WO2020235562A1 - Composition for organic electroluminescent element, organic electroluminescent element, production method therefor, and display device - Google Patents

Composition for organic electroluminescent element, organic electroluminescent element, production method therefor, and display device Download PDF

Info

Publication number
WO2020235562A1
WO2020235562A1 PCT/JP2020/019788 JP2020019788W WO2020235562A1 WO 2020235562 A1 WO2020235562 A1 WO 2020235562A1 JP 2020019788 W JP2020019788 W JP 2020019788W WO 2020235562 A1 WO2020235562 A1 WO 2020235562A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
ring
formula
organic electroluminescent
Prior art date
Application number
PCT/JP2020/019788
Other languages
French (fr)
Japanese (ja)
Inventor
良子 梶山
和弘 長山
飯田 宏一朗
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN202080037101.XA priority Critical patent/CN113874467A/en
Priority to JP2021520797A priority patent/JPWO2020235562A1/ja
Priority to KR1020217037593A priority patent/KR20220010598A/en
Publication of WO2020235562A1 publication Critical patent/WO2020235562A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd

Definitions

  • the present invention relates to a composition for an organic electroluminescent device that is useful for forming a light emitting layer of an organic electroluminescent device (hereinafter, may be referred to as an "organic EL device").
  • the present invention also relates to an organic electroluminescent device having a light emitting layer formed by using the composition for the organic electroluminescent device, a method for manufacturing the organic electroluminescent device, and a display device having the organic electroluminescent device.
  • organic electroluminescent devices such as organic EL lighting and organic EL displays
  • organic EL lighting and organic EL displays Since the applied voltage of the organic electric field light emitting element is low, the power consumption is low and the three primary colors can be emitted. Therefore, the application to small and medium-sized displays represented by mobile phones and smartphones has begun as well as large display monitors. ..
  • An organic electroluminescent device is manufactured by stacking a plurality of layers such as a light emitting layer, a charge injection layer, and a charge transport layer.
  • Currently, most organic electroluminescent elements are manufactured by vapor-depositing an organic material under vacuum, but the vacuum-deposited method complicates the vapor deposition process and is inferior in productivity. It is extremely difficult to increase the size of lighting and display panels with organic electroluminescent devices manufactured by the vacuum deposition method.
  • a wet film forming method (coating method) has been studied as a process for efficiently manufacturing an organic electroluminescent element that can be used for a large-scale display or lighting. Since the wet film deposition method has an advantage that a stable layer can be easily formed as compared with the vacuum film deposition method, it is expected to be applied to mass production of displays and lighting devices and to large devices.
  • all the materials used In order to manufacture an organic electroluminescent device by a wet film formation method, all the materials used must be soluble in an organic solvent and can be used as ink. If the material used is inferior in solubility, operations such as heating for a long time are required, so that the material may deteriorate before use.
  • the material used in the wet film forming method is required to have solubility in two meanings: that it dissolves quickly in an organic solvent and that it does not precipitate after being dissolved and maintains a uniform state.
  • the advantage of the wet film deposition method over the vacuum film deposition method is that more material types can be used in one layer.
  • it becomes difficult to control the vapor deposition rate to a constant level as the number of material types increases whereas in the wet film deposition method, even if the material types increase, as long as each material is dissolved in an organic solvent, it is sufficient.
  • An ink having a constant component ratio can be produced.
  • an attempt to improve the performance of an organic electroluminescent device by using two or more types of iridium complexes in an ink to increase the luminous efficiency of the organic electroluminescent device or lower the drive voltage by utilizing this advantage has been attempted. (For example, Patent Documents 1 and 2).
  • the present invention provides an organic electric field light emitting element capable of manufacturing an organic electric field light emitting element by a wet film forming method, particularly for a red element, having a lower driving voltage, higher light emitting efficiency, and a longer driving life than conventional ones. Make it an issue.
  • an iridium complex having a relatively short maximum emission wavelength is used as an assist dopant
  • an iridium complex containing phenylpyridine in which the triazine ring is substituted at a specific position is used as an emission dopant in the red element to assist.
  • the present invention has been completed by finding that the performance of an organic electroluminescent element is improved by producing an organic electroluminescent element using a composition for an organic electroluminescent element in which a dopant and a light emitting dopant are dissolved in a solvent. I came to do. It has also been found that the performance of the organic electroluminescent device is further improved by using the iridium complex, which is a light emitting dopant, in a composition ratio larger than that of the assist dopant.
  • the composition for an organic electroluminescent element according to the present invention contains an iridium complex whose maximum emission wavelength is a short wave with respect to the emission dopant as an assist dopant, and uses phenylpyridine in which the triazine ring is substituted at a specific position as a ligand.
  • the containing iridium complex is contained as a light emitting dopant. Therefore, it is possible to manufacture an organic electroluminescent device having a lower drive voltage, higher luminous efficiency, and longer drive life than conventional ones.
  • composition for an organic electroluminescent device by making the composition ratio of the light emitting dopant larger than the composition ratio of the assist dopant, light emission from the assist dopant can be suitably suppressed, and the light emission from the assist dopant can be suppressed more vividly. It is possible to manufacture an organic electroluminescent device having a light emitting color.
  • the gist of the present invention is as follows. [1] A compound represented by the following formula (1), a compound represented by the following formula (2) having a shorter maximum emission wavelength than the compound represented by the above formula (1), and a solvent are used. A composition for an organic electroluminescent device.
  • R 1 and R 2 are independently an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and 3 carbon atoms, respectively.
  • R 3 and R 4 are independently hydrogen atom, fluorine atom, chlorine atom, bromine atom, alkyl group having 1 to 20 carbon atoms, (hetero) aralkyl group having 7 to 40 carbon atoms, and 1 to 20 carbon atoms, respectively.
  • arylcarbonyl group having up to 20 carbonyl groups, an alkylamino group having 2 to 20 carbon atoms, an arylamino group having 6 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms. These groups may further have substituents. When a plurality of R 3 and R 4 exist, they may be the same or different from each other.
  • L 1 represents an organic ligand, and m is an integer of 1 to 3.
  • R 5 is an alkyl group having 1 to 20 carbon atoms, having 7 to 40 carbon atoms (hetero) aralkyl group, an alkoxy group having 1 to 20 carbon atoms, having 3 to 20 carbon atoms (hetero) aryloxy Group, alkylsilyl group with 1 to 20 carbon atoms, arylsilyl group with 6 to 20 carbon atoms, alkylcarbonyl group with 2 to 20 carbon atoms, arylcarbonyl group with 7 to 20 carbon atoms, alkylamino with 1 to 20 carbon atoms A group, an arylamino group having 6 to 20 carbon atoms, or a (hetero) aryl group having 3 to 30 carbon atoms.
  • Ring A is any of pyridine ring, pyrazine ring, pyrimidine ring, imidazole ring, oxazole ring, thiazole ring, quinoline ring, isoquinoline ring, quinazoline ring, quinoxaline ring, azatriphenylene ring, carboline ring, benzothiazole ring, and benzoxazole ring. Is it?
  • Ring A may have a substituent, which is a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, and carbon.
  • a substituent which is a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, and carbon.
  • adjacent substituents bonded to the ring A may be bonded to each other to further form a ring. When there are a plurality of rings A, they may be the same or different.
  • L 2 represents an organic ligand, and n is an integer of 1 to 3.
  • composition ratio of the compound represented by the formula (1) is equal to or greater than the composition ratio of the compound represented by the formula (2) in terms of parts by mass.
  • Composition for. [3] The composition for an organic electric field light emitting element according to the above [1] or [2], wherein the compound represented by the formula (1) is a compound represented by the following formula (1-1).
  • R 1, R 2, a , b, L 1, m the R 1 in the formula (1), R 2, a , b, a L 1, m and respectively the same.
  • R 6 and R 7 are independently alkyl groups having 1 to 20 carbon atoms, (hetero) aralkyl groups having 7 to 40 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, and (heterogeneous) having 3 to 20 carbon atoms.
  • composition for an organic electroluminescent device according to the above [1] or [2], wherein the compound represented by the formula (1) is a compound represented by the following formula (1-2).
  • R 2 ⁇ R 4, b , L 1, m is, R 2 ⁇ R 4 in the formula (1), b, is L 1, m and respectively the same.
  • R 14 to R 16 are substituents, and when a plurality of R 14 to R 16 are present, they may be the same or different from each other.
  • i is an integer from 0 to 4.
  • R 2 R 6, R 7, b, d, e, L 1
  • m is, R 2 in the formula (1-1)
  • R 6, R 7, b, d, e, L It is synonymous with 1 and m, respectively.
  • R 14 to R 16 are substituents, and when a plurality of R 14 to R 16 are present, they may be the same or different from each other.
  • i is an integer from 0 to 4.
  • Ring A, L 2, n, Ring A in the formula (2) is L 2, n and respectively the same.
  • R 8 has an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a (hetero) aryloxy group having 3 to 20 carbon atoms, and 1 carbon atom.
  • the m in the formula (1) is less than 3, and L 1 has at least one structure selected from the group consisting of the following formulas (3), (4), and (5).
  • the composition for an organic electroluminescent device according to any one of [1] to [6].
  • R 9 and R 10 are synonymous with R 1 in the above formula (1), and when a plurality of R 9 and R 10 exist, they are the same. May be different.
  • R 11 to R 13 are independently substituted with an alkyl group having 1 to 20 carbon atoms which may be substituted with a hydrogen atom and a fluorine atom, a phenyl group which may be substituted with an alkyl group having 1 to 20 carbon atoms, or It is a halogen atom.
  • g is an integer from 0 to 4.
  • h is an integer from 0 to 4.
  • Ring B is a pyridine ring, a pyrimidine ring, an imidazole ring, a quinoline ring, an isoquinoline ring, a quinazoline ring, a quinoxaline ring, an azatriphenylene ring, a carboline ring, a benzothiazole ring, or a benzoxazole ring. Ring B may further have a substituent. ]
  • a in the formula (1) is 1, or, no ring a is an integer of 2 or more in the formula (1), and adjacent R 1 are bonded to each other, wherein [1 ] To [7].
  • the composition for an organic electroluminescent device according to any one of. [9] A method for producing an organic electroluminescent device, which comprises a step of forming a light emitting layer by a wet film forming method using the organic electroluminescent device composition according to any one of the above [1] to [8]. [10] An organic electroluminescent device having a light emitting layer formed by using the organic electroluminescent device composition according to any one of the above [1] to [8]. [11] A display device having the organic electroluminescent device according to the above [10].
  • an organic electroluminescent device by a wet film formation method, particularly for a red device, and it is possible to provide an organic electroluminescent device having a lower driving voltage, higher luminous efficiency, and a longer driving life than conventional devices. it can.
  • FIG. 1 is a cross-sectional view schematically showing an example of the structure of the organic electroluminescent device of the present invention.
  • the present invention is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist thereof.
  • the (hetero) aralkyl group, the (hetero) aryloxy group, and the (hetero) aryl group are an aralkyl group that may contain a heteroatom and an aryloxy group that may contain a heteroatom, respectively.
  • May contain heteroatoms means that one or more carbon atoms forming an aryl skeleton in the main skeleton of an aryl group, an aralkyl group or an aryloxy group are substituted with heteroatoms. Indicates that you are.
  • the hetero atom include a nitrogen atom, an oxygen atom, a sulfur atom, a phosphorus atom, a silicon atom and the like, and among them, a nitrogen atom is preferable from the viewpoint of durability.
  • the composition for an organic electroluminescent device contains a compound represented by the following formula (1), and such a compound mainly functions as a light emitting dopant.
  • the compound represented by the formula (1) may contain only one type or a plurality of types. Further, the compound serving as a light emitting dopant may contain a compound serving as a light emitting dopant other than the compound represented by the formula (1), but in that case, the formula ( The total content of the compounds represented by 1) is preferably 50% by mass or more, more preferably 100% by mass. That is, it is more preferable that only the compound represented by the formula (1) is used.
  • R 1 and R 2 are independently an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and carbon.
  • R 1 and R 2 may be the same or different from each other. If R 1 there are a plurality bonded R 1 adjacent to each other may form a ring.
  • a is an integer of 0 to 4
  • b is an integer of 0 to 3.
  • R 3 and R 4 are independently hydrogen atom, fluorine atom, chlorine atom, bromine atom, alkyl group having 1 to 20 carbon atoms, (hetero) aralkyl group having 7 to 40 carbon atoms, and 1 to 20 carbon atoms, respectively.
  • arylcarbonyl group having up to 20 carbonyl groups, an alkylamino group having 2 to 20 carbon atoms, an arylamino group having 6 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms. These groups may further have substituents. When a plurality of R 3 and R 4 exist, they may be the same or different from each other.
  • L 1 represents an organic ligand, and m is an integer of 1 to 3.
  • R 1 to R 4 are independent of each other, and from the viewpoint of durability, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an arylamino group having 6 to 20 carbon atoms, or carbon. More preferably, it is a (hetero) aryl group having 3 to 30 carbon atoms or a (hetero) aryl group having 3 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, or the like.
  • R 1 to R 4 may further have are preferably substituents selected from the substituent group Z described later. when a is 2 or more, two adjacent R 1 may be bonded to each other to form a ring.
  • R 1 is more present, as the adjacent R 1 are bonded to each other to form a ring, for example, fluorene, naphthalene, dibenzothiophene, and a dibenzofuran. From the viewpoint of stability, fluorene is particularly preferable. It is preferred from the viewpoint of long-wavelength emission wavelengths can R 1 adjacent one in which binding to the each other to form a ring.
  • the emission wavelength R 1 adjacent from the viewpoint of not longer wavelength not intended to form a ring not bind to each other. That, a is 1 in formula (1), or, preferably has no ring a is 2 or more, and adjacent R 1 are bonded to each other.
  • a is preferably 0 from the viewpoint of easy production, preferably 1 or 2 from the viewpoint of enhancing durability and solubility, and further preferably 1.
  • b is preferably 0 from the viewpoint of easy production, and is preferably 1 from the viewpoint of enhancing solubility. Since there are many structures having a high electron acceptability including a triazine ring and LUMO is more stabilized, m is preferably 2 or 3, and more preferably 3.
  • L 1 is an organic ligand and is not particularly limited, but is preferably a monovalent bidentate ligand, and is more preferably selected from the following chemical formulas.
  • the broken line in the chemical formula represents a coordination bond.
  • the organic ligand L 1 may have a different structure from each other.
  • L 1 does not exist.
  • L 1 has at least one structure selected from the group consisting of the following formulas (3), (4), and (5).
  • R 9 and R 10 are synonymous with R 1 in the above formula (1). That is, it is selected from the same group as the substituent selected as R 1 , and the preferred example is also the same, and may further have a substituent. When a plurality of R 9 and R 10 exist, they may be the same or different from each other.
  • R 11 to R 13 are independently substituted with an alkyl group having 1 to 20 carbon atoms which may be substituted with a hydrogen atom and a fluorine atom, a phenyl group which may be substituted with an alkyl group having 1 to 20 carbon atoms, or It is a halogen atom.
  • g is an integer from 0 to 4.
  • h is an integer from 0 to 4.
  • Ring B is a pyridine ring, a pyrimidine ring, an imidazole ring, a quinoline ring, an isoquinoline ring, a quinazoline ring, a quinoxaline ring, an azatriphenylene ring, a carboline ring, a benzothiazole ring, or a benzoxazole ring. Ring B may further have a substituent.
  • R 9 , R 10 and Ring B may further have are preferably substituents selected from the Substituent Group Z described later.
  • R 9 and R 10 are independently alkyl groups having 1 to 20 carbon atoms or aryl groups having 6 to 30 carbon atoms which may be substituted with alkyl groups having 1 to 20 carbon atoms.
  • the aryl group having 6 to 30 carbon atoms is a group in which a plurality of monocyclic, bicyclic condensed rings, tricyclic condensed rings, monocyclic, dicyclic fused rings, or tricyclic condensed rings are linked.
  • R 11 to R 13 are independently substituted with an alkyl group having 1 to 20 carbon atoms which may be substituted with a hydrogen atom and a fluorine atom, and a phenyl group or a halogen which may be substituted with an alkyl group having 1 to 20 carbon atoms, respectively. Representing an atom, more preferably R 11 and R 13 are methyl or t-butyl groups, and R 12 is a hydrogen atom, an alkyl or phenyl group having 1 to 20 carbon atoms.
  • the ring B is preferably a pyridine ring, a pyrimidine ring, or an imidazole ring, and more preferably a pyridine ring.
  • the hydrogen atom on the ring B has an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, or a (hetero) aralkyl group having 3 to 20 carbon atoms (from the viewpoint of durability and enhanced solubility. It is preferably substituted with a hetero) aryl group. Further, the hydrogen atom on the ring B is preferably not substituted from the viewpoint of easy production.
  • a phenyl group or a naphthyl which may have a substituent may be provided from the viewpoint of increasing the luminous efficiency. It is preferably substituted with a group.
  • the substituent that the phenyl group or the naphthyl group may have is preferably a substituent selected from the Substituent Group Z described later.
  • the ring B may be a quinoline ring, an isoquinoline ring, a quinazoline ring, a quinoxaline ring, an azatriphenylene ring, or a carboline ring from the viewpoint of increasing the luminous efficiency because excitons are easily generated on the assist dopant.
  • a quinoline ring, an isoquinoline ring, and a quinazoline ring are more preferable in terms of durability and red light emission.
  • a more preferable substituent of the ring B is an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms which may be substituted with an alkyl group having 1 to 20 carbon atoms.
  • the aryl group having 6 to 20 carbon atoms is a group in which a plurality of monocyclic, bicyclic condensed rings, tricyclic condensed rings, monocyclic, dicyclic fused rings, or tricyclic condensed rings are linked.
  • R 3 and R 4 are phenyl groups which may have a substituent.
  • a compound, that is, a compound represented by the following formula (1-1) is preferable.
  • R 1, R 2, a, b, L 1, m is an R 1, R 2, a, b, L 1, m and same meanings in the formula (1).
  • R 6 and R 7 are independently alkyl groups having 1 to 20 carbon atoms, (hetero) aralkyl groups having 7 to 40 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, and (heterogeneous) having 3 to 20 carbon atoms.
  • R 6 and R 7 have an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an arylamino group having 6 to 20 carbon atoms, or an arylamino group having 3 to 30 carbon atoms. It is more preferably an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms. It is more preferable that it is an alkyl group having 1 to 20 carbon atoms or an aralkyl group having 7 to 40 carbon atoms.
  • the substituents that R 6 and R 7 may further have are preferably substituents selected from the substituent group Z described later.
  • D and e are preferably 0 from the viewpoint of easy production, preferably 1 or 2 from the viewpoint of enhancing durability and solubility, and further preferably 1.
  • b is preferably 0 from the viewpoint of easy production, and is preferably 1 from the viewpoint of enhancing solubility.
  • Emitting dopant of the formula contained in the composition for organic electroluminescence element of the present embodiment (1) is, a is equal to or greater than 2, the structure is that each other R 1 adjacent to each to form a fluorene ring bonded preferable. Among them, the compound represented by the formula (1-2) is preferable.
  • R 2 ⁇ R 4, b , L 1, m is an R 2 ⁇ R 4 in the formula (1), b, L 1 , m and respectively the same.
  • R 14 to R 16 are substituents, and when a plurality of R 14 to R 16 are present, they may be the same or different from each other.
  • i is an integer from 0 to 4.
  • R 14 is a substituent that substitutes for R 1 when R 1 is a phenyl group, and is preferably a substituent selected from the substituent group Z described later. More preferably, it is an aromatic hydrocarbon group having 6 to 30 carbon atoms which may be substituted with an alkyl group having 1 to 20 carbon atoms and an alkyl group having 1 to 20 carbon atoms.
  • the aromatic hydrocarbon group having 6 to 30 carbon atoms is a monocyclic, 2 to 4 ring fused ring, or a group in which a plurality of monocyclic or 2 to 4 ring fused rings are linked.
  • An alkyl group having 1 to 20 carbon atoms is more preferable, and an alkyl group having 1 to 8 carbon atoms is even more preferable.
  • R 15, R 16 is a substituent in which a part or R 1 in R 1 is substituted for R 1 when was a methyl group, preferably each independently, an alkyl group having 1 to 20 carbon atoms, carbon atoms It may be substituted with an alkyl group of 1 to 20 or an aromatic hydrocarbon group having 6 to 30 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms. It is an aromatic hydrocarbon group having 6 to 30 carbon atoms.
  • the aromatic hydrocarbon group having 6 to 30 carbon atoms is a monocyclic, 2 to 4 ring fused ring, or a group in which a plurality of monocyclic or 2 to 4 ring fused rings are linked.
  • it is an alkyl group having 1 to 20 carbon atoms, or an aromatic hydrocarbon group having 6 or 12 carbon atoms which may be substituted with an alkyl group having 1 to 20 carbon atoms, and more preferably.
  • It is an aromatic hydrocarbon group having 6 carbon atoms which may be substituted with an alkyl group of 1 to 8 or an alkyl group having 1 to 8 carbon atoms.
  • the aromatic hydrocarbon structure having 6 carbon atoms has a benzene structure
  • the aromatic hydrocarbon structure having 12 carbon atoms has a biphenyl structure.
  • preferable alkyl groups in R 14 to R 16 include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-octyl group, isopropyl group and isobutyl.
  • examples thereof include a group, an isopentyl group, a t-butyl group, a cyclohexyl group, and a 2-ethylhexyl group.
  • R 14 to R 16 Specific examples of the preferred aromatic hydrocarbon groups in R 14 to R 16 include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, and a benzpyrene ring having one free atomic value. , Chrysene ring, triphenylene ring, fluorantene ring, biphenyl group, terphenyl group and the like.
  • R 15 and R 16 Specific examples of the preferred alkoxy group in R 15 and R 16 include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a hexyloxy group, a cyclohexyloxy group, an octadecyloxy group and the like.
  • the compound serving as the light emitting dopant represented by the formula (1-1) contained in the composition for an organic electroluminescent device according to the present embodiment is more preferably the compound represented by the formula (1-3).
  • R 2, R 6, R 7, b, d, e, L 1 is, R 2, R 6, R 7 in formula (1-1), b, d, e, L 1 , M are synonymous with each other.
  • R 14 to R 16 are substituents, and when a plurality of R 14 to R 16 are present, they may be the same or different from each other.
  • i is an integer from 0 to 4.
  • Substituents represented by R 14 ⁇ R 16 are each a substituent represented by R 14 ⁇ R 16 in the formula (1-2) synonymous, and preferred ranges are also the same.
  • the composition for an organic electroluminescent device contains a compound represented by the following formula (2), and such a compound mainly functions as an assist dopant.
  • the compound represented by the formula (2) has a shorter maximum emission wavelength than the compound represented by the formula (1) which is the above-mentioned light emitting dopant. Therefore, when the assist dopant represented by the formula (2) is in the excited state, energy transfer to the light emitting dopant represented by the formula (1) having a smaller excitation energy occurs, so that the light emitting dopant is in the excited state. After that, light emission from the light emitting dopant is observed.
  • the compound represented by the formula (2) may contain only one kind or a plurality of kinds.
  • the compound serving as an assist dopant may contain a compound serving as an assist dopant other than the compound represented by the formula (2), but in that case, the formula (The total content of the compounds represented by 2) is preferably 50% by mass or more, more preferably 100% by mass. That is, it is more preferable that only the compound represented by the formula (2) is used.
  • the composition ratio of the compound represented by the formula (1) is equal to or higher than the composition ratio of the compound represented by the formula (2) in terms of parts by mass.
  • R 5 is an alkyl group having 1 to 20 carbon atoms, (hetero) aralkyl groups having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, having 3 to 20 carbon atoms (hetero) aryloxy group , Alkylsilyl group with 1 to 20 carbon atoms, arylsilyl group with 6 to 20 carbon atoms, alkylcarbonyl group with 2 to 20 carbon atoms, arylcarbonyl group with 7 to 20 carbon atoms, alkylamino group with 1 to 20 carbon atoms , An arylamino group having 6 to 20 carbon atoms, or a (hetero) aryl group having 3 to 30 carbon atoms.
  • Ring A is any of pyridine ring, pyrazine ring, pyrimidine ring, imidazole ring, oxazole ring, thiazole ring, quinoline ring, isoquinoline ring, quinazoline ring, quinoxaline ring, azatriphenylene ring, carboline ring, benzothiazole ring, and benzoxazole ring. Is it?
  • Ring A may have a substituent.
  • substituents include a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) arylyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an alkoxy group having 3 to 20 carbon atoms.
  • arylcarbonyl group having up to 20 carbon atoms, an alkylamino group having 2 to 20 carbon atoms, an arylamino group having 6 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms.
  • adjacent substituents bonded to the ring A may be bonded to each other to further form a ring. When there are a plurality of rings A, they may be the same or different.
  • L 2 represents an organic ligand, and n is an integer of 1 to 3.
  • R 5 has an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an arylamino group having 6 to 20 carbon atoms, or a (hetero) having 3 to 30 carbon atoms.
  • Aryl group is more preferable, and an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms or a (hetero) aryl group having 3 to 20 carbon atoms is further preferable.
  • R 5 is a phenyl group which may have a substituent from the viewpoint of durability and solubility, and is preferably bonded to the m-position of ring A and the p-position of iridium. That is, it is preferable to contain a compound represented by the following formula (2-1).
  • the substituent that may be possessed is preferably a substituent selected from the Substituent Group Z described later.
  • Ring A, L 2, n are each a ring A, L 2, n in the formula (2) interchangeably.
  • R 8 has an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a (hetero) aryloxy group having 3 to 20 carbon atoms, and 1 carbon atom.
  • the substituent that R 8 may further have is preferably a substituent selected from the Substituent Group Z described later.
  • f is preferably 0 from the viewpoint of easy production, preferably 1 or 2 from the viewpoint of durability and enhancement of solubility, and further preferably 1.
  • the ring A is preferably a pyridine ring, a pyrimidine ring, or an imidazole ring, and more preferably a pyridine ring.
  • the hydrogen atom on the ring A has an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, and a (hetero) having 3 to 20 carbon atoms from the viewpoint of durability and enhanced solubility. ) It is preferably substituted with an aryl group. Further, the hydrogen atom on the ring A is preferably not substituted from the viewpoint of easy production.
  • the hydrogen atom on the ring A is a phenyl group or a naphthyl group which may have a substituent from the viewpoint of improving the luminous efficiency because excitons are easily generated when it is used as an organic electroluminescent element. It is preferably substituted.
  • the ring A is a quinoline ring, an isoquinolin ring, a quinazoline ring, a quinoxalin ring, an azatriphenylene ring, or a carboline ring because excitons are easily generated on the assist dopant and the light emission efficiency is enhanced.
  • a quinoline ring, an isoquinoline ring, and a quinazoline ring are preferable in terms of durability.
  • L 2 is an organic ligand and is not particularly limited, but is preferably a monovalent bidentate ligand, and a more preferable example is the same as that shown as a preferable example of L 1 . When two organic ligands L 2 are present, the organic ligands L 2 may have different structures from each other. Further, when n is 3, L 2 does not exist.
  • Substituent group Z Substituents include alkyl groups, aralkyl groups, heteroaralkyl groups, alkoxy groups, aryloxy groups, heteroaryloxy groups, alkylsilyl groups, arylsilyl groups, alkylcarbonyl groups, arylcarbonyl groups, alkylamino groups and arylamino groups. , Aryl group, or heteroaryl group can be used.
  • an alkyl group having 1 to 20 carbon atoms Preferably, an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 40 carbon atoms, a heteroaralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, etc.
  • Heteroaryloxy group with 3 to 20 carbon atoms alkylsilyl group with 1 to 20 carbon atoms, arylsilyl group with 6 to 20 carbon atoms, alkylcarbonyl group with 2 to 20 carbon atoms, arylcarbonyl group with 7 to 20 carbon atoms , An alkylamino group having 1 to 20 carbon atoms, an arylamino group having 6 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or a heteroaryl group having 3 to 30 carbon atoms, more specifically described later. It is the substituent described in [Specific example of substituent].
  • an alkyl group having 1 to 20 carbon atoms More preferably, an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, or an aryl group having 6 to 30 carbon atoms. Is.
  • the alkyl group having 1 to 20 carbon atoms may be a linear, branched or cyclic alkyl group. More specifically, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-octyl group, isopropyl group, isobutyl group, isopentyl group, t-butyl group. , Cyclohexyl group and the like.
  • a linear alkyl group having 1 to 8 carbon atoms such as a methyl group, an ethyl group, an n-butyl group, an n-hexyl group and an n-octyl group is preferable.
  • the (hetero) aralkyl group having 7 to 40 carbon atoms is a group in which a part of hydrogen atoms constituting a linear alkyl group, a branched alkyl group, or a cyclic alkyl group is substituted with an aryl group or a heteroaryl group.
  • 2-phenyl-1-ethyl group, cumyl group, 5-phenyl-1-pentyl group, 6-phenyl-1-hexyl group, 7-phenyl-1-heptyl group, tetrahydronaphthyl group and the like Can be mentioned.
  • 5-phenyl-1-pentyl group, 6-phenyl-1-hexyl group and 7-phenyl-1-heptyl group are preferable.
  • alkoxy group having 1 to 20 carbon atoms include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a hexyloxy group, a cyclohexyloxy group, an octadecyloxy group and the like. Of these, a hexyloxy group is preferable.
  • the (hetero) aryloxy group having 3 to 20 carbon atoms include a phenoxy group and a 4-methylphenyloxy group. Of these, a phenoxy group is preferable.
  • alkylsilyl group having 1 to 20 carbon atoms include a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, a dimethylphenyl group, a t-butyldimethylsilyl group, a t-butyldiphenylsilyl group and the like. .. Of these, a triisopropyl group, a t-butyldimethylsilyl group and a t-butyldiphenylsilyl group are preferable.
  • arylsilyl group having 6 to 20 carbon atoms include a diphenylpyridylsilyl group and a triphenylsilyl group. Of these, a triphenylsilyl group is preferable.
  • alkylcarbonyl group having 2 to 20 carbon atoms include an acetyl group, a propionyl group, a pivaloyl group, a caproyl group, a decanoyl group, a cyclohexylcarbonyl group and the like. Of these, an acetyl group and a pivaloyl group are preferable.
  • arylcarbonyl group having 7 to 20 carbon atoms include a benzoyl group, a naphthoyl group, an antryl group and the like. Of these, a benzoyl group is preferable.
  • alkylamino group having 1 to 20 carbon atoms include a methylamino group, a dimethylamino group, a diethylamino group, an ethylmethylamino group, a dihexylamino group, a dioctylamino group, a dicyclohexylamino group and the like. Of these, a dimethylamino group and a dicyclohexylamino group are preferable.
  • arylamino group having 6 to 20 carbon atoms include a phenylamino group, a diphenylamino group, a di (4-tolyl) amino group, a di (2,6-dimethylphenyl) amino group and the like. Of these, a diphenylamino group and a di (4-tolyl) amino group are preferable.
  • the (hetero) aryl group having 3 to 30 carbon atoms is a linked aromatic hydrocarbon in which an aromatic hydrocarbon group, an aromatic heterocyclic group, and a plurality of aromatic hydrocarbons having one free atomic value are linked. It means a group, a linked aromatic heterocyclic group in which a plurality of aromatic heterocyclic groups are linked, or a group in which at least one or more aromatic hydrocarbons and aromatic heterocycles are arbitrarily linked.
  • a benzene ring examples include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysen ring, a triphenylene ring, a fluorantene ring, and a furan ring, which have one free valence.
  • a benzene ring, a naphthalene ring, a dibenzofuran ring, a dibenzothiophene ring, a carbazole ring, a pyridine ring, a pyrimidine ring, and a triazine ring having one free valence are preferable from the viewpoint of durability.
  • an aryl group having 6 to 18 carbon atoms such as a benzene ring, a naphthalene ring or a phenanthrene ring, which has one free valence and may be substituted with an alkyl group having 1 to 8 carbon atoms, or 1
  • a pyridine ring having 1 free valence and may be substituted with an alkyl group having 1 to 4 carbon atoms is more preferable, and an alkyl group having 1 free valence and 1 to 8 carbon atoms. It is more preferably an aryl group having 6 to 18 carbon atoms, such as a benzene ring, a naphthalene ring or a phenanthrene ring which may be substituted with.
  • the combination of these substituents includes, for example, a combination of an aryl group and an alkyl group, a combination of an aryl group and an aralkyl group, or an aryl group and an alkyl group.
  • Combinations with aralkyl groups can be used, but are not limited thereto.
  • the combination of the aryl group and the aralkyl group for example, a combination of a benzene, a biphenyl group, a terphenyl group, a 5-phenyl-1-pentyl group, and a 6-phenyl-1-hexyl group can be used.
  • the method for measuring the maximum emission wavelength of the compound in the present embodiment is shown below.
  • the maximum emission wavelength of the compound can be determined from the photoluminescence spectrum of a solution in which the material is dissolved in an organic solvent, or the photoluminescence spectrum of a thin film of the material alone.
  • a spectrophotometer organic EL quantum yield measurement manufactured by Hamamatsu Photonics Co., Ltd.
  • the phosphorescence spectrum is measured with the apparatus C9920-02).
  • the wavelength indicating the maximum value of the obtained phosphorescence spectral intensity is defined as the maximum emission wavelength.
  • a thin film is prepared by vacuum vapor deposition or solution coating of a material, photoluminescence is measured with the above spectrophotometer, and the wavelength indicating the maximum value of the obtained emission spectral intensity is set to the maximum emission. Let the wavelength be. It is necessary to obtain and compare the maximum emission wavelengths of the compound used for the emission dopant and the compound used for the assist dopant by the same method.
  • the compound represented by the formula (2) as an assist dopant contained in the composition for an organic electroluminescent device according to the present embodiment has a maximum emission wavelength as compared with the compound represented by the formula (1) as a light emitting dopant. Is a short wave.
  • the maximum emission wavelength of the compound serving as the emission dopant is preferably 580 nm or more, more preferably 590 nm or more, further preferably 600 nm or more, preferably 700 nm or less, and more preferably 680 nm or less.
  • the maximum emission wavelength is in this range, it tends to be possible to express a preferable color of a red light emitting material suitable as an organic electroluminescent element. It is preferable that the maximum emission wavelength of the compound serving as an assist dopant and the maximum emission wavelength of the compound serving as a light emitting dopant are separated by 10 nm or more because efficient energy transfer can be performed.
  • the compound represented by the formula (1) is preferably contained in the same amount as or more than the compound represented by the formula (2). That is, it is preferable that the composition ratio of the compound represented by the formula (1) in terms of parts by mass is equal to or higher than the composition ratio of the compound represented by the formula (2).
  • the compound represented by the formula (1) is more preferably contained 1 to 3 times as much as the compound represented by the formula (2) in terms of parts by mass. From the viewpoint of luminous efficiency and long life of the device, the content is particularly preferably 1 to 2 times. It is more preferably contained twice or more from the viewpoint of obtaining more vivid light emission, and further preferably less than twice from the viewpoint of reducing the driving voltage of the element. As a result, the energy from the assist dopant is more efficiently transferred to the light emitting dopant, so that high luminous efficiency can be obtained and the life of the device is expected to be extended.
  • the compound represented by the formula (2) and the compound represented by the formula (1), which are the assist dopant and the light emitting dopant contained in the composition for the organic electroluminescent device according to the present embodiment, are both iridium complex compounds.
  • the method for synthesizing the iridium complex compound is shown below.
  • the ligand of the iridium complex compound can be synthesized by a combination of known methods and the like.
  • Ligand synthesis is performed by Suzuki-Miyaura coupling reaction between arylboronic acids and halogenated heteroaryls, Friedlayer cyclization reaction with 2-formyl or acylaniline, or acyl-aminopyridines at ortho positions with each other. It can be synthesized by a known reaction such as (Chem. Rev. 2009, 109, 2652, or Organic Reactions, 1982, 28 (2), 37-201).
  • the iridium complex compound can be synthesized by a combination of known methods using the above-mentioned ligand and iridium chloride n hydrate as raw materials. This will be described below.
  • a method for synthesizing the iridium complex compound for the sake of clarity, a method via a chlorine-bridged iridium binuclear complex as shown in the following formula [A] using a phenylpyridine ligand as an example (MG Colombo). , TC Brunold, T. Riedener, HU GudelInorg. Chem., 1994, 33, 545-550), further chlorine cross-linking with acetylacetonate from a dinuclear complex as shown in the following formula [B].
  • the typical reaction conditions represented by the following formula [A] are as follows.
  • Et in the chemical formula means an ethyl group
  • Tf means a trifluoromethylsulfonyl group.
  • a chlorine-crosslinked iridium binuclear complex is synthesized by a reaction of 2 equivalents of the first ligand and 1 equivalent of iridium chloride n hydrate.
  • the solvent a mixed solvent of 2-ethoxyethanol and water is usually used, but a solvent-free solvent or another solvent may be used.
  • the reaction can be promoted by using an excessive amount of the ligand or by using an additive such as a base.
  • Other crosslinkable anionic ligands such as bromine can be used instead of chlorine.
  • the reaction temperature is not particularly limited, but usually 0 ° C. or higher is preferable, and 50 ° C. or higher is more preferable. Further, 250 ° C. or lower is preferable, and 150 ° C. or lower is more preferable. When the reaction temperature is within this range, only the desired reaction proceeds without accompanying by-products or decomposition reactions, and high selectivity tends to be obtained.
  • a halogen ion scavenger such as silver trifluoromethanesulfonate is added and brought into contact with the second ligand to obtain the desired complex.
  • ethoxyethanol or diglyme is usually used as the solvent, no solvent or other solvent can be used depending on the type of ligand, and a plurality of solvents can be mixed and used. It is not always necessary because the reaction may proceed without the addition of a halogen ion scavenger, but the scavenger is used to increase the reaction yield and selectively synthesize facial isomers having a higher quantum yield. Is advantageous.
  • the reaction temperature is not particularly limited, but is usually carried out in the range of 0 ° C. to 250 ° C.
  • the first-stage dinuclear complex can be synthesized in the same manner as in the formula [A].
  • one equivalent or more of a 1,3-dione compound such as acetylacetone and a basic compound capable of extracting active hydrogen of the 1,3-dione compound such as sodium carbonate are added to the dinuclear complex.
  • a 1,3-dione compound such as acetylacetone
  • a basic compound capable of extracting active hydrogen of the 1,3-dione compound such as sodium carbonate
  • a solvent such as ethoxyethanol or dichloromethane that can dissolve the dinuclear complex of the raw material is used, but if the ligand is liquid, it can be carried out without a solvent.
  • the reaction temperature is not particularly limited, but is usually carried out in the range of 0 ° C. to 200 ° C.
  • the third step is to react one or more equivalents of the second ligand.
  • the type and amount of the solvent are not particularly limited, and may be solvent-free as long as the second ligand is liquid at the reaction temperature.
  • the reaction temperature is also not particularly limited, but since the reactivity is slightly poor, the reaction is often carried out at a relatively high temperature of 100 ° C to 300 ° C. Therefore, a solvent having a high boiling point such as glycerin is preferably used.
  • purification is performed to remove unreacted raw materials, reaction by-products and solvents. Purification operations in ordinary synthetic organic chemistry can be applied, but purification is mainly performed by normal phase silica gel column chromatography as described in the above non-patent documents.
  • a single or mixed solution of hexane, heptane, dichloromethane, chloroform, ethyl acetate, toluene, methyl ethyl ketone, and methanol can be used as the developing solution. Purification may be performed multiple times under different conditions. Other chromatography techniques, such as reverse phase silica gel chromatography, size exclusion chromatography, paper chromatography, and purification operations such as liquid separation washing, reprecipitation, recrystallization, powder suspension washing, vacuum drying, etc., as required. Can be applied.
  • the composition for an organic electroluminescent device contains a solvent.
  • the composition for an organic electroluminescent device is usually used for forming a layer or a film by a wet film forming method, and is particularly preferably used for forming a light emitting layer of an organic electroluminescent device.
  • the content of the light emitting dopant in the composition for an organic electroluminescent device is usually 0.01% by mass or more, preferably 0.1% by mass or more, and usually 20% by mass or less, preferably 10% by mass or less. is there.
  • the excitation energy is transferred to an adjacent layer, for example, a hole transport layer or a hole blocking layer.
  • the emission efficiency can be improved because the extinction is less likely to occur due to the interaction between excitons.
  • the content of the luminescent dopant is the total content of the compounds represented by the formula (1).
  • the content of the assist dopant in the composition for an organic electroluminescent device is usually 0.005% by mass or more, preferably 0.05% by mass or more, and usually 10% by mass or less, preferably 5% by mass or less. is there.
  • the content of the assist dopant is the total content of the compounds represented by the formula (2).
  • the composition for an organic electroluminescent device may contain only one kind of compound serving as an assist dopant represented by the formula (2), or may contain two or more kinds in combination. However, when two or more kinds are included, the maximum emission wavelength of all the assist dopant compounds is shorter than the maximum emission wavelength of the emission dopant compound represented by the formula (1). Further, when two or more kinds of compounds serving as light emitting dopants represented by the formula (1) are contained, the maximum emitting wavelengths of all the assist dopant compounds are higher than the maximum light emitting wavelengths of all the light emitting dopant compounds. Is a short wave.
  • the composition ratio (mass%) of the compound represented by the formula (1) serving as a light emitting dopant is the composition ratio (mass%) of the compound represented by the formula (2) serving as an assist dopant. ) Is the same as or larger than that.
  • the composition ratio of the compound serving as the light emitting dopant By increasing the composition ratio of the compound serving as the light emitting dopant, the width of the light emitting spectrum becomes narrower and vivid light emission can be obtained when the organic electroluminescent device is used, which is suitable for display device applications.
  • the total composition ratio (mass%) of the compounds serving as light emitting dopants is larger than the total composition ratios (mass%) of all the compounds serving as assist dopants. Larger is preferred.
  • the compound serving as the light emitting dopant has 1 to 3 times the mass of the compound serving as the assist dopant. As a result, the energy from the assist dopant is transferred to the light emitting dopant more efficiently, so that higher luminous efficiency can be obtained. It is particularly preferable to have 1 to 2 times. From the viewpoint of obtaining more vivid light emission, the composition ratio (mass%) of the compound serving as the light emitting dopant is more preferably twice or more larger than the composition ratio (mass%) of the compound serving as the assist dopant. On the other hand, from the viewpoint of reducing the driving voltage of the device, the composition ratio (mass%) of the compound serving as the light emitting dopant is preferably less than twice the composition ratio (mass%) of the compound serving as the assist dopant.
  • the solvent contained in the composition for an organic electroluminescent device is a volatile liquid component used for forming a layer containing an assist dopant and a light emitting dopant by wet film formation.
  • the solvent is not particularly limited as long as it is a solvent in which a compound serving as an assist dopant as a solute and a compound serving as a light emitting dopant are dissolved well. Further, it is preferably a solvent that dissolves a charge transporting compound described later.
  • Preferred solvents include, for example, alkanes such as n-decane, cyclohexane, ethylcyclohexane, decalin, bicyclohexane; aromatic hydrocarbons such as toluene, xylene, mesitylene, phenylcyclohexane, tetralin; chlorobenzene, dichlorobenzene, trichlorobenzene and the like.
  • Halogenized aromatic hydrocarbons such as 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetol, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, etc.
  • Aromatic ethers such as 2,4-dimethylanisole and diphenyl ether; aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, n-butyl benzoate; cyclohexanone, cycloocta Aromatic ketones such as non- and fencon; Aromatic alcohols such as cyclohexanol and cyclooctanol; Aromatic ketones such as methyl ethyl ketone and dibutyl ketone; Aromatic alcohols such as butanol and hexanol; Ethylene glycol dimethyl ether and ethylene Examples thereof include aliphatic ethers such as glycol diethyl ether and propylene glycol-1-monomethyl ether acetate (PGMEA). Of these, alcans and aromatic hydrocarbons are more preferable, and phenylcyclohexane
  • the boiling point of the solvent is usually 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 150 ° C. or higher, and particularly preferably 200 ° C. or higher. Within this range, it is possible to prevent the film formation stability from being lowered due to solvent evaporation from the composition for the organic electroluminescent device during wet film formation.
  • the boiling point is usually 270 ° C. or lower, preferably 250 ° C. or lower, and more preferably 240 ° C. or lower.
  • the content of the solvent is preferably 10 parts by mass or more, more preferably 50 parts by mass or more, particularly preferably 80 parts by mass or more, and preferably 99 parts by mass with respect to 100 parts by mass of the composition for an organic electroluminescent device. It is .95 parts by mass or less, more preferably 99.9 parts by mass or less, and particularly preferably 99.8 parts by mass or less.
  • the thickness is usually about 3 to 200 nm, but the viscosity of the composition is increased by setting the solvent content to the above lower limit or more. It is possible to prevent the film formation workability from being lowered due to being too high.
  • the thickness is not more than the above upper limit, the thickness of the film obtained by removing the solvent after film formation is obtained to be a certain level or more, and the film forming property is improved.
  • the composition for an organic electroluminescent device according to the present embodiment preferably further contains a charge transporting compound.
  • a charge transporting compound a compound conventionally used as a material for an organic electroluminescent device can be used.
  • a compound conventionally used as a material for an organic electroluminescent device can be used.
  • triarylamine, biscarbazole, triaryltriazine, triarylpyrimidine and its derivatives naphthalene, perylene, pyrene, anthracene, chrysene, naphthalene, phenanthrene, coronene, fluoranthene, benzo substituted with arylamino or carbazolyl groups.
  • condensed aromatic ring compounds such as phenanthrene, fluorene and acetnaphthofluoranthene.
  • the charge transporting compound may be a polymer, and the polymer charge transporting compound includes poly (9,9-dioctylfluorene-2,7-diyl) and poly [(9,9-dioctylfluorene).
  • the organic electroluminescent device includes a layer formed by using the above composition for an organic electroluminescent device, preferably by a wet film forming method.
  • the organic electroluminescent device preferably has at least an anode, a cathode, and at least one organic layer between the anode and the cathode on the substrate, and at least one of the organic layers relates to the present embodiment.
  • This is a layer formed by using a composition for an organic electroluminescent device. It is more preferable that such a layer is formed by a wet film forming method.
  • the organic layer includes a light emitting layer, it is more preferable that the light emitting layer is a layer formed by using the composition for an organic electroluminescent device according to the present embodiment.
  • the wet film forming method is a film forming method, that is, as a coating method, for example, a spin coating method, a dip coating method, a die coating method, a bar coating method, a blade coating method, a roll coating method, a spray coating method, and the like.
  • a coating method for example, a spin coating method, a dip coating method, a die coating method, a bar coating method, a blade coating method, a roll coating method, a spray coating method, and the like.
  • We adopt methods such as capillary coating method, inkjet method, nozzle printing method, screen printing method, gravure printing method, flexographic printing method, etc., and dry the film formed by these methods to form a film. Refers to the method of doing.
  • FIG. 1 is a schematic cross-sectional view showing a structural example suitable for the organic electroluminescent device 10 of the present invention.
  • reference numeral 1 is a substrate
  • reference numeral 2 is an anode
  • reference numeral 3 is a hole injection layer
  • reference numeral 4 is a hole transport layer
  • reference numeral 5 is a light emitting layer
  • reference numeral 6 is a hole blocking layer
  • reference numeral 7 is an electron transport layer
  • Reference numeral 8 represents an electron injection layer
  • reference numeral 9 represents a cathode.
  • known materials can be applied, and there is no particular limitation, but typical materials and manufacturing methods for each layer are described below as examples. In the following, when citations such as gazettes and treatises are cited, the relevant contents can be appropriately applied and applied within the scope of common sense of those skilled in the art.
  • the substrate 1 serves as a support for an organic electroluminescent element, and usually a quartz or glass plate, a metal plate, a metal foil, or a synthetic resin, that is, a plastic film or sheet is used. Of these, a glass plate or a transparent synthetic resin film such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable.
  • the substrate 1 is preferably made of a material having a high gas barrier property because the organic electroluminescent element is unlikely to be deteriorated by the outside air. In particular, when a material having a low gas barrier property such as a synthetic resin substrate is used, it is preferable to provide a dense silicon oxide film or the like on at least one surface of the substrate 1 to improve the gas barrier property.
  • the anode 2 has a function of injecting holes into the layer on the light emitting layer side.
  • the anode 2 is usually a metal such as aluminum, gold, silver, nickel, palladium, platinum; a metal oxide such as an oxide of indium and / or tin; a metal halide such as copper iodide; carbon black or poly (3). -Methylthiophene), polypyrrole, polyaniline and other conductive polymers.
  • the anode 2 is usually formed by a dry method such as a sputtering method or a vacuum vapor deposition method.
  • a dry method such as a sputtering method or a vacuum vapor deposition method.
  • metal fine particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, conductive polymer fine powder, etc.
  • it is dispersed in an appropriate binder resin solution. It can also be formed by coating it on the substrate 1.
  • the anode 2 can be formed by directly forming a thin film on the substrate by electrolytic polymerization or by applying the conductive polymer on the substrate (Appl. Phys. Lett., Volume 60, p. 2711, 1992).
  • the anode 2 usually has a single-layer structure, but may have a laminated structure as appropriate. When the anode 2 has a laminated structure, different conductive materials may be laminated on the first-layer anode.
  • the thickness of the anode 2 may be determined according to the required transparency, material, and the like. When particularly high transparency is required, a thickness having a visible light transmittance of 60% or more is preferable, and a thickness having a visible light transmittance of 80% or more is more preferable.
  • the thickness of the anode 2 is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • the thickness of the anode 2 may be any thickness depending on the required strength and the like. In this case, the anode 2 may have the same thickness as the substrate 1.
  • impurities on the anode are removed by treating with ultraviolet rays + ozone, oxygen plasma, argon plasma, etc. before the film formation. At the same time, it is preferable to adjust the ionization potential to improve the hole injection property.
  • the layer having a function of transporting holes from the anode 2 side to the light emitting layer 5 side is usually called a hole injection transport layer or a hole transport layer.
  • the layer closer to the anode 2 side may be referred to as the hole injection layer 3.
  • the hole injection layer 3 will be described, but the hole injection transport layer or the hole transport layer when the layer responsible for the hole transport function is one layer will also be described as the hole injection layer 3. ..
  • the hole transport layer 4 which will be described later, is different from the hole transport layer when the layer responsible for transporting holes is one layer, and is on the light emitting layer 5 side when such layers are two or more layers.
  • the name of the closer layer which is an arbitrary layer.
  • the hole injection layer 3 is preferably used because it enhances the function of transporting holes from the anode 2 to the light emitting layer 5. When the hole injection layer 3 is used, the hole injection layer 3 is usually formed on the anode 2.
  • the film thickness of the hole injection layer 3 is usually 1 nm or more, preferably 5 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • the hole injection layer 3 may be formed by either a vacuum vapor deposition method or a wet film deposition method. In terms of excellent film forming property, it is preferably formed by a wet film forming method.
  • the hole injection layer 3 preferably contains a hole transporting compound, and more preferably contains a hole transporting compound and an electron accepting compound. Further, the hole injection layer 3 preferably contains a cation radical compound, and particularly preferably contains a cation radical compound and a hole transporting compound.
  • the composition for forming a hole injection layer usually contains a hole transporting compound that becomes the hole injection layer 3. In the case of the wet film forming method, a solvent is usually further contained. It is preferable that the composition for forming a hole injection layer has high hole transportability and can efficiently transport the injected holes. For this reason, it is preferable that the hole mobility is high and impurities that serve as traps are unlikely to be generated during production or use. Further, it is preferable that the stability is excellent, the ionization potential is small, and the transparency to visible light is high.
  • the hole injection layer 3 when the hole injection layer 3 is in contact with the light emitting layer 5, that is, when the layer having a function of transporting holes from the anode 2 side to the light emitting layer 5 side is one layer of the hole injection layer 3, the light emitting layer It is preferable that the light emitted from No. 5 is not extinguished, or that the light emitting layer 5 and the light emitting layer 5 are formed with an exciplex so as not to reduce the luminous efficiency.
  • hole transporting compound a compound having an ionization potential of 4.5 eV to 6.0 eV is preferable from the viewpoint of a charge injection barrier from the anode 2 to the hole injection layer 3.
  • hole-transporting compounds include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, compounds in which a tertiary amine is linked with a fluorene group, and hydrazone. Examples thereof include system compounds, silazane compounds, and quinacridone compounds.
  • an aromatic amine compound is preferable, and an aromatic tertiary amine compound is particularly preferable from the viewpoint of amorphousness and visible light transmission.
  • the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and also includes a compound having a group derived from an aromatic tertiary amine.
  • the type of the aromatic tertiary amine compound is not particularly limited, but a polymer compound having a weight average molecular weight of 1,000 or more and 1,000,000 or less (a polymerized compound in which repeating units are continuous) is easy to obtain uniform light emission due to the surface smoothing effect. It is preferable to use.
  • Preferred examples of the aromatic tertiary amine polymer compound include a polymer compound having a repeating unit represented by the following formula (I).
  • Ar 1 and Ar 2 are independently monovalent aromatic groups which may have a substituent or monovalent complex aromatic groups which may have a substituent.
  • Ar 3 to Ar 5 each independently represent a divalent aromatic group which may have a substituent or a divalent heteroaromatic group which may have a substituent.
  • Q represents a linking group selected from the following linking group group. Further, of Ar 1 to Ar 5 , two groups bonded to the same N atom may be bonded to each other to form a ring. The linking groups are shown below.
  • Ar 6 ⁇ Ar 16 are each independently, .R a represents an heteroaromatic group optionally having an optionally substituted aromatic group or a substituent and R b each independently represents a hydrogen atom or any substituent.
  • the aromatic groups and heteroaromatic groups of Ar 1 to Ar 16 include a benzene ring, a naphthalene ring, a phenanthrene ring, a thiophene ring, and a pyridine ring in terms of solubility, heat resistance, and hole injection transportability of the polymer compound. Derived groups are preferable, and groups derived from benzene rings and naphthalene rings are more preferable.
  • Specific examples of the aromatic tertiary amine polymer compound having a repeating unit represented by the formula (I) include those described in International Publication No. 2005/089024.
  • the hole injection layer 3 can improve the conductivity of the hole injection layer 3 by oxidizing the hole transporting compound, it is preferable that the hole injection layer 3 contains an electron accepting compound.
  • the electron-accepting compound a compound having an oxidizing power and an ability to accept one electron from the hole-transporting compound described above is preferable. Specifically, a compound having an electron affinity of 4 eV or more is more preferable, and a compound having an electron affinity of 5 eV or more is further preferable.
  • Examples of such an electron-accepting compound include a triarylboron compound, a metal halide, a Lewis acid, an organic acid, an onium salt, a salt of an arylamine and a metal halide, and a salt of an arylamine and a Lewis acid.
  • Examples thereof include one or more compounds selected from the group consisting of two or more compounds.
  • onium salts substituted with organic groups such as 4-isopropyl-4'-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate, triphenylsulfonium tetrafluoroborate (International Publication No. 2005/089024); chloride.
  • High valence inorganic compounds such as iron (III) (Japanese Patent Laid-Open No. 11-251667), ammonium peroxodisulfate; cyano compounds such as tetracyanoethylene; tris (pentafluorophenyl) borane (Japanese Patent Laid-Open No. 20033-) Aromatic boron compounds such as (No. 31365); fullerene derivatives, iodine and the like can be mentioned.
  • cation radical compound an ionic compound composed of a cation radical, which is a chemical species obtained by removing one electron from a hole transporting compound, and a counter anion is preferable.
  • the cation radical is derived from a hole-transporting polymer compound, the cation radical has a structure in which one electron is removed from the repeating unit of the polymer compound.
  • the cation radical is preferably a chemical species obtained by removing one electron from the above-mentioned compound as a hole-transporting compound in terms of amorphousness, visible light transmittance, heat resistance, solubility and the like. ..
  • the cationic radical compound can be produced by mixing the hole transporting compound and the electron accepting compound described above. By mixing the above-mentioned hole-transporting compound and electron-accepting compound, electron transfer occurs from the hole-transporting compound to the electron-accepting compound, and the hole-transporting compound consists of a cation radical and a counter anion. A cationic radical compound is produced.
  • cationic radical compound examples include poly (3,4-ethylenedioxythiophene) (PEDOT / PSS) (Adv. Matter., 2000, Vol. 12, p. 481) doped with poly (4-styrene sulfonic acid) and emeraldine.
  • Cationic radical compounds derived from polymer compounds such as hydrochloride J. Phys. Chem., 1990, Vol. 94, p. 7716
  • oxidative polymerization dehydropolymerization
  • the oxidative polymerization referred to here is to chemically or electrochemically oxidize a monomer in an acidic solution using peroxodisulfate or the like.
  • the material to be the hole injection layer 3 is usually mixed with a soluble solvent (solvent for the hole injection layer) to form a film-forming composition (positive).
  • a composition for forming a hole injection layer) is prepared, and this composition for forming a hole injection layer is formed on a layer corresponding to the lower layer of the hole injection layer 3, usually on the anode 2 by a wet film forming method. It is formed by drying.
  • the film formed can be dried in the same manner as the drying method in forming the light emitting layer 5 by the wet film forming method.
  • the concentration of the hole transporting compound in the composition for forming a hole injection layer is arbitrary as long as the effect of the present invention is not significantly impaired, but it is preferably low from the viewpoint of film thickness uniformity, and hole injection A higher layer is preferable from the viewpoint that defects are less likely to occur in the layer 3.
  • the concentration of the hole transporting compound in the composition for forming a hole injection layer is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, particularly preferably 0.5% by mass or more, and further. It is preferably 70% by mass or less, more preferably 60% by mass or less, and particularly preferably 50% by mass or less.
  • the solvent examples include ether-based solvents, ester-based solvents, aromatic hydrocarbon-based solvents, amide-based solvents and the like.
  • the ether-based solvent examples include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and propylene glycol-1-monomethyl ether acetate (PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, and anisole. , Fenetol, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole and other aromatic ethers.
  • ester-based solvent examples include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
  • aromatic hydrocarbon solvent examples include toluene, xylene, cyclohexylbenzene, 3-isopropylbiphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, methylnaphthalene and the like.
  • amide solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide and the like.
  • dimethyl sulfoxide and the like can also be used.
  • the formation of the hole injection layer 3 by the wet film formation method is usually performed on a layer corresponding to the lower layer of the hole injection layer 3, usually on the anode 2, after preparing the composition for forming the hole injection layer. It is carried out by coating and forming a film and drying. In the hole injection layer 3, the coating film is usually dried by heating, vacuum drying, or the like after the film formation.
  • the hole injection layer 3 is formed by the vacuum vapor deposition method
  • the constituent materials of the hole injection layer 3 that is, the hole transporting compound, the electron accepting compound, and the like described above are used.
  • the crucible installed in the vacuum container.
  • each is usually put in a separate crucible.
  • the inside of the vacuum vessel is evacuated to about 10 -4 Pa with a vacuum pump, and then the crucible is heated to evaporate the material in the crucible while controlling the amount of evaporation.
  • each crucible is usually heated and evaporated while controlling the amount of evaporation independently.
  • the hole injection layer 3 is formed on the anode 2 on the substrate placed facing the crucible.
  • the hole injection layer 3 can be put into a crucible as a mixture, heated and evaporated to form the hole injection layer 3.
  • the degree of vacuum during vapor deposition is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 ⁇ 10 -6 Torr (0.13 ⁇ 10 -4 Pa) or more, 9.0 ⁇ 10 -6 Torr ( It is 12.0 ⁇ 10 -4 Pa) or less.
  • the vapor deposition rate is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 ⁇ / sec or more and 5.0 ⁇ / sec or less.
  • the film formation temperature at the time of vapor deposition is not limited as long as the effect of the present invention is not significantly impaired, but is preferably 10 ° C. or higher and 50 ° C. or lower.
  • the hole transport layer 4 is a layer that has a function of transporting holes from the anode 2 side to the light emitting layer 5.
  • the hole transport layer 4 is not an essential layer in the organic electroluminescent device according to the present embodiment, it is preferable to provide the hole transport layer 4 from the viewpoint of enhancing the function of transporting holes from the anode 2 to the light emitting layer 5.
  • the hole transport layer 4 is usually formed between the anode 2 and the light emitting layer 5.
  • there is a hole injection layer 3 the hole transport layer 4 is formed between the hole injection layer 3 and the light emitting layer 5.
  • the film thickness of the hole transport layer 4 is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the hole transport layer 4 may be formed by either a vacuum vapor deposition method or a wet film deposition method. From the viewpoint of excellent film forming property, it is preferable to form by a wet film forming method.
  • the hole transport layer 4 usually contains a hole transport compound that becomes the hole transport layer 4.
  • the hole-transporting compound contained in the hole-transporting layer 4 include two or more tertiary compounds represented by 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl.
  • Aromatic diamine containing amine and having two or more fused aromatic rings replaced with nitrogen atoms Japanese Patent Laid-Open No. 5-234681
  • Aromatic amine compounds having a starburst structure such as phenylamine (J. Lumin., 72-74, pp.
  • aromatic amine compounds consisting of triphenylamine tetramers (Chem. Commun., 2175, 1996), 2,2', 7,7'-tetrax- (diphenylamino) -9,9'-spirobifluorene and other spiro compounds (Synth. Metals, 91, 209, 1997). , 4,4'-N, N'-dicarbazolebiphenyl and other carbazole derivatives and the like.
  • Polyvinylcarbazole, polyvinyltriphenylamine Japanese Patent Laid-Open No. 7-53953
  • polyarylene ether sulfone containing tetraphenylbenzidine Polym. Adv. Tech., Vol. 7, p. 33, 1996) and the like are also preferable. Can be used.
  • the hole transport layer 4 is formed by the wet film forming method, usually, in the same manner as when the hole injection layer 3 is formed by the wet film forming method, instead of the hole injection layer forming composition. It is formed using a composition for forming a hole transport layer.
  • the hole transport layer forming composition usually further contains a solvent.
  • the solvent used in the hole transport layer forming composition the same solvent as the solvent used in the hole injection layer forming composition described above can be used.
  • the concentration of the hole-transporting compound in the composition for forming the hole-transporting layer can be in the same range as the concentration of the hole-transporting compound in the composition for forming the hole-injecting layer.
  • the hole transport layer 4 can be formed by the wet film formation method in the same manner as the hole injection layer 3 film formation method described above.
  • hole transport layer 4 is formed by the vacuum vapor deposition method
  • holes are usually used instead of the constituent materials of the hole injection layer 3 in the same manner as when the hole injection layer 3 is formed by the vacuum vapor deposition method. It can be formed using the constituent materials of the transport layer 4.
  • the film formation conditions such as the degree of vacuum, the vapor deposition rate, and the temperature at the time of vapor deposition can be the same as those at the time of vacuum vapor deposition of the hole injection layer 3.
  • the light emitting layer 5 is a layer having a function of emitting light by being excited by recombination of holes injected from the anode 2 and electrons injected from the cathode 9 when an electric field is applied between the pair of electrodes. ..
  • the light emitting layer 5 is a layer formed between the anode 2 and the cathode 9.
  • the light emitting layer 5 is formed between the hole injection layer 3 and the cathode 9 when the hole injection layer 3 is above the anode 2, and is positive when the hole transport layer 4 is above the anode 2. It is formed between the hole transport layer 4 and the cathode 9.
  • the film thickness of the light emitting layer 5 is arbitrary as long as the effect of the present invention is not significantly impaired, but a thick film thickness is preferable from the viewpoint that defects are unlikely to occur in the film, and a thin film thickness is preferable from the viewpoint that a low driving voltage is likely to occur. ..
  • the film thickness of the light emitting layer 5 is preferably 3 nm or more, more preferably 5 nm or more, and usually 200 nm or less, further preferably 100 nm or less.
  • the light emitting layer 5 is preferably formed using the composition for an organic electroluminescent device according to the present embodiment, and more preferably formed by a wet coating method.
  • the organic electroluminescent device may contain other light emitting materials and charge transporting materials.
  • the luminescent material and the charge transporting material of the above will be described in detail.
  • the light emitting material is not particularly limited as long as it emits light at a desired light emitting wavelength and the effect of the present invention is not impaired, and a known light emitting material can be applied.
  • the light emitting material may be either a fluorescent light emitting material or a phosphorescent light emitting material, but a material having good luminous efficiency is preferable, and a phosphorescent light emitting material is preferable from the viewpoint of internal quantum efficiency.
  • Examples of the fluorescent light emitting material include the following materials.
  • Examples of the fluorescent light emitting material (blue fluorescent light emitting material) that gives blue light emission include naphthalene, perylene, pyrene, anthracene, coumarin, chrysene, p-bis (2-phenylethenyl) benzene, and derivatives thereof.
  • the fluorescent light-emitting material giving green luminescence (green fluorescent material) for example, quinacridone derivatives, coumarin derivatives, aluminum complexes such as Al (C 9 H 6 NO) 3 and the like.
  • Examples of the fluorescent light emitting material that gives yellow light emission include rubrene, a perimidone derivative, and the like.
  • Examples of the fluorescent light emitting material (red fluorescent light emitting material) that gives red light emission include DCM (4- (dimethyanomethylene) -2-methyl-6- (p-dimethylaminostylyl) -4H-pyran) compounds, benzopyran derivatives, and rhodamine derivatives. , Benzothioxanthene derivatives, azabenzothioxanthene and the like.
  • the phosphorescent material for example, from the 7th to 11th groups of the long periodic table (hereinafter, unless otherwise specified, the term "periodic table” refers to the long periodic table).
  • the term "periodic table” refers to the long periodic table.
  • Examples thereof include an organic metal complex containing a selected metal.
  • the metal selected from Groups 7 to 11 of the periodic table is preferably ruthenium, rhodium, palladium, silver, renium, osmium, iridium, platinum, gold and the like.
  • a ligand in which a (hetero) aryl group such as a (hetero) arylpyridine ligand or a (hetero) arylpyrazole ligand is linked to a pyridine, pyrazole, phenanthroline or the like is preferable.
  • a phenylpyridine ligand and a phenylpyrazole ligand are preferable.
  • the (hetero) aryl group represents at least one of an aryl group and a heteroaryl group.
  • Specific preferred phosphorescent materials include tris (2-phenylpyridine) iridium, tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, bis (2-phenylpyridine) platinum, and tris (2).
  • -Finylpyridine complexes such as osmium and tris (2-phenylpyridine) renium and porphyrin complexes such as octaethyl platinum porphyrin, octaphenyl platinum porphyrin, octaethyl palladium porphyrin and octaphenyl palladium porphyrin can be mentioned.
  • Polymer-based luminescent materials include poly (9,9-dioctylfluorene-2,7-diyl) and poly [(9,9-dioctylfluorene-2,7-diyl) -co- (4,4'-).
  • the charge transporting material is a material having positive charge (hole) or negative charge (electron) transportability, and is not particularly limited as long as the effects of the present invention are not impaired, and known materials can be applied.
  • As the charge transporting material a compound or the like conventionally used for the light emitting layer 5 of the organic electroluminescent device can be used, and a compound used as a host material for the light emitting layer 5 is particularly preferable.
  • the charge transporting material include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, and compounds in which a tertiary amine is linked with a fluorene group.
  • two or more fused aromatic rings containing two or more tertiary amines represented by 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl are used.
  • Aromatic amines having a starburst structure such as aromatic diamines substituted with nitrogen atoms (Japanese Patent Laid-Open No. 5-234681), 4,4', 4''-tris (1-naphthylphenylamino) triphenylamines, etc.
  • Aromatic amine compounds consisting of tetramers of triphenylamines (Chem. Commun., 2175, 1996), 2,2 series compounds (J.
  • Fluorene compounds such as', 7,7'-tetrax- (diphenylamino) -9,9'-spirobifluorene (Synth. Metals, Vol. 91, p. 209, 1997), 4, 4'-N, N
  • Compounds exemplified as the hole-transporting compound of the hole-transporting layer 4 such as a carbazole-based compound such as ′ -dicarbazolebiphenyl can also be preferably used.
  • the organic electroluminescent device preferably has a light emitting layer formed by a wet film forming method using the composition for an organic electroluminescent device according to the present embodiment.
  • a light emitting layer may be provided in addition to the light emitting layer formed by using the composition for an organic electroluminescent device according to the present embodiment.
  • the method for forming these light emitting layers may be a vacuum vapor deposition method or a wet film forming method, but the wet film forming method is preferable because of its excellent film forming property.
  • the material to be layer 5 is formed by using a light emitting layer forming composition prepared by mixing with a soluble solvent (solvent for light emitting layer).
  • a solvent solvent for light emitting layer.
  • the solvent include ether-based solvents, ester-based solvents, aromatic hydrocarbon-based solvents, amide-based solvents, alcan-based solvents, halogenated aromatic hydrocarbon-based solvents, etc., which were mentioned for the formation of the hole injection layer 3.
  • Examples thereof include an aliphatic alcohol solvent, an alicyclic alcohol solvent, an aliphatic ketone solvent and an alicyclic ketone solvent.
  • the solvent used is as exemplified as the solvent of the iridium complex compound-containing composition in the present embodiment. Specific examples of the solvent are given below, but the present invention is not limited thereto as long as the effect of the present invention is not impaired.
  • aliphatic ether solvents such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetol, 2 -Aromatic ether solvents such as methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, diphenyl ether; phenyl acetate, phenyl propionate, methyl benzoate, benzoic acid Aromatic ester solvents such as ethyl, propyl benzoate, n-butyl benzoate; toluene, xylene, mesitylene, cyclohexylbenzene, tetralin, 3-isopropylbiphenyl, 1,2,3,4
  • the solvent evaporates at an appropriate rate from the liquid film immediately after the film formation. Therefore, as described above, the boiling point of the solvent used is usually 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and usually 270 ° C. or lower, preferably 250 ° C. or lower, more preferably 230 ° C. or lower. Is.
  • the amount of the solvent used is arbitrary as long as the effect of the present invention is not significantly impaired, but the total content in the light emitting layer forming composition, that is, the iridium complex compound-containing composition is low in viscosity, so that the film forming operation can be performed.
  • the content of the solvent is preferably 1% by mass or more, more preferably 10% by mass or more, particularly preferably 50% by mass or more, and preferably 99.99% by mass or less in the iridium complex compound-containing composition. , More preferably 99.9% by mass or less, and particularly preferably 99% by mass or less.
  • heating or depressurization can be used as a method for removing the solvent after the wet film formation.
  • the heating means used in the heating method a clean oven and a hot plate are preferable because heat is evenly applied to the entire film.
  • the heating temperature in the heating step is arbitrary as long as the effect of the present invention is not significantly impaired, but a high temperature is preferable from the viewpoint of shortening the drying time, and a low temperature is preferable from the viewpoint of less damage to the material.
  • the upper limit of the heating temperature is usually 250 ° C. or lower, preferably 200 ° C. or lower, and more preferably 150 ° C. or lower.
  • the lower limit of the heating temperature is usually 30 ° C. or higher, preferably 50 ° C.
  • the temperature By setting the temperature to the above upper limit or less, the temperature becomes lower than the heat resistance of the normally used charge transporting material or phosphorescent material, and decomposition and crystallization can be suppressed.
  • the heating temperature By setting the heating temperature to the above lower limit or higher, it is possible to avoid a long time in removing the solvent.
  • the heating time in the heating step is appropriately determined by the boiling point and vapor pressure of the solvent in the composition for forming the light emitting layer, the heat resistance of the material, and the heating conditions.
  • Formation of light emitting layer 5 by vacuum vapor deposition method When the light emitting layer 5 is formed by the vacuum vapor deposition method, usually, one or more of the constituent materials of the light emitting layer 5, that is, the above-mentioned light emitting material, charge transporting compound, etc., are installed in a crucible. Put in. At this time, when two or more kinds of materials are used, each is usually put in a separate crucible. Then, after exhausting the inside of the vacuum vessel to about 10 -4 Pa with a vacuum pump, the pit is heated to evaporate while controlling the amount of evaporation of the material in the pit. When two or more kinds of materials are used, each crucible is usually heated and evaporated while controlling the amount of evaporation independently.
  • the light emitting layer 5 is formed on the hole injection layer 3 or the hole transport layer 4 placed facing the crucible.
  • the light emitting layer 5 is formed on the hole injection layer 3 or the hole transport layer 4 placed facing the crucible.
  • they can be put into a crucible as a mixture and heated and evaporated to form a light emitting layer 5.
  • the degree of vacuum at the time of vapor deposition is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 ⁇ 10 -6 Torr (0.13 ⁇ 10 -4 Pa) or more, 9.0 ⁇ 10 -6 Torr ( It is 12.0 ⁇ 10 -4 Pa) or less.
  • the vapor deposition rate is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 ⁇ / sec or more and 5.0 ⁇ / sec or less.
  • the film formation temperature at the time of vapor deposition is not limited as long as the effect of the present invention is not significantly impaired, but is preferably 10 ° C. or higher and 50 ° C. or lower.
  • a hole blocking layer 6 may be provided between the light emitting layer 5 and the electron injection layer 8 described later.
  • the hole blocking layer 6 is a layer laminated on the light emitting layer 5 so as to be in contact with the interface of the light emitting layer 5 on the cathode 9 side.
  • the hole blocking layer 6 has a role of blocking holes moving from the anode 2 from reaching the cathode 9 and a role of efficiently transporting electrons injected from the cathode 9 toward the light emitting layer 5.
  • the physical properties required for the material constituting the hole blocking layer 6 are high electron mobility and low hole mobility, an energy gap, that is, a large difference between HOMO and LUMO, and an excited triplet level (T1). ) Is high.
  • Examples of the material of the hole blocking layer 6 satisfying such conditions include bis (2-methyl-8-quinolinolato) (phenolato) aluminum and bis (2-methyl-8-quinolinolato) (triphenylsilanorat) aluminum.
  • Mixed ligand complexes such as bis (2-methyl-8-quinolato) aluminum- ⁇ -oxo-bis- (2-methyl-8-quinolinolato) aluminum dinuclear metal complexes and other metal complexes, distyrylbiphenyl derivatives, etc.
  • the method for forming the hole blocking layer 6 is not limited, and the hole blocking layer 6 can be formed in the same manner as the method for forming the light emitting layer 5 described above.
  • the film thickness of the hole blocking layer 6 is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less.
  • the electron transport layer 7 is provided between the light emitting layer 5 or the hole element layer 6 and the electron injection layer 8 for the purpose of further improving the current efficiency of the device.
  • the electron transport layer 7 is formed of a compound capable of efficiently transporting electrons injected from the cathode 9 in the direction of the light emitting layer 5 between the electrodes to which an electric field is applied.
  • the electron-transporting compound used in the electron-transporting layer 7 the electron-injecting efficiency from the cathode 9 or the electron-injecting layer 8 is high, and the injected electrons can be efficiently transported with high electron mobility. It needs to be a compound.
  • Examples of the electron-transporting compound satisfying such conditions include a metal complex such as an aluminum complex of 8-hydroxyquinoline (Japanese Patent Laid-Open No. 59-194393), and a metal complex of 10-hydroxybenzo [h] quinoline. , Oxaziazole derivative, distyrylbiphenyl derivative, silol derivative, 3-hydroxyflavon metal complex, 5-hydroxyflavon metal complex, benzoxazole metal complex, benzothiazole metal complex, trisbenzimidazolylbenzene (US Pat. No. 5,645,948). ), Kinoxalin compound (Japanese Patent Laid-Open No. 6-207169), phenanthroline derivative (Japanese Patent Application Laid-Open No.
  • the film thickness of the electron transport layer 7 is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the electron transport layer 7 is formed by laminating on the light emitting layer 5 or the hole blocking layer 6 by a wet film forming method or a vacuum vapor deposition method in the same manner as the light emitting layer 5. Usually, the vacuum deposition method is often used.
  • the electron injection layer 8 plays a role of efficiently injecting the electrons injected from the cathode 9 into the electron transport layer 7 or the light emitting layer 5.
  • a metal having a low work function as the material for forming the electron injection layer 8.
  • alkali metals such as sodium and cesium, alkaline earth metals such as barium and calcium, and the like are used.
  • the film thickness of the electron injection layer 8 is preferably 0.1 to 5 nm.
  • an organic electron transport material typified by a nitrogen-containing heterocyclic compound such as basophenanthroline or a metal complex such as an aluminum complex of 8-hydroxyquinoline is doped with an alkali metal such as sodium, potassium, cesium, lithium, or rubidium ().
  • an alkali metal such as sodium, potassium, cesium, lithium, or rubidium ().
  • the film thickness is usually 5 nm or more, preferably 10 nm or more, and usually 200 nm or less, preferably 100 nm or less.
  • the electron injection layer 8 is formed by laminating on the light emitting layer 5 or the hole blocking layer 6 or the electron transport layer 7 on the light emitting layer 5 by a wet film forming method or a vacuum vapor deposition method in the same manner as the light emitting layer 5.
  • the details in the case of the wet film forming method are the same as in the case of the light emitting layer 5 described above.
  • the cathode 9 plays a role of injecting electrons into a layer on the light emitting layer 5 side such as the electron injection layer 8 or the light emitting layer 5.
  • the material used for the above-mentioned indium 2 can be used, but in order to efficiently inject electrons, it is preferable to use a metal having a low work function, for example, tin and magnesium.
  • a metal having a low work function for example, tin and magnesium.
  • Indium, calcium, aluminum, silver and other metals or alloys thereof are used.
  • Examples of the material of the cathode 9 include alloy electrodes having a low work function such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • a metal layer having a high work function and stable to the atmosphere on the cathode 9 to protect the cathode 9 made of a metal having a low work function.
  • the metal to be laminated include metals such as aluminum, silver, copper, nickel, chromium, gold, and platinum.
  • the film thickness of the cathode is usually the same as that of the anode 2.
  • the electron blocking layer prevents electrons moving from the light emitting layer 5 from reaching the hole transporting layer 4, thereby increasing the recombination probability with holes in the light emitting layer 5 and producing excitons. It has a role of confining the holes in the light emitting layer 5 and a role of efficiently transporting the holes injected from the hole transport layer 4 in the direction of the light emitting layer 5.
  • the characteristics required for the electron blocking layer include high hole transportability, a large energy gap, that is, a large difference between HOMO and LUMO, and a high excited triplet level (T1).
  • the electron blocking layer is also formed by the wet film forming method because the device can be easily manufactured. Therefore, it is preferable that the electron blocking layer also has wet film formation compatibility, and the material used for such an electron blocking layer is a copolymer of dioctylfluorene and triphenylamine represented by F8-TFB (international). Publication No. 2004/084260) and the like.
  • the interface layer means, for example, two layers when the anode is ITO and the cathode is Al.
  • the present invention can be applied to any of a single element, an element having an array-arranged structure, and a structure in which an anode and a cathode are arranged in an XY matrix.
  • the display device and the lighting device according to the present embodiment have the above-mentioned organic electroluminescent element.
  • the type and structure of the display device are not particularly limited, and can be assembled according to a conventional method using the organic electroluminescent device according to the present embodiment.
  • the display device according to this embodiment can be used by the method described in "Organic EL Display” (Ohmsha, published on August 20, 2004, by Shizushi Tokito, Chihaya Adachi, Hideyuki Murata). Can be formed.
  • Example 1 An organic electroluminescent device was manufactured by the following method.
  • a transparent conductive film of indium tin oxide (ITO) deposited on a glass substrate to a thickness of 50 nm (manufactured by Sanyo Vacuum Co., Ltd., sputter-deposited product) is 2 mm using ordinary photolithography technology and hydrochloric acid etching. The width stripes were patterned to form an anode.
  • the substrate on which the ITO pattern is formed is washed in the order of ultrasonic cleaning with an aqueous surfactant solution, water washing with ultrapure water, ultrasonic cleaning with ultrapure water, and water washing with ultrapure water, and then dried with compressed air. Finally, UV ozone cleaning was performed.
  • composition for forming the hole injection layer 3.0% by mass of the hole-transporting polymer compound having a repeating structure represented by the following formula (P-1) and the composition represented by the following formula (HI-1).
  • a composition was prepared in which 0.6% by mass of an oxidizing agent was dissolved in ethyl benzoate. This solution was spin-coated on the substrate in the atmosphere and dried at an atmospheric hot plate at 240 ° C. for 30 minutes to form a uniform thin film having a film thickness of 40 nm to form a hole injection layer.
  • HT-1 charge-transporting polymer compound having a structure represented by the following formula (HT-1) was dissolved in cyclohexylbenzene to prepare a 3.0% by mass solution.
  • This solution was spin-coated in a nitrogen glove box on a substrate coated with the hole injection layer and dried on a hot plate in the nitrogen glove box at 230 ° C. for 30 minutes to form a uniform thin film having a film thickness of 40 nm. It was formed and used as a hole transport layer.
  • the compound represented by the following formula (H-1) is 60 parts by mass
  • the compound represented by the following formula (H-2) is 40 parts by mass
  • the following formula (D-1) is used as the material of the light emitting layer.
  • This solution was spin-coated in a nitrogen glove box on a substrate coated with the hole transport layer and dried on a hot plate in the nitrogen glove box at 120 ° C. for 20 minutes to form a uniform thin film having a film thickness of 80 nm. It was formed and used as a light emitting layer.
  • the compound represented by the formula (D-1) is a dopant having a wavelength of 613 nm
  • the compound represented by the formula (D-2) is a dopant having a wavelength of 555 nm as the maximum emission wavelength.
  • the substrate on which the light emitting layer was formed was installed in a vacuum vapor deposition apparatus, and the inside of the apparatus was exhausted until it became 2 ⁇ 10 -4 Pa or less.
  • the compound represented by the following formula (HB-1) and 8-hydroxyquinolinola tritium were placed on the light emitting layer at a rate of 1 ⁇ / sec by vacuum deposition so as to have a film thickness ratio of 2: 3.
  • a hole blocking layer having a film thickness of 30 nm was formed by co-depositing with.
  • a striped shadow mask having a width of 2 mm was brought into close contact with the substrate so as to be orthogonal to the ITO stripe of the anode as a mask for cathode vapor deposition, and installed in another vacuum vapor deposition apparatus.
  • aluminum was heated by a molybdenum boat to form an aluminum layer having a film thickness of 80 nm at a vapor deposition rate of 1 to 8.6 ⁇ / sec to form a cathode.
  • an organic electroluminescent device having a light emitting area portion having a size of 2 mm ⁇ 2 mm was obtained.
  • red light emission derived from the compound represented by the formula (D-1) was observed.
  • the structural formula of the compound represented by the formula (D-3) is shown below.
  • the compound represented by the formula (D-3) is a dopant having a wavelength of 560 nm as the maximum emission wavelength.
  • the structural formula of the compound represented by the formula (D-4) is shown below.
  • the compound represented by the formula (D-4) is a dopant having a wavelength of 558 nm as the maximum emission wavelength.
  • a compound represented by the formula (D-5) is used as the red electroluminescent dopant, and the light emitting layer composition is determined by the mass ratio of the compounds represented by each formula (H-1) :( H-2) :( D-. 5):
  • the structural formula of the compound represented by the formula (D-5) is shown below. When a voltage was applied to the obtained organic electroluminescent device, red light emission derived from the compound represented by the formula (D-5) was observed.
  • a compound represented by the formula (D-5) is used as the red electroluminescent dopant, and the light emitting layer composition is determined by the mass ratio of the compounds represented by each formula (H-1) :( H-2) :( D-.
  • a compound represented by the formula (D-5) is used as the red electroluminescent dopant, and the light emitting layer composition is determined by the mass ratio of the compounds represented by each formula (H-1) :( H-2) :( D-.
  • ⁇ EQE EQE (Example n) -EQE (Comparative Example n) obtained by subtracting the EQE of Comparative Example n (n is 1 to 3) from the EQE of Example n (n is 1 to 3) is obtained. It is also described in Table 1 below. As shown in the results of Table 1, an organic electroluminescent device using the compound represented by the formula (D-1) according to the present embodiment as a light emitting dopant as a light emitting layer material is represented by the formula (D-5). It was found that the efficiency was improved regardless of the structure of the compound serving as the assist dopant as compared with the organic electroluminescent device using the compound.
  • the light emitting layer composition is calculated by the mass ratio of the compounds represented by each formula, without using the compound represented by the formula (D-2) that serves as an assist punt, (H-1) :( H-2) :.
  • the light emitting layer composition is represented by each formula by using the compound represented by the formula (D-5) as the red light emitting dopant and without using the compound represented by the formula (D-2) which is an assist punt.
  • the organic electroluminescent device (Example 1) in which the compound represented by the formula (D-1) according to the present embodiment is used as the light emitting dopant as the light emitting layer material is represented by the formula. It can be seen that the range of change in the external quantum efficiency when the compound serving as the assist dopant is added is large as compared with the organic electroluminescent device (Comparative Example 1) using the compound represented by (D-5).
  • Example 4 A compound represented by the formula (D-6) is used as the red electroluminescent dopant, and the light emitting layer composition is determined by the mass ratio of the compounds represented by each formula (H-1) :( H-2) :( D-. 6):
  • the compound represented by the formula (D-6) is a dopant having a wavelength of 627 nm as the maximum emission wavelength. When a voltage was applied to the obtained organic electroluminescent device, red light emission derived from the compound represented by the formula (D-6) was observed.
  • the compound represented by the formula (D-7) is a dopant having a wavelength of 605 nm as the maximum emission wavelength. When a voltage was applied to the obtained organic electroluminescent device, red light emission derived from the compound represented by the formula (D-6) was observed.
  • the organic electroluminescent device used in the light emitting layer in combination with the compound represented by the formula (D-6) according to the present embodiment as the light emitting dopant and the compound serving as the assist dopant is efficient. It can be seen that the device has a high drive life and a long drive life. Among them, it can be seen that an organic electroluminescent device using a compound represented by the formula (D-7) as a compound serving as an assist dopant has higher luminous efficiency and a longer drive life.

Abstract

The present invention relates to a composition for an organic electroluminescent element comprising: a compound represented by formula (1) wherein a triazine ring has been substituted at a specific position; and a compound represented by formula (2), whereof the maximum light-emission wavelength is a shorter wave than that of the compound represented by formula (1); and a solvent.

Description

有機電界発光素子用組成物、有機電界発光素子とその製造方法、及び表示装置Compositions for organic electroluminescent devices, organic electroluminescent devices and their manufacturing methods, and display devices
 本発明は有機電界発光素子(以下、「有機EL素子」と称す場合がある。)の発光層を形成するために有用な有機電界発光素子用組成物に関する。本発明はまた、該有機電界発光素子用組成物を用いて形成された発光層を有する有機電界発光素子とその製造方法、及び該有機電界発光素子を有する表示装置に関する。 The present invention relates to a composition for an organic electroluminescent device that is useful for forming a light emitting layer of an organic electroluminescent device (hereinafter, may be referred to as an "organic EL device"). The present invention also relates to an organic electroluminescent device having a light emitting layer formed by using the composition for the organic electroluminescent device, a method for manufacturing the organic electroluminescent device, and a display device having the organic electroluminescent device.
 有機EL照明や有機ELディスプレイなど、有機EL素子を利用する各種電子デバイスが実用化されている。有機電界発光素子は、印加電圧が低いため消費電力が小さく、三原色発光も可能であるため、大型のディスプレイモニターだけではなく、携帯電話やスマートフォンに代表される中小型ディスプレイへの応用が始まっている。
 有機電界発光素子は発光層や電荷注入層、電荷輸送層など複数の層を積層することにより製造される。現在、有機電界発光素子の多くは、有機材料を真空下で蒸着することにより製造されているが、真空蒸着法では、蒸着プロセスが煩雑となり、生産性に劣る。真空蒸着法で製造された有機電界発光素子では照明やディスプレイのパネルの大型化が極めて難しい。
Various electronic devices that use organic EL elements, such as organic EL lighting and organic EL displays, have been put into practical use. Since the applied voltage of the organic electric field light emitting element is low, the power consumption is low and the three primary colors can be emitted. Therefore, the application to small and medium-sized displays represented by mobile phones and smartphones has begun as well as large display monitors. ..
An organic electroluminescent device is manufactured by stacking a plurality of layers such as a light emitting layer, a charge injection layer, and a charge transport layer. Currently, most organic electroluminescent elements are manufactured by vapor-depositing an organic material under vacuum, but the vacuum-deposited method complicates the vapor deposition process and is inferior in productivity. It is extremely difficult to increase the size of lighting and display panels with organic electroluminescent devices manufactured by the vacuum deposition method.
 近年、大型のディスプレイや照明に用いることのできる有機電界発光素子を効率よく製造するプロセスとして、湿式成膜法(塗布法)が研究されている。湿式成膜法は、真空蒸着法に比べて安定した層を容易に形成できる利点があるため、ディスプレイや照明装置の量産化や大型デバイスへの適用が期待されている。
 有機電界発光素子を湿式成膜法で製造するためには、使用される材料はすべて有機溶媒に溶解してインクとして使用できるものである必要がある。使用材料が溶解性に劣ると、長時間加熱するなどの操作を要するため、使用前に材料が劣化してしまう可能性がある。さらに、溶液状態で長時間均一状態を保持することができないと、溶液から材料の析出が起こり、インクジェット装置などによる成膜が不可能となる。湿式成膜法に使用される材料には、有機溶媒に速やかに溶解することと、溶解した後析出せず均一状態を保持する、という2つの意味での溶解性が求められる。
In recent years, a wet film forming method (coating method) has been studied as a process for efficiently manufacturing an organic electroluminescent element that can be used for a large-scale display or lighting. Since the wet film deposition method has an advantage that a stable layer can be easily formed as compared with the vacuum film deposition method, it is expected to be applied to mass production of displays and lighting devices and to large devices.
In order to manufacture an organic electroluminescent device by a wet film formation method, all the materials used must be soluble in an organic solvent and can be used as ink. If the material used is inferior in solubility, operations such as heating for a long time are required, so that the material may deteriorate before use. Further, if the uniform state cannot be maintained for a long time in the solution state, the material is precipitated from the solution, and the film formation by an inkjet device or the like becomes impossible. The material used in the wet film forming method is required to have solubility in two meanings: that it dissolves quickly in an organic solvent and that it does not precipitate after being dissolved and maintains a uniform state.
 湿式成膜法の、真空蒸着法に対する利点として、1つの層により多くの材料種を使用することができる点が挙げられる。真空蒸着法では材料種が増加すると蒸着速度を一定にコントロールすることが困難になるのに対して、湿式成膜法では材料種が増加しても各材料が有機溶媒に溶解しさえすれば、一定の成分比のインクが作製可能である。
 近年、この利点を利用してインクに2種以上のイリジウム錯体を用い、有機電界発光素子の発光効率を高めたり、駆動電圧を低めたりして、有機電界発光素子の性能を改善しようとする試みがなされている(例えば、特許文献1及び2)。
The advantage of the wet film deposition method over the vacuum film deposition method is that more material types can be used in one layer. In the vacuum deposition method, it becomes difficult to control the vapor deposition rate to a constant level as the number of material types increases, whereas in the wet film deposition method, even if the material types increase, as long as each material is dissolved in an organic solvent, it is sufficient. An ink having a constant component ratio can be produced.
In recent years, an attempt to improve the performance of an organic electroluminescent device by using two or more types of iridium complexes in an ink to increase the luminous efficiency of the organic electroluminescent device or lower the drive voltage by utilizing this advantage has been attempted. (For example, Patent Documents 1 and 2).
 一方、材料の化学構造に注目すると、トリアジン環が特定の位置に置換したフェニルピリジンを配位子に含むイリジウム錯体を白色発光素子における赤色発光材料として用いることが試みられている(例えば、特許文献3及び4)。 On the other hand, focusing on the chemical structure of the material, attempts have been made to use an iridium complex containing phenylpyridine in which the triazine ring is substituted at a specific position as a ligand as a red light emitting material in a white light emitting element (for example, Patent Documents). 3 and 4).
国際公開第2015/192939号International Publication No. 2015/192939 国際公開第2016/015815号International Publication No. 2016/015815 国際公開第2017/154884号International Publication No. 2017/154884 日本国特開2018-83941号公報Japanese Patent Application Laid-Open No. 2018-83941
 しかしながら、前述の先行技術では、ディスプレイ用途に対して、有機電界発光素子の性能の点で十分とは言えず、特に、赤色素子における、さらなる駆動電圧の低減、発光効率の向上、駆動寿命の改善が求められていた。
 本発明は、特に赤色素子において湿式成膜法によって有機電界発光素子の作製が可能であり、従来よりも駆動電圧が低く、発光効率が高く、駆動寿命の長い有機電界発光素子を提供することを課題とする。
However, the above-mentioned prior art is not sufficient in terms of the performance of the organic electroluminescent device for display applications, and in particular, further reduction of the drive voltage, improvement of luminous efficiency, and improvement of drive life of the red device. Was sought.
The present invention provides an organic electric field light emitting element capable of manufacturing an organic electric field light emitting element by a wet film forming method, particularly for a red element, having a lower driving voltage, higher light emitting efficiency, and a longer driving life than conventional ones. Make it an issue.
 本発明者らは、1つの層により多くの材料種を使用することができる湿式成膜法の利点を生かすべく、上記課題に鑑み鋭意検討した。その結果、最大発光波長が比較的短波であるイリジウム錯体をアシストドーパントとして用い、トリアジン環が特定の位置に置換したフェニルピリジンを配位子に含むイリジウム錯体を、赤色素子における発光ドーパントとして用い、アシストドーパントと発光ドーパントを溶媒に溶解させた有機電界発光素子用組成物とし、これを用いて有機電界発光素子を作製することで、有機電界発光素子の性能が向上することを見出し、本発明を完成するに至った。
 また、発光ドーパントである上記イリジウム錯体をアシストドーパントよりも大きな組成比で用いることにより、有機電界発光素子の性能はさらに向上することも見出した。
The present inventors have made diligent studies in view of the above problems in order to take advantage of the wet film formation method in which more material types can be used in one layer. As a result, an iridium complex having a relatively short maximum emission wavelength is used as an assist dopant, and an iridium complex containing phenylpyridine in which the triazine ring is substituted at a specific position is used as an emission dopant in the red element to assist. The present invention has been completed by finding that the performance of an organic electroluminescent element is improved by producing an organic electroluminescent element using a composition for an organic electroluminescent element in which a dopant and a light emitting dopant are dissolved in a solvent. I came to do.
It has also been found that the performance of the organic electroluminescent device is further improved by using the iridium complex, which is a light emitting dopant, in a composition ratio larger than that of the assist dopant.
 本発明に係る有機電界発光素子用組成物は、発光ドーパントに対して最大発光波長が短波であるイリジウム錯体をアシストドーパントとして含有し、トリアジン環が特定の位置に置換したフェニルピリジンを配位子に含むイリジウム錯体を発光ドーパントとして含有する。そのため、従来よりも駆動電圧が低く、発光効率が高く、駆動寿命の長い有機電界発光素子の作製が可能である。さらに、本発明に係る有機電界発光素子用組成物は、発光ドーパントの組成比をアシストドーパントの組成比よりも大きくすることにより、アシストドーパントからの発光を好適に抑制することができ、より鮮やかな発光色を有する有機電界発光素子の作製が可能である。 The composition for an organic electroluminescent element according to the present invention contains an iridium complex whose maximum emission wavelength is a short wave with respect to the emission dopant as an assist dopant, and uses phenylpyridine in which the triazine ring is substituted at a specific position as a ligand. The containing iridium complex is contained as a light emitting dopant. Therefore, it is possible to manufacture an organic electroluminescent device having a lower drive voltage, higher luminous efficiency, and longer drive life than conventional ones. Further, in the composition for an organic electroluminescent device according to the present invention, by making the composition ratio of the light emitting dopant larger than the composition ratio of the assist dopant, light emission from the assist dopant can be suitably suppressed, and the light emission from the assist dopant can be suppressed more vividly. It is possible to manufacture an organic electroluminescent device having a light emitting color.
 即ち、本発明の要旨は、以下の通りである。
[1] 下記式(1)で表される化合物と、前記式(1)で表される化合物よりも最大発光波長が短波である下記式(2)で表される化合物と、溶媒と、を含む有機電界発光素子用組成物。
That is, the gist of the present invention is as follows.
[1] A compound represented by the following formula (1), a compound represented by the following formula (2) having a shorter maximum emission wavelength than the compound represented by the above formula (1), and a solvent are used. A composition for an organic electroluminescent device.
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000008
 
[上記式中、R、Rは、それぞれ独立して、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数1~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~30の(ヘテロ)アリール基である。これらの基はさらに置換基を有していてもよい。R、Rが複数存在する場合、それらはそれぞれ同一であっても異なっていてもよい。Rが複数存在する場合、隣り合うRが互いに結合して環を形成してもよい。
 aは0~4の整数であり、bは0~3の整数である。
 R、Rは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~20の(ヘテロ)アリール基である。これらの基はさらに置換基を有していてもよい。R、Rが複数存在する場合、それらはそれぞれ同一であっても異なっていてもよい。
 Lは有機配位子を表し、mは1~3の整数である。]
[In the above formula, R 1 and R 2 are independently an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and 3 carbon atoms, respectively. ~ 20 (hetero) aryloxy groups, 1 to 20 carbon atoms alkylsilyl groups, 6 to 20 carbon atoms arylsilyl groups, 2 to 20 carbon atoms alkylcarbonyl groups, 7 to 20 carbon atoms arylcarbonyl groups, It is an alkylamino group having 1 to 20 carbon atoms, an arylamino group having 6 to 20 carbon atoms, or a (hetero) aryl group having 3 to 30 carbon atoms. These groups may further have substituents. When a plurality of R 1 and R 2 exist, they may be the same or different from each other. If R 1 there are a plurality bonded R 1 adjacent to each other may form a ring.
a is an integer of 0 to 4, and b is an integer of 0 to 3.
R 3 and R 4 are independently hydrogen atom, fluorine atom, chlorine atom, bromine atom, alkyl group having 1 to 20 carbon atoms, (hetero) aralkyl group having 7 to 40 carbon atoms, and 1 to 20 carbon atoms, respectively. Alkoxy group, (hetero) aryloxy group having 3 to 20 carbon atoms, alkylsilyl group having 1 to 20 carbon atoms, arylsilyl group having 6 to 20 carbon atoms, alkylcarbonyl group having 2 to 20 carbon atoms, 7 carbon atoms. It is an arylcarbonyl group having up to 20 carbonyl groups, an alkylamino group having 2 to 20 carbon atoms, an arylamino group having 6 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms. These groups may further have substituents. When a plurality of R 3 and R 4 exist, they may be the same or different from each other.
L 1 represents an organic ligand, and m is an integer of 1 to 3. ]
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000009
 
[上記式中、Rは、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数1~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~30の(ヘテロ)アリール基である。これらの基はさらに置換基を有していてもよい。Rが複数存在する場合、それらは同一であっても異なっていてもよい。
 cは0~4の整数である。
 環Aは、ピリジン環、ピラジン環、ピリミジン環、イミダゾール環、オキサゾール環、チアゾール環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、アザトリフェニレン環、カルボリン環、ベンゾチアゾール環、ベンゾオキサゾール環のいずれかである。
 環Aは、置換基を有していてもよく、前記置換基は、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~20の(ヘテロ)アリール基である。また、環Aに結合する隣り合う置換基どうしが結合してさらに環を形成してもよい。環Aが複数存在する場合、それらは同一であっても異なっていてもよい。
 Lは有機配位子を表し、nは1~3の整数である。]
[In the formula, R 5 is an alkyl group having 1 to 20 carbon atoms, having 7 to 40 carbon atoms (hetero) aralkyl group, an alkoxy group having 1 to 20 carbon atoms, having 3 to 20 carbon atoms (hetero) aryloxy Group, alkylsilyl group with 1 to 20 carbon atoms, arylsilyl group with 6 to 20 carbon atoms, alkylcarbonyl group with 2 to 20 carbon atoms, arylcarbonyl group with 7 to 20 carbon atoms, alkylamino with 1 to 20 carbon atoms A group, an arylamino group having 6 to 20 carbon atoms, or a (hetero) aryl group having 3 to 30 carbon atoms. These groups may further have substituents. If R 5 is plurally present, they may be the same or different.
c is an integer from 0 to 4.
Ring A is any of pyridine ring, pyrazine ring, pyrimidine ring, imidazole ring, oxazole ring, thiazole ring, quinoline ring, isoquinoline ring, quinazoline ring, quinoxaline ring, azatriphenylene ring, carboline ring, benzothiazole ring, and benzoxazole ring. Is it?
Ring A may have a substituent, which is a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, and carbon. An alkoxy group having 1 to 20 carbon atoms, a (hetero) aryloxy group having 3 to 20 carbon atoms, an alkylsilyl group having 1 to 20 carbon atoms, an arylsilyl group having 6 to 20 carbon atoms, and an alkylcarbonyl group having 2 to 20 carbon atoms. , An arylcarbonyl group having 7 to 20 carbon atoms, an alkylamino group having 2 to 20 carbon atoms, an arylamino group having 6 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms. Further, adjacent substituents bonded to the ring A may be bonded to each other to further form a ring. When there are a plurality of rings A, they may be the same or different.
L 2 represents an organic ligand, and n is an integer of 1 to 3. ]
[2] 前記式(1)で表される化合物の組成比が、質量部換算において前記式(2)で表される化合物の組成比以上である、前記[1]に記載の有機電界発光素子用組成物。
[3] 前記式(1)で表される化合物が下記式(1-1)で表される化合物である、前記[1]または[2]に記載の有機電界発光素子用組成物。
[2] The organic electroluminescent device according to the above [1], wherein the composition ratio of the compound represented by the formula (1) is equal to or greater than the composition ratio of the compound represented by the formula (2) in terms of parts by mass. Composition for.
[3] The composition for an organic electric field light emitting element according to the above [1] or [2], wherein the compound represented by the formula (1) is a compound represented by the following formula (1-1).
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000010
 
[上記式中、R、R、a、b、L、mは、前記式(1)におけるR、R、a、b、L、mとそれぞれ同義である。
 R、Rは、それぞれ独立して、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数1~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~30の(ヘテロ)アリール基である。これらの基はさらに置換基を有していてもよい。R、Rが複数存在する場合、それらはそれぞれ同一であっても異なっていてもよい。
 d、eはそれぞれ独立して、0~5の整数である。]
[In the above formulas, R 1, R 2, a , b, L 1, m , the R 1 in the formula (1), R 2, a , b, a L 1, m and respectively the same.
R 6 and R 7 are independently alkyl groups having 1 to 20 carbon atoms, (hetero) aralkyl groups having 7 to 40 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, and (heterogeneous) having 3 to 20 carbon atoms. ) Aryloxy group, alkylsilyl group with 1 to 20 carbon atoms, arylsilyl group with 6 to 20 carbon atoms, alkylcarbonyl group with 2 to 20 carbon atoms, arylcarbonyl group with 7 to 20 carbon atoms, 1 to 20 carbon atoms Alkylamino group, arylamino group having 6 to 20 carbon atoms, or (hetero) aryl group having 3 to 30 carbon atoms. These groups may further have substituents. When a plurality of R 6 and R 7 exist, they may be the same or different from each other.
d and e are independently integers from 0 to 5. ]
[4] 前記式(1)で表される化合物が下記式(1-2)で表される化合物である、前記[1]または[2]に記載の有機電界発光素子用組成物。 [4] The composition for an organic electroluminescent device according to the above [1] or [2], wherein the compound represented by the formula (1) is a compound represented by the following formula (1-2).
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000011
 
[上記式中、R~R、b、L、mは、前記式(1)におけるR~R、b、L、mとそれぞれ同義である。
 R14~R16は置換基であり、R14~R16が複数存在する場合、それらはそれぞれ同一であっても異なっていてもよい。
 iは0~4の整数である。]
[In the above formulas, R 2 ~ R 4, b , L 1, m is, R 2 ~ R 4 in the formula (1), b, is L 1, m and respectively the same.
R 14 to R 16 are substituents, and when a plurality of R 14 to R 16 are present, they may be the same or different from each other.
i is an integer from 0 to 4. ]
[5] 前記式(1-1)で表される化合物が下記式(1-3)で表される化合物である、前記[3]に記載の有機電界発光素子用組成物。 [5] The composition for an organic electroluminescent device according to the above [3], wherein the compound represented by the formula (1-1) is a compound represented by the following formula (1-3).
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000012
 
[上記式中、R、R、R、b、d、e、L、mは、前記式(1-1)におけるR、R、R、b、d、e、L、mとそれぞれ同義である。
 R14~R16は置換基であり、R14~R16が複数存在する場合、それらはそれぞれ同一であっても異なっていてもよい。
 iは0~4の整数である。]
[In the above formulas, R 2, R 6, R 7, b, d, e, L 1, m is, R 2 in the formula (1-1), R 6, R 7, b, d, e, L It is synonymous with 1 and m, respectively.
R 14 to R 16 are substituents, and when a plurality of R 14 to R 16 are present, they may be the same or different from each other.
i is an integer from 0 to 4. ]
[6] 前記式(2)で表される化合物が、下記式(2-1)で表される化合物である、前記[1]~[5]のいずれか一に記載の有機電界発光素子用組成物。 [6] For the organic electroluminescent device according to any one of the above [1] to [5], wherein the compound represented by the formula (2) is a compound represented by the following formula (2-1). Composition.
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000013
 
[上記式中、環A、L、nは、前記式(2)における環A、L、nとそれぞれ同義である。
 Rは、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数1~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~30の(ヘテロ)アリール基である。これらの基はさらに置換基を有していてもよい。Rが複数存在する場合、それらは同一であっても異なっていてもよい。
 fは0~5の整数である。]
[In the above formula, Ring A, L 2, n, Ring A in the formula (2) is L 2, n and respectively the same.
R 8 has an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a (hetero) aryloxy group having 3 to 20 carbon atoms, and 1 carbon atom. Alkylsilyl group of ~ 20, arylsilyl group of 6-20 carbons, alkylcarbonyl group of 2-20 carbons, arylcarbonyl group of 7-20 carbons, alkylamino group of 1-20 carbons, 6 carbons It is an arylamino group of up to 20 or a (hetero) aryl group having 3 to 30 carbon atoms. These groups may further have substituents. If R 8 is plurally present, they may be the same or different.
f is an integer from 0 to 5. ]
[7] 前記式(1)中のmが3未満であり、Lは下記式(3)、式(4)、及び式(5)からなる群より選ばれる少なくとも一つの構造を有する、前記[1]~[6]のいずれか一に記載の有機電界発光素子用組成物。 [7] The m in the formula (1) is less than 3, and L 1 has at least one structure selected from the group consisting of the following formulas (3), (4), and (5). The composition for an organic electroluminescent device according to any one of [1] to [6].
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000014
 
[上記式(3)~(5)中、R、R10は、前記式(1)におけるRと同義であり、R、R10が複数存在する場合、それらはそれぞれ同一であっても異なっていてもよい。
 R11~R13はそれぞれ独立して、水素原子、フッ素原子で置換されていてもよい炭素数1~20のアルキル基、炭素数1~20のアルキル基で置換されていてもよいフェニル基またはハロゲン原子である。
 gは0~4の整数である。hは0~4の整数である。
 環Bは、ピリジン環、ピリミジン環、イミダゾール環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、アザトリフェニレン環、カルボリン環、ベンゾチアゾール環、またはベンゾオキサゾール環である。環Bはさらに置換基を有していてもよい。]
[In the above formulas (3) to (5), R 9 and R 10 are synonymous with R 1 in the above formula (1), and when a plurality of R 9 and R 10 exist, they are the same. May be different.
R 11 to R 13 are independently substituted with an alkyl group having 1 to 20 carbon atoms which may be substituted with a hydrogen atom and a fluorine atom, a phenyl group which may be substituted with an alkyl group having 1 to 20 carbon atoms, or It is a halogen atom.
g is an integer from 0 to 4. h is an integer from 0 to 4.
Ring B is a pyridine ring, a pyrimidine ring, an imidazole ring, a quinoline ring, an isoquinoline ring, a quinazoline ring, a quinoxaline ring, an azatriphenylene ring, a carboline ring, a benzothiazole ring, or a benzoxazole ring. Ring B may further have a substituent. ]
[8] 前記式(1)中のaが1である、又は、前記式(1)中のaが2以上の整数、かつ隣り合うRが互いに結合した環を有さない、前記[1]~[7]のいずれか一に記載の有機電界発光素子用組成物。
[9] 前記[1]~[8]のいずれか一に記載の有機電界発光素子組成物を用いて湿式成膜法にて発光層を形成する工程を含む、有機電界発光素子の製造方法。
[10] 前記[1]~[8]のいずれか一に記載の有機電界発光素子組成物を用いて形成された発光層を有する有機電界発光素子。
[11] 前記[10]に記載の有機電界発光素子を有する表示装置。
[8] a in the formula (1) is 1, or, no ring a is an integer of 2 or more in the formula (1), and adjacent R 1 are bonded to each other, wherein [1 ] To [7]. The composition for an organic electroluminescent device according to any one of.
[9] A method for producing an organic electroluminescent device, which comprises a step of forming a light emitting layer by a wet film forming method using the organic electroluminescent device composition according to any one of the above [1] to [8].
[10] An organic electroluminescent device having a light emitting layer formed by using the organic electroluminescent device composition according to any one of the above [1] to [8].
[11] A display device having the organic electroluminescent device according to the above [10].
 本発明により、特に赤色素子において湿式成膜法によって有機電界発光素子の作製が可能であり、従来よりも駆動電圧が低く、発光効率が高く、駆動寿命の長い有機電界発光素子を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to manufacture an organic electroluminescent device by a wet film formation method, particularly for a red device, and it is possible to provide an organic electroluminescent device having a lower driving voltage, higher luminous efficiency, and a longer driving life than conventional devices. it can.
図1は、本発明の有機電界発光素子の構造の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of the structure of the organic electroluminescent device of the present invention.
 以下に、本発明の実施の形態を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変形して実施することができる。
 なお、本明細書において(ヘテロ)アラルキル基、(ヘテロ)アリールオキシ基、(ヘテロ)アリール基とは、それぞれヘテロ原子を含んでいてもよいアラルキル基、ヘテロ原子を含んでいてもよいアリールオキシ基、ヘテロ原子を含んでいてもよいアリール基、を表す。「ヘテロ原子を含んでいてもよい」とは、アリール基、アラルキル基又はアリールオキシ基の主骨格中のアリール骨格を形成する炭素原子のうち1又は2以上の炭素原子がヘテロ原子に置換されていることを表す。ヘテロ原子としては窒素原子、酸素原子、硫黄原子、リン原子、ケイ素原子等が挙げられ、中でも耐久性の観点から窒素原子が好ましい。
Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist thereof.
In the present specification, the (hetero) aralkyl group, the (hetero) aryloxy group, and the (hetero) aryl group are an aralkyl group that may contain a heteroatom and an aryloxy group that may contain a heteroatom, respectively. Represents an aryl group, which may contain a heteroatom. "May contain heteroatoms" means that one or more carbon atoms forming an aryl skeleton in the main skeleton of an aryl group, an aralkyl group or an aryloxy group are substituted with heteroatoms. Indicates that you are. Examples of the hetero atom include a nitrogen atom, an oxygen atom, a sulfur atom, a phosphorus atom, a silicon atom and the like, and among them, a nitrogen atom is preferable from the viewpoint of durability.
 [発光ドーパント]
 本実施形態に係る有機電界発光素子用組成物は、下記式(1)で表される化合物を含み、かかる化合物は主に発光ドーパントとして機能する。式(1)で表される化合物は1種のみが含まれていても、複数種が含まれていてもよい。また、発光ドーパントとなる化合物は式(1)で表される化合物以外の発光ドーパントとなる化合物を含んでいてもよいが、その場合には、発光ドーパントとなる化合物の合計に対して、式(1)で表される化合物の合計の含有量は50質量%以上とすることが好ましく、100質量%がより好ましい。すなわち、式(1)で表される化合物のみであることがより好ましい。
[Light emitting dopant]
The composition for an organic electroluminescent device according to the present embodiment contains a compound represented by the following formula (1), and such a compound mainly functions as a light emitting dopant. The compound represented by the formula (1) may contain only one type or a plurality of types. Further, the compound serving as a light emitting dopant may contain a compound serving as a light emitting dopant other than the compound represented by the formula (1), but in that case, the formula ( The total content of the compounds represented by 1) is preferably 50% by mass or more, more preferably 100% by mass. That is, it is more preferable that only the compound represented by the formula (1) is used.
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000015
 
 上記式(1)中、R、Rは、それぞれ独立して、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数1~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~30の(ヘテロ)アリール基である。これらの基はさらに置換基を有していてもよい。R、Rが複数存在する場合、それらはそれぞれ同一であっても異なっていてもよい。Rが複数存在する場合、隣り合うRが互いに結合して環を形成してもよい。
 aは0~4の整数であり、bは0~3の整数である。
In the above formula (1), R 1 and R 2 are independently an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and carbon. A (hetero) aryloxy group having 3 to 20 carbon atoms, an alkylsilyl group having 1 to 20 carbon atoms, an arylsilyl group having 6 to 20 carbon atoms, an alkylcarbonyl group having 2 to 20 carbon atoms, and an arylcarbonyl group having 7 to 20 carbon atoms. A group, an alkylamino group having 1 to 20 carbon atoms, an arylamino group having 6 to 20 carbon atoms, or a (hetero) aryl group having 3 to 30 carbon atoms. These groups may further have substituents. When a plurality of R 1 and R 2 exist, they may be the same or different from each other. If R 1 there are a plurality bonded R 1 adjacent to each other may form a ring.
a is an integer of 0 to 4, and b is an integer of 0 to 3.
 R、Rは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~20の(ヘテロ)アリール基である。これらの基はさらに置換基を有していてもよい。R、Rが複数存在する場合、それらはそれぞれ同一であっても異なっていてもよい。
 Lは有機配位子を表し、mは1~3の整数である。
R 3 and R 4 are independently hydrogen atom, fluorine atom, chlorine atom, bromine atom, alkyl group having 1 to 20 carbon atoms, (hetero) aralkyl group having 7 to 40 carbon atoms, and 1 to 20 carbon atoms, respectively. Alkoxy group, (hetero) aryloxy group having 3 to 20 carbon atoms, alkylsilyl group having 1 to 20 carbon atoms, arylsilyl group having 6 to 20 carbon atoms, alkylcarbonyl group having 2 to 20 carbon atoms, 7 carbon atoms. It is an arylcarbonyl group having up to 20 carbonyl groups, an alkylamino group having 2 to 20 carbon atoms, an arylamino group having 6 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms. These groups may further have substituents. When a plurality of R 3 and R 4 exist, they may be the same or different from each other.
L 1 represents an organic ligand, and m is an integer of 1 to 3.
 R~Rはそれぞれ独立して、耐久性の点から、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数6~20のアリールアミノ基、または炭素数3~30の(ヘテロ)アリール基若しくは炭素数3~20の(ヘテロ)アリール基であることがより好ましく、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基または炭素数3~20の(ヘテロ)アリール基であることがさらに好ましく、炭素数1~20のアルキル基、炭素数7~40のアラルキル基または炭素数6~20のアリール基であることがより更に好ましい。
 R~Rがさらに有していてもよい置換基は、後述の置換基群Zから選択される置換基であることが好ましい。
 aが2以上である場合、隣接する2つのRは互いに結合して環を形成してもよい。
R 1 to R 4 are independent of each other, and from the viewpoint of durability, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an arylamino group having 6 to 20 carbon atoms, or carbon. More preferably, it is a (hetero) aryl group having 3 to 30 carbon atoms or a (hetero) aryl group having 3 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, or the like. It is more preferably an (hetero) aryl group having 3 to 20 carbon atoms, and even more preferably an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 40 carbon atoms or an aryl group having 6 to 20 carbon atoms. preferable.
The substituents that R 1 to R 4 may further have are preferably substituents selected from the substituent group Z described later.
when a is 2 or more, two adjacent R 1 may be bonded to each other to form a ring.
 Rが複数存在し、隣り合うRが互いに結合して環を形成したものとしては、例えば、フルオレン、ナフタレン、ジベンゾチオフェン、ジベンゾフランが挙げられる。安定性の観点からは特に、フルオレンが好ましい。
 発光波長を長波長化する観点からは隣り合うRが互いに結合して環を形成したものであることが好ましい。
R 1 is more present, as the adjacent R 1 are bonded to each other to form a ring, for example, fluorene, naphthalene, dibenzothiophene, and a dibenzofuran. From the viewpoint of stability, fluorene is particularly preferable.
It is preferred from the viewpoint of long-wavelength emission wavelengths can R 1 adjacent one in which binding to the each other to form a ring.
 また、発光波長を長波長化しない観点からは隣り合うRが互いに結合せず環を形成したものでないことが好ましい。すなわち、式(1)におけるaが1である、又は、aが2以上、かつ隣り合うRが互いに結合した環を有さないことが好ましい。 Further, it is preferable the emission wavelength R 1 adjacent from the viewpoint of not longer wavelength not intended to form a ring not bind to each other. That, a is 1 in formula (1), or, preferably has no ring a is 2 or more, and adjacent R 1 are bonded to each other.
 aは製造が容易な点から0であることが好ましく、耐久性及び溶解性が高められる点からは1又は2であることが好ましく、1であることがさらに好ましい。bは製造が容易な点から0であることが好ましく、溶解性が高められる点からは1であることが好ましい。
 トリアジン環を含む電子受容性の高い構造が多く存在し、LUMOがより安定化することから、mは2又は3であることが好ましく、3であることがさらに好ましい。
a is preferably 0 from the viewpoint of easy production, preferably 1 or 2 from the viewpoint of enhancing durability and solubility, and further preferably 1. b is preferably 0 from the viewpoint of easy production, and is preferably 1 from the viewpoint of enhancing solubility.
Since there are many structures having a high electron acceptability including a triazine ring and LUMO is more stabilized, m is preferably 2 or 3, and more preferably 3.
 Lは有機配位子であり、特に制限は無いが、好ましくは1価の2座配位子であり、より好ましくは下記化学式の中から選ばれる。なお、化学式中の破線は配位結合を表す。2つの有機配位子Lが存在する場合には、有機配位子Lは互いに異なる構造であってもよい。また、mが3のときは、Lは存在しない。
 式(1)中のmが3未満の場合、Lは下記式(3)、式(4)、及び式(5)からなる群より選ばれる少なくとも一つの構造を有することが好ましい。
L 1 is an organic ligand and is not particularly limited, but is preferably a monovalent bidentate ligand, and is more preferably selected from the following chemical formulas. The broken line in the chemical formula represents a coordination bond. When two organic ligands L 1 is present, the organic ligand L 1 may have a different structure from each other. Also, when m is 3, L 1 does not exist.
When m in the formula (1) is less than 3, it is preferable that L 1 has at least one structure selected from the group consisting of the following formulas (3), (4), and (5).
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000016
 
 上記式(3)、(4)、(5)中、R、R10は、前記式(1)におけるRと同義である。すなわち、Rとして選択される置換基と同様の群から選択され、好ましい例も同様であり、さらに置換基を有していてもよい。R、R10が複数存在する場合、それらはそれぞれ同一であっても異なっていてもよい。
 R11~R13はそれぞれ独立して、水素原子、フッ素原子で置換されていてもよい炭素数1~20のアルキル基、炭素数1~20のアルキル基で置換されていてもよいフェニル基またはハロゲン原子である。
 gは0~4の整数である。hは0~4の整数である。
 環Bは、ピリジン環、ピリミジン環、イミダゾール環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、アザトリフェニレン環、カルボリン環、ベンゾチアゾール環、またはベンゾオキサゾール環である。環Bはさらに置換基を有していてもよい。
In the above formulas (3), (4) and (5), R 9 and R 10 are synonymous with R 1 in the above formula (1). That is, it is selected from the same group as the substituent selected as R 1 , and the preferred example is also the same, and may further have a substituent. When a plurality of R 9 and R 10 exist, they may be the same or different from each other.
R 11 to R 13 are independently substituted with an alkyl group having 1 to 20 carbon atoms which may be substituted with a hydrogen atom and a fluorine atom, a phenyl group which may be substituted with an alkyl group having 1 to 20 carbon atoms, or It is a halogen atom.
g is an integer from 0 to 4. h is an integer from 0 to 4.
Ring B is a pyridine ring, a pyrimidine ring, an imidazole ring, a quinoline ring, an isoquinoline ring, a quinazoline ring, a quinoxaline ring, an azatriphenylene ring, a carboline ring, a benzothiazole ring, or a benzoxazole ring. Ring B may further have a substituent.
 R、R10、環Bがさらに有していてもよい置換基は、後述の置換基群Zから選択される置換基であることが好ましい。
 さらに好ましいR、R10はそれぞれ独立して、炭素数1~20のアルキル基、または、炭素数1~20のアルキル基で置換されていてもよい炭素数6~30のアリール基である。ここで、炭素数6~30のアリール基とは、単環、2環縮合環、3環縮合環、または単環、2環縮合環、若しくは3環縮合環が複数連結した基である。
The substituents that R 9 , R 10 and Ring B may further have are preferably substituents selected from the Substituent Group Z described later.
Further preferable R 9 and R 10 are independently alkyl groups having 1 to 20 carbon atoms or aryl groups having 6 to 30 carbon atoms which may be substituted with alkyl groups having 1 to 20 carbon atoms. Here, the aryl group having 6 to 30 carbon atoms is a group in which a plurality of monocyclic, bicyclic condensed rings, tricyclic condensed rings, monocyclic, dicyclic fused rings, or tricyclic condensed rings are linked.
 g、hは製造が容易な点から0であることが好ましく、溶解性が高められる点からは1又は2であることが好ましく、1であることがさらに好ましい。
 R11からR13はそれぞれ独立に、水素原子、フッ素原子で置換されていてもよい炭素数1~20のアルキル基、炭素数1~20のアルキル基で置換されていてもよいフェニル基またはハロゲン原子を表すが、より好ましくは、R11とR13はメチル基またはt-ブチル基であり、R12は、水素原子、炭素数1~20のアルキル基またはフェニル基である。
g and h are preferably 0 from the viewpoint of easy production, preferably 1 or 2 from the viewpoint of enhancing solubility, and even more preferably 1.
R 11 to R 13 are independently substituted with an alkyl group having 1 to 20 carbon atoms which may be substituted with a hydrogen atom and a fluorine atom, and a phenyl group or a halogen which may be substituted with an alkyl group having 1 to 20 carbon atoms, respectively. Representing an atom, more preferably R 11 and R 13 are methyl or t-butyl groups, and R 12 is a hydrogen atom, an alkyl or phenyl group having 1 to 20 carbon atoms.
 環Bは、耐久性の点から、ピリジン環、ピリミジン環、イミダゾール環であることが好ましく、ピリジン環であることがさらに好ましい。
 環B上の水素原子は、耐久性の点及び溶解性が高められる点から、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、または炭素数3~20の(ヘテロ)アリール基で置換されていることが好ましい。
 また、環B上の水素原子は、製造容易な点からは、置換されていないことが好ましい。
 さらに、環B上の水素原子は、有機電界発光素子として用いられたときに励起子が生成しやすくなるため、発光効率が高められる点からは、置換基を有してもよいフェニル基又はナフチル基で置換されていることが好ましい。フェニル基又はナフチル基が有していてもよい置換基は、後述の置換基群Zから選ばれる置換基が好ましい。
From the viewpoint of durability, the ring B is preferably a pyridine ring, a pyrimidine ring, or an imidazole ring, and more preferably a pyridine ring.
The hydrogen atom on the ring B has an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, or a (hetero) aralkyl group having 3 to 20 carbon atoms (from the viewpoint of durability and enhanced solubility. It is preferably substituted with a hetero) aryl group.
Further, the hydrogen atom on the ring B is preferably not substituted from the viewpoint of easy production.
Further, since the hydrogen atom on the ring B tends to generate excitons when used as an organic electroluminescent element, a phenyl group or a naphthyl which may have a substituent may be provided from the viewpoint of increasing the luminous efficiency. It is preferably substituted with a group. The substituent that the phenyl group or the naphthyl group may have is preferably a substituent selected from the Substituent Group Z described later.
 また、環Bは、アシストドーパント上で励起子が生成しやすくなるため、発光効率が高められる点からは、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、アザトリフェニレン環、カルボリン環であることが好ましい。中でも、耐久性の点及び赤色発光を示す点で、キノリン環、イソキノリン環、キナゾリン環であることがより好ましい。
 さらに好ましい環Bの置換基は、炭素数1~20のアルキル基、または炭素数1~20のアルキル基で置換されていてもよい炭素数6~20のアリール基である。ここで、炭素数6~20のアリール基とは、単環、2環縮合環、3環縮合環、または単環、2環縮合環、若しくは3環縮合環が複数連結した基である。
Further, the ring B may be a quinoline ring, an isoquinoline ring, a quinazoline ring, a quinoxaline ring, an azatriphenylene ring, or a carboline ring from the viewpoint of increasing the luminous efficiency because excitons are easily generated on the assist dopant. preferable. Of these, a quinoline ring, an isoquinoline ring, and a quinazoline ring are more preferable in terms of durability and red light emission.
A more preferable substituent of the ring B is an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms which may be substituted with an alkyl group having 1 to 20 carbon atoms. Here, the aryl group having 6 to 20 carbon atoms is a group in which a plurality of monocyclic, bicyclic condensed rings, tricyclic condensed rings, monocyclic, dicyclic fused rings, or tricyclic condensed rings are linked.
 本実施形態に係る有機電界発光素子用組成物に含まれる発光ドーパントである、式(1)で表される化合物としては、R、Rが置換基を有してもよいフェニル基である化合物、すなわち、下記式(1-1)で表される化合物であることが好ましい。 As the compound represented by the formula (1), which is a light emitting dopant contained in the composition for an organic electroluminescent device according to the present embodiment, R 3 and R 4 are phenyl groups which may have a substituent. A compound, that is, a compound represented by the following formula (1-1) is preferable.
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000017
 
[上記式中、R、R、a、b、L、mは、式(1)におけるR、R、a、b、L、mとそれぞれ同義である。
 R、Rは、それぞれ独立して、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数1~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~30の(ヘテロ)アリール基である。これらの基はさらに置換基を有していてもよい。R、Rが複数存在する場合、それらはそれぞれ同一であっても異なっていてもよい。
 d、eはそれぞれ独立して、0~5の整数である。]
[In the above formulas, R 1, R 2, a, b, L 1, m is an R 1, R 2, a, b, L 1, m and same meanings in the formula (1).
R 6 and R 7 are independently alkyl groups having 1 to 20 carbon atoms, (hetero) aralkyl groups having 7 to 40 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, and (heterogeneous) having 3 to 20 carbon atoms. ) Aryloxy group, alkylsilyl group with 1 to 20 carbon atoms, arylsilyl group with 6 to 20 carbon atoms, alkylcarbonyl group with 2 to 20 carbon atoms, arylcarbonyl group with 7 to 20 carbon atoms, 1 to 20 carbon atoms Alkylamino group, arylamino group having 6 to 20 carbon atoms, or (hetero) aryl group having 3 to 30 carbon atoms. These groups may further have substituents. When a plurality of R 6 and R 7 exist, they may be the same or different from each other.
d and e are independently integers from 0 to 5. ]
 R、Rは、耐久性の点から、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数6~20のアリールアミノ基、または炭素数3~30の(ヘテロ)アリール基であることがより好ましく、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基または炭素数3~20の(ヘテロ)アリール基であることがさらに好ましく、炭素数1~20のアルキル基又は炭素数7~40のアラルキル基であることがより更に好ましい。
 R、Rがさらに有していてもよい置換基は、後述の置換基群Zから選択される置換基であることが好ましい。
From the viewpoint of durability, R 6 and R 7 have an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an arylamino group having 6 to 20 carbon atoms, or an arylamino group having 3 to 30 carbon atoms. It is more preferably an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms. It is more preferable that it is an alkyl group having 1 to 20 carbon atoms or an aralkyl group having 7 to 40 carbon atoms.
The substituents that R 6 and R 7 may further have are preferably substituents selected from the substituent group Z described later.
 d、eは製造が容易な点から0であることが好ましく、耐久性及び溶解性が高められる点からは1又は2であることが好ましく、1であることがさらに好ましい。bは製造が容易な点から0であることが好ましく溶解性が高められる点からは1であることが好ましい。 D and e are preferably 0 from the viewpoint of easy production, preferably 1 or 2 from the viewpoint of enhancing durability and solubility, and further preferably 1. b is preferably 0 from the viewpoint of easy production, and is preferably 1 from the viewpoint of enhancing solubility.
 本実施形態に係る有機電界発光素子用組成物に含まれる式(1)で表される発光ドーパントは、aが2以上であり、隣接するR同士が結合してフルオレン環を形成した構造が好ましい。その中でも、式(1-2)で表される化合物であることが好ましい。 Emitting dopant of the formula contained in the composition for organic electroluminescence element of the present embodiment (1) is, a is equal to or greater than 2, the structure is that each other R 1 adjacent to each to form a fluorene ring bonded preferable. Among them, the compound represented by the formula (1-2) is preferable.
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000018
 
[上記式中、R~R、b、L、mは、式(1)におけるR~R、b、L、mとそれぞれ同義である。
 R14~R16は置換基であり、R14~R16が複数存在する場合、それらはそれぞれ同一であっても異なっていてもよい。
 iは0~4の整数である。]
[In the above formulas, R 2 ~ R 4, b , L 1, m is an R 2 ~ R 4 in the formula (1), b, L 1 , m and respectively the same.
R 14 to R 16 are substituents, and when a plurality of R 14 to R 16 are present, they may be the same or different from each other.
i is an integer from 0 to 4. ]
 R14は、Rがフェニル基であった場合のRに置換する置換基であり、好ましくは後述の置換基群Zから選ばれる置換基である。より好ましくは、炭素数1~20のアルキル基、炭素数1~20のアルキル基で置換されていてもよい炭素数6~30の芳香族炭化水素基である。ここで、炭素数6~30の芳香族炭化水素基とは、単環、2~4環縮合環、または単環若しくは2~4環縮合環が複数連結した基である。さらに好ましくは、炭素数1~20のアルキル基であり、よりさらに好ましくは炭素数1~8のアルキル基である。
 R15、R16は、Rの一部またはRがメチル基であった場合のRに置換する置換基であり、好ましくは各々独立に、炭素数1~20のアルキル基、炭素数1~20のアルキル基で置換されていてもよい炭素数6~30の芳香族炭化水素基、炭素数1~20のアルコキシ基、又は炭素数1~20のアルコキシ基で置換されていてもよい炭素数6~30の芳香族炭化水素基である。ここで、炭素数6~30の芳香族炭化水素基とは、単環、2~4環縮合環、または単環若しくは2~4環縮合環が複数連結した基である。より好ましくは、炭素数1~20のアルキル基、又は、炭素数1~20のアルキル基で置換されていてもよい炭素数6若しくは12の芳香族炭化水素基であり、さらに好ましくは、炭素数1~8のアルキル基、又は、炭素数1~8のアルキル基で置換されていてもよい炭素数6の芳香族炭化水素基である。ここで、炭素数6の芳香族炭化水素構造はベンゼン構造であり、炭素数12の芳香族炭化水素構造はビフェニル構造である。
R 14 is a substituent that substitutes for R 1 when R 1 is a phenyl group, and is preferably a substituent selected from the substituent group Z described later. More preferably, it is an aromatic hydrocarbon group having 6 to 30 carbon atoms which may be substituted with an alkyl group having 1 to 20 carbon atoms and an alkyl group having 1 to 20 carbon atoms. Here, the aromatic hydrocarbon group having 6 to 30 carbon atoms is a monocyclic, 2 to 4 ring fused ring, or a group in which a plurality of monocyclic or 2 to 4 ring fused rings are linked. An alkyl group having 1 to 20 carbon atoms is more preferable, and an alkyl group having 1 to 8 carbon atoms is even more preferable.
R 15, R 16 is a substituent in which a part or R 1 in R 1 is substituted for R 1 when was a methyl group, preferably each independently, an alkyl group having 1 to 20 carbon atoms, carbon atoms It may be substituted with an alkyl group of 1 to 20 or an aromatic hydrocarbon group having 6 to 30 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms. It is an aromatic hydrocarbon group having 6 to 30 carbon atoms. Here, the aromatic hydrocarbon group having 6 to 30 carbon atoms is a monocyclic, 2 to 4 ring fused ring, or a group in which a plurality of monocyclic or 2 to 4 ring fused rings are linked. More preferably, it is an alkyl group having 1 to 20 carbon atoms, or an aromatic hydrocarbon group having 6 or 12 carbon atoms which may be substituted with an alkyl group having 1 to 20 carbon atoms, and more preferably. It is an aromatic hydrocarbon group having 6 carbon atoms which may be substituted with an alkyl group of 1 to 8 or an alkyl group having 1 to 8 carbon atoms. Here, the aromatic hydrocarbon structure having 6 carbon atoms has a benzene structure, and the aromatic hydrocarbon structure having 12 carbon atoms has a biphenyl structure.
 R14~R16における好ましいアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、イソプロピル基、イソブチル基、イソペンチル基、t-ブチル基、シクロヘキシル基、2エチルヘキシル基等が挙げられる。
 R14~R16における好ましい芳香族炭化水素基の具体例としては、1個の遊離原子価を有する、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環、ビフェニル基、テルフェニル基等が挙げられる。
 R15、R16における好ましいアルコキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、オクタデシルオキシ基等が挙げられる。
Specific examples of preferable alkyl groups in R 14 to R 16 include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-octyl group, isopropyl group and isobutyl. Examples thereof include a group, an isopentyl group, a t-butyl group, a cyclohexyl group, and a 2-ethylhexyl group.
Specific examples of the preferred aromatic hydrocarbon groups in R 14 to R 16 include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, and a benzpyrene ring having one free atomic value. , Chrysene ring, triphenylene ring, fluorantene ring, biphenyl group, terphenyl group and the like.
Specific examples of the preferred alkoxy group in R 15 and R 16 include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a hexyloxy group, a cyclohexyloxy group, an octadecyloxy group and the like.
 本実施形態に係る有機電界発光素子用組成物に含まれる式(1-1)で表される発光ドーパントとなる化合物は、式(1-3)で表される化合物であることがさらに好ましい。 The compound serving as the light emitting dopant represented by the formula (1-1) contained in the composition for an organic electroluminescent device according to the present embodiment is more preferably the compound represented by the formula (1-3).
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000019
 
[上記式中、R、R、R、b、d、e、L、mは、式(1-1)におけるR、R、R、b、d、e、L、mとそれぞれ同義である。
 R14~R16は置換基であり、R14~R16が複数存在する場合、それらはそれぞれ同一であっても異なっていてもよい。
 iは0~4の整数である。]
[In the above formulas, R 2, R 6, R 7, b, d, e, L 1, m is, R 2, R 6, R 7 in formula (1-1), b, d, e, L 1 , M are synonymous with each other.
R 14 to R 16 are substituents, and when a plurality of R 14 to R 16 are present, they may be the same or different from each other.
i is an integer from 0 to 4. ]
 R14~R16で表される置換基は式(1-2)におけるR14~R16で表される置換基とそれぞれ同義であり、好ましい範囲も同様である。 Substituents represented by R 14 ~ R 16 are each a substituent represented by R 14 ~ R 16 in the formula (1-2) synonymous, and preferred ranges are also the same.
 以下に、実施例に示した以外の本実施形態に係る有機電界発光素子用組成物に含まれる発光ドーパントとなる式(1)で表される化合物の好ましい具体例を示すが、本発明はこれらに限定されるものではない。 Hereinafter, preferred specific examples of the compound represented by the formula (1), which is a light emitting dopant contained in the composition for an organic electroluminescent device according to the present embodiment other than those shown in the examples, will be shown. It is not limited to.
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000022
 
 [アシストドーパント]
 本実施形態に係る有機電界発光素子用組成物は、下記式(2)で表される化合物を含み、かかる化合物は主にアシストドーパントとして機能する。式(2)で表される化合物は、前述の発光ドーパントとなる式(1)で表される化合物よりも最大発光波長が短波である。このため、式(2)で表されるアシストドーパントが励起状態になった場合、より励起エネルギーの小さい式(1)で表される発光ドーパントへのエネルギー移動が起こるため、発光ドーパントが励起状態となった後に、発光ドーパントからの発光が観測される。
 式(2)で表される化合物は1種のみが含まれていても、複数種が含まれていてもよい。また、アシストドーパントとなる化合物は式(2)で表される化合物以外のアシストドーパントとなる化合物を含んでいてもよいが、その場合には、アシストドーパントとなる化合物の合計に対して、式(2)で表される化合物の合計の含有量は50質量%以上とすることが好ましく、100質量%がより好ましい。すなわち、式(2)で表される化合物のみであることがより好ましい。
[Assist Dopant]
The composition for an organic electroluminescent device according to the present embodiment contains a compound represented by the following formula (2), and such a compound mainly functions as an assist dopant. The compound represented by the formula (2) has a shorter maximum emission wavelength than the compound represented by the formula (1) which is the above-mentioned light emitting dopant. Therefore, when the assist dopant represented by the formula (2) is in the excited state, energy transfer to the light emitting dopant represented by the formula (1) having a smaller excitation energy occurs, so that the light emitting dopant is in the excited state. After that, light emission from the light emitting dopant is observed.
The compound represented by the formula (2) may contain only one kind or a plurality of kinds. Further, the compound serving as an assist dopant may contain a compound serving as an assist dopant other than the compound represented by the formula (2), but in that case, the formula ( The total content of the compounds represented by 2) is preferably 50% by mass or more, more preferably 100% by mass. That is, it is more preferable that only the compound represented by the formula (2) is used.
 また、式(1)で表される化合物の組成比を、質量部換算で式(2)で表される化合物の組成比以上とすることが好ましい。これにより、式(2)で表されるアシストドーパントから直接発光されることを抑制することができ、高い効率で式(2)で表されるアシストドーパントから式(1)で表される発光ドーパントへエネルギーが移行される。このため、高い効率で発光ドーパントの発光が得られる。 Further, it is preferable that the composition ratio of the compound represented by the formula (1) is equal to or higher than the composition ratio of the compound represented by the formula (2) in terms of parts by mass. As a result, it is possible to suppress the direct emission from the assist dopant represented by the formula (2), and the assist dopant represented by the formula (2) to the light emitting dopant represented by the formula (1) with high efficiency. Energy is transferred to. Therefore, light emission of the light emitting dopant can be obtained with high efficiency.
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000023
 
 上記式中、Rは、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数1~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~30の(ヘテロ)アリール基である。これらの基はさらに置換基を有していてもよい。Rが複数存在する場合、それらは同一であっても異なっていてもよい。
 cは0~4の整数である。
 環Aは、ピリジン環、ピラジン環、ピリミジン環、イミダゾール環、オキサゾール環、チアゾール環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、アザトリフェニレン環、カルボリン環、ベンゾチアゾール環、ベンゾオキサゾール環のいずれかである。
In the above formula, R 5 is an alkyl group having 1 to 20 carbon atoms, (hetero) aralkyl groups having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, having 3 to 20 carbon atoms (hetero) aryloxy group , Alkylsilyl group with 1 to 20 carbon atoms, arylsilyl group with 6 to 20 carbon atoms, alkylcarbonyl group with 2 to 20 carbon atoms, arylcarbonyl group with 7 to 20 carbon atoms, alkylamino group with 1 to 20 carbon atoms , An arylamino group having 6 to 20 carbon atoms, or a (hetero) aryl group having 3 to 30 carbon atoms. These groups may further have substituents. If R 5 is plurally present, they may be the same or different.
c is an integer from 0 to 4.
Ring A is any of pyridine ring, pyrazine ring, pyrimidine ring, imidazole ring, oxazole ring, thiazole ring, quinoline ring, isoquinoline ring, quinazoline ring, quinoxaline ring, azatriphenylene ring, carboline ring, benzothiazole ring, and benzoxazole ring. Is it?
 環Aは、置換基を有していてもよい。
 かかる置換基は、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、アルキル基の炭素数が1~20であるアルキルシリル基、アリール基の炭素数が6~20であるアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~20の(ヘテロ)アリール基である。また、環Aに結合する隣り合う置換基どうしが結合してさらに環を形成してもよい。環Aが複数存在する場合、それらは同一であっても異なっていてもよい。
 Lは有機配位子を表し、nは1~3の整数である。
Ring A may have a substituent.
Such substituents include a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) arylyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an alkoxy group having 3 to 20 carbon atoms. A (hetero) aryloxy group, an alkylsilyl group having 1 to 20 carbon atoms, an arylsilyl group having 6 to 20 carbon atoms in an aryl group, an alkylcarbonyl group having 2 to 20 carbon atoms, and 7 carbon atoms. It is an arylcarbonyl group having up to 20 carbon atoms, an alkylamino group having 2 to 20 carbon atoms, an arylamino group having 6 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms. Further, adjacent substituents bonded to the ring A may be bonded to each other to further form a ring. When there are a plurality of rings A, they may be the same or different.
L 2 represents an organic ligand, and n is an integer of 1 to 3.
 Rがさらに有していてもよい置換基は、後述の置換基群Zから選択される置換基であることが好ましい。
 Rは、耐久性の点から、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数6~20のアリールアミノ基、または炭素数3~30の(ヘテロ)アリール基であることがより好ましく、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基または炭素数3~20の(ヘテロ)アリール基であることがさらに好ましい。 Rは、耐久性の点及び溶解性の点から、置換基を有してもよいフェニル基であって、環Aのm-位、イリジウムのp-位に結合することが好ましい。すなわち、下記式(2-1)で表される化合物を含むことが好ましい。有していてもよい置換基は、後述の置換基群Zから選択される置換基であることが好ましい。
The substituent that R 5 may further have is preferably a substituent selected from the Substituent Group Z described later.
From the viewpoint of durability, R 5 has an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an arylamino group having 6 to 20 carbon atoms, or a (hetero) having 3 to 30 carbon atoms. ) Aryl group is more preferable, and an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms or a (hetero) aryl group having 3 to 20 carbon atoms is further preferable. R 5 is a phenyl group which may have a substituent from the viewpoint of durability and solubility, and is preferably bonded to the m-position of ring A and the p-position of iridium. That is, it is preferable to contain a compound represented by the following formula (2-1). The substituent that may be possessed is preferably a substituent selected from the Substituent Group Z described later.
Figure JPOXMLDOC01-appb-C000024
 
Figure JPOXMLDOC01-appb-C000024
 
[上記式中、環A、L、nは、式(2)における環A、L、nとそれぞれ同義である。
 Rは、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数1~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~30の(ヘテロ)アリール基である。これらの基はさらに置換基を有していてもよい。Rが複数存在する場合、それらは同一であっても異なっていてもよい。
 fは0~5の整数である。]
[In the above formula, Ring A, L 2, n are each a ring A, L 2, n in the formula (2) interchangeably.
R 8 has an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a (hetero) aryloxy group having 3 to 20 carbon atoms, and 1 carbon atom. Alkylsilyl group of ~ 20, arylsilyl group of 6-20 carbons, alkylcarbonyl group of 2-20 carbons, arylcarbonyl group of 7-20 carbons, alkylamino group of 1-20 carbons, 6 carbons It is an arylamino group of up to 20 or a (hetero) aryl group having 3 to 30 carbon atoms. These groups may further have substituents. If R 8 is plurally present, they may be the same or different.
f is an integer from 0 to 5. ]
 Rがさらに有していてもよい置換基は、後述の置換基群Zから選択される置換基であることが好ましい。
 fは製造が容易な点から0であることが好ましく、耐久性の点及び溶解性が高められる点からは1又は2であることが好ましく、1であることがさらに好ましい。
 環Aは、耐久性の点から、ピリジン環、ピリミジン環、イミダゾール環であることが好ましく、ピリジン環であることがさらに好ましい。
The substituent that R 8 may further have is preferably a substituent selected from the Substituent Group Z described later.
f is preferably 0 from the viewpoint of easy production, preferably 1 or 2 from the viewpoint of durability and enhancement of solubility, and further preferably 1.
From the viewpoint of durability, the ring A is preferably a pyridine ring, a pyrimidine ring, or an imidazole ring, and more preferably a pyridine ring.
 環A上の水素原子は、耐久性の点及び溶解性が高められる点から、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数3~20の(ヘテロ)アリール基で置換されていることが好ましい。また、環A上の水素原子は、製造容易な点からは、置換されていないことが好ましい。環A上の水素原子は、有機電界発光素子として用いられたときに励起子が生成しやすくなるため、発光効率が高められる点からは、置換基を有してもよいフェニル基又はナフチル基で置換されていることが好ましい。 The hydrogen atom on the ring A has an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, and a (hetero) having 3 to 20 carbon atoms from the viewpoint of durability and enhanced solubility. ) It is preferably substituted with an aryl group. Further, the hydrogen atom on the ring A is preferably not substituted from the viewpoint of easy production. The hydrogen atom on the ring A is a phenyl group or a naphthyl group which may have a substituent from the viewpoint of improving the luminous efficiency because excitons are easily generated when it is used as an organic electroluminescent element. It is preferably substituted.
 環Aとして、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、アザトリフェニレン環、カルボリン環であることが、アシストドーパント上で励起子が生成しやすくなり、発光効率が高められる点で好ましい。中でも、耐久性の点で、キノリン環、イソキノリン環、キナゾリン環であることが好ましい。
 Lは有機配位子であり、特に制限は無いが、好ましくは1価の2座配位子であり、より好ましい例は、Lの好ましい例として示したものと同様である。なお、2つの有機配位子Lが存在する場合には、有機配位子Lは互いに異なる構造であってもよい。また、nが3のときは、Lは存在しない。
It is preferable that the ring A is a quinoline ring, an isoquinolin ring, a quinazoline ring, a quinoxalin ring, an azatriphenylene ring, or a carboline ring because excitons are easily generated on the assist dopant and the light emission efficiency is enhanced. Of these, a quinoline ring, an isoquinoline ring, and a quinazoline ring are preferable in terms of durability.
L 2 is an organic ligand and is not particularly limited, but is preferably a monovalent bidentate ligand, and a more preferable example is the same as that shown as a preferable example of L 1 . When two organic ligands L 2 are present, the organic ligands L 2 may have different structures from each other. Further, when n is 3, L 2 does not exist.
 以下に、実施例に示した以外の本実施形態に係る有機電界発光素子用組成物に含まれるアシストドーパントとなる式(2)で表される化合物の好ましい具体例を示すが、本発明はこれらに限定されるものではない。 Hereinafter, preferred specific examples of the compound represented by the formula (2), which is an assist dopant contained in the composition for an organic electroluminescent device according to the present embodiment other than those shown in the examples, will be shown. It is not limited to.
Figure JPOXMLDOC01-appb-C000025
 
Figure JPOXMLDOC01-appb-C000025
 
 [置換基群Z]
 置換基としては、アルキル基、アラルキル基、ヘテロアラルキル基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルキルシリル基、アリールシリル基、アルキルカルボニル基、アリールカルボニル基、アルキルアミノ基、アリールアミノ基、アリール基、又は、ヘテロアリール基を用いることができる。
 好ましくは、炭素数1~20のアルキル基、炭素数7~40のアラルキル基、炭素数7~40のヘテロアラルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基、炭素数3~20のヘテロアリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数1~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、炭素数6~30のアリール基、又は、炭素数3~30のヘテロアリール基であり、より具体的には後述の[置換基の具体例]に記載の置換基である。
 さらに好ましくは、炭素数1~20のアルキル基、炭素数7~40のアラルキル基、炭素数1~20のアルコキシ基、炭素数6~20のアリールオキシ基、又は炭素数6~30のアリール基である。
[Substituent group Z]
Substituents include alkyl groups, aralkyl groups, heteroaralkyl groups, alkoxy groups, aryloxy groups, heteroaryloxy groups, alkylsilyl groups, arylsilyl groups, alkylcarbonyl groups, arylcarbonyl groups, alkylamino groups and arylamino groups. , Aryl group, or heteroaryl group can be used.
Preferably, an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 40 carbon atoms, a heteroaralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, etc. Heteroaryloxy group with 3 to 20 carbon atoms, alkylsilyl group with 1 to 20 carbon atoms, arylsilyl group with 6 to 20 carbon atoms, alkylcarbonyl group with 2 to 20 carbon atoms, arylcarbonyl group with 7 to 20 carbon atoms , An alkylamino group having 1 to 20 carbon atoms, an arylamino group having 6 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or a heteroaryl group having 3 to 30 carbon atoms, more specifically described later. It is the substituent described in [Specific example of substituent].
More preferably, an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, or an aryl group having 6 to 30 carbon atoms. Is.
 [置換基の具体例]
 上述の各化合物構造における置換基、及び、前記置換基群Zにおける置換基の具体例は以下の通りである。
 前記炭素数1~20のアルキル基としては、直鎖、分岐または環状のアルキル基のいずれでもよい。より具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、イソプロピル基、イソブチル基、イソペンチル基、t-ブチル基、シクロヘキシル基などが挙げられる。中でも、メチル基、エチル基、n-ブチル基、n-ヘキシル基、n-オクチル基等の直鎖の炭素数1~8のアルキル基が好ましい。
[Specific example of substituent]
Specific examples of the substituents in each of the above-mentioned compound structures and the substituents in the substituent group Z are as follows.
The alkyl group having 1 to 20 carbon atoms may be a linear, branched or cyclic alkyl group. More specifically, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-octyl group, isopropyl group, isobutyl group, isopentyl group, t-butyl group. , Cyclohexyl group and the like. Of these, a linear alkyl group having 1 to 8 carbon atoms such as a methyl group, an ethyl group, an n-butyl group, an n-hexyl group and an n-octyl group is preferable.
 前記炭素数7~40の(ヘテロ)アラルキル基は、直鎖のアルキル基、分岐のアルキル基、又は環状のアルキル基を構成する水素原子の一部がアリール基またはヘテロアリール基で置換された基のことを指す。より具体的には、2-フェニル-1-エチル基、クミル基、5-フェニル-1-ペンチル基、6-フェニル-1-ヘキシル基、7-フェニル-1-ヘプチル基、テトラヒドロナフチル基などが挙げられる。中でも、5-フェニル-1-ペンチル基、6-フェニル-1-ヘキシル基、7-フェニル-1-ヘプチル基が好ましい。 The (hetero) aralkyl group having 7 to 40 carbon atoms is a group in which a part of hydrogen atoms constituting a linear alkyl group, a branched alkyl group, or a cyclic alkyl group is substituted with an aryl group or a heteroaryl group. Refers to. More specifically, 2-phenyl-1-ethyl group, cumyl group, 5-phenyl-1-pentyl group, 6-phenyl-1-hexyl group, 7-phenyl-1-heptyl group, tetrahydronaphthyl group and the like Can be mentioned. Of these, 5-phenyl-1-pentyl group, 6-phenyl-1-hexyl group and 7-phenyl-1-heptyl group are preferable.
 前記炭素数1~20のアルコキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、オクタデシルオキシ基等が挙げられる。中でも、ヘキシルオキシ基が好ましい。 Specific examples of the alkoxy group having 1 to 20 carbon atoms include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a hexyloxy group, a cyclohexyloxy group, an octadecyloxy group and the like. Of these, a hexyloxy group is preferable.
 前記炭素数3~20の(ヘテロ)アリールオキシ基の具体例としては、フェノキシ基、4-メチルフェニルオキシ基等が挙げられる。中でも、フェノキシ基が好ましい。 Specific examples of the (hetero) aryloxy group having 3 to 20 carbon atoms include a phenoxy group and a 4-methylphenyloxy group. Of these, a phenoxy group is preferable.
 前記炭素数1~20であるアルキルシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジメチルフェニル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基等が挙げられる。中でもトリイソプロピル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基が好ましい。 Specific examples of the alkylsilyl group having 1 to 20 carbon atoms include a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, a dimethylphenyl group, a t-butyldimethylsilyl group, a t-butyldiphenylsilyl group and the like. .. Of these, a triisopropyl group, a t-butyldimethylsilyl group and a t-butyldiphenylsilyl group are preferable.
 前記炭素数6~20であるアリールシリル基の具体例としては、ジフェニルピリジルシリル基、トリフェニルシリル基等が挙げられる。中でもトリフェニルシリル基が好ましい。 Specific examples of the arylsilyl group having 6 to 20 carbon atoms include a diphenylpyridylsilyl group and a triphenylsilyl group. Of these, a triphenylsilyl group is preferable.
 前記炭素数2~20のアルキルカルボニル基の具体例としては、アセチル基、プロピオニル基、ピバロイル基、カプロイル基、デカノイル基、シクロヘキシルカルボニル基等が挙げられる。中でもアセチル基、ピバロイル基が好ましい。 Specific examples of the alkylcarbonyl group having 2 to 20 carbon atoms include an acetyl group, a propionyl group, a pivaloyl group, a caproyl group, a decanoyl group, a cyclohexylcarbonyl group and the like. Of these, an acetyl group and a pivaloyl group are preferable.
 前記炭素数7~20のアリールカルボニル基の具体例としては、ベンゾイル基、ナフトイル基、アントライル基等が挙げられる。中でもベンゾイル基が好ましい。 Specific examples of the arylcarbonyl group having 7 to 20 carbon atoms include a benzoyl group, a naphthoyl group, an antryl group and the like. Of these, a benzoyl group is preferable.
 前記炭素数1~20のアルキルアミノ基の具体例としては、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、エチルメチルアミノ基、ジヘキシルアミノ基、ジオクチルアミノ基、ジシクロヘキシルアミノ基等が挙げられる。中でもジメチルアミノ基、ジシクロヘキシルアミノ基が好ましい。 Specific examples of the alkylamino group having 1 to 20 carbon atoms include a methylamino group, a dimethylamino group, a diethylamino group, an ethylmethylamino group, a dihexylamino group, a dioctylamino group, a dicyclohexylamino group and the like. Of these, a dimethylamino group and a dicyclohexylamino group are preferable.
 前記炭素数6~20のアリールアミノ基の具体例としては、フェニルアミノ基、ジフェニルアミノ基、ジ(4-トリル)アミノ基、ジ(2,6-ジメチルフェニル)アミノ基等が挙げられる。中でもジフェニルアミノ基、ジ(4-トリル)アミノ基が好ましい。 Specific examples of the arylamino group having 6 to 20 carbon atoms include a phenylamino group, a diphenylamino group, a di (4-tolyl) amino group, a di (2,6-dimethylphenyl) amino group and the like. Of these, a diphenylamino group and a di (4-tolyl) amino group are preferable.
 前記炭素数3~30の(ヘテロ)アリール基とは、1個の遊離原子価を有する、芳香族炭化水素基、芳香族複素環基、複数の芳香族炭化水素が連なった連結芳香族炭化水素基、複数の芳香族複素環基が連なった連結芳香族複素環基、又は、芳香族炭化水素及び芳香族複素環がそれぞれ少なくとも1以上任意に連結した基を意味する。
 具体例としては、1個の遊離原子価を有する、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、フルオランテン環、フラン環、ベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シンノリン環、キノキサリン環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環等の基が挙げられる。複数の芳香族炭化水素が連なった連結芳香族炭化水素基としては、ビフェニル基、テルフェニル基等が挙げられる。
The (hetero) aryl group having 3 to 30 carbon atoms is a linked aromatic hydrocarbon in which an aromatic hydrocarbon group, an aromatic heterocyclic group, and a plurality of aromatic hydrocarbons having one free atomic value are linked. It means a group, a linked aromatic heterocyclic group in which a plurality of aromatic heterocyclic groups are linked, or a group in which at least one or more aromatic hydrocarbons and aromatic heterocycles are arbitrarily linked.
Specific examples include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysen ring, a triphenylene ring, a fluorantene ring, and a furan ring, which have one free valence. Benzofuran ring, dibenzofuran ring, thiophene ring, benzothiophene ring, dibenzothiophene ring, pyrrol ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrrolomidazole ring, pyrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole Ring, thienothiophene ring, flopilol ring, flofuran ring, thienoflan ring, benzoisoxazole ring, benzoisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, Examples include groups such as a cinnoline ring, a quinoxaline ring, a perimidine ring, a quinazoline ring, a quinazolinone ring, and an azulene ring. Examples of the linked aromatic hydrocarbon group in which a plurality of aromatic hydrocarbons are linked include a biphenyl group and a terphenyl group.
 (ヘテロ)アリール基の中でも、耐久性の観点から、1個の遊離原子価を有する、ベンゼン環、ナフタレン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、ピリジン環、ピリミジン環、トリアジン環が好ましく、中でも、1個の遊離原子価を有し、炭素数が1~8のアルキル基で置換されていてもよいベンゼン環、ナフタレン環またはフェナントレン環などの炭素数6~18のアリール基、または、1個の遊離原子価を有し、炭素数が1~4のアルキル基で置換されていてもよいピリジン環がより好ましく、1個の遊離原子価を有し、炭素数が1~8のアルキル基で置換されていてもよいベンゼン環、ナフタレン環またはフェナントレン環などの炭素数6~18のアリール基であることがさらに好ましい。 Among the (hetero) aryl groups, a benzene ring, a naphthalene ring, a dibenzofuran ring, a dibenzothiophene ring, a carbazole ring, a pyridine ring, a pyrimidine ring, and a triazine ring having one free valence are preferable from the viewpoint of durability. Among them, an aryl group having 6 to 18 carbon atoms such as a benzene ring, a naphthalene ring or a phenanthrene ring, which has one free valence and may be substituted with an alkyl group having 1 to 8 carbon atoms, or 1 A pyridine ring having 1 free valence and may be substituted with an alkyl group having 1 to 4 carbon atoms is more preferable, and an alkyl group having 1 free valence and 1 to 8 carbon atoms. It is more preferably an aryl group having 6 to 18 carbon atoms, such as a benzene ring, a naphthalene ring or a phenanthrene ring which may be substituted with.
 化合物における基が複数の置換基を有している場合、これら置換基の組み合わせとしては、例えばアリール基とアルキル基との組み合わせ、アリール基とアラルキル基との組み合わせ、または、アリール基とアルキル基、アラルキル基との組み合わせを用いることができるが、これらに限定されない。アリール基とアラルキル基との組み合わせとしては、例えば、ベンゼン、ビフェニル基、テルフェニル基と、5-フェニル-1-ペンチル基、6-フェニル-1-ヘキシル基との組み合わせを用いることができる。 When the group in the compound has a plurality of substituents, the combination of these substituents includes, for example, a combination of an aryl group and an alkyl group, a combination of an aryl group and an aralkyl group, or an aryl group and an alkyl group. Combinations with aralkyl groups can be used, but are not limited thereto. As the combination of the aryl group and the aralkyl group, for example, a combination of a benzene, a biphenyl group, a terphenyl group, a 5-phenyl-1-pentyl group, and a 6-phenyl-1-hexyl group can be used.
[最大発光波長]
 本実施形態における化合物の最大発光波長の測定方法を以下に示す。
 化合物の最大発光波長は、材料を有機溶剤に溶解させた溶液のフォトルミネッセンススペクトル、または材料単独の薄膜のフォトルミネッセンススペクトルから求めることができる。
 溶液のフォトルミネッセンスの場合は、常温下で、2-メチルテトラヒドロフランに、化合物を濃度1×10-4mol/L以下で溶解した溶液について、分光光度計(浜松ホトニクス社製 有機EL量子収率測定装置C9920-02)で燐光スペクトルを測定する。得られた燐光スペクトル強度の最大値を示す波長を、最大発光波長とする。
 薄膜のフォトルミネッセンスの場合は、材料を真空蒸着または溶液塗布して薄膜を作製し、上記分光光度計にてフォトルミネッセンスを測定し、得られた発光スペクトル強度の最大値を示す波長を、最大発光波長とする。
 発光ドーパントに用いる化合物およびアシストドーパントに用いる化合物の最大発光波長は、同一の手法で求めて比較することが必要である。
[Maximum emission wavelength]
The method for measuring the maximum emission wavelength of the compound in the present embodiment is shown below.
The maximum emission wavelength of the compound can be determined from the photoluminescence spectrum of a solution in which the material is dissolved in an organic solvent, or the photoluminescence spectrum of a thin film of the material alone.
In the case of photoluminescence of a solution, a spectrophotometer (organic EL quantum yield measurement manufactured by Hamamatsu Photonics Co., Ltd.) is used for a solution in which a compound is dissolved in 2-methyl tetrahydrofuran at a concentration of 1 × 10 -4 mol / L or less at room temperature. The phosphorescence spectrum is measured with the apparatus C9920-02). The wavelength indicating the maximum value of the obtained phosphorescence spectral intensity is defined as the maximum emission wavelength.
In the case of thin film photoluminescence, a thin film is prepared by vacuum vapor deposition or solution coating of a material, photoluminescence is measured with the above spectrophotometer, and the wavelength indicating the maximum value of the obtained emission spectral intensity is set to the maximum emission. Let the wavelength be.
It is necessary to obtain and compare the maximum emission wavelengths of the compound used for the emission dopant and the compound used for the assist dopant by the same method.
 本実施形態に係る有機電界発光素子用組成物に含まれるアシストドーパントとなる式(2)で表される化合物は、発光ドーパントとなる式(1)で表される化合物に比べて、最大発光波長が短波である。
 発光ドーパントとなる化合物の最大発光波長は、580nm以上が好ましく、590nm以上がより好ましく、600nm以上がさらに好ましく、また、700nm以下が好ましく、680nm以下がより好ましい。最大発光波長がこの範囲であることで、有機電界発光素子として好適な赤色発光材料の好ましい色を発現できる傾向にある。
 アシストドーパントとなる化合物の最大発光波長と、発光ドーパントとなる化合物の最大発光波長とは、10nm以上離れていることで、効率的なエネルギーの受け渡しができるため、好ましい。
The compound represented by the formula (2) as an assist dopant contained in the composition for an organic electroluminescent device according to the present embodiment has a maximum emission wavelength as compared with the compound represented by the formula (1) as a light emitting dopant. Is a short wave.
The maximum emission wavelength of the compound serving as the emission dopant is preferably 580 nm or more, more preferably 590 nm or more, further preferably 600 nm or more, preferably 700 nm or less, and more preferably 680 nm or less. When the maximum emission wavelength is in this range, it tends to be possible to express a preferable color of a red light emitting material suitable as an organic electroluminescent element.
It is preferable that the maximum emission wavelength of the compound serving as an assist dopant and the maximum emission wavelength of the compound serving as a light emitting dopant are separated by 10 nm or more because efficient energy transfer can be performed.
 式(1)で表される化合物は、式(2)で表される化合物と同じか、それよりも多く含まれることが好ましい。すなわち、質量部換算による式(1)で表される化合物の組成比が、式(2)で表される化合物の組成比以上であることが好ましい。式(1)で表される化合物は、質量部換算において、式(2)で表される化合物の1~3倍含有することがさらに好ましい。素子の発光効率及び長寿命化の点から、特に好ましくは1~2倍含有することである。より鮮やかな発光が得られる点からは2倍以上含有することがよりさらに好ましく、素子の駆動電圧を低減できる点からは2倍未満含有することがよりさらに好ましい。これにより、アシストドーパントからのエネルギーがさらに効率的に発光ドーパントへ移行されるため高い発光効率が得られ、素子の長寿命化が期待される。 The compound represented by the formula (1) is preferably contained in the same amount as or more than the compound represented by the formula (2). That is, it is preferable that the composition ratio of the compound represented by the formula (1) in terms of parts by mass is equal to or higher than the composition ratio of the compound represented by the formula (2). The compound represented by the formula (1) is more preferably contained 1 to 3 times as much as the compound represented by the formula (2) in terms of parts by mass. From the viewpoint of luminous efficiency and long life of the device, the content is particularly preferably 1 to 2 times. It is more preferably contained twice or more from the viewpoint of obtaining more vivid light emission, and further preferably less than twice from the viewpoint of reducing the driving voltage of the element. As a result, the energy from the assist dopant is more efficiently transferred to the light emitting dopant, so that high luminous efficiency can be obtained and the life of the device is expected to be extended.
 [イリジウム錯体化合物の合成方法]
 本実施形態に係る有機電界発光素子用組成物に含まれるアシストドーパント及び発光ドーパントとなる式(2)で表される化合物及び式(1)で表される化合物は、共にイリジウム錯体化合物である。イリジウム錯体化合物の合成方法を以下に示す。
 イリジウム錯体化合物の配位子は、既知の方法の組み合わせなどにより合成され得る。配位子の合成は、アリールボロン酸類とハロゲン化ヘテロアリール類との鈴木-宮浦カップリング反応、2-ホルミル又はアシルアニリン類あるいは互いにオルト位にあるアシルーアミノピリジン類等とのFriedlaender環化反応(Chem.Rev.2009,109,2652、又は、Organic Reactions,1982,28(2),37-201)など既知の反応により合成することができる。
[Method for synthesizing iridium complex compound]
The compound represented by the formula (2) and the compound represented by the formula (1), which are the assist dopant and the light emitting dopant contained in the composition for the organic electroluminescent device according to the present embodiment, are both iridium complex compounds. The method for synthesizing the iridium complex compound is shown below.
The ligand of the iridium complex compound can be synthesized by a combination of known methods and the like. Ligand synthesis is performed by Suzuki-Miyaura coupling reaction between arylboronic acids and halogenated heteroaryls, Friedlayer cyclization reaction with 2-formyl or acylaniline, or acyl-aminopyridines at ortho positions with each other. It can be synthesized by a known reaction such as (Chem. Rev. 2009, 109, 2652, or Organic Reactions, 1982, 28 (2), 37-201).
 イリジウム錯体化合物は、上記で得られる配位子と塩化イリジウムn水和物などを原料として、既知の方法の組み合わせにより合成できる。以下に説明する。
 イリジウム錯体化合物の合成方法としては、判りやすさのためにフェニルピリジン配位子を例として用いた下記式[A]に示すような塩素架橋イリジウム二核錯体を経由する方法(M.G.Colombo,T.C.Brunold,T.Riedener,H.U.GudelInorg.Chem.,1994,33,545-550)、下記式[B]に示すような二核錯体からさらに塩素架橋をアセチルアセトナートと交換させ単核錯体へ変換したのち目的物を得る方法(S.Lamansky,P.Djurovich,D.Murphy,F.Abdel-Razzaq,R.Kwong,I.Tsyba,M.Borz,B.Mui,R.Bau,M.Thompson,Inorg.Chem.,2001,40,1704-1711)等が例示できるが、これらに限定されるものではない。
The iridium complex compound can be synthesized by a combination of known methods using the above-mentioned ligand and iridium chloride n hydrate as raw materials. This will be described below.
As a method for synthesizing the iridium complex compound, for the sake of clarity, a method via a chlorine-bridged iridium binuclear complex as shown in the following formula [A] using a phenylpyridine ligand as an example (MG Colombo). , TC Brunold, T. Riedener, HU GudelInorg. Chem., 1994, 33, 545-550), further chlorine cross-linking with acetylacetonate from a dinuclear complex as shown in the following formula [B]. Method for obtaining the desired product after exchanging and converting to a mononuclear complex (S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, R. Kwong, IT syba, M. Borz, B. Mui, R. Bau, M. Thompson, Inorg. Chem., 2001, 40, 1704-1711) and the like can be exemplified, but the present invention is not limited thereto.
 例えば、下記式[A]で表される典型的な反応の条件は以下のとおりである。なお、本明細書において、化学式中のEtとはエチル基を意味し、Tfとはトリフルオロメチルスルホニル基を意味する。
 第一段階として、第一の配位子2当量と塩化イリジウムn水和物1当量の反応により塩素架橋イリジウム二核錯体を合成する。溶媒は通常2-エトキシエタノールと水の混合溶媒が用いられるが、無溶媒あるいは他の溶媒を用いてもよい。配位子を過剰量用いたり、塩基等の添加剤を用いたりして反応を促進することもできる。塩素に代えて臭素など他の架橋性陰イオン配位子を使用することもできる。
For example, the typical reaction conditions represented by the following formula [A] are as follows. In the present specification, Et in the chemical formula means an ethyl group, and Tf means a trifluoromethylsulfonyl group.
As a first step, a chlorine-crosslinked iridium binuclear complex is synthesized by a reaction of 2 equivalents of the first ligand and 1 equivalent of iridium chloride n hydrate. As the solvent, a mixed solvent of 2-ethoxyethanol and water is usually used, but a solvent-free solvent or another solvent may be used. The reaction can be promoted by using an excessive amount of the ligand or by using an additive such as a base. Other crosslinkable anionic ligands such as bromine can be used instead of chlorine.
 反応温度に特に制限はないが、通常は0℃以上が好ましく、50℃以上がより好ましい。また、250℃以下が好ましく、150℃以下がより好ましい。反応温度がこの範囲であることで副生物や分解反応を伴うことなく目的の反応のみが進行し、高い選択性が得られる傾向にある。 The reaction temperature is not particularly limited, but usually 0 ° C. or higher is preferable, and 50 ° C. or higher is more preferable. Further, 250 ° C. or lower is preferable, and 150 ° C. or lower is more preferable. When the reaction temperature is within this range, only the desired reaction proceeds without accompanying by-products or decomposition reactions, and high selectivity tends to be obtained.
Figure JPOXMLDOC01-appb-C000026
 
Figure JPOXMLDOC01-appb-C000026
 
 二段階目は、トリフルオロメタンスルホン酸銀のようなハロゲンイオン捕捉剤を添加し第二の配位子と接触させることにより目的とする錯体を得る。溶媒は通常エトキシエタノール又はジグリムが用いられるが、配位子の種類により無溶媒あるいは他の溶媒を使用することができ、複数の溶媒を混合して使用することもできる。ハロゲンイオン捕捉剤を添加しなくても反応が進行する場合があるので必ずしも必要ではないが、反応収率を高め、より量子収率が高いフェイシャル異性体を選択的に合成するには該捕捉剤の添加が有利である。反応温度に特に制限はないが、通常0℃~250℃の範囲で行われる。 In the second step, a halogen ion scavenger such as silver trifluoromethanesulfonate is added and brought into contact with the second ligand to obtain the desired complex. Although ethoxyethanol or diglyme is usually used as the solvent, no solvent or other solvent can be used depending on the type of ligand, and a plurality of solvents can be mixed and used. It is not always necessary because the reaction may proceed without the addition of a halogen ion scavenger, but the scavenger is used to increase the reaction yield and selectively synthesize facial isomers having a higher quantum yield. Is advantageous. The reaction temperature is not particularly limited, but is usually carried out in the range of 0 ° C. to 250 ° C.
 下記式[B]で表される典型的な反応条件を説明する。
 第一段階の二核錯体は式[A]と同様に合成できる。
 第二段階は、該二核錯体にアセチルアセトンのような1,3-ジオン化合物を1当量以上、及び、炭酸ナトリウムのような該1,3-ジオン化合物の活性水素を引き抜き得る塩基性化合物を1当量以上反応させることにより、1,3-ジオナト配位子が配位する単核錯体へと変換する。通常原料の二核錯体を溶解しうるエトキシエタノールやジクロロメタンなどの溶媒が使用されるが、配位子が液状である場合は無溶媒で実施することも可能である。反応温度に特に制限はないが、通常は0℃~200℃の範囲内で行われる。
The typical reaction conditions represented by the following formula [B] will be described.
The first-stage dinuclear complex can be synthesized in the same manner as in the formula [A].
In the second step, one equivalent or more of a 1,3-dione compound such as acetylacetone and a basic compound capable of extracting active hydrogen of the 1,3-dione compound such as sodium carbonate are added to the dinuclear complex. By reacting in an equivalent amount or more, it is converted into a mononuclear complex in which the 1,3-dionat ligand is coordinated. Usually, a solvent such as ethoxyethanol or dichloromethane that can dissolve the dinuclear complex of the raw material is used, but if the ligand is liquid, it can be carried out without a solvent. The reaction temperature is not particularly limited, but is usually carried out in the range of 0 ° C. to 200 ° C.
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-C000027
 
 第三段階は、第二の配位子を1当量以上反応させる。溶媒の種類と量は特に制限はなく、第二の配位子が反応温度で液状である場合には無溶媒でもよい。反応温度も特に制限はないが、反応性が若干乏しいため100℃~300℃の比較的高温下で反応させることが多い。そのため、グリセリンなど高沸点の溶媒が好ましく用いられる。
 最終反応後は未反応原料や反応副生物及び溶媒を除くために精製を行う。通常の有機合成化学における精製操作を適用することができるが、上記の非特許文献記載のように主として順相のシリカゲルカラムクロマトグラフィーによる精製が行われる。展開液にはヘキサン、ヘプタン、ジクロロメタン、クロロホルム、酢酸エチル、トルエン、メチルエチルケトン、メタノールの単一又は混合液を使用できる。精製は条件を変え複数回行ってもよい。その他のクロマトグラフィー技術、例えば逆相シリカゲルクロマトグラフィー、サイズ排除クロマトグラフィー、ペーパークロマトグラフィーや、分液洗浄、再沈殿、再結晶、粉体の懸濁洗浄、減圧乾燥などの精製操作を必要に応じて施すことができる。
The third step is to react one or more equivalents of the second ligand. The type and amount of the solvent are not particularly limited, and may be solvent-free as long as the second ligand is liquid at the reaction temperature. The reaction temperature is also not particularly limited, but since the reactivity is slightly poor, the reaction is often carried out at a relatively high temperature of 100 ° C to 300 ° C. Therefore, a solvent having a high boiling point such as glycerin is preferably used.
After the final reaction, purification is performed to remove unreacted raw materials, reaction by-products and solvents. Purification operations in ordinary synthetic organic chemistry can be applied, but purification is mainly performed by normal phase silica gel column chromatography as described in the above non-patent documents. A single or mixed solution of hexane, heptane, dichloromethane, chloroform, ethyl acetate, toluene, methyl ethyl ketone, and methanol can be used as the developing solution. Purification may be performed multiple times under different conditions. Other chromatography techniques, such as reverse phase silica gel chromatography, size exclusion chromatography, paper chromatography, and purification operations such as liquid separation washing, reprecipitation, recrystallization, powder suspension washing, vacuum drying, etc., as required. Can be applied.
 [溶媒、組成比]
 本実施形態に係る有機電界発光素子用組成物には、溶媒を含む。
 有機電界発光素子用組成物は、通常、湿式成膜法で層や膜を形成するために用いられ、特に有機電界発光素子の発光層を形成するために用いられることが好ましい。
 有機電界発光素子用組成物における、発光ドーパントの含有量は、通常0.01質量%以上、好ましくは0.1質量%以上であり、また、通常20質量%以下、好ましくは10質量%以下である。発光ドーパントの含有量をこの範囲とすることにより、該組成物を有機電界発光素子用途に利用した場合に、励起エネルギーが隣接する層、例えば、正孔輸送層や正孔阻止層に移動することが少なく、また、励起子同士の相互作用により消光することが少なくなるため、発光効率を高めることができる。なお、発光ドーパントの含有量とは、式(1)で表される化合物の合計の含有量である。
[Solvent, composition ratio]
The composition for an organic electroluminescent device according to this embodiment contains a solvent.
The composition for an organic electroluminescent device is usually used for forming a layer or a film by a wet film forming method, and is particularly preferably used for forming a light emitting layer of an organic electroluminescent device.
The content of the light emitting dopant in the composition for an organic electroluminescent device is usually 0.01% by mass or more, preferably 0.1% by mass or more, and usually 20% by mass or less, preferably 10% by mass or less. is there. By setting the content of the light emitting dopant in this range, when the composition is used for an organic electroluminescent device application, the excitation energy is transferred to an adjacent layer, for example, a hole transport layer or a hole blocking layer. In addition, the emission efficiency can be improved because the extinction is less likely to occur due to the interaction between excitons. The content of the luminescent dopant is the total content of the compounds represented by the formula (1).
 有機電界発光素子用組成物における、アシストドーパントの含有量は、通常0.005質量%以上、好ましくは0.05質量%以上であり、また、通常10質量%以下、好ましくは5質量%以下である。アシストドーパントの含有量をこの範囲とすることにより、該組成物を有機電界発光素子用途に利用した場合に、隣接する層、例えば、正孔輸送層や正孔阻止層から発光層へ、効率よく正孔や電子の注入が行われ、駆動電圧を低減することができる。なお、アシストドーパントの含有量とは、式(2)で表される化合物の合計の含有量である。 The content of the assist dopant in the composition for an organic electroluminescent device is usually 0.005% by mass or more, preferably 0.05% by mass or more, and usually 10% by mass or less, preferably 5% by mass or less. is there. By setting the content of the assist dopant in this range, when the composition is used for an organic electroluminescent device application, it is efficient from an adjacent layer, for example, a hole transport layer or a hole blocking layer to a light emitting layer. Holes and electrons are injected, and the drive voltage can be reduced. The content of the assist dopant is the total content of the compounds represented by the formula (2).
 有機電界発光素子用組成物は、式(2)で表されるアシストドーパントとなる化合物が1種のみ含まれていても、2種以上が組み合わされて含まれていてもよい。ただし、2種以上が含まれる場合、すべてのアシストドーパントとなる化合物の最大発光波長は、式(1)で表される発光ドーパントとなる化合物の最大発光波長に比べて短波である。また、式(1)で表される発光ドーパントとなる化合物が2種以上含まれている場合、すべての発光ドーパントとなる化合物の最大発光波長よりも、すべてのアシストドーパントとなる化合物の最大発光波長が短波である。 The composition for an organic electroluminescent device may contain only one kind of compound serving as an assist dopant represented by the formula (2), or may contain two or more kinds in combination. However, when two or more kinds are included, the maximum emission wavelength of all the assist dopant compounds is shorter than the maximum emission wavelength of the emission dopant compound represented by the formula (1). Further, when two or more kinds of compounds serving as light emitting dopants represented by the formula (1) are contained, the maximum emitting wavelengths of all the assist dopant compounds are higher than the maximum light emitting wavelengths of all the light emitting dopant compounds. Is a short wave.
 有機電界発光素子用組成物における、発光ドーパントとなる式(1)で表される化合物の組成比(質量%)は、アシストドーパントとなる式(2)で表される化合物の組成比(質量%)と同じか、それよりも大きいことが好ましい。発光ドーパントとなる化合物の組成比を大きくすることにより、有機電界発光素子としたときに、より発光スペクトルの幅が狭くなり鮮やかな発光が得られるため、表示装置用途に好適である。なお、2種以上のアシストドーパントとなる化合物が含まれる場合、すべてのアシストドーパントとなる化合物の組成比(質量%)の合計よりも、発光ドーパントとなる化合物の組成比(質量%)の合計は大きいことが好ましい。 In the composition for an organic electroluminescent device, the composition ratio (mass%) of the compound represented by the formula (1) serving as a light emitting dopant is the composition ratio (mass%) of the compound represented by the formula (2) serving as an assist dopant. ) Is the same as or larger than that. By increasing the composition ratio of the compound serving as the light emitting dopant, the width of the light emitting spectrum becomes narrower and vivid light emission can be obtained when the organic electroluminescent device is used, which is suitable for display device applications. When two or more kinds of compounds serving as assist dopants are included, the total composition ratio (mass%) of the compounds serving as light emitting dopants is larger than the total composition ratios (mass%) of all the compounds serving as assist dopants. Larger is preferred.
 上記発光ドーパントとなる化合物は、上記アシストドーパントとなる化合物に対して質量部換算において1~3倍有することがさらに好ましい。これにより、アシストドーパントからのエネルギーがさらに効率的に発光ドーパントへ移行されるため、より高い発光効率が得られる。特に好ましくは1~2倍有することである。より鮮やかな発光が得られる点から、発光ドーパントとなる化合物の組成比(質量%)は、アシストドーパントとなる化合物の組成比(質量%)よりも2倍以上大きいことがより好ましい。他方、素子の駆動電圧を低減できる点からは、発光ドーパントとなる化合物の組成比(質量%)は、アシストドーパントとなる化合物の組成比(質量%)の2倍未満であることが好ましい。 It is more preferable that the compound serving as the light emitting dopant has 1 to 3 times the mass of the compound serving as the assist dopant. As a result, the energy from the assist dopant is transferred to the light emitting dopant more efficiently, so that higher luminous efficiency can be obtained. It is particularly preferable to have 1 to 2 times. From the viewpoint of obtaining more vivid light emission, the composition ratio (mass%) of the compound serving as the light emitting dopant is more preferably twice or more larger than the composition ratio (mass%) of the compound serving as the assist dopant. On the other hand, from the viewpoint of reducing the driving voltage of the device, the composition ratio (mass%) of the compound serving as the light emitting dopant is preferably less than twice the composition ratio (mass%) of the compound serving as the assist dopant.
 有機電界発光素子用組成物に含有される溶媒は、湿式成膜によりアシストドーパント及び発光ドーパントを含む層を形成するために用いる、揮発性を有する液体成分である。 The solvent contained in the composition for an organic electroluminescent device is a volatile liquid component used for forming a layer containing an assist dopant and a light emitting dopant by wet film formation.
 該溶媒は、溶質であるアシストドーパントとなる化合物、及び発光ドーパントとなる化合物が良好に溶解する溶媒であれば特に限定されない。また、後述する電荷輸送性化合物を溶解する溶媒であることが好ましい。
 好ましい溶媒としては、例えば、n-デカン、シクロヘキサン、エチルシクロヘキサン、デカリン、ビシクロヘキサン等のアルカン類;トルエン、キシレン、メシチレン、フェニルシクロヘキサン、テトラリン等の芳香族炭化水素類;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素類;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール、ジフェニルエーテル等の芳香族エーテル類;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル類;シクロヘキサノン、シクロオクタノン、フェンコン等の脂環族ケトン類;シクロヘキサノール、シクロオクタノール等の脂環族アルコール類;メチルエチルケトン、ジブチルケトン等の脂肪族ケトン類;ブタノール、ヘキサノール等の脂肪族アルコール類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル類等が挙げられる。中でもより好ましくは、アルカン類や芳香族炭化水素類であり、特に、フェニルシクロヘキサンは湿式成膜プロセスにおいて好ましい粘度と沸点を有していることからよりさらに好ましい。
The solvent is not particularly limited as long as it is a solvent in which a compound serving as an assist dopant as a solute and a compound serving as a light emitting dopant are dissolved well. Further, it is preferably a solvent that dissolves a charge transporting compound described later.
Preferred solvents include, for example, alkanes such as n-decane, cyclohexane, ethylcyclohexane, decalin, bicyclohexane; aromatic hydrocarbons such as toluene, xylene, mesitylene, phenylcyclohexane, tetralin; chlorobenzene, dichlorobenzene, trichlorobenzene and the like. Halogenized aromatic hydrocarbons such as 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetol, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, etc. Aromatic ethers such as 2,4-dimethylanisole and diphenyl ether; aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, n-butyl benzoate; cyclohexanone, cycloocta Aromatic ketones such as non- and fencon; Aromatic alcohols such as cyclohexanol and cyclooctanol; Aromatic ketones such as methyl ethyl ketone and dibutyl ketone; Aromatic alcohols such as butanol and hexanol; Ethylene glycol dimethyl ether and ethylene Examples thereof include aliphatic ethers such as glycol diethyl ether and propylene glycol-1-monomethyl ether acetate (PGMEA). Of these, alcans and aromatic hydrocarbons are more preferable, and phenylcyclohexane is even more preferable because it has a preferable viscosity and boiling point in the wet film forming process.
 これらの溶媒は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。
 溶媒の沸点は、通常80℃以上、好ましくは100℃以上、より好ましくは150℃以上、特に好ましくは200℃以上である。この範囲とすることにより、湿式成膜時において、有機電界発光素子用組成物からの溶媒蒸発により、成膜安定性が低下することを抑制できる。また、通常沸点は270℃以下、好ましくは250℃以下、より好ましくは240℃以下である。
One of these solvents may be used alone, or two or more of these solvents may be used in any combination and ratio.
The boiling point of the solvent is usually 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 150 ° C. or higher, and particularly preferably 200 ° C. or higher. Within this range, it is possible to prevent the film formation stability from being lowered due to solvent evaporation from the composition for the organic electroluminescent device during wet film formation. The boiling point is usually 270 ° C. or lower, preferably 250 ° C. or lower, and more preferably 240 ° C. or lower.
 溶媒の含有量は、有機電界発光素子用組成物100質量部に対して、好ましくは10質量部以上、より好ましくは50質量部以上、特に好ましくは80質量部以上であり、また、好ましくは99.95質量部以下、より好ましくは99.9質量部以下、特に好ましくは99.8質量部以下である。
 有機電界発光素子用組成物により有機電界発光素子の発光層を形成する場合の厚みは、通常3~200nm程度であるが、溶媒の含有量を上記下限以上とすることにより、組成物の粘性が高くなりすぎて成膜作業性が低下することを防ぐことができる。一方、上記上限以下とすることにより、成膜後、溶媒を除去して得られる膜の厚みが一定以上得られ、成膜性が良好となる。
The content of the solvent is preferably 10 parts by mass or more, more preferably 50 parts by mass or more, particularly preferably 80 parts by mass or more, and preferably 99 parts by mass with respect to 100 parts by mass of the composition for an organic electroluminescent device. It is .95 parts by mass or less, more preferably 99.9 parts by mass or less, and particularly preferably 99.8 parts by mass or less.
When the light emitting layer of the organic electroluminescent device is formed by the composition for an organic electroluminescent device, the thickness is usually about 3 to 200 nm, but the viscosity of the composition is increased by setting the solvent content to the above lower limit or more. It is possible to prevent the film formation workability from being lowered due to being too high. On the other hand, when the thickness is not more than the above upper limit, the thickness of the film obtained by removing the solvent after film formation is obtained to be a certain level or more, and the film forming property is improved.
 [電荷輸送性化合物]
 本実施形態に係る有機電界発光素子用組成物は、電荷輸送性化合物をさらに含むことが好ましい。
 電荷輸送性化合物としては、従来有機電界発光素子用材料として用いられているものを使用することができる。例えば、トリアリールアミン、ビスカルバゾール、トリアリールトリアジン、トリアリールピリミジン及びそれらの誘導体、アリールアミノ基やカルバゾリル基が置換されたナフタレン、ペリレン、ピレン、アントラセン、クリセン、ナフタセン、フェナントレン、コロネン、フルオランテン、ベンゾフェナントレン、フルオレン、アセトナフトフルオランテンなどの縮合芳香族環化合物が挙げられる。
[Charge transporting compound]
The composition for an organic electroluminescent device according to the present embodiment preferably further contains a charge transporting compound.
As the charge transporting compound, a compound conventionally used as a material for an organic electroluminescent device can be used. For example, triarylamine, biscarbazole, triaryltriazine, triarylpyrimidine and its derivatives, naphthalene, perylene, pyrene, anthracene, chrysene, naphthalene, phenanthrene, coronene, fluoranthene, benzo substituted with arylamino or carbazolyl groups. Examples thereof include condensed aromatic ring compounds such as phenanthrene, fluorene and acetnaphthofluoranthene.
 また、電荷輸送性化合物は高分子であってもよく、高分子の電荷輸送性化合物としては、ポリ(9,9-ジオクチルフルオレン-2,7-ジイル)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(4,4’-(N-(4-sec-ブチルフェニル))ジフェニルアミン)]、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(1,4-ベンゾ-2{2,1’-3}-トリアゾール)]などのポリフルオレン系材料、ポリ[2-メトキシ-5-(2-ヘチルヘキシルオキシ)-1,4-フェニレンビニレン]などのポリフェニレンビニレン系材料などが挙げられる。
 これらの電荷輸送性化合物は、1種類を単独で用いてもよく、2種類以上を任意の組み合わせ、および比率で用いてもよい。
Further, the charge transporting compound may be a polymer, and the polymer charge transporting compound includes poly (9,9-dioctylfluorene-2,7-diyl) and poly [(9,9-dioctylfluorene). -2,7-diyl) -co- (4,4'-(N- (4-sec-butylphenyl)) diphenylamine)], poly [(9,9-dioctylfluorene-2,7-diyl) -co -(1,4-Benzo-2 {2,1'-3} -triazole)] and other polyfluorene-based materials, poly [2-methoxy-5- (2-hetylhexyloxy) -1,4-phenylene vinylene ] And other polyphenylene vinylene-based materials.
One of these charge transporting compounds may be used alone, or two or more of these may be used in any combination and ratio.
 [有機電界発光素子]
 本実施形態に係る有機電界発光素子は、上記有機電界発光素子用組成物を用いて、好ましくは湿式成膜法により、形成された層を含むものである。
 有機電界発光素子は、好ましくは、基板上に少なくとも陽極、陰極及び陽極と陰極の間に少なくとも1層の有機層を有するものであって、前記有機層のうち少なくとも1層が本実施形態に係る有機電界発光素子用組成物を用いて形成した層である。かかる層は湿式成膜法により形成されることがより好ましい。また、前記有機層は発光層を含むが、この発光層が、本実施形態に係る有機電界発光素子用組成物を用いて形成された層であることが、より好ましい。
[Organic electroluminescent device]
The organic electroluminescent device according to the present embodiment includes a layer formed by using the above composition for an organic electroluminescent device, preferably by a wet film forming method.
The organic electroluminescent device preferably has at least an anode, a cathode, and at least one organic layer between the anode and the cathode on the substrate, and at least one of the organic layers relates to the present embodiment. This is a layer formed by using a composition for an organic electroluminescent device. It is more preferable that such a layer is formed by a wet film forming method. Further, although the organic layer includes a light emitting layer, it is more preferable that the light emitting layer is a layer formed by using the composition for an organic electroluminescent device according to the present embodiment.
 本明細書において湿式成膜法とは、成膜方法、即ち、塗布方法として、例えば、スピンコート法、ディップコート法、ダイコート法、バーコート法、ブレードコート法、ロールコート法、スプレーコート法、キャピラリーコート法、インクジェット法、ノズルプリンティング法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法等、湿式で成膜される方法を採用し、これらの方法で成膜された膜を乾燥して膜形成を行う方法をいう。 In the present specification, the wet film forming method is a film forming method, that is, as a coating method, for example, a spin coating method, a dip coating method, a die coating method, a bar coating method, a blade coating method, a roll coating method, a spray coating method, and the like. We adopt methods such as capillary coating method, inkjet method, nozzle printing method, screen printing method, gravure printing method, flexographic printing method, etc., and dry the film formed by these methods to form a film. Refers to the method of doing.
 図1は本発明の有機電界発光素子10として好適な構造例を示す断面の模式図である。図1において、符号1は基板、符号2は陽極、符号3は正孔注入層、符号4は正孔輸送層、符号5は発光層、符号6は正孔阻止層、符号7は電子輸送層、符号8は電子注入層、符号9は陰極を各々表す。
 これらの構造に適用する材料は、公知の材料を適用することができ、特に制限はないが、各層に関しての代表的な材料や製法を一例として以下に記載する。以下において、公報や論文等を引用している場合、該当内容を当業者の常識の範囲で適宜、適用、応用することができるものとする。
FIG. 1 is a schematic cross-sectional view showing a structural example suitable for the organic electroluminescent device 10 of the present invention. In FIG. 1, reference numeral 1 is a substrate, reference numeral 2 is an anode, reference numeral 3 is a hole injection layer, reference numeral 4 is a hole transport layer, reference numeral 5 is a light emitting layer, reference numeral 6 is a hole blocking layer, and reference numeral 7 is an electron transport layer. , Reference numeral 8 represents an electron injection layer, and reference numeral 9 represents a cathode.
As the material applied to these structures, known materials can be applied, and there is no particular limitation, but typical materials and manufacturing methods for each layer are described below as examples. In the following, when citations such as gazettes and treatises are cited, the relevant contents can be appropriately applied and applied within the scope of common sense of those skilled in the art.
 <基板1>
 基板1は、有機電界発光素子の支持体となるものであり、通常、石英やガラスの板、金属板、金属箔、又は、合成樹脂、すなわちプラスチックのフィルム若しくはシート等が用いられる。これらのうち、ガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホン等の透明な合成樹脂のフィルムが好ましい。基板1は、外気による有機電界発光素子の劣化が起こり難いことからガスバリア性の高い材質とするのが好ましい。特に合成樹脂製の基板等のようにガスバリア性の低い材質を用いる場合は、基板1の少なくとも一方の表面に緻密なシリコン酸化膜等を設けてガスバリア性を上げることが好ましい。
<Board 1>
The substrate 1 serves as a support for an organic electroluminescent element, and usually a quartz or glass plate, a metal plate, a metal foil, or a synthetic resin, that is, a plastic film or sheet is used. Of these, a glass plate or a transparent synthetic resin film such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable. The substrate 1 is preferably made of a material having a high gas barrier property because the organic electroluminescent element is unlikely to be deteriorated by the outside air. In particular, when a material having a low gas barrier property such as a synthetic resin substrate is used, it is preferable to provide a dense silicon oxide film or the like on at least one surface of the substrate 1 to improve the gas barrier property.
 <陽極2>
 陽極2は、発光層側の層に正孔を注入する機能を担う。陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属;インジウム及び/又はスズの酸化物等の金属酸化物;ヨウ化銅等のハロゲン化金属;カーボンブラック或いはポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等により構成される。
<Anode 2>
The anode 2 has a function of injecting holes into the layer on the light emitting layer side. The anode 2 is usually a metal such as aluminum, gold, silver, nickel, palladium, platinum; a metal oxide such as an oxide of indium and / or tin; a metal halide such as copper iodide; carbon black or poly (3). -Methylthiophene), polypyrrole, polyaniline and other conductive polymers.
 陽極2の形成は、通常、スパッタリング法、真空蒸着法等の乾式法により行われることが多い。銀等の金属微粒子、ヨウ化銅等の微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末等を用いて陽極2を形成する場合には、適当なバインダー樹脂溶液に分散させて、基板1上に塗布することにより形成することもできる。導電性高分子の場合は、電解重合により直接基板上に薄膜を形成したり、基板上に導電性高分子を塗布したりして陽極2を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。 The anode 2 is usually formed by a dry method such as a sputtering method or a vacuum vapor deposition method. When the anode 2 is formed by using metal fine particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, conductive polymer fine powder, etc., it is dispersed in an appropriate binder resin solution. It can also be formed by coating it on the substrate 1. In the case of a conductive polymer, the anode 2 can be formed by directly forming a thin film on the substrate by electrolytic polymerization or by applying the conductive polymer on the substrate (Appl. Phys. Lett., Volume 60, p. 2711, 1992).
 陽極2は、通常、単層構造であるが、適宜、積層構造としてもよい。陽極2が積層構造である場合、1層目の陽極上に異なる導電材料を積層してもよい。
 陽極2の厚みは、必要とされる透明性と材質等に応じて、決めればよい。特に高い透明性が必要とされる場合は、可視光の透過率が60%以上となる厚みが好ましく、80%以上となる厚みが更に好ましい。陽極2の厚みは、通常5nm以上、好ましくは10nm以上であり、通常1000nm以下、好ましくは500nm以下である。
The anode 2 usually has a single-layer structure, but may have a laminated structure as appropriate. When the anode 2 has a laminated structure, different conductive materials may be laminated on the first-layer anode.
The thickness of the anode 2 may be determined according to the required transparency, material, and the like. When particularly high transparency is required, a thickness having a visible light transmittance of 60% or more is preferable, and a thickness having a visible light transmittance of 80% or more is more preferable. The thickness of the anode 2 is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
 透明性が不要な場合は、陽極2の厚みは必要な強度等に応じて任意の厚みとすればよく、この場合、陽極2は基板1と同一の厚みでもよい。
 陽極2を形成後、次いでその表面に次の層の成膜を行う場合は、成膜前に、紫外線+オゾン、酸素プラズマ、アルゴンプラズマ等の処理を施すことにより、陽極上の不純物を除去すると共に、そのイオン化ポテンシャルを調整して正孔注入性を向上させておくのが好ましい。
When transparency is not required, the thickness of the anode 2 may be any thickness depending on the required strength and the like. In this case, the anode 2 may have the same thickness as the substrate 1.
When the next layer is formed on the surface of the anode 2 after it is formed, impurities on the anode are removed by treating with ultraviolet rays + ozone, oxygen plasma, argon plasma, etc. before the film formation. At the same time, it is preferable to adjust the ionization potential to improve the hole injection property.
 <正孔注入層3>
 陽極2側から発光層5側に正孔を輸送する機能を担う層は、通常、正孔注入輸送層又は正孔輸送層と呼ばれる。陽極2側から発光層5側に正孔を輸送する機能を担う層が2層以上ある場合に、より陽極2側に近い方の層を正孔注入層3と呼ぶことがある。
 以後、正孔注入層3について説明するが、正孔を輸送する機能を担う層が1層である場合の正孔注入輸送層又は正孔輸送層についても、同じく正孔注入層3として説明する。すなわち、後述する正孔輸送層4は、正孔を輸送する機能を担う層が1層である場合の正孔輸送層とは異なり、かかる層が2層以上である場合の発光層5側に近い方の層の名称であって、任意の層である。
 正孔注入層3は、陽極2から発光層5側に正孔を輸送する機能を強化する点で、用いることが好ましい。正孔注入層3を用いる場合、通常、正孔注入層3は、陽極2上に形成される。
<Hole injection layer 3>
The layer having a function of transporting holes from the anode 2 side to the light emitting layer 5 side is usually called a hole injection transport layer or a hole transport layer. When there are two or more layers having a function of transporting holes from the anode 2 side to the light emitting layer 5, the layer closer to the anode 2 side may be referred to as the hole injection layer 3.
Hereinafter, the hole injection layer 3 will be described, but the hole injection transport layer or the hole transport layer when the layer responsible for the hole transport function is one layer will also be described as the hole injection layer 3. .. That is, the hole transport layer 4, which will be described later, is different from the hole transport layer when the layer responsible for transporting holes is one layer, and is on the light emitting layer 5 side when such layers are two or more layers. The name of the closer layer, which is an arbitrary layer.
The hole injection layer 3 is preferably used because it enhances the function of transporting holes from the anode 2 to the light emitting layer 5. When the hole injection layer 3 is used, the hole injection layer 3 is usually formed on the anode 2.
 正孔注入層3の膜厚は、通常1nm以上、好ましくは5nm以上であり、通常1000nm以下、好ましくは500nm以下である。
 正孔注入層3の形成方法は、真空蒸着法でも、湿式成膜法でもよい。成膜性が優れる点では、湿式成膜法により形成することが好ましい。
 正孔注入層3は、正孔輸送性化合物を含むことが好ましく、正孔輸送性化合物と電子受容性化合物とを含むことがより好ましい。更には、正孔注入層3中にカチオンラジカル化合物を含むことが好ましく、カチオンラジカル化合物と正孔輸送性化合物とを含むことが特に好ましい。
The film thickness of the hole injection layer 3 is usually 1 nm or more, preferably 5 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
The hole injection layer 3 may be formed by either a vacuum vapor deposition method or a wet film deposition method. In terms of excellent film forming property, it is preferably formed by a wet film forming method.
The hole injection layer 3 preferably contains a hole transporting compound, and more preferably contains a hole transporting compound and an electron accepting compound. Further, the hole injection layer 3 preferably contains a cation radical compound, and particularly preferably contains a cation radical compound and a hole transporting compound.
 (正孔輸送性化合物)
 正孔注入層形成用組成物は、通常、正孔注入層3となる正孔輸送性化合物を含有する。
 湿式成膜法の場合は、通常、更に溶剤も含有する。正孔注入層形成用組成物は、正孔輸送性が高く、注入された正孔を効率よく輸送できることが好ましい。このため、正孔移動度が大きく、トラップとなる不純物が製造時や使用時等に発生し難いのが好ましい。また、安定性に優れ、イオン化ポテンシャルが小さく、可視光に対する透明性が高いことが好ましい。特に、正孔注入層3が発光層5と接する場合、すなわち陽極2側から発光層5側に正孔を輸送する機能を担う層が正孔注入層3の1層である場合は、発光層5からの発光を消光しないものや発光層5とエキサイプレックスを形成して、発光効率を低下させないものが好ましい。
(Hole transporting compound)
The composition for forming a hole injection layer usually contains a hole transporting compound that becomes the hole injection layer 3.
In the case of the wet film forming method, a solvent is usually further contained. It is preferable that the composition for forming a hole injection layer has high hole transportability and can efficiently transport the injected holes. For this reason, it is preferable that the hole mobility is high and impurities that serve as traps are unlikely to be generated during production or use. Further, it is preferable that the stability is excellent, the ionization potential is small, and the transparency to visible light is high. In particular, when the hole injection layer 3 is in contact with the light emitting layer 5, that is, when the layer having a function of transporting holes from the anode 2 side to the light emitting layer 5 side is one layer of the hole injection layer 3, the light emitting layer It is preferable that the light emitted from No. 5 is not extinguished, or that the light emitting layer 5 and the light emitting layer 5 are formed with an exciplex so as not to reduce the luminous efficiency.
 正孔輸送性化合物としては、陽極2から正孔注入層3への電荷注入障壁の観点から、4.5eV~6.0eVのイオン化ポテンシャルを有する化合物が好ましい。正孔輸送性化合物の例としては、芳香族アミン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、オリゴチオフェン系化合物、ポリチオフェン系化合物、ベンジルフェニル系化合物、フルオレン基で3級アミンを連結した化合物、ヒドラゾン系化合物、シラザン系化合物、キナクリドン系化合物等が挙げられる。 As the hole transporting compound, a compound having an ionization potential of 4.5 eV to 6.0 eV is preferable from the viewpoint of a charge injection barrier from the anode 2 to the hole injection layer 3. Examples of hole-transporting compounds include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, compounds in which a tertiary amine is linked with a fluorene group, and hydrazone. Examples thereof include system compounds, silazane compounds, and quinacridone compounds.
 上述の例示化合物のうち、非晶質性及び可視光透過性の点から、芳香族アミン化合物が好ましく、芳香族三級アミン化合物が特に好ましい。芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。
 芳香族三級アミン化合物の種類は、特に制限されないが、表面平滑化効果により均一な発光を得やすい点から、重量平均分子量が1000以上1000000以下の高分子化合物(繰り返し単位が連なる重合型化合物)を用いることが好ましい。芳香族三級アミン高分子化合物の好ましい例としては、下記式(I)で表される繰り返し単位を有する高分子化合物等が挙げられる。
Among the above-mentioned exemplified compounds, an aromatic amine compound is preferable, and an aromatic tertiary amine compound is particularly preferable from the viewpoint of amorphousness and visible light transmission. The aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and also includes a compound having a group derived from an aromatic tertiary amine.
The type of the aromatic tertiary amine compound is not particularly limited, but a polymer compound having a weight average molecular weight of 1,000 or more and 1,000,000 or less (a polymerized compound in which repeating units are continuous) is easy to obtain uniform light emission due to the surface smoothing effect. It is preferable to use. Preferred examples of the aromatic tertiary amine polymer compound include a polymer compound having a repeating unit represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000028
 
Figure JPOXMLDOC01-appb-C000028
 
 式(I)中、Ar及びArは、それぞれ独立して、置換基を有していてもよい1価の芳香族基又は置換基を有していてもよい1価の複素芳香族基を表す。Ar~Arは、それぞれ独立して、置換基を有していてもよい2価の芳香族基又は置換基を有していてもよい2価の複素芳香族基を表す。Qは、下記の連結基群の中から選ばれる連結基を表す。また、Ar~Arのうち、同一のN原子に結合する二つの基は互いに結合して環を形成してもよい。
 下記に連結基を示す。
In formula (I), Ar 1 and Ar 2 are independently monovalent aromatic groups which may have a substituent or monovalent complex aromatic groups which may have a substituent. Represents. Ar 3 to Ar 5 each independently represent a divalent aromatic group which may have a substituent or a divalent heteroaromatic group which may have a substituent. Q represents a linking group selected from the following linking group group. Further, of Ar 1 to Ar 5 , two groups bonded to the same N atom may be bonded to each other to form a ring.
The linking groups are shown below.
Figure JPOXMLDOC01-appb-C000029
 
Figure JPOXMLDOC01-appb-C000029
 
(上記各式中、Ar~Ar16は、それぞれ独立して、置換基を有していてもよい芳香族基又は置換基を有していてもよい複素芳香族基を表す。R及びRは、それぞれ独立して、水素原子又は任意の置換基を表す。) (In the above formulas, Ar 6 ~ Ar 16 are each independently, .R a represents an heteroaromatic group optionally having an optionally substituted aromatic group or a substituent and R b each independently represents a hydrogen atom or any substituent.)
 Ar~Ar16の芳香族基及び複素芳香族基としては、高分子化合物の溶解性、耐熱性、正孔注入輸送性の点から、ベンゼン環、ナフタレン環、フェナントレン環、チオフェン環、ピリジン環由来の基が好ましく、ベンゼン環、ナフタレン環由来の基がさらに好ましい。
 式(I)で表される繰り返し単位を有する芳香族三級アミン高分子化合物の具体例としては、国際公開第2005/089024号に記載のもの等が挙げられる。
The aromatic groups and heteroaromatic groups of Ar 1 to Ar 16 include a benzene ring, a naphthalene ring, a phenanthrene ring, a thiophene ring, and a pyridine ring in terms of solubility, heat resistance, and hole injection transportability of the polymer compound. Derived groups are preferable, and groups derived from benzene rings and naphthalene rings are more preferable.
Specific examples of the aromatic tertiary amine polymer compound having a repeating unit represented by the formula (I) include those described in International Publication No. 2005/089024.
 (電子受容性化合物)
 正孔注入層3は、正孔輸送性化合物の酸化により、正孔注入層3の導電率を向上させることができるため、電子受容性化合物を含有していることが好ましい。
 電子受容性化合物としては、酸化力を有し、上述の正孔輸送性化合物から一電子受容する能力を有する化合物が好ましい。具体的には、電子親和力が4eV以上である化合物がより好ましく、電子親和力が5eV以上である化合物が更に好ましい。
(Electron accepting compound)
Since the hole injection layer 3 can improve the conductivity of the hole injection layer 3 by oxidizing the hole transporting compound, it is preferable that the hole injection layer 3 contains an electron accepting compound.
As the electron-accepting compound, a compound having an oxidizing power and an ability to accept one electron from the hole-transporting compound described above is preferable. Specifically, a compound having an electron affinity of 4 eV or more is more preferable, and a compound having an electron affinity of 5 eV or more is further preferable.
 このような電子受容性化合物としては、例えば、トリアリールホウ素化合物、ハロゲン化金属、ルイス酸、有機酸、オニウム塩、アリールアミンとハロゲン化金属との塩、及び、アリールアミンとルイス酸との塩よりなる群から選ばれる1種又は2種以上の化合物等が挙げられる。具体的には、4-イソプロピル-4’-メチルジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボラート、トリフェニルスルホニウムテトラフルオロボラート等の有機基の置換したオニウム塩(国際公開第2005/089024号);塩化鉄(III)(日本国特開平11-251067号公報)、ペルオキソ二硫酸アンモニウム等の高原子価の無機化合物;テトラシアノエチレン等のシアノ化合物;トリス(ペンタフルオロフェニル)ボラン(日本国特開2003-31365号公報)等の芳香族ホウ素化合物;フラーレン誘導体及びヨウ素等が挙げられる。 Examples of such an electron-accepting compound include a triarylboron compound, a metal halide, a Lewis acid, an organic acid, an onium salt, a salt of an arylamine and a metal halide, and a salt of an arylamine and a Lewis acid. Examples thereof include one or more compounds selected from the group consisting of two or more compounds. Specifically, onium salts substituted with organic groups such as 4-isopropyl-4'-methyldiphenyliodonium tetrakis (pentafluorophenyl) borate, triphenylsulfonium tetrafluoroborate (International Publication No. 2005/089024); chloride. High valence inorganic compounds such as iron (III) (Japanese Patent Laid-Open No. 11-251667), ammonium peroxodisulfate; cyano compounds such as tetracyanoethylene; tris (pentafluorophenyl) borane (Japanese Patent Laid-Open No. 20033-) Aromatic boron compounds such as (No. 31365); fullerene derivatives, iodine and the like can be mentioned.
 (カチオンラジカル化合物)
 カチオンラジカル化合物としては、正孔輸送性化合物から一電子取り除いた化学種であるカチオンラジカルと、対アニオンとからなるイオン化合物が好ましい。カチオンラジカルが正孔輸送性の高分子化合物由来である場合、カチオンラジカルは高分子化合物の繰り返し単位から一電子取り除いた構造となる。
(Cation radical compound)
As the cation radical compound, an ionic compound composed of a cation radical, which is a chemical species obtained by removing one electron from a hole transporting compound, and a counter anion is preferable. When the cation radical is derived from a hole-transporting polymer compound, the cation radical has a structure in which one electron is removed from the repeating unit of the polymer compound.
 カチオンラジカルとしては、正孔輸送性化合物として前述した化合物から一電子取り除いた化学種であることが、非晶質性、可視光の透過率、耐熱性、及び溶解性などの点から好適である。
 カチオンラジカル化合物は、前述の正孔輸送性化合物と電子受容性化合物を混合することにより生成させることができる。前述の正孔輸送性化合物と電子受容性化合物とを混合することにより、正孔輸送性化合物から電子受容性化合物へと電子移動が起こり、正孔輸送性化合物のカチオンラジカルと対アニオンとからなるカチオンラジカル化合物が生成する。
The cation radical is preferably a chemical species obtained by removing one electron from the above-mentioned compound as a hole-transporting compound in terms of amorphousness, visible light transmittance, heat resistance, solubility and the like. ..
The cationic radical compound can be produced by mixing the hole transporting compound and the electron accepting compound described above. By mixing the above-mentioned hole-transporting compound and electron-accepting compound, electron transfer occurs from the hole-transporting compound to the electron-accepting compound, and the hole-transporting compound consists of a cation radical and a counter anion. A cationic radical compound is produced.
 カチオンラジカル化合物として、例えばポリ(4-スチレンスルホン酸)をドープしたポリ(3,4-エチレンジオキシチオフェン)(PEDOT/PSS)(Adv.Mater.,2000年,12巻,481頁)やエメラルジン塩酸塩(J.Phys.Chem.,1990年,94巻,7716頁)等の高分子化合物由来のカチオンラジカル化合物は、酸化重合(脱水素重合)することによっても生成する。
 ここでいう酸化重合は、モノマーを酸性溶液中で、ペルオキソ二硫酸塩等を用いて化学的に、又は、電気化学的に酸化するものである。この酸化重合(脱水素重合)の場合、モノマーが酸化されることにより高分子化されるとともに、酸性溶液由来のアニオンを対アニオンとする、高分子の繰り返し単位から一電子取り除かれたカチオンラジカルが生成する。
Examples of the cationic radical compound include poly (3,4-ethylenedioxythiophene) (PEDOT / PSS) (Adv. Matter., 2000, Vol. 12, p. 481) doped with poly (4-styrene sulfonic acid) and emeraldine. Cationic radical compounds derived from polymer compounds such as hydrochloride (J. Phys. Chem., 1990, Vol. 94, p. 7716) are also produced by oxidative polymerization (dehydropolymerization).
The oxidative polymerization referred to here is to chemically or electrochemically oxidize a monomer in an acidic solution using peroxodisulfate or the like. In the case of this oxidative polymerization (dehydrogenation), a cation radical obtained by removing one electron from a repeating unit of a polymer, which is polymerized by oxidizing a monomer and has an anion derived from an acidic solution as a counter anion, is generated. Generate.
 (湿式成膜法による正孔注入層3の形成)
 湿式成膜法により正孔注入層3を形成する場合、通常、正孔注入層3となる材料を可溶な溶剤(正孔注入層用溶剤)と混合して成膜用の組成物(正孔注入層形成用組成物)を調製し、この正孔注入層形成用組成物を正孔注入層3の下層に該当する層、通常は、陽極2上に湿式成膜法により成膜し、乾燥させることにより形成させる。成膜した膜の乾燥は、湿式成膜法による発光層5の形成における乾燥方法と同様に行うことができる。
(Formation of hole injection layer 3 by wet film formation method)
When the hole injection layer 3 is formed by the wet film formation method, the material to be the hole injection layer 3 is usually mixed with a soluble solvent (solvent for the hole injection layer) to form a film-forming composition (positive). A composition for forming a hole injection layer) is prepared, and this composition for forming a hole injection layer is formed on a layer corresponding to the lower layer of the hole injection layer 3, usually on the anode 2 by a wet film forming method. It is formed by drying. The film formed can be dried in the same manner as the drying method in forming the light emitting layer 5 by the wet film forming method.
 正孔注入層形成用組成物中における正孔輸送性化合物の濃度は、本発明の効果を著しく損なわない限り任意であるが、膜厚の均一性の点からは低い方が好ましく、正孔注入層3に欠陥が生じ難い点からは高い方が好ましい。正孔注入層形成用組成物中における正孔輸送性化合物の濃度は、0.01質量%以上が好ましく、0.1質量%以上が更に好ましく、0.5質量%以上が特に好ましく、また、70質量%以下が好ましく、60質量%以下が更に好ましく、50質量%以下が特に好ましい。 The concentration of the hole transporting compound in the composition for forming a hole injection layer is arbitrary as long as the effect of the present invention is not significantly impaired, but it is preferably low from the viewpoint of film thickness uniformity, and hole injection A higher layer is preferable from the viewpoint that defects are less likely to occur in the layer 3. The concentration of the hole transporting compound in the composition for forming a hole injection layer is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, particularly preferably 0.5% by mass or more, and further. It is preferably 70% by mass or less, more preferably 60% by mass or less, and particularly preferably 50% by mass or less.
 溶剤としては、例えば、エーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤などが挙げられる。
 エーテル系溶剤としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル及び1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテル等が挙げられる。
Examples of the solvent include ether-based solvents, ester-based solvents, aromatic hydrocarbon-based solvents, amide-based solvents and the like.
Examples of the ether-based solvent include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and propylene glycol-1-monomethyl ether acetate (PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, and anisole. , Fenetol, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole and other aromatic ethers.
 エステル系溶剤としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル等が挙げられる。 Examples of the ester-based solvent include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
 芳香族炭化水素系溶剤としては、例えば、トルエン、キシレン、シクロヘキシルベンゼン、3-イソプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、メチルナフタレン等が挙げられる。 Examples of the aromatic hydrocarbon solvent include toluene, xylene, cyclohexylbenzene, 3-isopropylbiphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, methylnaphthalene and the like.
 アミド系溶剤としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。
 これらの他、ジメチルスルホキシド等も用いることができる。
Examples of the amide solvent include N, N-dimethylformamide, N, N-dimethylacetamide and the like.
In addition to these, dimethyl sulfoxide and the like can also be used.
 正孔注入層3の湿式成膜法による形成は、通常、正孔注入層形成用組成物を調製後に、これを、正孔注入層3の下層に該当する層、通常は、陽極2上に塗布成膜し、乾燥することにより行われる。正孔注入層3は、通常、成膜後に、加熱や減圧乾燥等により塗布膜を乾燥させる。 The formation of the hole injection layer 3 by the wet film formation method is usually performed on a layer corresponding to the lower layer of the hole injection layer 3, usually on the anode 2, after preparing the composition for forming the hole injection layer. It is carried out by coating and forming a film and drying. In the hole injection layer 3, the coating film is usually dried by heating, vacuum drying, or the like after the film formation.
 (真空蒸着法による正孔注入層3の形成)
 真空蒸着法により正孔注入層3を形成する場合には、通常、正孔注入層3の構成材料、すなわち、前述の正孔輸送性化合物、電子受容性化合物等の1種類又は2種類以上を真空容器内に設置された坩堝に入れる。この際、2種類以上の材料を用いる場合は、通常各々を別々の坩堝に入れる。その後、真空容器内を真空ポンプで10-4Pa程度まで排気した後、坩堝を加熱して、坩堝内の材料の蒸発量を制御しながら蒸発させる。2種類以上の材料を用いる場合は、通常各々の坩堝を加熱して、各々独立に蒸発量を制御しながら蒸発させる。かかる操作により、坩堝に向き合って置かれた基板上の陽極2上に正孔注入層3を形成させる。2種類以上の材料を用いる場合は、それらを混合物として坩堝に入れ、加熱、蒸発させて正孔注入層3を形成することもできる。
(Formation of hole injection layer 3 by vacuum deposition method)
When the hole injection layer 3 is formed by the vacuum vapor deposition method, usually one or more of the constituent materials of the hole injection layer 3, that is, the hole transporting compound, the electron accepting compound, and the like described above are used. Put it in the crucible installed in the vacuum container. At this time, when two or more kinds of materials are used, each is usually put in a separate crucible. After that, the inside of the vacuum vessel is evacuated to about 10 -4 Pa with a vacuum pump, and then the crucible is heated to evaporate the material in the crucible while controlling the amount of evaporation. When two or more kinds of materials are used, each crucible is usually heated and evaporated while controlling the amount of evaporation independently. By such an operation, the hole injection layer 3 is formed on the anode 2 on the substrate placed facing the crucible. When two or more kinds of materials are used, they can be put into a crucible as a mixture, heated and evaporated to form the hole injection layer 3.
 蒸着時の真空度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1×10-6Torr(0.13×10-4Pa)以上、9.0×10-6Torr(12.0×10-4Pa)以下である。蒸着速度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1Å/秒以上、5.0Å/秒以下である。蒸着時の成膜温度は、本発明の効果を著しく損なわない限り限定されないが、好ましくは10℃以上、50℃以下で行われる。 The degree of vacuum during vapor deposition is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 × 10 -6 Torr (0.13 × 10 -4 Pa) or more, 9.0 × 10 -6 Torr ( It is 12.0 × 10 -4 Pa) or less. The vapor deposition rate is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 Å / sec or more and 5.0 Å / sec or less. The film formation temperature at the time of vapor deposition is not limited as long as the effect of the present invention is not significantly impaired, but is preferably 10 ° C. or higher and 50 ° C. or lower.
 <正孔輸送層4>
 正孔輸送層4は、陽極2側から発光層5側に正孔を輸送する機能を担う層である。正孔輸送層4は、本実施形態に係る有機電界発光素子では、必須の層では無いが、陽極2から発光層5に正孔を輸送する機能を強化する点からは設けることが好ましい。正孔輸送層4を設ける場合、通常、正孔輸送層4は、陽極2と発光層5の間に形成される。正孔注入層3がある場合、正孔輸送層4は正孔注入層3と発光層5の間に形成される。
<Hole transport layer 4>
The hole transport layer 4 is a layer that has a function of transporting holes from the anode 2 side to the light emitting layer 5. Although the hole transport layer 4 is not an essential layer in the organic electroluminescent device according to the present embodiment, it is preferable to provide the hole transport layer 4 from the viewpoint of enhancing the function of transporting holes from the anode 2 to the light emitting layer 5. When the hole transport layer 4 is provided, the hole transport layer 4 is usually formed between the anode 2 and the light emitting layer 5. When there is a hole injection layer 3, the hole transport layer 4 is formed between the hole injection layer 3 and the light emitting layer 5.
 正孔輸送層4の膜厚は、通常5nm以上、好ましくは10nm以上であり、通常300nm以下、好ましくは100nm以下である。
 正孔輸送層4の形成方法は、真空蒸着法でも、湿式成膜法でもよい。成膜性が優れる点からは、湿式成膜法により形成することが好ましい。
The film thickness of the hole transport layer 4 is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
The hole transport layer 4 may be formed by either a vacuum vapor deposition method or a wet film deposition method. From the viewpoint of excellent film forming property, it is preferable to form by a wet film forming method.
 正孔輸送層4は、通常、正孔輸送層4となる正孔輸送性化合物を含有する。正孔輸送層4に含まれる正孔輸送性化合物としては、特に、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニルで代表される、2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(日本国特開平5-234681号公報)、4,4’,4’’-トリス(1-ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン化合物(J.Lumin.,72-74巻、985頁、1997年)、トリフェニルアミンの四量体から成る芳香族アミン化合物(Chem.Commun.,2175頁、1996年)、2,2’,7,7’-テトラキス-(ジフェニルアミノ)-9,9’-スピロビフルオレン等のスピロ化合物(Synth.Metals,91巻、209頁、1997年)、4,4’-N,N’-ジカルバゾールビフェニルなどのカルバゾール誘導体などが挙げられる。ポリビニルカルバゾール、ポリビニルトリフェニルアミン(日本国特開平7-53953号公報)、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン(Polym.Adv.Tech.,7巻、33頁、1996年)等も好ましく使用できる。 The hole transport layer 4 usually contains a hole transport compound that becomes the hole transport layer 4. Examples of the hole-transporting compound contained in the hole-transporting layer 4 include two or more tertiary compounds represented by 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl. Aromatic diamine containing amine and having two or more fused aromatic rings replaced with nitrogen atoms (Japanese Patent Laid-Open No. 5-234681), 4,4', 4''-tris (1-naphthylphenylamino) tri Aromatic amine compounds having a starburst structure such as phenylamine (J. Lumin., 72-74, pp. 985, 1997), aromatic amine compounds consisting of triphenylamine tetramers (Chem. Commun., 2175, 1996), 2,2', 7,7'-tetrax- (diphenylamino) -9,9'-spirobifluorene and other spiro compounds (Synth. Metals, 91, 209, 1997). , 4,4'-N, N'-dicarbazolebiphenyl and other carbazole derivatives and the like. Polyvinylcarbazole, polyvinyltriphenylamine (Japanese Patent Laid-Open No. 7-53953), polyarylene ether sulfone containing tetraphenylbenzidine (Polym. Adv. Tech., Vol. 7, p. 33, 1996) and the like are also preferable. Can be used.
 (湿式成膜法による正孔輸送層4の形成)
 湿式成膜法で正孔輸送層4を形成する場合は、通常、上述の正孔注入層3を湿式成膜法で形成する場合と同様にして、正孔注入層形成用組成物の代わりに正孔輸送層形成用組成物を用いて形成させる。
 湿式成膜法で正孔輸送層4を形成する場合は、通常、正孔輸送層形成用組成物は、更に溶剤を含有する。正孔輸送層形成用組成物に用いる溶剤は、上述の正孔注入層形成用組成物で用いる溶剤と同様の溶剤を使用することができる。
(Formation of hole transport layer 4 by wet film formation method)
When the hole transport layer 4 is formed by the wet film forming method, usually, in the same manner as when the hole injection layer 3 is formed by the wet film forming method, instead of the hole injection layer forming composition. It is formed using a composition for forming a hole transport layer.
When the hole transport layer 4 is formed by the wet film formation method, the hole transport layer forming composition usually further contains a solvent. As the solvent used in the hole transport layer forming composition, the same solvent as the solvent used in the hole injection layer forming composition described above can be used.
 正孔輸送層形成用組成物中の正孔輸送性化合物の濃度は、正孔注入層形成用組成物中の正孔輸送性化合物の濃度と同様の範囲とすることができる。
 正孔輸送層4の湿式成膜法による形成は、前述の正孔注入層3の成膜法と同様に行うことができる。
The concentration of the hole-transporting compound in the composition for forming the hole-transporting layer can be in the same range as the concentration of the hole-transporting compound in the composition for forming the hole-injecting layer.
The hole transport layer 4 can be formed by the wet film formation method in the same manner as the hole injection layer 3 film formation method described above.
 (真空蒸着法による正孔輸送層4の形成)
 真空蒸着法で正孔輸送層4を形成する場合も、通常、上述の正孔注入層3を真空蒸着法で形成する場合と同様にして、正孔注入層3の構成材料の代わりに正孔輸送層4の構成材料を用いて形成させることができる。蒸着時の真空度、蒸着速度及び温度などの成膜条件などは、正孔注入層3の真空蒸着時と同様の条件で成膜することができる。
(Formation of hole transport layer 4 by vacuum deposition method)
When the hole transport layer 4 is formed by the vacuum vapor deposition method, holes are usually used instead of the constituent materials of the hole injection layer 3 in the same manner as when the hole injection layer 3 is formed by the vacuum vapor deposition method. It can be formed using the constituent materials of the transport layer 4. The film formation conditions such as the degree of vacuum, the vapor deposition rate, and the temperature at the time of vapor deposition can be the same as those at the time of vacuum vapor deposition of the hole injection layer 3.
 <発光層5>
 発光層5は、一対の電極間に電界が与えられた時に、陽極2から注入される正孔と陰極9から注入される電子が再結合することにより励起され、発光する機能を担う層である。
 発光層5は、陽極2と陰極9の間に形成される層である。発光層5は、陽極2の上に正孔注入層3がある場合は、正孔注入層3と陰極9の間に形成され、陽極2の上に正孔輸送層4がある場合は、正孔輸送層4と陰極9との間に形成される。
<Light emitting layer 5>
The light emitting layer 5 is a layer having a function of emitting light by being excited by recombination of holes injected from the anode 2 and electrons injected from the cathode 9 when an electric field is applied between the pair of electrodes. ..
The light emitting layer 5 is a layer formed between the anode 2 and the cathode 9. The light emitting layer 5 is formed between the hole injection layer 3 and the cathode 9 when the hole injection layer 3 is above the anode 2, and is positive when the hole transport layer 4 is above the anode 2. It is formed between the hole transport layer 4 and the cathode 9.
 発光層5の膜厚は、本発明の効果を著しく損なわない限り任意であるが、膜に欠陥が生じ難い点からは厚い方が好ましく、一方、低駆動電圧としやすい点からは薄い方が好ましい。発光層5の膜厚は3nm以上が好ましく、5nm以上が更に好ましく、また、通常200nm以下が好ましく、100nm以下が更に好ましい。
 発光層5は、本実施形態に係る有機電界発光素子用組成物を用いて形成されることが好ましく、湿式塗布法により形成されることがより好ましい。
 本実施形態に係る有機電界発光素子用組成物を用いて湿式塗布法により形成された発光層以外にも、有機電界発光素子は他の発光材料及び電荷輸送性材料を含んでもよく、以下、他の発光材料及び電荷輸送性材料について詳述する。
The film thickness of the light emitting layer 5 is arbitrary as long as the effect of the present invention is not significantly impaired, but a thick film thickness is preferable from the viewpoint that defects are unlikely to occur in the film, and a thin film thickness is preferable from the viewpoint that a low driving voltage is likely to occur. .. The film thickness of the light emitting layer 5 is preferably 3 nm or more, more preferably 5 nm or more, and usually 200 nm or less, further preferably 100 nm or less.
The light emitting layer 5 is preferably formed using the composition for an organic electroluminescent device according to the present embodiment, and more preferably formed by a wet coating method.
In addition to the light emitting layer formed by the wet coating method using the composition for an organic electroluminescent device according to the present embodiment, the organic electroluminescent device may contain other light emitting materials and charge transporting materials. The luminescent material and the charge transporting material of the above will be described in detail.
 (発光材料)
 発光材料は、所望の発光波長で発光し、本発明の効果を損なわない限り特に制限はなく、公知の発光材料を適用可能である。発光材料は、蛍光発光材料でも、燐光発光材料でもよいが、発光効率が良好である材料が好ましく、内部量子効率の観点から燐光発光材料が好ましい。
(Luminescent material)
The light emitting material is not particularly limited as long as it emits light at a desired light emitting wavelength and the effect of the present invention is not impaired, and a known light emitting material can be applied. The light emitting material may be either a fluorescent light emitting material or a phosphorescent light emitting material, but a material having good luminous efficiency is preferable, and a phosphorescent light emitting material is preferable from the viewpoint of internal quantum efficiency.
 蛍光発光材料としては、例えば、以下の材料が挙げられる。
 青色発光を与える蛍光発光材料(青色蛍光発光材料)としては、例えば、ナフタレン、ペリレン、ピレン、アントラセン、クマリン、クリセン、p-ビス(2-フェニルエテニル)ベンゼン及びそれらの誘導体等が挙げられる。
 緑色発光を与える蛍光発光材料(緑色蛍光発光材料)としては、例えば、キナクリドン誘導体、クマリン誘導体、Al(CNO)などのアルミニウム錯体等が挙げられる。
Examples of the fluorescent light emitting material include the following materials.
Examples of the fluorescent light emitting material (blue fluorescent light emitting material) that gives blue light emission include naphthalene, perylene, pyrene, anthracene, coumarin, chrysene, p-bis (2-phenylethenyl) benzene, and derivatives thereof.
The fluorescent light-emitting material giving green luminescence (green fluorescent material), for example, quinacridone derivatives, coumarin derivatives, aluminum complexes such as Al (C 9 H 6 NO) 3 and the like.
 黄色発光を与える蛍光発光材料(黄色蛍光発光材料)としては、例えば、ルブレン、ペリミドン誘導体等が挙げられる。
 赤色発光を与える蛍光発光材料(赤色蛍光発光材料)としては、例えば、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体、ベンゾチオキサンテン誘導体、アザベンゾチオキサンテン等が挙げられる。
Examples of the fluorescent light emitting material (yellow fluorescent light emitting material) that gives yellow light emission include rubrene, a perimidone derivative, and the like.
Examples of the fluorescent light emitting material (red fluorescent light emitting material) that gives red light emission include DCM (4- (dimethyanomethylene) -2-methyl-6- (p-dimethylaminostylyl) -4H-pyran) compounds, benzopyran derivatives, and rhodamine derivatives. , Benzothioxanthene derivatives, azabenzothioxanthene and the like.
 燐光発光材料としては、例えば、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)の第7~11族から選ばれる金属を含む有機金属錯体等が挙げられる。周期表の第7~11族から選ばれる金属として、好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金等が挙げられる。 As the phosphorescent material, for example, from the 7th to 11th groups of the long periodic table (hereinafter, unless otherwise specified, the term "periodic table" refers to the long periodic table). Examples thereof include an organic metal complex containing a selected metal. The metal selected from Groups 7 to 11 of the periodic table is preferably ruthenium, rhodium, palladium, silver, renium, osmium, iridium, platinum, gold and the like.
 有機金属錯体の配位子としては、(ヘテロ)アリールピリジン配位子、(ヘテロ)アリールピラゾール配位子などの(ヘテロ)アリール基とピリジン、ピラゾール、フェナントロリンなどが連結した配位子が好ましく、特にフェニルピリジン配位子、フェニルピラゾール配位子が好ましい。ここで、(ヘテロ)アリール基とは、アリール基及びヘテロアリール基の少なくとも一方を表す。 As the ligand of the organic metal complex, a ligand in which a (hetero) aryl group such as a (hetero) arylpyridine ligand or a (hetero) arylpyrazole ligand is linked to a pyridine, pyrazole, phenanthroline or the like is preferable. In particular, a phenylpyridine ligand and a phenylpyrazole ligand are preferable. Here, the (hetero) aryl group represents at least one of an aryl group and a heteroaryl group.
 好ましい燐光発光材料として、具体的には、トリス(2-フェニルピリジン)イリジウム、トリス(2-フェニルピリジン)ルテニウム、トリス(2-フェニルピリジン)パラジウム、ビス(2-フェニルピリジン)白金、トリス(2-フェニルピリジン)オスミウム、トリス(2-フェニルピリジン)レニウム等のフェニルピリジン錯体及びオクタエチル白金ポルフィリン、オクタフェニル白金ポルフィリン、オクタエチルパラジウムポルフィリン、オクタフェニルパラジウムポルフィリン等のポルフィリン錯体等が挙げられる。 Specific preferred phosphorescent materials include tris (2-phenylpyridine) iridium, tris (2-phenylpyridine) ruthenium, tris (2-phenylpyridine) palladium, bis (2-phenylpyridine) platinum, and tris (2). -Finylpyridine complexes such as osmium and tris (2-phenylpyridine) renium and porphyrin complexes such as octaethyl platinum porphyrin, octaphenyl platinum porphyrin, octaethyl palladium porphyrin and octaphenyl palladium porphyrin can be mentioned.
 高分子系の発光材料としては、ポリ(9,9-ジオクチルフルオレン-2,7-ジイル)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(4,4’-(N-(4-sec-ブチルフェニル))ジフェニルアミン)]、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(1,4-ベンゾ-2{2,1’-3}-トリアゾール)]などのポリフルオレン系材料、ポリ[2-メトキシ-5-(2-エチルヘキシルオキシ)-1,4-フェニレンビニレン]などのポリフェニレンビニレン系材料が挙げられる。 Polymer-based luminescent materials include poly (9,9-dioctylfluorene-2,7-diyl) and poly [(9,9-dioctylfluorene-2,7-diyl) -co- (4,4'-). (N- (4-sec-butylphenyl)) diphenylamine)], poly [(9,9-dioctylfluorene-2,7-diyl) -co- (1,4-benzo-2 {2,1'-3) } -Triazole)] and other polyfluorene-based materials, and poly [2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylene vinylene] and other polyphenylene vinylene-based materials can be mentioned.
 (電荷輸送性材料)
 電荷輸送性材料は、正電荷(正孔)又は負電荷(電子)輸送性を有する材料であり、本発明の効果を損なわない限り、特に制限はなく、公知の材料を適用可能である。
 電荷輸送性材料は、従来、有機電界発光素子の発光層5に用いられている化合物等を用いることができ、特に、発光層5のホスト材料として使用されている化合物が好ましい。
(Charge transport material)
The charge transporting material is a material having positive charge (hole) or negative charge (electron) transportability, and is not particularly limited as long as the effects of the present invention are not impaired, and known materials can be applied.
As the charge transporting material, a compound or the like conventionally used for the light emitting layer 5 of the organic electroluminescent device can be used, and a compound used as a host material for the light emitting layer 5 is particularly preferable.
 電荷輸送性材料としては、具体的には、芳香族アミン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、オリゴチオフェン系化合物、ポリチオフェン系化合物、ベンジルフェニル系化合物、フルオレン基で3級アミンを連結した化合物、ヒドラゾン系化合物、シラザン系化合物、シラナミン系化合物、ホスファミン系化合物、キナクリドン系化合物等の正孔注入層3の正孔輸送性化合物として例示した化合物等が挙げられる他、アントラセン系化合物、ピレン系化合物、カルバゾール系化合物、ピリジン系化合物、フェナントロリン系化合物、オキサジアゾール系化合物、シロール系化合物等の電子輸送性化合物等が挙げられる。 Specific examples of the charge transporting material include aromatic amine compounds, phthalocyanine compounds, porphyrin compounds, oligothiophene compounds, polythiophene compounds, benzylphenyl compounds, and compounds in which a tertiary amine is linked with a fluorene group. , Hydrazone-based compounds, silazane-based compounds, silanamine-based compounds, phosphamine-based compounds, quinacridone-based compounds, and other compounds exemplified as hole-transporting compounds in the hole injection layer 3, as well as anthracene-based compounds and pyrene-based compounds. , Carbazole-based compounds, pyridine-based compounds, phenanthroline-based compounds, oxadiazole-based compounds, silol-based compounds and other electron-transporting compounds.
 電荷輸送性材料としては、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニルで代表される2個以上の3級アミンを含み2個以上の縮合芳香族環が窒素原子に置換した芳香族ジアミン(日本国特開平5-234681号公報)、4,4’,4’’-トリス(1-ナフチルフェニルアミノ)トリフェニルアミン等のスターバースト構造を有する芳香族アミン系化合物(J.Lumin.,72-74巻、985頁、1997年)、トリフェニルアミンの四量体から成る芳香族アミン系化合物(Chem.Commun.,2175頁、1996年)、2,2’,7,7’-テトラキス-(ジフェニルアミノ)-9,9’-スピロビフルオレン等のフルオレン系化合物(Synth.Metals,91巻、209頁、1997年)、4,4’-N,N’-ジカルバゾールビフェニルなどのカルバゾール系化合物等の正孔輸送層4の正孔輸送性化合物として例示した化合物等も好ましく用いることができる。その他、2-(4-ビフェニリル)-5-(p-ターシャルブチルフェニル)-1,3,4-オキサジアゾール(tBu-PBD)、2,5-ビス(1-ナフチル)-1,3,4-オキサジアゾール(BND)などのオキサジアゾール系化合物、2,5-ビス(6’-(2’,2’’-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロール(PyPySPyPy)等のシロール系化合物、バソフェナントロリン(BPhen)、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP、バソクプロイン)などのフェナントロリン系化合物等も挙げられる。 As the charge transporting material, two or more fused aromatic rings containing two or more tertiary amines represented by 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl are used. Aromatic amines having a starburst structure such as aromatic diamines substituted with nitrogen atoms (Japanese Patent Laid-Open No. 5-234681), 4,4', 4''-tris (1-naphthylphenylamino) triphenylamines, etc. Aromatic amine compounds consisting of tetramers of triphenylamines (Chem. Commun., 2175, 1996), 2,2 series compounds (J. Lumin., 72-74, pp. 985, 1997). Fluorene compounds such as', 7,7'-tetrax- (diphenylamino) -9,9'-spirobifluorene (Synth. Metals, Vol. 91, p. 209, 1997), 4, 4'-N, N Compounds exemplified as the hole-transporting compound of the hole-transporting layer 4 such as a carbazole-based compound such as ′ -dicarbazolebiphenyl can also be preferably used. In addition, 2- (4-biphenylyl) -5- (p-talshalbutylphenyl) -1,3,4-oxadiazole (tBu-PBD), 2,5-bis (1-naphthyl) -1,3 , 4-Oxadiazole (BND) and other oxadiazole compounds, 2,5-bis (6'-(2', 2''-bipyridyl))-1,1-dimethyl-3,4-diphenylsilol Examples thereof include silol compounds such as (PyPySPyPy), phenanthroline compounds such as vasophenanthroline (BPhen) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP, vasocproin).
 (湿式成膜法による発光層5の形成)
 有機電界発光素子は、本実施形態に係る有機電界発光素子用組成物を用いて、湿式成膜法により形成した発光層を有することが好ましい。
 発光層5として、本実施形態に係る有機電界発光素子用組成物を用いて形成した発光層の他にも、発光層を有してもよい。これらの発光層の形成方法は、真空蒸着法でも、湿式成膜法でもよいが、成膜性に優れることから、湿式成膜法が好ましい。
(Formation of light emitting layer 5 by wet film formation method)
The organic electroluminescent device preferably has a light emitting layer formed by a wet film forming method using the composition for an organic electroluminescent device according to the present embodiment.
As the light emitting layer 5, a light emitting layer may be provided in addition to the light emitting layer formed by using the composition for an organic electroluminescent device according to the present embodiment. The method for forming these light emitting layers may be a vacuum vapor deposition method or a wet film forming method, but the wet film forming method is preferable because of its excellent film forming property.
 湿式成膜法により発光層5を形成する場合は、通常、上述の正孔注入層3を湿式成膜法で形成する場合と同様にして、正孔注入層形成用組成物の代わりに、発光層5となる材料を可溶な溶剤(発光層用溶剤)と混合して調製した発光層形成用組成物を用いて形成させる。
 溶剤としては、例えば、正孔注入層3の形成について挙げたエーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤の他、アルカン系溶剤、ハロゲン化芳香族炭化水素系溶剤、脂肪族アルコール系溶剤、脂環族アルコール系溶剤、脂肪族ケトン系溶剤及び脂環族ケトン系溶剤などが挙げられる。用いる溶剤は、本実施形態におけるイリジウム錯体化合物含有組成物の溶剤としても例示した通りである。以下に溶剤の具体例を挙げるが、本発明の効果を損なわない限り、これらに限定されるものではない。
When the light emitting layer 5 is formed by the wet film forming method, usually, in the same manner as when the hole injection layer 3 is formed by the wet film forming method, light emission is performed instead of the composition for forming the hole injection layer. The material to be layer 5 is formed by using a light emitting layer forming composition prepared by mixing with a soluble solvent (solvent for light emitting layer).
Examples of the solvent include ether-based solvents, ester-based solvents, aromatic hydrocarbon-based solvents, amide-based solvents, alcan-based solvents, halogenated aromatic hydrocarbon-based solvents, etc., which were mentioned for the formation of the hole injection layer 3. Examples thereof include an aliphatic alcohol solvent, an alicyclic alcohol solvent, an aliphatic ketone solvent and an alicyclic ketone solvent. The solvent used is as exemplified as the solvent of the iridium complex compound-containing composition in the present embodiment. Specific examples of the solvent are given below, but the present invention is not limited thereto as long as the effect of the present invention is not impaired.
 例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル系溶剤;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール、ジフェニルエーテル等の芳香族エーテル系溶剤;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル系溶剤;トルエン、キシレン、メシチレン、シクロヘキシルベンゼン、テトラリン、3-イソプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、メチルナフタレン等の芳香族炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶剤;n-デカン、シクロヘキサン、エチルシクロヘキサン、デカリン、ビシクロヘキサン等のアルカン系溶剤;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素系溶剤;ブタノール、ヘキサノール等の脂肪族アルコール系溶剤;シクロヘキサノール、シクロオクタノール等の脂環族アルコール系溶剤;メチルエチルケトン、ジブチルケトン等の脂肪族ケトン系溶剤;シクロヘキサノン、シクロオクタノン、フェンコン等の脂環族ケトン系溶剤等が挙げられる。これらのうち、アルカン系溶剤及び芳香族炭化水素系溶剤が特に好ましい。 For example, aliphatic ether solvents such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA); 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetol, 2 -Aromatic ether solvents such as methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole, 2,4-dimethylanisole, diphenyl ether; phenyl acetate, phenyl propionate, methyl benzoate, benzoic acid Aromatic ester solvents such as ethyl, propyl benzoate, n-butyl benzoate; toluene, xylene, mesitylene, cyclohexylbenzene, tetralin, 3-isopropylbiphenyl, 1,2,3,4-tetramethylbenzene, 1,4 -Aromatic hydrocarbon solvents such as diisopropylbenzene and methylnaphthalene; amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide; alkanes such as n-decane, cyclohexane, ethylcyclohexane, decalin and bicyclohexane Solvents: Halogenized aromatic hydrocarbon solvents such as chlorobenzene, dichlorobenzene and trichlorobenzene; aliphatic alcohol solvents such as butanol and hexanol; alicyclic alcohol solvents such as cyclohexanol and cyclooctanol; methyl ethyl ketone and dibutyl ketone Such as aliphatic ketone solvent; cyclohexanone, cyclooctanone, alicyclic ketone solvent such as fencon and the like can be mentioned. Of these, alkane-based solvents and aromatic hydrocarbon-based solvents are particularly preferable.
 より均一な膜を得るためには、成膜直後の液膜から溶剤が適当な速度で蒸発することが好ましい。このため、用いる溶剤の沸点は、前述の通り、通常80℃以上、好ましくは100℃以上、より好ましくは120℃以上であり、通常270℃以下、好ましくは250℃以下、より好ましくは230℃以下である。
 溶剤の使用量は、本発明の効果を著しく損なわない限り任意であるが、発光層形成用組成物、即ちイリジウム錯体化合物含有組成物中の合計含有量は、低粘性なために成膜作業が行いやすい点から多い方が好ましく、厚膜で成膜しやすい点からは低い方が好ましい。前述の通り、溶剤の含有量は、イリジウム錯体化合物含有組成物において好ましくは1質量%以上、より好ましくは10質量%以上、特に好ましくは50質量%以上であり、好ましくは99.99質量%以下、より好ましくは99.9質量%以下、特に好ましくは99質量%以下である。
In order to obtain a more uniform film, it is preferable that the solvent evaporates at an appropriate rate from the liquid film immediately after the film formation. Therefore, as described above, the boiling point of the solvent used is usually 80 ° C. or higher, preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and usually 270 ° C. or lower, preferably 250 ° C. or lower, more preferably 230 ° C. or lower. Is.
The amount of the solvent used is arbitrary as long as the effect of the present invention is not significantly impaired, but the total content in the light emitting layer forming composition, that is, the iridium complex compound-containing composition is low in viscosity, so that the film forming operation can be performed. A large amount is preferable from the viewpoint of easy execution, and a low value is preferable from the viewpoint of easy formation of a thick film. As described above, the content of the solvent is preferably 1% by mass or more, more preferably 10% by mass or more, particularly preferably 50% by mass or more, and preferably 99.99% by mass or less in the iridium complex compound-containing composition. , More preferably 99.9% by mass or less, and particularly preferably 99% by mass or less.
 湿式成膜後の溶剤除去方法としては、加熱又は減圧を用いることができる。加熱方法において使用する加熱手段としては、膜全体に均等に熱を与えることから、クリーンオーブン、ホットプレートが好ましい。
 加熱工程における加熱温度は、本発明の効果を著しく損なわない限り任意であるが、乾燥時間を短くする点からは温度が高いほうが好ましく、材料へのダメージが少ない点からは低い方が好ましい。加温温度の上限は通常250℃以下であり、好ましくは200℃以下、さらに好ましくは150℃以下である。加温温度の下限は通常30℃以上であり、好ましくは50℃以上、さらに好ましくは80℃以上である。上記上限以下とすることにより、通常用いられる電荷輸送性材料又は燐光発光材料の耐熱性より低い温度となり、分解や結晶化を抑制できる。加熱温度が上記下限以上とすることにより、溶剤の除去における長時間化を避けることができる。加熱工程における加熱時間は、発光層形成用組成物中の溶剤の沸点や蒸気圧、材料の耐熱性、および加熱条件によって適切に決定される。
As a method for removing the solvent after the wet film formation, heating or depressurization can be used. As the heating means used in the heating method, a clean oven and a hot plate are preferable because heat is evenly applied to the entire film.
The heating temperature in the heating step is arbitrary as long as the effect of the present invention is not significantly impaired, but a high temperature is preferable from the viewpoint of shortening the drying time, and a low temperature is preferable from the viewpoint of less damage to the material. The upper limit of the heating temperature is usually 250 ° C. or lower, preferably 200 ° C. or lower, and more preferably 150 ° C. or lower. The lower limit of the heating temperature is usually 30 ° C. or higher, preferably 50 ° C. or higher, and more preferably 80 ° C. or higher. By setting the temperature to the above upper limit or less, the temperature becomes lower than the heat resistance of the normally used charge transporting material or phosphorescent material, and decomposition and crystallization can be suppressed. By setting the heating temperature to the above lower limit or higher, it is possible to avoid a long time in removing the solvent. The heating time in the heating step is appropriately determined by the boiling point and vapor pressure of the solvent in the composition for forming the light emitting layer, the heat resistance of the material, and the heating conditions.
 (真空蒸着法による発光層5の形成)
 真空蒸着法により発光層5を形成する場合には、通常、発光層5の構成材料、すなわち前述の発光材料、電荷輸送性化合物等の1種類又は2種類以上を真空容器内に設置された坩堝に入れる。この際、2種類以上の材料を用いる場合は、通常各々を別々の坩堝に入れる。その後、真空容器内を真空ポンプで10-4Pa程度まで排気した後、坩堝を加熱して、坩堝内の材料の蒸発量を制御しながら蒸発させる。2種類以上の材料を用いる場合は、通常各々の坩堝を加熱して、各々独立に蒸発量を制御しながら蒸発させる。かかる操作により、坩堝に向き合って置かれた正孔注入層3又は正孔輸送層4の上に発光層5を形成させる。2種類以上の材料を用いる場合は、それらを混合物として坩堝に入れ、加熱、蒸発させて発光層5を形成することもできる。
(Formation of light emitting layer 5 by vacuum vapor deposition method)
When the light emitting layer 5 is formed by the vacuum vapor deposition method, usually, one or more of the constituent materials of the light emitting layer 5, that is, the above-mentioned light emitting material, charge transporting compound, etc., are installed in a crucible. Put in. At this time, when two or more kinds of materials are used, each is usually put in a separate crucible. Then, after exhausting the inside of the vacuum vessel to about 10 -4 Pa with a vacuum pump, the pit is heated to evaporate while controlling the amount of evaporation of the material in the pit. When two or more kinds of materials are used, each crucible is usually heated and evaporated while controlling the amount of evaporation independently. By such an operation, the light emitting layer 5 is formed on the hole injection layer 3 or the hole transport layer 4 placed facing the crucible. When two or more kinds of materials are used, they can be put into a crucible as a mixture and heated and evaporated to form a light emitting layer 5.
 蒸着時の真空度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1×10-6Torr(0.13×10-4Pa)以上、9.0×10-6Torr(12.0×10-4Pa)以下である。蒸着速度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1Å/秒以上、5.0Å/秒以下である。蒸着時の成膜温度は、本発明の効果を著しく損なわない限り限定されないが、好ましくは10℃以上、50℃以下で行われる。 The degree of vacuum at the time of vapor deposition is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 × 10 -6 Torr (0.13 × 10 -4 Pa) or more, 9.0 × 10 -6 Torr ( It is 12.0 × 10 -4 Pa) or less. The vapor deposition rate is not limited as long as the effect of the present invention is not significantly impaired, but is usually 0.1 Å / sec or more and 5.0 Å / sec or less. The film formation temperature at the time of vapor deposition is not limited as long as the effect of the present invention is not significantly impaired, but is preferably 10 ° C. or higher and 50 ° C. or lower.
 <正孔阻止層6>
 発光層5と後述の電子注入層8との間に、正孔阻止層6を設けてもよい。正孔阻止層6は、発光層5の上に、発光層5の陰極9側の界面に接するように積層される層である。
 正孔阻止層6は、陽極2から移動してくる正孔を陰極9に到達するのを阻止する役割と、陰極9から注入された電子を効率よく発光層5の方向に輸送する役割とを有する。正孔阻止層6を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ、すなわちHOMOとLUMOの差が大きいこと、及び励起三重項準位(T1)が高いことが挙げられる。
<Hole blocking layer 6>
A hole blocking layer 6 may be provided between the light emitting layer 5 and the electron injection layer 8 described later. The hole blocking layer 6 is a layer laminated on the light emitting layer 5 so as to be in contact with the interface of the light emitting layer 5 on the cathode 9 side.
The hole blocking layer 6 has a role of blocking holes moving from the anode 2 from reaching the cathode 9 and a role of efficiently transporting electrons injected from the cathode 9 toward the light emitting layer 5. Have. The physical properties required for the material constituting the hole blocking layer 6 are high electron mobility and low hole mobility, an energy gap, that is, a large difference between HOMO and LUMO, and an excited triplet level (T1). ) Is high.
 このような条件を満たす正孔阻止層6の材料としては、例えば、ビス(2-メチル-8-キノリノラト)(フェノラト)アルミニウム、ビス(2-メチル-8-キノリノラト)(トリフェニルシラノラト)アルミニウム等の混合配位子錯体、ビス(2-メチル-8-キノラト)アルミニウム-μ-オキソ-ビス-(2-メチル-8-キノリノラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフェニル誘導体等のスチリル化合物(日本国特開平11-242996号公報)、3-(4-ビフェニルイル)-4-フェニル-5(4-tert-ブチルフェニル)-1,2,4-トリアゾール等のトリアゾール誘導体(日本国特開平7-41759号公報)、バソクプロイン等のフェナントロリン誘導体(日本国特開平10-79297号公報)などが挙げられる。国際公開第2005/022962号に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止層6の材料として好ましい。 Examples of the material of the hole blocking layer 6 satisfying such conditions include bis (2-methyl-8-quinolinolato) (phenolato) aluminum and bis (2-methyl-8-quinolinolato) (triphenylsilanorat) aluminum. Mixed ligand complexes such as bis (2-methyl-8-quinolato) aluminum-μ-oxo-bis- (2-methyl-8-quinolinolato) aluminum dinuclear metal complexes and other metal complexes, distyrylbiphenyl derivatives, etc. (Japanese Patent Laid-Open No. 11-242996), 3- (4-biphenylyl) -4-phenyl-5 (4-tert-butylphenyl) -1,2,4-triazole and other triazole derivatives (Japanese Patent Laid-Open No. 11-242996) Japanese Patent Application Laid-Open No. 7-41759), phenanthroline derivatives such as bassokproin (Japanese Patent Laid-Open No. 10-79297), and the like can be mentioned. A compound having at least one pyridine ring substituted at the 2, 4 and 6 positions described in WO 2005/022962 is also preferable as a material for the hole blocking layer 6.
 正孔阻止層6の形成方法に制限はなく、前述の発光層5の形成方法と同様にして形成することができる。
 正孔阻止層6の膜厚は、本発明の効果を著しく損なわない限り任意であるが、通常0.3nm以上、好ましくは0.5nm以上であり、通常100nm以下、好ましくは50nm以下である。
The method for forming the hole blocking layer 6 is not limited, and the hole blocking layer 6 can be formed in the same manner as the method for forming the light emitting layer 5 described above.
The film thickness of the hole blocking layer 6 is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less.
 <電子輸送層7>
 電子輸送層7は素子の電流効率をさらに向上させることを目的として、発光層5又は正孔素子層6と電子注入層8との間に設けられる。
 電子輸送層7は、電界を与えられた電極間において陰極9から注入された電子を効率よく発光層5の方向に輸送することができる化合物より形成される。電子輸送層7に用いられる電子輸送性化合物としては、陰極9又は電子注入層8からの電子注入効率が高く、かつ、高い電子移動度を有し注入された電子を効率よく輸送することができる化合物であることが必要である。
<Electron transport layer 7>
The electron transport layer 7 is provided between the light emitting layer 5 or the hole element layer 6 and the electron injection layer 8 for the purpose of further improving the current efficiency of the device.
The electron transport layer 7 is formed of a compound capable of efficiently transporting electrons injected from the cathode 9 in the direction of the light emitting layer 5 between the electrodes to which an electric field is applied. As the electron-transporting compound used in the electron-transporting layer 7, the electron-injecting efficiency from the cathode 9 or the electron-injecting layer 8 is high, and the injected electrons can be efficiently transported with high electron mobility. It needs to be a compound.
 このような条件を満たす電子輸送性化合物としては、例えば、8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体(日本国特開昭59-194393号公報)、10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-ヒドロキシフラボン金属錯体、5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(日本国特開平6-207169号公報)、フェナントロリン誘導体(日本国特開平5-331459号公報)、2-t-ブチル-9,10-N,N’-ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛などが挙げられる。 Examples of the electron-transporting compound satisfying such conditions include a metal complex such as an aluminum complex of 8-hydroxyquinoline (Japanese Patent Laid-Open No. 59-194393), and a metal complex of 10-hydroxybenzo [h] quinoline. , Oxaziazole derivative, distyrylbiphenyl derivative, silol derivative, 3-hydroxyflavon metal complex, 5-hydroxyflavon metal complex, benzoxazole metal complex, benzothiazole metal complex, trisbenzimidazolylbenzene (US Pat. No. 5,645,948). ), Kinoxalin compound (Japanese Patent Laid-Open No. 6-207169), phenanthroline derivative (Japanese Patent Application Laid-Open No. 5-331459), 2-t-butyl-9,10-N, N'-dicyanoanthraquinonediimine, Examples thereof include n-type hydride amorphous silicon carbide, n-type zinc sulfide, and n-type zinc selenium.
 電子輸送層7の膜厚は、通常1nm以上、好ましくは5nm以上であり、通常300nm以下、好ましくは100nm以下である。
 電子輸送層7は、発光層5と同様にして湿式成膜法、或いは真空蒸着法により発光層5又は正孔阻止層6上に積層することにより形成される。通常は、真空蒸着法が多く用いられる。
The film thickness of the electron transport layer 7 is usually 1 nm or more, preferably 5 nm or more, and usually 300 nm or less, preferably 100 nm or less.
The electron transport layer 7 is formed by laminating on the light emitting layer 5 or the hole blocking layer 6 by a wet film forming method or a vacuum vapor deposition method in the same manner as the light emitting layer 5. Usually, the vacuum deposition method is often used.
 <電子注入層8>
 電子注入層8は、陰極9から注入された電子を効率よく、電子輸送層7又は発光層5へ注入する役割を果たす。
 電子注入を効率よく行うには、電子注入層8を形成する材料に、仕事関数の低い金属を用いることが好ましい。例としては、ナトリウムやセシウム等のアルカリ金属、バリウムやカルシウムなどのアルカリ土類金属等が用いられる。
<Electron injection layer 8>
The electron injection layer 8 plays a role of efficiently injecting the electrons injected from the cathode 9 into the electron transport layer 7 or the light emitting layer 5.
In order to efficiently perform electron injection, it is preferable to use a metal having a low work function as the material for forming the electron injection layer 8. As an example, alkali metals such as sodium and cesium, alkaline earth metals such as barium and calcium, and the like are used.
 電子注入層8の膜厚は、0.1~5nmが好ましい。
 陰極9と電子輸送層7との界面に電子注入層8として、LiF、MgF、LiO、CsCO等の、膜厚が0.1~5nm程度である極薄絶縁膜を挿入することも、素子の効率を向上させる有効な方法である(Appl.Phys.Lett.,70巻,152頁,1997年;日本国特開平10-74586号公報;IEEE Trans.Electron.Devices,44巻,1245頁,1997年;SID 04 Digest,2004年,154頁)。
The film thickness of the electron injection layer 8 is preferably 0.1 to 5 nm.
An ultra-thin insulating film having a film thickness of about 0.1 to 5 nm, such as LiF, MgF 2 , Li 2 O, Cs 2 CO 3, etc., is inserted as an electron injection layer 8 at the interface between the cathode 9 and the electron transport layer 7. This is also an effective method for improving the efficiency of the device (Appl. Phys. Lett., Vol. 70, p. 152, 1997; Japanese Patent Application Laid-Open No. 10-74586; IEEE Trans. Electron. Devices, 44. Volume, p. 1245, 1997; SID 04 Digest, 2004, p. 154).
 さらに、バソフェナントロリン等の含窒素複素環化合物や8-ヒドロキシキノリンのアルミニウム錯体などの金属錯体に代表される有機電子輸送材料に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープする(日本国特開平10-270171号公報、日本国特開2002-100478号公報、日本国特開2002-100482号公報などに記載)ことにより、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。この場合の膜厚は通常5nm以上、好ましくは10nm以上であり、通常200nm以下、好ましくは100nm以下である。
 電子注入層8は、発光層5と同様にして湿式成膜法或いは真空蒸着法により、発光層5或いはその上の正孔阻止層6又は電子輸送層7上に積層することにより形成される。
 湿式成膜法の場合の詳細は、前述の発光層5の場合と同様である。
Further, an organic electron transport material typified by a nitrogen-containing heterocyclic compound such as basophenanthroline or a metal complex such as an aluminum complex of 8-hydroxyquinoline is doped with an alkali metal such as sodium, potassium, cesium, lithium, or rubidium (). (Described in Japanese Patent Application Laid-Open No. 10-270171, Japanese Patent Application Laid-Open No. 2002-100478, Japanese Patent Application Laid-Open No. 2002-1000482, etc.) It is preferable because it enables this. In this case, the film thickness is usually 5 nm or more, preferably 10 nm or more, and usually 200 nm or less, preferably 100 nm or less.
The electron injection layer 8 is formed by laminating on the light emitting layer 5 or the hole blocking layer 6 or the electron transport layer 7 on the light emitting layer 5 by a wet film forming method or a vacuum vapor deposition method in the same manner as the light emitting layer 5.
The details in the case of the wet film forming method are the same as in the case of the light emitting layer 5 described above.
 <陰極9>
 陰極9は、電子注入層8又は発光層5などの発光層5側の層に電子を注入する役割を果たす。陰極9の材料としては、前記の陽極2に使用される材料を用いることが可能であるが、効率よく電子注入を行なう上では、仕事関数の低い金属を用いることが好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の金属又はそれらの合金などが用いられる。陰極9の材料としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金等の低仕事関数の合金電極などが挙げられる。
<Cathode 9>
The cathode 9 plays a role of injecting electrons into a layer on the light emitting layer 5 side such as the electron injection layer 8 or the light emitting layer 5. As the material of the cathode 9, the material used for the above-mentioned indium 2 can be used, but in order to efficiently inject electrons, it is preferable to use a metal having a low work function, for example, tin and magnesium. , Indium, calcium, aluminum, silver and other metals or alloys thereof are used. Examples of the material of the cathode 9 include alloy electrodes having a low work function such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
 素子の安定性の点では、陰極9の上に、仕事関数が高く、大気に対して安定な金属層を積層して、低仕事関数の金属からなる陰極9を保護することが好ましい。積層する金属としては、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が挙げられる。
 陰極の膜厚は通常、陽極2と同様である。
From the viewpoint of device stability, it is preferable to laminate a metal layer having a high work function and stable to the atmosphere on the cathode 9 to protect the cathode 9 made of a metal having a low work function. Examples of the metal to be laminated include metals such as aluminum, silver, copper, nickel, chromium, gold, and platinum.
The film thickness of the cathode is usually the same as that of the anode 2.
 <その他の構成層>
 以上、図1に示す層構成の素子を中心に説明したが、本実施形態に係る有機電界発光素子における陽極2及び陰極9と発光層5との間には、その性能を損なわない限り、上記説明にある層の他にも、任意の層を有していてもよく、また発光層5以外の任意の層を省略してもよい。
<Other constituent layers>
Although the elements having the layer structure shown in FIG. 1 have been mainly described above, the above is described between the anode 2 and the cathode 9 and the light emitting layer 5 in the organic electroluminescent device according to the present embodiment as long as the performance is not impaired. In addition to the layers described in the description, any layer may be provided, or any layer other than the light emitting layer 5 may be omitted.
 例えば、正孔阻止層8と同様の目的で、正孔輸送層4と発光層5の間に電子阻止層を設けることも効果的である。電子阻止層は、発光層5から移動してくる電子が正孔輸送層4に到達することを阻止することで、発光層5内で正孔との再結合確率を増やし、生成した励起子を発光層5内に閉じこめる役割と、正孔輸送層4から注入された正孔を効率よく発光層5の方向に輸送する役割がある。 For example, it is also effective to provide an electron blocking layer between the hole transporting layer 4 and the light emitting layer 5 for the same purpose as the hole blocking layer 8. The electron blocking layer prevents electrons moving from the light emitting layer 5 from reaching the hole transporting layer 4, thereby increasing the recombination probability with holes in the light emitting layer 5 and producing excitons. It has a role of confining the holes in the light emitting layer 5 and a role of efficiently transporting the holes injected from the hole transport layer 4 in the direction of the light emitting layer 5.
 電子阻止層に求められる特性としては、正孔輸送性が高く、エネルギーギャップ、すなわちHOMOとLUMOの差が大きいこと、励起三重項準位(T1)が高いことが挙げられる。
 発光層5を湿式成膜法で形成する場合、電子阻止層も湿式成膜法で形成することが、素子製造が容易となるため、好ましい。
 このため、電子阻止層も湿式成膜適合性を有することが好ましく、このような電子阻止層に用いられる材料としては、F8-TFBに代表されるジオクチルフルオレンとトリフェニルアミンの共重合体(国際公開第2004/084260号)等が挙げられる。
The characteristics required for the electron blocking layer include high hole transportability, a large energy gap, that is, a large difference between HOMO and LUMO, and a high excited triplet level (T1).
When the light emitting layer 5 is formed by the wet film forming method, it is preferable that the electron blocking layer is also formed by the wet film forming method because the device can be easily manufactured.
Therefore, it is preferable that the electron blocking layer also has wet film formation compatibility, and the material used for such an electron blocking layer is a copolymer of dioctylfluorene and triphenylamine represented by F8-TFB (international). Publication No. 2004/084260) and the like.
 図1とは逆の構造、即ち、基板1上に陰極9、電子注入層8、電子輸送層7、正孔阻止層6、発光層5、正孔輸送層4、正孔注入層3、陽極2の順に積層することも可能である。また、少なくとも一方が透明性の高い2枚の基板の間に、本実施形態に係る有機電界発光素子を設けることも可能である。
 図1に示す層構成を複数段重ねた構造、すなわち発光ユニットを複数積層させた構造とすることも可能である。その際には段間、すなわち発光ユニット間の界面層の代わりに、例えばV等を電荷発生層として用いると段間の障壁が少なくなり、発光効率・駆動電圧の観点からより好ましい。界面層とは、例えば陽極がITO、陰極がAlである場合はその2層を意味する。
 本発明は、有機電界発光素子が、単一の素子、アレイ状に配置された構造からなる素子、陽極と陰極がX-Yマトリックス状に配置された構造のいずれにおいても適用することができる。
The structure opposite to that of FIG. 1, that is, the cathode 9, the electron injection layer 8, the electron transport layer 7, the hole blocking layer 6, the light emitting layer 5, the hole transport layer 4, the hole injection layer 3, and the anode on the substrate 1. It is also possible to stack in the order of 2. It is also possible to provide the organic electroluminescent device according to the present embodiment between two substrates, one of which is highly transparent.
It is also possible to have a structure in which a plurality of layers shown in FIG. 1 are stacked, that is, a structure in which a plurality of light emitting units are stacked. In that case, if V 2 O 5 or the like is used as the charge generation layer instead of the interface layer between the stages, that is, between the light emitting units, the barrier between the stages is reduced, which is more preferable from the viewpoint of luminous efficiency and driving voltage. The interface layer means, for example, two layers when the anode is ITO and the cathode is Al.
The present invention can be applied to any of a single element, an element having an array-arranged structure, and a structure in which an anode and a cathode are arranged in an XY matrix.
 [表示装置]
 本実施形態に係る表示装置及び照明装置は、上述のような有機電界発光素子を有するものである。表示装置の形式や構造については特に制限はなく、本実施形態に係る有機電界発光素子を用いて常法に従って組み立てることができる。
 例えば、「有機ELディスプレイ」(オーム社、平成16年8月20日発刊、時任静士、安達千波矢、村田英幸著)に記載されているような方法で、本実施形態に係る表示装置を形成することができる。
[Display device]
The display device and the lighting device according to the present embodiment have the above-mentioned organic electroluminescent element. The type and structure of the display device are not particularly limited, and can be assembled according to a conventional method using the organic electroluminescent device according to the present embodiment.
For example, the display device according to this embodiment can be used by the method described in "Organic EL Display" (Ohmsha, published on August 20, 2004, by Shizushi Tokito, Chihaya Adachi, Hideyuki Murata). Can be formed.
 以下、実施例を示して本発明について更に具体的に説明する。本発明は以下の実施例に限定されるものではなく、本発明はその要旨を逸脱しない限り任意に変更して実施できる。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples, and the present invention can be arbitrarily modified and implemented without departing from the gist thereof.
 [実施例1]
 有機電界発光素子を以下の方法で作製した。
 ガラス基板上にインジウム・スズ酸化物(ITO)の透明導電膜を50nmの厚さに堆積したもの(三容真空社製、スパッタ成膜品)を通常のフォトリソグラフィー技術と塩酸エッチングを用いて2mm幅のストライプにパターニングして陽極を形成した。このようにITOをパターン形成した基板を、界面活性剤水溶液による超音波洗浄、超純水による水洗、超純水による超音波洗浄、超純水による水洗の順で洗浄後、圧縮空気で乾燥させ、最後に紫外線オゾン洗浄を行った。
[Example 1]
An organic electroluminescent device was manufactured by the following method.
A transparent conductive film of indium tin oxide (ITO) deposited on a glass substrate to a thickness of 50 nm (manufactured by Sanyo Vacuum Co., Ltd., sputter-deposited product) is 2 mm using ordinary photolithography technology and hydrochloric acid etching. The width stripes were patterned to form an anode. The substrate on which the ITO pattern is formed is washed in the order of ultrasonic cleaning with an aqueous surfactant solution, water washing with ultrapure water, ultrasonic cleaning with ultrapure water, and water washing with ultrapure water, and then dried with compressed air. Finally, UV ozone cleaning was performed.
 正孔注入層形成用組成物として、下記式(P-1)で表される繰り返し構造を有する正孔輸送性高分子化合物3.0質量%と、下記式(HI-1)で表される酸化剤0.6質量%とを、安息香酸エチルに溶解させた組成物を調製した。
 この溶液を、大気中で上記基板上にスピンコートし、大気中ホットプレート240℃、30分で乾燥させ、膜厚40nmの均一な薄膜を形成し、正孔注入層とした。
As the composition for forming the hole injection layer, 3.0% by mass of the hole-transporting polymer compound having a repeating structure represented by the following formula (P-1) and the composition represented by the following formula (HI-1). A composition was prepared in which 0.6% by mass of an oxidizing agent was dissolved in ethyl benzoate.
This solution was spin-coated on the substrate in the atmosphere and dried at an atmospheric hot plate at 240 ° C. for 30 minutes to form a uniform thin film having a film thickness of 40 nm to form a hole injection layer.
Figure JPOXMLDOC01-appb-C000030
 
Figure JPOXMLDOC01-appb-C000030
 
 次に、下記式(HT-1)で表される構造を有する電荷輸送性高分子化合物100質量部を、シクロヘキシルベンゼンに溶解させ、3.0質量%の溶液を調製した。
 この溶液を、上記正孔注入層を塗布成膜した基板上に窒素グローブボックス中でスピンコートし、窒素グローブボックス中のホットプレートで230℃、30分間乾燥させ、膜厚40nmの均一な薄膜を形成し、正孔輸送層とした。
Next, 100 parts by mass of the charge-transporting polymer compound having a structure represented by the following formula (HT-1) was dissolved in cyclohexylbenzene to prepare a 3.0% by mass solution.
This solution was spin-coated in a nitrogen glove box on a substrate coated with the hole injection layer and dried on a hot plate in the nitrogen glove box at 230 ° C. for 30 minutes to form a uniform thin film having a film thickness of 40 nm. It was formed and used as a hole transport layer.
Figure JPOXMLDOC01-appb-C000031
 
Figure JPOXMLDOC01-appb-C000031
 
 引続き、発光層の材料として、下記式(H-1)で表される化合物を60質量部、下記式(H-2)で表される化合物を40質量部、下記式(D-1)で表される赤色発光ドーパントとなる化合物を15質量部、および、下記式(D-2)で表されるアシストドーパントとなる化合物を15質量部秤量し、シクロヘキシルベンゼンに溶解させ7.8質量%の溶液を調製した。 Subsequently, as the material of the light emitting layer, the compound represented by the following formula (H-1) is 60 parts by mass, the compound represented by the following formula (H-2) is 40 parts by mass, and the following formula (D-1) is used. Weigh 15 parts by mass of the compound that becomes the red light emitting dopant and 15 parts by mass of the compound that becomes the assist dopant represented by the following formula (D-2), dissolve it in cyclohexylbenzene, and 7.8% by mass. The solution was prepared.
Figure JPOXMLDOC01-appb-C000032
 
Figure JPOXMLDOC01-appb-C000032
 
 この溶液を、上記正孔輸送層を塗布成膜した基板上に窒素グローブボックス中でスピンコートし、窒素グローブボックス中のホットプレートで120℃、20分間乾燥させ、膜厚80nmの均一な薄膜を形成し、発光層とした。なお、式(D-1)で表される化合物は波長613nm、式(D-2)で表される化合物は波長555nmを、各々最大発光波長とするドーパントである。 This solution was spin-coated in a nitrogen glove box on a substrate coated with the hole transport layer and dried on a hot plate in the nitrogen glove box at 120 ° C. for 20 minutes to form a uniform thin film having a film thickness of 80 nm. It was formed and used as a light emitting layer. The compound represented by the formula (D-1) is a dopant having a wavelength of 613 nm, and the compound represented by the formula (D-2) is a dopant having a wavelength of 555 nm as the maximum emission wavelength.
 発光層までを成膜した基板を真空蒸着装置に設置し、装置内を2×10-4Pa以下になるまで排気した。
 次に、下記式(HB-1)で表される化合物および8-ヒドロキシキノリノラトリチウムを2:3の膜厚比となるように、発光層上に真空蒸着法にて1Å/秒の速度で共蒸着し、膜厚30nmの正孔阻止層を形成した。
The substrate on which the light emitting layer was formed was installed in a vacuum vapor deposition apparatus, and the inside of the apparatus was exhausted until it became 2 × 10 -4 Pa or less.
Next, the compound represented by the following formula (HB-1) and 8-hydroxyquinolinola tritium were placed on the light emitting layer at a rate of 1 Å / sec by vacuum deposition so as to have a film thickness ratio of 2: 3. A hole blocking layer having a film thickness of 30 nm was formed by co-depositing with.
Figure JPOXMLDOC01-appb-C000033
 
Figure JPOXMLDOC01-appb-C000033
 
 続いて、陰極蒸着用のマスクとして2mm幅のストライプ状シャドーマスクを、陽極のITOストライプとは直交するように基板に密着させて、別の真空蒸着装置内に設置した。そして、アルミニウムをモリブデンボートにより加熱して、蒸着速度1~8.6Å/秒で膜厚80nmのアルミニウム層を形成して陰極を形成した。
 以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界発光素子が得られた。
 得られた有機電界発光素子に電圧を印可すると、式(D-1)で表される化合物由来の赤色発光が観測された。
Subsequently, a striped shadow mask having a width of 2 mm was brought into close contact with the substrate so as to be orthogonal to the ITO stripe of the anode as a mask for cathode vapor deposition, and installed in another vacuum vapor deposition apparatus. Then, aluminum was heated by a molybdenum boat to form an aluminum layer having a film thickness of 80 nm at a vapor deposition rate of 1 to 8.6 Å / sec to form a cathode.
As described above, an organic electroluminescent device having a light emitting area portion having a size of 2 mm × 2 mm was obtained.
When a voltage was applied to the obtained organic electroluminescent device, red light emission derived from the compound represented by the formula (D-1) was observed.
 [実施例2]
 発光層組成を、各式で表される化合物の質量比で、(H-1):(H-2):(D-1):(D-3)=60:40:15:15としたこと以外は、実施例1と同様にして有機電界発光素子を作製した。
 式(D-3)で表される化合物の構造式を下記に示す。なお、式(D-3)で表される化合物は波長560nmを最大発光波長とするドーパントである。
[Example 2]
The electroluminescent layer composition was set to (H-1) :( H-2) :( D-1) :( D-3) = 60: 40: 15: 15 by the mass ratio of the compounds represented by each formula. Except for this, an organic electroluminescent device was produced in the same manner as in Example 1.
The structural formula of the compound represented by the formula (D-3) is shown below. The compound represented by the formula (D-3) is a dopant having a wavelength of 560 nm as the maximum emission wavelength.
Figure JPOXMLDOC01-appb-C000034
 
Figure JPOXMLDOC01-appb-C000034
 
 [実施例3]
 発光層組成を、各式で表される化合物の質量比で、(H-1):(H-2):(D-1):(D-4)=60:40:15:15としたこと以外は、実施例1と同様にして有機電界発光素子を作製した。
 式(D-4)で表される化合物の構造式を下記に示す。なお、式(D-4)で表される化合物は波長558nmを最大発光波長とするドーパントである。
[Example 3]
The electroluminescent layer composition was set to (H-1) :( H-2) :( D-1) :( D-4) = 60: 40: 15: 15 by the mass ratio of the compounds represented by each formula. Except for this, an organic electroluminescent device was produced in the same manner as in Example 1.
The structural formula of the compound represented by the formula (D-4) is shown below. The compound represented by the formula (D-4) is a dopant having a wavelength of 558 nm as the maximum emission wavelength.
Figure JPOXMLDOC01-appb-C000035
 
Figure JPOXMLDOC01-appb-C000035
 
 [比較例1]
 赤色発光ドーパントとして式(D-5)で表される化合物を用い、発光層組成を、各式で表される化合物の質量比で、(H-1):(H-2):(D-5):(D-2)=60:40:15:15としたこと以外は、実施例1と同様にして有機電界発光素子を作製した。
 式(D-5)で表される化合物の構造式を下記に示す。
 得られた有機電界発光素子に電圧を印可すると、式(D-5)で表される化合物由来の赤色発光が観測された。
[Comparative Example 1]
A compound represented by the formula (D-5) is used as the red electroluminescent dopant, and the light emitting layer composition is determined by the mass ratio of the compounds represented by each formula (H-1) :( H-2) :( D-. 5): An organic electroluminescent device was produced in the same manner as in Example 1 except that (D-2) = 60:40:15:15.
The structural formula of the compound represented by the formula (D-5) is shown below.
When a voltage was applied to the obtained organic electroluminescent device, red light emission derived from the compound represented by the formula (D-5) was observed.
Figure JPOXMLDOC01-appb-C000036
 
Figure JPOXMLDOC01-appb-C000036
 
 [比較例2]
 赤色発光ドーパントとして式(D-5)で表される化合物を用い、発光層組成を、各式で表される化合物の質量比で、(H-1):(H-2):(D-5):(D-3)=60:40:15:15としたこと以外は、実施例1と同様にして有機電界発光素子を作製した。
 得られた有機電界発光素子に電圧を印可すると、式(D-5)で表される化合物由来の赤色発光が観測された。
[Comparative Example 2]
A compound represented by the formula (D-5) is used as the red electroluminescent dopant, and the light emitting layer composition is determined by the mass ratio of the compounds represented by each formula (H-1) :( H-2) :( D-. An organic electroluminescent device was produced in the same manner as in Example 1 except that (5): (D-3) = 60:40:15:15.
When a voltage was applied to the obtained organic electroluminescent device, red light emission derived from the compound represented by the formula (D-5) was observed.
 [比較例3]
 赤色発光ドーパントとして式(D-5)で表される化合物を用い、発光層組成を、各式で表される化合物の質量比で、(H-1):(H-2):(D-5):(D-4)=60:40:15:15としたこと以外は、実施例1と同様にして有機電界発光素子を作製した。
 得られた有機電界発光素子に電圧を印可すると、式(D-5)で表される化合物由来の赤色発光が観測された。
[Comparative Example 3]
A compound represented by the formula (D-5) is used as the red electroluminescent dopant, and the light emitting layer composition is determined by the mass ratio of the compounds represented by each formula (H-1) :( H-2) :( D-. An organic electroluminescent device was produced in the same manner as in Example 1 except that (5): (D-4) = 60:40:15:15.
When a voltage was applied to the obtained organic electroluminescent device, red light emission derived from the compound represented by the formula (D-5) was observed.
 [素子の評価]
 得られた実施例1~3、および比較例1~3の有機電界発光素子について、輝度1000cd/mで発光させたときの電流発光効率(cd/A)及び外部量子効率EQE(%)を測定した。比較例n(nは1~3)の電流発光効率を1としたときの、実施例n(nは1~3)の電流発光効率の比をそれぞれ算出し、相対発光効率として表1に記した。また、実施例n(nは1~3)のEQEから比較例n(nは1~3)のEQEをそれぞれ差し引いた△EQE=EQE(実施例n)-EQE(比較例n)の値を下記の表1に併せて記した。
 表1の結果に表すが如く、本実施形態に係る式(D-1)で表される化合物を発光ドーパントとして発光層材料に使用した有機電界発光素子は、式(D-5)で表される化合物を使用した有機電界発光素子と比較して、アシストドーパントとなる化合物の構造によらず、効率が向上することが判った。
[Evaluation of element]
The current luminous efficiency (cd / A) and the external quantum efficiency EQE (%) when the organic electroluminescent devices of Examples 1 to 3 and Comparative Examples 1 to 3 were made to emit light at a brightness of 1000 cd / m 2 were obtained. It was measured. The ratios of the current luminous efficiencies of Example n (n are 1 to 3) are calculated when the current luminous efficiency of Comparative Example n (n is 1 to 3) is 1, and the relative luminous efficiencies are shown in Table 1. did. Further, the value of ΔEQE = EQE (Example n) -EQE (Comparative Example n) obtained by subtracting the EQE of Comparative Example n (n is 1 to 3) from the EQE of Example n (n is 1 to 3) is obtained. It is also described in Table 1 below.
As shown in the results of Table 1, an organic electroluminescent device using the compound represented by the formula (D-1) according to the present embodiment as a light emitting dopant as a light emitting layer material is represented by the formula (D-5). It was found that the efficiency was improved regardless of the structure of the compound serving as the assist dopant as compared with the organic electroluminescent device using the compound.
Figure JPOXMLDOC01-appb-T000037
 
Figure JPOXMLDOC01-appb-T000037
 
 [比較例4]
 アシストーパントとなる式(D-2)で表される化合物を用いずに、発光層組成を、各式で表される化合物の質量比で、(H-1):(H-2):(D-1)=60:40:15としたこと以外は、実施例1と同様にして有機電界発光素子を作製した。
 得られた有機電界発光素子に電圧を印可すると、式(D-1)で表される化合物由来の赤色発光が観測された。
[Comparative Example 4]
The light emitting layer composition is calculated by the mass ratio of the compounds represented by each formula, without using the compound represented by the formula (D-2) that serves as an assist punt, (H-1) :( H-2) :. An organic electroluminescent device was produced in the same manner as in Example 1 except that (D-1) = 60:40:15.
When a voltage was applied to the obtained organic electroluminescent device, red light emission derived from the compound represented by the formula (D-1) was observed.
 [比較例5]
 赤色発光ドーパントとして式(D-5)で表される化合物を用い、アシストーパントとなる式(D-2)で表される化合物を用いずに、発光層組成を、各式で表される化合物の質量比で、(H-1):(H-2):(D-5)=60:40:15としたこと以外は、実施例1と同様にして有機電界発光素子を作製した。
 得られた有機電界発光素子に電圧を印可すると、式(D-5)で表される化合物由来の赤色発光が観測された。
[Comparative Example 5]
The light emitting layer composition is represented by each formula by using the compound represented by the formula (D-5) as the red light emitting dopant and without using the compound represented by the formula (D-2) which is an assist punt. An organic electroluminescent device was produced in the same manner as in Example 1 except that the mass ratio of the compounds was (H-1) :( H-2) :( D-5) = 60: 40: 15.
When a voltage was applied to the obtained organic electroluminescent device, red light emission derived from the compound represented by the formula (D-5) was observed.
 [素子の評価]
 得られた実施例1、比較例1、比較例4および比較例5の有機電界発光素子について、輝度1000cd/mで発光させたときの外部量子効率EQEを測定した。アシストドーパントとなる化合物を含まない有機電界発光素子(比較例4又は比較例5)のEQEに対し、アシストドーパントとなる化合物を含む有機電界発光素子(実施例1又は比較例1)のEQEの変化幅を△EQEとし、下記表2又は表3に記す。
 表2及び表3の結果に表すが如く、本実施形態に係る式(D-1)で表される化合物を発光ドーパントとして発光層材料に使用した有機電界発光素子(実施例1)は、式(D-5)で表される化合物を使用した有機電界発光素子(比較例1)と比較して、アシストドーパントとなる化合物を添加した場合の外部量子効率の変化幅が大きいことがわかる。
[Evaluation of element]
The external quantum efficiency EQE of the obtained organic electroluminescent devices of Example 1, Comparative Example 1, Comparative Example 4 and Comparative Example 5 was measured when light was emitted at a brightness of 1000 cd / m 2 . Changes in the EQE of an organic electroluminescent device (Example 1 or Comparative Example 1) containing a compound as an assist dopant with respect to the EQE of an organic electroluminescent device (Comparative Example 4 or Comparative Example 5) containing no compound serving as an assist dopant. The width is defined as ΔEEQU, and is described in Table 2 or Table 3 below.
As shown in the results of Tables 2 and 3, the organic electroluminescent device (Example 1) in which the compound represented by the formula (D-1) according to the present embodiment is used as the light emitting dopant as the light emitting layer material is represented by the formula. It can be seen that the range of change in the external quantum efficiency when the compound serving as the assist dopant is added is large as compared with the organic electroluminescent device (Comparative Example 1) using the compound represented by (D-5).
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
 
Figure JPOXMLDOC01-appb-T000039
 
 [実施例4]
 赤色発光ドーパントとして式(D-6)で表される化合物を用い、発光層組成を、各式で表される化合物の質量比で、(H-1):(H-2):(D-6):(D-2)=60:40:15:15としたこと以外は、実施例1と同様にして有機電界発光素子を作製した。なお、式(D-6)で表される化合物は波長627nmを最大発光波長とするドーパントである。
 得られた有機電界発光素子に電圧を印可すると、式(D-6)で表される化合物由来の赤色発光が観測された。
[Example 4]
A compound represented by the formula (D-6) is used as the red electroluminescent dopant, and the light emitting layer composition is determined by the mass ratio of the compounds represented by each formula (H-1) :( H-2) :( D-. 6): An organic electroluminescent device was produced in the same manner as in Example 1 except that (D-2) = 60: 40: 15: 15. The compound represented by the formula (D-6) is a dopant having a wavelength of 627 nm as the maximum emission wavelength.
When a voltage was applied to the obtained organic electroluminescent device, red light emission derived from the compound represented by the formula (D-6) was observed.
Figure JPOXMLDOC01-appb-C000040
 
Figure JPOXMLDOC01-appb-C000040
 
 [実施例5]
 発光層組成を、各式で表される化合物の質量比で、(H-1):(H-2):(D-6):(D-7)=60:40:15:15としたこと以外は、実施例1と同様にして有機電界発光素子を作製した。なお、式(D-7)で表される化合物は波長605nmを最大発光波長とするドーパントである。
 得られた有機電界発光素子に電圧を印可すると、式(D-6)で表される化合物由来の赤色発光が観測された。
[Example 5]
The electroluminescent layer composition was set to (H-1) :( H-2) :( D-6) :( D-7) = 60: 40: 15: 15 by the mass ratio of the compounds represented by each formula. Except for this, an organic electroluminescent device was produced in the same manner as in Example 1. The compound represented by the formula (D-7) is a dopant having a wavelength of 605 nm as the maximum emission wavelength.
When a voltage was applied to the obtained organic electroluminescent device, red light emission derived from the compound represented by the formula (D-6) was observed.
Figure JPOXMLDOC01-appb-C000041
 
Figure JPOXMLDOC01-appb-C000041
 
 [比較例6]
 発光層組成を、各式で表される化合物の質量比で、(H-1):(H-2):(D-6)=60:40:15としたこと以外は、実施例1と同様にして有機電界発光素子を作製した。
 得られた有機電界発光素子に電圧を印可すると、式(D-6)で表される化合物由来の赤色発光が観測された。
[Comparative Example 6]
Except that the mass ratio of the compounds represented by each formula was set to (H-1) :( H-2) :( D-6) = 60: 40: 15, the light emitting layer composition was the same as that of Example 1. An organic electroluminescent device was produced in the same manner.
When a voltage was applied to the obtained organic electroluminescent device, red light emission derived from the compound represented by the formula (D-6) was observed.
 [比較例7]
 発光層組成を、各式で表される化合物の質量比で、(H-1):(H-2):(D-5):(D-7)=60:40:15:15としたこと以外は、実施例1と同様にして有機電界発光素子を作製した。
 得られた有機電界発光素子に電圧を印可すると、式(D-5)で表される化合物由来の赤色発光が観測された。
[Comparative Example 7]
The electroluminescent layer composition was set to (H-1) :( H-2) :( D-5) :( D-7) = 60: 40: 15: 15 by the mass ratio of the compounds represented by each formula. Except for this, an organic electroluminescent device was produced in the same manner as in Example 1.
When a voltage was applied to the obtained organic electroluminescent device, red light emission derived from the compound represented by the formula (D-5) was observed.
 [素子の評価]
 得られた実施例4、実施例5、比較例6および比較例7の有機電界発光素子について、輝度1000cd/mで発光させたときの外部量子効率EQEを測定し、比較例6のEQEとの差分を△EQEとして記した。また、60mA/cmの電流密度で有機電界発光素子を駆動させ、相対発光輝度が80%となる時間LT80を測定し、比較例6のLT80を100とした場合の相対寿命を記した。下記表4に記す。
 表4の結果に表すが如く、本実施形態に係る式(D-6)で表される化合物を発光ドーパントとし、アシストドーパントとなる化合物と組み合わせて発光層に使用した有機電界発光素子は、効率が高く駆動寿命も長い素子であることがわかる。中でも、アシストドーパントとなる化合物として式(D-7)で表される化合物を用いた有機電界発光素子は、より発光効率が高く、駆動寿命も長い素子であることが分かる。
[Evaluation of element]
The external quantum efficiency EQE of the obtained organic electroluminescent devices of Example 4, Example 5, Comparative Example 6 and Comparative Example 7 when they were made to emit light at a brightness of 1000 cd / m 2 was measured, and the EQE of Comparative Example 6 was measured. The difference between the above is described as ΔEQE. Further, the organic electroluminescent element was driven with a current density of 60 mA / cm 2, the LT80 was measured for a time when the relative emission luminance became 80%, and the relative life when the LT80 of Comparative Example 6 was set to 100 was described. It is shown in Table 4 below.
As shown in the results of Table 4, the organic electroluminescent device used in the light emitting layer in combination with the compound represented by the formula (D-6) according to the present embodiment as the light emitting dopant and the compound serving as the assist dopant is efficient. It can be seen that the device has a high drive life and a long drive life. Among them, it can be seen that an organic electroluminescent device using a compound represented by the formula (D-7) as a compound serving as an assist dopant has higher luminous efficiency and a longer drive life.
Figure JPOXMLDOC01-appb-T000042
 
Figure JPOXMLDOC01-appb-T000042
 
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2019年5月20日出願の日本特許出願(特願2019-094708)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on May 20, 2019 (Japanese Patent Application No. 2019-094708), the contents of which are incorporated herein by reference.
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層
 5 発光層
 6 正孔阻止層
 7 電子輸送層
 8 電子注入層
 9 陰極
 10 有機電界発光素子
1 Substrate 2 Anode 3 Hole injection layer 4 Hole transport layer 5 Light emitting layer 6 Hole blocking layer 7 Electron transport layer 8 Electron injection layer 9 Cathode 10 Organic electroluminescent element

Claims (11)

  1.  下記式(1)で表される化合物と、前記式(1)で表される化合物よりも最大発光波長が短波である下記式(2)で表される化合物と、溶媒と、を含む有機電界発光素子用組成物。
    Figure JPOXMLDOC01-appb-C000001
     
    [上記式中、R、Rは、それぞれ独立して、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数1~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~30の(ヘテロ)アリール基である。これらの基はさらに置換基を有していてもよい。R、Rが複数存在する場合、それらはそれぞれ同一であっても異なっていてもよい。Rが複数存在する場合、隣り合うRが互いに結合して環を形成してもよい。
     aは0~4の整数であり、bは0~3の整数である。
     R、Rは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~20の(ヘテロ)アリール基である。これらの基はさらに置換基を有していてもよい。R、Rが複数存在する場合、それらはそれぞれ同一であっても異なっていてもよい。
     Lは有機配位子を表し、mは1~3の整数である。]
    Figure JPOXMLDOC01-appb-C000002
     
    [上記式中、Rは、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数1~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~30の(ヘテロ)アリール基である。これらの基はさらに置換基を有していてもよい。Rが複数存在する場合、それらは同一であっても異なっていてもよい。
     cは0~4の整数である。
     環Aは、ピリジン環、ピラジン環、ピリミジン環、イミダゾール環、オキサゾール環、チアゾール環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、アザトリフェニレン環、カルボリン環、ベンゾチアゾール環、ベンゾオキサゾール環のいずれかである。
     環Aは、置換基を有していてもよく、前記置換基は、フッ素原子、塩素原子、臭素原子、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数2~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~20の(ヘテロ)アリール基である。また、環Aに結合する隣り合う置換基どうしが結合してさらに環を形成してもよい。環Aが複数存在する場合、それらは同一であっても異なっていてもよい。
     Lは有機配位子を表し、nは1~3の整数である。]
    An organic electroluminescence containing a compound represented by the following formula (1), a compound represented by the following formula (2) having a shorter maximum emission wavelength than the compound represented by the above formula (1), and a solvent. Composition for light emitting element.
    Figure JPOXMLDOC01-appb-C000001

    [In the above formula, R 1 and R 2 are independently an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and 3 carbon atoms, respectively. ~ 20 (hetero) aryloxy groups, 1 to 20 carbon atoms alkylsilyl groups, 6 to 20 carbon atoms arylsilyl groups, 2 to 20 carbon atoms alkylcarbonyl groups, 7 to 20 carbon atoms arylcarbonyl groups, It is an alkylamino group having 1 to 20 carbon atoms, an arylamino group having 6 to 20 carbon atoms, or a (hetero) aryl group having 3 to 30 carbon atoms. These groups may further have substituents. When a plurality of R 1 and R 2 exist, they may be the same or different from each other. If R 1 there are a plurality bonded R 1 adjacent to each other may form a ring.
    a is an integer of 0 to 4, and b is an integer of 0 to 3.
    R 3 and R 4 are independently hydrogen atom, fluorine atom, chlorine atom, bromine atom, alkyl group having 1 to 20 carbon atoms, (hetero) aralkyl group having 7 to 40 carbon atoms, and 1 to 20 carbon atoms, respectively. Alkoxy group, (hetero) aryloxy group having 3 to 20 carbon atoms, alkylsilyl group having 1 to 20 carbon atoms, arylsilyl group having 6 to 20 carbon atoms, alkylcarbonyl group having 2 to 20 carbon atoms, 7 carbon atoms. It is an arylcarbonyl group having up to 20 carbonyl groups, an alkylamino group having 2 to 20 carbon atoms, an arylamino group having 6 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms. These groups may further have substituents. When a plurality of R 3 and R 4 exist, they may be the same or different from each other.
    L 1 represents an organic ligand, and m is an integer of 1 to 3. ]
    Figure JPOXMLDOC01-appb-C000002

    [In the formula, R 5 is an alkyl group having 1 to 20 carbon atoms, having 7 to 40 carbon atoms (hetero) aralkyl group, an alkoxy group having 1 to 20 carbon atoms, having 3 to 20 carbon atoms (hetero) aryloxy Group, alkylsilyl group with 1 to 20 carbon atoms, arylsilyl group with 6 to 20 carbon atoms, alkylcarbonyl group with 2 to 20 carbon atoms, arylcarbonyl group with 7 to 20 carbon atoms, alkylamino with 1 to 20 carbon atoms A group, an arylamino group having 6 to 20 carbon atoms, or a (hetero) aryl group having 3 to 30 carbon atoms. These groups may further have substituents. If R 5 is plurally present, they may be the same or different.
    c is an integer from 0 to 4.
    Ring A is any of pyridine ring, pyrazine ring, pyrimidine ring, imidazole ring, oxazole ring, thiazole ring, quinoline ring, isoquinoline ring, quinazoline ring, quinoxaline ring, azatriphenylene ring, carboline ring, benzothiazole ring, and benzoxazole ring. Is it?
    Ring A may have a substituent, which is a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, and carbon. An alkoxy group having 1 to 20 carbon atoms, a (hetero) aryloxy group having 3 to 20 carbon atoms, an alkylsilyl group having 1 to 20 carbon atoms, an arylsilyl group having 6 to 20 carbon atoms, and an alkylcarbonyl group having 2 to 20 carbon atoms. , An arylcarbonyl group having 7 to 20 carbon atoms, an alkylamino group having 2 to 20 carbon atoms, an arylamino group having 6 to 20 carbon atoms, or a (hetero) aryl group having 3 to 20 carbon atoms. Further, adjacent substituents bonded to the ring A may be bonded to each other to further form a ring. When there are a plurality of rings A, they may be the same or different.
    L 2 represents an organic ligand, and n is an integer of 1 to 3. ]
  2.  前記式(1)で表される化合物の組成比が、質量部換算において前記式(2)で表される化合物の組成比以上である、請求項1に記載の有機電界発光素子用組成物。 The composition for an organic electroluminescent device according to claim 1, wherein the composition ratio of the compound represented by the formula (1) is equal to or greater than the composition ratio of the compound represented by the formula (2) in terms of parts by mass.
  3.  前記式(1)で表される化合物が下記式(1-1)で表される化合物である、請求項1または2に記載の有機電界発光素子用組成物。
    Figure JPOXMLDOC01-appb-C000003
     
    [上記式中、R、R、a、b、L、mは、前記式(1)におけるR、R、a、b、L、mとそれぞれ同義である。
     R、Rは、それぞれ独立して、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数1~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~30の(ヘテロ)アリール基である。これらの基はさらに置換基を有していてもよい。R、Rが複数存在する場合、それらはそれぞれ同一であっても異なっていてもよい。
     d、eはそれぞれ独立して、0~5の整数である。]
    The composition for an organic electroluminescent device according to claim 1 or 2, wherein the compound represented by the formula (1) is a compound represented by the following formula (1-1).
    Figure JPOXMLDOC01-appb-C000003

    [In the above formulas, R 1, R 2, a , b, L 1, m , the R 1 in the formula (1), R 2, a , b, a L 1, m and respectively the same.
    R 6 and R 7 are independently alkyl groups having 1 to 20 carbon atoms, (hetero) aralkyl groups having 7 to 40 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, and (heterogeneous) having 3 to 20 carbon atoms. ) Aryloxy group, alkylsilyl group with 1 to 20 carbon atoms, arylsilyl group with 6 to 20 carbon atoms, alkylcarbonyl group with 2 to 20 carbon atoms, arylcarbonyl group with 7 to 20 carbon atoms, 1 to 20 carbon atoms Alkylamino group, arylamino group having 6 to 20 carbon atoms, or (hetero) aryl group having 3 to 30 carbon atoms. These groups may further have substituents. When a plurality of R 6 and R 7 exist, they may be the same or different from each other.
    d and e are independently integers from 0 to 5. ]
  4.  前記式(1)で表される化合物が下記式(1-2)で表される化合物である、請求項1または2に記載の有機電界発光素子用組成物。
    Figure JPOXMLDOC01-appb-C000004
     
    [上記式中、R~R、b、L、mは、前記式(1)におけるR~R、b、L、mとそれぞれ同義である。
     R14~R16は置換基であり、R14~R16が複数存在する場合、それらはそれぞれ同一であっても異なっていてもよい。
     iは0~4の整数である。]
    The composition for an organic electroluminescent device according to claim 1 or 2, wherein the compound represented by the formula (1) is a compound represented by the following formula (1-2).
    Figure JPOXMLDOC01-appb-C000004

    [In the above formulas, R 2 ~ R 4, b , L 1, m is, R 2 ~ R 4 in the formula (1), b, is L 1, m and respectively the same.
    R 14 to R 16 are substituents, and when a plurality of R 14 to R 16 are present, they may be the same or different from each other.
    i is an integer from 0 to 4. ]
  5.  前記式(1-1)で表される化合物が下記式(1-3)で表される化合物である、請求項3に記載の有機電界発光素子用組成物。
    Figure JPOXMLDOC01-appb-C000005
     
    [上記式中、R、R、R、b、d、e、L、mは、前記式(1-1)におけるR、R、R、b、d、e、L、mとそれぞれ同義である。
     R14~R16は置換基であり、R14~R16が複数存在する場合、それらはそれぞれ同一であっても異なっていてもよい。
     iは0~4の整数である。]
    The composition for an organic electroluminescent device according to claim 3, wherein the compound represented by the formula (1-1) is a compound represented by the following formula (1-3).
    Figure JPOXMLDOC01-appb-C000005

    [In the above formulas, R 2, R 6, R 7, b, d, e, L 1, m is, R 2 in the formula (1-1), R 6, R 7, b, d, e, L It is synonymous with 1 and m, respectively.
    R 14 to R 16 are substituents, and when a plurality of R 14 to R 16 are present, they may be the same or different from each other.
    i is an integer from 0 to 4. ]
  6.  前記式(2)で表される化合物が、下記式(2-1)で表される化合物である、請求項1~5のいずれか一項に記載の有機電界発光素子用組成物。
    Figure JPOXMLDOC01-appb-C000006
     
    [上記式中、環A、L、nは、前記式(2)における環A、L、nとそれぞれ同義である。
     Rは、炭素数1~20のアルキル基、炭素数7~40の(ヘテロ)アラルキル基、炭素数1~20のアルコキシ基、炭素数3~20の(ヘテロ)アリールオキシ基、炭素数1~20のアルキルシリル基、炭素数6~20のアリールシリル基、炭素数2~20のアルキルカルボニル基、炭素数7~20のアリールカルボニル基、炭素数1~20のアルキルアミノ基、炭素数6~20のアリールアミノ基、または炭素数3~30の(ヘテロ)アリール基である。これらの基はさらに置換基を有していてもよい。Rが複数存在する場合、それらは同一であっても異なっていてもよい。
     fは0~5の整数である。]
    The composition for an organic electroluminescent device according to any one of claims 1 to 5, wherein the compound represented by the formula (2) is a compound represented by the following formula (2-1).
    Figure JPOXMLDOC01-appb-C000006

    [In the above formula, Ring A, L 2, n, Ring A in the formula (2) is L 2, n and respectively the same.
    R 8 has an alkyl group having 1 to 20 carbon atoms, a (hetero) aralkyl group having 7 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a (hetero) aryloxy group having 3 to 20 carbon atoms, and 1 carbon atom. Alkylsilyl group of ~ 20, arylsilyl group of 6-20 carbons, alkylcarbonyl group of 2-20 carbons, arylcarbonyl group of 7-20 carbons, alkylamino group of 1-20 carbons, 6 carbons It is an arylamino group of up to 20 or a (hetero) aryl group having 3 to 30 carbon atoms. These groups may further have substituents. If R 8 is plurally present, they may be the same or different.
    f is an integer from 0 to 5. ]
  7.  前記式(1)中のmが3未満であり、Lは下記式(3)、式(4)、及び式(5)からなる群より選ばれる少なくとも一つの構造を有する、請求項1~6のいずれか一項に記載の有機電界発光素子用組成物。
    Figure JPOXMLDOC01-appb-C000007
     
    [上記式(3)~(5)中、R、R10は、前記式(1)におけるRと同義であり、R、R10が複数存在する場合、それらはそれぞれ同一であっても異なっていてもよい。
     R11~R13はそれぞれ独立して、水素原子、フッ素原子で置換されていてもよい炭素数1~20のアルキル基、炭素数1~20のアルキル基で置換されていてもよいフェニル基またはハロゲン原子である。
     gは0~4の整数である。hは0~4の整数である。
     環Bは、ピリジン環、ピリミジン環、イミダゾール環、キノリン環、イソキノリン環、キナゾリン環、キノキサリン環、アザトリフェニレン環、カルボリン環、ベンゾチアゾール環、またはベンゾオキサゾール環である。環Bはさらに置換基を有していてもよい。]
    Claims 1 to 1, wherein m in the formula (1) is less than 3, and L 1 has at least one structure selected from the group consisting of the following formulas (3), (4), and (5). 6. The composition for an organic electroluminescent device according to any one of 6.
    Figure JPOXMLDOC01-appb-C000007

    [In the above formulas (3) to (5), R 9 and R 10 are synonymous with R 1 in the above formula (1), and when a plurality of R 9 and R 10 exist, they are the same. May be different.
    R 11 to R 13 are independently substituted with an alkyl group having 1 to 20 carbon atoms which may be substituted with a hydrogen atom and a fluorine atom, a phenyl group which may be substituted with an alkyl group having 1 to 20 carbon atoms, or It is a halogen atom.
    g is an integer from 0 to 4. h is an integer from 0 to 4.
    Ring B is a pyridine ring, a pyrimidine ring, an imidazole ring, a quinoline ring, an isoquinoline ring, a quinazoline ring, a quinoxaline ring, an azatriphenylene ring, a carboline ring, a benzothiazole ring, or a benzoxazole ring. Ring B may further have a substituent. ]
  8.  前記式(1)中のaが1である、又は、前記式(1)中のaが2以上の整数、かつ隣り合うRが互いに結合した環を有さない、請求項1~7のいずれか一項に記載の有機電界発光素子用組成物。 Wherein a a is 1 of Formula (1) or the formula (1) a does not have a ring integer of 2 or more, and R 1 the adjacent coupled together in, according to claim 1 to 7 The composition for an organic electroluminescent device according to any one of the above.
  9.  請求項1~8のいずれか一項に記載の有機電界発光素子組成物を用いて湿式成膜法にて発光層を形成する工程を含む、有機電界発光素子の製造方法。 A method for manufacturing an organic electroluminescent device, which comprises a step of forming a light emitting layer by a wet film forming method using the organic electroluminescent device composition according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか一項に記載の有機電界発光素子組成物を用いて形成された発光層を有する有機電界発光素子。 An organic electroluminescent device having a light emitting layer formed by using the organic electroluminescent device composition according to any one of claims 1 to 8.
  11.  請求項10に記載の有機電界発光素子を有する表示装置。 A display device having the organic electroluminescent element according to claim 10.
PCT/JP2020/019788 2019-05-20 2020-05-19 Composition for organic electroluminescent element, organic electroluminescent element, production method therefor, and display device WO2020235562A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080037101.XA CN113874467A (en) 2019-05-20 2020-05-19 Composition for organic electroluminescent element, method for producing organic electroluminescent element, and display device
JP2021520797A JPWO2020235562A1 (en) 2019-05-20 2020-05-19
KR1020217037593A KR20220010598A (en) 2019-05-20 2020-05-19 Composition for organic electroluminescent device, organic electroluminescent device and manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019094708 2019-05-20
JP2019-094708 2019-05-20

Publications (1)

Publication Number Publication Date
WO2020235562A1 true WO2020235562A1 (en) 2020-11-26

Family

ID=73459394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019788 WO2020235562A1 (en) 2019-05-20 2020-05-19 Composition for organic electroluminescent element, organic electroluminescent element, production method therefor, and display device

Country Status (5)

Country Link
JP (1) JPWO2020235562A1 (en)
KR (1) KR20220010598A (en)
CN (1) CN113874467A (en)
TW (1) TW202106696A (en)
WO (1) WO2020235562A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161974A1 (en) * 2020-02-12 2021-08-19 三菱ケミカル株式会社 Iridium complex compound, iridium complex compound-containing composition, organic electroluminescent element and production method therefor, organic el display device, and organic el lighting device
EP4079743A1 (en) * 2021-04-23 2022-10-26 Universal Display Corporation Organic electroluminescent materials and devices
WO2023136252A1 (en) * 2022-01-13 2023-07-20 三菱ケミカル株式会社 Iridium complex compound, composition for organic electroluminescent element, organic electroluminescent element and method for producing same, and display device
WO2023182184A1 (en) * 2022-03-25 2023-09-28 三菱ケミカル株式会社 Light-emitting layer composition, organic electroluminescent element, and production method therefor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015105014A1 (en) * 2014-01-08 2015-07-16 住友化学株式会社 Metal complex and light emitting element using same
JP2015212357A (en) * 2014-04-18 2015-11-26 住友化学株式会社 Composition and light-emitting element using the same
JP2017052709A (en) * 2015-09-07 2017-03-16 住友化学株式会社 Metal complex and light emitting element comprising metal complex
WO2018077769A1 (en) * 2016-10-25 2018-05-03 Merck Patent Gmbh Metal complexes
JP2018083940A (en) * 2016-11-14 2018-05-31 住友化学株式会社 Composition and light emitting element prepared therewith
JP2018083941A (en) * 2016-11-14 2018-05-31 住友化学株式会社 Composition and light emitting element prepared therewith
WO2018198972A1 (en) * 2017-04-27 2018-11-01 住友化学株式会社 Composition and light-emitting element comprising same
WO2018198976A1 (en) * 2017-04-27 2018-11-01 住友化学株式会社 Light-emitting element
WO2019065388A1 (en) * 2017-09-29 2019-04-04 住友化学株式会社 Composition and light-emitting device using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102402729B1 (en) 2014-06-18 2022-05-26 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
EP3174890B1 (en) 2014-07-28 2019-03-13 Merck Patent GmbH Metal complexes
JP6296208B2 (en) 2016-03-10 2018-03-20 住友化学株式会社 Light emitting element
CN110546781B (en) * 2017-04-27 2022-05-10 住友化学株式会社 Light emitting element

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015105014A1 (en) * 2014-01-08 2015-07-16 住友化学株式会社 Metal complex and light emitting element using same
JP2015212357A (en) * 2014-04-18 2015-11-26 住友化学株式会社 Composition and light-emitting element using the same
JP2017052709A (en) * 2015-09-07 2017-03-16 住友化学株式会社 Metal complex and light emitting element comprising metal complex
WO2018077769A1 (en) * 2016-10-25 2018-05-03 Merck Patent Gmbh Metal complexes
JP2018083940A (en) * 2016-11-14 2018-05-31 住友化学株式会社 Composition and light emitting element prepared therewith
JP2018083941A (en) * 2016-11-14 2018-05-31 住友化学株式会社 Composition and light emitting element prepared therewith
WO2018198972A1 (en) * 2017-04-27 2018-11-01 住友化学株式会社 Composition and light-emitting element comprising same
WO2018198976A1 (en) * 2017-04-27 2018-11-01 住友化学株式会社 Light-emitting element
WO2019065388A1 (en) * 2017-09-29 2019-04-04 住友化学株式会社 Composition and light-emitting device using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161974A1 (en) * 2020-02-12 2021-08-19 三菱ケミカル株式会社 Iridium complex compound, iridium complex compound-containing composition, organic electroluminescent element and production method therefor, organic el display device, and organic el lighting device
EP4079743A1 (en) * 2021-04-23 2022-10-26 Universal Display Corporation Organic electroluminescent materials and devices
WO2023136252A1 (en) * 2022-01-13 2023-07-20 三菱ケミカル株式会社 Iridium complex compound, composition for organic electroluminescent element, organic electroluminescent element and method for producing same, and display device
WO2023182184A1 (en) * 2022-03-25 2023-09-28 三菱ケミカル株式会社 Light-emitting layer composition, organic electroluminescent element, and production method therefor

Also Published As

Publication number Publication date
CN113874467A (en) 2021-12-31
TW202106696A (en) 2021-02-16
KR20220010598A (en) 2022-01-25
JPWO2020235562A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
JP5810417B2 (en) Iridium complex compound, composition containing the compound, organic electroluminescent element, display device and lighting device
JP7420116B2 (en) Iridium complex compound, organic electroluminescent device containing the compound, display device, and lighting device
WO2020235562A1 (en) Composition for organic electroluminescent element, organic electroluminescent element, production method therefor, and display device
JP6879342B2 (en) Polymers, compositions for organic electroluminescent devices, organic electroluminescent devices, organic EL display devices and organic EL lighting
JP5707704B2 (en) Organometallic complex, organometallic complex-containing composition, luminescent material, organic electroluminescent element material, organic electroluminescent element, organic EL display and organic EL lighting
JP2018016641A (en) Iridium complex compound, organic electroluminescent element, display device and illumination apparatus
JP6866576B2 (en) Polymers, compositions for organic electroluminescent devices, organic electroluminescent devices, organic EL display devices and organic EL lighting
WO2020230811A1 (en) Iridium complex compound, composition containing said compound and solvent, organic electroluminescent element containing said compound, display device and lighting device
US20200274078A1 (en) Iridium complex compound, composition containing the compound and solvent, organic electroluminescent element containing the compound, display device, and illumination device
WO2013108787A1 (en) Organic electroluminescent element, organic el lighting and organic el display device
JP6286872B2 (en) Iridium complex compound, organic electroluminescent element, display device and lighting device
JP6119171B2 (en) Iridium complex compound, composition containing the compound and solvent, organic electroluminescent device containing the compound, display device and lighting device
JP7140014B2 (en) A composition for an organic electroluminescent device, an organic electroluminescent device, a display device and a lighting device.
WO2022250044A1 (en) Iridium complex compound, composition containing iridium complex compound, organic electroluminescent element and method for producing same
WO2022149519A1 (en) Composition for organic electroluminescent element, organic electroluminescent element, display device, and illuminator
WO2020251031A1 (en) Composition for organic electroluminescent elements, organic electroluminescent element, display device and lighting device
JP7276059B2 (en) Composition for organic electroluminescent device, organic electroluminescent device, display device and lighting device
WO2023136252A1 (en) Iridium complex compound, composition for organic electroluminescent element, organic electroluminescent element and method for producing same, and display device
JP2014058457A (en) Iridium complex compound, organic electroluminescent element, display device and illumination apparatus
WO2022234763A1 (en) Composition for organic electroluminescent element, organic electroluminescent element, display device, and illuminator
WO2023153161A1 (en) Composition for organic electroluminescent element, method for manufacturing organic electroluminescent element, organic electroluminescent element, display device, and lighting deviceelectroluminescence element, display device, and lighting device
JP2024055580A (en) Composition for organic electroluminescent device, organic electroluminescent device and method for producing the same, and display device
JP2021127325A (en) Aromatic diamine derivative
JP2021075493A (en) Oled element forming composition and oled element
JP2014220248A (en) Method of manufacturing organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809397

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520797

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809397

Country of ref document: EP

Kind code of ref document: A1