most preferably.
  • arylheteroarylamino group having 10 to 40 carbon atoms examples include phenyl(2-pyridyl)amino group, phenyl(2,6-diphenyl-1,3,5-triazin-4-yl)amino group, etc. Can be mentioned. From the viewpoint of balance between solubility and durability, the number of carbon atoms in these arylheteroarylamino groups is preferably 10 or more, more preferably 36 or less, more preferably 30 or less, 25 The following is most preferable.
  • diheteroarylamino group having 10 to 40 carbon atoms examples include di(2-pyridyl)amino group, di(2,6-diphenyl-1,3,5-triazin-4-yl)amino group, etc. .
  • the number of carbon atoms in these diheteroarylamino groups is preferably 10 or more, preferably 36 or less, more preferably 30 or less, and 25 The following is most preferable.
  • substituents include D, F, -CN, or a linear chain having 1 to 5 carbon atoms, particularly from the viewpoint of not impairing the durability as a luminescent material in an organic electroluminescent device.
  • substituents include D, F, -CN, or a linear chain having 1 to 5 carbon atoms, particularly from the viewpoint of not impairing the durability as a luminescent material in an organic electroluminescent device.
  • branched or cyclic alkyl groups, D, F, --CN, methyl or trifluoromethyl groups are particularly preferred, with D being most preferred.
  • R' each independently represents D, F, -CN, a straight chain, branched or cyclic alkyl group having 1 to 5 carbon atoms, a straight chain or branched alkenyl group having 2 to 4 carbon atoms, and a carbon number It is selected from 2 to 4 linear or branched alkynyl groups.
  • ⁇ a> a is an integer from 0 to the maximum integer that can be substituted by one ligand in formula (1).
  • the largest integer can be calculated as 3(n+4).
  • the molecular weight of the iridium complex compound represented by formula (1) is preferably 1,111 to 10,000, more preferably 1,300 to 8,000, even more preferably 1,500 to 5,000.
  • m represents an integer from 0 to 10.
  • Q represents a substituent, and b represents from 0 to the maximum integer that can be substituted by one ligand.
  • X represents formula (3) or (4).
  • each Ar 1 independently represents a trivalent aromatic hydrocarbon group having 6 to 30 carbon atoms or a trivalent heteroaromatic group having 2 to 30 carbon atoms
  • Ar Each of 2 independently represents a monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms or a monovalent heteroaromatic group having 2 to 30 carbon atoms.
  • Ar 1 and Ar 2 in formulas (3) and (4) may be substituted with Q. ]]
  • ⁇ m> m is an integer from 0 to 10.
  • X is directly bonded to the para position of the iridium atom in the benzene ring bonded to the iridium atom.
  • the range of m is preferably an integer of 0 to 8, more preferably an integer of 0 to 6, and even more preferably an integer of 0 to 4.
  • the preferable bonding mode of the m phenylene groups connected is the same as in formula (1).
  • X represents formula (3) or (4).
  • the broken line in formula (3) or (4) represents the bond with the benzene ring.
  • Ar 1 each independently represents a trivalent aromatic hydrocarbon group having 6 to 30 carbon atoms or a trivalent heteroaromatic group having 2 to 30 carbon atoms
  • Ar 2 each independently represents a trivalent aromatic hydrocarbon group having 6 to 30 carbon atoms
  • the type of these aromatic hydrocarbon groups or heteroaromatic groups may be a single ring, a condensed ring, or a structure formed by bonding these groups.
  • Ar 1 and Ar 2 may be substituted with Q. It is preferable that each Ar 1 independently represents a trivalent aromatic hydrocarbon group having 6 to 30 carbon atoms, and each Ar 2 independently represents a monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms.
  • the corresponding parent skeletons include benzene ring, naphthalene ring, anthracene ring, benzanthracene ring, phenanthrene ring, benzophenanthrene ring, pyrene ring, Chrysene ring, fluoranthene ring, perylene ring, benzopyrene ring, benzofluoranthene ring, naphthacene ring, pentacene ring, biphenyl, terphenyl, quaterphenyl, fluorene ring, spirobifluorene ring, dihydrophenanthrene ring, dihydropyrene ring, tetrahydro Pyrene ring, indenofluorene ring, furan ring, benzofuran ring, isobenzofuran ring, dibenzofuran ring, thiophene ring,
  • both Ar 1 and Ar 2 are preferably a monocyclic ring having a 6-membered ring structure, a condensed ring containing a 6-membered ring structure, or an aromatic hydrocarbon group or a heteroaromatic ring having a structure in which these are combined. More preferably, the six-membered ring structure is an aromatic hydrocarbon ring, most preferably a benzene ring.
  • Ar 1 's appearing in formula (4) preferably have different structures from the viewpoint of increasing solubility, but from the viewpoint of durability, it is more preferable that they have the same structure.
  • Ar 2 that appears multiple times in formula (3) or formula (4) have different structures, but from the viewpoint of durability, it is more preferable that they have the same structure.
  • Q represents a substituent.
  • the type of Q is not particularly limited and should be appropriately selected in order to adjust the solubility and emission wavelength, but the type usually selected is the following [substituent group Z].
  • the alkyl group, the alkoxy group, the alkylthio group, the alkenyl group, and the alkynyl group may be further substituted with one or more Q', and one or more -CH 2 - groups in these groups
  • one or more hydrogen atoms in these groups may be substituted with F, Cl, Br, I or -CN.
  • the aromatic hydrocarbon group, the aromatic heterocyclic group, the aryloxy group, the arylthio group, the aralkyl group, the heteroaralkyl group, the diarylamino group, the arylheteroarylamino group, and the diheteroarylamino group may each be independently further substituted with one or more Q'.
  • Q' will be described later.
  • Examples of straight chain, branched or cyclic alkyl groups having 1 to 30 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, n-pentyl group, n-hexyl group, Examples include n-octyl group, 2-ethylhexyl group, isopropyl group, isobutyl group, cyclopentyl group, cyclohexyl group, n-octyl group, norbornyl group, and adamantyl group.
  • the number of carbon atoms is preferably 1 or more, preferably 30 or less, more preferably 20 or less, and 12 The following are more preferred.
  • the shielding effect is greater than that of a straight-chain alkyl group or a cyclic alkyl group, so the number of carbon atoms is most preferably 8 or less.
  • Examples of straight chain, branched or cyclic alkoxy groups having 1 to 30 carbon atoms include methoxy group, ethoxy group, n-propyloxy group, n-butoxy group, n-hexyloxy group, isopropyloxy group, cyclohexyloxy group. group, 2-ethoxyethoxy group, 2-ethoxyethoxyethoxy group, etc. From the viewpoint of durability, the number of carbon atoms is preferably 1 or more, preferably 30 or less, more preferably 20 or less, and most preferably 12 or less.
  • Examples of straight chain, branched or cyclic alkylthio groups having 1 to 30 carbon atoms include methylthio group, ethylthio group, n-propylthio group, n-butylthio group, n-hexylthio group, isopropylthio group, cyclohexylthio group, Examples include 2-methylbutylthio group and n-hexylthio group. From the viewpoint of durability, the number of carbon atoms is preferably 1 or more, preferably 30 or less, more preferably 20 or less, and most preferably 12 or less.
  • linear, branched or cyclic alkenyl groups having 2 to 30 carbon atoms examples include vinyl, allyl, propenyl, heptenyl, cyclopentenyl, cyclohexenyl, cyclooctenyl and the like. From the viewpoint of durability, the number of carbon atoms is preferably 2 or more, preferably 30 or less, more preferably 20 or less, and most preferably 12 or less.
  • Examples of straight chain, branched or cyclic alkynyl groups having 2 or more and 30 or less carbon atoms include ethynyl, propionyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl and the like. From the viewpoint of durability, the number of carbon atoms is preferably 2 or more, preferably 30 or less, more preferably 20 or less, and most preferably 12 or less.
  • the aromatic hydrocarbon group having 5 to 60 carbon atoms and the aromatic heterocyclic group having 2 to 60 carbon atoms may exist as a single ring or a condensed ring, or one ring may contain another ring. It may be a group formed by bonding or condensing various aromatic hydrocarbon groups or aromatic heterocyclic groups.
  • Examples of these include phenyl, naphthyl, anthracenyl, benzanthracenyl, phenanthrenyl, benzophenanthrenyl, pyrenyl, chrysenyl, fluoranthenyl, perylenyl, benzopyrenyl, benzoflurenyl, oranthenyl group, naphthacenyl group, pentacenyl group, biphenyl group, terphenyl group, fluorenyl group, spirobifluorenyl group, dihydrophenanthrenyl group, dihydropyrenyl group, tetrahydropyrenyl group, indenofluorenyl group, furyl group, benzofuryl group, isobenzofuryl group, dibenzofuranyl group, thiophene group, benzothiophenyl group, dibenzothiophenyl group, pyrrolyl group, indolyl group, isoind
  • the carbon number of these groups is preferably 5 or more, preferably 50 or less, more preferably 40 or less, and most preferably 30 or less. preferable.
  • Examples of the aryloxy group having 5 to 40 carbon atoms include phenoxy group, methylphenoxy group, naphthoxy group, and methoxyphenoxy group. From the viewpoint of balance between solubility and durability, the number of carbon atoms in these aryloxy groups is 5 or more, preferably 30 or less, more preferably 25 or less, and most preferably 20 or less.
  • arylthio group having 5 to 40 carbon atoms examples include phenylthio group, methylphenylthio group, naphthylthio group, and methoxyphenylthio group. From the viewpoint of balance between solubility and durability, the number of carbon atoms in these arylthio groups is 5 or more, preferably 30 or less, more preferably 25 or less, and most preferably 20 or less.
  • Examples of aralkyl groups having 5 to 60 carbon atoms include 1,1-dimethyl-1-phenylmethyl group, 1,1-di(n-butyl)-1-phenylmethyl group, and 1,1-di(n-butyl)-1-phenylmethyl group.
  • the number of carbon atoms in these aralkyl groups is preferably 5 or more, and more preferably 40 or less.
  • heteroaralkyl groups having 5 to 60 carbon atoms include 1,1-dimethyl-1-(2-pyridyl)methyl group, 1,1-di(n-hexyl)-1-(2-pyridyl)methyl group, (2-pyridyl)methyl group, (2-pyridyl)ethyl group, 3-(2-pyridyl)-1-propyl group, 4-(2-pyridyl)-1-n-butyl group, 1-methyl- 1-(2-pyridyl)ethyl group, 5-(2-pyridyl)-1-n-propyl group, 6-(2-pyridyl)-1-n-hexyl group, 6-(2-pyrimidyl)-1- n-hexyl group, 6-(2,6-diphenyl-1,3,5-triazin-4-yl)-1-n-hexyl group, 7-(2-pyridyl)-1-n-heptyl group, 8 Examples include -(2-pyr
  • diarylamino group having 10 to 40 carbon atoms examples include diphenylamino group, phenyl(naphthyl)amino group, di(biphenyl)amino group, di(p-terphenyl)amino group, and the like. From the viewpoint of balance between solubility and durability, the carbon number of these diarylamino groups is preferably 10 or more, and preferably 36 or less, more preferably 30 or less, and preferably 25 or less. Most preferred.
  • Examples of the arylheteroarylamino group having 10 to 40 carbon atoms include phenyl(2-pyridyl)amino and phenyl(2,6-diphenyl-1,3,5-triazin-4-yl)amino groups. It will be done. From the viewpoint of balance between solubility and durability, the number of carbon atoms in these arylheteroarylamino groups is 10 or more, preferably 36 or less, more preferably 30 or less, and 25 or less. is most preferable.
  • Examples of the diheteroarylamino group having 10 to 40 carbon atoms include di(2-pyridyl)amino group, di(2,6-diphenyl-1,3,5-triazin-4-yl)amino group, etc. .
  • the carbon number of these diheteroarylamino groups is 10 or more, preferably 36 or less, more preferably 30 or less, and 25 or less. is most preferable.
  • the alkyl group, the alkoxy group, the alkylthio group, the alkenyl group, and the alkynyl group may be further substituted with one or more R'', and one -CH 2 - group or two
  • one or more hydrogen atoms in these groups may be substituted with F, Cl, Br, I or -CN.
  • the amino group may be further substituted with one or more Q''. Q'' will be described later.
  • two or more adjacent Q' may be bonded to each other while losing their respective hydrogen atoms to form an aliphatic, aromatic hydrocarbon, or heteroaromatic monocyclic or fused ring.
  • Q'' is each independently D, F, -CN, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an aromatic hydrocarbon group having 5 to 20 carbon atoms, or an aromatic group having 5 to 20 carbon atoms. selected from heterocyclic groups. Two or more adjacent Q'' may be bonded to each other while losing their respective hydrogen atoms to form an aliphatic, aromatic hydrocarbon, or heteroaromatic monocyclic or fused ring. When multiple Q''s exist, they may be the same or different.
  • more preferable types of the substituent Q that the formula (2) may have are D, F, a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, and 2 carbon atoms.
  • More preferable types are D, F, straight chain, branched or cyclic alkyl group having 1 to 30 carbon atoms, aromatic hydrocarbon group having 5 to 60 carbon atoms, aromatic group having 2 to 60 carbon atoms.
  • ⁇ b> b ranges from 0 to the maximum integer that can be substituted by one ligand in formula (2).
  • the molecular weight range is preferably 1,339 to 15,000, more preferably 1,650 to 12,000, and still more preferably 1,750 to 10,000.
  • the combination of the compound represented by the formula (1) and the compound represented by the formula (2) can be used as the compound represented by the formula (2) from the viewpoint of further increasing the luminous efficiency. It is preferable to use a compound represented by formula (3). Furthermore, as a compound represented by formula (1), a compound represented by formula (5) is used, and as a compound represented by formula (2), X in formula (2) is represented by formula (3). It is more preferable that the compound is
  • the method for measuring the maximum emission wavelength in a solution of the iridium complex compound of the present invention is as follows. At room temperature, a solution prepared by dissolving an iridium complex compound in toluene at a concentration of 1 x 10 -4 mol/L or less, preferably 1 x 10 -5 mol/L, was measured using a spectrophotometer (manufactured by Hamamatsu Photonics, organic EL quantum absorption). The phosphorescence spectrum is measured using a rate measuring device C9920-02). However, before measurement, it is necessary to sufficiently remove oxygen, which causes quenching, by bubbling nitrogen or by freezing and degassing. The wavelength showing the maximum value of the obtained phosphorescence spectrum intensity is regarded as the maximum emission wavelength in the present invention.
  • the compound represented by formula (1) and the compound represented by formula (2) are preferred.
  • the lower limit is usually 490 nm or more, preferably 500 nm or more, more preferably 520 nm or more
  • the upper limit is usually 560 nm or less, preferably 550 nm or less, and even more preferably 540 nm or less.
  • composition for a light-emitting layer of the present invention there is no particular restriction on the absolute value of the difference in maximum emission wavelength between the compound represented by formula (1) and the compound represented by formula (2), but usually It is 0 nm or more and 20 nm or less, preferably 0 nm or more and 10 nm or less, and more preferably 0 nm or more and 5 nm or less.
  • the method for measuring the maximum emission wavelength exhibited by the compound represented by formula (1) and the compound represented by formula (2) is as described above in ⁇ Method for measuring maximum emission wavelength in solution>>. In detail, it can be measured by the following measuring method.
  • Measurement method Bubbling nitrogen for 20 minutes or more into a solution in which the compound represented by formula (1) or the compound represented by formula (2) is dissolved in toluene at a concentration of 1 ⁇ 10 -5 mol/L at room temperature. Then, the wavelength showing the maximum value of the phosphorescence spectrum intensity obtained from the sample from which oxygen, which causes quenching, has been removed is defined as the maximum emission wavelength.
  • the ligand of the iridium complex compound of the present invention can be prepared by a Miyaura-Ishiyama boronation reaction or a Hartwig-Miyaura C-H boronation reaction using a building block such as a halogenated fluorene or 2-bromo-5-iodopyridine. After converting into acid esters, a skeleton can be constructed by a Suzuki-Miyaura coupling reaction between these intermediates and an aryl halide. By combining other known methods, it is possible to synthesize ligands into which various substituents have been introduced.
  • a chlorine-bridged iridium dinuclear complex is synthesized by a reaction between two equivalents of the ligand and one equivalent of iridium chloride n-hydrate.
  • the solvent a mixed solvent of 2-ethoxyethanol and water is usually used, but no solvent or other solvents may be used.
  • the reaction can also be promoted by using an excess amount of the ligand or by using an additive such as a base.
  • Other bridging anionic ligands such as bromine can also be used in place of chlorine.
  • reaction temperature there is no particular restriction on the reaction temperature, but it is usually preferably 0°C or higher, more preferably 50°C or higher. Further, the temperature is preferably 250°C or lower, more preferably 150°C or lower. Within these ranges, only the desired reaction proceeds without by-products or decomposition reactions, and high selectivity tends to be obtained.
  • the desired complex is obtained by adding a halogen ion scavenger such as silver trifluoromethanesulfonate and bringing it into contact with the newly added ligand.
  • a halogen ion scavenger such as silver trifluoromethanesulfonate
  • Ethoxyethanol or diglyme is usually used as the solvent, but depending on the type of the ligand, no solvent or other solvents can be used, and a mixture of a plurality of solvents can also be used.
  • the reaction may proceed without adding a halogen ion scavenger, it is not always necessary, but in order to increase the reaction yield and selectively synthesize a facial isomer with a higher quantum yield, the scavenger may be used.
  • the addition of is advantageous. There is no particular restriction on the reaction temperature, but it is usually carried out within the range of 0°C to 250°C.
  • the first stage dinuclear complex can be synthesized in the same manner as in formula [A].
  • one equivalent or more of a 1,3-dione compound such as acetylacetone is added to the dinuclear complex, and one equivalent of a basic compound capable of extracting active hydrogen from the 1,3-dione compound such as sodium carbonate is added to the dinuclear complex.
  • a basic compound capable of extracting active hydrogen from the 1,3-dione compound such as sodium carbonate
  • a solvent such as ethoxyethanol or dichloromethane that can dissolve the raw material dinuclear complex is used, but if the ligand is liquid, it is also possible to carry out the reaction without a solvent.
  • the reaction temperature There is no particular restriction on the reaction temperature, but it is usually carried out within the range of 0°C to 200°C.
  • the third step one equivalent or more of the ligand is reacted.
  • the type and amount of the solvent are not particularly limited, and if the ligand is liquid at the reaction temperature, no solvent may be used. There is no particular restriction on the reaction temperature, but since the reactivity is somewhat poor, the reaction is often carried out at a relatively high temperature of 100°C to 300°C. Therefore, a high boiling point solvent such as glycerin is preferably used.
  • purification is performed to remove unreacted raw materials, reaction by-products, and solvents.
  • purification operations in ordinary organic synthetic chemistry can be applied, purification is mainly performed by normal phase silica gel column chromatography as described in the above-mentioned non-patent literature.
  • As the developing solution a single solution or a mixture of hexane, heptane, dichloromethane, chloroform, ethyl acetate, toluene, methyl ethyl ketone, and methanol can be used. Purification may be performed multiple times under different conditions.
  • the content of the iridium complex compound in the composition for a light emitting layer of the present invention is determined based on the weight of the entire composition for a light emitting layer, the amount of the compound represented by the formula (1) contained in the composition for a light emitting layer, and the amount of the compound represented by the formula (2) contained in the composition for a light emitting layer. ) is usually 0.001% by mass or more, preferably 0.01% by mass or more, and usually 99.9% by mass or less, preferably 99% by mass or less.
  • the content of the iridium complex compound in the composition for the light emitting layer within this range, holes and electrons can be efficiently injected from adjacent layers (for example, hole transport layer and hole blocking layer) to the light emitting layer. is performed, and the driving voltage can be reduced.
  • the mixing ratio of the compound represented by formula (1) and the compound represented by formula (2) in the composition for a light-emitting layer of the present invention is not particularly limited, and the optimum ratio for the device configuration to be used is determined through experiments. However, usually, the ratio of the mass of the compound represented by the formula (1) to the total mass of the compound represented by the formula (1) and the compound represented by the formula (2) is expressed as mass%.
  • the ratio of the mass of the compound represented by formula (1) to the total mass of the compound represented by formula (1) and the compound represented by formula (2) is: Particularly preferably, it is 10% or more and 80% or less, and most preferably 25% or more and 75% or less.
  • the composition for a light emitting layer of the present invention when used for an organic electroluminescent device, for example, it may contain a charge transporting compound used in the organic electroluminescent device, especially the light emitting layer, in addition to the above-mentioned iridium complex compound and solvent. I can do it.
  • the iridium complex compound of the present invention When forming a light emitting layer of an organic electroluminescent device using the composition for a light emitting layer of the present invention, the iridium complex compound of the present invention is used as a light emitting material, and other charge transporting compounds are included as a charge transporting host material. It is preferable.
  • charge transporting compounds that may be contained in the composition for a light-emitting layer of the present invention
  • those conventionally used as materials for organic electroluminescent devices can be used.
  • One type of these may be used alone, or two or more types may be used in any combination and ratio.
  • the content of other charge transporting compounds in the composition for a light emitting layer is usually 1000 parts by mass or less, preferably 100 parts by mass, per 1 part by mass of the iridium complex compound of the present invention in the composition for a light emitting layer. parts, more preferably 50 parts by weight or less, usually 0.01 parts by weight or more, preferably 0.1 parts by weight or more, still more preferably 1 part by weight or more.
  • the composition for a light emitting layer of the present invention can be used as an ink for a light emitting layer (hereinafter sometimes referred to as an ink for a light emitting layer containing an iridium complex compound) by further containing an organic solvent.
  • the iridium complex compound-containing ink for a light-emitting layer of the present invention can be suitably used for manufacturing a coating-type organic EL element. In particular, it can be very suitably used as a material for a light emitting layer of a green element used in an organic EL display.
  • the ink for a light-emitting layer containing the iridium complex compound of the present invention and an organic solvent is an ink containing the two types of iridium complex compounds of the present invention described above and an organic solvent.
  • the ink for a light emitting layer containing the iridium complex compound of the present invention is usually used to form a layer or film by a wet film forming method, and is particularly preferably used to form an organic layer of an organic electroluminescent device.
  • the organic layer is preferably a light-emitting layer, especially a green light-emitting layer. That is, the ink for a light emitting layer containing the iridium complex compound and the organic solvent of the present invention is preferably an ink for a light emitting layer for an organic electroluminescent device.
  • the organic solvent contained in the ink for a luminescent layer containing an iridium complex compound of the present invention is a volatile liquid component used to form a layer containing an iridium complex compound by wet film formation.
  • the organic solvent is not particularly limited as long as it is an organic solvent in which the charge transporting compound described below can be well dissolved since the iridium complex compound of the present invention, which is the solute, has high solvent solubility.
  • Preferred organic solvents include, for example, alkanes such as n-decane, cyclohexane, ethylcyclohexane, decalin, and bicyclohexane; aromatic hydrocarbons such as toluene, xylene, mesitylene, phenylcyclohexane, and tetralin; chlorobenzene, dichlorobenzene, and trichlorobenzene; Halogenated aromatic hydrocarbons such as chlorobenzene; 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetol, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole , 2,4-dimethylanisole, diphenyl ether, and other aromatic ethers; phenyl acetate, phenyl propionate, methyl benzoate, ethyl
  • alkanes and aromatic hydrocarbons are preferred, and phenylcyclohexane has a preferable viscosity and boiling point in a wet film forming process.
  • One type of these organic solvents may be used alone, or two or more types may be used in any combination and ratio.
  • the boiling point of the organic solvent used is usually 80°C or higher, preferably 100°C or higher, more preferably 120°C or higher, and usually 270°C or lower, preferably 250°C or lower, more preferably 230°C or lower. If it is less than this range, the organic solvent may evaporate from the light-emitting layer ink during wet film formation, resulting in a decrease in film formation stability.
  • the content of the organic solvent is preferably 1% by mass or more, more preferably 10% by mass or more, particularly preferably 50% by mass or more, and preferably 99.99% by mass or less in the iridium complex compound-containing light emitting layer ink. It is more preferably 99.9% by mass or less, particularly preferably 99% by mass or less.
  • the thickness of the light-emitting layer is usually about 3 to 200 nm, but if the content of the organic solvent is below this lower limit, the viscosity of the ink for the light-emitting layer becomes too high, which may reduce film-forming workability. On the other hand, if the content of the organic solvent exceeds this upper limit, the thickness of the film obtained by removing the organic solvent after film formation cannot be increased, so film formation tends to become difficult.
  • the iridium complex compound-containing ink for a light-emitting layer of the present invention may further contain other compounds in addition to the above-mentioned compounds, etc., if necessary.
  • other solvents may be contained in addition to the above-mentioned solvents.
  • solvents include amides such as N,N-dimethylformamide and N,N-dimethylacetamide, and dimethylsulfoxide. One type of these may be used alone, or two or more types may be used in any combination and ratio.
  • organic electroluminescent device of the present invention using the ink for a light emitting layer of the present invention will be described.
  • the organic electroluminescent device of the present invention contains the iridium complex compound contained in the ink for a light emitting layer of the present invention.
  • the organic electroluminescent device of the present invention preferably has at least an anode, a cathode, and at least one organic layer between the anode and the cathode on a substrate, and at least one of the organic layers Contains an iridium complex compound contained in the ink for a light emitting layer of the present invention.
  • the organic layer includes a light emitting layer.
  • the organic layer containing an iridium complex compound contained in the ink for a light emitting layer of the present invention is more preferably a layer formed using the ink for a light emitting layer containing an iridium complex compound of the present invention, and is formed by a wet film forming method. It is more preferable that the layer is made of aluminum.
  • the layer formed by the wet film forming method is preferably the light emitting layer.
  • the wet film forming method refers to a film forming method, that is, a coating method such as a spin coating method, dip coating method, die coating method, bar coating method, blade coating method, roll coating method, spray coating method, capillary coating method, etc.
  • wet film forming methods such as coating method, inkjet method, nozzle printing method, screen printing method, gravure printing method, flexographic printing method, etc., and dry the film formed by these methods to form a film. It refers to the method of doing something.
  • the organic electroluminescent device of the present invention has an anode, a light-emitting layer, and a cathode in this order on a substrate, and the light-emitting layer contains a compound represented by the above formula (1) and a compound represented by the formula (2). It is preferable to include the represented compound.
  • FIG. 1 is a schematic cross-sectional view showing a suitable structural example of an organic electroluminescent device 10 of the present invention.
  • the hole transport layer numeral 5 represents a light emitting layer
  • numeral 6 represents a hole blocking layer
  • numeral 7 represents an electron transport layer
  • numeral 8 represents an electron injection layer
  • numeral 9 represents a cathode.
  • the substrate 1 serves as a support for the organic electroluminescent element, and typically includes a quartz or glass plate, a metal plate or metal foil, a plastic film or sheet, or the like. Among these, glass plates and plates made of transparent synthetic resins such as polyester, polymethacrylate, polycarbonate, and polysulfone are preferred.
  • the substrate 1 is preferably made of a material with high gas barrier properties since the organic electroluminescent element is unlikely to be deteriorated by outside air. For this reason, especially when using a material with low gas barrier properties such as a synthetic resin substrate, it is preferable to provide a dense silicon oxide film or the like on at least one side of the substrate 1 to improve the gas barrier properties.
  • the anode 2 has a function of injecting holes into the layer on the light emitting layer side.
  • the anode 2 is usually made of metal such as aluminum, gold, silver, nickel, palladium, or platinum; metal oxide such as indium and/or tin oxide; metal halide such as copper iodide; carbon black or poly(3); -Methylthiophene), polypyrrole, polyaniline, and other conductive polymers.
  • the anode 2 is usually formed by a dry method such as a sputtering method or a vacuum evaporation method.
  • an appropriate binder resin solution may be used. It can also be formed by dispersing it into a mixture and applying it on the substrate.
  • the anode 2 can also be formed by directly forming a thin film on the substrate by electrolytic polymerization, or by coating the conductive polymer on the substrate (Appl. Phys. Lett., 60, p. 2711, 1992).
  • the anode 2 usually has a single layer structure, but may have a laminated structure as appropriate. When the anode 2 has a laminated structure, different conductive materials may be laminated on the first layer of the anode.
  • the thickness of the anode 2 may be determined depending on the required transparency, material, etc. When particularly high transparency is required, the thickness is preferably such that the visible light transmittance is 60% or more, and more preferably 80% or more.
  • the thickness of the anode 2 is usually 5 nm or more, preferably 10 nm or more, and preferably 1000 nm or less, preferably 500 nm or less.
  • the thickness of the anode 2 may be set arbitrarily depending on the required strength, etc. In this case, the anode 2 may have the same thickness as the substrate 1.
  • impurities on the anode are removed and its ionization potential is adjusted by treating it with ultraviolet rays + ozone, oxygen plasma, argon plasma, etc. before forming the film. It is preferable to improve the hole injection property.
  • a layer that has the function of transporting holes from the anode 2 side to the light emitting layer 5 side is usually called a hole injection transport layer or a hole transport layer.
  • the layer closer to the anode 2 side may be referred to as the hole injection layer 3. It is preferable to use the hole injection layer 3 because it enhances the function of transporting holes from the anode 2 to the light emitting layer 5 side.
  • the hole injection layer 3 is usually formed on the anode 2.
  • the film thickness of the hole injection layer 3 is usually 1 nm or more, preferably 5 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • the method for forming the hole injection layer 3 may be a vacuum evaporation method or a wet film formation method. In terms of excellent film-forming properties, it is preferable to form the film by a wet film-forming method.
  • the hole injection layer 3 preferably contains a hole transporting compound, and more preferably contains a hole transporting compound and an electron accepting compound. Furthermore, it is preferable that the hole injection layer 3 contains a cation radical compound, and it is particularly preferable that the hole injection layer 3 contains a cation radical compound and a hole transporting compound.
  • the composition for forming a hole injection layer usually contains a hole transporting compound that becomes the hole injection layer 3. Further, in the case of a wet film forming method, a solvent is usually also contained. It is preferable that the composition for forming a hole injection layer has high hole transport properties and can efficiently transport injected holes. For this reason, it is preferable that the hole mobility is high and that impurities that become traps are difficult to generate during manufacturing or use. Further, it is preferable that the material has excellent stability, low ionization potential, and high transparency to visible light.
  • the hole injection layer 3 when the hole injection layer 3 is in contact with the light emitting layer 5, it is preferable to use a material that does not quench the light emitted from the light emitting layer 5 or a material that does not form an exciplex with the light emitting layer 5 and reduce luminous efficiency.
  • hole transporting compound a compound having an ionization potential of 4.5 eV to 6.0 eV is preferable from the viewpoint of a charge injection barrier from the anode 2 to the hole injection layer 3.
  • hole-transporting compounds include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, compounds in which tertiary amines are linked with fluorene groups, and hydrazone.
  • Examples thereof include silazane-based compounds, silazane-based compounds, and quinacridone-based compounds.
  • aromatic amine compounds are preferred, and aromatic tertiary amine compounds are particularly preferred, from the viewpoint of amorphousness and visible light transparency.
  • the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and also includes a compound having a group derived from an aromatic tertiary amine.
  • the type of aromatic tertiary amine compound is not particularly limited, but a polymeric compound with a weight average molecular weight of 1,000 or more and 1,000,000 or less (a polymeric compound with a series of repeating units) is preferred, since it is easy to obtain uniform light emission due to the surface smoothing effect. It is preferable to use Preferred examples of aromatic tertiary amine polymer compounds include polymer compounds having repeating units represented by the following formula (I).
  • Ar 1 and Ar 2 each independently represent an aromatic group that may have a substituent or a heteroaromatic group that may have a substituent.
  • Ar 3 ⁇ Ar 5 each independently represents an aromatic group that may have a substituent or a heteroaromatic group that may have a substituent.
  • Q is selected from the following linking group group. (Represents a selected linking group. Also, two groups bonded to the same N atom among Ar 1 to Ar 5 may bond to each other to form a ring.)
  • the linking group is shown below.
  • Ar 6 to Ar 16 each independently represent an aromatic group that may have a substituent or a heteroaromatic group that may have a substituent.
  • R a to R b each independently represents a hydrogen atom or an arbitrary substituent.
  • the aromatic group and heteroaromatic group of Ar 1 to Ar 16 in formula (I) include benzene ring, naphthalene ring, phenanthrene ring, Groups derived from a thiophene ring or a pyridine ring are preferred, and groups derived from a benzene ring or a naphthalene ring are more preferred.
  • aromatic tertiary amine polymer compound having a repeating unit represented by formula (I) include those described in International Publication No. 2005/089024.
  • the hole injection layer 3 preferably contains an electron-accepting compound because the conductivity of the hole-injection layer 3 can be improved by oxidizing the hole-transporting compound.
  • the electron-accepting compound a compound having oxidizing power and the ability to accept one electron from the above-mentioned hole-transporting compound is preferable. Specifically, a compound having an electron affinity of 4 eV or more is preferable, and a compound having an electron affinity of 4 eV or more is preferable. More preferably, the compound is 5 eV or more.
  • electron-accepting compounds include triarylboron compounds, metal halides, Lewis acids, organic acids, onium salts, salts of arylamines and metal halides, and salts of arylamines and Lewis acids.
  • examples include one or more compounds selected from the group. Specifically, onium salts substituted with organic groups such as 4-isopropyl-4'-methyldiphenyliodonium tetrakis(pentafluorophenyl)borate and triphenylsulfonium tetrafluoroborate (International Publication No. 2005/089024); High valence inorganic compounds such as iron (III) (Japanese Unexamined Patent Publication No.
  • ammonium peroxodisulfate ammonium peroxodisulfate
  • cyano compounds such as tetracyanoethylene
  • tris(pentafluorophenyl)borane Japanese Unexamined Patent Publication No. 2003-2003
  • aromatic boron compounds such as No. 31365
  • fullerene derivatives and iodine examples thereof include aromatic boron compounds such as No. 31365; fullerene derivatives and iodine.
  • the cation radical compound is preferably an ionic compound consisting of a cation radical, which is a chemical species obtained by removing one electron from a hole transporting compound, and a counter anion.
  • a cation radical which is a chemical species obtained by removing one electron from a hole transporting compound, and a counter anion.
  • the cation radical when the cation radical is derived from a hole-transporting polymer compound, the cation radical has a structure in which one electron is removed from the repeating unit of the polymer compound.
  • the cation radical is preferably a chemical species obtained by removing one electron from the compound described above as a hole-transporting compound.
  • a chemical species obtained by removing one electron from a compound preferable as a hole transporting compound is preferable from the viewpoint of amorphous property, visible light transmittance, heat resistance, solubility, and the like.
  • the cation radical compound can be produced by mixing the above-described hole-transporting compound and electron-accepting compound. That is, by mixing the hole-transporting compound and the electron-accepting compound described above, electron transfer occurs from the hole-transporting compound to the electron-accepting compound, and the cation radical and counter anion of the hole-transporting compound are combined.
  • a cationic ionic compound consisting of
  • Cation radical compounds derived from polymer compounds such as PEDOT/PSS (Adv. Mater., 2000, Vol. 12, p. 481) and emeraldine hydrochloride (J. Phys. Chem., 1990, Vol. 94, p. 7716) It is also produced by oxidative polymerization (dehydrogenation polymerization).
  • the oxidative polymerization herein refers to chemically or electrochemically oxidizing a monomer using peroxodisulfate or the like in an acidic solution.
  • the monomer is oxidized to become a polymer, and a cation radical with one electron removed from the repeating unit of the polymer, which uses an anion derived from an acidic solution as a counter anion, is generated. generate.
  • the material for the hole injection layer 3 is usually mixed with a soluble solvent (solvent for hole injection layer) to form a film forming composition (hole injection layer solvent).
  • a composition for forming a hole injection layer is prepared, and this composition for forming a hole injection layer is formed into a film on a layer corresponding to the lower layer of the hole injection layer 3 (usually the anode 2) by a wet film formation method. , formed by drying.
  • the formed film can be dried in the same manner as the drying method used in forming the light emitting layer 5 by the wet film forming method.
  • the concentration of the hole transporting compound in the composition for forming a hole injection layer is arbitrary as long as it does not significantly impair the effects of the present invention, but from the point of view of uniformity of the film thickness, a lower concentration is preferable. A higher value is preferable in that defects are less likely to occur in the hole injection layer 3.
  • it is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, particularly preferably 0.5% by mass or more, and on the other hand, 70% by mass. It is preferably at most 60% by mass, more preferably at most 60% by mass, particularly preferably at most 50% by mass.
  • solvent examples include ether solvents, ester solvents, aromatic hydrocarbon solvents, and amide solvents.
  • ether solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA), and 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, and anisole. , phenethol, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, and other aromatic ethers.
  • aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA), and 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, and anisole.
  • PGMEA propylene glycol-1-monomethyl ether acetate
  • 1,2-dimethoxybenzene 1,3
  • ester solvent examples include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
  • aromatic hydrocarbon solvent examples include toluene, xylene, cyclohexylbenzene, 3-isopropylbiphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, methylnaphthalene, and the like.
  • amide solvent examples include N,N-dimethylformamide and N,N-dimethylacetamide. In addition to these, dimethyl sulfoxide and the like can also be used.
  • Formation of the hole injection layer 3 by a wet film forming method is usually performed by preparing a composition for forming the hole injection layer, and then applying it on a layer corresponding to the lower layer of the hole injection layer 3 (usually the anode 2). This is done by coating and drying. After forming the hole injection layer 3, the coating film is usually dried by heating, drying under reduced pressure, or the like.
  • ⁇ Formation of hole injection layer 3 by vacuum evaporation method When forming the hole injection layer 3 by vacuum evaporation, one or more of the constituent materials of the hole injection layer 3 (the aforementioned hole transporting compound, electron accepting compound, etc.) are usually deposited in a vacuum. Place it in a crucible installed in a container (when using two or more types of materials, usually put each in a separate crucible), evacuate the inside of the vacuum container to about 10 -4 Pa with a vacuum pump, and then heat the crucible. (when using two or more types of materials, each crucible is usually heated), and the materials in the crucible are evaporated while controlling the amount of evaporation (when using two or more types of materials, each crucible is usually heated).
  • the hole injection layer 3 can also be formed by putting a mixture of them in a crucible, heating and evaporating them.
  • the degree of vacuum during vapor deposition is not limited as long as it does not significantly impair the effects of the present invention, but is usually 0.1 ⁇ 10 ⁇ 6 Torr (0.13 ⁇ 10 ⁇ 4 Pa) or more, 9.0 ⁇ 10 ⁇ 6 Torr ( 12.0 ⁇ 10 ⁇ 4 Pa) or less.
  • the deposition rate is not limited as long as it does not significantly impair the effects of the present invention, but is usually 0.1 ⁇ /sec or more and 5.0 ⁇ /sec or less.
  • the film forming temperature during vapor deposition is not limited as long as it does not significantly impair the effects of the present invention, but is preferably 10°C or higher and 50°C or lower.
  • the hole transport layer 4 is a layer that has the function of transporting holes from the anode 2 side to the light emitting layer 5 side. Although the hole transport layer 4 is not an essential layer in the organic electroluminescent device of the present invention, it is preferable to provide this layer in terms of strengthening the function of transporting holes from the anode 2 to the light emitting layer 5.
  • the hole transport layer 4 is usually formed between the anode 2 and the light emitting layer 5. Further, if the hole injection layer 3 described above is present, it is formed between the hole injection layer 3 and the light emitting layer 5.
  • the film thickness of the hole transport layer 4 is usually 5 nm or more, preferably 10 nm or more, and on the other hand, usually 300 nm or less, preferably 100 nm or less.
  • the method for forming the hole transport layer 4 may be a vacuum evaporation method or a wet film formation method. In terms of excellent film-forming properties, it is preferable to form the film by a wet film-forming method.
  • the hole transport layer 4 usually contains a hole transport compound that becomes the hole transport layer 4.
  • the hole transporting compound contained in the hole transporting layer 4 includes two or more tertiary compounds represented by 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl.
  • Aromatic diamine containing an amine and having two or more condensed aromatic rings substituted with nitrogen atoms Japanese Unexamined Patent Publication No. 5-234681
  • Aromatic amine compounds having a starburst structure such as phenylamine (J. Lumin., Vol. 72-74, p.
  • aromatic amine compounds consisting of a triphenylamine tetramer (Chem. Commun., 2175, p. 1996), spiro compounds such as 2,2',7,7'-tetrakis-(diphenylamino)-9,9'-spirobifluorene (Synth. Metals, vol. 91, p. 209, 1997) , 4,4'-N,N'-dicarbazole biphenyl and other carbazole derivatives.
  • polyvinylcarbazole, polyvinyltriphenylamine Japanese Unexamined Patent Publication No. 7-53953
  • polyarylene ether sulfone containing tetraphenylbenzidine Polym.Adv.Tech., vol. 7, p. 33, 1996) etc.
  • polyvinylcarbazole polyvinyltriphenylamine
  • polyarylene ether sulfone containing tetraphenylbenzidine Polym.Adv.Tech.
  • the hole transport layer forming composition usually further contains a solvent.
  • a solvent used in the composition for forming a hole transport layer
  • the same solvent as that used in the above-mentioned composition for forming a hole injection layer can be used.
  • the concentration of the hole transporting compound in the composition for forming a hole transporting layer can be in the same range as the concentration of the hole transporting compound in the composition for forming a hole injection layer. Formation of the hole transport layer 4 by a wet film formation method can be performed in the same manner as the film formation method of the hole injection layer 3 described above.
  • a hole transport layer 4 is usually formed in place of the constituent material of the hole injection layer 3. It can be formed using the constituent material of the hole transport layer 4.
  • the film forming conditions such as the degree of vacuum, the vapor deposition rate, and the temperature during vapor deposition can be the same as those for the vacuum vapor deposition of the hole injection layer 3.
  • the light-emitting layer 5 is a layer that is excited by recombining holes injected from the anode 2 and electrons injected from the cathode 9 when an electric field is applied between a pair of electrodes, and has the function of emitting light. .
  • the light emitting layer 5 is a layer formed between the anode 2 and the cathode 9, and when the hole injection layer 3 is provided on the anode 2, the light emitting layer 5 is a layer formed between the hole injection layer 3 and the cathode 9.
  • the hole transport layer 4 is formed on the anode 2, it is formed between the hole transport layer 4 and the cathode 9.
  • This light-emitting layer may be a single layer or may include multiple layers.
  • the thickness of the light-emitting layer 5 is arbitrary as long as it does not significantly impair the effects of the present invention, but a thicker layer is preferable because defects are less likely to occur in the layer, and a thinner layer is preferable because it is easier to lower the driving voltage. . Therefore, the thickness of the light emitting layer 5 is preferably 3 nm or more, more preferably 5 nm or more, and on the other hand, it is usually preferably 200 nm or less, and even more preferably 100 nm or less.
  • the light-emitting layer 5 contains at least a material having luminescent properties (light-emitting material), and preferably contains a material having charge-transporting properties (charge-transporting material).
  • any light-emitting layer may contain the iridium complex compound of the present invention, and other light-emitting materials may be used as appropriate.
  • two or more types of iridium complex compounds of the present invention may be included.
  • luminescent materials other than the iridium complex compound of the present invention will be described in detail.
  • the luminescent material is not particularly limited as long as it emits light at a desired emission wavelength and does not impair the effects of the present invention, and any known luminescent material can be used.
  • the luminescent material may be a fluorescent material or a phosphorescent material, but a material with good luminous efficiency is preferable, and a phosphorescent material is preferable from the viewpoint of internal quantum yield.
  • Examples of the fluorescent material include the following materials.
  • Examples of fluorescent materials that emit blue light include naphthalene, perylene, pyrene, anthracene, coumarin, chrysene, p-bis(2-phenylethenyl)benzene, and derivatives thereof.
  • Examples of fluorescent materials that emit green light include quinacridone derivatives, coumarin derivatives, and aluminum complexes such as Al(C 9 H 6 NO) 3 .
  • Examples of the fluorescent material that emits yellow light include rubrene, perimidone derivatives, and the like.
  • red fluorescent materials examples include DCM (4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)-based compounds, benzopyran derivatives, and rhodamine derivatives. , benzothioxanthene derivatives, azabenzothioxanthene, and the like.
  • phosphorescent materials include, for example, items 7 to 11 of the long period periodic table (hereinafter, unless otherwise specified, the term "periodic table” refers to the long period periodic table).
  • a ligand in which a (hetero)aryl group and pyridine, pyrazole, phenanthroline, etc. are linked such as a (hetero)arylpyridine ligand and a (hetero)arylpyrazole ligand, is preferable.
  • Particularly preferred are phenylpyridine ligands and phenylpyrazole ligands.
  • (hetero)aryl represents an aryl group or a heteroaryl group.
  • Preferred phosphorescent materials include, for example, tris(2-phenylpyridine)iridium, tris(2-phenylpyridine)ruthenium, tris(2-phenylpyridine)palladium, bis(2-phenylpyridine)platinum, and tris(2-phenylpyridine)platinum.
  • Examples include phenylpyridine complexes such as (2-phenylpyridine)osmium and tris(2-phenylpyridine)rhenium, and porphyrin complexes such as octaethylplatinum porphyrin, octaphenylplatinum porphyrin, octaethylpalladium porphyrin, and octaphenylpalladium porphyrin.
  • phenylpyridine complexes such as (2-phenylpyridine)osmium and tris(2-phenylpyridine)rhenium
  • porphyrin complexes such as octaethylplatinum porphyrin, octaphenylplatinum porphyrin, octaethylpalladium porphyrin, and octaphenylpalladium porphyrin.
  • the charge transporting material is a material having a property of transporting positive charges (holes) or negative charges (electrons), and is not particularly limited as long as it does not impair the effects of the present invention, and known materials can be used.
  • As the charge transporting material compounds conventionally used in the light-emitting layer 5 of organic electroluminescent devices can be used, and compounds used as the host material of the light-emitting layer 5 are particularly preferred.
  • the charge transporting material include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, and compounds in which tertiary amines are linked with fluorene groups. , hydrazone compounds, silazane compounds, silanamine compounds, phosphamine compounds, quinacridone compounds, and other compounds exemplified as hole transporting compounds for the hole injection layer 3, as well as anthracene compounds and pyrene compounds. , carbazole-based compounds, pyridine-based compounds, phenanthroline-based compounds, oxadiazole-based compounds, silole-based compounds, and other electron-transporting compounds.
  • two or more fused aromatic rings containing two or more tertiary amines represented by 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl are attached to the nitrogen atom.
  • Substituted aromatic diamines Japanese Unexamined Patent Publication No. 5-234681
  • aromatic amine compounds having a starburst structure such as 4,4',4''-tris(1-naphthylphenylamino)triphenylamine
  • Aromatic amine compounds consisting of triphenylamine tetramers (Chem.
  • 2-(4-biphenylyl)-5-(p-tert-butylphenyl)-1,3,4-oxadiazole tBu-PBD
  • 2,5-bis(1-naphthyl)- Oxadiazole compounds such as 1,3,4-oxadiazole (BND)
  • BND 1,3,4-oxadiazole
  • silole compounds such as diphenylsilole (PyPySPyPy), phenanthroline compounds such as bathophenanthroline (BPhen), and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP, bathocuproine).
  • the method for forming the light-emitting layer 5 may be a vacuum evaporation method or a wet film-forming method
  • the wet film-forming method is used in the ink for a light-emitting layer containing an iridium complex compound of the present invention.
  • the light-emitting layer 5 is formed by a wet film-forming method
  • a light-emitting layer is usually used instead of the hole-injection layer-forming composition in the same manner as when the hole-injection layer 3 is formed by a wet film-forming method.
  • the layer 5 is formed using a composition for forming a luminescent layer prepared by mixing the material for layer 5 with a soluble solvent (solvent for luminescent layer).
  • the solvent examples include, in addition to the ether solvents, ester solvents, aromatic hydrocarbon solvents, and amide solvents mentioned for forming the hole injection layer 3, alkane solvents, halogenated aromatic hydrocarbon solvents, Examples include aliphatic alcohol solvents, alicyclic alcohol solvents, aliphatic ketone solvents, and alicyclic ketone solvents.
  • the solvent to be used is as exemplified as the solvent for the iridium complex compound-containing luminescent layer ink of the present invention, and specific examples of the solvent are listed below, but the solvents are limited to these as long as they do not impair the effects of the present invention. isn't it.
  • aliphatic ether solvents such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetol, 2 - Aromatic ether solvents such as methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, diphenyl ether; phenyl acetate, phenyl propionate, methyl benzoate, benzoic acid Aromatic ester solvents such as ethyl, propyl benzoate, n-butyl benzoate; toluene, xylene, mesitylene, cyclohexylbenzene, tetralin, 3-isopropylbiphenyl, 1,2,3,4-
  • the solvent evaporate from the liquid film immediately after film formation at an appropriate rate. Therefore, as mentioned above, the boiling point of the solvent used is usually 80°C or higher, preferably 100°C or higher, more preferably 120°C or higher, and usually 270°C or lower, preferably 250°C or lower, more preferably 230°C or lower. It is.
  • the amount of solvent to be used is arbitrary as long as it does not significantly impair the effects of the present invention, but the total content in the luminescent layer ink, that is, the iridium complex compound-containing luminescent layer ink, is such that the film forming process is difficult due to its low viscosity. A higher amount is preferable because it is easier to perform the process, and a lower amount is preferable because it is easier to form a thick film.
  • the content of the solvent is preferably 1% by mass or more, more preferably 10% by mass or more, particularly preferably 50% by mass or more, and preferably 99.99% by mass in the ink for a light emitting layer containing an iridium complex compound. % or less, more preferably 99.9% by mass or less, particularly preferably 99% by mass or less.
  • heating or reduced pressure can be used as a method for removing the solvent after wet film formation.
  • a clean oven or a hot plate is preferable because heat is applied evenly to the entire film.
  • the heating temperature in the heating step is arbitrary as long as it does not significantly impair the effects of the present invention, but a higher temperature is preferable in terms of shortening the drying time, and a lower temperature is preferable in terms of less damage to the material.
  • the upper limit of the heating temperature is usually 250°C or lower, preferably 200°C or lower, and more preferably 150°C or lower.
  • the lower limit of the heating temperature is usually 30°C or higher, preferably 50°C or higher, and more preferably 80°C or higher.
  • Temperatures exceeding the above upper limit are undesirable because the heat resistance is higher than the heat resistance of commonly used charge transport materials or phosphorescent materials, and there is a possibility of decomposition or crystallization. If it is less than the above lower limit, it will take a long time to remove the solvent, which is not preferable.
  • the heating time in the heating step is appropriately determined depending on the boiling point and vapor pressure of the solvent in the luminescent layer ink, the heat resistance of the material, and the heating conditions.
  • other light-emitting layers can be laminated to form a plurality of light-emitting layers.
  • a vacuum evaporation method can be used as another method for forming the light emitting layer.
  • one or more of the constituent materials of the light-emitting layer 5 are usually deposited in a crucible placed in a vacuum container.
  • each crucible When using two or more types of materials, each is usually placed in a separate crucible), the inside of the vacuum container is evacuated to about 10 -4 Pa with a vacuum pump, and the crucible is heated (when two or more types of materials are used, each is placed in a separate crucible). When using two or more materials, each crucible is usually heated), and the materials in the crucible are evaporated while controlling the amount of evaporation (when two or more materials are used, each material is usually evaporated while controlling the amount of evaporation independently). evaporation) to form a light emitting layer 5 on the hole injection layer 3 or the hole transport layer 4 placed facing the crucible. In addition, when using two or more types of materials, the light emitting layer 5 can also be formed by putting a mixture of them in a crucible, heating and evaporating them.
  • the degree of vacuum during vapor deposition is not limited as long as it does not significantly impair the effects of the present invention, but is usually 0.1 ⁇ 10 ⁇ 6 Torr (0.13 ⁇ 10 ⁇ 4 Pa) or more, 9.0 ⁇ 10 ⁇ 6 Torr ( 12.0 ⁇ 10 ⁇ 4 Pa) or less.
  • the deposition rate is not limited as long as it does not significantly impair the effects of the present invention, but is usually 0.1 ⁇ /sec or more and 5.0 ⁇ /sec or less.
  • the film forming temperature during vapor deposition is not limited as long as it does not significantly impair the effects of the present invention, but is preferably 10°C or higher and 50°C or lower.
  • a hole blocking layer 6 may be provided between the light emitting layer 5 and an electron injection layer 8, which will be described later.
  • the hole blocking layer 6 is a layer laminated on the light emitting layer 5 so as to be in contact with the interface of the light emitting layer 5 on the cathode 9 side.
  • This hole blocking layer 6 has the role of blocking holes moving from the anode 2 from reaching the cathode 9, and the role of efficiently transporting electrons injected from the cathode 9 toward the light emitting layer 5. has.
  • the physical properties required of the material constituting the hole blocking layer 6 include high electron mobility and low hole mobility, large energy gap (difference between HOMO and LUMO), and excited triplet level (T1).
  • high electron mobility and low hole mobility include high electron mobility and low hole mobility, large energy gap (difference between HOMO and LUMO), and excited triplet level (T1).
  • T1 excited triplet level
  • Examples of materials for the hole blocking layer 6 that satisfy these conditions include bis(2-methyl-8-quinolinolato)(phenolato)aluminum and bis(2-methyl-8-quinolinolato)(triphenylsilanolate)aluminum.
  • mixed ligand complexes such as bis(2-methyl-8-quinolato)aluminum- ⁇ -oxo-bis-(2-methyl-8-quinolinolato)aluminum dinuclear metal complexes, distyrylbiphenyl derivatives, etc. styryl compounds (Japanese Unexamined Patent Publication No.
  • the thickness of the hole blocking layer 6 is arbitrary as long as it does not significantly impair the effects of the present invention, but it is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less. be.
  • the electron transport layer 7 is provided between the light emitting layer 5 or the hole blocking layer 6 and the electron injection layer 8 for the purpose of further improving the current efficiency of the device.
  • the electron transport layer 7 is formed of a compound that can efficiently transport electrons injected from the cathode 9 toward the light emitting layer 5 between the electrodes to which an electric field is applied.
  • the electron-transporting compound used in the electron-transporting layer 7 is one that has high electron injection efficiency from the cathode 9 or the electron-injecting layer 8, has high electron mobility, and can efficiently transport the injected electrons. It must be a compound.
  • electron-transporting compounds that satisfy such conditions include metal complexes such as aluminum complexes of 8-hydroxyquinoline (Japanese Patent Application Laid-Open No. 194393/1983), 10-hydroxybenzo[h ]Quinoline metal complexes, oxadiazole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzene (US patent 5645948), quinoxaline compounds (Japanese Unexamined Patent Publication No.
  • metal complexes such as aluminum complexes of 8-hydroxyquinoline (Japanese Patent Application Laid-Open No. 194393/1983), 10-hydroxybenzo[h ]Quinoline metal complexes, oxadiazole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxy
  • phenanthroline derivatives Japanese Unexamined Patent Publication No. 5-331459
  • 2-t-butyl-9,10-N,N'- Examples include dicyanoanthraquinone diimine, n-type hydrogenated amorphous silicon carbide, n-type zinc sulfide, and n-type zinc selenide.
  • the film thickness of the electron transport layer 7 is usually 1 nm or more, preferably 5 nm or more, and, on the other hand, usually 300 nm or less, preferably 100 nm or less.
  • the electron transport layer 7 is formed in the same manner as the light emitting layer 5 by being laminated on the light emitting layer 5 or the hole blocking layer 6 by a wet film formation method or a vacuum evaporation method. Usually, a vacuum evaporation method is used.
  • the electron injection layer 8 plays a role of efficiently injecting electrons injected from the cathode 9 into the electron transport layer 7 or the light emitting layer 5.
  • the material forming the electron injection layer 8 is preferably a metal with a low work function. Examples include alkali metals such as sodium and cesium, and alkaline earth metals such as barium and calcium.
  • the thickness of the electron injection layer 8 is preferably 0.1 to 5 nm.
  • an extremely thin insulating film (film thickness of about 0.1 to 5 nm) made of LiF, MgF 2 , Li 2 O, Cs 2 CO 3 or the like is inserted as an electron injection layer 8 at the interface between the cathode 9 and the electron transport layer 7. It is also an effective method to improve the efficiency of the device (Appl. Phys. Lett., Vol. 70, p. 152, 1997; Japanese Patent Publication No. 10-74586; IEEE Trans. Electron. Devices, Vol. 44). , p. 1245, 1997; SID 04 Digest, p. 154).
  • organic electron transport materials such as nitrogen-containing heterocyclic compounds such as bathophenanthroline and metal complexes such as aluminum complexes of 8-hydroxyquinoline are doped with alkali metals such as sodium, potassium, cesium, lithium, and rubidium ( (described in Japanese Unexamined Patent Publication No. 10-270171, Japanese Unexamined Patent Publication No. 2002-100478, Japanese Unexamined Patent Application No. 2002-100482, etc.) improves electron injection and transport properties and achieves excellent film quality. This is preferable because it makes it possible to The film thickness in this case is usually 5 nm or more, preferably 10 nm or more, and usually 200 nm or less, preferably 100 nm or less.
  • the electron injection layer 8 is formed by laminating the light emitting layer 5 or the hole blocking layer 6 or the electron transporting layer 7 thereon by a wet film formation method or a vacuum evaporation method in the same manner as the light emitting layer 5.
  • the details of the wet film forming method are the same as those for the light-emitting layer 5 described above.
  • the cathode 9 plays a role of injecting electrons into a layer on the side of the light emitting layer 5 (electron injection layer 8 or light emitting layer 5, etc.).
  • a metal with a low work function such as tin, magnesium, etc. , indium, calcium, aluminum, silver, or alloys thereof.
  • Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • the cathode 9 made of a metal with a low work function by laminating a metal layer having a high work function and being stable against the atmosphere on the cathode 9.
  • the metal to be laminated include metals such as aluminum, silver, copper, nickel, chromium, gold, and platinum.
  • the film thickness of the cathode is usually the same as that of the anode 2.
  • the hole transport layer 4 it is also effective to provide an electron blocking layer between the hole transport layer 4 and the light emitting layer 5 for the same purpose as the hole blocking layer 6.
  • the electron blocking layer prevents electrons moving from the light-emitting layer 5 from reaching the hole-transporting layer 4, thereby increasing the probability of recombination with holes within the light-emitting layer 5 and reducing the generated excitons. It has the role of confining holes in the light emitting layer 5 and the role of efficiently transporting holes injected from the hole transport layer 4 toward the light emitting layer 5.
  • Characteristics required of the electron blocking layer include high hole transportability, large energy gap (difference between HOMO and LUMO), and high excited triplet level (T1). Furthermore, when the light emitting layer 5 is formed by a wet film forming method, it is preferable to form the electron blocking layer also by a wet film forming method because device manufacturing becomes easy. For this reason, it is preferable that the electron blocking layer also has compatibility with wet film formation, and the material used for such an electron blocking layer is a copolymer of dioctylfluorene and triphenylamine (International Publication No. 2004/084260).
  • anode 2 can be stacked in this order, and it is also possible to provide the organic electroluminescent element of the present invention between two substrates, at least one of which is highly transparent. Furthermore, it is also possible to have a structure in which the layer structure shown in FIG. 1 is stacked in multiple stages (a structure in which a plurality of light emitting units are stacked). In that case, the barrier between the stages can be reduced by using V2O5, etc. as a charge generation layer instead of the interface layer between the stages (between light emitting units) (two layers if the anode is ITO and the cathode is Al). , is more preferable from the viewpoint of luminous efficiency and driving voltage.
  • the present invention can be applied to any type of organic electroluminescent device, such as a single device, a device arranged in an array, or a structure in which an anode and a cathode are arranged in an XY matrix.
  • a display device (hereinafter referred to as “display device of the present invention") and a lighting device (hereinafter referred to as “lighting device of the present invention”) are manufactured using the organic electroluminescent device of the present invention as described above. be able to.
  • the display device and the lighting device of the present invention can be manufactured using the method described in “Organic EL Display” (Ohmsha, published on August 20, 2004, written by Shizushi Tokito, Chihaya Adachi, and Hideyuki Murata). can be formed.
  • the method for manufacturing the organic electroluminescent device according to the present invention is not particularly limited, but preferably includes a step of forming a light emitting layer by a wet film forming method using a composition for a light emitting layer containing an organic solvent.
  • a method for manufacturing an organic electroluminescent device according to the present invention is a method for manufacturing an organic electroluminescent device having an anode, a light emitting layer, and a cathode in this order on a substrate, the method comprising: It is preferable to include a step of forming the light emitting layer by a wet film forming method using the composition.
  • a method for manufacturing an organic electroluminescent device is a method for manufacturing an organic electroluminescent device having an anode, a light emitting layer, and a cathode in this order on a substrate, the method comprising: It is preferable to include a step of forming the light emitting layer by a vapor deposition method using the composition.
  • ⁇ Measurement of maximum emission wavelength> The iridium complex compound was dissolved in toluene (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., for spectroscopic analysis) at room temperature to prepare a 1 ⁇ 10 ⁇ 5 mol/L solution. This solution was placed in a quartz cell equipped with a Teflon (registered trademark) cock, and after nitrogen bubbling was performed for 20 minutes or more, the phosphorescence spectrum was measured at room temperature. The wavelength showing the maximum value of the obtained phosphorescence spectrum intensity was defined as the maximum emission wavelength.
  • PL quantum yield was measured as luminous efficiency.
  • the PL quantum yield is an index indicating how efficiently light is emitted from light (energy) absorbed by a material, and was measured using the following equipment in the same manner as above.
  • Device Hamamatsu Photonics organic EL quantum yield measurement device C9920-02
  • Light source Monochrome light source L9799-01
  • Detector Multi-channel detector PMA-11 Excitation light: 380nm
  • Ligand 1 (12.0 g), tris(acetylacetonato)iridium(III) (2.2 g), glycerin (14.0 g), and cyclohexylbenzene (1 mL) were placed in a 200 mL eggplant flask equipped with a Dimroth with a side tube. and immersed in an oil bath preheated to 90°C, raised the temperature of the oil bath to 210°C, then raised the temperature of the oil bath to 240°C over 2 hours, and stirred at that temperature for an additional 6.5 hours. did. After cooling to room temperature, the mixture was washed with water (50 mL) and dichloromethane (100 mL).
  • the maximum emission wavelength in the toluene solution of D-1 was 516 nm, and the PLQY was 94%.
  • Ligand 2 (11.3 g), tris(acetylacetonato)iridium(III) (1.4 g), glycerin (13.2 g), and cyclohexylbenzene (0.0 g) were placed in a 200 mL eggplant flask equipped with a Dimroth with a side tube. 25 mL) was added, the temperature of the oil bath was raised to 235°C, and the mixture was stirred for 14.5 hours. After cooling to room temperature, the mixture was washed with water (50 mL) and dichloromethane (100 mL).
  • the maximum emission wavelength in the toluene solution of D-2 was 514 nm, and the PLQY was 91%.
  • Ligand 3 (6.5 g), iridium (III) chloride n-hydrate (manufactured by Furuya Metal Co., Ltd., 2.0 g), water (20 mL) and 2 - Ethoxyethanol (60 mL) was added, and the mixture was stirred in an oil bath at 145° C. while distilling off the solvent. During the course of the reaction, 2.5 hours after the start of the reaction, the oil bath temperature was set to 150°C, 5 hours after the start of the reaction, 2-ethoxyethanol (80 mL) was added, and at the same time, the oil bath temperature was set to 155°C, and 7 hours after the start of the reaction. Diglyme (30 mL) was added.
  • Ligand 4 (10.2 g), iridium (III) chloride n-hydrate (manufactured by Furuya Metal Co., Ltd., 2.76 g), water (25 mL) and 2 -Ethoxyethanol (125 mL) was added, and the mixture was stirred in an oil bath at 140° C. while distilling off the solvent. During the course of the reaction, after 2.5 hours, diglyme (40 mL) was added, and the oil bath was heated to 150°C. After an additional 2 hours, 2-ethoxyethanol (35 mL) was added and the oil bath was brought to 155°C.
  • An organic electroluminescent device was produced by the following method.
  • An indium tin oxide (ITO) transparent conductive film deposited to a thickness of 50 nm on a glass substrate (manufactured by Geomatec, sputtering film) was formed into 2 mm wide stripes using normal photolithography technology and hydrochloric acid etching.
  • the anode was formed by patterning.
  • the substrate on which ITO was patterned was washed in the following order: ultrasonic cleaning with an aqueous surfactant solution, washing with ultrapure water, ultrasonic washing with ultrapure water, and washing with ultrapure water, and then dried with compressed air. Finally, ultraviolet ozone cleaning was performed.
  • composition for forming a hole injection layer 3.0% by mass of a hole-transporting polymer compound having a repeating structure of the following formula (P-1) and 0.6% by mass of an electron-accepting compound (HI-1).
  • P-1 a hole-transporting polymer compound having a repeating structure of the following formula
  • HI-1 an electron-accepting compound
  • This solution was spin-coated on the substrate in the air and dried on a hot plate in the air at 240° C. for 30 minutes to form a uniform thin film with a thickness of 40 nm, which was used as a hole injection layer.
  • a charge transporting polymer compound having the following structural formula (HT-1) was dissolved in 1,3,5-trimethylbenzene to prepare a 2.0% by mass solution. This solution was spin-coated on the substrate on which the hole injection layer was coated in a nitrogen glove box, and dried on a hot plate in the nitrogen glove box at 230°C for 30 minutes to form a uniform thin film with a thickness of 40 nm. and formed a hole transport layer.
  • an ink for a light-emitting layer of the present invention was prepared by dissolving (Ir-D1) and (Ir-ND1) in cyclohexylbenzene at concentrations of 0.8% by mass and 0.8% by mass, respectively.
  • This solution was spin-coated on the substrate on which the hole transport layer was coated in a nitrogen glove box, and dried on a hot plate in the nitrogen glove box at 120°C for 20 minutes to form a uniform thin film with a thickness of 70 nm.
  • a light-emitting layer was formed.
  • the substrate on which the film up to the light-emitting layer was formed was placed in a vacuum evaporation apparatus, and the inside of the apparatus was evacuated to a pressure of 2 ⁇ 10 ⁇ 4 Pa or less.
  • a striped shadow mask with a width of 2 mm was brought into close contact with the substrate as a mask for cathode evaporation, perpendicular to the ITO stripes of the anode, and the aluminum was heated with a molybdenum boat to form an aluminum layer with a thickness of 80 nm. to form a cathode.
  • an organic electroluminescent device having a light emitting area of 2 mm x 2 mm in size was obtained.
  • Example 2 An organic electric field was prepared in the same manner as in Example 1, except that the ink for the light emitting layer of the present invention was used as the ink for the light emitting layer, and the compound (Ir-D2) having the following structure was used instead of (Ir-D1). A light emitting device was produced.
  • Example 3 An organic electric field was prepared in the same manner as in Example 1, except that the ink for the light emitting layer of the present invention was used as the ink for the light emitting layer, and the compound (Ir-ND2) having the following structure was used instead of (Ir-ND1). A light emitting device was produced.
  • Example 4 An organic electroluminescent device was produced in the same manner as in Example 2, except that the ink for the light emitting layer of the present invention was used as the ink for the light emitting layer, in which (Ir-ND2) was used instead of (Ir-ND1).
  • Table 1 summarizes the relative values of luminous efficiency [cd/A] at 1000 cd/m 2 of the devices obtained in Examples 1 to 4 and Comparative Examples 1 to 6 (Comparative Example 6 is set as 1).
  • Example 5 The organic electric field was prepared in the same manner as in Example 3, except that the ink for the light emitting layer of the present invention was used as the ink for the light emitting layer, and the compound (Ir-ND3) having the following structure was used instead of (Ir-ND2). A light emitting device was produced. Note that the compound (Ir-ND3) was synthesized with reference to the method described in Japanese Patent Application Publication No. 2014-074000.
  • Table 2 summarizes the relative values of luminous efficiency [cd/A] at 1000 cd/m 2 of the devices obtained in Examples 3 and 5 and Comparative Example 7 (Comparative Example 7 is set as 1).
  • Example 6 An organic electric field was prepared in the same manner as in Example 3, except that the ink for the light emitting layer of the present invention was used as the ink for the light emitting layer, and the compound (Ir-D3) having the following structure was used instead of (Ir-D1). A light emitting device was produced. Note that the compound (Ir-D3) was synthesized with reference to the method described in Japanese Patent Application Publication No. 2014-074000 and Japanese Patent Application Publication No. 2012-036388.
  • Example 7 An organic electroluminescent device was produced in the same manner as in Example 6, except that the ink for the light emitting layer of the present invention was used as the ink for the light emitting layer, in which (Ir-ND3) was used instead of (Ir-ND2).
  • Example 8 An organic electroluminescent device was prepared in the same manner as in Example 6, except that a light-emitting layer ink containing a compound (Ir-ND5) having the following structure instead of (Ir-ND2) was used as the light-emitting layer ink. Created. Note that the compound (Ir-ND5) was synthesized with reference to the method described in Japanese Patent Application Publication No. 2014-074000.
  • Table 3 summarizes the relative values of luminous efficiency [cd/A] at 1000 cd/m 2 of the devices obtained in Examples 6 to 8 and Comparative Example 8 (Comparative Example 8 is set as 1).
  • the organic electroluminescent device produced using the ink for a light-emitting layer of the present invention which is a combination of the compound (Ir-ND2), the compound (Ir-ND3), or the compound (Ir-ND5), which is a compound represented by It can be seen that it exhibits high luminous efficiency.
  • the ink for a light emitting layer of the present invention can provide an organic electroluminescent device with further improved luminous efficiency.

Abstract

The present invention addresses the problem of providing a light-emitting layer composition which enables an improvement in light emission efficiency of an element and a light-emitting layer composition (for example, an ink for a light-emitting layer) that contains an organic solvent. The present invention relates to a light-emitting layer composition comprising a compound represented by formula (1) and a compound represented by formula (2). (The symbols n, R, and a in formula (1) and m, Q, b, and X in formula (2) are as defined in the description.)

Description

発光層用組成物、並びに、有機電界発光素子及びその製造方法Composition for light emitting layer, organic electroluminescent device and method for manufacturing the same
 本発明はイリジウム錯体化合物を2種以上含む発光層用組成物に関し、特に、塗布により発光層を形成する有機電界発光素子(以下、「有機EL素子」と称す場合がある。)のインクとして有用なイリジウム錯体化合物を2種以上含む発光層用組成物、及び、更に有機溶剤を含有する発光層用組成物(以下、「発光層用インク」と称する場合がある)に関する。 The present invention relates to a composition for a light-emitting layer containing two or more types of iridium complex compounds, and is particularly useful as an ink for an organic electroluminescent device (hereinafter sometimes referred to as an "organic EL device") that forms a light-emitting layer by coating. The present invention relates to a composition for a light emitting layer containing two or more types of iridium complex compounds, and a composition for a light emitting layer further containing an organic solvent (hereinafter sometimes referred to as "ink for a light emitting layer").
 有機EL照明や有機ELディスプレイなど、有機EL素子を利用する各種電子デバイスが実用化されている。有機電界発光素子は、印加電圧が低いため消費電力が小さく、三原色発光も可能であるため、大型のディスプレイモニターだけではなく、携帯電話やスマートフォンに代表される中小型ディスプレイへの応用が始まっている。 Various electronic devices that utilize organic EL elements, such as organic EL lighting and organic EL displays, have been put into practical use. Organic electroluminescent devices consume less power due to the low applied voltage and are capable of emitting light in three primary colors, so they are beginning to be applied not only to large display monitors but also to small and medium-sized displays such as mobile phones and smartphones. .
 有機電界発光素子は発光層や電荷注入層、電荷輸送層など複数の層を積層することにより製造される。現在、有機電界発光素子の多くは、有機材料を真空下で蒸着することにより製造されているが、真空蒸着法では、蒸着プロセスが煩雑となり、生産性に劣り、また、真空蒸着法で製造された有機電界発光素子では照明やディスプレイのパネルの大型化や高精細化が極めて難しいという問題がある。そのため、近年、大型のディスプレイや照明に用いることのできる有機電界発光素子を効率よく製造するプロセスとして、湿式成膜法(塗布法)が盛んに研究されている。湿式成膜法は、真空蒸着法に比べて安定した層を容易に形成できる利点があるため、ディスプレイや照明装置の量産化や大型デバイスへの適用が期待されている。 An organic electroluminescent device is manufactured by laminating multiple layers such as a light emitting layer, a charge injection layer, and a charge transport layer. Currently, most organic electroluminescent devices are manufactured by depositing organic materials under vacuum, but the vacuum deposition method requires a complicated deposition process and is low in productivity. The problem with organic electroluminescent devices is that it is extremely difficult to increase the size and definition of lighting and display panels. Therefore, in recent years, wet film forming methods (coating methods) have been actively researched as a process for efficiently manufacturing organic electroluminescent elements that can be used for large displays and lighting. The wet film formation method has the advantage of being able to easily form a stable layer compared to the vacuum evaporation method, so it is expected to be applied to mass production of displays and lighting devices and large devices.
 これらディスプレイや照明装置を製品として優れたものにするために、有機EL素子の発光効率を向上させる手法の開発が求められている。ディスプレイ用途においては、青緑赤の三原色のうち、視感度が最も高い緑色の発光効率を高めることが特に効果的である。 In order to make these displays and lighting devices excellent products, there is a need to develop a method to improve the luminous efficiency of organic EL elements. In display applications, it is particularly effective to increase the luminous efficiency of green, which has the highest visibility among the three primary colors of blue, green, and red.
 素子内部における励起子を効率的に光に変換することができるりん光発光材料が広く利用されている。緑色では、トリス(フェニルピリジン)イリジウム錯体とその誘導体が用いられている。これらの錯体を用いる有機EL素子は内部量子収率がほぼ1に近いことが知られており、量子収率の更なる向上による素子の発光効率の改善には限界がある。 Phosphorescent materials that can efficiently convert excitons inside devices into light are widely used. For green, tris(phenylpyridine)iridium complex and its derivatives are used. It is known that organic EL devices using these complexes have an internal quantum yield close to 1, and there is a limit to the improvement of the luminous efficiency of the device by further improving the quantum yield.
 他の有力な手法として、異なるりん光発光材料を組み合わせて用いることが検討されている。例えば、特許文献1には、蒸着機の一つのボートに複数の燐光発光材料を入れることにより、蒸着温度を低下させることで分解を抑制し、さらに蒸着膜の分散性が改善されるために、結果として素子の特性が向上することが開示されている。特許文献2にも、蒸着素子において2種類のイリジウム錯体化合物を組み合わせることにより素子特性が向上することが開示されている。特許文献3においては、デンドリマー型の構造を有しかつ世代数の異なる2種のイリジウム錯体を用いて、塗布法にて有機EL素子を作成した場合に、単一のデンドリマー型錯体を用いた素子と比べ発光効率が高くなることが開示されている。 As another promising method, the use of a combination of different phosphorescent materials is being considered. For example, in Patent Document 1, by putting a plurality of phosphorescent materials into one boat of a vapor deposition machine, decomposition is suppressed by lowering the vapor deposition temperature, and the dispersibility of the vapor deposited film is further improved. It is disclosed that the characteristics of the device are improved as a result. Patent Document 2 also discloses that device characteristics are improved by combining two types of iridium complex compounds in a vapor deposition device. In Patent Document 3, when an organic EL device is created by a coating method using two types of iridium complexes having a dendrimer type structure and different generations, an element using a single dendrimer type complex is It is disclosed that the luminous efficiency is higher than that of the conventional method.
国際公開第2002/104080号International Publication No. 2002/104080 日本国特開2003-077674号公報Japanese Patent Application Publication No. 2003-077674 国際公開第2004/020504号International Publication No. 2004/020504
 特許文献1および2に開示されている方法は蒸着法によるものであり、塗布法においては蒸着法に比べて材料に加える温度は低く、蒸着時におけるイリジウム錯体化合物の熱分解劣化による素子特性の低下などの問題は生じえない。さらに、これらに開示されているイリジウム錯体化合物は、溶媒溶解性が低く、塗布法による有機EL素子の材料として用いることはできない。特許文献3には、塗布法により素子を作成する方法が開示されている。しかし、この方法を適用してみたところ、単一のデンドリマー型錯体を用いた場合よりも、世代数の異なる2種のデンドリマー型錯体を用いた場合の方が却って低い発光効率を示す場合があることが判明した。
 本発明は、素子の発光効率をより改善しうる発光層用組成物、更に有機溶剤を含む発光層用組成物(例えば発光層用インク)の提供を目的とする。
The methods disclosed in Patent Documents 1 and 2 are based on a vapor deposition method, and in the coating method, the temperature applied to the material is lower than in the vapor deposition method, and the device characteristics are deteriorated due to thermal decomposition of the iridium complex compound during vapor deposition. Such problems cannot occur. Furthermore, the iridium complex compounds disclosed in these publications have low solvent solubility and cannot be used as materials for organic EL devices by coating. Patent Document 3 discloses a method of creating an element by a coating method. However, when this method is applied, the luminous efficiency may be lower when two types of dendrimer complexes with different generations are used than when a single dendrimer complex is used. It has been found.
The present invention aims to provide a composition for a light-emitting layer that can further improve the luminous efficiency of a device, and a composition for a light-emitting layer (for example, an ink for a light-emitting layer) containing an organic solvent.
 本発明者らが上記課題を解決すべく鋭意検討を行った結果、特定の化学構造を有する異なるイリジウム錯体化合物を2種以上含む発光層用組成物が、有機EL素子、特に緑色発光素子、の発光効率の向上に寄与することを見出し、本発明を完成するに至った。 As a result of intensive studies by the present inventors to solve the above problems, a composition for a light-emitting layer containing two or more types of different iridium complex compounds having a specific chemical structure has been developed for use in organic EL devices, especially green light-emitting devices. The present inventors have discovered that the present invention contributes to improving luminous efficiency, and have completed the present invention.
 即ち、本発明は以下を要旨とする。
[1]
 式(1)で表される化合物と式(2)で表される化合物とを含む、発光層用組成物。
That is, the gist of the present invention is as follows.
[1]
A composition for a light-emitting layer, comprising a compound represented by formula (1) and a compound represented by formula (2).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[但し、nは0~10の整数を表す。Rは置換基を表し、aは0から一つの配位子が置換しうる最大の整数までを表す。Rの種類はそれぞれ独立に、D、F、Cl、Br、I、-N(R’)、-CN、-NO、-OH、-COOR’、-C(=O)R’、-C(=O)NR’、-P(=O)(R’)、-S(=O)R’、-S(=O)R’、-OS(=O)R’、炭素数1以上5以下の、直鎖、分岐もしくは環状アルキル基、炭素数1以上4以下の、直鎖、分岐アルコキシ基、炭素数1以上4以下の、直鎖、分岐もしくは環状アルキルチオ基、炭素数2以上4以下の、直鎖、分岐もしくは環状アルケニル基、炭素数2以上4以下の、直鎖、分岐もしくは環状アルキニル基、炭素数10以上40以下のジアリールアミノ基、炭素数10以上40以下のアリールヘテロアリールアミノ基または炭素数10以上40以下のジヘテロアリールアミノ基であり、前記アルキル基、前記アルコキシ基、前記アルキルチオ基、前記アルケニル基、前記アルキニル基、前記ジアリールアミノ基、前記アリールヘテロアリールアミノ基および前記ジヘテロアリールアミノ基は、1つ以上の水素原子以外のR’で置換されていてもよい。
 R’はそれぞれ独立に、D、F、-CN、炭素数1以上5以下の、直鎖、分岐もしくは環状アルキル基、炭素数2以上4以下の、直鎖または分岐アルケニル基、炭素数2以上4以下の、直鎖または分岐アルキニル基である。]
[However, n represents an integer from 0 to 10. R represents a substituent, and a represents a number from 0 to the maximum integer that can be substituted by one ligand. The types of R are independently D, F, Cl, Br, I, -N(R') 2 , -CN, -NO 2 , -OH, -COOR', -C(=O)R', - C(=O)NR', -P(=O)(R') 2 , -S(=O)R', -S(=O) 2 R', -OS(=O) 2 R', carbon A straight chain, branched or cyclic alkyl group having 1 to 5 carbon atoms, a straight chain or branched alkoxy group having 1 to 4 carbon atoms, a straight chain, branched or cyclic alkylthio group having 1 to 4 carbon atoms, a carbon number Straight chain, branched or cyclic alkenyl group with 2 to 4 carbon atoms, straight chain, branched or cyclic alkynyl group with 2 to 4 carbon atoms, diarylamino group with 10 to 40 carbon atoms, 10 to 40 carbon atoms An arylheteroarylamino group or a diheteroarylamino group having 10 to 40 carbon atoms, the alkyl group, the alkoxy group, the alkylthio group, the alkenyl group, the alkynyl group, the diarylamino group, the arylheteroaryl group. The amino group and the diheteroarylamino group may be substituted with one or more R' other than hydrogen atoms.
R' each independently represents D, F, -CN, a straight chain, branched or cyclic alkyl group having 1 to 5 carbon atoms, a straight chain or branched alkenyl group having 2 to 4 carbon atoms, and 2 or more carbon atoms. It is a straight chain or branched alkynyl group of up to 4. ]
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[但し、mは0~10の整数を表す。Qは置換基を表し、bは0から一つの配位子が置換しうる最大の整数までを表す。Xは式(3)または(4)を表す。 [However, m represents an integer from 0 to 10. Q represents a substituent, and b represents from 0 to the maximum integer that can be substituted by one ligand. X represents formula (3) or (4).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[但し、破線はベンゼン環との結合を表し、Arはそれぞれ独立に、炭素数6~30の三価芳香族炭化水素基または炭素数2~30の三価複素芳香族基を表し、Arはそれぞれ独立に、炭素数6~30の一価芳香族炭化水素基または炭素数2~30の一価複素芳香族基を表す。式(3)および式(4)のAr及びArは前記Qにより置換されていても良い。]] [However, the broken line represents a bond with the benzene ring, each Ar 1 independently represents a trivalent aromatic hydrocarbon group having 6 to 30 carbon atoms or a trivalent heteroaromatic group having 2 to 30 carbon atoms, and Ar Each of 2 independently represents a monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms or a monovalent heteroaromatic group having 2 to 30 carbon atoms. Ar 1 and Ar 2 in formulas (3) and (4) may be substituted with Q. ]]
[2]
 式(1)が下式(5)で表される、[1]に記載の発光層用組成物。
[2]
The composition for a light-emitting layer according to [1], wherein formula (1) is represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[R及びaは[1]に定義されるとおりである。n及びnは、n+n=nとなる数を表す。] [R and a are as defined in [1]. n 1 and n 2 represent numbers such that n 1 +n 2 =n. ]
[3]
 式(3)または(4)において、Arがそれぞれ独立に、炭素数6~30の三価芳香族炭化水素基を表し、Arがそれぞれ独立に、炭素数6~30の一価芳香族炭化水素基を表す、[1]または[2]に記載の発光層用組成物。
[4]
 式(2)におけるXが式(3)で表される、[1]~[3]のいずれか1つに記載の発光層用組成物。
[3]
In formula (3) or (4), Ar 1 each independently represents a trivalent aromatic hydrocarbon group having 6 to 30 carbon atoms, and Ar 2 each independently represents a monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms. The composition for a light-emitting layer according to [1] or [2], which represents a hydrocarbon group.
[4]
The composition for a light-emitting layer according to any one of [1] to [3], wherein X in formula (2) is represented by formula (3).
[5]
 以下の測定方法にて測定した、式(1)で表される化合物と式(2)で表される化合物が示す最大発光波長の差の絶対値が0nm以上20nm以下である、[1]~[4]のいずれか1つに記載の発光層用組成物。
[測定方法:室温下でトルエンに式(1)で表される化合物又は式(2)で表される化合物を濃度1×10-5mol/Lで溶解した溶液について、窒素を20分間以上バブリングして、消光の原因となる酸素を除去したサンプルから得られたりん光スペクトル強度の最大値を示す波長を最大発光波長とする。]
[6]
 式(1)で表される化合物と式(2)で表される化合物との合計質量に対する式(1)で表される化合物の質量の割合が10%以上80%以下である、[1]~[5]のいずれか1つに記載の発光層用組成物。
[7]
 更に有機溶剤を含む、[1]~[6]のいずれか1つの発光層用組成物。
[8]
 基板上に陽極、発光層及び、陰極をこの順に有する有機電界発光素子の製造方法であって、
 [7]に記載の発光層用組成物を用いて湿式成膜法にて前記発光層を形成する工程を含む、有機電界発光素子の製造方法。
[5]
The absolute value of the difference in maximum emission wavelength between the compound represented by formula (1) and the compound represented by formula (2), measured by the following measurement method, is 0 nm or more and 20 nm or less, [1] ~ The composition for a light-emitting layer according to any one of [4].
[Measurement method: Bubbling nitrogen for 20 minutes or more into a solution in which the compound represented by formula (1) or the compound represented by formula (2) is dissolved in toluene at a concentration of 1 × 10 -5 mol/L at room temperature. Then, the wavelength showing the maximum value of the phosphorescence spectrum intensity obtained from the sample from which oxygen, which causes quenching, has been removed is defined as the maximum emission wavelength. ]
[6]
The ratio of the mass of the compound represented by formula (1) to the total mass of the compound represented by formula (1) and the compound represented by formula (2) is 10% or more and 80% or less, [1] The composition for a light-emitting layer according to any one of [5] to [5].
[7]
The composition for a light-emitting layer according to any one of [1] to [6], further comprising an organic solvent.
[8]
A method for manufacturing an organic electroluminescent device having an anode, a light emitting layer, and a cathode in this order on a substrate, the method comprising:
A method for manufacturing an organic electroluminescent device, comprising a step of forming the light emitting layer by a wet film forming method using the composition for a light emitting layer according to [7].
[9]
 基板上に陽極、発光層及び、陰極をこの順に有する有機電界発光素子であって、
 発光層に、式(1)で表される化合物と式(2)で表される化合物とを含む、有機電界発光素子。
[9]
An organic electroluminescent device having an anode, a light emitting layer, and a cathode in this order on a substrate,
An organic electroluminescent device comprising a compound represented by formula (1) and a compound represented by formula (2) in a light emitting layer.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[但し、nは0~10の整数を表す。Rは置換基を表し、aは0から一つの配位子が置換しうる最大の整数までを表す。Rの種類はそれぞれ独立に、D、F、Cl、Br、I、-N(R’)、-CN、-NO、-OH、-COOR’、-C(=O)R’、-C(=O)NR’、-P(=O)(R’)、-S(=O)R’、-S(=O)R’、-OS(=O)R’、炭素数1以上5以下の、直鎖、分岐もしくは環状アルキル基、炭素数1以上4以下の、直鎖、分岐アルコキシ基、炭素数1以上4以下の、直鎖、分岐もしくは環状アルキルチオ基、炭素数2以上4以下の、直鎖、分岐もしくは環状アルケニル基、炭素数2以上4以下の、直鎖、分岐もしくは環状アルキニル基、炭素数10以上40以下のジアリールアミノ基、炭素数10以上40以下のアリールヘテロアリールアミノ基または炭素数10以上40以下のジヘテロアリールアミノ基であり、前記アルキル基、前記アルコキシ基、前記アルキルチオ基、前記アルケニル基、前記アルキニル基、前記ジアリールアミノ基、前記アリールヘテロアリールアミノ基および前記ジヘテロアリールアミノ基は、1つ以上の水素原子以外のR’で置換されていてもよい。
 R’はそれぞれ独立に、D、F、-CN、炭素数1以上5以下の、直鎖、分岐もしくは環状アルキル基、炭素数2以上4以下の、直鎖または分岐アルケニル基、炭素数2以上4以下の、直鎖または分岐アルキニル基である。]
[However, n represents an integer from 0 to 10. R represents a substituent, and a represents a number from 0 to the maximum integer that can be substituted by one ligand. The types of R are independently D, F, Cl, Br, I, -N(R') 2 , -CN, -NO 2 , -OH, -COOR', -C(=O)R', - C(=O)NR', -P(=O)(R') 2 , -S(=O)R', -S(=O) 2 R', -OS(=O) 2 R', carbon A straight chain, branched or cyclic alkyl group having 1 to 5 carbon atoms, a straight chain or branched alkoxy group having 1 to 4 carbon atoms, a straight chain, branched or cyclic alkylthio group having 1 to 4 carbon atoms, a carbon number Straight chain, branched or cyclic alkenyl group with 2 to 4 carbon atoms, straight chain, branched or cyclic alkynyl group with 2 to 4 carbon atoms, diarylamino group with 10 to 40 carbon atoms, 10 to 40 carbon atoms An arylheteroarylamino group or a diheteroarylamino group having 10 to 40 carbon atoms, the alkyl group, the alkoxy group, the alkylthio group, the alkenyl group, the alkynyl group, the diarylamino group, the arylheteroaryl group. The amino group and the diheteroarylamino group may be substituted with one or more R' other than hydrogen atoms.
R' each independently represents D, F, -CN, a straight chain, branched or cyclic alkyl group having 1 to 5 carbon atoms, a straight chain or branched alkenyl group having 2 to 4 carbon atoms, and 2 or more carbon atoms. It is a straight chain or branched alkynyl group of up to 4. ]
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
[但し、mは0~10の整数を表す。Qは置換基を表し、bは0から一つの配位子が置換しうる最大の整数までを表す。Xは式(3)または(4)を表す。 [However, m represents an integer from 0 to 10. Q represents a substituent, and b represents from 0 to the maximum integer that can be substituted by one ligand. X represents formula (3) or (4).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
[但し、破線はベンゼン環との結合を表し、Arはそれぞれ独立に、炭素数6~30の三価芳香族炭化水素基または炭素数2~30の三価複素芳香族基を表し、Arはそれぞれ独立に、炭素数6~30の一価芳香族炭化水素基または炭素数2~30の一価複素芳香族基を表す。式(3)および式(4)のAr及びArは前記Qにより置換されていても良い。]] [However, the broken line represents a bond with the benzene ring, each Ar 1 independently represents a trivalent aromatic hydrocarbon group having 6 to 30 carbon atoms or a trivalent heteroaromatic group having 2 to 30 carbon atoms, and Ar Each of 2 independently represents a monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms or a monovalent heteroaromatic group having 2 to 30 carbon atoms. Ar 1 and Ar 2 in formulas (3) and (4) may be substituted with Q. ]]
 本発明によれば、有機EL素子に用いたときの発光効率、特に緑色素子における発光効率、をより改善しうるイリジウム錯体化合物を2種以上含む発光層用組成物が提供される。 According to the present invention, there is provided a composition for a light-emitting layer containing two or more types of iridium complex compounds that can further improve the luminous efficiency when used in an organic EL element, particularly the luminous efficiency in a green element.
本発明の有機電界発光素子の構造の一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of the structure of an organic electroluminescent device of the present invention.
 以下に、本発明の実施の形態を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変形して実施することができる。
 なお、本明細書において、「芳香環」とは「芳香族炭化水素環」を指し、環構成原子としてヘテロ原子を含む「複素芳香環」とは区別される。同様に、「芳香族基」とは「芳香族炭化水素環基」を指し、「複素芳香族基」とは「複素芳香族環基」を指す。
 また、本明細書において、「溶媒」と「溶剤」は同義である。
Embodiments of the present invention will be described in detail below, but the present invention is not limited to the following embodiments, and can be implemented with various modifications within the scope of the gist.
In this specification, the term "aromatic ring" refers to an "aromatic hydrocarbon ring" and is distinguished from a "heteroaromatic ring" containing a hetero atom as a ring constituent atom. Similarly, "aromatic group" refers to "aromatic hydrocarbon ring group", and "heteroaromatic group" refers to "heteroaromatic ring group".
Moreover, in this specification, "solvent" and "solvent" have the same meaning.
 本発明は、式(1)で表される化合物と式(2)で表される化合物とを含む、発光層用組成物に関する。 The present invention relates to a composition for a light-emitting layer containing a compound represented by formula (1) and a compound represented by formula (2).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
[但し、nは0~10の整数を表す。Rは置換基を表し、aは0から一つの配位子が置換しうる最大の整数までを表す。Rの種類はそれぞれ独立に、D、F、Cl、Br、I、-N(R’)、-CN、-NO、-OH、-COOR’、-C(=O)R’、-C(=O)NR’、-P(=O)(R’)、-S(=O)R’、-S(=O)R’、-OS(=O)R’、炭素数1以上5以下の、直鎖、分岐もしくは環状アルキル基、炭素数1以上4以下の、直鎖、分岐アルコキシ基、炭素数1以上4以下の、直鎖、分岐もしくは環状アルキルチオ基、炭素数2以上4以下の、直鎖、分岐もしくは環状アルケニル基、炭素数2以上4以下の、直鎖、分岐もしくは環状アルキニル基、炭素数10以上40以下のジアリールアミノ基、炭素数10以上40以下のアリールヘテロアリールアミノ基または炭素数10以上40以下のジヘテロアリールアミノ基であり、前記アルキル基、前記アルコキシ基、前記アルキルチオ基、前記アルケニル基、前記アルキニル基、前記ジアリールアミノ基、前記アリールヘテロアリールアミノ基および前記ジヘテロアリールアミノ基は、1つ以上の水素原子以外のR’で置換されていてもよい。 [However, n represents an integer from 0 to 10. R represents a substituent, and a represents a number from 0 to the maximum integer that can be substituted by one ligand. The types of R are independently D, F, Cl, Br, I, -N(R') 2 , -CN, -NO 2 , -OH, -COOR', -C(=O)R', - C(=O)NR', -P(=O)(R') 2 , -S(=O)R', -S(=O) 2 R', -OS(=O) 2 R', carbon A straight chain, branched or cyclic alkyl group having 1 to 5 carbon atoms, a straight chain or branched alkoxy group having 1 to 4 carbon atoms, a straight chain, branched or cyclic alkylthio group having 1 to 4 carbon atoms, a carbon number Straight chain, branched or cyclic alkenyl group with 2 to 4 carbon atoms, straight chain, branched or cyclic alkynyl group with 2 to 4 carbon atoms, diarylamino group with 10 to 40 carbon atoms, 10 to 40 carbon atoms An arylheteroarylamino group or a diheteroarylamino group having 10 to 40 carbon atoms, the alkyl group, the alkoxy group, the alkylthio group, the alkenyl group, the alkynyl group, the diarylamino group, the arylheteroaryl group. The amino group and the diheteroarylamino group may be substituted with one or more R' other than hydrogen atoms.
 R’はそれぞれ独立に、D、F、-CN、炭素数1以上5以下の、直鎖、分岐もしくは環状アルキル基、炭素数2以上4以下の、直鎖または分岐アルケニル基、炭素数2以上4以下の、直鎖または分岐アルキニル基である。] R' each independently represents D, F, -CN, a straight chain, branched or cyclic alkyl group having 1 to 5 carbon atoms, a straight chain or branched alkenyl group having 2 to 4 carbon atoms, and 2 or more carbon atoms. It is a straight chain or branched alkynyl group of up to 4. ]
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
[但し、mは0~10の整数を表す。Qは置換基を表し、bは0から一つの配位子が置換しうる最大の整数までを表す。ただし、Xは式(3)または(4)を表す。 [However, m represents an integer from 0 to 10. Q represents a substituent, and b represents from 0 to the maximum integer that can be substituted by one ligand. However, X represents formula (3) or (4).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
[但し、破線はベンゼン環との結合を表し、Arはそれぞれ独立に、炭素数6~30の三価芳香族炭化水素基または炭素数2~30の三価複素芳香族基を表し、Arはそれぞれ独立に、炭素数6~30の一価芳香族炭化水素基または炭素数2~30の一価複素芳香族基を表す。式(3)および式(4)のAr及びArは前記Qにより置換されていても良い。]] [However, the broken line represents a bond with the benzene ring, each Ar 1 independently represents a trivalent aromatic hydrocarbon group having 6 to 30 carbon atoms or a trivalent heteroaromatic group having 2 to 30 carbon atoms, and Ar Each of 2 independently represents a monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms or a monovalent heteroaromatic group having 2 to 30 carbon atoms. Ar 1 and Ar 2 in formulas (3) and (4) may be substituted with Q. ]]
<メカニズム>
 本発明が、有機EL素子に用いたときの発光効率特に緑色素子における発光効率をより改善しうる理由については、以下のように推定する。
 有機EL素子の発光効率を高めるには、量子収率が高く、その値ができるだけ100%を示す発光材料を開発し用いることに加え、(a)発光層内の電荷バランス、すなわち正孔と電子の存在量を等しくすること、(b)発光層内からの電荷や励起子の漏れを無くし、発光層内にこれらを閉じ込めること、(c)三重項励起子の対消滅(triplet-triplet annihilation)や、三重項励起子と電荷の相互作用による失活(triplet-polaron quenching)、あるいは、T1準位の低い不純物による失活などの失活過程を取り除く、ことが必要である。(a)については、発光層内に電子を受容し、これを輸送する媒体は主に電子輸送ホスト材料が担うが、一方で、正孔を供給する媒体は正孔輸送材料の他に、発光材料として用いられるイリジウム錯体も担うことがある。特に、イオン化ポテンシャルの浅いイリジウム錯体の場合にこの傾向が強く、本発明のような、フェニル-ピリジン型配位子を有するイリジウム錯体が該当する。この構造は高い量子収率を示し、優れた緑色発光をすることが広く知られている。正孔輸送性を高めるためには、式(1)に示すイリジウム錯体のように、酸化されやすいイリジウム原子を配位子が過剰に遮蔽することがない構造が望ましい。しかし、遮蔽が少ないことが同時に(c)のようなイリジウム錯体間の望まない失活過程も起こりやすくする可能性がある。さらには、正孔輸送性が大きすぎる場合には、正孔が電子輸送層側へ漏れ出てしまい、(b)の条件を満たすことができなくなり、素子の効率は低下する。このような正孔輸送性の細かい調整を、式(1)の置換基を最適化することのみにより達成することは、置換基の種類や導入位置が多すぎて困難であるか、最適構造が存在しない可能性もありうる。本発明は、式(2)のような、イリジウム原子の周りを部分的に共役する分岐型の芳香族炭化水素基または複素芳香族基を持つ配位子を有するイリジウム錯体を合わせて用いることでこの課題を解決するものである。この構造は式(1)に比べれば、その分岐構造によりイリジウム原子を比較的高く遮蔽しており、かつ、先述の消光過程も比較的起こりにくいと考えられる。従って、式(1)と式(2)を組み合わせて使用することにより、発光層内で消光過程を起こさずに正孔輸送の能力と発光層内の発光材料の濃度を最適な水準とし、結果として素子の効率をより高くすることができた、と考えている。なお、式(2)のXの代わりに、2-エチルヘキシル基のような長鎖アルキル基を用いた場合には、電荷を全く流さない絶縁体の基であるために、(a)の電荷バランスを合わせることが困難であり、さらに発光層を塗布製膜する際に、組み合わせて用いられるホスト材料が芳香族基に富むために、相溶性が低下し凝集が起こり素子性能の悪化を引き起こすため、好ましくない。
<Mechanism>
The reason why the present invention can further improve the luminous efficiency when used in an organic EL element, particularly the luminous efficiency in a green element, is estimated as follows.
In order to increase the luminous efficiency of organic EL devices, in addition to developing and using luminescent materials with high quantum yields whose value is as high as 100%, it is also necessary to (a) improve the charge balance within the luminescent layer, that is, holes and electrons; (b) Eliminate leakage of charges and excitons from within the emissive layer and confine them within the emissive layer; (c) Triplet-triplet annihilation of triplet excitons. It is necessary to eliminate deactivation processes such as triplet-polaron quenching, deactivation due to interaction between triplet excitons and charges, or deactivation due to impurities with a low T1 level. Regarding (a), the medium that accepts and transports electrons into the light-emitting layer is mainly played by the electron-transporting host material, while the medium that supplies holes is the hole-transporting material as well as the light-emitting material. Iridium complexes used as materials may also play a role. This tendency is particularly strong in the case of iridium complexes having a shallow ionization potential, and this applies to iridium complexes having phenyl-pyridine type ligands such as those of the present invention. This structure is widely known to have a high quantum yield and emit excellent green light. In order to improve hole transport properties, it is desirable to have a structure in which the iridium atoms, which are easily oxidized, are not excessively shielded by ligands, such as the iridium complex shown in formula (1). However, the lack of shielding may also make undesirable deactivation processes between iridium complexes as shown in (c) more likely to occur. Furthermore, if the hole transport property is too large, holes will leak to the electron transport layer side, making it impossible to satisfy the condition (b), and the efficiency of the device will decrease. Achieving such fine adjustment of the hole transport property only by optimizing the substituents in formula (1) is difficult because there are too many types of substituents and introduction positions, or the optimal structure is difficult to achieve. It is also possible that it does not exist. The present invention uses an iridium complex having a branched aromatic hydrocarbon group or a ligand having a heteroaromatic group partially conjugated around an iridium atom, as shown in formula (2). This problem is solved. Compared to formula (1), this structure shields iridium atoms relatively highly due to its branched structure, and it is thought that the above-mentioned quenching process is also relatively unlikely to occur. Therefore, by using formula (1) and formula (2) in combination, the ability of hole transport and the concentration of the luminescent material in the luminescent layer can be set to the optimum level without causing a quenching process in the luminescent layer, and the result is We believe that we were able to increase the efficiency of the device. Note that when a long-chain alkyl group such as 2-ethylhexyl group is used instead of X in formula (2), the charge balance in (a) is It is difficult to match the two, and furthermore, when coating and forming the light-emitting layer, the host material used in combination is rich in aromatic groups, which reduces compatibility and causes aggregation, causing deterioration of device performance. do not have.
<本発明のイリジウム錯体の構造>
 3価のイリジウム錯体化合物には、2-フェニルピリジンのような2座配位子を3個結合させることができる。このとき、3個の配位子がすべて同一のものをホモレプチック錯体、一つでも異なる配位子を有するものをヘテロレプチック錯体という。本発明では、発光スペクトルの半値幅を狭くすることができるホモレプチック錯体であることが必要である。ディスプレイ用途であれば、色純度の観点から半値幅をできるだけ狭くすることが求められるためである。
 ホモレプチック型イリジウム錯体化合物には、異性体として、フェイシャル体とメリジョナル体の2つが知られている。本発明においては、スペクトル半値幅が狭く、かつ、量子収率が高いフェイシャル体であることが必要である。
<Structure of the iridium complex of the present invention>
Three bidentate ligands such as 2-phenylpyridine can be bonded to the trivalent iridium complex compound. In this case, a complex in which all three ligands are the same is called a homoleptic complex, and a complex in which at least one ligand is different is called a heteroleptic complex. The present invention requires a homoleptic complex capable of narrowing the half-width of the emission spectrum. This is because for display applications, it is required to make the half-width as narrow as possible from the viewpoint of color purity.
Two isomers of the homoleptic iridium complex compound are known: a facial form and a meridional form. In the present invention, it is necessary that the facial body has a narrow spectral half-value width and a high quantum yield.
<<式(1)>> <<Formula (1)>>
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
[但し、nは0~10の整数を表す。Rは置換基を表し、aは0から一つの配位子が置換しうる最大の整数までを表す。Rの種類はそれぞれ独立に、D、F、Cl、Br、I、-N(R’)、-CN、-NO、-OH、-COOR’、-C(=O)R’、-C(=O)NR’、-P(=O)(R’)、-S(=O)R’、-S(=O)R’、-OS(=O)R’、炭素数1以上5以下の、直鎖、分岐もしくは環状アルキル基、炭素数1以上4以下の、直鎖、分岐アルコキシ基、炭素数1以上4以下の、直鎖、分岐もしくは環状アルキルチオ基、炭素数2以上4以下の、直鎖または分岐アルケニル基、炭素数2以上4以下の、直鎖または分岐アルキニル基、炭素数10以上40以下のジアリールアミノ基、炭素数10以上40以下のアリールヘテロアリールアミノ基または炭素数10以上40以下のジヘテロアリールアミノ基であり、前記アルキル基、前記アルコキシ基、前記アルキルチオ基、前記アルケニル基、前記アルキニル基、前記ジアリールアミノ基、前記アリールヘテロアリールアミノ基および前記ジヘテロアリールアミノ基は、1つ以上の水素原子以外のR’で置換されていてもよい。
 R’はそれぞれ独立に、D、F、-CN、炭素数1以上5以下の、直鎖、分岐もしくは環状アルキル基、炭素数2以上4以下の、直鎖または分岐アルケニル基、炭素数2以上4以下の、直鎖または分岐アルキニル基である。]
<n>
 nは0~10の整数である。nが10より大きいとイリジウム錯体のサイズが大きくなりすぎて、正孔輸送性を担うイリジウム原子近傍とイリジウム錯体分子の表面との距離が大きくなり、該イリジウム錯体の正孔輸送性が損なわれ、結果として素子の発光寿命や駆動寿命を低下させる恐れがある。逆に、nがこの範囲内であれば、<メカニズム>の項で述べたように、イリジウム錯体化合物が過度に遮蔽されることなく電荷の授受や正孔輸送性を発揮することができるため好ましい。従って、好ましいnは0~8の整数であり、より好ましくは0~7の整数であり、さらに好ましくは1~6の整数である。
[However, n represents an integer from 0 to 10. R represents a substituent, and a represents a number from 0 to the maximum integer that can be substituted by one ligand. The types of R are independently D, F, Cl, Br, I, -N(R') 2 , -CN, -NO 2 , -OH, -COOR', -C(=O)R', - C(=O)NR', -P(=O)(R') 2 , -S(=O)R', -S(=O) 2 R', -OS(=O) 2 R', carbon A straight chain, branched or cyclic alkyl group having 1 to 5 carbon atoms, a straight chain or branched alkoxy group having 1 to 4 carbon atoms, a straight chain, branched or cyclic alkylthio group having 1 to 4 carbon atoms, a carbon number Straight chain or branched alkenyl group having 2 to 4 carbon atoms, straight chain or branched alkynyl group having 2 to 4 carbon atoms, diarylamino group having 10 to 40 carbon atoms, arylheteroarylamino group having 10 to 40 carbon atoms group or a diheteroarylamino group having 10 to 40 carbon atoms, the alkyl group, the alkoxy group, the alkylthio group, the alkenyl group, the alkynyl group, the diarylamino group, the arylheteroarylamino group, and the The diheteroarylamino group may be substituted with one or more R's other than hydrogen atoms.
R' each independently represents D, F, -CN, a straight chain, branched or cyclic alkyl group having 1 to 5 carbon atoms, a straight chain or branched alkenyl group having 2 to 4 carbon atoms, and 2 or more carbon atoms. It is a straight chain or branched alkynyl group of up to 4. ]
<n>
n is an integer from 0 to 10. When n is larger than 10, the size of the iridium complex becomes too large, and the distance between the vicinity of the iridium atom, which is responsible for the hole transport property, and the surface of the iridium complex molecule becomes large, and the hole transport property of the iridium complex is impaired. As a result, the light emitting life and driving life of the element may be reduced. On the other hand, if n is within this range, as described in the <mechanism> section, the iridium complex compound can exhibit charge exchange and hole transport properties without being excessively shielded, which is preferable. . Therefore, n is preferably an integer of 0 to 8, more preferably an integer of 0 to 7, and still more preferably an integer of 1 to 6.
<フェニレン基の結合様式>
 n個が連結されるフェニレン基の結合様式は、それぞれ独立に、オルト位、メタ位、パラ位の3種類あり、特に制限はない。オルト位およびメタ位の結合は屈曲性に富み溶解性を向上させ、加えてπ電子の共役が途切れるためT1準位を高くでき、緑色発光を消光する効果を抑制できる。溶解性の観点からは、立体障害による回転異性体を生じ得るオルト位がさらに好ましく、耐久性の観点からは、メタ位の結合がさらに好ましい。オルト位での結合は、有機EL素子の駆動中に下式のような酸化カップリングによるトリフェニレン構造への変化が起こりうる。このような変化は発光波長の長波長化や正孔輸送性の低下などによる素子の劣化の原因となりうるためである。
<Binding mode of phenylene group>
The bonding mode of the n phenylene groups is not particularly limited, and there are three types independently of each other: the ortho position, the meta position, and the para position. Bonds at the ortho and meta positions are highly flexible and improve solubility, and in addition, the conjugation of π electrons is interrupted, so the T1 level can be raised and the effect of quenching green light emission can be suppressed. From the viewpoint of solubility, bonding at the ortho position is more preferable since it can generate rotamers due to steric hindrance, and from the viewpoint of durability, bonding at the meta position is even more preferable. The bond at the ortho position may change to a triphenylene structure due to oxidative coupling as shown in the following formula during operation of the organic EL device. This is because such a change may cause deterioration of the device due to an increase in the emission wavelength or a decrease in hole transportability.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 一方、パラ位で連結させると、π電子の共役が長くなるため、とくに酸化状態を安定化することができ、結果として正孔輸送性がさらに向上する。正孔輸送性は主として電子が豊富なイリジウム原子に由来するため、イリジウム原子の電子を複数のパラフェニレン基のπ共役結合により配位子側へより広く分布させることができれば、正孔輸送性の向上が著しい。従って、好ましいフェニレン基の構造は、下式(5)に示すように、フェニルピリジン配位子のフェニル基においてイリジウム原子のパラ位に直結するフェニレン基がパラ位で結合するものである。但し、nは連続するパラフェニレン基の個数を表し、1以上の整数であり、nはそのパラフェニレン基の末端にさらに結合する連続するフェニレン基の数を表し、n+n=nである。パラフェニレン環の末端にさらに結合する連続するフェニレン基は耐久性の観点からすべてメタフェニレン基であることが好ましい。溶解性の観点からnの範囲は好ましくは1~3であり、より好ましくは1または2であり、さらに好ましくは1であり、nの範囲は好ましくは1~8であり、より好ましくは2~7であり、さらに好ましくは3~6である。 On the other hand, when they are linked at the para position, the conjugation of π electrons becomes longer, so the oxidation state can be particularly stabilized, and as a result, the hole transport properties are further improved. The hole transport property mainly originates from the electron-rich iridium atom, so if the electrons of the iridium atom can be distributed more widely toward the ligand side through the π-conjugated bonds of multiple paraphenylene groups, the hole transport property can be improved. The improvement is remarkable. Therefore, a preferred structure of the phenylene group is one in which the phenylene group directly connected to the para position of the iridium atom is bonded at the para position in the phenyl group of the phenylpyridine ligand, as shown in the following formula (5). However, n 1 represents the number of consecutive para-phenylene groups and is an integer of 1 or more, and n 2 represents the number of consecutive phenylene groups further bonded to the terminal of the para-phenylene group, n 1 + n 2 = n It is. From the viewpoint of durability, all consecutive phenylene groups further bonded to the terminals of the paraphenylene ring are preferably metaphenylene groups. From the viewpoint of solubility, the range of n 1 is preferably 1 to 3, more preferably 1 or 2, even more preferably 1, and the range of n 2 is preferably 1 to 8, more preferably The number is from 2 to 7, more preferably from 3 to 6.
 すなわち、式(1)は下式(5)で表されることが好ましい。 That is, it is preferable that formula (1) is expressed by the following formula (5).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
[R及びaは式(1)について定義されるとおりである。n及びnは、n+n=nとなる数を表す。] [R and a are as defined for formula (1). n 1 and n 2 represent numbers such that n 1 +n 2 =n. ]
<置換基R>
 式(1)が有してもよい置換基Rの種類は下記[置換基群W]から選ばれる。但し、非芳香族置換基の場合にはイリジウム錯体化合物を電気的に絶縁する効果があるため、大きすぎるとイリジウム錯体化合物の正孔輸送性を減ずる恐れがある。その効果が現れない程度の炭素数に制限される。
<Substituent R>
The type of substituent R that the formula (1) may have is selected from the following [substituent group W]. However, in the case of a non-aromatic substituent, it has the effect of electrically insulating the iridium complex compound, so if it is too large, there is a risk of reducing the hole transporting property of the iridium complex compound. The number of carbon atoms is limited to such an extent that the effect does not appear.
[置換基群W]
 D、F、Cl、Br、I、-N(R’)、-CN、-NO、-OH、-COOR’、-C(=O)R’、-C(=O)NR’、-P(=O)(R’)、-S(=O)R’、-S(=O)R’、-OS(=O)R’、炭素数1以上5以下の、直鎖、分岐もしくは環状アルキル基、炭素数1以上4以下の、直鎖、分岐アルコキシ基、炭素数1以上4以下の、直鎖、分岐もしくは環状アルキルチオ基、炭素数2以上4以下の、直鎖、分岐もしくは環状アルケニル基、炭素数2以上4以下の、直鎖、分岐もしくは環状アルキニル基、炭素数10以上40以下のジアリールアミノ基、炭素数10以上40以下のアリールヘテロアリールアミノ基、炭素数10以上40以下のジヘテロアリールアミノ基。
 該アルキル基、該アルコキシ基、該アルキルチオ基、該アルケニル基、該アルキニル基、該ジアリールアミノ基、該アリールヘテロアリールアミノ基および該ジヘテロアリールアミノ基は、1つ以上の水素原子以外のR’で置換されていてもよい。
 R’については後述する。
[Substituent group W]
D, F, Cl, Br, I, -N(R') 2 , -CN, -NO 2 , -OH, -COOR', -C(=O)R', -C(=O)NR', -P(=O)(R') 2 , -S(=O)R', -S(=O) 2 R', -OS(=O) 2 R', straight with 1 to 5 carbon atoms Chain, branched or cyclic alkyl group, straight chain, branched alkoxy group having 1 to 4 carbon atoms, straight chain, branched or cyclic alkylthio group having 1 to 4 carbon atoms, straight chain having 2 to 4 carbon atoms , branched or cyclic alkenyl group, linear, branched or cyclic alkynyl group having 2 to 4 carbon atoms, diarylamino group having 10 to 40 carbon atoms, arylheteroarylamino group having 10 to 40 carbon atoms, carbon number 10 or more and 40 or less diheteroarylamino groups.
The alkyl group, the alkoxy group, the alkylthio group, the alkenyl group, the alkynyl group, the diarylamino group, the arylheteroarylamino group, and the diheteroarylamino group have one or more R' other than hydrogen atoms. may be replaced with .
R' will be described later.
 上記[置換基群W]の各置換基について以下に説明する。
 炭素数1以上5以下の、直鎖、分岐もしくは環状アルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-ペンチル基、イソプロピル基、イソブチル基、シクロペンチル基などが挙げられる。アルキル基の場合、炭素数が多いとイリジウム錯体を高度に遮蔽してしまい耐久性が損なわれるため、炭素数は1以上が好ましく、また、4以下が好ましく、3以下がより好ましく、2以下がさらに好ましい。
Each substituent in the above [substituent group W] will be explained below.
Examples of straight chain, branched or cyclic alkyl groups having 1 to 5 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, n-pentyl group, isopropyl group, isobutyl group. , cyclopentyl group, etc. In the case of an alkyl group, if the number of carbon atoms is large, the iridium complex will be highly shielded and durability will be impaired, so the number of carbon atoms is preferably 1 or more, preferably 4 or less, more preferably 3 or less, and 2 or less. More preferred.
 炭素数1以上4以下の、直鎖、分岐もしくは環状アルコキシ基の例としては、メトキシ基、エトキシ基、n-プロピルオキシ基、n-ブトキシ基などが挙げられる。耐久性の観点から、炭素数は1以上が好ましく、また、3以下が好ましく、2以下がより好ましく、1が最も好ましい。 Examples of linear, branched or cyclic alkoxy groups having 1 or more and 4 or less carbon atoms include methoxy, ethoxy, n-propyloxy, n-butoxy and the like. From the viewpoint of durability, the number of carbon atoms is preferably 1 or more, preferably 3 or less, more preferably 2 or less, and most preferably 1.
 炭素数1以上4以下の、直鎖、分岐もしくは環状アルキルチオ基の例としては、メチルチオ基、エチルチオ基、n-プロピルチオ基、n-ブチルチオ基、イソプロピルチオ基などが挙げられる。耐久性の観点から、炭素数は1以上が好ましく、また、3以下が好ましく、2以下がより好ましく、1が最も好ましい。 Examples of linear, branched or cyclic alkylthio groups having 1 to 4 carbon atoms include methylthio group, ethylthio group, n-propylthio group, n-butylthio group, and isopropylthio group. From the viewpoint of durability, the number of carbon atoms is preferably 1 or more, preferably 3 or less, more preferably 2 or less, and most preferably 1.
 炭素数2以上4以下の、直鎖または分岐アルケニル基の例としては、ビニル基、アリル基、プロぺニル基、ブタジエン基などが挙げられる。耐久性の観点から、炭素数は2以上が好ましく、また、3以下が好ましく、2が最も好ましい。 Examples of linear or branched alkenyl groups having 2 or more and 4 or less carbon atoms include vinyl groups, allyl groups, propenyl groups, butadiene groups, and the like. From the viewpoint of durability, the number of carbon atoms is preferably 2 or more, preferably 3 or less, and most preferably 2.
 炭素数2以上4以下の、直鎖または分岐アルキニル基の例としては、エチニル基、プロピオニル基、ブチニル基などが挙げられる。耐久性の観点から、炭素数は2以上が好ましく、また、3以下が好ましく、2が最も好ましい。 Examples of linear or branched alkynyl groups having 2 or more and 4 or less carbon atoms include ethynyl, propionyl, and butynyl groups. From the viewpoint of durability, the number of carbon atoms is preferably 2 or more, preferably 3 or less, and most preferably 2.
 炭素数10以上40以下のジアリールアミノ基の例としては、ジフェニルアミノ基、フェニル(ナフチル)アミノ基、ジ(ビフェニル)アミノ基、ジ(p-ターフェニル)アミノ基などが挙げられる。溶解性と耐久性のバランスの観点から、これらのジアリールアミノ基の炭素数は10以上であることが好ましく、また、36以下であることが好ましく、30以下であることがより好ましく、25以下であることが最も好ましい。 Examples of the diarylamino group having 10 to 40 carbon atoms include diphenylamino group, phenyl(naphthyl)amino group, di(biphenyl)amino group, di(p-terphenyl)amino group, and the like. From the viewpoint of balance between solubility and durability, the number of carbon atoms in these diarylamino groups is preferably 10 or more, preferably 36 or less, more preferably 30 or less, and 25 or less. Most preferably.
 炭素数10以上40以下のアリールヘテロアリールアミノ基の例としては、フェニル(2-ピリジル)アミノ基、フェニル(2,6-ジフェニル-1,3,5-トリアジン-4-イル)アミノ基などが挙げられる。溶解性と耐久性のバランスの観点から、これらのアリールヘテロアリールアミノ基の炭素数は10以上であることが好ましく、また、36以下であることが好ましく、30以下であることがより好ましく、25以下であることが最も好ましい。 Examples of the arylheteroarylamino group having 10 to 40 carbon atoms include phenyl(2-pyridyl)amino group, phenyl(2,6-diphenyl-1,3,5-triazin-4-yl)amino group, etc. Can be mentioned. From the viewpoint of balance between solubility and durability, the number of carbon atoms in these arylheteroarylamino groups is preferably 10 or more, more preferably 36 or less, more preferably 30 or less, 25 The following is most preferable.
 炭素数10以上40以下のジヘテロアリールアミノ基としては、ジ(2-ピリジル)アミノ基、ジ(2,6-ジフェニル-1,3,5-トリアジン-4-イル)アミノ基などが挙げられる。溶解性と耐久性のバランスの観点から、これらのジヘテロアリールアミノ基の炭素数は10以上であることが好ましく、また、36以下であることが好ましく、30以下であることがより好ましく、25以下であることが最も好ましい。 Examples of the diheteroarylamino group having 10 to 40 carbon atoms include di(2-pyridyl)amino group, di(2,6-diphenyl-1,3,5-triazin-4-yl)amino group, etc. . From the viewpoint of balance between solubility and durability, the number of carbon atoms in these diheteroarylamino groups is preferably 10 or more, preferably 36 or less, more preferably 30 or less, and 25 The following is most preferable.
 より好ましい置換基の種類としては、特に有機電界発光素子における発光材料としての耐久性を損なわないという観点から、それぞれ独立に、D、F、-CN、または炭素数1以上5以下の、直鎖、分岐もしくは環状アルキル基が挙げられ、D、F、-CN、メチル基またはトリフルオロメチル基が特に好ましく、Dであることが最も好ましい。 More preferable types of substituents include D, F, -CN, or a linear chain having 1 to 5 carbon atoms, particularly from the viewpoint of not impairing the durability as a luminescent material in an organic electroluminescent device. , branched or cyclic alkyl groups, D, F, --CN, methyl or trifluoromethyl groups are particularly preferred, with D being most preferred.
<R’>
 上記R’は、それぞれ独立に、D、F、-CN、炭素数1以上5以下の、直鎖、分岐もしくは環状アルキル基、炭素数2以上4以下の、直鎖または分岐アルケニル基、炭素数2以上4以下の、直鎖または分岐アルキニル基から選ばれる。
<R'>
The above R' each independently represents D, F, -CN, a straight chain, branched or cyclic alkyl group having 1 to 5 carbon atoms, a straight chain or branched alkenyl group having 2 to 4 carbon atoms, and a carbon number It is selected from 2 to 4 linear or branched alkynyl groups.
<a>
 aは0から式(1)における一つの配位子が置換しうる最大の整数までの整数である。最大の整数は、3(n+4)で計算できる。
<a>
a is an integer from 0 to the maximum integer that can be substituted by one ligand in formula (1). The largest integer can be calculated as 3(n+4).
<分子量>
 式(1)で表されるイリジウム錯体化合物の分子量には特に制限は無いが、小さすぎると溶解性が低下して、本発明の組成物をインクとすることが出来なくなる場合がある。逆に分子量が大きすぎると、正孔輸送性が低下する場合がある。そのため、分子量の範囲は、好ましくは1111~10000、より好ましくは1300~8000、さらに好ましくは1500~5000の範囲である。
<Molecular weight>
There is no particular restriction on the molecular weight of the iridium complex compound represented by formula (1), but if it is too small, the solubility may decrease and the composition of the present invention may not be able to be used as an ink. On the other hand, if the molecular weight is too large, hole transport properties may decrease. Therefore, the molecular weight range is preferably 1,111 to 10,000, more preferably 1,300 to 8,000, even more preferably 1,500 to 5,000.
<<式(2)>> <<Formula (2)>>
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
[但し、mは0~10の整数を表す。Qは置換基を表し、bは0から一つの配位子が置換しうる最大の整数までを表す。Xは式(3)または(4)を表す。 [However, m represents an integer from 0 to 10. Q represents a substituent, and b represents from 0 to the maximum integer that can be substituted by one ligand. X represents formula (3) or (4).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
[但し、破線はベンゼン環との結合を表し、Arはそれぞれ独立に、炭素数6~30の三価芳香族炭化水素基または炭素数2~30の三価複素芳香族基を表し、Arはそれぞれ独立に、炭素数6~30の一価芳香族炭化水素基または炭素数2~30の一価複素芳香族基を表す。式(3)および式(4)のAr及びArは前記Qにより置換されていても良い。]] [However, the broken line represents a bond with the benzene ring, each Ar 1 independently represents a trivalent aromatic hydrocarbon group having 6 to 30 carbon atoms or a trivalent heteroaromatic group having 2 to 30 carbon atoms, and Ar Each of 2 independently represents a monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms or a monovalent heteroaromatic group having 2 to 30 carbon atoms. Ar 1 and Ar 2 in formulas (3) and (4) may be substituted with Q. ]]
<m>
 mは0から10の整数である。ただし、m=0の場合はXがイリジウム原子と結合するベンゼン環において、イリジウム原子に対してパラ位に直接結合する。mが大きすぎるとイリジウム原子が大きく遮蔽され、イリジウム錯体への正孔輸送性が大きく損なわれるか、あるいは、遮蔽により該イリジウム錯体への電荷の注入やエネルギー移動が損なわれるため、結果として素子の発光効率や駆動寿命が低下する恐れがある。従って、mの範囲は好ましくは0~8の整数であり、より好ましくは0~6の整数であり、さらに好ましくは0~4の整数である。また、m個連結されるフェニレン基の好ましい結合様式は、式(1)と同じである。
<m>
m is an integer from 0 to 10. However, when m=0, X is directly bonded to the para position of the iridium atom in the benzene ring bonded to the iridium atom. If m is too large, the iridium atoms will be largely shielded, greatly impairing hole transport to the iridium complex, or the shielding will impair charge injection and energy transfer to the iridium complex, resulting in poor performance of the device. There is a risk that luminous efficiency and drive life will be reduced. Therefore, the range of m is preferably an integer of 0 to 8, more preferably an integer of 0 to 6, and even more preferably an integer of 0 to 4. Further, the preferable bonding mode of the m phenylene groups connected is the same as in formula (1).
<X>
 Xは式(3)または(4)を表す。式(3)または(4)中の破線はベンゼン環との結合を表す。
<X>
X represents formula (3) or (4). The broken line in formula (3) or (4) represents the bond with the benzene ring.
<ArおよびAr
 Arはそれぞれ独立に、炭素数6~30の三価芳香族炭化水素基または炭素数2~30の三価複素芳香族基を表し、Arはそれぞれ独立に、炭素数6~30の一価芳香族炭化水素基または炭素数2~30の一価複素芳香族基を表す。これらの芳香族炭化水素基または複素芳香族基の種類は、単環であっても縮合環であっても良いし、これらが結合してなる構造であっても良い。ArおよびArはQにより置換されていても良い。Arがそれぞれ独立に、炭素数6~30の三価芳香族炭化水素基を表し、Arがそれぞれ独立に、炭素数6~30の一価芳香族炭化水素基を表すことが好ましい。
<Ar 1 and Ar 2 >
Ar 1 each independently represents a trivalent aromatic hydrocarbon group having 6 to 30 carbon atoms or a trivalent heteroaromatic group having 2 to 30 carbon atoms, and Ar 2 each independently represents a trivalent aromatic hydrocarbon group having 6 to 30 carbon atoms; Represents a valent aromatic hydrocarbon group or a monovalent heteroaromatic group having 2 to 30 carbon atoms. The type of these aromatic hydrocarbon groups or heteroaromatic groups may be a single ring, a condensed ring, or a structure formed by bonding these groups. Ar 1 and Ar 2 may be substituted with Q. It is preferable that each Ar 1 independently represents a trivalent aromatic hydrocarbon group having 6 to 30 carbon atoms, and each Ar 2 independently represents a monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms.
 これら芳香族炭化水素基または複素芳香族基の種類の例として、それらに対応する母骨格をあげると、ベンゼン環、ナフタレン環、アントラセン環、ベンゾアントラセン環、フェナントレン環、ベンゾフェナントレン環、ピレン環、クリセン環、フルオランテン環、ペリレン環、ベンゾピレン環、ベンゾフルオランテン環、ナフタセン環、ペンタセン環、ビフェニル、ターフェニル、クアテルフェニル、フルオレン環、スピロビフルオレン環、ジヒドロフェナントレン環、ジヒドロピレン環、テトラヒドロピレン環、インデノフルオレン環、フラン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、ピロール環、インドール環、イソインドール環、カルバゾール環、ベンゾカルバゾール環、インドロカルバゾール環、インデノカルバゾール環、ピリジン環、シンノリン環、イソシンノリン環、アクリジン環、フェナンスリジン環、フェノチアジン環、フェノキサジン環、ピラジン環、イミダゾール環、ベンズイミダゾール環、ナフトイミダゾール環、フェナンスロイミダゾール環、オキサゾール環、ベンゾオキサゾール環、ナフトオキサゾール環、チアゾール環、ベンゾチアゾール環、ピリミジン環、ベンゾピリミジン環、ピリダジン環、キノキサリン環、ジアザアントラセン環、ジアザピレン環、フェノキサジン環、フェノチアジン環、ナフチリジン環、アザカルバゾール環、ベンゾカルボリン環、フェナンスロリン環、トリアゾール環、ベンゾトリアゾール環、オキサジアゾール環、チアジアゾール環、トリアジン環、2,6-ジフェニル-1,3,5-トリアジン環、テトラゾール環、プリン環、ベンゾチアジアゾール環などが挙げられる。 As examples of the types of aromatic hydrocarbon groups or heteroaromatic groups, the corresponding parent skeletons include benzene ring, naphthalene ring, anthracene ring, benzanthracene ring, phenanthrene ring, benzophenanthrene ring, pyrene ring, Chrysene ring, fluoranthene ring, perylene ring, benzopyrene ring, benzofluoranthene ring, naphthacene ring, pentacene ring, biphenyl, terphenyl, quaterphenyl, fluorene ring, spirobifluorene ring, dihydrophenanthrene ring, dihydropyrene ring, tetrahydro Pyrene ring, indenofluorene ring, furan ring, benzofuran ring, isobenzofuran ring, dibenzofuran ring, thiophene ring, benzothiophene ring, dibenzothiophene ring, pyrrole ring, indole ring, isoindole ring, carbazole ring, benzocarbazole ring, India Locarbazole ring, indenocarbazole ring, pyridine ring, cinnoline ring, isocinnoline ring, acridine ring, phenanthridine ring, phenothiazine ring, phenoxazine ring, pyrazine ring, imidazole ring, benzimidazole ring, naphthimidazole ring, phenanthro Imidazole ring, oxazole ring, benzoxazole ring, naphthoxazole ring, thiazole ring, benzothiazole ring, pyrimidine ring, benzopyrimidine ring, pyridazine ring, quinoxaline ring, diazaanthracene ring, diazapyrene ring, phenoxazine ring, phenothiazine ring, naphthyridine ring, azacarbazole ring, benzocarboline ring, phenanthroline ring, triazole ring, benzotriazole ring, oxadiazole ring, thiadiazole ring, triazine ring, 2,6-diphenyl-1,3,5-triazine ring, tetrazole ring , a purine ring, a benzothiadiazole ring, and the like.
 耐久性の観点から、ArおよびArともに好ましくは、6員環構造の単環または6員環構造を含む縮合環あるいはこれらが結合してなる構造の芳香族炭化水素基または複素芳香環であり、さらに好ましくは、該6員環構造が芳香族炭化水素環であるものであり、最も好ましくはベンゼン環である。 From the viewpoint of durability, both Ar 1 and Ar 2 are preferably a monocyclic ring having a 6-membered ring structure, a condensed ring containing a 6-membered ring structure, or an aromatic hydrocarbon group or a heteroaromatic ring having a structure in which these are combined. More preferably, the six-membered ring structure is an aromatic hydrocarbon ring, most preferably a benzene ring.
 Arがベンゼン環のとき、2つあるArの結合位置に制限は無いが、互いにオルト位に結合する箇所が出現すると、π電子の共役系が立体障害により切断されてしまうため、耐久性に劣る。従って、Arがベンゼン環のときの好ましい結合位置は、互いにメタ位となる1位と3位および5位である。 When Ar 1 is a benzene ring, there are no restrictions on the bonding positions of the two Ar 2s , but if a bonding site appears at the ortho position, the conjugated system of π electrons will be broken due to steric hindrance, resulting in poor durability. inferior to Therefore, when Ar 1 is a benzene ring, preferred bonding positions are the 1st, 3rd, and 5th positions, which are meta positions to each other.
 式(4)に複数出現するArは、溶解性を高める観点からは異なる構造が好ましいが、耐久性の観点からは、同一構造であることがより好ましい。 Multiple Ar 1 's appearing in formula (4) preferably have different structures from the viewpoint of increasing solubility, but from the viewpoint of durability, it is more preferable that they have the same structure.
 式(3)または式(4)に複数出現するArは、溶解性を高める観点からは異なる構造が好ましいが、耐久性の観点からは、同一構造であることがより好ましい。 From the viewpoint of increasing solubility, it is preferable that Ar 2 that appears multiple times in formula (3) or formula (4) have different structures, but from the viewpoint of durability, it is more preferable that they have the same structure.
<Q>
 Qは置換基を表す。Qの種類には特に制限はなく、溶解性や発光波長の調整のために適切に選択されるべきであるが、通常選ばれる種類は以下の[置換基群Z]である。
<Q>
Q represents a substituent. The type of Q is not particularly limited and should be appropriately selected in order to adjust the solubility and emission wavelength, but the type usually selected is the following [substituent group Z].
[置換基群Z]
 D、F、Cl、Br、I、-N(Q’)、-CN、-NO、-OH、-SH、-COOQ’、-C(=O)Q’、-C(=O)NQ’、-P(=O)(Q’)、-S(=O)Q’、-S(=O)Q’、-OS(=O)Q’、-SiQ’、炭素数1以上30以下の、直鎖、分岐もしくは環状アルキル基、炭素数1以上30以下の、直鎖、分岐もしくは環状アルコキシ基、炭素数1以上30以下の、直鎖、分岐もしくは環状アルキルチオ基、炭素数2以上30以下の、直鎖、分岐もしくは環状アルケニル基、炭素数2以上30以下の、直鎖、分岐もしくは環状アルキニル基、炭素数5以上60以下の芳香族炭化水素基、炭素数2以上60以下の芳香族複素環基、炭素数5以上40以下のアリールオキシ基、炭素数5以上40以下のアリールチオ基、炭素数5以上60以下のアラルキル基、炭素数5以上60以下のヘテロアラルキル基、炭素数10以上40以下のジアリールアミノ基、炭素数10以上40以下のアリールヘテロアリールアミノ基、又は、炭素数10以上40以下のジヘテロアリールアミノ基から選ばれる。
[Substituent group Z]
D, F, Cl, Br, I, -N(Q') 2 , -CN, -NO 2 , -OH, -SH, -COOQ', -C(=O)Q', -C(=O) NQ', -P(=O)(Q') 2 , -S(=O)Q', -S(=O) 2 Q', -OS(=O) 2 Q', -SiQ' 3 , Carbon A straight chain, branched or cyclic alkyl group having 1 to 30 carbon atoms, a straight chain, branched or cyclic alkoxy group having 1 to 30 carbon atoms, a straight chain, branched or cyclic alkylthio group having 1 to 30 carbon atoms, Straight chain, branched or cyclic alkenyl group having 2 to 30 carbon atoms, straight chain, branched or cyclic alkynyl group having 2 to 30 carbon atoms, aromatic hydrocarbon group having 5 to 60 carbon atoms, 2 carbon atoms Aromatic heterocyclic group with 5 to 40 carbon atoms, aryloxy group with 5 to 40 carbon atoms, arylthio group with 5 to 40 carbon atoms, aralkyl group with 5 to 60 carbon atoms, heteroaralkyl group with 5 to 60 carbon atoms group, a diarylamino group having 10 to 40 carbon atoms, an arylheteroarylamino group having 10 to 40 carbon atoms, or a diheteroarylamino group having 10 to 40 carbon atoms.
 該アルキル基、該アルコキシ基、該アルキルチオ基、該アルケニル基および該アルキニル基は、さらに1つ以上のQ’で置換されていてもよく、これらの基における1つの-CH-基あるいは2以上の隣接していない-CH-基が、-C(-Q’)=C(-Q’)-、-C≡C-、-Si(-Q’)、-C(=O)-、-NQ’-、-O-、-S-、-CONQ’-もしくは2価の芳香族炭化水素基または2価の芳香族複素環基に置き換えられていてもよい。また、これらの基における一つ以上の水素原子が、F、Cl、Br、I又は-CNで置換されていてもよい。 The alkyl group, the alkoxy group, the alkylthio group, the alkenyl group, and the alkynyl group may be further substituted with one or more Q', and one or more -CH 2 - groups in these groups The non-adjacent -CH 2 - groups of -C(-Q')=C(-Q')-, -C≡C-, -Si(-Q') 2 , -C(=O)- , -NQ'-, -O-, -S-, -CONQ'-, a divalent aromatic hydrocarbon group, or a divalent aromatic heterocyclic group. Furthermore, one or more hydrogen atoms in these groups may be substituted with F, Cl, Br, I or -CN.
 該芳香族炭化水素基、該芳香族複素環基、該アリールオキシ基、該アリールチオ基、該アラルキル基、該ヘテロアラルキル基、該ジアリールアミノ基、該アリールヘテロアリールアミノ基および該ジヘテロアリールアミノ基は、それぞれ独立に、さらに1つ以上のQ’で置換されていてもよい。
 Q’については後述する。
The aromatic hydrocarbon group, the aromatic heterocyclic group, the aryloxy group, the arylthio group, the aralkyl group, the heteroaralkyl group, the diarylamino group, the arylheteroarylamino group, and the diheteroarylamino group may each be independently further substituted with one or more Q'.
Q' will be described later.
 炭素数1以上30以下の、直鎖、分岐もしくは環状アルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、2-エチルヘキシル基、イソプロピル基、イソブチル基、シクロペンチル基、シクロヘキシル基、n-オクチル基、ノルボルニル基、アダマンチル基などが挙げられる。アルキル基の場合、炭素数があまりにも多すぎると錯体を高度に遮蔽してしまい耐久性が損なわれるため、炭素数は1以上が好ましく、また、30以下が好ましく、20以下がより好ましく、12以下がさらに好ましい。ただし、分岐アルキル基の場合は、遮蔽効果が直鎖アルキル基や環状アルキル基と比べて大きいため、炭素数は8以下が最も好ましい。 Examples of straight chain, branched or cyclic alkyl groups having 1 to 30 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, n-pentyl group, n-hexyl group, Examples include n-octyl group, 2-ethylhexyl group, isopropyl group, isobutyl group, cyclopentyl group, cyclohexyl group, n-octyl group, norbornyl group, and adamantyl group. In the case of an alkyl group, if the number of carbon atoms is too large, the complex will be highly shielded and durability will be impaired, so the number of carbon atoms is preferably 1 or more, preferably 30 or less, more preferably 20 or less, and 12 The following are more preferred. However, in the case of a branched alkyl group, the shielding effect is greater than that of a straight-chain alkyl group or a cyclic alkyl group, so the number of carbon atoms is most preferably 8 or less.
 炭素数1以上30以下の、直鎖、分岐もしくは環状アルコキシ基の例としては、メトキシ基、エトキシ基、n-プロピルオキシ基、n-ブトキシ基、n-ヘキシルオキシ基、イソプロピルオキシ基、シクロヘキシルオキシ基、2-エトキシエトキシ基、2-エトキシエトキシエトキシ基などが挙げられる。耐久性の観点から、炭素数は1以上が好ましく、また、30以下が好ましく、20以下がより好ましく、12以下が最も好ましい。 Examples of straight chain, branched or cyclic alkoxy groups having 1 to 30 carbon atoms include methoxy group, ethoxy group, n-propyloxy group, n-butoxy group, n-hexyloxy group, isopropyloxy group, cyclohexyloxy group. group, 2-ethoxyethoxy group, 2-ethoxyethoxyethoxy group, etc. From the viewpoint of durability, the number of carbon atoms is preferably 1 or more, preferably 30 or less, more preferably 20 or less, and most preferably 12 or less.
 炭素数1以上30以下の、直鎖、分岐もしくは環状アルキルチオ基の例としては、メチルチオ基、エチルチオ基、n-プロピルチオ基、n-ブチルチオ基、n-ヘキシルチオ基、イソプロピルチオ基、シクロヘキシルチオ基、2-メチルブチルチオ基、n-ヘキシルチオ基などが挙げられる。耐久性の観点から、炭素数は1以上が好ましく、また、30以下が好ましく、20以下がより好ましく、12以下が最も好ましい。 Examples of straight chain, branched or cyclic alkylthio groups having 1 to 30 carbon atoms include methylthio group, ethylthio group, n-propylthio group, n-butylthio group, n-hexylthio group, isopropylthio group, cyclohexylthio group, Examples include 2-methylbutylthio group and n-hexylthio group. From the viewpoint of durability, the number of carbon atoms is preferably 1 or more, preferably 30 or less, more preferably 20 or less, and most preferably 12 or less.
 炭素数2以上30以下の、直鎖、分岐もしくは環状アルケニル基の例としては、ビニル基、アリル基、プロぺニル基、ヘプテニル基、シクロペンテニル基、シクロヘキセニル基、シクロオクテニル基などが挙げられる。耐久性の観点から、炭素数は2以上が好ましく、また、30以下が好ましく、20以下がより好ましく、12以下が最も好ましい。 Examples of linear, branched or cyclic alkenyl groups having 2 to 30 carbon atoms include vinyl, allyl, propenyl, heptenyl, cyclopentenyl, cyclohexenyl, cyclooctenyl and the like. From the viewpoint of durability, the number of carbon atoms is preferably 2 or more, preferably 30 or less, more preferably 20 or less, and most preferably 12 or less.
 炭素数2以上30以下の、直鎖、分岐もしくは環状アルキニル基の例としては、エチニル基、プロピオニル基、ブチニル基、ペンチニル基、ヘキシニル基、ヘプチニル基、オクチニル基などが挙げられる。耐久性の観点から、炭素数は2以上が好ましく、また、30以下が好ましく、20以下がより好ましく、12以下が最も好ましい。 Examples of straight chain, branched or cyclic alkynyl groups having 2 or more and 30 or less carbon atoms include ethynyl, propionyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl and the like. From the viewpoint of durability, the number of carbon atoms is preferably 2 or more, preferably 30 or less, more preferably 20 or less, and most preferably 12 or less.
 炭素数5以上60以下の芳香族炭化水素基及び炭素数2以上60以下の芳香族複素環基は、単一の環あるいは縮合環として存在していてもよいし、一つの環にさらに別の種類の芳香族炭化水素基又は芳香族複素環基が結合あるいは縮環してできる基であってもよい。 The aromatic hydrocarbon group having 5 to 60 carbon atoms and the aromatic heterocyclic group having 2 to 60 carbon atoms may exist as a single ring or a condensed ring, or one ring may contain another ring. It may be a group formed by bonding or condensing various aromatic hydrocarbon groups or aromatic heterocyclic groups.
 これらの例としては、フェニル基、ナフチル基、アントラセニル基、ベンゾアントラセニル基、フェナントレニル基、ベンゾフェナントレニル基、ピレニル基、クリセニル基、フルオランテニル基、ペリレニル基、ベンゾピレニル基、ベンゾフルオランテニル基、ナフタセニル基、ペンタセニル基、ビフェニル基、ターフェニル基、フルオレニル基、スピロビフルオレニル基、ジヒドロフェナントレニル基、ジヒドロピレニル基、テトラヒドロピレニル基、インデノフルオレニル基、フリル基、ベンゾフリル基、イソベンゾフリル基、ジベンゾフラニル基、チオフェン基、ベンゾチオフェニル基、ジベンゾチオフェニル基、ピロリル基、インドリル基、イソインドリル基、カルバゾリル基、ベンゾカルバゾリル基、インドロカルバゾリル基、インデノカルバゾリル基、ピリジル基、シンノリル基、イソシンノリル基、アクリジル基、フェナンスリジル基、フェノチアジニル基、フェノキサジル基、ピラゾリル基、インダゾリル基、イミダゾリル基、ベンズイミダゾリル基、ナフトイミダゾリル基、フェナンスロイミダゾリル基、ピリジンイミダゾリル基、オキサゾリル基、ベンゾオキサゾリル基、ナフトオキサゾリル基、チアゾリル基、ベンゾチアゾリル基、ピリミジル基、ベンゾピリミジル基、ピリダジニル基、キノキサリニル基、ジアザアントラセニル基、ジアザピレニル基、ピラジニル基、フェノキサジニル基、フェノチアジニル基、ナフチリジニル基、アザカルバゾリル基、ベンゾカルボリニル基、フェナンスロリニル基、トリアゾリル基、ベンゾトリアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアジニル基、2,6-ジフェニル-1,3,5-トリアジン-4-イル基、テトラゾリル基、プリニル基、ベンゾチアジアゾリル基などが挙げられる。 Examples of these include phenyl, naphthyl, anthracenyl, benzanthracenyl, phenanthrenyl, benzophenanthrenyl, pyrenyl, chrysenyl, fluoranthenyl, perylenyl, benzopyrenyl, benzoflurenyl, oranthenyl group, naphthacenyl group, pentacenyl group, biphenyl group, terphenyl group, fluorenyl group, spirobifluorenyl group, dihydrophenanthrenyl group, dihydropyrenyl group, tetrahydropyrenyl group, indenofluorenyl group, furyl group, benzofuryl group, isobenzofuryl group, dibenzofuranyl group, thiophene group, benzothiophenyl group, dibenzothiophenyl group, pyrrolyl group, indolyl group, isoindolyl group, carbazolyl group, benzocarbazolyl group, indolocarbazolyl group group, indenocarbazolyl group, pyridyl group, cinnolyl group, isocinnolyl group, acridyl group, phenanthridyl group, phenothiazinyl group, phenoxazyl group, pyrazolyl group, indazolyl group, imidazolyl group, benzimidazolyl group, naphthiimidazolyl group, Nanthroimidazolyl group, pyridineimidazolyl group, oxazolyl group, benzoxazolyl group, naphthoxazolyl group, thiazolyl group, benzothiazolyl group, pyrimidyl group, benzopyrimidyl group, pyridazinyl group, quinoxalinyl group, diazaanthracenyl group, diazapyrenyl group group, pyrazinyl group, phenoxazinyl group, phenothiazinyl group, naphthyridinyl group, azacarbazolyl group, benzocarbolinyl group, phenanthrolinyl group, triazolyl group, benzotriazolyl group, oxadiazolyl group, thiadiazolyl group, triazinyl group, 2, Examples include 6-diphenyl-1,3,5-triazin-4-yl group, tetrazolyl group, purinyl group, and benzothiadiazolyl group.
 溶剤溶解性と耐久性のバランスの観点から、これらの基の炭素数は5以上であり、また、50以下であることが好ましく、40以下であることがより好ましく、30以下であることが最も好ましい。 From the viewpoint of balance between solvent solubility and durability, the carbon number of these groups is preferably 5 or more, preferably 50 or less, more preferably 40 or less, and most preferably 30 or less. preferable.
 炭素数5以上40以下のアリールオキシ基の例としては、フェノキシ基、メチルフェノキシ基、ナフトキシ基、メトキシフェノキシ基などが挙げられる。溶解性と耐久性のバランスの観点から、これらのアリールオキシ基の炭素数は5以上であり、また、30以下が好ましく、25以下がより好ましく、20以下が最も好ましい。 Examples of the aryloxy group having 5 to 40 carbon atoms include phenoxy group, methylphenoxy group, naphthoxy group, and methoxyphenoxy group. From the viewpoint of balance between solubility and durability, the number of carbon atoms in these aryloxy groups is 5 or more, preferably 30 or less, more preferably 25 or less, and most preferably 20 or less.
 炭素数5以上40以下のアリールチオ基の例としては、フェニルチオ基、メチルフェニルチオ基、ナフチルチオ基、メトキシフェニルチオ基などが挙げられる。溶解性と耐久性のバランスの観点から、これらのアリールチオ基の炭素数は5以上であり、また、30以下が好ましく、25以下がより好ましく、20以下が最も好ましい。 Examples of the arylthio group having 5 to 40 carbon atoms include phenylthio group, methylphenylthio group, naphthylthio group, and methoxyphenylthio group. From the viewpoint of balance between solubility and durability, the number of carbon atoms in these arylthio groups is 5 or more, preferably 30 or less, more preferably 25 or less, and most preferably 20 or less.
 炭素数5以上60以下のアラルキル基の例としては、1,1-ジメチル-1-フェニルメチル基、1,1-ジ(n-ブチル)-1-フェニルメチル基、1,1-ジ(n-ヘキシル)-1-フェニルメチル基、1,1-ジ(n-オクチル)-1-フェニルメチル基、フェニルメチル基、フェニルエチル基、3-フェニル-1-プロピル基、4-フェニル-1-n-ブチル基、1-メチル-1-フェニルエチル基、5-フェニル-1-n-プロピル基、6-フェニル-1-n-ヘキシル基、6-ナフチル-1-n-ヘキシル基、7-フェニル-1-n-ヘプチル基、8-フェニル-1-n-オクチル基、4-フェニルシクロヘキシル基などが挙げられる。溶解性と耐久性のバランスの観点から、これらのアラルキル基の炭素数は5以上であり、また、40以下であることがより好ましい。 Examples of aralkyl groups having 5 to 60 carbon atoms include 1,1-dimethyl-1-phenylmethyl group, 1,1-di(n-butyl)-1-phenylmethyl group, and 1,1-di(n-butyl)-1-phenylmethyl group. -hexyl)-1-phenylmethyl group, 1,1-di(n-octyl)-1-phenylmethyl group, phenylmethyl group, phenylethyl group, 3-phenyl-1-propyl group, 4-phenyl-1- n-butyl group, 1-methyl-1-phenylethyl group, 5-phenyl-1-n-propyl group, 6-phenyl-1-n-hexyl group, 6-naphthyl-1-n-hexyl group, 7- Examples include phenyl-1-n-heptyl group, 8-phenyl-1-n-octyl group, and 4-phenylcyclohexyl group. From the viewpoint of the balance between solubility and durability, the number of carbon atoms in these aralkyl groups is preferably 5 or more, and more preferably 40 or less.
 炭素数5以上60以下のヘテロアラルキル基の例としては、1,1-ジメチル-1-(2-ピリジル)メチル基、1,1-ジ(n-ヘキシル)-1-(2-ピリジル)メチル基、(2-ピリジル)メチル基、(2-ピリジル)エチル基、3-(2-ピリジル)-1-プロピル基、4-(2-ピリジル)-1-n-ブチル基、1-メチル-1-(2-ピリジル)エチル基、5-(2-ピリジル)-1-n-プロピル基、6-(2-ピリジル)-1-n-ヘキシル基、6-(2-ピリミジル)-1-n-ヘキシル基、6-(2,6-ジフェニル-1,3,5-トリアジン-4-イル)-1-n-ヘキシル基、7-(2-ピリジル)-1-n-ヘプチル基、8-(2-ピリジル)-1-n-オクチル基、4-(2-ピリジル)シクロヘキシル基などが挙げられる。溶解性と耐久性のバランスの観点から、これらのヘテロアラルキル基の炭素数は5以上であり、また、50以下であることが好ましく、40以下であることがより好ましく、30以下であることが最も好ましい。 Examples of heteroaralkyl groups having 5 to 60 carbon atoms include 1,1-dimethyl-1-(2-pyridyl)methyl group, 1,1-di(n-hexyl)-1-(2-pyridyl)methyl group, (2-pyridyl)methyl group, (2-pyridyl)ethyl group, 3-(2-pyridyl)-1-propyl group, 4-(2-pyridyl)-1-n-butyl group, 1-methyl- 1-(2-pyridyl)ethyl group, 5-(2-pyridyl)-1-n-propyl group, 6-(2-pyridyl)-1-n-hexyl group, 6-(2-pyrimidyl)-1- n-hexyl group, 6-(2,6-diphenyl-1,3,5-triazin-4-yl)-1-n-hexyl group, 7-(2-pyridyl)-1-n-heptyl group, 8 Examples include -(2-pyridyl)-1-n-octyl group and 4-(2-pyridyl)cyclohexyl group. From the viewpoint of balance between solubility and durability, the number of carbon atoms in these heteroaralkyl groups is 5 or more, preferably 50 or less, more preferably 40 or less, and 30 or less. Most preferred.
 炭素数10以上40以下のジアリールアミノ基の例としては、ジフェニルアミノ基、フェニル(ナフチル)アミノ基、ジ(ビフェニル)アミノ基、ジ(p-ターフェニル)アミノ基などが挙げられる。溶解性と耐久性のバランスの観点から、これらのジアリールアミノ基の炭素数は10以上であり、また、36以下であることが好ましく、30以下であることがより好ましく、25以下であることが最も好ましい。 Examples of the diarylamino group having 10 to 40 carbon atoms include diphenylamino group, phenyl(naphthyl)amino group, di(biphenyl)amino group, di(p-terphenyl)amino group, and the like. From the viewpoint of balance between solubility and durability, the carbon number of these diarylamino groups is preferably 10 or more, and preferably 36 or less, more preferably 30 or less, and preferably 25 or less. Most preferred.
 炭素数10以上40以下のアリールヘテロアリールアミノ基の例としては、フェニル(2-ピリジル)アミノ、フェニル(2,6-ジフェニル-1,3,5-トリアジン-4-イル)アミノ基などが挙げられる。溶解性と耐久性のバランスの観点から、これらのアリールヘテロアリールアミノ基の炭素数は10以上であり、また、36以下であることが好ましく、30以下であることがより好ましく、25以下であることが最も好ましい。 Examples of the arylheteroarylamino group having 10 to 40 carbon atoms include phenyl(2-pyridyl)amino and phenyl(2,6-diphenyl-1,3,5-triazin-4-yl)amino groups. It will be done. From the viewpoint of balance between solubility and durability, the number of carbon atoms in these arylheteroarylamino groups is 10 or more, preferably 36 or less, more preferably 30 or less, and 25 or less. is most preferable.
 炭素数10以上40以下のジヘテロアリールアミノ基としては、ジ(2-ピリジル)アミノ基、ジ(2,6-ジフェニル-1,3,5-トリアジン-4-イル)アミノ基などが挙げられる。溶解性と耐久性のバランスの観点から、これらのジヘテロアリールアミノ基の炭素数は10以上であり、また、36以下であることが好ましく、30以下であることがより好ましく、25以下であることが最も好ましい。 Examples of the diheteroarylamino group having 10 to 40 carbon atoms include di(2-pyridyl)amino group, di(2,6-diphenyl-1,3,5-triazin-4-yl)amino group, etc. . From the viewpoint of the balance between solubility and durability, the carbon number of these diheteroarylamino groups is 10 or more, preferably 36 or less, more preferably 30 or less, and 25 or less. is most preferable.
<Q’>
 Q’は、D、F、Cl、Br、I、-N(Q’’)、-OH、-SH、-CN、-NO、-Si(Q’’)、-B(OQ’’)、-C(=O)Q’’、-P(=O)(Q’’)、-S(=O)Q’’、-OSOQ’’、炭素数1以上30以下の、直鎖、分岐もしくは環状アルキル基、炭素数1以上30以下の、直鎖、分岐もしくは環状アルコキシ基、炭素数1以上30以下の、直鎖、分岐もしくは環状アルキルチオ基、炭素数2以上30以下の、直鎖、分岐もしくは環状アルケニル基、炭素数2以上30以下の、直鎖、分岐もしくは環状アルキニル基、炭素数5以上60以下の芳香族炭化水素基、炭素数2以上60以下の芳香族複素環基、炭素数5以上40以下のアリールオキシ基、炭素数5以上40以下のアリールチオ基、炭素数5以上60以下のアラルキル基、炭素数5以上60以下のヘテロアラルキル基、炭素数10以上40以下のジアリールアミノ基、炭素数10以上40以下のアリールヘテロアリールアミノ基又は炭素数10以上40以下のジヘテロアリールアミノ基から選ばれる。
 Q’が複数存在する場合、それぞれ同一であっても異なっていてもよい。
<Q'>
Q' is D, F, Cl, Br, I, -N(Q'') 2 , -OH, -SH, -CN, -NO 2 , -Si(Q'') 3 , -B(OQ'') 2 , -C(=O)Q'', -P(=O)(Q'') 2 , -S(=O) 2 Q'', -OSO 2 Q'', carbon number 1 or more 30 The following straight chain, branched or cyclic alkyl groups, straight chain, branched or cyclic alkoxy groups having 1 to 30 carbon atoms, straight chain, branched or cyclic alkylthio groups having 1 to 30 carbon atoms, 2 or more carbon atoms Straight chain, branched or cyclic alkenyl group with 30 or less carbon atoms, straight chain, branched or cyclic alkynyl group with 2 to 30 carbon atoms, aromatic hydrocarbon group with 5 to 60 carbon atoms, 2 to 60 carbon atoms Aromatic heterocyclic group, aryloxy group having 5 to 40 carbon atoms, arylthio group having 5 to 40 carbon atoms, aralkyl group having 5 to 60 carbon atoms, heteroaralkyl group having 5 to 60 carbon atoms, carbon number It is selected from a diarylamino group having 10 to 40 carbon atoms, an arylheteroarylamino group having 10 to 40 carbon atoms, or a diheteroarylamino group having 10 to 40 carbon atoms.
When multiple Q's exist, they may be the same or different.
 該アルキル基、該アルコキシ基、該アルキルチオ基、該アルケニル基および該アルキニル基は、さらに1つ以上のR’’で置換されていてもよく、これらの基における1つの-CH-基あるいは2以上の隣接していない-CH-基が、-C(-Q’’)=C(-Q’’)-、-C≡C-、-Si(-Q’’)-、-C(=O)-、-NQ’’-、-O-、-S-、-CONQ’’-もしくは2価の芳香族炭化水素基または2価の芳香族複素環基に置き換えられていてもよい。また、これらの基における一つ以上の水素原子が、F、Cl、Br、I又は-CNで置換されていてもよい。 The alkyl group, the alkoxy group, the alkylthio group, the alkenyl group, and the alkynyl group may be further substituted with one or more R'', and one -CH 2 - group or two The above non-adjacent -CH 2 - groups are -C(-Q'')=C(-Q'')-, -C≡C-, -Si(-Q'') 2 -, -C May be substituted with (=O)-, -NQ''-, -O-, -S-, -CONQ''- or a divalent aromatic hydrocarbon group or a divalent aromatic heterocyclic group . Furthermore, one or more hydrogen atoms in these groups may be substituted with F, Cl, Br, I or -CN.
 また、該芳香族炭化水素基、該芳香族複素環基、該アリールオキシ基、該アリールチオ基、該アラルキル基、該ヘテロアラルキル基、該ジアリールアミノ基、該アリールヘテロアリールアミノ基および該ジヘテロアリールアミノ基は、さらに1つ以上のQ’’で置換されていてもよい。
 Q’’については後述する。
Further, the aromatic hydrocarbon group, the aromatic heterocyclic group, the aryloxy group, the arylthio group, the aralkyl group, the heteroaralkyl group, the diarylamino group, the arylheteroarylamino group, and the diheteroaryl group. The amino group may be further substituted with one or more Q''.
Q'' will be described later.
 また、2つ以上の隣接するQ’がそれぞれの水素原子を失いつつ互いに結合して、脂肪族、芳香炭化水素又は複素芳香族の、単環もしくは縮合環を形成してもよい。 Furthermore, two or more adjacent Q' may be bonded to each other while losing their respective hydrogen atoms to form an aliphatic, aromatic hydrocarbon, or heteroaromatic monocyclic or fused ring.
<Q’’>
 Q’’はそれぞれ独立に、D、F、-CN、炭素数1以上20以下の脂肪族炭化水素基、炭素数5以上20以下の芳香族炭化水素基又は炭素数5以上20以下の芳香族複素環基から選ばれる。
 2つ以上の隣接するQ’’がそれぞれの水素原子を失いつつ互いに結合して、脂肪族、芳香族炭化水素、又は複素芳香族の、単環もしくは縮合環を形成してもよい。Q’’が複数存在する場合、それぞれ同一であっても異なっていてもよい。
<Q''>
Q'' is each independently D, F, -CN, an aliphatic hydrocarbon group having 1 to 20 carbon atoms, an aromatic hydrocarbon group having 5 to 20 carbon atoms, or an aromatic group having 5 to 20 carbon atoms. selected from heterocyclic groups.
Two or more adjacent Q'' may be bonded to each other while losing their respective hydrogen atoms to form an aliphatic, aromatic hydrocarbon, or heteroaromatic monocyclic or fused ring. When multiple Q''s exist, they may be the same or different.
 式(2)が有していてもよい置換基Qのより好ましい種類は、耐久性の観点から、D、F、炭素数1以上30以下の、直鎖、分岐もしくは環状アルキル基、炭素数2以上30以下の、直鎖、分岐もしくは環状アルケニル基、炭素数5以上60以下の芳香族炭化水素基、炭素数2以上60以下の芳香族複素環基、炭素数5以上60以下のアラルキル基、炭素数5以上60以下のヘテロアラルキル基、炭素数10以上40以下のジアリールアミノ基、炭素数10以上40以下のアリールヘテロアリールアミノ基、又は、炭素数10以上40以下のジヘテロアリールアミノ基であり、さらに好ましい種類は、D、F、炭素数1以上30以下の、直鎖、分岐もしくは環状アルキル基、炭素数5以上60以下の芳香族炭化水素基、炭素数2以上60以下の芳香族複素環基、炭素数10以上40以下のジアリールアミノ基、炭素数10以上40以下のアリールヘテロアリールアミノ基、又は、炭素数10以上40以下のジヘテロアリールアミノ基であり、最も好ましい種類は、D、F、炭素数1以上30以下の、直鎖、分岐もしくは環状アルキル基、炭素数5以上60以下の芳香族炭化水素基であり、その中でもD又はFが好ましい。 From the viewpoint of durability, more preferable types of the substituent Q that the formula (2) may have are D, F, a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, and 2 carbon atoms. A linear, branched or cyclic alkenyl group having 30 or more carbon atoms, an aromatic hydrocarbon group having 5 to 60 carbon atoms, an aromatic heterocyclic group having 2 to 60 carbon atoms, an aralkyl group having 5 to 60 carbon atoms, A heteroaralkyl group having 5 to 60 carbon atoms, a diarylamino group having 10 to 40 carbon atoms, an arylheteroarylamino group having 10 to 40 carbon atoms, or a diheteroarylamino group having 10 to 40 carbon atoms. More preferable types are D, F, straight chain, branched or cyclic alkyl group having 1 to 30 carbon atoms, aromatic hydrocarbon group having 5 to 60 carbon atoms, aromatic group having 2 to 60 carbon atoms. A heterocyclic group, a diarylamino group having 10 to 40 carbon atoms, an arylheteroarylamino group having 10 to 40 carbon atoms, or a diheteroarylamino group having 10 to 40 carbon atoms, and the most preferred types are: D, F, a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, and an aromatic hydrocarbon group having 5 to 60 carbon atoms, and D or F is preferred among them.
<b>
 bは0から式(2)における一つの配位子が置換しうる最大の整数までである。
<b>
b ranges from 0 to the maximum integer that can be substituted by one ligand in formula (2).
<分子量>
 式(2)で表されるイリジウム錯体化合物の分子量には特に制限は無いが、小さすぎると溶解性が低下して、本発明の組成物をインクとすることが出来なくなる場合がある。逆に分子量が大きすぎると、正孔輸送性が低下する場合がある。そのため、分子量の範囲は、好ましくは1339~15000、より好ましくは1650~12000、さらに好ましくは1750~10000の範囲である。
<Molecular weight>
There is no particular restriction on the molecular weight of the iridium complex compound represented by formula (2), but if it is too small, the solubility may decrease and the composition of the present invention may not be able to be used as an ink. On the other hand, if the molecular weight is too large, hole transport properties may decrease. Therefore, the molecular weight range is preferably 1,339 to 15,000, more preferably 1,650 to 12,000, and still more preferably 1,750 to 10,000.
<<好ましい組合せ>>
 式(1)で表される化合物と、式(2)で表される化合物の組合せは、より発光効率を高める観点から、前記式(2)で表される化合物として、式(2)におけるXが式(3)で表される化合物を用いることが好ましい。また、式(1)で表される化合物として式(5)で表される化合物を用い、かつ、式(2)で表される化合物として、式(2)のXが式(3)で表される化合物であることがより好ましい。
<<Preferred combination>>
The combination of the compound represented by the formula (1) and the compound represented by the formula (2) can be used as the compound represented by the formula (2) from the viewpoint of further increasing the luminous efficiency. It is preferable to use a compound represented by formula (3). Furthermore, as a compound represented by formula (1), a compound represented by formula (5) is used, and as a compound represented by formula (2), X in formula (2) is represented by formula (3). It is more preferable that the compound is
<<具体例>>
 以下に、本発明のイリジウム錯体化合物の好ましい具体例を示すが、本発明はこれらに限定されるものではない。
<<Specific example>>
Preferred specific examples of the iridium complex compound of the present invention are shown below, but the present invention is not limited thereto.
<式(1)で表される化合物の具体例> <Specific examples of compounds represented by formula (1)>
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
<式(2)で表される化合物の具体例> <Specific examples of compounds represented by formula (2)>
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
<<溶液における最大発光波長の測定方法>>
 本発明のイリジウム錯体化合物の溶液における最大発光波長の測定方法は以下の通りである。
 室温下で、トルエンに、イリジウム錯体化合物を濃度1×10-4mol/L以下、好ましくは1×10-5mol/Lで溶解した溶液について、分光光度計(浜松ホトニクス社製 有機EL量子収率測定装置C9920-02)でりん光スペクトルを測定する。ただし、測定前に窒素をバブリングするか、あるいは凍結脱気法などにより、消光の原因となる酸素を十分に除去しておくことが必要である。得られたりん光スペクトル強度の最大値を示す波長を、本発明における最大発光波長とみなす。
<<Method for measuring maximum emission wavelength in solution>>
The method for measuring the maximum emission wavelength in a solution of the iridium complex compound of the present invention is as follows.
At room temperature, a solution prepared by dissolving an iridium complex compound in toluene at a concentration of 1 x 10 -4 mol/L or less, preferably 1 x 10 -5 mol/L, was measured using a spectrophotometer (manufactured by Hamamatsu Photonics, organic EL quantum absorption). The phosphorescence spectrum is measured using a rate measuring device C9920-02). However, before measurement, it is necessary to sufficiently remove oxygen, which causes quenching, by bubbling nitrogen or by freezing and degassing. The wavelength showing the maximum value of the obtained phosphorescence spectrum intensity is regarded as the maximum emission wavelength in the present invention.
<式(1)で表される化合物と式(2)で表される化合物の最大発光波長>
 本発明のイリジウム錯体化合物が示す最大発光波長には特に制限はないが、特に好ましい緑色発光材料として用いる場合には、式(1)で表される化合物、および式(2)で表される化合物のいずれについても、下限は通常490nm以上、好ましくは500nm以上、さらに好ましくは520nm以上であり、上限は通常560nm以下、好ましくは550nm以下、さらに好ましくは540nm以下である。
<Maximum emission wavelength of the compound represented by formula (1) and the compound represented by formula (2)>
There is no particular restriction on the maximum emission wavelength exhibited by the iridium complex compound of the present invention, but when used as a particularly preferable green light-emitting material, the compound represented by formula (1) and the compound represented by formula (2) are preferred. For any of these, the lower limit is usually 490 nm or more, preferably 500 nm or more, more preferably 520 nm or more, and the upper limit is usually 560 nm or less, preferably 550 nm or less, and even more preferably 540 nm or less.
 また、本発明の発光層用組成物において、式(1)で表される化合物と式(2)で表される化合物が示す最大発光波長の差の絶対値には特に制限はないが、通常0nm以上20nm以下であり、好ましくは0nm以上10nm以下であり、さらに好ましくは0nm以上5nm以下である。 In addition, in the composition for a light-emitting layer of the present invention, there is no particular restriction on the absolute value of the difference in maximum emission wavelength between the compound represented by formula (1) and the compound represented by formula (2), but usually It is 0 nm or more and 20 nm or less, preferably 0 nm or more and 10 nm or less, and more preferably 0 nm or more and 5 nm or less.
 式(1)で表される化合物と式(2)で表される化合物が示す最大発光波長の測定方法は、<<溶液における最大発光波長の測定方法>>において上述したとおりであるが、より詳細には以下の測定方法により測定することができる。
[測定方法:室温下でトルエンに式(1)で表される化合物又は式(2)で表される化合物を濃度1×10-5mol/Lで溶解した溶液について、窒素を20分間以上バブリングして、消光の原因となる酸素を除去したサンプルから得られたりん光スペクトル強度の最大値を示す波長を最大発光波長とする。]
The method for measuring the maximum emission wavelength exhibited by the compound represented by formula (1) and the compound represented by formula (2) is as described above in <<Method for measuring maximum emission wavelength in solution>>. In detail, it can be measured by the following measuring method.
[Measurement method: Bubbling nitrogen for 20 minutes or more into a solution in which the compound represented by formula (1) or the compound represented by formula (2) is dissolved in toluene at a concentration of 1 × 10 -5 mol/L at room temperature. Then, the wavelength showing the maximum value of the phosphorescence spectrum intensity obtained from the sample from which oxygen, which causes quenching, has been removed is defined as the maximum emission wavelength. ]
<<イリジウム錯体化合物の合成方法>>
 本発明のイリジウム錯体化合物の配位子は、ハロゲン化フルオレンや2-ブロモ-5-ヨードピリジンなどのビルディングブロックを用い、宮浦・石山ホウ素化反応またはハートウィグ・宮浦C-Hホウ素化反応によりホウ酸エステルに変換し、これら中間体とハロゲン化アリールとの鈴木-宮浦カップリング反応により骨格を構築していくことができる。その他の既知の方法の組み合わせることにより、多様な置換基が導入された配位子を合成することができる。
<<Synthesis method of iridium complex compound>>
The ligand of the iridium complex compound of the present invention can be prepared by a Miyaura-Ishiyama boronation reaction or a Hartwig-Miyaura C-H boronation reaction using a building block such as a halogenated fluorene or 2-bromo-5-iodopyridine. After converting into acid esters, a skeleton can be constructed by a Suzuki-Miyaura coupling reaction between these intermediates and an aryl halide. By combining other known methods, it is possible to synthesize ligands into which various substituents have been introduced.
 イリジウム錯体化合物の合成方法については、(判りやすさのためにフェニルピリジン配位子を例として用いた)下記式[A]に示すような塩素架橋イリジウム二核錯体を経由する方法(M.G.Colombo,T.C.Brunold,T.Riedener,H.U.Gudel,Inorg.Chem.,1994,33,545-550)、下記式[B]二核錯体からさらに塩素架橋をアセチルアセトナートと交換させ単核錯体へ変換したのち目的物を得る方法(S.Lamansky,P.Djurovich,D.Murphy,F.Abdel-Razzaq,R.Kwong,I.Tsyba,M.Borz,B.Mui,R.Bau,M.Thompson,Inorg.Chem.,2001,40,1704-1711)等が例示できる。さらに、配位子とトリス(アセチルアセトナトイリジウム(III))錯体とをグリセリン中高温で反応させ、直接ホモ-トリスシクロメタル化イリジウム錯体を得る方法(K.Dedeian,P.I.Djurovich、F.O.Garces,G.Carlson,R.J.Watts、Inorg.Chem.,1991,30、1685-1687)があげられるが、これらに限定されるものではない。 Regarding the synthesis method of the iridium complex compound, a method via a chlorine-bridged iridium dinuclear complex as shown in the following formula [A] (using a phenylpyridine ligand as an example for ease of understanding) (M.G. Colombo, T.C. Brunold, T. Riedener, H.U. Gudel, Inorg. A method of obtaining the target product after exchange and conversion to a mononuclear complex (S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, R. Kwong, I. Tsyba, M. Borz, B. Mui, R Bau, M. Thompson, Inorg. Chem., 2001, 40, 1704-1711). Furthermore, a method for directly obtaining homo-tris cyclometalated iridium complexes by reacting the ligand with a tris(acetylacetonatoiridium(III)) complex in glycerol at high temperature (K. Dedeian, P. I. Djurovich, F. O. Garces, G. Carlson, R. J. Watts, Inorg. Chem., 1991, 30, 1685-1687), but are not limited to these.
 例えば、下記式[A]で表される典型的な反応の条件は以下のとおりである。第一段階として、配位子2当量と塩化イリジウムn水和物1当量の反応により塩素架橋イリジウム二核錯体を合成する。溶媒は通常2-エトキシエタノールと水の混合溶媒が用いられるが、無溶媒あるいは他の溶媒を用いてもよい。配位子を過剰量用いたり、塩基等の添加剤を用いて反応を促進することもできる。塩素に代えて臭素など他の架橋性陰イオン配位子を使用することもできる。 For example, the typical reaction conditions represented by the following formula [A] are as follows. In the first step, a chlorine-bridged iridium dinuclear complex is synthesized by a reaction between two equivalents of the ligand and one equivalent of iridium chloride n-hydrate. As the solvent, a mixed solvent of 2-ethoxyethanol and water is usually used, but no solvent or other solvents may be used. The reaction can also be promoted by using an excess amount of the ligand or by using an additive such as a base. Other bridging anionic ligands such as bromine can also be used in place of chlorine.
 反応温度に特に制限はないが、通常は0℃以上が好ましく、50℃以上がより好ましい。また、250℃以下が好ましく、150℃以下がより好ましい。これらの範囲であることで副生物や分解反応を伴うことなく目的の反応のみが進行し、高い選択性が得られる傾向にある。 There is no particular restriction on the reaction temperature, but it is usually preferably 0°C or higher, more preferably 50°C or higher. Further, the temperature is preferably 250°C or lower, more preferably 150°C or lower. Within these ranges, only the desired reaction proceeds without by-products or decomposition reactions, and high selectivity tends to be obtained.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 二段階目は、トリフルオロメタンスルホン酸銀のようなハロゲンイオン捕捉剤を添加し新たに添加された配位子と接触させることにより目的とする錯体を得る。溶媒は通常エトキシエタノール又はジグリムが用いられるが、配位子の種類により無溶媒あるいは他の溶媒を使用することができ、複数の溶媒を混合して使用することもできる。ハロゲンイオン捕捉剤を添加しなくても反応が進行する場合があるので必ずしも必要ではないが、反応収率を高め、より量子収率が高いフェイシャル異性体を選択的に合成するには該捕捉剤の添加が有利である。反応温度に特に制限はないが、通常0℃~250℃の範囲で行われる。 In the second step, the desired complex is obtained by adding a halogen ion scavenger such as silver trifluoromethanesulfonate and bringing it into contact with the newly added ligand. Ethoxyethanol or diglyme is usually used as the solvent, but depending on the type of the ligand, no solvent or other solvents can be used, and a mixture of a plurality of solvents can also be used. Although the reaction may proceed without adding a halogen ion scavenger, it is not always necessary, but in order to increase the reaction yield and selectively synthesize a facial isomer with a higher quantum yield, the scavenger may be used. The addition of is advantageous. There is no particular restriction on the reaction temperature, but it is usually carried out within the range of 0°C to 250°C.
 また、下記式[B]で表される典型的な反応条件を説明する。第一段階の二核錯体は式[A]と同様に合成できる。第二段階は、該二核錯体にアセチルアセトンのような1,3-ジオン化合物を1当量以上、及び、炭酸ナトリウムのような該1,3-ジオン化合物の活性水素を引き抜き得る塩基性化合物を1当量以上反応させることにより、1,3-ジオナト配位子が配位する単核錯体へと変換する。通常原料の二核錯体を溶解しうるエトキシエタノールやジクロロメタンなどの溶媒が使用されるが、配位子が液状である場合無溶媒で実施することも可能である。反応温度に特に制限はないが、通常は0℃~200℃の範囲内で行われる。 In addition, typical reaction conditions represented by the following formula [B] will be explained. The first stage dinuclear complex can be synthesized in the same manner as in formula [A]. In the second step, one equivalent or more of a 1,3-dione compound such as acetylacetone is added to the dinuclear complex, and one equivalent of a basic compound capable of extracting active hydrogen from the 1,3-dione compound such as sodium carbonate is added to the dinuclear complex. By reacting an equivalent amount or more, it is converted into a mononuclear complex coordinated with a 1,3-dionato ligand. Usually, a solvent such as ethoxyethanol or dichloromethane that can dissolve the raw material dinuclear complex is used, but if the ligand is liquid, it is also possible to carry out the reaction without a solvent. There is no particular restriction on the reaction temperature, but it is usually carried out within the range of 0°C to 200°C.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 第三段階は、配位子を1当量以上反応させる。溶媒の種類と量は特に制限はなく、配位子が反応温度で液状である場合には無溶媒でもよい。反応温度も特に制限はないが、反応性が若干乏しいため100℃~300℃の比較的高温下で反応させることが多い。そのため、グリセリンなど高沸点の溶媒が好ましく用いられる。 In the third step, one equivalent or more of the ligand is reacted. The type and amount of the solvent are not particularly limited, and if the ligand is liquid at the reaction temperature, no solvent may be used. There is no particular restriction on the reaction temperature, but since the reactivity is somewhat poor, the reaction is often carried out at a relatively high temperature of 100°C to 300°C. Therefore, a high boiling point solvent such as glycerin is preferably used.
 最終反応後は未反応原料や反応副生物及び溶媒を除くために精製を行う。通常の有機合成化学における精製操作を適用することができるが、上記の非特許文献記載のように主として順相のシリカゲルカラムクロマトグラフィーによる精製が行われる。展開液にはヘキサン、ヘプタン、ジクロロメタン、クロロホルム、酢酸エチル、トルエン、メチルエチルケトン、メタノールの単一又は混合液を使用できる。精製は条件を変え複数回行ってもよい。その他のクロマトグラフィー技術(逆相シリカゲルクロマトグラフィー、サイズ排除クロマトグラフィー、ペーパークロマトグラフィー)や、分液洗浄、再沈殿、再結晶、粉体の懸濁洗浄、減圧乾燥などの精製操作を必要に応じて施すことができる。 After the final reaction, purification is performed to remove unreacted raw materials, reaction by-products, and solvents. Although purification operations in ordinary organic synthetic chemistry can be applied, purification is mainly performed by normal phase silica gel column chromatography as described in the above-mentioned non-patent literature. As the developing solution, a single solution or a mixture of hexane, heptane, dichloromethane, chloroform, ethyl acetate, toluene, methyl ethyl ketone, and methanol can be used. Purification may be performed multiple times under different conditions. Other chromatography techniques (reversed-phase silica gel chromatography, size exclusion chromatography, paper chromatography) and purification operations such as separation washing, reprecipitation, recrystallization, powder suspension washing, and vacuum drying are performed as necessary. It can be applied by
<イリジウム錯体化合物の含量>
 本発明の発光層用組成物におけるイリジウム錯体化合物の含有量は、発光層用組成物全体の質量に対する、発光層用組成物に含まれる前記式(1)で表される化合物と前記式(2)で表される化合物とを合わせた質量の割合として、通常0.001質量%以上、好ましくは0.01質量%以上、通常99.9質量%以下、好ましくは99質量%以下である。発光層用組成物中のイリジウム錯体化合物の含有量をこの範囲とすることにより、隣接する層(例えば、正孔輸送層や正孔阻止層)から発光層へ効率よく、正孔や電子の注入が行われ、駆動電圧を低減することができる。
<Content of iridium complex compound>
The content of the iridium complex compound in the composition for a light emitting layer of the present invention is determined based on the weight of the entire composition for a light emitting layer, the amount of the compound represented by the formula (1) contained in the composition for a light emitting layer, and the amount of the compound represented by the formula (2) contained in the composition for a light emitting layer. ) is usually 0.001% by mass or more, preferably 0.01% by mass or more, and usually 99.9% by mass or less, preferably 99% by mass or less. By setting the content of the iridium complex compound in the composition for the light emitting layer within this range, holes and electrons can be efficiently injected from adjacent layers (for example, hole transport layer and hole blocking layer) to the light emitting layer. is performed, and the driving voltage can be reduced.
<発光層用組成物中の式(1)で表される化合物と式(2)で表される化合物との比率>
 本発明の発光層用組成物における前記式(1)で表される化合物と前記式(2)の化合物との混合比は特に制限は無く、使用される素子構成において最適な比を実験により決定すれば良いが、通常、前記式(1)で表される化合物と前記式(2)で表される化合物との合計質量に対する前記式(1)で表される化合物の質量の割合を質量%で表記すると、通常1%以上、好ましくは5%以上、より好ましくは10%以上、さらに好ましくは20%以上であり、通常99%以下、好ましくは95%以下、より好ましくは90%以下、さらに好ましくは80%以下である。
 発光層における分散性を高くする観点から、式(1)で表される化合物と式(2)で表される化合物との合計質量に対する式(1)で表される化合物の質量の割合は、特に好ましくは10%以上80%以下であり、最も好ましくは25%以上75%以下である。
<Ratio of the compound represented by formula (1) and the compound represented by formula (2) in the composition for light emitting layer>
The mixing ratio of the compound represented by formula (1) and the compound represented by formula (2) in the composition for a light-emitting layer of the present invention is not particularly limited, and the optimum ratio for the device configuration to be used is determined through experiments. However, usually, the ratio of the mass of the compound represented by the formula (1) to the total mass of the compound represented by the formula (1) and the compound represented by the formula (2) is expressed as mass%. When expressed as, it is usually 1% or more, preferably 5% or more, more preferably 10% or more, even more preferably 20% or more, and usually 99% or less, preferably 95% or less, more preferably 90% or less, and Preferably it is 80% or less.
From the viewpoint of increasing dispersibility in the light emitting layer, the ratio of the mass of the compound represented by formula (1) to the total mass of the compound represented by formula (1) and the compound represented by formula (2) is: Particularly preferably, it is 10% or more and 80% or less, and most preferably 25% or more and 75% or less.
 本発明の発光層用組成物を例えば有機電界発光素子用に用いる場合には、上述のイリジウム錯体化合物や溶剤の他、有機電界発光素子、特に発光層に用いられる電荷輸送性化合物を含有することができる。
 本発明の発光層用組成物を用いて、有機電界発光素子の発光層を形成する場合には、本発明のイリジウム錯体化合物を発光材料とし、他の電荷輸送性化合物を電荷輸送ホスト材料として含むことが好ましい。
When the composition for a light emitting layer of the present invention is used for an organic electroluminescent device, for example, it may contain a charge transporting compound used in the organic electroluminescent device, especially the light emitting layer, in addition to the above-mentioned iridium complex compound and solvent. I can do it.
When forming a light emitting layer of an organic electroluminescent device using the composition for a light emitting layer of the present invention, the iridium complex compound of the present invention is used as a light emitting material, and other charge transporting compounds are included as a charge transporting host material. It is preferable.
 本発明の発光層用組成物が含有し得る他の電荷輸送性化合物としては、従来有機電界発光素子用材料として用いられているものを使用することができる。例えば、ピリジン、カルバゾール、ナフタレン、ペリレン、ピレン、アントラセン、クリセン、ナフタセン、フェナントレン、コロネン、フルオランテン、ベンゾフェナントレン、フルオレン、アセトナフトフルオランテン、クマリン、p-ビス(2-フェニルエテニル)ベンゼンおよびそれらの誘導体、キナクリドン誘導体、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテン、アリールアミノ基が置換された縮合芳香族環化合物、アリールアミノ基が置換されたスチリル誘導体等が挙げられる。 As other charge transporting compounds that may be contained in the composition for a light-emitting layer of the present invention, those conventionally used as materials for organic electroluminescent devices can be used. For example, pyridine, carbazole, naphthalene, perylene, pyrene, anthracene, chrysene, naphthacene, phenanthrene, coronene, fluoranthene, benzophenanthrene, fluorene, acetonaphthofluoranthene, coumarin, p-bis(2-phenylethenyl)benzene, and the like. derivatives, quinacridone derivatives, DCM (4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, benzothioxanthene derivatives, azabenzothioxanthene, aryl Examples include fused aromatic ring compounds substituted with an amino group and styryl derivatives substituted with an arylamino group.
 これらは1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、および比率で用いてもよい。 One type of these may be used alone, or two or more types may be used in any combination and ratio.
 また、発光層用組成物中の他の電荷輸送性化合物の含有量は、発光層用組成物中の本発明のイリジウム錯体化合物1質量部に対して、通常1000質量部以下、好ましくは100質量部以下、さらに好ましくは50質量部以下であり、通常0.01質量部以上、好ましくは0.1質量部以上、さらに好ましくは1質量部以上である。 Further, the content of other charge transporting compounds in the composition for a light emitting layer is usually 1000 parts by mass or less, preferably 100 parts by mass, per 1 part by mass of the iridium complex compound of the present invention in the composition for a light emitting layer. parts, more preferably 50 parts by weight or less, usually 0.01 parts by weight or more, preferably 0.1 parts by weight or more, still more preferably 1 part by weight or more.
<<本発明の発光層用インク>>
 本発明の発光層用組成物は、更に有機溶剤を含むことにより発光層用インク(以下、イリジウム錯体化合物含有発光層用インクと称することもある)として用いることができる。
 本発明のイリジウム錯体化合物含有発光層用インクは、塗布型の有機EL素子製造に好適に使用可能である。特に、有機ELディスプレイに用いられる緑色素子の発光層材料として極めて好適に使用できる。
<<Ink for light-emitting layer of the present invention>>
The composition for a light emitting layer of the present invention can be used as an ink for a light emitting layer (hereinafter sometimes referred to as an ink for a light emitting layer containing an iridium complex compound) by further containing an organic solvent.
The iridium complex compound-containing ink for a light-emitting layer of the present invention can be suitably used for manufacturing a coating-type organic EL element. In particular, it can be very suitably used as a material for a light emitting layer of a green element used in an organic EL display.
 本発明のイリジウム錯体化合物及び有機溶剤を含有する発光層用インクは、上述の本発明のイリジウム錯体化合物2種および有機溶剤を含有するインクである。本発明のイリジウム錯体化合物を含有する発光層用インクは通常湿式成膜法で層や膜を形成するために用いられ、特に有機電界発光素子の有機層を形成するために用いられることが好ましい。該有機層は、特に発光層であること、中でも緑発光層であることが好ましい。つまり、本発明のイリジウム錯体化合物及び有機溶剤を含有する発光層用インクは、有機電界発光素子用の発光層用インクであることが好ましい。 The ink for a light-emitting layer containing the iridium complex compound of the present invention and an organic solvent is an ink containing the two types of iridium complex compounds of the present invention described above and an organic solvent. The ink for a light emitting layer containing the iridium complex compound of the present invention is usually used to form a layer or film by a wet film forming method, and is particularly preferably used to form an organic layer of an organic electroluminescent device. The organic layer is preferably a light-emitting layer, especially a green light-emitting layer. That is, the ink for a light emitting layer containing the iridium complex compound and the organic solvent of the present invention is preferably an ink for a light emitting layer for an organic electroluminescent device.
<有機溶剤>
 本発明のイリジウム錯体化合物含有発光層用インクに含有される有機溶剤は、湿式成膜によりイリジウム錯体化合物を含む層を形成するために用いる、揮発性を有する液体成分である。
 有機溶剤は、溶質である本発明のイリジウム錯体化合物が高い溶剤溶解性を有するために、むしろ後述の電荷輸送性化合物が良好に溶解する有機溶剤であれば特に限定されない。
 好ましい有機溶剤としては、例えば、n-デカン、シクロヘキサン、エチルシクロヘキサン、デカリン、ビシクロヘキサン等のアルカン類;トルエン、キシレン、メシチレン、フェニルシクロヘキサン、テトラリン等の芳香族炭化水素類;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素類;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール、ジフェニルエーテル等の芳香族エーテル類;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル類、シクロヘキサノン、シクロオクタノン、フェンコン等の脂環族ケトン類;シクロヘキサノール、シクロオクタノール等の脂環族アルコール類;メチルエチルケトン、ジブチルケトン等の脂肪族ケトン類;ブタノール、ヘキサノール等の脂肪族アルコール類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル類;等が挙げられる。
<Organic solvent>
The organic solvent contained in the ink for a luminescent layer containing an iridium complex compound of the present invention is a volatile liquid component used to form a layer containing an iridium complex compound by wet film formation.
The organic solvent is not particularly limited as long as it is an organic solvent in which the charge transporting compound described below can be well dissolved since the iridium complex compound of the present invention, which is the solute, has high solvent solubility.
Preferred organic solvents include, for example, alkanes such as n-decane, cyclohexane, ethylcyclohexane, decalin, and bicyclohexane; aromatic hydrocarbons such as toluene, xylene, mesitylene, phenylcyclohexane, and tetralin; chlorobenzene, dichlorobenzene, and trichlorobenzene; Halogenated aromatic hydrocarbons such as chlorobenzene; 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetol, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole , 2,4-dimethylanisole, diphenyl ether, and other aromatic ethers; phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, n-butyl benzoate, and other aromatic esters; cyclohexanone, cyclo Alicyclic ketones such as octanone and fenchone; Alicyclic alcohols such as cyclohexanol and cyclooctanol; Aliphatic ketones such as methyl ethyl ketone and dibutyl ketone; Aliphatic alcohols such as butanol and hexanol; ethylene glycol dimethyl ether, Examples include aliphatic ethers such as ethylene glycol diethyl ether and propylene glycol-1-monomethyl ether acetate (PGMEA).
 中でも好ましくは、アルカン類や芳香族炭化水素類であり、特に、フェニルシクロヘキサンは湿式成膜プロセスにおいて好ましい粘度と沸点を有している。 Among these, alkanes and aromatic hydrocarbons are preferred, and phenylcyclohexane has a preferable viscosity and boiling point in a wet film forming process.
 これらの有機溶剤は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、および比率で用いてもよい。 One type of these organic solvents may be used alone, or two or more types may be used in any combination and ratio.
 用いる有機溶剤の沸点は通常80℃以上、好ましくは100℃以上、より好ましくは120℃以上、また、通常270℃以下、好ましくは250℃以下、より好ましくは沸点230℃以下である。この範囲を下回ると、湿式成膜時において、発光層用インクから有機溶剤が蒸発することにより、成膜安定性が低下する可能性がある。 The boiling point of the organic solvent used is usually 80°C or higher, preferably 100°C or higher, more preferably 120°C or higher, and usually 270°C or lower, preferably 250°C or lower, more preferably 230°C or lower. If it is less than this range, the organic solvent may evaporate from the light-emitting layer ink during wet film formation, resulting in a decrease in film formation stability.
 有機溶剤の含有量は、イリジウム錯体化合物含有発光層用インクにおいて好ましくは1質量%以上、より好ましくは10質量%以上、特に好ましくは50質量%以上、また、好ましくは99.99質量%以下、より好ましくは99.9質量%以下、特に好ましくは99質量%以下である。通常発光層の厚みは3~200nm程度であるが、有機溶剤の含有量がこの下限を下回ると、発光層用インクの粘性が高くなりすぎ、成膜作業性が低下する可能性がある。一方、有機溶剤の含有量がこの上限を上回ると、成膜後、有機溶剤を除去して得られる膜の厚みが稼げなくなるため、成膜が困難となる傾向がある。 The content of the organic solvent is preferably 1% by mass or more, more preferably 10% by mass or more, particularly preferably 50% by mass or more, and preferably 99.99% by mass or less in the iridium complex compound-containing light emitting layer ink. It is more preferably 99.9% by mass or less, particularly preferably 99% by mass or less. The thickness of the light-emitting layer is usually about 3 to 200 nm, but if the content of the organic solvent is below this lower limit, the viscosity of the ink for the light-emitting layer becomes too high, which may reduce film-forming workability. On the other hand, if the content of the organic solvent exceeds this upper limit, the thickness of the film obtained by removing the organic solvent after film formation cannot be increased, so film formation tends to become difficult.
 本発明のイリジウム錯体化合物含有発光層用インクには、必要に応じて、上記の化合物等の他に、更に他の化合物を含有していてもよい。例えば、上記の溶剤の他に、別の溶剤を含有していてもよい。そのような溶剤としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類、ジメチルスルホキシド等が挙げられる。これらは1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、および比率で用いてもよい。 The iridium complex compound-containing ink for a light-emitting layer of the present invention may further contain other compounds in addition to the above-mentioned compounds, etc., if necessary. For example, other solvents may be contained in addition to the above-mentioned solvents. Examples of such solvents include amides such as N,N-dimethylformamide and N,N-dimethylacetamide, and dimethylsulfoxide. One type of these may be used alone, or two or more types may be used in any combination and ratio.
<<有機電界発光素子>>
 以下に、本発明の発光層用インクを用いた有機電界発光素子(以下、「本発明の有機電界発光素子」と称す場合がある。)について説明する。
 本発明の有機電界発光素子は、本発明の発光層用インクに含まれるイリジウム錯体化合物を含むものである。
<<Organic electroluminescent device>>
Below, an organic electroluminescent device (hereinafter sometimes referred to as "organic electroluminescent device of the present invention") using the ink for a light emitting layer of the present invention will be described.
The organic electroluminescent device of the present invention contains the iridium complex compound contained in the ink for a light emitting layer of the present invention.
 本発明の有機電界発光素子は、好ましくは、基板上に少なくとも陽極、陰極及び前記陽極と前記陰極の間に少なくとも1層の有機層を有するものであって、前記有機層のうち少なくとも1層が本発明の発光層用インクに含まれるイリジウム錯体化合物を含む。前記有機層は発光層を含む。 The organic electroluminescent device of the present invention preferably has at least an anode, a cathode, and at least one organic layer between the anode and the cathode on a substrate, and at least one of the organic layers Contains an iridium complex compound contained in the ink for a light emitting layer of the present invention. The organic layer includes a light emitting layer.
 本発明の発光層用インクに含まれるイリジウム錯体化合物を含む有機層は、本発明のイリジウム錯体化合物含有発光層用インクを用いて形成された層であることがより好ましく、湿式成膜法により形成された層であることがさらに好ましい。前記湿式成膜法により形成された層は、該発光層であることが好ましい。
 本発明において湿式成膜法とは、成膜方法、即ち、塗布方法として、例えば、スピンコート法、ディップコート法、ダイコート法、バーコート法、ブレードコート法、ロールコート法、スプレーコート法、キャピラリーコート法、インクジェット法、ノズルプリンティング法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法等、湿式で成膜される方法を採用し、これらの方法で成膜された膜を乾燥して膜形成を行う方法をいう。
The organic layer containing an iridium complex compound contained in the ink for a light emitting layer of the present invention is more preferably a layer formed using the ink for a light emitting layer containing an iridium complex compound of the present invention, and is formed by a wet film forming method. It is more preferable that the layer is made of aluminum. The layer formed by the wet film forming method is preferably the light emitting layer.
In the present invention, the wet film forming method refers to a film forming method, that is, a coating method such as a spin coating method, dip coating method, die coating method, bar coating method, blade coating method, roll coating method, spray coating method, capillary coating method, etc. We use wet film forming methods such as coating method, inkjet method, nozzle printing method, screen printing method, gravure printing method, flexographic printing method, etc., and dry the film formed by these methods to form a film. It refers to the method of doing something.
 一態様において、本発明の有機電界発光素子は、基板上に陽極、発光層及び、陰極をこの順に有し、発光層に、上述の式(1)で表される化合物と式(2)で表される化合物とを含むことが好ましい。 In one embodiment, the organic electroluminescent device of the present invention has an anode, a light-emitting layer, and a cathode in this order on a substrate, and the light-emitting layer contains a compound represented by the above formula (1) and a compound represented by the formula (2). It is preferable to include the represented compound.
 図1は本発明の有機電界発光素子10に好適な構造例を示す断面の模式図であり、図1において、符号1は基板、符号2は陽極、符号3は正孔注入層、符号4は正孔輸送層、符号5は発光層、符号6は正孔阻止層、符号7は電子輸送層、符号8は電子注入層、符号9は陰極を各々表す。 FIG. 1 is a schematic cross-sectional view showing a suitable structural example of an organic electroluminescent device 10 of the present invention. In FIG. The hole transport layer, numeral 5 represents a light emitting layer, numeral 6 represents a hole blocking layer, numeral 7 represents an electron transport layer, numeral 8 represents an electron injection layer, and numeral 9 represents a cathode.
 これらの構造に適用する材料は、公知の材料を適用することができ、特に制限はないが、各層に関しての代表的な材料や製法を一例として以下に記載する。また、公報や論文等を引用している場合、該当内容を当業者の常識の範囲で適宜、適用、応用することができるものとする。 Known materials can be used for these structures, and although there are no particular limitations, typical materials and manufacturing methods for each layer are described below as an example. In addition, when citing publications, papers, etc., the relevant contents can be applied and applied as appropriate within the common sense of those skilled in the art.
<基板1>
 基板1は、有機電界発光素子の支持体となるものであり、通常、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシート等が用いられる。これらのうち、ガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホン等の透明な合成樹脂の板が好ましい。基板1は、外気による有機電界発光素子の劣化が起こり難いことからガスバリア性の高い材質とするのが好ましい。このため、特に合成樹脂製の基板等のようにガスバリア性の低い材質を用いる場合は、基板1の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を上げるのが好ましい。
<Substrate 1>
The substrate 1 serves as a support for the organic electroluminescent element, and typically includes a quartz or glass plate, a metal plate or metal foil, a plastic film or sheet, or the like. Among these, glass plates and plates made of transparent synthetic resins such as polyester, polymethacrylate, polycarbonate, and polysulfone are preferred. The substrate 1 is preferably made of a material with high gas barrier properties since the organic electroluminescent element is unlikely to be deteriorated by outside air. For this reason, especially when using a material with low gas barrier properties such as a synthetic resin substrate, it is preferable to provide a dense silicon oxide film or the like on at least one side of the substrate 1 to improve the gas barrier properties.
<陽極2>
 陽極2は、発光層側の層に正孔を注入する機能を担う。陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属;インジウム及び/又はスズの酸化物等の金属酸化物;ヨウ化銅等のハロゲン化金属;カーボンブラック或いはポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等により構成される。
 陽極2の形成は、通常、スパッタリング法、真空蒸着法等の乾式法により行われることが多い。また、銀等の金属微粒子、ヨウ化銅等の微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末等を用いて陽極2を形成する場合には、適当なバインダー樹脂溶液に分散させて、基板上に塗布することにより形成することもできる。また、導電性高分子の場合は、電解重合により直接基板上に薄膜を形成したり、基板上に導電性高分子を塗布して陽極2を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。
<Anode 2>
The anode 2 has a function of injecting holes into the layer on the light emitting layer side. The anode 2 is usually made of metal such as aluminum, gold, silver, nickel, palladium, or platinum; metal oxide such as indium and/or tin oxide; metal halide such as copper iodide; carbon black or poly(3); -Methylthiophene), polypyrrole, polyaniline, and other conductive polymers.
The anode 2 is usually formed by a dry method such as a sputtering method or a vacuum evaporation method. In addition, when forming the anode 2 using metal fine particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, conductive polymer fine powder, etc., an appropriate binder resin solution may be used. It can also be formed by dispersing it into a mixture and applying it on the substrate. In the case of a conductive polymer, the anode 2 can also be formed by directly forming a thin film on the substrate by electrolytic polymerization, or by coating the conductive polymer on the substrate (Appl. Phys. Lett., 60, p. 2711, 1992).
 陽極2は、通常、単層構造であるが、適宜、積層構造としてもよい。陽極2が積層構造である場合、1層目の陽極上に異なる導電材料を積層してもよい。 The anode 2 usually has a single layer structure, but may have a laminated structure as appropriate. When the anode 2 has a laminated structure, different conductive materials may be laminated on the first layer of the anode.
 陽極2の厚みは、必要とされる透明性と材質等に応じて、決めればよい。特に高い透明性が必要とされる場合は、可視光の透過率が60%以上となる厚みが好ましく、80%以上となる厚みが更に好ましい。陽極2の厚みは、通常5nm以上、好ましくは10nm以上であり、また、通常1000nm以下、好ましくは500nm以下とするのが好ましい。一方、透明性が不要な場合は、陽極2の厚みは必要な強度等に応じて任意に厚みとすればよく、この場合、陽極2は基板1と同一の厚みでもよい。 The thickness of the anode 2 may be determined depending on the required transparency, material, etc. When particularly high transparency is required, the thickness is preferably such that the visible light transmittance is 60% or more, and more preferably 80% or more. The thickness of the anode 2 is usually 5 nm or more, preferably 10 nm or more, and preferably 1000 nm or less, preferably 500 nm or less. On the other hand, if transparency is not required, the thickness of the anode 2 may be set arbitrarily depending on the required strength, etc. In this case, the anode 2 may have the same thickness as the substrate 1.
 陽極2の表面に成膜を行う場合は、成膜前に、紫外線+オゾン、酸素プラズマ、アルゴンプラズマ等の処理を施すことにより、陽極上の不純物を除去すると共に、そのイオン化ポテンシャルを調整して正孔注入性を向上させておくのが好ましい。 When forming a film on the surface of the anode 2, impurities on the anode are removed and its ionization potential is adjusted by treating it with ultraviolet rays + ozone, oxygen plasma, argon plasma, etc. before forming the film. It is preferable to improve the hole injection property.
<正孔注入層3>
 陽極2側から発光層5側に正孔を輸送する機能を担う層は、通常、正孔注入輸送層又は正孔輸送層と呼ばれる。そして、陽極2側から発光層5側に正孔を輸送する機能を担う層が2層以上ある場合に、より陽極2側に近い方の層を正孔注入層3と呼ぶことがある。正孔注入層3は、陽極2から発光層5側に正孔を輸送する機能を強化する点で、用いることが好ましい。正孔注入層3を用いる場合、通常、正孔注入層3は、陽極2上に形成される。
<Hole injection layer 3>
A layer that has the function of transporting holes from the anode 2 side to the light emitting layer 5 side is usually called a hole injection transport layer or a hole transport layer. When there are two or more layers having the function of transporting holes from the anode 2 side to the light emitting layer 5 side, the layer closer to the anode 2 side may be referred to as the hole injection layer 3. It is preferable to use the hole injection layer 3 because it enhances the function of transporting holes from the anode 2 to the light emitting layer 5 side. When using the hole injection layer 3, the hole injection layer 3 is usually formed on the anode 2.
 正孔注入層3の膜厚は、通常1nm以上、好ましくは5nm以上、また、通常1000nm以下、好ましくは500nm以下である。 The film thickness of the hole injection layer 3 is usually 1 nm or more, preferably 5 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
 正孔注入層3の形成方法は、真空蒸着法でも、湿式成膜法でもよい。成膜性が優れる点では、湿式成膜法により形成することが好ましい。 The method for forming the hole injection layer 3 may be a vacuum evaporation method or a wet film formation method. In terms of excellent film-forming properties, it is preferable to form the film by a wet film-forming method.
 正孔注入層3は、正孔輸送性化合物を含むことが好ましく、正孔輸送性化合物と電子受容性化合物とを含むことがより好ましい。更には、正孔注入層3中にカチオンラジカル化合物を含むことが好ましく、カチオンラジカル化合物と正孔輸送性化合物とを含むことが特に好ましい。 The hole injection layer 3 preferably contains a hole transporting compound, and more preferably contains a hole transporting compound and an electron accepting compound. Furthermore, it is preferable that the hole injection layer 3 contains a cation radical compound, and it is particularly preferable that the hole injection layer 3 contains a cation radical compound and a hole transporting compound.
<正孔輸送性化合物>
 正孔注入層形成用組成物は、通常、正孔注入層3となる正孔輸送性化合物を含有する。
 また、湿式成膜法の場合は、通常、更に溶剤も含有する。正孔注入層形成用組成物は、正孔輸送性が高く、注入された正孔を効率よく輸送できるのが好ましい。このため、正孔移動度が大きく、トラップとなる不純物が製造時や使用時等に発生し難いのが好ましい。また、安定性に優れ、イオン化ポテンシャルが小さく、可視光に対する透明性が高いことが好ましい。特に、正孔注入層3が発光層5と接する場合は、発光層5からの発光を消光しないものや発光層5とエキサイプレックスを形成して、発光効率を低下させないものが好ましい。
<Hole transport compound>
The composition for forming a hole injection layer usually contains a hole transporting compound that becomes the hole injection layer 3.
Further, in the case of a wet film forming method, a solvent is usually also contained. It is preferable that the composition for forming a hole injection layer has high hole transport properties and can efficiently transport injected holes. For this reason, it is preferable that the hole mobility is high and that impurities that become traps are difficult to generate during manufacturing or use. Further, it is preferable that the material has excellent stability, low ionization potential, and high transparency to visible light. In particular, when the hole injection layer 3 is in contact with the light emitting layer 5, it is preferable to use a material that does not quench the light emitted from the light emitting layer 5 or a material that does not form an exciplex with the light emitting layer 5 and reduce luminous efficiency.
 正孔輸送性化合物としては、陽極2から正孔注入層3への電荷注入障壁の観点から、4.5eV~6.0eVのイオン化ポテンシャルを有する化合物が好ましい。正孔輸送性化合物の例としては、芳香族アミン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、オリゴチオフェン系化合物、ポリチオフェン系化合物、ベンジルフェニル系化合物、フルオレン基で3級アミンを連結した化合物、ヒドラゾン系化合物、シラザン系化合物、キナクリドン系化合物等が挙げられる。 As the hole transporting compound, a compound having an ionization potential of 4.5 eV to 6.0 eV is preferable from the viewpoint of a charge injection barrier from the anode 2 to the hole injection layer 3. Examples of hole-transporting compounds include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, compounds in which tertiary amines are linked with fluorene groups, and hydrazone. Examples thereof include silazane-based compounds, silazane-based compounds, and quinacridone-based compounds.
 上述の例示化合物のうち、非晶質性及び可視光透過性の点から、芳香族アミン化合物が好ましく、芳香族三級アミン化合物が特に好ましい。ここで、芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。
 芳香族三級アミン化合物の種類は、特に制限されないが、表面平滑化効果により均一な発光を得やすい点から、重量平均分子量が1000以上1000000以下の高分子化合物(繰り返し単位が連なる重合型化合物)を用いるのが好ましい。芳香族三級アミン高分子化合物の好ましい例としては、下記式(I)で表される繰り返し単位を有する高分子化合物等が挙げられる。
Among the above-mentioned exemplary compounds, aromatic amine compounds are preferred, and aromatic tertiary amine compounds are particularly preferred, from the viewpoint of amorphousness and visible light transparency. Here, the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and also includes a compound having a group derived from an aromatic tertiary amine.
The type of aromatic tertiary amine compound is not particularly limited, but a polymeric compound with a weight average molecular weight of 1,000 or more and 1,000,000 or less (a polymeric compound with a series of repeating units) is preferred, since it is easy to obtain uniform light emission due to the surface smoothing effect. It is preferable to use Preferred examples of aromatic tertiary amine polymer compounds include polymer compounds having repeating units represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
(式(I)中、Ar及びArは、それぞれ独立して、置換基を有していてもよい芳香族基又は置換基を有していてもよい複素芳香族基を表す。Ar~Arは、それぞれ独立して、置換基を有していてもよい芳香族基又は置換基を有していてもよい複素芳香族基を表す。Qは、下記の連結基群の中から選ばれる連結基を表す。また、Ar~Arのうち、同一のN原子に結合する二つの基は互いに結合して環を形成してもよい。) (In formula (I), Ar 1 and Ar 2 each independently represent an aromatic group that may have a substituent or a heteroaromatic group that may have a substituent. Ar 3 ~Ar 5 each independently represents an aromatic group that may have a substituent or a heteroaromatic group that may have a substituent. Q is selected from the following linking group group. (Represents a selected linking group. Also, two groups bonded to the same N atom among Ar 1 to Ar 5 may bond to each other to form a ring.)
 下記に連結基を示す。 The linking group is shown below.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(上記各式中、Ar~Ar16は、それぞれ独立して、置換基を有していてもよい芳香族基又は置換基を有していてもよい複素芳香族基を表す。R~Rは、それぞれ独立して、水素原子又は任意の置換基を表す。) (In each of the above formulas, Ar 6 to Ar 16 each independently represent an aromatic group that may have a substituent or a heteroaromatic group that may have a substituent. R a to R b each independently represents a hydrogen atom or an arbitrary substituent.)
 式(I)におけるAr~Ar16の芳香族基及び複素芳香族基としては、高分子化合物の溶解性、耐熱性、正孔注入輸送性の点から、ベンゼン環、ナフタレン環、フェナントレン環、チオフェン環、ピリジン環由来の基が好ましく、ベンゼン環、ナフタレン環由来の基がさらに好ましい。 The aromatic group and heteroaromatic group of Ar 1 to Ar 16 in formula (I) include benzene ring, naphthalene ring, phenanthrene ring, Groups derived from a thiophene ring or a pyridine ring are preferred, and groups derived from a benzene ring or a naphthalene ring are more preferred.
 式(I)で表される繰り返し単位を有する芳香族三級アミン高分子化合物の具体例としては、国際公開第2005/089024号に記載のもの等が挙げられる。 Specific examples of the aromatic tertiary amine polymer compound having a repeating unit represented by formula (I) include those described in International Publication No. 2005/089024.
<電子受容性化合物>
 正孔注入層3には、正孔輸送性化合物の酸化により、正孔注入層3の導電率を向上させることができるため、電子受容性化合物を含有していることが好ましい。
<Electron accepting compound>
The hole injection layer 3 preferably contains an electron-accepting compound because the conductivity of the hole-injection layer 3 can be improved by oxidizing the hole-transporting compound.
 電子受容性化合物としては、酸化力を有し、上述の正孔輸送性化合物から一電子受容する能力を有する化合物が好ましく、具体的には、電子親和力が4eV以上である化合物が好ましく、電子親和力が5eV以上である化合物が更に好ましい。 As the electron-accepting compound, a compound having oxidizing power and the ability to accept one electron from the above-mentioned hole-transporting compound is preferable. Specifically, a compound having an electron affinity of 4 eV or more is preferable, and a compound having an electron affinity of 4 eV or more is preferable. More preferably, the compound is 5 eV or more.
 このような電子受容性化合物としては、例えば、トリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、オニウム塩、アリールアミンとハロゲン化金属との塩、アリールアミンとルイス酸との塩よりなる群から選ばれる1種又は2種以上の化合物等が挙げられる。具体的には、4-イソプロピル-4’-メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラート、トリフェニルスルホニウムテトラフルオロボラート等の有機基の置換したオニウム塩(国際公開第2005/089024号);塩化鉄(III)(日本国特開平11-251067号公報)、ペルオキソ二硫酸アンモニウム等の高原子価の無機化合物;テトラシアノエチレン等のシアノ化合物;トリス(ペンタフルオロフェニル)ボラン(日本国特開2003-31365号公報)等の芳香族ホウ素化合物;フラーレン誘導体及びヨウ素等が挙げられる。 Examples of such electron-accepting compounds include triarylboron compounds, metal halides, Lewis acids, organic acids, onium salts, salts of arylamines and metal halides, and salts of arylamines and Lewis acids. Examples include one or more compounds selected from the group. Specifically, onium salts substituted with organic groups such as 4-isopropyl-4'-methyldiphenyliodonium tetrakis(pentafluorophenyl)borate and triphenylsulfonium tetrafluoroborate (International Publication No. 2005/089024); High valence inorganic compounds such as iron (III) (Japanese Unexamined Patent Publication No. 11-251067), ammonium peroxodisulfate; cyano compounds such as tetracyanoethylene; tris(pentafluorophenyl)borane (Japanese Unexamined Patent Publication No. 2003-2003) Examples thereof include aromatic boron compounds such as No. 31365); fullerene derivatives and iodine.
<カチオンラジカル化合物>
 カチオンラジカル化合物としては、正孔輸送性化合物から一電子取り除いた化学種であるカチオンラジカルと、対アニオンとからなるイオン化合物が好ましい。但し、カチオンラジカルが正孔輸送性の高分子化合物由来である場合、カチオンラジカルは高分子化合物の繰り返し単位から一電子取り除いた構造となる。
<Cation radical compound>
The cation radical compound is preferably an ionic compound consisting of a cation radical, which is a chemical species obtained by removing one electron from a hole transporting compound, and a counter anion. However, when the cation radical is derived from a hole-transporting polymer compound, the cation radical has a structure in which one electron is removed from the repeating unit of the polymer compound.
 カチオンラジカルとしては、正孔輸送性化合物として前述した化合物から一電子取り除いた化学種であることが好ましい。正孔輸送性化合物として好ましい化合物から一電子取り除いた化学種であることが、非晶質性、可視光の透過率、耐熱性、及び溶解性などの点から好適である。
 ここで、カチオンラジカル化合物は、前述の正孔輸送性化合物と電子受容性化合物を混合することにより生成させることができる。即ち、前述の正孔輸送性化合物と電子受容性化合物とを混合することにより、正孔輸送性化合物から電子受容性化合物へと電子移動が起こり、正孔輸送性化合物のカチオンラジカルと対アニオンとからなるカチオンイオン化合物が生成する。
The cation radical is preferably a chemical species obtained by removing one electron from the compound described above as a hole-transporting compound. A chemical species obtained by removing one electron from a compound preferable as a hole transporting compound is preferable from the viewpoint of amorphous property, visible light transmittance, heat resistance, solubility, and the like.
Here, the cation radical compound can be produced by mixing the above-described hole-transporting compound and electron-accepting compound. That is, by mixing the hole-transporting compound and the electron-accepting compound described above, electron transfer occurs from the hole-transporting compound to the electron-accepting compound, and the cation radical and counter anion of the hole-transporting compound are combined. A cationic ionic compound consisting of
 PEDOT/PSS(Adv.Mater.,2000年,12巻,481頁)やエメラルジン塩酸塩(J.Phys.Chem.,1990年,94巻,7716頁)等の高分子化合物由来のカチオンラジカル化合物は、酸化重合(脱水素重合)することによっても生成する。
 ここでいう酸化重合は、モノマーを酸性溶液中で、ペルオキソ二硫酸塩等を用いて化学的に、又は、電気化学的に酸化するものである。この酸化重合(脱水素重合)の場合、モノマーが酸化されることにより高分子化されるとともに、酸性溶液由来のアニオンを対アニオンとする、高分子の繰り返し単位から一電子取り除かれたカチオンラジカルが生成する。
Cation radical compounds derived from polymer compounds such as PEDOT/PSS (Adv. Mater., 2000, Vol. 12, p. 481) and emeraldine hydrochloride (J. Phys. Chem., 1990, Vol. 94, p. 7716) It is also produced by oxidative polymerization (dehydrogenation polymerization).
The oxidative polymerization herein refers to chemically or electrochemically oxidizing a monomer using peroxodisulfate or the like in an acidic solution. In the case of this oxidative polymerization (dehydrogenation polymerization), the monomer is oxidized to become a polymer, and a cation radical with one electron removed from the repeating unit of the polymer, which uses an anion derived from an acidic solution as a counter anion, is generated. generate.
<湿式成膜法による正孔注入層3の形成>
 湿式成膜法により正孔注入層3を形成する場合、通常、正孔注入層3となる材料を可溶な溶剤(正孔注入層用溶剤)と混合して成膜用の組成物(正孔注入層形成用組成物)を調製し、この正孔注入層形成用組成物を正孔注入層3の下層に該当する層(通常は、陽極2)上に湿式成膜法により成膜し、乾燥させることにより形成させる。成膜した膜の乾燥は、湿式成膜法による発光層5の形成における乾燥方法と同様に行うことができる。
<Formation of hole injection layer 3 by wet film formation method>
When forming the hole injection layer 3 by a wet film formation method, the material for the hole injection layer 3 is usually mixed with a soluble solvent (solvent for hole injection layer) to form a film forming composition (hole injection layer solvent). A composition for forming a hole injection layer is prepared, and this composition for forming a hole injection layer is formed into a film on a layer corresponding to the lower layer of the hole injection layer 3 (usually the anode 2) by a wet film formation method. , formed by drying. The formed film can be dried in the same manner as the drying method used in forming the light emitting layer 5 by the wet film forming method.
 正孔注入層形成用組成物中における正孔輸送性化合物の濃度は、本発明の効果を著しく損なわない限り任意であるが、膜厚の均一性の点では、低い方が好ましく、一方、正孔注入層3に欠陥が生じ難い点では、高い方が好ましい。具体的には、0.01質量%以上であるのが好ましく、0.1質量%以上であるのが更に好ましく、0.5質量%以上であるのが特に好ましく、また、一方、70質量%以下であるのが好ましく、60質量%以下であるのが更に好ましく、50質量%以下であるのが特に好ましい。 The concentration of the hole transporting compound in the composition for forming a hole injection layer is arbitrary as long as it does not significantly impair the effects of the present invention, but from the point of view of uniformity of the film thickness, a lower concentration is preferable. A higher value is preferable in that defects are less likely to occur in the hole injection layer 3. Specifically, it is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, particularly preferably 0.5% by mass or more, and on the other hand, 70% by mass. It is preferably at most 60% by mass, more preferably at most 60% by mass, particularly preferably at most 50% by mass.
 溶剤としては、例えば、エーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤などが挙げられる。 Examples of the solvent include ether solvents, ester solvents, aromatic hydrocarbon solvents, and amide solvents.
 エーテル系溶剤としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル及び1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテル等が挙げられる。 Examples of ether solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA), and 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, and anisole. , phenethol, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, and other aromatic ethers.
 エステル系溶剤としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル等が挙げられる。
 芳香族炭化水素系溶剤としては、例えば、トルエン、キシレン、シクロヘキシルベンゼン、3-イソプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、メチルナフタレン等が挙げられる。
 アミド系溶剤としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。
 これらの他、ジメチルスルホキシド等も用いることができる。
Examples of the ester solvent include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
Examples of the aromatic hydrocarbon solvent include toluene, xylene, cyclohexylbenzene, 3-isopropylbiphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, methylnaphthalene, and the like.
Examples of the amide solvent include N,N-dimethylformamide and N,N-dimethylacetamide.
In addition to these, dimethyl sulfoxide and the like can also be used.
 正孔注入層3の湿式成膜法による形成は、通常、正孔注入層形成用組成物を調製後に、これを、正孔注入層3の下層に該当する層(通常は、陽極2)上に塗布成膜し、乾燥することにより行われる。正孔注入層3は、通常、成膜後に、加熱や減圧乾燥等により塗布膜を乾燥させる。 Formation of the hole injection layer 3 by a wet film forming method is usually performed by preparing a composition for forming the hole injection layer, and then applying it on a layer corresponding to the lower layer of the hole injection layer 3 (usually the anode 2). This is done by coating and drying. After forming the hole injection layer 3, the coating film is usually dried by heating, drying under reduced pressure, or the like.
<真空蒸着法による正孔注入層3の形成>
 真空蒸着法により正孔注入層3を形成する場合には、通常、正孔注入層3の構成材料(前述の正孔輸送性化合物、電子受容性化合物等)の1種類又は2種類以上を真空容器内に設置された坩堝に入れ(2種類以上の材料を用いる場合は、通常各々を別々の坩堝に入れ)、真空容器内を真空ポンプで10-4Pa程度まで排気した後、坩堝を加熱して(2種類以上の材料を用いる場合は、通常各々の坩堝を加熱して)、坩堝内の材料の蒸発量を制御しながら蒸発させ(2種類以上の材料を用いる場合は、通常各々独立に蒸発量を制御しながら蒸発させ)、坩堝に向き合って置かれた基板上の陽極2上に正孔注入層3を形成させる。なお、2種類以上の材料を用いる場合は、それらの混合物を坩堝に入れ、加熱、蒸発させて正孔注入層3を形成することもできる。
<Formation of hole injection layer 3 by vacuum evaporation method>
When forming the hole injection layer 3 by vacuum evaporation, one or more of the constituent materials of the hole injection layer 3 (the aforementioned hole transporting compound, electron accepting compound, etc.) are usually deposited in a vacuum. Place it in a crucible installed in a container (when using two or more types of materials, usually put each in a separate crucible), evacuate the inside of the vacuum container to about 10 -4 Pa with a vacuum pump, and then heat the crucible. (when using two or more types of materials, each crucible is usually heated), and the materials in the crucible are evaporated while controlling the amount of evaporation (when using two or more types of materials, each crucible is usually heated). (evaporate while controlling the amount of evaporation) to form a hole injection layer 3 on the anode 2 on the substrate placed facing the crucible. In addition, when using two or more types of materials, the hole injection layer 3 can also be formed by putting a mixture of them in a crucible, heating and evaporating them.
 蒸着時の真空度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1×10-6Torr(0.13×10-4Pa)以上、9.0×10-6Torr(12.0×10-4Pa)以下である。蒸着速度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1Å/秒以上、5.0Å/秒以下である。蒸着時の成膜温度は、本発明の効果を著しく損なわない限り限定されないが、好ましくは10℃以上、50℃以下で行われる。 The degree of vacuum during vapor deposition is not limited as long as it does not significantly impair the effects of the present invention, but is usually 0.1×10 −6 Torr (0.13×10 −4 Pa) or more, 9.0×10 −6 Torr ( 12.0×10 −4 Pa) or less. The deposition rate is not limited as long as it does not significantly impair the effects of the present invention, but is usually 0.1 Å/sec or more and 5.0 Å/sec or less. The film forming temperature during vapor deposition is not limited as long as it does not significantly impair the effects of the present invention, but is preferably 10°C or higher and 50°C or lower.
<正孔輸送層4>
 正孔輸送層4は、陽極2側から発光層5側に正孔を輸送する機能を担う層である。正孔輸送層4は、本発明の有機電界発光素子では、必須の層では無いが、陽極2から発光層5に正孔を輸送する機能を強化する点では、この層を設けることが好ましい。正孔輸送層4を設ける場合、通常、正孔輸送層4は、陽極2と発光層5の間に形成される。また、上述の正孔注入層3がある場合は、正孔注入層3と発光層5の間に形成される。
<Hole transport layer 4>
The hole transport layer 4 is a layer that has the function of transporting holes from the anode 2 side to the light emitting layer 5 side. Although the hole transport layer 4 is not an essential layer in the organic electroluminescent device of the present invention, it is preferable to provide this layer in terms of strengthening the function of transporting holes from the anode 2 to the light emitting layer 5. When providing the hole transport layer 4, the hole transport layer 4 is usually formed between the anode 2 and the light emitting layer 5. Further, if the hole injection layer 3 described above is present, it is formed between the hole injection layer 3 and the light emitting layer 5.
 正孔輸送層4の膜厚は、通常5nm以上、好ましくは10nm以上であり、また、一方、通常300nm以下、好ましくは100nm以下である。 The film thickness of the hole transport layer 4 is usually 5 nm or more, preferably 10 nm or more, and on the other hand, usually 300 nm or less, preferably 100 nm or less.
 正孔輸送層4の形成方法は、真空蒸着法でも、湿式成膜法でもよい。成膜性が優れる点では、湿式成膜法により形成することが好ましい。 The method for forming the hole transport layer 4 may be a vacuum evaporation method or a wet film formation method. In terms of excellent film-forming properties, it is preferable to form the film by a wet film-forming method.
 正孔輸送層4は、通常、正孔輸送層4となる正孔輸送性化合物を含有する。正孔輸送層4に含まれる正孔輸送性化合物としては、特に、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニルで代表される、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(日本国特開平5-234681号公報)、4,4’,4’’-トリス(1-ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン化合物(J.Lumin.,72-74巻、985頁、1997年)、トリフェニルアミンの四量体から成る芳香族アミン化合物(Chem.Commun.,2175頁、1996年)、2,2’,7,7’-テトラキス-(ジフェニルアミノ)-9,9’-スピロビフルオレン等のスピロ化合物(Synth.Metals,91巻、209頁、1997年)、4,4’-N,N’-ジカルバゾールビフェニルなどのカルバゾール誘導体などが挙げられる。また、例えばポリビニルカルバゾール、ポリビニルトリフェニルアミン(日本国特開平7-53953号公報)、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン(Polym.Adv.Tech.,7巻、33頁、1996年)等も好ましく使用できる。 The hole transport layer 4 usually contains a hole transport compound that becomes the hole transport layer 4. In particular, the hole transporting compound contained in the hole transporting layer 4 includes two or more tertiary compounds represented by 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl. Aromatic diamine containing an amine and having two or more condensed aromatic rings substituted with nitrogen atoms (Japanese Unexamined Patent Publication No. 5-234681), 4,4',4''-tris(1-naphthylphenylamino)tri Aromatic amine compounds having a starburst structure such as phenylamine (J. Lumin., Vol. 72-74, p. 985, 1997), aromatic amine compounds consisting of a triphenylamine tetramer (Chem. Commun., 2175, p. 1996), spiro compounds such as 2,2',7,7'-tetrakis-(diphenylamino)-9,9'-spirobifluorene (Synth. Metals, vol. 91, p. 209, 1997) , 4,4'-N,N'-dicarbazole biphenyl and other carbazole derivatives. Also, for example, polyvinylcarbazole, polyvinyltriphenylamine (Japanese Unexamined Patent Publication No. 7-53953), polyarylene ether sulfone containing tetraphenylbenzidine (Polym.Adv.Tech., vol. 7, p. 33, 1996) etc. can also be preferably used.
<湿式成膜法による正孔輸送層4の形成>
 湿式成膜法で正孔輸送層4を形成する場合は、通常、上述の正孔注入層3を湿式成膜法で形成する場合と同様にして、正孔注入層形成用組成物の代わりに正孔輸送層形成用組成物を用いて形成させる。
<Formation of hole transport layer 4 by wet film formation method>
When forming the hole transport layer 4 by a wet film forming method, normally, in the same manner as when forming the above-mentioned hole injection layer 3 by a wet film forming method, instead of the hole injection layer forming composition, It is formed using a composition for forming a hole transport layer.
 湿式成膜法で正孔輸送層4を形成する場合は、通常、正孔輸送層形成用組成物は、更に溶剤を含有する。正孔輸送層形成用組成物に用いる溶剤は、上述の正孔注入層形成用組成物で用いる溶剤と同様の溶剤を使用することができる。
 正孔輸送層形成用組成物中における正孔輸送性化合物の濃度は、正孔注入層形成用組成物中における正孔輸送性化合物の濃度と同様の範囲とすることができる。
 正孔輸送層4の湿式成膜法による形成は、前述の正孔注入層3の成膜法と同様に行うことができる。
When forming the hole transport layer 4 by a wet film forming method, the hole transport layer forming composition usually further contains a solvent. As the solvent used in the composition for forming a hole transport layer, the same solvent as that used in the above-mentioned composition for forming a hole injection layer can be used.
The concentration of the hole transporting compound in the composition for forming a hole transporting layer can be in the same range as the concentration of the hole transporting compound in the composition for forming a hole injection layer.
Formation of the hole transport layer 4 by a wet film formation method can be performed in the same manner as the film formation method of the hole injection layer 3 described above.
<真空蒸着法による正孔輸送層4の形成>
 真空蒸着法で正孔輸送層4を形成する場合についても、通常、上述の正孔注入層3を真空蒸着法で形成する場合と同様にして、正孔注入層3の構成材料の代わりに正孔輸送層4の構成材料を用いて形成させることができる。蒸着時の真空度、蒸着速度及び温度などの成膜条件などは、前記正孔注入層3の真空蒸着時と同様の条件で成膜することができる。
<Formation of hole transport layer 4 by vacuum evaporation method>
When forming the hole transport layer 4 by vacuum evaporation, normally, in the same manner as in the case where the hole injection layer 3 is formed by the vacuum evaporation method, a hole transport layer 4 is usually formed in place of the constituent material of the hole injection layer 3. It can be formed using the constituent material of the hole transport layer 4. The film forming conditions such as the degree of vacuum, the vapor deposition rate, and the temperature during vapor deposition can be the same as those for the vacuum vapor deposition of the hole injection layer 3.
<発光層5>
 発光層5は、一対の電極間に電界が与えられた時に、陽極2から注入される正孔と陰極9から注入される電子が再結合することにより励起され、発光する機能を担う層である。発光層5は、陽極2と陰極9の間に形成される層であり、発光層5は、陽極2の上に正孔注入層3がある場合は、正孔注入層3と陰極9の間に形成され、陽極2の上に正孔輸送層4がある場合は、正孔輸送層4と陰極9との間に形成される。この発光層は単一の層であってもよいし、複数の層を含んでいてもよい。
<Light-emitting layer 5>
The light-emitting layer 5 is a layer that is excited by recombining holes injected from the anode 2 and electrons injected from the cathode 9 when an electric field is applied between a pair of electrodes, and has the function of emitting light. . The light emitting layer 5 is a layer formed between the anode 2 and the cathode 9, and when the hole injection layer 3 is provided on the anode 2, the light emitting layer 5 is a layer formed between the hole injection layer 3 and the cathode 9. When the hole transport layer 4 is formed on the anode 2, it is formed between the hole transport layer 4 and the cathode 9. This light-emitting layer may be a single layer or may include multiple layers.
 発光層5の膜厚は、本発明の効果を著しく損なわない限り任意であるが、膜に欠陥が生じ難い点では厚い方が好ましく、また、一方、薄い方が低駆動電圧としやすい点で好ましい。このため、発光層5の膜厚は、3nm以上であるのが好ましく、5nm以上であるのが更に好ましく、また、一方、通常200nm以下であるのが好ましく、100nm以下であるのが更に好ましい。 The thickness of the light-emitting layer 5 is arbitrary as long as it does not significantly impair the effects of the present invention, but a thicker layer is preferable because defects are less likely to occur in the layer, and a thinner layer is preferable because it is easier to lower the driving voltage. . Therefore, the thickness of the light emitting layer 5 is preferably 3 nm or more, more preferably 5 nm or more, and on the other hand, it is usually preferably 200 nm or less, and even more preferably 100 nm or less.
 発光層5は、少なくとも、発光の性質を有する材料(発光材料)を含有するとともに、好ましくは、電荷輸送性を有する材料(電荷輸送性材料)とを含有する。発光材料としては、いずれかの発光層に、本発明のイリジウム錯体化合物が含まれていればよく、適宜他の発光材料を用いてもよい。また、本発明のイリジウム錯体化合物が2種類以上含まれていてもよい。以下、本発明のイリジウム錯体化合物以外の他の発光材料について詳述する。 The light-emitting layer 5 contains at least a material having luminescent properties (light-emitting material), and preferably contains a material having charge-transporting properties (charge-transporting material). As the light-emitting material, any light-emitting layer may contain the iridium complex compound of the present invention, and other light-emitting materials may be used as appropriate. Moreover, two or more types of iridium complex compounds of the present invention may be included. Hereinafter, luminescent materials other than the iridium complex compound of the present invention will be described in detail.
<発光材料>
 発光材料は、所望の発光波長で発光し、本発明の効果を損なわない限り特に制限はなく、公知の発光材料を適用可能である。発光材料は、蛍光発光材料でも、燐光発光材料でもよいが、発光効率が良好である材料が好ましく、内部量子収率の観点から燐光発光材料が好ましい。
<Light-emitting material>
The luminescent material is not particularly limited as long as it emits light at a desired emission wavelength and does not impair the effects of the present invention, and any known luminescent material can be used. The luminescent material may be a fluorescent material or a phosphorescent material, but a material with good luminous efficiency is preferable, and a phosphorescent material is preferable from the viewpoint of internal quantum yield.
 蛍光発光材料としては、例えば、以下の材料が挙げられる。
 青色発光を与える蛍光発光材料(青色蛍光発光材料)としては、例えば、ナフタレン、ペリレン、ピレン、アントラセン、クマリン、クリセン、p-ビス(2-フェニルエテニル)ベンゼン及びそれらの誘導体等が挙げられる。
 緑色発光を与える蛍光発光材料(緑色蛍光発光材料)としては、例えば、キナクリドン誘導体、クマリン誘導体、Al(CNO)などのアルミニウム錯体等が挙げられる。
 黄色発光を与える蛍光発光材料(黄色蛍光発光材料)としては、例えば、ルブレン、ペリミドン誘導体等が挙げられる。
 赤色発光を与える蛍光発光材料(赤色蛍光発光材料)としては、例えば、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテン等が挙げられる。
Examples of the fluorescent material include the following materials.
Examples of fluorescent materials that emit blue light (blue fluorescent materials) include naphthalene, perylene, pyrene, anthracene, coumarin, chrysene, p-bis(2-phenylethenyl)benzene, and derivatives thereof.
Examples of fluorescent materials that emit green light (green fluorescent materials) include quinacridone derivatives, coumarin derivatives, and aluminum complexes such as Al(C 9 H 6 NO) 3 .
Examples of the fluorescent material that emits yellow light (yellow fluorescent material) include rubrene, perimidone derivatives, and the like.
Examples of fluorescent materials that emit red light (red fluorescent materials) include DCM (4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)-based compounds, benzopyran derivatives, and rhodamine derivatives. , benzothioxanthene derivatives, azabenzothioxanthene, and the like.
 また、燐光発光材料としては、例えば、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)の第7~11族から選ばれる金属を含む有機金属錯体等が挙げられる。周期表の第7~11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金等が挙げられる。 In addition, phosphorescent materials include, for example, items 7 to 11 of the long period periodic table (hereinafter, unless otherwise specified, the term "periodic table" refers to the long period periodic table). Examples include organometallic complexes containing metals selected from the group consisting of: Preferred examples of the metal selected from Groups 7 to 11 of the periodic table include ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, and gold.
 有機金属錯体の配位子としては、(ヘテロ)アリールピリジン配位子、(ヘテロ)アリールピラゾール配位子などの(ヘテロ)アリール基とピリジン、ピラゾール、フェナントロリンなどが連結した配位子が好ましく、特にフェニルピリジン配位子、フェニルピラゾール配位子が好ましい。ここで、(ヘテロ)アリールとは、アリール基又はヘテロアリール基を表す。 As the ligand of the organometallic complex, a ligand in which a (hetero)aryl group and pyridine, pyrazole, phenanthroline, etc. are linked, such as a (hetero)arylpyridine ligand and a (hetero)arylpyrazole ligand, is preferable. Particularly preferred are phenylpyridine ligands and phenylpyrazole ligands. Here, (hetero)aryl represents an aryl group or a heteroaryl group.
 好ましい燐光発光材料として、具体的には、例えば、トリス(2-フェニルピリジン)イリジウム、トリス(2-フェニルピリジン)ルテニウム、トリス(2-フェニルピリジン)パラジウム、ビス(2-フェニルピリジン)白金、トリス(2-フェニルピリジン)オスミウム、トリス(2-フェニルピリジン)レニウム等のフェニルピリジン錯体及びオクタエチル白金ポルフィリン、オクタフェニル白金ポルフィリン、オクタエチルパラジウムポルフィリン、オクタフェニルパラジウムポルフィリン等のポルフィリン錯体等が挙げられる。 Preferred phosphorescent materials include, for example, tris(2-phenylpyridine)iridium, tris(2-phenylpyridine)ruthenium, tris(2-phenylpyridine)palladium, bis(2-phenylpyridine)platinum, and tris(2-phenylpyridine)platinum. Examples include phenylpyridine complexes such as (2-phenylpyridine)osmium and tris(2-phenylpyridine)rhenium, and porphyrin complexes such as octaethylplatinum porphyrin, octaphenylplatinum porphyrin, octaethylpalladium porphyrin, and octaphenylpalladium porphyrin.
<電荷輸送性材料>
 電荷輸送性材料は、正電荷(正孔)又は負電荷(電子)輸送性を有する材料であり、本発明の効果を損なわない限り、特に制限はなく、公知の材料を適用可能である。
 電荷輸送性材料は、従来、有機電界発光素子の発光層5に用いられている化合物等を用いることができ、特に、発光層5のホスト材料として使用されている化合物が好ましい。
<Charge transport material>
The charge transporting material is a material having a property of transporting positive charges (holes) or negative charges (electrons), and is not particularly limited as long as it does not impair the effects of the present invention, and known materials can be used.
As the charge transporting material, compounds conventionally used in the light-emitting layer 5 of organic electroluminescent devices can be used, and compounds used as the host material of the light-emitting layer 5 are particularly preferred.
 電荷輸送性材料としては、具体的には、芳香族アミン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、オリゴチオフェン系化合物、ポリチオフェン系化合物、ベンジルフェニル系化合物、フルオレン基で3級アミンを連結した化合物、ヒドラゾン系化合物、シラザン系化合物、シラナミン系化合物、ホスファミン系化合物、キナクリドン系化合物等の正孔注入層3の正孔輸送性化合物として例示した化合物等が挙げられる他、アントラセン系化合物、ピレン系化合物、カルバゾール系化合物、ピリジン系化合物、フェナントロリン系化合物、オキサジアゾール系化合物、シロール系化合物等の電子輸送性化合物等が挙げられる。 Specific examples of the charge transporting material include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, and compounds in which tertiary amines are linked with fluorene groups. , hydrazone compounds, silazane compounds, silanamine compounds, phosphamine compounds, quinacridone compounds, and other compounds exemplified as hole transporting compounds for the hole injection layer 3, as well as anthracene compounds and pyrene compounds. , carbazole-based compounds, pyridine-based compounds, phenanthroline-based compounds, oxadiazole-based compounds, silole-based compounds, and other electron-transporting compounds.
 また、例えば、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニルで代表される2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(日本国特開平5-234681号公報)、4,4’,4’’-トリス(1-ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン系化合物(J.Lumin.,72-74巻、985頁、1997年)、トリフェニルアミンの四量体から成る芳香族アミン系化合物(Chem.Commun.,2175頁、1996年)、2,2’,7,7’-テトラキス-(ジフェニルアミノ)-9,9’-スピロビフルオレン等のフルオレン系化合物(Synth.Metals,91巻、209頁、1997年)、4,4’-N,N’-ジカルバゾールビフェニルなどのカルバゾール系化合物等の正孔輸送層4の正孔輸送性化合物として例示した化合物等も好ましく用いることができる。また、この他、2-(4-ビフェニリル)-5-(p-ターシャルブチルフェニル)-1,3,4-オキサジアゾール(tBu-PBD)、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール(BND)などのオキサジアゾール系化合物、2,5-ビス(6’-(2’,2”-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロール(PyPySPyPy)等のシロール系化合物、バソフェナントロリン(BPhen)、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP、バソクプロイン)などのフェナントロリン系化合物等も挙げられる。 Also, for example, two or more fused aromatic rings containing two or more tertiary amines represented by 4,4'-bis[N-(1-naphthyl)-N-phenylamino]biphenyl are attached to the nitrogen atom. Substituted aromatic diamines (Japanese Unexamined Patent Publication No. 5-234681), aromatic amine compounds having a starburst structure such as 4,4',4''-tris(1-naphthylphenylamino)triphenylamine ( J. Lumin., Vol. 72-74, p. 985, 1997), Aromatic amine compounds consisting of triphenylamine tetramers (Chem. Commun., p. 2175, 1996), 2, 2', 7 , 7'-tetrakis-(diphenylamino)-9,9'-spirobifluorene (Synth. Metals, vol. 91, p. 209, 1997), 4,4'-N,N'-di Compounds exemplified as hole-transporting compounds for the hole-transporting layer 4, such as carbazole-based compounds such as carbazole biphenyl, can also be preferably used. In addition, 2-(4-biphenylyl)-5-(p-tert-butylphenyl)-1,3,4-oxadiazole (tBu-PBD), 2,5-bis(1-naphthyl)- Oxadiazole compounds such as 1,3,4-oxadiazole (BND), 2,5-bis(6'-(2',2''-bipyridyl))-1,1-dimethyl-3,4- Also included are silole compounds such as diphenylsilole (PyPySPyPy), phenanthroline compounds such as bathophenanthroline (BPhen), and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP, bathocuproine).
<湿式成膜法による発光層5の形成>
 発光層5の形成方法は、真空蒸着法でも、湿式成膜法でもよいが、本発明のイリジウム錯体化合物含有発光層用インクにおいては、湿式成膜法を用いる。
<Formation of light emitting layer 5 by wet film formation method>
Although the method for forming the light-emitting layer 5 may be a vacuum evaporation method or a wet film-forming method, the wet film-forming method is used in the ink for a light-emitting layer containing an iridium complex compound of the present invention.
 湿式成膜法により発光層5を形成する場合は、通常、上述の正孔注入層3を湿式成膜法で形成する場合と同様にして、正孔注入層形成用組成物の代わりに、発光層5となる材料を可溶な溶剤(発光層用溶剤)と混合して調製した発光層形成用組成物を用いて形成させる。 When the light-emitting layer 5 is formed by a wet film-forming method, a light-emitting layer is usually used instead of the hole-injection layer-forming composition in the same manner as when the hole-injection layer 3 is formed by a wet film-forming method. The layer 5 is formed using a composition for forming a luminescent layer prepared by mixing the material for layer 5 with a soluble solvent (solvent for luminescent layer).
 溶剤としては、例えば、正孔注入層3の形成について挙げたエーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤の他、アルカン系溶剤、ハロゲン化芳香族炭化水素系溶剤、脂肪族アルコール系溶剤、脂環族アルコール系溶剤、脂肪族ケトン系溶剤及び脂環族ケトン系溶剤などが挙げられる。用いる溶剤は、本発明のイリジウム錯体化合物含有発光層用インクの溶剤としても例示した通りであり、以下に溶剤の具体例を挙げるが、本発明の効果を損なわない限り、これらに限定されるものではない。 Examples of the solvent include, in addition to the ether solvents, ester solvents, aromatic hydrocarbon solvents, and amide solvents mentioned for forming the hole injection layer 3, alkane solvents, halogenated aromatic hydrocarbon solvents, Examples include aliphatic alcohol solvents, alicyclic alcohol solvents, aliphatic ketone solvents, and alicyclic ketone solvents. The solvent to be used is as exemplified as the solvent for the iridium complex compound-containing luminescent layer ink of the present invention, and specific examples of the solvent are listed below, but the solvents are limited to these as long as they do not impair the effects of the present invention. isn't it.
 例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル系溶剤;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール、ジフェニルエーテル等の芳香族エーテル系溶剤;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル系溶剤;トルエン、キシレン、メシチレン、シクロヘキシルベンゼン、テトラリン、3-イソプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、メチルナフタレン等の芳香族炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶剤;n-デカン、シクロヘキサン、エチルシクロヘキサン、デカリン、ビシクロヘキサン等のアルカン系溶剤;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素系溶剤;ブタノール、ヘキサノール等の脂肪族アルコール系溶剤;シクロヘキサノール、シクロオクタノール等の脂環族アルコール系溶剤;メチルエチルケトン、ジブチルケトン等の脂肪族ケトン系溶剤;シクロヘキサノン、シクロオクタノン、フェンコン等の脂環族ケトン系溶剤等が挙げられる。これらのうち、アルカン系溶剤及び芳香族炭化水素系溶剤が特に好ましい。 For example, aliphatic ether solvents such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetol, 2 - Aromatic ether solvents such as methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, diphenyl ether; phenyl acetate, phenyl propionate, methyl benzoate, benzoic acid Aromatic ester solvents such as ethyl, propyl benzoate, n-butyl benzoate; toluene, xylene, mesitylene, cyclohexylbenzene, tetralin, 3-isopropylbiphenyl, 1,2,3,4-tetramethylbenzene, 1,4 - Aromatic hydrocarbon solvents such as diisopropylbenzene and methylnaphthalene; Amide solvents such as N,N-dimethylformamide and N,N-dimethylacetamide; Alkanes such as n-decane, cyclohexane, ethylcyclohexane, decalin, and bicyclohexane Solvents: Halogenated aromatic hydrocarbon solvents such as chlorobenzene, dichlorobenzene, and trichlorobenzene; Aliphatic alcohol solvents such as butanol and hexanol; Alicyclic alcohol solvents such as cyclohexanol and cyclooctanol; Methyl ethyl ketone and dibutyl ketone and alicyclic ketone solvents such as cyclohexanone, cyclooctanone, and fenchone. Among these, alkane solvents and aromatic hydrocarbon solvents are particularly preferred.
 また、より均一な膜を得るためには、成膜直後の液膜から溶剤が適当な速度で蒸発することが好ましい。このため、用いる溶剤の沸点は、前述の通り、通常80℃以上、好ましくは100℃以上、より好ましくは120℃以上、また、通常270℃以下、好ましくは250℃以下、より好ましくは230℃以下である。 Furthermore, in order to obtain a more uniform film, it is preferable that the solvent evaporate from the liquid film immediately after film formation at an appropriate rate. Therefore, as mentioned above, the boiling point of the solvent used is usually 80°C or higher, preferably 100°C or higher, more preferably 120°C or higher, and usually 270°C or lower, preferably 250°C or lower, more preferably 230°C or lower. It is.
 溶剤の使用量は、本発明の効果を著しく損なわない限り任意であるが、発光層用インク、即ちイリジウム錯体化合物含有発光層用インク中の合計含有量は、低粘性なために成膜作業が行いやすい点で多い方が好ましく、また、一方、厚膜で成膜しやすい点で低い方が好ましい。前述の通り、溶剤の含有量は、イリジウム錯体化合物含有発光層用インクにおいて好ましくは1質量%以上、より好ましくは10質量%以上、特に好ましくは50質量%以上、また、好ましくは99.99質量%以下、より好ましくは99.9質量%以下、特に好ましくは99質量%以下である。 The amount of solvent to be used is arbitrary as long as it does not significantly impair the effects of the present invention, but the total content in the luminescent layer ink, that is, the iridium complex compound-containing luminescent layer ink, is such that the film forming process is difficult due to its low viscosity. A higher amount is preferable because it is easier to perform the process, and a lower amount is preferable because it is easier to form a thick film. As mentioned above, the content of the solvent is preferably 1% by mass or more, more preferably 10% by mass or more, particularly preferably 50% by mass or more, and preferably 99.99% by mass in the ink for a light emitting layer containing an iridium complex compound. % or less, more preferably 99.9% by mass or less, particularly preferably 99% by mass or less.
 湿式成膜後の溶剤除去方法としては、加熱又は減圧を用いることができる。加熱方法において使用する加熱手段としては、膜全体に均等に熱を与えることから、クリーンオーブン、ホットプレートが好ましい。
 加熱工程における加熱温度は、本発明の効果を著しく損なわない限り任意であるが、乾燥時間を短くする点では温度が高いほうが好ましく、材料へのダメージが少ない点では低い方が好ましい。加温温度の上限は通常250℃以下であり、好ましくは200℃以下、さらに好ましくは150℃以下である。加温温度の下限は通常30℃以上であり、好ましくは50℃以上であり、さらに好ましくは80℃以上である。上記上限を超える温度は、通常用いられる電荷輸送材料又は燐光発光材料の耐熱性より高く、分解や結晶化する可能性があり好ましくない。上記下限未満では溶剤の除去に長時間を要するため、好ましくない。加熱工程における加熱時間は、発光層用インク中の溶剤の沸点や蒸気圧、材料の耐熱性、および加熱条件によって適切に決定される。
As a method for removing the solvent after wet film formation, heating or reduced pressure can be used. As the heating means used in the heating method, a clean oven or a hot plate is preferable because heat is applied evenly to the entire film.
The heating temperature in the heating step is arbitrary as long as it does not significantly impair the effects of the present invention, but a higher temperature is preferable in terms of shortening the drying time, and a lower temperature is preferable in terms of less damage to the material. The upper limit of the heating temperature is usually 250°C or lower, preferably 200°C or lower, and more preferably 150°C or lower. The lower limit of the heating temperature is usually 30°C or higher, preferably 50°C or higher, and more preferably 80°C or higher. Temperatures exceeding the above upper limit are undesirable because the heat resistance is higher than the heat resistance of commonly used charge transport materials or phosphorescent materials, and there is a possibility of decomposition or crystallization. If it is less than the above lower limit, it will take a long time to remove the solvent, which is not preferable. The heating time in the heating step is appropriately determined depending on the boiling point and vapor pressure of the solvent in the luminescent layer ink, the heat resistance of the material, and the heating conditions.
<真空蒸着法による発光層5の形成>
 本発明のイリジウム錯体化合物含有発光層用インクによる発光層以外にも、他の発光層を積層して発光層を複数層とすることができる。このとき、他の発光層の形成方法に真空蒸着法を用いることができる。真空蒸着法により発光層5を形成する場合には、通常、発光層5の構成材料(前述の発光材料、電荷輸送性化合物等)の1種類又は2種類以上を真空容器内に設置された坩堝に入れ(2種類以上の材料を用いる場合は、通常各々を別々の坩堝に入れ)、真空容器内を真空ポンプで10-4Pa程度まで排気した後、坩堝を加熱して(2種類以上の材料を用いる場合は、通常各々の坩堝を加熱して)、坩堝内の材料の蒸発量を制御しながら蒸発させ(2種類以上の材料を用いる場合は、通常各々独立に蒸発量を制御しながら蒸発させ)、坩堝に向き合って置かれた正孔注入層3又は正孔輸送層4の上に発光層5を形成させる。なお、2種類以上の材料を用いる場合は、それらの混合物を坩堝に入れ、加熱、蒸発させて発光層5を形成することもできる。
<Formation of light emitting layer 5 by vacuum evaporation method>
In addition to the light-emitting layer formed by the ink for a light-emitting layer containing an iridium complex compound of the present invention, other light-emitting layers can be laminated to form a plurality of light-emitting layers. At this time, a vacuum evaporation method can be used as another method for forming the light emitting layer. When forming the light-emitting layer 5 by a vacuum evaporation method, one or more of the constituent materials of the light-emitting layer 5 (the above-mentioned light-emitting materials, charge transporting compounds, etc.) are usually deposited in a crucible placed in a vacuum container. (When using two or more types of materials, each is usually placed in a separate crucible), the inside of the vacuum container is evacuated to about 10 -4 Pa with a vacuum pump, and the crucible is heated (when two or more types of materials are used, each is placed in a separate crucible). When using two or more materials, each crucible is usually heated), and the materials in the crucible are evaporated while controlling the amount of evaporation (when two or more materials are used, each material is usually evaporated while controlling the amount of evaporation independently). evaporation) to form a light emitting layer 5 on the hole injection layer 3 or the hole transport layer 4 placed facing the crucible. In addition, when using two or more types of materials, the light emitting layer 5 can also be formed by putting a mixture of them in a crucible, heating and evaporating them.
 蒸着時の真空度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1×10-6Torr(0.13×10-4Pa)以上、9.0×10-6Torr(12.0×10-4Pa)以下である。蒸着速度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1Å/秒以上、5.0Å/秒以下である。蒸着時の成膜温度は、本発明の効果を著しく損なわない限り限定されないが、好ましくは10℃以上、50℃以下で行われる。 The degree of vacuum during vapor deposition is not limited as long as it does not significantly impair the effects of the present invention, but is usually 0.1×10 −6 Torr (0.13×10 −4 Pa) or more, 9.0×10 −6 Torr ( 12.0×10 −4 Pa) or less. The deposition rate is not limited as long as it does not significantly impair the effects of the present invention, but is usually 0.1 Å/sec or more and 5.0 Å/sec or less. The film forming temperature during vapor deposition is not limited as long as it does not significantly impair the effects of the present invention, but is preferably 10°C or higher and 50°C or lower.
<正孔阻止層6>
 発光層5と後述の電子注入層8との間に、正孔阻止層6を設けてもよい。正孔阻止層6は、発光層5の上に、発光層5の陰極9側の界面に接するように積層される層である。
<Hole blocking layer 6>
A hole blocking layer 6 may be provided between the light emitting layer 5 and an electron injection layer 8, which will be described later. The hole blocking layer 6 is a layer laminated on the light emitting layer 5 so as to be in contact with the interface of the light emitting layer 5 on the cathode 9 side.
 この正孔阻止層6は、陽極2から移動してくる正孔を陰極9に到達するのを阻止する役割と、陰極9から注入された電子を効率よく発光層5の方向に輸送する役割とを有する。
 正孔阻止層6を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。
This hole blocking layer 6 has the role of blocking holes moving from the anode 2 from reaching the cathode 9, and the role of efficiently transporting electrons injected from the cathode 9 toward the light emitting layer 5. has.
The physical properties required of the material constituting the hole blocking layer 6 include high electron mobility and low hole mobility, large energy gap (difference between HOMO and LUMO), and excited triplet level (T1). One example is the high level of
 このような条件を満たす正孔阻止層6の材料としては、例えば、ビス(2-メチル-8-キノリノラト)(フェノラト)アルミニウム、ビス(2-メチル-8-キノリノラト)(トリフェニルシラノラト)アルミニウム等の混合配位子錯体、ビス(2-メチル-8-キノラト)アルミニウム-μ-オキソ-ビス-(2-メチル-8-キノリノラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフェニル誘導体等のスチリル化合物(日本国特開平11-242996号公報)、3-(4-ビフェニルイル)-4-フェニル-5(4-tert-ブチルフェニル)-1,2,4-トリアゾール等のトリアゾール誘導体(日本国特開平7-41759号公報)、バソクプロイン等のフェナントロリン誘導体(日本国特開平10-79297号公報)などが挙げられる。更に、国際公開第2005/022962号に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止層6の材料として好ましい。 Examples of materials for the hole blocking layer 6 that satisfy these conditions include bis(2-methyl-8-quinolinolato)(phenolato)aluminum and bis(2-methyl-8-quinolinolato)(triphenylsilanolate)aluminum. mixed ligand complexes such as bis(2-methyl-8-quinolato)aluminum-μ-oxo-bis-(2-methyl-8-quinolinolato)aluminum dinuclear metal complexes, distyrylbiphenyl derivatives, etc. styryl compounds (Japanese Unexamined Patent Publication No. 11-242996), triazole derivatives such as 3-(4-biphenylyl)-4-phenyl-5(4-tert-butylphenyl)-1,2,4-triazole ( (Japanese Unexamined Patent Publication No. 7-41759), phenanthroline derivatives such as bathocuproine (Japanese Unexamined Patent Publication No. 10-79297), and the like. Furthermore, a compound having at least one pyridine ring substituted at the 2, 4, and 6 positions described in International Publication No. 2005/022962 is also preferable as a material for the hole blocking layer 6.
 正孔阻止層6の形成方法に制限はなく、前述の発光層5の形成方法と同様にして形成することができる。
 正孔阻止層6の膜厚は、本発明の効果を著しく損なわない限り任意であるが、通常0.3nm以上、好ましくは0.5nm以上であり、また、通常100nm以下、好ましくは50nm以下である。
There is no restriction on the method for forming the hole blocking layer 6, and it can be formed in the same manner as the method for forming the light emitting layer 5 described above.
The thickness of the hole blocking layer 6 is arbitrary as long as it does not significantly impair the effects of the present invention, but it is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less. be.
<電子輸送層7>
 電子輸送層7は素子の電流効率をさらに向上させることを目的として、発光層5又は正孔阻止層6と電子注入層8との間に設けられる。
 電子輸送層7は、電界を与えられた電極間において陰極9から注入された電子を効率よく発光層5の方向に輸送することができる化合物より形成される。電子輸送層7に用いられる電子輸送性化合物としては、陰極9又は電子注入層8からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物であることが必要である。
<Electron transport layer 7>
The electron transport layer 7 is provided between the light emitting layer 5 or the hole blocking layer 6 and the electron injection layer 8 for the purpose of further improving the current efficiency of the device.
The electron transport layer 7 is formed of a compound that can efficiently transport electrons injected from the cathode 9 toward the light emitting layer 5 between the electrodes to which an electric field is applied. The electron-transporting compound used in the electron-transporting layer 7 is one that has high electron injection efficiency from the cathode 9 or the electron-injecting layer 8, has high electron mobility, and can efficiently transport the injected electrons. It must be a compound.
 このような条件を満たす電子輸送性化合物としては、具体的には、例えば、8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体(日本国特開昭59-194393号公報)、10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-ヒドロキシフラボン金属錯体、5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(日本国特開平6-207169号公報)、フェナントロリン誘導体(日本国特開平5-331459号公報)、2-t-ブチル-9,10-N,N’-ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。 Examples of electron-transporting compounds that satisfy such conditions include metal complexes such as aluminum complexes of 8-hydroxyquinoline (Japanese Patent Application Laid-Open No. 194393/1983), 10-hydroxybenzo[h ]Quinoline metal complexes, oxadiazole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzene (US patent 5645948), quinoxaline compounds (Japanese Unexamined Patent Publication No. 6-207169), phenanthroline derivatives (Japanese Unexamined Patent Publication No. 5-331459), 2-t-butyl-9,10-N,N'- Examples include dicyanoanthraquinone diimine, n-type hydrogenated amorphous silicon carbide, n-type zinc sulfide, and n-type zinc selenide.
 電子輸送層7の膜厚は、通常1nm以上、好ましくは5nm以上であり、また、一方、通常300nm以下、好ましくは100nm以下である。
 電子輸送層7は、発光層5と同様にして湿式成膜法、或いは真空蒸着法により発光層5又は正孔阻止層6上に積層することにより形成される。通常は、真空蒸着法が用いられる。
The film thickness of the electron transport layer 7 is usually 1 nm or more, preferably 5 nm or more, and, on the other hand, usually 300 nm or less, preferably 100 nm or less.
The electron transport layer 7 is formed in the same manner as the light emitting layer 5 by being laminated on the light emitting layer 5 or the hole blocking layer 6 by a wet film formation method or a vacuum evaporation method. Usually, a vacuum evaporation method is used.
<電子注入層8>
 電子注入層8は、陰極9から注入された電子を効率よく、電子輸送層7又は発光層5へ注入する役割を果たす。
 電子注入を効率よく行うには、電子注入層8を形成する材料は、仕事関数の低い金属が好ましい。例としては、ナトリウムやセシウム等のアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属等が用いられる。
 電子注入層8の膜厚は、0.1~5nmが好ましい。
<Electron injection layer 8>
The electron injection layer 8 plays a role of efficiently injecting electrons injected from the cathode 9 into the electron transport layer 7 or the light emitting layer 5.
In order to efficiently inject electrons, the material forming the electron injection layer 8 is preferably a metal with a low work function. Examples include alkali metals such as sodium and cesium, and alkaline earth metals such as barium and calcium.
The thickness of the electron injection layer 8 is preferably 0.1 to 5 nm.
 また、陰極9と電子輸送層7との界面に電子注入層8として、LiF、MgF、LiO、CsCO等の極薄絶縁膜(膜厚0.1~5nm程度)を挿入することも、素子の効率を向上させる有効な方法である(Appl.Phys.Lett.,70巻,152頁,1997年;日本国特開平10-74586号公報;IEEETrans.Electron.Devices,44巻,1245頁,1997年;SID 04 Digest,154頁)。
 さらに、バソフェナントロリン等の含窒素複素環化合物や8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送材料に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープする(日本国特開平10-270171号公報、日本国特開2002-100478号公報、日本国特開2002-100482号公報などに記載)ことにより、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。この場合の膜厚は通常5nm以上、好ましくは10nm以上で、通常200nm以下、好ましくは100nm以下である。
In addition, an extremely thin insulating film (film thickness of about 0.1 to 5 nm) made of LiF, MgF 2 , Li 2 O, Cs 2 CO 3 or the like is inserted as an electron injection layer 8 at the interface between the cathode 9 and the electron transport layer 7. It is also an effective method to improve the efficiency of the device (Appl. Phys. Lett., Vol. 70, p. 152, 1997; Japanese Patent Publication No. 10-74586; IEEE Trans. Electron. Devices, Vol. 44). , p. 1245, 1997; SID 04 Digest, p. 154).
Furthermore, organic electron transport materials such as nitrogen-containing heterocyclic compounds such as bathophenanthroline and metal complexes such as aluminum complexes of 8-hydroxyquinoline are doped with alkali metals such as sodium, potassium, cesium, lithium, and rubidium ( (described in Japanese Unexamined Patent Publication No. 10-270171, Japanese Unexamined Patent Publication No. 2002-100478, Japanese Unexamined Patent Application No. 2002-100482, etc.) improves electron injection and transport properties and achieves excellent film quality. This is preferable because it makes it possible to The film thickness in this case is usually 5 nm or more, preferably 10 nm or more, and usually 200 nm or less, preferably 100 nm or less.
 電子注入層8は、発光層5と同様にして湿式成膜法或いは真空蒸着法により、発光層5或いはその上の正孔阻止層6又は電子輸送層7上に積層することにより形成される。
 湿式成膜法の場合の詳細は、前述の発光層5の場合と同様である。
The electron injection layer 8 is formed by laminating the light emitting layer 5 or the hole blocking layer 6 or the electron transporting layer 7 thereon by a wet film formation method or a vacuum evaporation method in the same manner as the light emitting layer 5.
The details of the wet film forming method are the same as those for the light-emitting layer 5 described above.
<陰極9>
 陰極9は、発光層5側の層(電子注入層8又は発光層5など)に電子を注入する役割を果たす。陰極9の材料としては、前記の陽極2に使用される材料を用いることが可能であるが、効率よく電子注入を行なう上では、仕事関数の低い金属を用いることが好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の金属又はそれらの合金などが用いられる。具体例としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金等の低仕事関数の合金電極などが挙げられる。
<Cathode 9>
The cathode 9 plays a role of injecting electrons into a layer on the side of the light emitting layer 5 (electron injection layer 8 or light emitting layer 5, etc.). As the material for the cathode 9, it is possible to use the materials used for the anode 2, but in order to efficiently inject electrons, it is preferable to use a metal with a low work function, such as tin, magnesium, etc. , indium, calcium, aluminum, silver, or alloys thereof. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
 素子の安定性の点では、陰極9の上に、仕事関数が高く、大気に対して安定な金属層を積層して、低仕事関数の金属からなる陰極9を保護するのが好ましい。積層する金属としては、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が挙げられる。
 陰極の膜厚は通常、陽極2と同様である。
In terms of stability of the device, it is preferable to protect the cathode 9 made of a metal with a low work function by laminating a metal layer having a high work function and being stable against the atmosphere on the cathode 9. Examples of the metal to be laminated include metals such as aluminum, silver, copper, nickel, chromium, gold, and platinum.
The film thickness of the cathode is usually the same as that of the anode 2.
<その他の構成層>
 以上、図1に示す層構成の素子を中心に説明してきたが、本発明の有機電界発光素子における陽極2及び陰極9と発光層5との間には、その性能を損なわない限り、上記説明にある層の他にも、任意の層を有していてもよく、また発光層5以外の任意の層を省略してもよい。
<Other constituent layers>
The above description has focused on the element having the layer structure shown in FIG. In addition to the layers in , it may have any other layers, and any layers other than the light-emitting layer 5 may be omitted.
 例えば、正孔阻止層6と同様の目的で、正孔輸送層4と発光層5の間に電子阻止層を設けることも効果的である。電子阻止層は、発光層5から移動してくる電子が正孔輸送層4に到達することを阻止することで、発光層5内で正孔との再結合確率を増やし、生成した励起子を発光層5内に閉じこめる役割と、正孔輸送層4から注入された正孔を効率よく発光層5の方向に輸送する役割がある。 For example, it is also effective to provide an electron blocking layer between the hole transport layer 4 and the light emitting layer 5 for the same purpose as the hole blocking layer 6. The electron blocking layer prevents electrons moving from the light-emitting layer 5 from reaching the hole-transporting layer 4, thereby increasing the probability of recombination with holes within the light-emitting layer 5 and reducing the generated excitons. It has the role of confining holes in the light emitting layer 5 and the role of efficiently transporting holes injected from the hole transport layer 4 toward the light emitting layer 5.
 電子阻止層に求められる特性としては、正孔輸送性が高く、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T1)が高いことが挙げられる。
 また、発光層5を湿式成膜法で形成する場合、電子阻止層も湿式成膜法で形成することが、素子製造が容易となるため、好ましい。
 このため、電子阻止層も湿式成膜適合性を有することが好ましく、このような電子阻止層に用いられる材料としては、F8-TFBに代表されるジオクチルフルオレンとトリフェニルアミンの共重合体(国際公開第2004/084260号)等が挙げられる。
Characteristics required of the electron blocking layer include high hole transportability, large energy gap (difference between HOMO and LUMO), and high excited triplet level (T1).
Furthermore, when the light emitting layer 5 is formed by a wet film forming method, it is preferable to form the electron blocking layer also by a wet film forming method because device manufacturing becomes easy.
For this reason, it is preferable that the electron blocking layer also has compatibility with wet film formation, and the material used for such an electron blocking layer is a copolymer of dioctylfluorene and triphenylamine (International Publication No. 2004/084260).
 なお、図1とは逆の構造、即ち、基板1上に陰極9、電子注入層8、電子輸送層7、正孔阻止層6、発光層5、正孔輸送層4、正孔注入層3、陽極2の順に積層することも可能であり、少なくとも一方が透明性の高い2枚の基板の間に本発明の有機電界発光素子を設けることも可能である。
 さらには、図1に示す層構成を複数段重ねた構造(発光ユニットを複数積層させた構造)とすることも可能である。その際には段間(発光ユニット間)の界面層(陽極がITO、陰極がAlの場合はその2層)の代わりに、例えばV2O5等を電荷発生層として用いると段間の障壁が少なくなり、発光効率・駆動電圧の観点からより好ましい。
Note that the structure is opposite to that shown in FIG. , anode 2 can be stacked in this order, and it is also possible to provide the organic electroluminescent element of the present invention between two substrates, at least one of which is highly transparent.
Furthermore, it is also possible to have a structure in which the layer structure shown in FIG. 1 is stacked in multiple stages (a structure in which a plurality of light emitting units are stacked). In that case, the barrier between the stages can be reduced by using V2O5, etc. as a charge generation layer instead of the interface layer between the stages (between light emitting units) (two layers if the anode is ITO and the cathode is Al). , is more preferable from the viewpoint of luminous efficiency and driving voltage.
 本発明は、有機電界発光素子が、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれにおいても適用することができる。 The present invention can be applied to any type of organic electroluminescent device, such as a single device, a device arranged in an array, or a structure in which an anode and a cathode are arranged in an XY matrix.
<表示装置及び照明装置>
 上述のような本発明の有機電界発光素子を用いて表示装置(以下、「本発明の表示装置」と称す。)及び照明装置(以下、「本発明の照明装置」と称す。)を製造することができる。
 本発明の表示装置及び照明装置の形式や構造については特に制限はなく、本発明の有機電界発光素子を用いて常法に従って組み立てることができる。
 例えば、「有機ELディスプレイ」(オーム社、平成16年8月20日発刊、時任静士、安達千波矢、村田英幸著)に記載されているような方法で、本発明の表示装置および照明装置を形成することができる。
<Display device and lighting device>
A display device (hereinafter referred to as "display device of the present invention") and a lighting device (hereinafter referred to as "lighting device of the present invention") are manufactured using the organic electroluminescent device of the present invention as described above. be able to.
There are no particular limitations on the format or structure of the display device and illumination device of the present invention, and they can be assembled using the organic electroluminescent device of the present invention according to conventional methods.
For example, the display device and the lighting device of the present invention can be manufactured using the method described in “Organic EL Display” (Ohmsha, published on August 20, 2004, written by Shizushi Tokito, Chihaya Adachi, and Hideyuki Murata). can be formed.
<<有機電界発光素子の製造方法>>
 本発明による有機電界発光素子の製造方法には特に制限がないが、有機溶剤を含む発光層用組成物を用いて湿式成膜法にて発光層を形成する工程を含むことが好ましい。
 一態様において、本発明による有機電界発光素子の製造方法は、基板上に陽極、発光層及び、陰極をこの順に有する有機電界発光素子の製造方法であって、有機溶剤を含む上述の発光層用組成物を用いて湿式成膜法にて前記発光層を形成する工程を含むことが好ましい。
<<Method for manufacturing organic electroluminescent device>>
The method for manufacturing the organic electroluminescent device according to the present invention is not particularly limited, but preferably includes a step of forming a light emitting layer by a wet film forming method using a composition for a light emitting layer containing an organic solvent.
In one embodiment, a method for manufacturing an organic electroluminescent device according to the present invention is a method for manufacturing an organic electroluminescent device having an anode, a light emitting layer, and a cathode in this order on a substrate, the method comprising: It is preferable to include a step of forming the light emitting layer by a wet film forming method using the composition.
 また、別の一態様において、本発明による有機電界発光素子の製造方法は、基板上に陽極、発光層及び、陰極をこの順に有する有機電界発光素子の製造方法であって、上述の発光層用組成物を用いて蒸着法にて前記発光層を形成する工程を含むことが好ましい。 In another embodiment, a method for manufacturing an organic electroluminescent device according to the present invention is a method for manufacturing an organic electroluminescent device having an anode, a light emitting layer, and a cathode in this order on a substrate, the method comprising: It is preferable to include a step of forming the light emitting layer by a vapor deposition method using the composition.
 以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明はその要旨を逸脱しない限り任意に変更して実施できる。 Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to the following examples, and the present invention can be implemented with arbitrary changes without departing from the gist thereof.
<最大発光波長の測定>
 イリジウム錯体化合物を、常温下で、トルエン(富士フイルム和光純薬社製、分光分析用)に溶解し、1×10-5mol/Lの溶液を調製した。この溶液をテフロン(登録商標)コック付きの石英セルに入れ、窒素バブリングを20分以上行った後、室温で燐光スペクトルを測定した。得られた燐光スペクトル強度の最大値を示す波長を、最大発光波長とした。
<Measurement of maximum emission wavelength>
The iridium complex compound was dissolved in toluene (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., for spectroscopic analysis) at room temperature to prepare a 1×10 −5 mol/L solution. This solution was placed in a quartz cell equipped with a Teflon (registered trademark) cock, and after nitrogen bubbling was performed for 20 minutes or more, the phosphorescence spectrum was measured at room temperature. The wavelength showing the maximum value of the obtained phosphorescence spectrum intensity was defined as the maximum emission wavelength.
 なお、発光スペクトルの測定には、以下の機器を用いた。
  装置:浜松ホトニクス社製 有機EL量子収率測定装置C9920-02
  光源:モノクロ光源L9799-01
  検出器:マルチチャンネル検出器PMA-11
  励起光:380nm
Note that the following equipment was used to measure the emission spectrum.
Device: Hamamatsu Photonics organic EL quantum yield measurement device C9920-02
Light source: Monochrome light source L9799-01
Detector: Multi-channel detector PMA-11
Excitation light: 380nm
<PL量子収率の測定>
 発光効率として、PL量子収率を測定した。PL量子収率は、材料に吸収された光(エネルギー)に対してどの程度の効率で発光が得られるかを示す指標であり、上記と同様、以下の機器を用いて測定した。
  装置:浜松ホトニクス社製 有機EL量子収率測定装置C9920-02
  光源:モノクロ光源L9799-01
  検出器:マルチチャンネル検出器PMA-11
  励起光:380nm
<Measurement of PL quantum yield>
PL quantum yield was measured as luminous efficiency. The PL quantum yield is an index indicating how efficiently light is emitted from light (energy) absorbed by a material, and was measured using the following equipment in the same manner as above.
Device: Hamamatsu Photonics organic EL quantum yield measurement device C9920-02
Light source: Monochrome light source L9799-01
Detector: Multi-channel detector PMA-11
Excitation light: 380nm
<イリジウム錯体化合物の合成>
 なお、以下の合成例において、反応はすべて窒素気流下で実施した。反応で用いる溶媒や溶液は、窒素バブリングなどの適切な方法で脱気したものを使用した。
<Synthesis of iridium complex compound>
In addition, in the following synthesis examples, all reactions were carried out under a nitrogen stream. The solvent and solution used in the reaction were degassed by an appropriate method such as nitrogen bubbling.
<合成例1:D-1の合成> <Synthesis Example 1: Synthesis of D-1>
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 1Lナスフラスコに、3,5-ジブロモアニソール(25.0g)、m-ターフェニル-3-ボロン酸(59.9g)、テトラキス(トリフェニルホスフィン)パラジウム(0) (5.2g)、2M-リン酸三カリウム水溶液(250mL)、トルエン(300mL)およびエタノール(100mL)を入れ、105℃のオイルバスで8時間還流撹拌した。室温まで冷却した後、水相を除去し、溶媒を減圧除去して得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=1/3~35/65)で精製したところ、中間体1を白色アモルファスとして52.0g得た。 In a 1 L eggplant flask, 3,5-dibromoanisole (25.0 g), m-terphenyl-3-boronic acid (59.9 g), tetrakis(triphenylphosphine)palladium (0) (5.2 g), 2M- Tripotassium phosphate aqueous solution (250 mL), toluene (300 mL) and ethanol (100 mL) were added, and the mixture was stirred under reflux for 8 hours in an oil bath at 105°C. After cooling to room temperature, the aqueous phase was removed and the solvent was removed under reduced pressure. The resulting residue was purified by silica gel column chromatography (dichloromethane/hexane = 1/3 to 35/65), and Intermediate 1 was obtained as white. 52.0 g of amorphous material was obtained.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 1Lナスフラスコに、中間体1(25.8g)、ジクロロメタン(150mL)を入れ、ドライアイス/エタノール浴に浸し冷却した後、滴下ロートから1M-三臭化ホウ素/ジクロロメタン溶液(100mL)を25分間かけて滴下した。さらに20分間撹拌した後、浴を外し、室温でさらに1.5時間撹拌した。水(200mL)を加え分液洗浄した後、シリカゲルカラム(ジクロロメタン)に通じたところ、脱メトキシ化体を白色アモルファスとして26.0g得た。引き続き1Lナスフラスコに、該脱メトキシ化体全量とジクロロメタン(200mL)及びトリエチルアミン(7.9mL)を入れ、氷水浴で冷却しながら滴下ロートからトリフルオロメタンスルホン酸無水物(15.9g)のジクロロメタン(10mL)溶液を25分間かけて滴下した。その後室温で1時間撹拌したあと、炭酸ナトリウム(2.6g)の水(200mL)溶液を加え分液洗浄した。油相を回収し減圧乾燥して得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=5/95~2/8)で精製したところ、中間体2を白色固体として25.4g得た。 Intermediate 1 (25.8 g) and dichloromethane (150 mL) were placed in a 1L eggplant flask, cooled by immersion in a dry ice/ethanol bath, and then 1M boron tribromide/dichloromethane solution (100 mL) was added from the dropping funnel for 25 minutes. It dripped. After stirring for an additional 20 minutes, the bath was removed and stirring was continued for an additional 1.5 hours at room temperature. After water (200 mL) was added and the mixture was separated and washed, it was passed through a silica gel column (dichloromethane) to obtain 26.0 g of the demethoxylated product as a white amorphous substance. Subsequently, the entire amount of the demethoxylated product, dichloromethane (200 mL), and triethylamine (7.9 mL) were placed in a 1 L eggplant flask, and while cooling in an ice water bath, trifluoromethanesulfonic anhydride (15.9 g) was added to dichloromethane ( 10 mL) solution was added dropwise over 25 minutes. After stirring at room temperature for 1 hour, a solution of sodium carbonate (2.6 g) in water (200 mL) was added for separation and washing. The oil phase was collected and dried under reduced pressure, and the resulting residue was purified by silica gel column chromatography (dichloromethane/hexane = 5/95 to 2/8) to obtain 25.4 g of Intermediate 2 as a white solid.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 1Lナスフラスコに、3-(2-ピリジル)フェニルボロン酸ピナコールエステル(6.7g)、中間体2(13.6g)、テトラキス(トリフェニルホスフィン)パラジウム(0) (1.2g)、2M-リン酸三カリウム水溶液(25mL)、トルエン(70mL)およびエタノール(30mL)を入れ、3.5時間還流撹拌した。室温まで冷却した後、水相を除去し、溶媒を減圧除去して得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=35/65~6/4)で精製したところ、配位子1を白色アモルファスとして13.3g得た。 In a 1 L eggplant flask, 3-(2-pyridyl)phenylboronic acid pinacol ester (6.7 g), intermediate 2 (13.6 g), tetrakis(triphenylphosphine)palladium(0) (1.2 g), 2M- Tripotassium phosphate aqueous solution (25 mL), toluene (70 mL) and ethanol (30 mL) were added, and the mixture was stirred under reflux for 3.5 hours. After cooling to room temperature, the aqueous phase was removed and the solvent was removed under reduced pressure. The resulting residue was purified by silica gel column chromatography (dichloromethane/hexane = 35/65 to 6/4), and Ligand 1 was purified. 13.3g of white amorphous was obtained.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 側管付きジムロートを備えた200mLナスフラスコに、配位子1(12.0g)、トリス(アセチルアセトナト)イリジウム(III)(2.2g)、グリセリン(14.0g)およびシクロヘキシルベンゼン(1mL)を入れ、90℃に予熱したオイルバスに浸し、オイルバスの温度を210℃まで上げた後、2時間かけてオイルバスの温度を240℃まで昇温し、その温度でさらに6.5時間撹拌した。室温まで冷却後、水(50mL)およびジクロロメタン(100mL)で分液洗浄した。油相を減圧乾燥して得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=1/1)で精製したところ、D-1を黄色固体として4.1g得た。D-1のトルエン溶液における最大発光波長は516nm、PLQYは94%であった。 Ligand 1 (12.0 g), tris(acetylacetonato)iridium(III) (2.2 g), glycerin (14.0 g), and cyclohexylbenzene (1 mL) were placed in a 200 mL eggplant flask equipped with a Dimroth with a side tube. and immersed in an oil bath preheated to 90°C, raised the temperature of the oil bath to 210°C, then raised the temperature of the oil bath to 240°C over 2 hours, and stirred at that temperature for an additional 6.5 hours. did. After cooling to room temperature, the mixture was washed with water (50 mL) and dichloromethane (100 mL). The residue obtained by drying the oil phase under reduced pressure was purified by silica gel column chromatography (dichloromethane/hexane = 1/1) to obtain 4.1 g of D-1 as a yellow solid. The maximum emission wavelength in the toluene solution of D-1 was 516 nm, and the PLQY was 94%.
<合成例2:D-2の合成> <Synthesis Example 2: Synthesis of D-2>
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 1Lナスフラスコに、3,5-ジブロモアニソール(25.3g)、3-ビフェニルボロン酸(39.7g)、テトラキス(トリフェニルホスフィン)パラジウム(0) (4.6g)、2M-リン酸三カリウム水溶液(250mL)、トルエン(215mL)およびエタノール(110mL)を入れ、105℃のオイルバスで4時間還流撹拌した。室温まで冷却した後、水相を除去し、溶媒を減圧除去して得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=3/7~4/6)で精製したところ、中間体3を白色アモルファスとして38.3g得た。 In a 1L eggplant flask, 3,5-dibromoanisole (25.3g), 3-biphenylboronic acid (39.7g), tetrakis(triphenylphosphine)palladium(0) (4.6g), 2M-tripotassium phosphate. Aqueous solution (250 mL), toluene (215 mL) and ethanol (110 mL) were added, and the mixture was stirred under reflux for 4 hours in an oil bath at 105°C. After cooling to room temperature, the aqueous phase was removed and the solvent was removed under reduced pressure. The resulting residue was purified by silica gel column chromatography (dichloromethane/hexane = 3/7 to 4/6), and Intermediate 3 was obtained as white. 38.3g of amorphous material was obtained.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 1Lナスフラスコに、中間体3(38.3g)、ジクロロメタン(330mL)を入れ、ドライアイス/エタノール浴に浸し冷却した後、滴下ロートから1M-三臭化ホウ素/ジクロロメタン溶液(100mL)を30分間かけて滴下した。さらに25分間撹拌した後、浴を外し、室温でさらに95分間撹拌した。水(200mL)を加え分液洗浄した後、油相を硫酸マグネシウム(ジクロロメタン)に通じたところ、脱メトキシ化体を含む粗体を37.5g得た。引き続き1Lナスフラスコに、該粗体全量とジクロロメタン(330mL)及びトリエチルアミン(15.0mL)を入れ、氷水浴で冷却しながら滴下ロートからトリフルオロメタンスルホン酸無水物(30.3g)のジクロロメタン(20mL)溶液を30分間かけて滴下した。その後室温で40分間撹拌したあと、炭酸ナトリウム(2.8g)の水(200mL)溶液を加え分液洗浄した。油相を回収し減圧乾燥して得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=0/1~2/8)で精製したところ、中間体4を白色固体として41.8g得た。 Intermediate 3 (38.3 g) and dichloromethane (330 mL) were placed in a 1L eggplant flask, cooled by immersion in a dry ice/ethanol bath, and then 1M boron tribromide/dichloromethane solution (100 mL) was added from the dropping funnel for 30 minutes. It dripped. After stirring for an additional 25 minutes, the bath was removed and stirring was continued for an additional 95 minutes at room temperature. After water (200 mL) was added and the mixture was separated and washed, the oil phase was passed through magnesium sulfate (dichloromethane) to obtain 37.5 g of a crude product containing the demethoxylated product. Subsequently, the entire amount of the crude product, dichloromethane (330 mL), and triethylamine (15.0 mL) were placed in a 1 L eggplant flask, and while cooling in an ice water bath, trifluoromethanesulfonic anhydride (30.3 g) was added to dichloromethane (20 mL) from the dropping funnel. The solution was added dropwise over 30 minutes. After stirring at room temperature for 40 minutes, a solution of sodium carbonate (2.8 g) in water (200 mL) was added and washed. The oil phase was collected and dried under reduced pressure, and the resulting residue was purified by silica gel column chromatography (dichloromethane/hexane = 0/1 to 2/8) to obtain 41.8 g of Intermediate 4 as a white solid.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 1Lナスフラスコに、中間体4(41.8g)、ビスピナコラト二ホウ素(24.3g)、酢酸カリウム(23.6g)、[Pd(dppf)Cl]CHCl (2.0g)およびジメチルスルホキシド(390mL)を入れ、90℃のオイルバス中で4時間撹拌した。室温へ冷却後、水(400mL)およびジクロロメタン(150mL)を加え分液洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧除去して得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン/酢酸エチル=3/7/0~1/1/0~0/9/1)で精製したところ、中間体5(28.5g)を白色固体として得た。 In a 1 L eggplant flask, intermediate 4 (41.8 g), bispinacolato diboron (24.3 g), potassium acetate (23.6 g), [Pd(dppf) 2 Cl 2 ]CH 2 Cl 2 (2.0 g) and Dimethyl sulfoxide (390 mL) was added, and the mixture was stirred in a 90°C oil bath for 4 hours. After cooling to room temperature, water (400 mL) and dichloromethane (150 mL) were added for separation and washing, and after drying over magnesium sulfate, the solvent was removed under reduced pressure and the resulting residue was subjected to silica gel column chromatography (dichloromethane/hexane/ethyl acetate= 3/7/0 to 1/1/0 to 0/9/1) to obtain Intermediate 5 (28.5 g) as a white solid.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 1Lナスフラスコに、3,5-ジブロモアニソール(6.9g)、中間体5(28.5g)、テトラキス(トリフェニルホスフィン)パラジウム(0) (1.2g)、2M-リン酸三カリウム水溶液(70mL)、トルエン(120mL)およびエタノール(60mL)を入れ、105℃のオイルバスで4時間還流撹拌した。室温まで冷却した後、水相を除去し、溶媒を減圧除去して得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=4/6)で精製したところ、中間体6を白色アモルファスとして22.3g得た。 In a 1 L eggplant flask, 3,5-dibromoanisole (6.9 g), intermediate 5 (28.5 g), tetrakis(triphenylphosphine)palladium (0) (1.2 g), 2M-tripotassium phosphate aqueous solution ( 70 mL), toluene (120 mL) and ethanol (60 mL), and the mixture was stirred under reflux for 4 hours in an oil bath at 105°C. After cooling to room temperature, the aqueous phase was removed, the solvent was removed under reduced pressure, and the resulting residue was purified by silica gel column chromatography (dichloromethane/hexane = 4/6), yielding Intermediate 6 as a white amorphous 22. I got 3g.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 1Lナスフラスコに、中間体6(22.3g)、ジクロロメタン(120mL)を入れ、ドライアイス/エタノール浴に浸し冷却した後、滴下ロートから1M-三臭化ホウ素/ジクロロメタン溶液(28.2mL)を30分間かけて滴下した。さらに30分間撹拌した後、浴を外し、室温でさらに3時間撹拌した。水(150mL)を加え分液洗浄した後、硫酸マグネシウム(ジクロロメタン)に通じたところ、脱メトキシ化体を含む粗体を21.3g得た。引き続き1Lナスフラスコに、該粗体全量とジクロロメタン(135mL)及びトリエチルアミン(3.8mL)を入れ、氷水浴で冷却しながら滴下ロートからトリフルオロメタンスルホン酸無水物(7.5g)のジクロロメタン(5mL)溶液を30分間かけて滴下した。その後室温で30分間撹拌したあと、炭酸ナトリウム(2.6g)の水(200mL)溶液を加え分液洗浄した。油相を回収し減圧乾燥して得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=3/7)で精製したところ、白色固体を22.4g得た。H-NMRにより、ヘキサンと中間体7(正味重量21.2g)の混合物であることがわかった。 Intermediate 6 (22.3 g) and dichloromethane (120 mL) were placed in a 1 L eggplant flask, cooled by immersion in a dry ice/ethanol bath, and then 1M boron tribromide/dichloromethane solution (28.2 mL) was added from the dropping funnel. The mixture was added dropwise over 30 minutes. After stirring for an additional 30 minutes, the bath was removed and stirring was continued for an additional 3 hours at room temperature. After water (150 mL) was added and the mixture was separated and washed, it was passed through magnesium sulfate (dichloromethane) to obtain 21.3 g of a crude product containing the demethoxylated product. Subsequently, the entire amount of the crude product, dichloromethane (135 mL), and triethylamine (3.8 mL) were placed in a 1 L eggplant flask, and while cooling in an ice water bath, trifluoromethanesulfonic anhydride (7.5 g) was added to dichloromethane (5 mL) from the dropping funnel. The solution was added dropwise over 30 minutes. After stirring at room temperature for 30 minutes, a solution of sodium carbonate (2.6 g) in water (200 mL) was added and washed. The oil phase was collected and dried under reduced pressure, and the resulting residue was purified by silica gel column chromatography (dichloromethane/hexane = 3/7) to obtain 22.4 g of a white solid. 1 H-NMR revealed that it was a mixture of hexane and Intermediate 7 (net weight 21.2 g).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 1Lナスフラスコに、3-(2-ピリジル)フェニルボロン酸ピナコールエステル(4.3g)、中間体7を含む粗体(13.3g)、テトラキス(トリフェニルホスフィン)パラジウム(0) (0.33g)、2M-リン酸三カリウム水溶液(16mL)、トルエン(60mL)およびエタノール(30mL)を入れ、4.5時間還流撹拌した。室温まで冷却した後、水相を除去し、溶媒を減圧除去して得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=4/6~8/2)で精製したところ、配位子2を白色アモルファスとして12.4g得た。 In a 1 L eggplant flask, 3-(2-pyridyl)phenylboronic acid pinacol ester (4.3 g), a crude product containing intermediate 7 (13.3 g), and tetrakis(triphenylphosphine)palladium (0) (0.33 g ), 2M aqueous tripotassium phosphate solution (16 mL), toluene (60 mL) and ethanol (30 mL), and the mixture was stirred under reflux for 4.5 hours. After cooling to room temperature, the aqueous phase was removed and the solvent was removed under reduced pressure. The resulting residue was purified by silica gel column chromatography (dichloromethane/hexane = 4/6 to 8/2), and the ligand 2 was purified. 12.4 g of white amorphous was obtained.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 側管付きジムロートを備えた200mLナスフラスコに、配位子2(11.3g)、トリス(アセチルアセトナト)イリジウム(III)(1.4g)、グリセリン(13.2g)およびシクロヘキシルベンゼン(0.25mL)を入れ、オイルバスの温度を235℃まで上げた後、14.5時間撹拌した。室温まで冷却後、水(50mL)およびジクロロメタン(100mL)で分液洗浄した。油相を減圧乾燥して得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=4/6~1/1)で精製したところ、D-2を黄色固体として1.3g得た。D-2のトルエン溶液における最大発光波長は514nm、PLQYは91%であった。 Ligand 2 (11.3 g), tris(acetylacetonato)iridium(III) (1.4 g), glycerin (13.2 g), and cyclohexylbenzene (0.0 g) were placed in a 200 mL eggplant flask equipped with a Dimroth with a side tube. 25 mL) was added, the temperature of the oil bath was raised to 235°C, and the mixture was stirred for 14.5 hours. After cooling to room temperature, the mixture was washed with water (50 mL) and dichloromethane (100 mL). The residue obtained by drying the oil phase under reduced pressure was purified by silica gel column chromatography (dichloromethane/hexane = 4/6 to 1/1) to obtain 1.3 g of D-2 as a yellow solid. The maximum emission wavelength in the toluene solution of D-2 was 514 nm, and the PLQY was 91%.
<合成例3:ND-1の合成> <Synthesis Example 3: Synthesis of ND-1>
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 300mLナスフラスコに、3-(2-ピリジル)フェニルボロン酸ピナコールエステル(7.9g)、3-ブロモ-3’-ヨード-1,1’-ビフェニル(10.6g)、テトラキス(トリフェニルホスフィン)パラジウム(0) (0.72g)、2M-リン酸三カリウム水溶液(35mL)、トルエン(60mL)およびエタノール(30mL)を入れ、5時間還流撹拌した。室温まで冷却した後、水相を除去し、溶媒を減圧除去して得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=1/1~8/2)で精製したところ、中間体8を茶色アモルファスとして8.7g得た。 In a 300 mL eggplant flask, add 3-(2-pyridyl)phenylboronic acid pinacol ester (7.9 g), 3-bromo-3'-iodo-1,1'-biphenyl (10.6 g), and tetrakis (triphenylphosphine). Palladium (0) (0.72 g), 2M aqueous tripotassium phosphate solution (35 mL), toluene (60 mL) and ethanol (30 mL) were added, and the mixture was stirred under reflux for 5 hours. After cooling to room temperature, the aqueous phase was removed and the solvent was removed under reduced pressure. The resulting residue was purified by silica gel column chromatography (dichloromethane/hexane = 1/1 to 8/2), and intermediate 8 was obtained as a brown color. 8.7 g was obtained as amorphous.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 1Lナスフラスコに、中間体8(8.7g)、m-ターフェニル-3-ボロン酸(8.9g)、テトラキス(トリフェニルホスフィン)パラジウム(0) (0.65g)、2M-リン酸三カリウム水溶液(30mL)、トルエン(60mL)およびエタノール(30mL)を入れ、4時間還流撹拌した。室温まで冷却した後、水相を除去し、溶媒を減圧除去して得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=1/1~1/0)で精製したところ、配位子3を無色アモルファスとして11.5g得た。 In a 1 L eggplant flask, Intermediate 8 (8.7 g), m-terphenyl-3-boronic acid (8.9 g), tetrakis(triphenylphosphine)palladium (0) (0.65 g), 2M triphosphoric acid. Potassium aqueous solution (30 mL), toluene (60 mL) and ethanol (30 mL) were added, and the mixture was stirred under reflux for 4 hours. After cooling to room temperature, the aqueous phase was removed, and the residue obtained by removing the solvent under reduced pressure was purified by silica gel column chromatography (dichloromethane/hexane = 1/1 to 1/0), and the ligand 3 was purified. 11.5 g of colorless amorphous material was obtained.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 側管付きジムロートを備えた200mLの3口フラスコに、配位子3(6.5g)、塩化イリジウム(III)n水和物(フルヤ金属社製、2.0g)、水(20mL)および2-エトキシエタノール(60mL)を入れ、溶媒を蒸留除去しながら145℃のオイルバスで撹拌した。途中、反応開始から2.5時間後に、オイルバス温度を150℃とし、反応開始から5時間後に2-エトキシエタノール(80mL)を加え、同時にオイルバス温度を155℃とし、反応開始から7時間後にジグリム(30mL)を加えた。その15分後、エチルジイソプロピルアミン(1mL)の2-エトキシエタノール(5mL)溶液を加え、さらにその15分後、ジグリム(10mL)および2-エトキシエタノール(20mL)を加え、ここから3時間撹拌し、さらにオイルバス温度を160℃に昇温し7時間撹拌した。反応中に蒸留除去された液体の体積は170mLであった。室温へ冷却後、減圧除去して得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン/酢酸エチル=45/45/10~8/0/2))で精製したところ、黄色アモルファスを8.4g得た。H-NMR分析より、得られた黄色アモルファスは酢酸エチルを含み、生成物中に二核錯体1は6.7g含まれていることが判明した。 Ligand 3 (6.5 g), iridium (III) chloride n-hydrate (manufactured by Furuya Metal Co., Ltd., 2.0 g), water (20 mL) and 2 - Ethoxyethanol (60 mL) was added, and the mixture was stirred in an oil bath at 145° C. while distilling off the solvent. During the course of the reaction, 2.5 hours after the start of the reaction, the oil bath temperature was set to 150°C, 5 hours after the start of the reaction, 2-ethoxyethanol (80 mL) was added, and at the same time, the oil bath temperature was set to 155°C, and 7 hours after the start of the reaction. Diglyme (30 mL) was added. After 15 minutes, a solution of ethyldiisopropylamine (1 mL) in 2-ethoxyethanol (5 mL) was added, and after another 15 minutes, diglyme (10 mL) and 2-ethoxyethanol (20 mL) were added, and the mixture was stirred for 3 hours. Then, the oil bath temperature was further raised to 160°C and stirred for 7 hours. The volume of liquid distilled off during the reaction was 170 mL. After cooling to room temperature, the residue obtained by removal under reduced pressure was purified by silica gel column chromatography (dichloromethane/hexane/ethyl acetate = 45/45/10 to 8/0/2), and 8.4 g of yellow amorphous was obtained. Obtained. 1 H-NMR analysis revealed that the obtained yellow amorphous contained ethyl acetate, and that the product contained 6.7 g of dinuclear complex 1.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 200mLナスフラスコに、上述の反応で得られた二核錯体1含有アモルファス(8.4g)、配位子1(5.0g)、ジグリム(20mL)を入れ、135℃のオイルバスで撹拌し溶解させた後、トリフルオロメタンスルホン酸銀(I)(1.4g)を入れ、オイルバスの温度を140℃として2時間撹拌した。その後溶媒を減圧除去して得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=1/1)で精製したところ、黄色固体としてND-1を5.2g得た。ND-1のトルエン溶液における最大発光波長は516nm、PLQYは96%であった。 In a 200 mL eggplant flask, put dinuclear complex 1-containing amorphous (8.4 g) obtained in the above reaction, ligand 1 (5.0 g), and diglyme (20 mL), and stir in an oil bath at 135 °C to dissolve. After that, silver (I) trifluoromethanesulfonate (1.4 g) was added, and the temperature of the oil bath was set to 140° C., and the mixture was stirred for 2 hours. Thereafter, the solvent was removed under reduced pressure and the resulting residue was purified by silica gel column chromatography (dichloromethane/hexane = 1/1) to obtain 5.2 g of ND-1 as a yellow solid. The maximum emission wavelength in a toluene solution of ND-1 was 516 nm, and the PLQY was 96%.
<合成例4:ND-2の合成> <Synthesis Example 4: Synthesis of ND-2>
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 300mLナスフラスコに、3-(2-ピリジル)フェニルボロン酸ピナコールエステル(7.3g)、3-ブロモ-4’-ヨード-1,1’-ビフェニル(9.5g)、テトラキス(トリフェニルホスフィン)パラジウム(0) (0.62g)、2M-リン酸三カリウム水溶液(35mL)、トルエン(50mL)およびエタノール(35mL)を入れ、8時間還流撹拌した。室温まで冷却した後、水相を除去し、溶媒を減圧除去して得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=1/1~1/0)で精製したところ、中間体9を茶色アモルファスとして10.0g得た。 In a 300 mL eggplant flask, add 3-(2-pyridyl)phenylboronic acid pinacol ester (7.3 g), 3-bromo-4'-iodo-1,1'-biphenyl (9.5 g), and tetrakis (triphenylphosphine). Palladium (0) (0.62 g), 2M aqueous tripotassium phosphate solution (35 mL), toluene (50 mL) and ethanol (35 mL) were added, and the mixture was stirred under reflux for 8 hours. After cooling to room temperature, the aqueous phase was removed and the solvent was removed under reduced pressure. The resulting residue was purified by silica gel column chromatography (dichloromethane/hexane = 1/1 to 1/0), and intermediate 9 was obtained as a brown color. 10.0 g of amorphous material was obtained.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 1Lナスフラスコに、中間体9(28.7g)、ビスピナコラト二ホウ素(23.7g)、酢酸カリウム(36.9g)、[Pd(dppf)Cl]CHCl (1.8g)およびジメチルスルホキシド(250mL)を入れ、90℃のオイルバス中で3時間撹拌した。室温へ冷却後、水(0.5L)およびジクロロメタン(0.3L)を加え分液洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧除去して得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/9~15/85)で精製したところ、中間体10(30.1g)を薄い黄色固体として得た。 In a 1 L eggplant flask, intermediate 9 (28.7 g), bispinacolato diboron (23.7 g), potassium acetate (36.9 g), [Pd(dppf) 2 Cl 2 ]CH 2 Cl 2 (1.8 g), and Dimethyl sulfoxide (250 mL) was added, and the mixture was stirred in a 90°C oil bath for 3 hours. After cooling to room temperature, water (0.5 L) and dichloromethane (0.3 L) were added for separation and washing, and after drying over magnesium sulfate, the solvent was removed under reduced pressure and the resulting residue was subjected to silica gel column chromatography (ethyl acetate/ When purified with hexane (1/9 to 15/85), Intermediate 10 (30.1 g) was obtained as a pale yellow solid.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 1Lナスフラスコに、中間体10(30.1g)、3-ブロモ-3’-ヨード-1,1’-ビフェニル(27.5g)、テトラキス(トリフェニルホスフィン)パラジウム(0) (1.1g)、2M-リン酸三カリウム水溶液(90mL)、トルエン(300mL)およびエタノール(90mL)を入れ、4時間還流撹拌した。室温まで冷却した後、水相を除去し、溶媒を減圧除去して得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=1/1~7/3)で精製したところ、中間体11をクリーム色アモルファスとして35.8g得た。 In a 1 L eggplant flask, intermediate 10 (30.1 g), 3-bromo-3'-iodo-1,1'-biphenyl (27.5 g), tetrakis(triphenylphosphine)palladium (0) (1.1 g) , 2M aqueous tripotassium phosphate solution (90 mL), toluene (300 mL) and ethanol (90 mL) were added, and the mixture was stirred under reflux for 4 hours. After cooling to room temperature, the aqueous phase was removed and the solvent was removed under reduced pressure. The resulting residue was purified by silica gel column chromatography (dichloromethane/hexane = 1/1 to 7/3), and Intermediate 11 was purified as a cream. 35.8 g of colored amorphous material was obtained.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 300mLナスフラスコに、中間体11(15.3g)、m-ビフェニルボロン酸(7.2g)、テトラキス(トリフェニルホスフィン)パラジウム(0) (1.3g)、2M-リン酸三カリウム水溶液(45mL)、トルエン(80mL)およびエタノール(45mL)を入れ、5時間還流撹拌した。室温まで冷却した後、水相を除去し、溶媒を減圧除去して得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=1/1~1/0)で精製したところ、配位子4を白色アモルファスとして18.2g得た。 In a 300 mL eggplant flask, intermediate 11 (15.3 g), m-biphenylboronic acid (7.2 g), tetrakis(triphenylphosphine) palladium (0) (1.3 g), 2M-tripotassium phosphate aqueous solution (45 mL) ), toluene (80 mL) and ethanol (45 mL) were added, and the mixture was stirred under reflux for 5 hours. After cooling to room temperature, the aqueous phase was removed and the solvent was removed under reduced pressure. The resulting residue was purified by silica gel column chromatography (dichloromethane/hexane = 1/1 to 1/0), and the ligand 4 was purified. 18.2g of white amorphous was obtained.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 側管付きジムロートを備えた200mLの3口フラスコに、配位子4(10.2g)、塩化イリジウム(III)n水和物(フルヤ金属社製、2.76g)、水(25mL)および2-エトキシエタノール(125mL)を入れ、溶媒を蒸留除去しながら140℃のオイルバスで撹拌した。途中、2.5時間後に、ジグリム(40mL)を加え、かつオイルバスを150℃とした。さらに2時間後に、2-エトキシエタノール(35mL)を加え、かつオイルバスを155℃とした。さらに4時間後に、エチルジイソプロピルアミン(1.5mL)のジグリム(2.5mL)溶液を加え、さらに1時間後にエチルジイソプロピルアミン(1.5mL)のジグリム(2.5mL)溶液を加え、さらに2時間撹拌した。反応中に蒸留除去された液体の体積は140mLであった。室温へ冷却後、減圧除去して得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=4/6~3/7)で精製したところ、山吹色アモルファスとして二核錯体2を6.7g得た。 Ligand 4 (10.2 g), iridium (III) chloride n-hydrate (manufactured by Furuya Metal Co., Ltd., 2.76 g), water (25 mL) and 2 -Ethoxyethanol (125 mL) was added, and the mixture was stirred in an oil bath at 140° C. while distilling off the solvent. During the course of the reaction, after 2.5 hours, diglyme (40 mL) was added, and the oil bath was heated to 150°C. After an additional 2 hours, 2-ethoxyethanol (35 mL) was added and the oil bath was brought to 155°C. After another 4 hours, a solution of ethyldiisopropylamine (1.5 mL) in diglyme (2.5 mL) was added, and after another 1 hour, a solution of ethyldiisopropylamine (1.5 mL) in diglyme (2.5 mL) was added, and for another 2 hours. Stirred. The volume of liquid distilled off during the reaction was 140 mL. After cooling to room temperature, the residue obtained by removing under reduced pressure was purified by silica gel column chromatography (dichloromethane/hexane = 4/6 to 3/7) to obtain 6.7 g of dinuclear complex 2 as a bright yellow amorphous. .
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 200mLナスフラスコに、二核錯体2(6.7g)、配位子2(8.0g)、ジグリム(20mL)を入れ、135℃のオイルバスで撹拌し溶解させた後、トリフルオロメタンスルホン酸銀(I)(1.21g)を入れ、オイルバスの温度を140℃として1.5時間撹拌した。その後溶媒を減圧除去して得られた残渣をシリカゲルカラムクロマトグラフィー(ジクロロメタン/ヘキサン=1/1)で精製したところ、黄色固体として化合物ND-2を7.7g得た。ND-2のトルエン溶液における最大発光波長は519nm、PLQYは94%であった。 Put dinuclear complex 2 (6.7 g), ligand 2 (8.0 g), and diglyme (20 mL) in a 200 mL eggplant flask, stir in an oil bath at 135°C to dissolve, and then add silver trifluoromethanesulfonate. (I) (1.21 g) was added, the temperature of the oil bath was set to 140°C, and the mixture was stirred for 1.5 hours. Thereafter, the solvent was removed under reduced pressure and the resulting residue was purified by silica gel column chromatography (dichloromethane/hexane = 1/1) to obtain 7.7 g of compound ND-2 as a yellow solid. The maximum emission wavelength in a toluene solution of ND-2 was 519 nm, and the PLQY was 94%.
[実施例1]
 有機電界発光素子を以下の方法で作製した。
 ガラス基板上にインジウム・スズ酸化物(ITO)透明導電膜を50nmの厚さに堆積したもの(ジオマテック社製、スパッタ成膜品)を通常のフォトリソグラフィー技術と塩酸エッチングを用いて2mm幅のストライプにパターニングして陽極を形成した。このようにITOをパターン形成した基板を、界面活性剤水溶液による超音波洗浄、超純水による水洗、超純水による超音波洗浄、超純水による水洗の順で洗浄後、圧縮空気で乾燥させ、最後に紫外線オゾン洗浄を行った。
[Example 1]
An organic electroluminescent device was produced by the following method.
An indium tin oxide (ITO) transparent conductive film deposited to a thickness of 50 nm on a glass substrate (manufactured by Geomatec, sputtering film) was formed into 2 mm wide stripes using normal photolithography technology and hydrochloric acid etching. The anode was formed by patterning. The substrate on which ITO was patterned was washed in the following order: ultrasonic cleaning with an aqueous surfactant solution, washing with ultrapure water, ultrasonic washing with ultrapure water, and washing with ultrapure water, and then dried with compressed air. Finally, ultraviolet ozone cleaning was performed.
 正孔注入層形成用組成物として、下記式(P-1)の繰り返し構造を有する正孔輸送性高分子化合物3.0質量%と、電子受容性化合物(HI-1)0.6質量%とを、安息香酸エチルに溶解させた組成物を調製した。 As a composition for forming a hole injection layer, 3.0% by mass of a hole-transporting polymer compound having a repeating structure of the following formula (P-1) and 0.6% by mass of an electron-accepting compound (HI-1). A composition was prepared by dissolving these in ethyl benzoate.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 この溶液を、大気中で上記基板上にスピンコートし、大気中ホットプレートで240℃、30分間乾燥させ、膜厚40nmの均一な薄膜を形成し、正孔注入層とした。 This solution was spin-coated on the substrate in the air and dried on a hot plate in the air at 240° C. for 30 minutes to form a uniform thin film with a thickness of 40 nm, which was used as a hole injection layer.
 次に、下記の構造式(HT-1)を有する電荷輸送性高分子化合物を1,3,5-トリメチルベンゼンに溶解させ、2.0質量%の溶液を調製した。
 この溶液を、上記正孔注入層を塗布成膜した基板上に窒素グローブボックス中でスピンコートし、窒素グローブボックス中のホットプレートで230℃、30分間乾燥させ、膜厚40nmの均一な薄膜を形成し、正孔輸送層とした。
Next, a charge transporting polymer compound having the following structural formula (HT-1) was dissolved in 1,3,5-trimethylbenzene to prepare a 2.0% by mass solution.
This solution was spin-coated on the substrate on which the hole injection layer was coated in a nitrogen glove box, and dried on a hot plate in the nitrogen glove box at 230°C for 30 minutes to form a uniform thin film with a thickness of 40 nm. and formed a hole transport layer.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 引続き、発光層の材料として、下記の構造を有する化合物(H-1)を1.35質量%、(H-2)を1.35質量%、(H-3)を2.7質量%、(Ir-D1)を0.8質量%、(Ir-ND1)を0.8質量%の濃度でシクロヘキシルベンゼンに溶解させ、本発明の発光層用インクを調製した。 Subsequently, as materials for the light emitting layer, 1.35% by mass of a compound (H-1) having the following structure, 1.35% by mass of (H-2), 2.7% by mass of (H-3), An ink for a light-emitting layer of the present invention was prepared by dissolving (Ir-D1) and (Ir-ND1) in cyclohexylbenzene at concentrations of 0.8% by mass and 0.8% by mass, respectively.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 この溶液を、上記正孔輸送層を塗布成膜した基板上に窒素グローブボックス中でスピンコートし、窒素グローブボックス中のホットプレートで120℃、20分間乾燥させ、膜厚70nmの均一な薄膜を形成し、発光層とした。
 発光層までを成膜した基板を真空蒸着装置に設置し、装置内を2×10-4Pa以下になるまで排気した。
This solution was spin-coated on the substrate on which the hole transport layer was coated in a nitrogen glove box, and dried on a hot plate in the nitrogen glove box at 120°C for 20 minutes to form a uniform thin film with a thickness of 70 nm. A light-emitting layer was formed.
The substrate on which the film up to the light-emitting layer was formed was placed in a vacuum evaporation apparatus, and the inside of the apparatus was evacuated to a pressure of 2×10 −4 Pa or less.
 次に、下記の構造式(ET-1)および8-ヒドロキシキノリノラトリチウムを2:3の膜厚比で、発光層上に真空蒸着法にて共蒸着し、膜厚30nmの電子輸送層を形成した。 Next, the following structural formula (ET-1) and 8-hydroxyquinolinolatrithium were co-deposited on the light emitting layer using a vacuum evaporation method at a film thickness ratio of 2:3, and an electron transport layer with a film thickness of 30 nm was formed. was formed.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 続いて、陰極蒸着用のマスクとして2mm幅のストライプ状シャドーマスクを、陽極のITOストライプとは直交するように基板に密着させて、アルミニウムをモリブデンボートにより加熱して、膜厚80nmのアルミニウム層を形成して陰極を形成した。以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界発光素子が得られた。 Next, a striped shadow mask with a width of 2 mm was brought into close contact with the substrate as a mask for cathode evaporation, perpendicular to the ITO stripes of the anode, and the aluminum was heated with a molybdenum boat to form an aluminum layer with a thickness of 80 nm. to form a cathode. In the manner described above, an organic electroluminescent device having a light emitting area of 2 mm x 2 mm in size was obtained.
[実施例2]
 発光層用インクとして、(Ir-D1)の代わりに下記の構造を有する化合物(Ir-D2)を用いた本発明の発光層用インクを用いた他は、実施例1と同様にして有機電界発光素子を作製した。
[Example 2]
An organic electric field was prepared in the same manner as in Example 1, except that the ink for the light emitting layer of the present invention was used as the ink for the light emitting layer, and the compound (Ir-D2) having the following structure was used instead of (Ir-D1). A light emitting device was produced.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
[実施例3]
 発光層用インクとして、(Ir-ND1)の代わりに下記の構造を有する化合物(Ir-ND2)を用いた本発明の発光層用インクを用いた他は、実施例1と同様にして有機電界発光素子を作製した。
[Example 3]
An organic electric field was prepared in the same manner as in Example 1, except that the ink for the light emitting layer of the present invention was used as the ink for the light emitting layer, and the compound (Ir-ND2) having the following structure was used instead of (Ir-ND1). A light emitting device was produced.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
[実施例4]
 発光層用インクとして、(Ir-ND1)の代わりに(Ir-ND2)を用いた本発明の発光層用インクを用いた他は、実施例2と同様にして有機電界発光素子を作製した。
[Example 4]
An organic electroluminescent device was produced in the same manner as in Example 2, except that the ink for the light emitting layer of the present invention was used as the ink for the light emitting layer, in which (Ir-ND2) was used instead of (Ir-ND1).
[比較例1]
 発光層用インクとして、(Ir-ND1)の代わりに(Ir-D2)を用いた発光層用インクを用いた他は、実施例1と同様にして有機電界発光素子を作製した。
[Comparative example 1]
An organic electroluminescent device was produced in the same manner as in Example 1, except that (Ir-D2) was used instead of (Ir-ND1) as the light-emitting layer ink.
[比較例2]
 発光層用インクとして、(Ir-D1)の代わりに(Ir-ND2)を用いた発光層用インクを用いた他は、実施例1と同様にして有機電界発光素子を作製した。
[Comparative example 2]
An organic electroluminescent device was produced in the same manner as in Example 1, except that (Ir-ND2) was used instead of (Ir-D1) as the emissive layer ink.
[比較例3]
 発光層用インクとして、(Ir-D1)を0.8質量%、(Ir-ND1)を0.8質量%ではなく、(Ir-D1)を1.6質量%用いて発光層用インクを用いた他は、実施例1と同様にして有機電界発光素子を作製した。
[Comparative example 3]
Instead of using 0.8% by mass of (Ir-D1) and 0.8% by mass of (Ir-ND1), the ink for the luminescent layer was made using 1.6% by mass of (Ir-D1). An organic electroluminescent device was produced in the same manner as in Example 1 except for using the following.
[比較例4]
 発光層用インクとして、(Ir-D2)を0.8質量%、(Ir-ND1)を0.8質量%ではなく、(Ir-D2)を1.6質量%用いて発光層用インクを用いた他は、実施例2と同様にして有機電界発光素子を作製した。
[Comparative example 4]
Instead of using 0.8% by mass of (Ir-D2) and 0.8% by mass of (Ir-ND1), 1.6% by mass of (Ir-D2) was used as the ink for the luminescent layer. An organic electroluminescent device was produced in the same manner as in Example 2 except for using the following.
[比較例5]
 発光層用インクとして、(Ir-D1)を0.8質量%、(Ir-ND1)を0.8質量%ではなく、(Ir-ND1)を1.6質量%用いて発光層用インクを用いた他は、実施例1と同様にして有機電界発光素子を作製した。
[Comparative example 5]
Instead of using 0.8% by mass of (Ir-D1) and 0.8% by mass of (Ir-ND1), the ink for the luminescent layer was made using 1.6% by mass of (Ir-ND1). An organic electroluminescent device was produced in the same manner as in Example 1 except for using the following.
[比較例6]
 発光層用インクとして、(Ir-D1)を0.8質量%、(Ir-ND2)を0.8質量%ではなく、(Ir-ND2)を1.6質量%用いて発光層用インクを用いた他は、実施例3と同様にして有機電界発光素子を作製した。
[Comparative example 6]
Instead of using 0.8% by mass of (Ir-D1) and 0.8% by mass of (Ir-ND2) as the ink for the luminescent layer, 1.6% by mass of (Ir-ND2) was used to create the ink for the luminescent layer. An organic electroluminescent device was produced in the same manner as in Example 3 except for using the following.
 実施例1~4、および比較例1~6で得られた素子の1000cd/m時の発光効率[cd/A]の相対値(比較例6を1とする)を表1にまとめた。 Table 1 summarizes the relative values of luminous efficiency [cd/A] at 1000 cd/m 2 of the devices obtained in Examples 1 to 4 and Comparative Examples 1 to 6 (Comparative Example 6 is set as 1).
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
 表1の結果から、式(1)、あるいは式(2)で表される化合物を単独で用いた場合、および、式(1)または式(2)で表される化合物を2種用いた場合と比較して、式(1)および式(2)でそれぞれ表される化合物各1種ずつを組み合わせて用いた場合の方が、素子の発光効率が向上していることがわかる。 From the results in Table 1, when the compound represented by formula (1) or formula (2) is used alone, and when two types of compounds represented by formula (1) or formula (2) are used It can be seen that the luminous efficiency of the device is improved when one of each of the compounds represented by formula (1) and formula (2) is used in combination.
[実施例5]
 発光層用インクとして、(Ir-ND2)の代わりに下記の構造を有する化合物(Ir-ND3)を用いた本発明の発光層用インクを用いた他は、実施例3と同様にして有機電界発光素子を作製した。なお、化合物(Ir-ND3)は、日本国特開2014-074000号公報記載の方法を参考に合成した。
[Example 5]
The organic electric field was prepared in the same manner as in Example 3, except that the ink for the light emitting layer of the present invention was used as the ink for the light emitting layer, and the compound (Ir-ND3) having the following structure was used instead of (Ir-ND2). A light emitting device was produced. Note that the compound (Ir-ND3) was synthesized with reference to the method described in Japanese Patent Application Publication No. 2014-074000.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
[比較例7]
 発光層用インクとして、(Ir-ND2)の代わりに下記の構造を有する化合物(Ir-ND4)を用いた発光層用インクを用いた他は、実施例3と同様にして有機電界発光素子を作製した。
[Comparative Example 7]
An organic electroluminescent device was prepared in the same manner as in Example 3, except that a compound (Ir-ND4) having the following structure was used instead of (Ir-ND2) as the ink for the luminescent layer. Created.
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 実施例3、5、および比較例7で得られた素子の1000cd/m時の発光効率[cd/A]の相対値(比較例7を1とする)を表2にまとめた。 Table 2 summarizes the relative values of luminous efficiency [cd/A] at 1000 cd/m 2 of the devices obtained in Examples 3 and 5 and Comparative Example 7 (Comparative Example 7 is set as 1).
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000061
 表2の結果から、式(2)で表される化合物(Ir-D1)と化合物(Ir-ND4)とを組み合わせた発光層用インクと比較して、化合物(Ir-D1)と式(1)で表される化合物である(Ir-ND2)、あるいは(Ir-ND3)を組み合わせた本発明の発光層用インクを用いて作製した有機電界発光素子の方が、高い発光効率を示すことがわかる。 From the results in Table 2, it can be seen that the compound (Ir-D1) and the compound (1 ) The organic electroluminescent device produced using the luminescent layer ink of the present invention in combination with (Ir-ND2) or (Ir-ND3) exhibits higher luminous efficiency. Recognize.
[実施例6]
 発光層用インクとして、(Ir-D1)の代わりに下記の構造を有する化合物(Ir-D3)を用いた本発明の発光層用インクを用いた他は、実施例3と同様にして有機電界発光素子を作製した。なお、化合物(Ir-D3)は、日本国特開2014-074000号公報および日本国特開2012-036388号公報記載の方法を参考に合成した。
[Example 6]
An organic electric field was prepared in the same manner as in Example 3, except that the ink for the light emitting layer of the present invention was used as the ink for the light emitting layer, and the compound (Ir-D3) having the following structure was used instead of (Ir-D1). A light emitting device was produced. Note that the compound (Ir-D3) was synthesized with reference to the method described in Japanese Patent Application Publication No. 2014-074000 and Japanese Patent Application Publication No. 2012-036388.
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
[実施例7]
 発光層用インクとして、(Ir-ND2)の代わりに(Ir-ND3)を用いた本発明の発光層用インクを用いた他は、実施例6と同様にして有機電界発光素子を作製した。
[Example 7]
An organic electroluminescent device was produced in the same manner as in Example 6, except that the ink for the light emitting layer of the present invention was used as the ink for the light emitting layer, in which (Ir-ND3) was used instead of (Ir-ND2).
[実施例8]
 発光層用インクとして、(Ir-ND2)の代わりに下記の構造を有する化合物(Ir-ND5)を用いた発光層用インクを用いた他は、実施例6と同様にして有機電界発光素子を作製した。なお、化合物(Ir-ND5)は、日本国特開2014-074000号公報記載の方法を参考に合成した。
[Example 8]
An organic electroluminescent device was prepared in the same manner as in Example 6, except that a light-emitting layer ink containing a compound (Ir-ND5) having the following structure instead of (Ir-ND2) was used as the light-emitting layer ink. Created. Note that the compound (Ir-ND5) was synthesized with reference to the method described in Japanese Patent Application Publication No. 2014-074000.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
[比較例8]
 発光層用インクとして、(Ir-ND2)の代わりに(Ir-ND4)を用いた発光層用インクを用いた他は、実施例6と同様にして有機電界発光素子を作製した。
[Comparative example 8]
An organic electroluminescent device was produced in the same manner as in Example 6, except that (Ir-ND4) was used instead of (Ir-ND2) as the light-emitting layer ink.
 実施例6~8および比較例8で得られた素子の1000cd/m時の発光効率[cd/A]の相対値(比較例8を1とする)を表3にまとめた。 Table 3 summarizes the relative values of luminous efficiency [cd/A] at 1000 cd/m 2 of the devices obtained in Examples 6 to 8 and Comparative Example 8 (Comparative Example 8 is set as 1).
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000064
 表3の結果から、式(2)で表される化合物(Ir-D3)と化合物(Ir-ND4)を組み合わせた発光層用インクと比較して、化合物(Ir-D3)と式(1)で表される化合物である化合物(Ir-ND2)、化合物(Ir-ND3)または化合物(Ir-ND5)を組み合わせた本発明の発光層用インクを用いて作製した有機電界発光素子の方が、高い発光効率を示すことがわかる。 From the results in Table 3, compared to the emissive layer ink which is a combination of the compound (Ir-D3) represented by formula (2) and the compound (Ir-ND4), the combination of compound (Ir-D3) and formula (1) The organic electroluminescent device produced using the ink for a light-emitting layer of the present invention, which is a combination of the compound (Ir-ND2), the compound (Ir-ND3), or the compound (Ir-ND5), which is a compound represented by It can be seen that it exhibits high luminous efficiency.
[比較例9]
 ガラス製バイアル瓶に、[Ir(ppy)]を31.5mg入れ、シクロヘキシルベンゼンを添加して全内容量を3935mg(0.8質量%)とした。室温(22℃)で5分間振とうしても溶け切らなかったので、100℃で30分間加熱したが、溶け切らなかった。さらに、シクロヘキシルベンゼンを8.00g追加して、再び100℃30分間加熱したが、溶け切らなかった。[Ir(ppy)]は本発明で用いられるイリジウム錯体化合物と比較して、溶剤溶解性が大きく不足していることがわかった。
[Comparative Example 9]
31.5 mg of [Ir(ppy) 3 ] was placed in a glass vial, and cyclohexylbenzene was added to make the total content 3935 mg (0.8% by mass). Even after shaking for 5 minutes at room temperature (22°C), it did not completely melt, so it was heated at 100°C for 30 minutes, but it did not completely melt. Further, 8.00 g of cyclohexylbenzene was added and heated again at 100° C. for 30 minutes, but it did not completely dissolve. It was found that [Ir(ppy) 3 ] is significantly lacking in solvent solubility compared to the iridium complex compound used in the present invention.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the drawings, it goes without saying that the present invention is not limited to such examples. It is clear that those skilled in the art can come up with various changes or modifications within the scope of the claims, and these naturally fall within the technical scope of the present invention. Understood. Further, each of the constituent elements in the above embodiments may be arbitrarily combined without departing from the spirit of the invention.
 なお、本出願は、2022年3月25日出願の日本特許出願(特願2022-050596)に基づくものであり、その内容は本出願の中に参照として援用される。 Note that this application is based on a Japanese patent application (Japanese Patent Application No. 2022-050596) filed on March 25, 2022, the contents of which are incorporated as a reference in this application.
 本発明の発光層用インクは、発光効率がより改善された有機電界発光素子を提供することができる。 The ink for a light emitting layer of the present invention can provide an organic electroluminescent device with further improved luminous efficiency.
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 正孔阻止層
 7 電子輸送層
 8 電子注入層
 9 陰極
 10 有機電界発光素子
1 Substrate 2 Anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Hole blocking layer 7 Electron transport layer 8 Electron injection layer 9 Cathode 10 Organic electroluminescent element

Claims (9)

  1.  式(1)で表される化合物と式(2)で表される化合物とを含む、発光層用組成物。
    Figure JPOXMLDOC01-appb-C000001

    [但し、nは0~10の整数を表す。Rは置換基を表し、aは0から一つの配位子が置換しうる最大の整数までを表す。Rの種類はそれぞれ独立に、D、F、Cl、Br、I、-N(R’)、-CN、-NO、-OH、-COOR’、-C(=O)R’、-C(=O)NR’、-P(=O)(R’)、-S(=O)R’、-S(=O)R’、-OS(=O)R’、炭素数1以上5以下の、直鎖、分岐もしくは環状アルキル基、炭素数1以上4以下の、直鎖、分岐アルコキシ基、炭素数1以上4以下の、直鎖、分岐もしくは環状アルキルチオ基、炭素数2以上4以下の、直鎖、分岐もしくは環状アルケニル基、炭素数2以上4以下の、直鎖、分岐もしくは環状アルキニル基、炭素数10以上40以下のジアリールアミノ基、炭素数10以上40以下のアリールヘテロアリールアミノ基または炭素数10以上40以下のジヘテロアリールアミノ基であり、前記アルキル基、前記アルコキシ基、前記アルキルチオ基、前記アルケニル基、前記アルキニル基、前記ジアリールアミノ基、前記アリールヘテロアリールアミノ基および前記ジヘテロアリールアミノ基は、1つ以上の水素原子以外のR’で置換されていてもよい。
     R’はそれぞれ独立に、D、F、-CN、炭素数1以上5以下の、直鎖、分岐もしくは環状アルキル基、炭素数2以上4以下の、直鎖または分岐アルケニル基、炭素数2以上4以下の、直鎖または分岐アルキニル基である。]
    Figure JPOXMLDOC01-appb-C000002

    [但し、mは0~10の整数を表す。Qは置換基を表し、bは0から一つの配位子が置換しうる最大の整数までを表す。Xは式(3)または(4)を表す。
    Figure JPOXMLDOC01-appb-C000003

    [但し、破線はベンゼン環との結合を表し、Arはそれぞれ独立に、炭素数6~30の三価芳香族炭化水素基または炭素数2~30の三価複素芳香族基を表し、Arはそれぞれ独立に、炭素数6~30の一価芳香族炭化水素基または炭素数2~30の一価複素芳香族基を表す。式(3)および式(4)のAr及びArは前記Qにより置換されていても良い。]]
    A composition for a light-emitting layer, comprising a compound represented by formula (1) and a compound represented by formula (2).
    Figure JPOXMLDOC01-appb-C000001

    [However, n represents an integer from 0 to 10. R represents a substituent, and a represents a number from 0 to the maximum integer that can be substituted by one ligand. The types of R are independently D, F, Cl, Br, I, -N(R') 2 , -CN, -NO 2 , -OH, -COOR', -C(=O)R', - C(=O)NR', -P(=O)(R') 2 , -S(=O)R', -S(=O) 2 R', -OS(=O) 2 R', carbon A straight chain, branched or cyclic alkyl group having 1 to 5 carbon atoms, a straight chain or branched alkoxy group having 1 to 4 carbon atoms, a straight chain, branched or cyclic alkylthio group having 1 to 4 carbon atoms, a carbon number Straight chain, branched or cyclic alkenyl group with 2 to 4 carbon atoms, straight chain, branched or cyclic alkynyl group with 2 to 4 carbon atoms, diarylamino group with 10 to 40 carbon atoms, 10 to 40 carbon atoms An arylheteroarylamino group or a diheteroarylamino group having 10 to 40 carbon atoms, the alkyl group, the alkoxy group, the alkylthio group, the alkenyl group, the alkynyl group, the diarylamino group, the arylheteroaryl group. The amino group and the diheteroarylamino group may be substituted with one or more R' other than hydrogen atoms.
    R' each independently represents D, F, -CN, a straight chain, branched or cyclic alkyl group having 1 to 5 carbon atoms, a straight chain or branched alkenyl group having 2 to 4 carbon atoms, and 2 or more carbon atoms. It is a straight chain or branched alkynyl group of up to 4. ]
    Figure JPOXMLDOC01-appb-C000002

    [However, m represents an integer from 0 to 10. Q represents a substituent, and b represents from 0 to the maximum integer that can be substituted by one ligand. X represents formula (3) or (4).
    Figure JPOXMLDOC01-appb-C000003

    [However, the broken line represents a bond with the benzene ring, each Ar 1 independently represents a trivalent aromatic hydrocarbon group having 6 to 30 carbon atoms or a trivalent heteroaromatic group having 2 to 30 carbon atoms, and Ar Each of 2 independently represents a monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms or a monovalent heteroaromatic group having 2 to 30 carbon atoms. Ar 1 and Ar 2 in formulas (3) and (4) may be substituted with Q. ]]
  2.  式(1)が下式(5)で表される、請求項1に記載の発光層用組成物。
    Figure JPOXMLDOC01-appb-C000004

    [R及びaは請求項1に定義されるとおりである。n及びnは、n+n=nとなる数を表す。]
    The composition for a light-emitting layer according to claim 1, wherein formula (1) is represented by the following formula (5).
    Figure JPOXMLDOC01-appb-C000004

    [R and a are as defined in claim 1. n 1 and n 2 represent numbers such that n 1 +n 2 =n. ]
  3.  式(3)または(4)において、Arがそれぞれ独立に、炭素数6~30の三価芳香族炭化水素基を表し、Arがそれぞれ独立に、炭素数6~30の一価芳香族炭化水素基を表す、請求項1または2に記載の発光層用組成物。 In formula (3) or (4), Ar 1 each independently represents a trivalent aromatic hydrocarbon group having 6 to 30 carbon atoms, and Ar 2 each independently represents a monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms. The composition for a light-emitting layer according to claim 1 or 2, which represents a hydrocarbon group.
  4.  式(2)におけるXが式(3)で表される、請求項1~3のいずれか1項に記載の発光層用組成物。 The composition for a light-emitting layer according to any one of claims 1 to 3, wherein X in formula (2) is represented by formula (3).
  5.  以下の測定方法にて測定した、式(1)で表される化合物と式(2)で表される化合物が示す最大発光波長の差の絶対値が0nm以上20nm以下である、請求項1~4のいずれか1項に記載の発光層用組成物。
    [測定方法:室温下でトルエンに式(1)で表される化合物又は式(2)で表される化合物を濃度1×10-5mol/Lで溶解した溶液について、窒素を20分間以上バブリングして、消光の原因となる酸素を除去したサンプルから得られたりん光スペクトル強度の最大値を示す波長を最大発光波長とする。]
    Claims 1 to 3, wherein the absolute value of the difference in maximum emission wavelength between the compound represented by formula (1) and the compound represented by formula (2), measured by the following measuring method, is 0 nm or more and 20 nm or less. 4. The composition for a light-emitting layer according to any one of 4.
    [Measurement method: Bubbling nitrogen for 20 minutes or more into a solution in which the compound represented by formula (1) or the compound represented by formula (2) is dissolved in toluene at a concentration of 1 × 10 -5 mol/L at room temperature. Then, the wavelength showing the maximum value of the phosphorescence spectrum intensity obtained from the sample from which oxygen, which causes quenching, has been removed is defined as the maximum emission wavelength. ]
  6.  式(1)で表される化合物と式(2)で表される化合物との合計質量に対する式(1)で表される化合物の質量の割合が10%以上80%以下である、請求項1~5のいずれか1項に記載の発光層用組成物。 Claim 1, wherein the mass ratio of the compound represented by formula (1) to the total mass of the compound represented by formula (1) and the compound represented by formula (2) is 10% or more and 80% or less. The composition for a light-emitting layer according to any one of items 1 to 5.
  7.  更に有機溶剤を含む、請求項1~6のいずれか1項の発光層用組成物。 The composition for a light-emitting layer according to any one of claims 1 to 6, further comprising an organic solvent.
  8.  基板上に陽極、発光層及び、陰極をこの順に有する有機電界発光素子の製造方法であって、
     請求項7に記載の発光層用組成物を用いて湿式成膜法にて前記発光層を形成する工程を含む、有機電界発光素子の製造方法。
    A method for manufacturing an organic electroluminescent device having an anode, a light emitting layer, and a cathode in this order on a substrate, the method comprising:
    A method for manufacturing an organic electroluminescent device, comprising the step of forming the light emitting layer by a wet film forming method using the composition for a light emitting layer according to claim 7.
  9.  基板上に陽極、発光層及び、陰極をこの順に有する有機電界発光素子であって、
     発光層に、式(1)で表される化合物と式(2)で表される化合物とを含む、有機電界発光素子。
    Figure JPOXMLDOC01-appb-C000005

    [但し、nは0~10の整数を表す。Rは置換基を表し、aは0から一つの配位子が置換しうる最大の整数までを表す。Rの種類はそれぞれ独立に、D、F、Cl、Br、I、-N(R’)、-CN、-NO、-OH、-COOR’、-C(=O)R’、-C(=O)NR’、-P(=O)(R’)、-S(=O)R’、-S(=O)R’、-OS(=O)R’、炭素数1以上5以下の、直鎖、分岐もしくは環状アルキル基、炭素数1以上4以下の、直鎖、分岐アルコキシ基、炭素数1以上4以下の、直鎖、分岐もしくは環状アルキルチオ基、炭素数2以上4以下の、直鎖、分岐もしくは環状アルケニル基、炭素数2以上4以下の、直鎖、分岐もしくは環状アルキニル基、炭素数10以上40以下のジアリールアミノ基、炭素数10以上40以下のアリールヘテロアリールアミノ基または炭素数10以上40以下のジヘテロアリールアミノ基であり、前記アルキル基、前記アルコキシ基、前記アルキルチオ基、前記アルケニル基、前記アルキニル基、前記ジアリールアミノ基、前記アリールヘテロアリールアミノ基および前記ジヘテロアリールアミノ基は、1つ以上の水素原子以外のR’で置換されていてもよい。
     R’はそれぞれ独立に、D、F、-CN、炭素数1以上5以下の、直鎖、分岐もしくは環状アルキル基、炭素数2以上4以下の、直鎖または分岐アルケニル基、炭素数2以上4以下の、直鎖または分岐アルキニル基である。]
    Figure JPOXMLDOC01-appb-C000006

    [但し、mは0~10の整数を表す。Qは置換基を表し、bは0から一つの配位子が置換しうる最大の整数までを表す。Xは式(3)または(4)を表す。
    Figure JPOXMLDOC01-appb-C000007

    [但し、破線はベンゼン環との結合を表し、Arはそれぞれ独立に、炭素数6~30の三価芳香族炭化水素基または炭素数2~30の三価複素芳香族基を表し、Arはそれぞれ独立に、炭素数6~30の一価芳香族炭化水素基または炭素数2~30の一価複素芳香族基を表す。式(3)および式(4)のAr及びArは前記Qにより置換されていても良い。]]
    An organic electroluminescent device having an anode, a light emitting layer, and a cathode in this order on a substrate,
    An organic electroluminescent device comprising a compound represented by formula (1) and a compound represented by formula (2) in a light emitting layer.
    Figure JPOXMLDOC01-appb-C000005

    [However, n represents an integer from 0 to 10. R represents a substituent, and a represents a number from 0 to the maximum integer that can be substituted by one ligand. The types of R are independently D, F, Cl, Br, I, -N(R') 2 , -CN, -NO 2 , -OH, -COOR', -C(=O)R', - C(=O)NR', -P(=O)(R') 2 , -S(=O)R', -S(=O) 2 R', -OS(=O) 2 R', carbon A straight chain, branched or cyclic alkyl group having 1 to 5 carbon atoms, a straight chain or branched alkoxy group having 1 to 4 carbon atoms, a straight chain, branched or cyclic alkylthio group having 1 to 4 carbon atoms, a carbon number Straight chain, branched or cyclic alkenyl group with 2 to 4 carbon atoms, straight chain, branched or cyclic alkynyl group with 2 to 4 carbon atoms, diarylamino group with 10 to 40 carbon atoms, 10 to 40 carbon atoms An arylheteroarylamino group or a diheteroarylamino group having 10 to 40 carbon atoms, the alkyl group, the alkoxy group, the alkylthio group, the alkenyl group, the alkynyl group, the diarylamino group, the arylheteroaryl group. The amino group and the diheteroarylamino group may be substituted with one or more R' other than hydrogen atoms.
    R' each independently represents D, F, -CN, a straight chain, branched or cyclic alkyl group having 1 to 5 carbon atoms, a straight chain or branched alkenyl group having 2 to 4 carbon atoms, and 2 or more carbon atoms. It is a straight chain or branched alkynyl group of up to 4. ]
    Figure JPOXMLDOC01-appb-C000006

    [However, m represents an integer from 0 to 10. Q represents a substituent, and b represents from 0 to the maximum integer that can be substituted by one ligand. X represents formula (3) or (4).
    Figure JPOXMLDOC01-appb-C000007

    [However, the broken line represents a bond with the benzene ring, each Ar 1 independently represents a trivalent aromatic hydrocarbon group having 6 to 30 carbon atoms or a trivalent heteroaromatic group having 2 to 30 carbon atoms, and Ar Each of 2 independently represents a monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms or a monovalent heteroaromatic group having 2 to 30 carbon atoms. Ar 1 and Ar 2 in formulas (3) and (4) may be substituted with Q. ]]
PCT/JP2023/010460 2022-03-25 2023-03-16 Light-emitting layer composition, organic electroluminescent element, and production method therefor WO2023182184A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022050596 2022-03-25
JP2022-050596 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023182184A1 true WO2023182184A1 (en) 2023-09-28

Family

ID=88101545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010460 WO2023182184A1 (en) 2022-03-25 2023-03-16 Light-emitting layer composition, organic electroluminescent element, and production method therefor

Country Status (2)

Country Link
TW (1) TW202346311A (en)
WO (1) WO2023182184A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224101A (en) * 2013-04-15 2014-12-04 住友化学株式会社 Metal complex and light-emitting device using the same
WO2020230811A1 (en) * 2019-05-15 2020-11-19 三菱ケミカル株式会社 Iridium complex compound, composition containing said compound and solvent, organic electroluminescent element containing said compound, display device and lighting device
WO2020235562A1 (en) * 2019-05-20 2020-11-26 三菱ケミカル株式会社 Composition for organic electroluminescent element, organic electroluminescent element, production method therefor, and display device
JP2022109223A (en) * 2021-01-14 2022-07-27 住友化学株式会社 Manufacturing method of organic electroluminescence element
WO2022250044A1 (en) * 2021-05-25 2022-12-01 三菱ケミカル株式会社 Iridium complex compound, composition containing iridium complex compound, organic electroluminescent element and method for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224101A (en) * 2013-04-15 2014-12-04 住友化学株式会社 Metal complex and light-emitting device using the same
WO2020230811A1 (en) * 2019-05-15 2020-11-19 三菱ケミカル株式会社 Iridium complex compound, composition containing said compound and solvent, organic electroluminescent element containing said compound, display device and lighting device
WO2020235562A1 (en) * 2019-05-20 2020-11-26 三菱ケミカル株式会社 Composition for organic electroluminescent element, organic electroluminescent element, production method therefor, and display device
JP2022109223A (en) * 2021-01-14 2022-07-27 住友化学株式会社 Manufacturing method of organic electroluminescence element
WO2022250044A1 (en) * 2021-05-25 2022-12-01 三菱ケミカル株式会社 Iridium complex compound, composition containing iridium complex compound, organic electroluminescent element and method for producing same

Also Published As

Publication number Publication date
TW202346311A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JP7388508B2 (en) Iridium complex compound, composition containing the compound and solvent, organic electroluminescent device, display device, and lighting device containing the compound
JP7439891B2 (en) Iridium complex compound, composition containing the compound and solvent, organic electroluminescent device, display device, and lighting device containing the compound
JP7409428B2 (en) Method for producing iridium complex compound
WO2020230811A1 (en) Iridium complex compound, composition containing said compound and solvent, organic electroluminescent element containing said compound, display device and lighting device
WO2022250044A1 (en) Iridium complex compound, composition containing iridium complex compound, organic electroluminescent element and method for producing same
JP2020152746A (en) Composition for organic electroluminescent element, organic electroluminescent element, display device, and lighting device
US20210323986A1 (en) Iridium complex compound
JP2022121412A (en) Iridium complex compound, iridium complex compound-containing composition, organic electroluminescent device and method for producing the same, organic el display device, and organic el illumination device
JP7047355B2 (en) Iridium complex compound, composition containing the compound and solvent, organic electroluminescent element containing the compound, display device and lighting device.
WO2023182184A1 (en) Light-emitting layer composition, organic electroluminescent element, and production method therefor
WO2021161974A1 (en) Iridium complex compound, iridium complex compound-containing composition, organic electroluminescent element and production method therefor, organic el display device, and organic el lighting device
WO2023136252A1 (en) Iridium complex compound, composition for organic electroluminescent element, organic electroluminescent element and method for producing same, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774780

Country of ref document: EP

Kind code of ref document: A1