JP2000305112A - Active matrix substrate and production of active matrix substrate - Google Patents

Active matrix substrate and production of active matrix substrate

Info

Publication number
JP2000305112A
JP2000305112A JP11117977A JP11797799A JP2000305112A JP 2000305112 A JP2000305112 A JP 2000305112A JP 11117977 A JP11117977 A JP 11117977A JP 11797799 A JP11797799 A JP 11797799A JP 2000305112 A JP2000305112 A JP 2000305112A
Authority
JP
Japan
Prior art keywords
insulating film
region
gate insulating
thickness
active matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11117977A
Other languages
Japanese (ja)
Inventor
Toshisuke Seto
俊祐 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11117977A priority Critical patent/JP2000305112A/en
Publication of JP2000305112A publication Critical patent/JP2000305112A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1237Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a different composition, shape, layout or thickness of the gate insulator in different devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thin Film Transistor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease production of point defects in a pixel part in an active matrix substrate having the driving circuit device integrated on the same substrate, to stabilize driving characteristics of the driving circuit device without decreasing the driving ability in the driving circuit device, and to improve the display quality of a liquid crystal display device. SOLUTION: In this production method, a silicon oxide film (SiOx) 56 is uniformly formed to 300 nm thickness on semiconductor layers 26, 27, 28 on a glass substrate 11, then the silicon oxide film (SiOx) 56 in the driving circuit region is processed into a thin film of 140 nm thickness in a photolithographic process. Thus, a gate insulating film 37 having 140 nm thickness in the driving circuit region and having 300 nm film thickness in the display region is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体薄膜トラン
ジスタをスイッチング素子とする液晶表示装置における
アクティブマトリクス基板及びアクティブマトリクス基
板の製造方法に関する。
The present invention relates to an active matrix substrate in a liquid crystal display device using a semiconductor thin film transistor as a switching element and a method for manufacturing the active matrix substrate.

【0002】[0002]

【従来の技術】近年、半導体薄膜トランジスタをスイッ
チング素子とする、高密度大容量且つ高精細なアクティ
ブマトリクス型液晶表示装置の開発が図られ、中でも移
動度が数10から数100cm2/Vsと大きく良好な半導
体特性を有する事から、ポリシリコン(p−Si)膜を
半導体層として用いるポリシリコン薄膜トランジスタ
(以下p−SiTFTと略称する。)をスイッチング素
子とするアクティブマトリクス基板が注目されている。
更にこのようなアクティブマトリクス基板において、画
素電極のスイッチング素子と、このスイッチング素子に
駆動信号を送る駆動回路素子とを同一ガラス基板上に設
ける駆動回路一体型の、アクティブマトリクス型液晶表
示装置の実用化が図られている。
Recently, a switching element of a semiconductor thin film transistor, been attempted to develop a high-density large-capacity and high-definition active matrix liquid crystal display device, among others greatly from mobility number 10 and number 100 cm 2 / Vs good Because of its excellent semiconductor characteristics, an active matrix substrate using a polysilicon thin film transistor (hereinafter abbreviated as p-SiTFT) using a polysilicon (p-Si) film as a semiconductor layer as a switching element has attracted attention.
Further, in such an active matrix substrate, a driving circuit integrated type active matrix type liquid crystal display device in which a switching element for a pixel electrode and a driving circuit element for transmitting a driving signal to the switching element are provided on the same glass substrate is put into practical use. Is planned.

【0003】又このp−SiTFTは、通常、ゲート電
極をマスクにして、p−Si膜に自己整合的に不純物を
注入しソース領域及びドレイン領域を形成する事から、
半導体層上に成膜されるゲート絶縁膜を介しチャネル領
域上方にゲート電極を配置してなるトップゲート型のト
ランジスタ構造が採用されている。そしてこのようなト
ップゲート型のp−SiTFTからなる駆動回路一体型
のアクティブマトリクス型液晶表示装置にあっては、従
来画素電極のスイッチング素子及び駆動回路素子に用い
られるp−SiTFTのゲート絶縁膜の膜厚は同じ厚さ
に成膜されていた。
[0003] In the p-Si TFT, usually, a source region and a drain region are formed by implanting impurities into a p-Si film in a self-aligned manner using a gate electrode as a mask.
A top-gate transistor structure in which a gate electrode is arranged above a channel region with a gate insulating film formed over a semiconductor layer interposed therebetween is employed. In a drive circuit integrated type active matrix type liquid crystal display device including a top gate type p-Si TFT, a gate insulating film of a p-Si TFT conventionally used for a switching element of a pixel electrode and a drive circuit element is used. The film thickness was the same.

【0004】[0004]

【発明が解決しようとする課題】従来、駆動回路一体型
のアクティブマトリクス型液晶表示装置に形成されるp
−SiTFTは、画素電極のスイッチング素子及び駆動
回路素子のいずれにおいてもそのゲート絶縁膜の膜厚は
同じ厚さとされていた。
Conventionally, a p-type pixel formed in an active matrix type liquid crystal display device integrated with a drive circuit is known.
In the -Si TFT, the gate insulating film has the same thickness in both the switching element and the driving circuit element of the pixel electrode.

【0005】しかしながら、 p−SiTFTを画素電
極のスイッチング素子として用いる場合は、ゲート絶縁
膜の膜厚が厚い方が望ましく、薄くなると画素部の点欠
点が増加し、表示品位の低下を来たしていた。一方p−
SiTFTを駆動回路素子として用いる場合は、ゲート
絶縁膜の膜厚が厚いと、 p−SiTFTのオン電流の
低下すなわち駆動能力の低下を招き、ゴースト等の表示
不良により表示品位を低下していた。このように駆動回
路一体型のアクティブマトリクス型液晶表示装置にあっ
ては、画素電極のスイッチング素子に要求されるゲート
絶縁膜の膜厚と駆動回路素子に要求されるゲート絶縁膜
の膜厚とが相反することから、その実用化が妨げられる
という問題を有していた。
However, when a p-Si TFT is used as a switching element for a pixel electrode, it is desirable that the thickness of the gate insulating film be large. If the thickness is reduced, the point defects of the pixel portion increase and the display quality deteriorates. . On the other hand, p-
When the SiTFT is used as a drive circuit element, if the thickness of the gate insulating film is large, the on-current of the p-SiTFT is reduced, that is, the drive capability is reduced, and display quality such as ghost is deteriorated. As described above, in the active matrix type liquid crystal display device integrated with the driving circuit, the thickness of the gate insulating film required for the switching element of the pixel electrode and the thickness of the gate insulating film required for the driving circuit element are different. There is a problem that the practical application is hindered due to the conflict.

【0006】そこで本発明は上記課題を除去するもの
で、駆動回路一体型のアクティブマトリクス型液晶表示
装置の画素部での点欠点を防止すると共に、駆動回路の
能力低下を防止してゴースト等の表示不良を生じること
なく安定した駆動特性を得ることにより、良好な表示品
位を有する液晶表示装置におけるアクティブマトリクス
基板を提供する事を目的とする。
Accordingly, the present invention has been made to solve the above-described problems, and it is possible to prevent a point defect in a pixel portion of an active matrix type liquid crystal display device integrated with a driving circuit, and to prevent a ghost or the like by preventing a reduction in performance of the driving circuit. It is an object of the present invention to provide an active matrix substrate in a liquid crystal display device having good display quality by obtaining stable driving characteristics without causing display defects.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するため、表示領域及び駆動回路領域を一体支持する絶
縁性基板と、この絶縁性基板上の前記表示領域及び前記
駆動回路領域とに形成されチャネル領域及びこのチャネ
ル領域を挟んで対向するソース領域及びドレイン領域を
有する半導体層及び、この半導体層を覆うゲート絶縁膜
並びに、このゲート絶縁膜上に前記半導体層の前記チャ
ネル領域に対向して配置されるゲート電極からなる薄膜
トランジスタと、前記表示領域にてマトリクス状に配列
され前記薄膜トランジスタのソース領域に接続される画
素電極とを具備し、前記ゲート絶縁膜は、前記駆動回路
領域の膜厚より前記表示領域の膜厚が厚く形成されるも
のである。
In order to solve the above-mentioned problems, the present invention provides an insulating substrate integrally supporting a display area and a driving circuit area, and the display area and the driving circuit area on the insulating substrate. A semiconductor layer formed having a channel region and a source region and a drain region opposed to each other with the channel region interposed therebetween; a gate insulating film covering the semiconductor layer; and a gate insulating film on the gate insulating film facing the channel region of the semiconductor layer. A thin film transistor comprising a gate electrode arranged in a matrix, and a pixel electrode arranged in a matrix in the display region and connected to a source region of the thin film transistor, wherein the gate insulating film has a thickness of the drive circuit region. The display region is formed to have a larger thickness.

【0008】そして本発明は上記構成により、画素部に
あっては十分な厚さのゲート絶縁膜を得ることにより点
欠点の発生を防止し、駆動回路にあってはゲート絶縁膜
の薄膜化による安定した駆動特性を得られ、高品位の液
晶表示装置におけるアクティブマトリクス基板の実用化
を図るものである。
According to the present invention, with the above structure, a gate insulating film having a sufficient thickness is obtained in the pixel portion to prevent the occurrence of a point defect, and in the driving circuit, the gate insulating film is made thinner. An active matrix substrate in a high-quality liquid crystal display device that achieves stable driving characteristics is intended to be put to practical use.

【0009】[0009]

【発明の実施の形態】以下、本発明の第1の実施の形態
を図1及び図2を参照して説明する。10は、アクティ
ブマトリクス型の液晶表示装置であり、表示領域にあっ
ては、互いに交差してなる複数の信号線(図示せず)と
ゲート線(図示せず)との交差部に画素電極11のスイ
ッチング素子であるn型p−SiTFT12を有し、駆
動回路領域にあっては、駆動回路素子であるp型p−S
iTFT13、n型p−SiTFT14を有するアクテ
ィブマトリクス基板17と、対向基板18との間隙に、
配向膜20、21を介して液晶組成物22を封入してな
っている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. Reference numeral 10 denotes an active matrix type liquid crystal display device. In a display area, a pixel electrode 11 is provided at an intersection of a plurality of signal lines (not shown) and gate lines (not shown) crossing each other. And an n-type p-Si TFT 12 as a switching element, and in a driving circuit region, a p-type p-S
In a gap between an active matrix substrate 17 having an iTFT 13 and an n-type p-Si TFT 14 and a counter substrate 18,
The liquid crystal composition 22 is sealed via the alignment films 20 and 21.

【0010】アクティブマトリクス基板17の絶縁性基
板であるガラス基板23上の表示領域には窒化シリコン
(SiN)膜24a及び酸化シリコン(SiO)膜24
bからなるアンダーコート層24を介し、n型p−Si
TFT12の半導体層26がパターン形成され、ガラス
基板24の駆動回路領域にはp型p−SiTFT13の
半導体層27、 n型p−SiTFT14の半導体層2
8がパターン形成されている。
A display region on a glass substrate 23, which is an insulating substrate of the active matrix substrate 17, has a silicon nitride (SiN) film 24a and a silicon oxide (SiO) film 24.
n-type p-Si through the undercoat layer 24 made of
The semiconductor layer 26 of the TFT 12 is patterned, and the semiconductor layer 27 of the p-type p-Si TFT 13 and the semiconductor layer 2 of the n-type p-Si TFT 14
8 is pattern-formed.

【0011】半導体層26は、チャネル領域26a、チ
ャネル領域26aに隣接しリン(P + )イオンを低濃度
でドーピングしたLDD(Lightly Doped
Drain)領域26b、26c、更にLDD領域2
6b、26cに隣接しリン(P+ )イオンを高濃度でド
ーピングしてなるソース領域26d、ドレイン領域26
eから成っている。半導体層27は、チャネル領域27
a及びホウ素(B+ )イオンを高濃度でドーピングして
なるソース領域27b、ドレイン領域27cから成って
いる。半導体層28は、チャネル領域28a、チャネル
領域28aに隣接しリン(P+ )イオンを低濃度でドー
ピングしたLDD(Lightly Doped Dr
ain)領域28b、28c、更にLDD領域28b、
28cに隣接しリン(P+ )イオンを高濃度でドーピン
グしてなるソース領域28d、ドレイン領域28eから
成っている。
The semiconductor layer 26 includes a channel region 26a and a channel region 26a.
Phosphorus (P) adjacent to the channel region 26a. +) Low concentration of ions
LDD (Lightly Doped)
 Drain) regions 26b, 26c and LDD region 2
6b, 26c and phosphorus (P+) Doping ions at high concentration
Source region 26d and drain region 26
e. The semiconductor layer 27 includes a channel region 27
a and boron (B+ ) Doping ions at high concentration
Source region 27b and drain region 27c
I have. The semiconductor layer 28 includes a channel region 28a, a channel
Phosphorus (P) adjacent to region 28a+) Ion at low concentration
LDD (Lightly Doped Dr)
ain) The regions 28b and 28c, and further the LDD region 28b,
Phosphorus (P+) Doping with high concentration of ions
From the source region 28d and the drain region 28e
Made up of

【0012】各半導体層26、27、28は酸化シリコ
ン(SiO2)膜からなるゲート絶縁膜30で被覆され
る。このゲート絶縁膜30の表示領域における膜厚は3
00nmであり、駆動回路領域における膜厚は140n
mであり、このようなゲート絶縁膜30を介し、各半導
体層26、27、28のチャネル領域26a、27a、
28a上に、タンタル(Ta)、クロム(Cr)、アル
ミニウム(Al)、モリブデン(Mo)、タングステン
(W)、銅(Cu)等の単体又はその積層膜あるいは合
金膜の金属膜からなりゲート線(図示せず)と一体的に
形成されるゲート電極32、33、34が形成される。
更にその上には、酸化シリコン膜(SiO2)から成る
層間絶縁膜37が形成されている。層間絶縁膜37の上
には、タンタル(Ta)、クロム(Cr)、アルミニウ
ム(Al)、モリブデン(Mo)、タングステン
(W)、銅(Cu)等の単体又はその積層膜あるいは合
金膜等からなり、表示領域にて、ソース領域26d及び
画素電極11間を接続するソース電極38が形成され、
ドレイン領域26eに接続され信号線(図示せず)と一
体的に形成されるドレイン電極40が形成されている。
Each of the semiconductor layers 26, 27 and 28 is covered with a gate insulating film 30 made of a silicon oxide (SiO 2 ) film. The thickness of the gate insulating film 30 in the display region is 3
00 nm, and the film thickness in the drive circuit region is 140 n
m, and the channel regions 26a, 27a,
A gate line made of a single metal such as tantalum (Ta), chromium (Cr), aluminum (Al), molybdenum (Mo), tungsten (W), copper (Cu) or a laminated film or an alloy film thereof is formed on the gate line 28a. Gate electrodes 32, 33, and 34 formed integrally with (not shown) are formed.
Further thereon, an interlayer insulating film 37 made of a silicon oxide film (SiO 2 ) is formed. On the interlayer insulating film 37, a simple substance such as tantalum (Ta), chromium (Cr), aluminum (Al), molybdenum (Mo), tungsten (W), copper (Cu) or a laminated film or an alloy film thereof is used. In the display area, a source electrode 38 connecting the source area 26d and the pixel electrode 11 is formed,
A drain electrode 40 connected to the drain region 26e and integrally formed with a signal line (not shown) is formed.

【0013】一方駆動回路領域における層間絶縁膜37
上にはタンタル(Ta)、クロム(Cr)、アルミニウ
ム(Al)、モリブデン(Mo)、タングステン
(W)、銅(Cu)等の単体又はその積層膜あるいは合
金膜等からなり、半導体層27あるいは半導体層28に
接続されるソース電極41、43、ドレイン電極42、
44が形成されている。更にこれらの上には窒化シリコ
ン( SiNx )膜からなる保護絶縁膜46、有機樹脂
絶縁膜からなるカラーフィルタ層47が成膜され、表示
領域にあっては有機樹脂絶縁膜47上に画素電極11が
形成されている。
On the other hand, interlayer insulating film 37 in the drive circuit region
A single layer of tantalum (Ta), chromium (Cr), aluminum (Al), molybdenum (Mo), tungsten (W), copper (Cu), or the like, or a laminated film or an alloy film thereof is formed thereon. Source electrodes 41 and 43 connected to the semiconductor layer 28, a drain electrode 42,
44 are formed. Further, a protective insulating film 46 made of a silicon nitride (SiNx) film and a color filter layer 47 made of an organic resin insulating film are formed thereon, and the pixel electrode 11 is formed on the organic resin insulating film 47 in the display area. Are formed.

【0014】一方対向基板18にあっては、絶縁性基板
であるガラス基板48上にアンダーコート層50を介し
てITOからなる対向電極51が全面に形成されてい
る。又52、53は偏光板である。
On the other hand, in the counter substrate 18, a counter electrode 51 made of ITO is formed on the entire surface of a glass substrate 48, which is an insulating substrate, via an undercoat layer 50. 52 and 53 are polarizing plates.

【0015】次に図2を参照しアクティブマトリクス基
板17上のn型p−SiTFT12、p型p−SiTF
T13、n型p−SiTFT14の製造工程について述
べる。先ず図2(a)に示す様に、ガラス基板23上に
プラズマCVD(chemical vapor de
position)法により窒化シリコン(SiN)膜
24a及び酸化シリコン(SiO)膜24bを成膜後、
プラズマCVD法により非晶質シリコン(以下a−Si
と略称する。)膜を積層し、エキシマレーザ(XeC
l)を照射してa−Siを多結晶化し、膜厚50nmの
多結晶シリコン(以下p−Siと略称する。)膜を形成
し、更にフォトリソグラフィ工程により、表示領域内の
n型p−SiTFT12、駆動回路領域のp型p−Si
TFT13、n型p−SiTFT14の夫々の半導体層
26、27、28をパターニングする。
Next, referring to FIG. 2, an n-type p-Si TFT 12 and a p-type p-SiTF 12 on an active matrix substrate 17 will be described.
The manufacturing process of T13 and n-type p-Si TFT 14 will be described. First, as shown in FIG. 2A, a plasma CVD (chemical vapor depot) is formed on a glass substrate 23.
After forming a silicon nitride (SiN) film 24a and a silicon oxide (SiO) film 24b by a position method,
Amorphous silicon (hereinafter a-Si) is formed by plasma CVD.
Abbreviated. ) Films are laminated and an excimer laser (XeC)
1) to irradiate a-Si to polycrystallize to form a polycrystalline silicon (hereinafter abbreviated as p-Si) film having a thickness of 50 nm, and further, through a photolithography process, to form an n-type p-type film in the display region. Si TFT 12, p-type p-Si in drive circuit area
The semiconductor layers 26, 27 and 28 of the TFT 13 and the n-type p-Si TFT 14 are patterned.

【0016】その上に図2(b)に示す様に、プラズマ
CVD法により全面に酸化シリコン膜(SiOx)56
を厚さ300nmに一様に形成する。次に図2(c)に
示す様に、駆動回路領域の酸化シリコン膜(SiOx)
56をフォトリソグラフィ工程により140nmに薄膜
化し、駆動回路領域にあっては膜厚140nm、表示領
域にあっては膜厚300nmのゲート絶縁膜37を形成
する。このフォトリソグラフィ工程時、表示領域のコン
タクトホール56a、56bを同時に形成する。
As shown in FIG. 2B, a silicon oxide film (SiOx) 56 is formed on the entire surface by a plasma CVD method.
Is uniformly formed to a thickness of 300 nm. Next, as shown in FIG. 2C, a silicon oxide film (SiOx) in the drive circuit region
56 is thinned to 140 nm by a photolithography process, and a gate insulating film 37 having a thickness of 140 nm in the drive circuit region and 300 nm in the display region is formed. During this photolithography process, the contact holes 56a and 56b in the display area are formed simultaneously.

【0017】次に図2(d)に示すようにタンタル(T
a)、クロム(Cr)、アルミニウム(Al)、モリブ
デン(Mo)、タングステン(W)、銅(Cu)等の単
体又はその積層膜あるいは合金膜等からなる金属膜57
を形成後、駆動回路領域の半導体層27のソース領域2
7b及びドレイン領域27cにイオンドーピングによる
不純物注入を行うため、フォトリソグラフィ工程により
ゲート電極33を残し金属膜57にスルーホール57
a、57bを形成する。更にゲート電極33をマスクと
するイオンドーピング法により半導体層27のソース領
域27b及びドレイン領域27cにボロンイオン
(B)を高濃度注入する。
Next, as shown in FIG. 2D, tantalum (T
a), a metal film 57 made of a simple substance such as chromium (Cr), aluminum (Al), molybdenum (Mo), tungsten (W), copper (Cu), or a laminated film or alloy film thereof
Is formed, the source region 2 of the semiconductor layer 27 in the drive circuit region is formed.
In order to perform impurity implantation by ion doping into the drain region 7b and the drain region 27c, the gate electrode 33 is left by a photolithography process and the through hole 57 is formed in the metal film 57.
a and 57b are formed. Further, boron ions (B + ) are implanted at a high concentration into the source region 27b and the drain region 27c of the semiconductor layer 27 by an ion doping method using the gate electrode 33 as a mask.

【0018】次に図2(e)に示す様に、フォトリソグ
ラフィ工程により金属膜57をパターン形成し、表示領
域にゲート電極32、駆動回路領域にゲート電極34を
形成する。続いてゲート電極32〜34をマスクにして
イオンドーピング法により半導体層26〜28にリンイ
オン(P)を低濃度注入する。
Next, as shown in FIG. 2E, a metal film 57 is formed in a pattern by a photolithography process, and a gate electrode 32 is formed in a display region and a gate electrode 34 is formed in a drive circuit region. Subsequently, low concentration phosphorus ions (P + ) are implanted into the semiconductor layers 26 to 28 by ion doping using the gate electrodes 32 to 34 as a mask.

【0019】次に図2(f)に示す様に、半導体層2
6、28のLDD領域26b、26c、28b、28c
及び半導体層27に不純物が注入されないよう各半導体
層26〜28をレジスト58、60、61で被覆した
後、半導体層26、28のソース領域26d、28d及
びドレイン領域26e,28eにリンイオン(P)を
高濃度注入する。この時表示領域と駆動回路領域とでは
ゲート絶縁膜37の膜厚が異なることから、加速電圧を
2段階に調整してイオンドーピングしても良い。
Next, as shown in FIG.
6, 28 LDD regions 26b, 26c, 28b, 28c
After covering the semiconductor layers 26 to 28 with resists 58, 60, and 61 so that impurities are not implanted into the semiconductor layer 27, phosphorus ions (P +) are added to the source regions 26d, 28d and the drain regions 26e, 28e of the semiconductor layers 26, 28. ) Is injected at a high concentration. At this time, since the thickness of the gate insulating film 37 is different between the display region and the drive circuit region, ion doping may be performed by adjusting the acceleration voltage in two stages.

【0020】次に図2(g)に示す様に、例えばプラズ
マCVD法を用いて酸化シリコン(SiO)からなる
層間絶縁膜37を形成後、ガラス基板23を500℃で
1時間アニールして不純物を活性化する。更に図2
(h)に示す様に、層間絶縁膜37にフォトリソグラフ
ィ工程により、各半導体層26〜28のソース領域26
d、27b、28d、ドレイン領域26e、27c、2
8eに至るコンタクトホールを形成後、タンタル(T
a)、クロム(Cr)、アルミニウム(Al)、モリブ
デン(Mo)、タングステン(W)、銅(Cu)等の単
体又はその積層膜あるいは合金膜等からなる金属膜を成
膜し、フォトリソグラフィ工程によりソース電極3
8、、41、43、信号線(図示せず)と一体のドレイ
ン電極40、42、44をパターン形成し、アクティブ
マトリクス基板17上にn型p−SiTFT12、p型
p−SiTFT13、n型p−SiTFT14を形成す
る。
Next, as shown in FIG. 2 (g), after forming an interlayer insulating film 37 made of silicon oxide (SiO 2 ) using, for example, a plasma CVD method, the glass substrate 23 is annealed at 500 ° C. for 1 hour. Activate impurities. FIG. 2
As shown in (h), the source region 26 of each of the semiconductor layers 26 to 28 is formed on the interlayer insulating film 37 by a photolithography process.
d, 27b, 28d, drain regions 26e, 27c, 2
After forming a contact hole reaching 8e, tantalum (T
a), a metal film composed of a simple substance such as chromium (Cr), aluminum (Al), molybdenum (Mo), tungsten (W), copper (Cu) or a laminated film or an alloy film thereof, and a photolithography step Source electrode 3
8, 41, 43, and drain electrodes 40, 42, 44 integral with a signal line (not shown) are patterned, and an n-type p-Si TFT 12, a p-type p-Si TFT 13, an n-type p-type Forming the SiTFT 14;

【0021】この後、プラズマCVD法によりガラス基
板23の全面に窒化シリコン( SiNx)膜からなる保
護絶縁膜46更には有機樹脂絶縁膜47を成膜後、ソー
ス電極38に至るスルーホールを形成し、更にスパッタ
リング法によりITOを成膜後、フォトリソグラフィ工
程により画素電極11をパターン形成してアクティブマ
トリクス基板17を得る。
Thereafter, a protective insulating film 46 made of a silicon nitride (SiN x ) film and an organic resin insulating film 47 are formed on the entire surface of the glass substrate 23 by a plasma CVD method, and then a through hole reaching the source electrode 38 is formed. Then, after forming an ITO film by a sputtering method, the pixel electrode 11 is patterned by a photolithography process to obtain an active matrix substrate 17.

【0022】このようにして得られたアクティブマトリ
クス基板17及び対向基板18の全面に低温キュア型の
ポリイミドからなる配向膜20、21を印刷塗布し、両
基板17、18の対向時に配向軸が90°となるように
ラビング処理した後、両基板17、18を対向して組み
立ててセル化し、その間隙に液晶組成物22を注入し封
止し、更に両基板17、18のガラス基板23、48側
に偏光板52、53を貼り付けて液晶表示装置10を得
る。そしてこの様にしてなる液晶表示装置10を用いて
画像表示を行った所、点欠点やゴーストの無い良好な表
示品位を得られた。
Alignment films 20 and 21 made of a low-temperature curing type polyimide are applied by printing on the entire surface of the active matrix substrate 17 and the counter substrate 18 thus obtained. After the rubbing treatment, the two substrates 17 and 18 are assembled to face each other to form a cell, a liquid crystal composition 22 is injected into a gap therebetween and sealed, and the glass substrates 23 and 48 of the two substrates 17 and 18 are further sealed. The liquid crystal display device 10 is obtained by attaching the polarizing plates 52 and 53 to the sides. When an image was displayed using the liquid crystal display device 10 having such a configuration, a good display quality without any defects or ghosts was obtained.

【0023】この様に構成すれば、同一ガラス基板23
上に駆動回路素子であるp型p−SiTFT13、n型
p−SiTFT14を有する駆動回路一体型であるアク
ティブマトリクス基板17の表示領域にあってはゲート
絶縁膜30が300nmと厚く形成される事から、点欠
点の発生を抑え、良好な表示品位を得られる一方、駆動
回路領域にあってはゲート絶縁膜30が140nmと薄
膜化される事から、駆動回路素子の駆動低下を防止出来
ゴースト等の表示不良のない安定した駆動特性を得られ
高品位の表示を得られる。
With this configuration, the same glass substrate 23
The gate insulating film 30 is formed to be as thick as 300 nm in the display region of the active matrix substrate 17 which is a drive circuit integrated type having a p-type p-SiTFT 13 and an n-type p-SiTFT 14 as drive circuit elements thereon. In addition, while suppressing the occurrence of point defects and obtaining good display quality, in the drive circuit area, the gate insulating film 30 is made as thin as 140 nm, so that it is possible to prevent the drive of the drive circuit element from being lowered, and to prevent ghost and the like. Stable drive characteristics without display defects can be obtained, and high-quality display can be obtained.

【0024】尚本発明は上記実施の形態に限られるもの
でなく、その趣旨を変えない範囲での変更は可能であっ
て、例えば、ゲート絶縁膜の膜厚は、表示領域にあって
は点欠点を生じない程度に厚く、駆動回路領域にあって
は駆動機能を損なわない程度に薄ければ良いが、半導体
膜厚が50nmである上記実施の形態にて、駆動回路領
域におけるゲート絶縁膜の膜厚を140nmと一定に保
持し、表示領域におけるゲート絶縁膜の膜厚を変化させ
て、点欠点を起因とする不良発生率を調べた所、図3
の、点欠点起因の不良発生率の表示領域のゲート絶縁膜
厚依存性を示すグラフから明らかなように、表示領域の
ゲート絶縁膜の膜厚t1が、t1≧250nmであれ
ば、点欠点起因の不良発生率が1%以下であることが判
明する事から、表示領域のゲート絶縁膜の膜厚は、t1
≧(半導体膜厚+200nm)であることが望ましい。
The present invention is not limited to the above embodiment, and can be changed without departing from the spirit of the present invention. For example, the thickness of the gate insulating film may be different in the display area. It is sufficient that the gate insulating film is thick enough not to cause a drawback and thin enough not to impair the driving function in the drive circuit region. When the film thickness was kept constant at 140 nm and the film thickness of the gate insulating film in the display region was changed, the defect occurrence rate due to point defects was examined.
As is clear from the graph showing the dependency of the defect occurrence rate due to point defects on the thickness of the gate insulating film in the display region, if the thickness t1 of the gate insulating film in the display region is t1 ≧ 250 nm, Is found to be less than 1%, the thickness of the gate insulating film in the display region is t1
≧ (semiconductor film thickness + 200 nm) is desirable.

【0025】他方上記実施の形態にて、表示領域におけ
るゲート絶縁膜の膜厚を300nmと一定に保持し、駆
動回路領域におけるゲート絶縁膜の膜厚を変化させて、
駆動能力低下を起因とする不良発生率を調べた所、図4
の、駆動能力低下起因の不良発生率の駆動回路領域のゲ
ート絶縁膜厚依存性を示すグラフから明らかなように、
駆動回路領域のゲート絶縁膜の膜厚t2が、t2≦15
0nmであれば、駆動能力低下起因の不良発生率が1%
以下であることが判明する事から、駆動回路領域のゲー
ト絶縁膜の膜厚は、t2≦(半導体膜厚+100nm)
であることが望ましい。尚、半導体膜厚も50nmに限
定されない。
On the other hand, in the above embodiment, the thickness of the gate insulating film in the display region is kept constant at 300 nm, and the thickness of the gate insulating film in the drive circuit region is changed.
FIG. 4 shows the result of examining the defect occurrence rate caused by the decrease in the driving ability.
As is clear from the graph showing the gate insulating film thickness dependence of the drive circuit region on the failure occurrence rate due to the reduction in the driving capability,
When the thickness t2 of the gate insulating film in the drive circuit region is t2 ≦ 15
If it is 0 nm, the rate of occurrence of defects due to a decrease in driving capability is 1%.
From the following, it is found that the thickness of the gate insulating film in the drive circuit region is t2 ≦ (semiconductor film thickness + 100 nm)
It is desirable that Note that the semiconductor film thickness is not limited to 50 nm.

【0026】又ゲート絶縁膜の形成方法も任意であり、
例えば図5に示す第1の変形例のように、アクティブマ
トリクス基板70のガラス基板71上にアンダーコート
層72を介して半導体層73、74、76を形成し、更
にゲート絶縁膜77としてプラズマCVD法により全面
に膜厚140nmの酸化シリコン膜(SiO)77a
と膜厚160nmの窒化シリコン膜(SiN)77b
を積層後の駆動回路領域の薄膜化時に、両膜77a、7
7bのエッチングレートの違いを利用して、駆動回路領
域の窒化シリコン膜(SiN)77bのみをエッチン
グして、駆動回路領域にあっては膜厚140nm、表示
領域にあっては膜厚300nmのゲート絶縁膜77を形
成しても良い。このようにすれば駆動回路領域における
ゲート絶縁膜77の膜厚の再現性を容易且つ良好に確保
出来る。尚、この第1の変形例で、酸化シリコン膜(S
iO)77a形成後、表面洗浄した後に窒化シリコン
膜(SiN)77bを形成するようにしても良い。こ
の様にすれば表面洗浄のための工程が増加するものの、
表面に付着した成膜パーティクルを起因とする点欠点の
発生を抑えられ、より一層の表示品位の向上を図れる。
The method of forming the gate insulating film is also optional.
For example, as in a first modified example shown in FIG. 5, semiconductor layers 73, 74, and 76 are formed on a glass substrate 71 of an active matrix substrate 70 with an undercoat layer 72 interposed therebetween, and plasma CVD is performed as a gate insulating film 77. 140 nm thick silicon oxide film (SiO x ) 77a
And a silicon nitride film (SiN x ) 77b having a thickness of 160 nm
When the drive circuit region is thinned after lamination, both films 77a, 7a
Utilizing the difference in the etching rate of 7b, only the silicon nitride film (SiN x ) 77b in the drive circuit region is etched to have a thickness of 140 nm in the drive circuit region and 300 nm in the display region. A gate insulating film 77 may be formed. By doing so, reproducibility of the thickness of the gate insulating film 77 in the drive circuit region can be easily and satisfactorily secured. In this first modification, the silicon oxide film (S
After the formation of the iO x ) 77a, the surface may be cleaned and then the silicon nitride film (SiN x ) 77b may be formed. Although this increases the number of steps for cleaning the surface,
Occurrence of point defects caused by the film-forming particles attached to the surface can be suppressed, and the display quality can be further improved.

【0027】更に、駆動回路領域のゲート絶縁膜を薄膜
化するため、図6に示す第2の変形例のようにしても良
い。先ず図6(a)に示すようにアクティブマトリクス
基板80のガラス基板81上のアンダーコート層82を
窒化シリコン膜(SiN)のみで形成し、半導体層8
3、84、86形成後、膜厚160nmの酸化シリコン
(SiO)からなる1層目のゲート絶縁膜87aを形
成する。次に図6(b)に示すようにフォトリソグラフ
ィ工程により駆動回路領域にて1層目のゲート絶縁膜8
7aをエッチング除去する。この時表示領域のコンタク
トホールエリア88a、88bもエッチング除去する。
更に図6(c)に示すように膜厚140nmの酸化シリ
コン(SiO)からなる2層目のゲート絶縁膜87b
を形成して駆動回路領域にあっては膜厚140nm、表
示領域にあっては膜厚300nmのゲート絶縁膜87を
形成しても良い。このようにすればアンダーコート層8
2とゲート絶縁膜87との選択比が高いので、1層目の
ゲート絶縁膜87aを高精度にエッチング可能であり、
半導体層83、84、86及びアンダーコート層82間
の段差を増やすことなく駆動回路領域におけるゲート絶
縁膜87の膜厚の再現性を容易且つ良好に確保出来る。
尚、この第2の変形例で、1層目のゲート絶縁膜87a
形成後、表面洗浄した後に2層目のゲート絶縁膜87b
を形成するようにしても良い。この様にすれば表面洗浄
のための工程が増加するものの、表面に付着した成膜パ
ーティクルを起因とする点欠点の発生を抑えられ、より
一層の表示品位の向上を図れる。
Further, in order to reduce the thickness of the gate insulating film in the drive circuit region, a second modification shown in FIG. 6 may be used. First, as shown in FIG. 6A, an undercoat layer 82 on a glass substrate 81 of an active matrix substrate 80 is formed only of a silicon nitride film (SiN x ), and a semiconductor layer 8 is formed.
After the formation of 3, 84 and 86, a first-layer gate insulating film 87a made of silicon oxide (SiO x ) having a thickness of 160 nm is formed. Next, as shown in FIG. 6B, the first-layer gate insulating film 8 is formed in the drive circuit region by a photolithography process.
7a is removed by etching. At this time, the contact hole areas 88a and 88b in the display area are also etched away.
Further, as shown in FIG. 6C, a second-layer gate insulating film 87b made of silicon oxide (SiO x ) having a thickness of 140 nm.
To form a gate insulating film 87 having a thickness of 140 nm in the drive circuit region and a thickness of 300 nm in the display region. By doing so, the undercoat layer 8
Since the selectivity between the gate insulating film 87 and the gate insulating film 87 is high, the first-layer gate insulating film 87a can be etched with high accuracy.
The reproducibility of the thickness of the gate insulating film 87 in the drive circuit region can be easily and satisfactorily secured without increasing the step between the semiconductor layers 83, 84, 86 and the undercoat layer 82.
In the second modification, the first-layer gate insulating film 87a
After formation and surface cleaning, the second-layer gate insulating film 87b
May be formed. In this way, although the number of steps for cleaning the surface increases, it is possible to suppress the occurrence of point defects caused by the film-forming particles attached to the surface, and to further improve the display quality.

【0028】又p−Si膜は、a−Siをレーザアニー
ルするのではなく、固相成長法により製造しても良い。
更に半導体層のソース領域やドレイン領域の活性化方法
としてイオン打ち込み+レーザ活性化法を行っても良
い。ここでp−Si膜形成及びソース領域やドレイン領
域の活性化にレーザを用いる方法は、低温プロセスであ
ることから安価なガラス基板を用いることが可能であ
り、液晶表示装置の量産化に適している。
Further, the p-Si film may be manufactured by a solid phase growth method instead of laser annealing the a-Si.
Further, an ion implantation + laser activation method may be performed as a method for activating the source region and the drain region of the semiconductor layer. Here, the method of using a laser for forming the p-Si film and activating the source and drain regions is a low-temperature process, so that an inexpensive glass substrate can be used, which is suitable for mass production of a liquid crystal display device. I have.

【0029】[0029]

【発明の効果】以上説明したように本発明によれば、駆
動回路素子を同一基板上に一体的に有する駆動回路一体
型であるアクティブマトリクス基板のTFTのゲート絶
縁膜の膜厚を、表示領域にあっては厚く形成し、駆動回
路領域にあっては薄く形成することにより、画素部の点
欠点の発生を低減して良好な表示を得ると共に、駆動回
路素子の駆動特性の安定化を図り、駆動能力の低下によ
る表示不良を防止して表示品位の向上を得られる。
As described above, according to the present invention, the thickness of a gate insulating film of a TFT of a drive circuit integrated type active matrix substrate having drive circuit elements integrally on the same substrate is reduced. In this case, the thickness is made thicker, and in the drive circuit area, it is made thinner, thereby reducing the occurrence of point defects in the pixel portion to obtain a good display and stabilizing the drive characteristics of the drive circuit elements. In addition, it is possible to prevent a display defect due to a reduction in driving capability and to improve display quality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の液晶表示装置を示す一部
概略断面図である。
FIG. 1 is a partial schematic sectional view showing a liquid crystal display device according to an embodiment of the present invention.

【図2】本発明の実施の形態のアクティブマトリクス基
板上のp−SiTFTの製造工程を示す概略説明図であ
り、(a)はそのガラス基板上に半導体層をパターニン
グした状態を示す説明図、(b)はその半導体層酸化上
に酸化シリコン膜(SiOx)を一様に形成した状態を
示す説明図、(c)はその駆動回路領域のゲート絶縁膜
を薄膜化した状態を示す説明図、(d)はそのp型p−
SiTFTの半導体層にソース領域、ドレイン領域を形
成する状態を示す説明図、(e)はそのゲート電極をマ
スクとした低濃度のイオンドーピングを示す説明図、
(f)はそのn型p−SiTFTの半導体層にソース領
域、ドレイン領域を形成する状態を示す説明図、(g)
はその層間絶縁膜形成時を示す説明図、(h)はそのソ
ース電極、ドレイン電極を形成した状態を示す説明図で
ある。
FIG. 2 is a schematic explanatory view showing a manufacturing process of a p-Si TFT on an active matrix substrate according to an embodiment of the present invention; FIG. 2 (a) is an explanatory view showing a state in which a semiconductor layer is patterned on the glass substrate; (B) is an explanatory view showing a state in which a silicon oxide film (SiOx) is uniformly formed on the semiconductor layer oxidation, (c) is an explanatory view showing a state in which the gate insulating film in the drive circuit region is thinned, (D) shows the p-type p-
Explanatory diagram showing a state in which a source region and a drain region are formed in a semiconductor layer of a SiTFT, (e) is an explanatory diagram showing low-concentration ion doping using the gate electrode as a mask,
(F) is an explanatory view showing a state in which a source region and a drain region are formed in the semiconductor layer of the n-type p-Si TFT, and (g).
FIG. 3 is an explanatory view showing the state when the interlayer insulating film is formed, and FIG.

【図3】本発明の実施の形態の表示領域のゲート絶縁膜
の厚さを変化させた時の結果である、点欠点起因の不良
発生率の表示領域のゲート絶縁膜厚依存性を示すグラフ
である。
FIG. 3 is a graph showing the dependency of the rate of occurrence of defects due to point defects on the gate insulating film thickness of the display region, as a result of changing the thickness of the gate insulating film in the display region according to the embodiment of the present invention. It is.

【図4】本発明の実施の形態の駆動回路領域のゲート絶
縁膜の厚さを変化させた時の結果である、駆動能力低下
起因の不良発生率の駆動回路領域のゲート絶縁膜厚依存
性を示すグラフである。
FIG. 4 is a graph showing a dependency of a defect occurrence rate due to a reduction in driving capability on a gate insulating film thickness of a driving circuit region, which is a result of changing a thickness of the gate insulating film in the driving circuit region according to the embodiment of the present invention. FIG.

【図5】本発明の第1の変形例のアクティブマトリクス
基板上に膜厚のことなるゲート絶縁膜を形成した状態を
示す概略説明図である。
FIG. 5 is a schematic explanatory view showing a state in which gate insulating films having different thicknesses are formed on an active matrix substrate according to a first modification of the present invention.

【図6】本発明の第2の変形例のアクティブマトリクス
基板上のゲート絶縁膜の成膜工程を示す概略説明図であ
り、(a)はそのガラス基板上の半導体層上に1層目の
ゲート絶縁膜を形成した状態を示す説明図、(b)はそ
の駆動回路領域の1層目のゲート絶縁膜を除去した状態
を示す説明図、(c)はその2層目のゲート絶縁膜を形
成した状態を示す説明図である。
FIG. 6 is a schematic explanatory view showing a step of forming a gate insulating film on an active matrix substrate according to a second modification of the present invention, and FIG. 6 (a) shows a first layer on a semiconductor layer on the glass substrate; Explanatory drawing showing a state in which a gate insulating film is formed, (b) is an explanatory view showing a state in which a first-layer gate insulating film in a drive circuit region is removed, and (c) is a drawing showing the second-layer gate insulating film. It is explanatory drawing which shows the state which formed.

【符号の説明】[Explanation of symbols]

10…液晶表示装置 11…画素電極 12… n型p−SiTFT 13…p型p−SiTFT 14… n型p−SiTFT 17…アクティブマトリクス基板 18…対向基板 22…液晶組成物 23…ガラス基板 24…アンダーコート層 26、27、28…半導体層 30…ゲート絶縁膜 32、33、34…ゲート電極 DESCRIPTION OF SYMBOLS 10 ... Liquid crystal display device 11 ... Pixel electrode 12 ... n-type p-SiTFT 13 ... p-type p-SiTFT 14 ... n-type p-SiTFT 17 ... Active matrix substrate 18 ... Counter substrate 22 ... Liquid crystal composition 23 ... Glass substrate 24 ... Undercoat layer 26, 27, 28 Semiconductor layer 30 Gate insulating film 32, 33, 34 Gate electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 29/78 617U Fターム(参考) 2H092 GA59 JA35 JB57 KA04 KA07 KA10 KA12 KA18 KB15 KB24 KB25 MA03 MA13 MA17 MA27 MA30 NA13 NA21 5C094 AA42 AA43 AA55 BA03 BA43 CA19 DA09 DA15 EA03 EA04 EA07 GB01 JA08 5F110 AA17 BB01 BB02 BB04 CC02 DD02 DD13 DD14 DD17 DD24 EE02 EE03 EE04 EE06 EE14 FF02 FF03 FF09 FF30 GG02 GG13 GG25 GG45 HJ01 HJ12 HJ13 HJ23 HL02 HL03 HL04 HL06 HL11 HM15 NN03 NN23 NN24 NN35 NN78 PP03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 29/78 617U F term (Reference) 2H092 GA59 JA35 JB57 KA04 KA07 KA10 KA12 KA18 KB15 KB24 KB25 MA03 MA13 MA17 MA27 MA30 NA13 NA21 5C094 AA42 AA43 AA55 BA03 BA43 CA19 DA09 DA15 EA03 EA04 EA07 GB01 JA08 5F110 AA17 BB01 BB02 BB04 CC02 DD02 DD13 DD14 DD17 DD24 EE02 EE03 EE04 EE06 EE14 FF02 FF03 J03 HL09 GG03 GG02 NN03 NN23 NN24 NN35 NN78 PP03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 表示領域及び駆動回路領域を一体支持す
る絶縁性基板と、この絶縁性基板上の前記表示領域及び
前記駆動回路領域とに形成されチャネル領域及びこのチ
ャネル領域を挟んで対向するソース領域及びドレイン領
域を有する半導体層及び、この半導体層を覆うゲート絶
縁膜並びに、このゲート絶縁膜上に前記半導体層の前記
チャネル領域に対向して配置されるゲート電極からなる
薄膜トランジスタと、前記表示領域にてマトリクス状に
配列され前記薄膜トランジスタのソース領域に接続され
る画素電極とを具備し、前記ゲート絶縁膜は、前記駆動
回路領域の膜厚より前記表示領域の膜厚が厚く形成され
る事を特徴とするアクティブマトリクス基板。
An insulating substrate integrally supporting a display region and a driving circuit region, a channel region formed in the display region and the driving circuit region on the insulating substrate, and a source opposed to the channel region with the channel region interposed therebetween. A semiconductor layer having a region and a drain region, a gate insulating film covering the semiconductor layer, and a thin film transistor including a gate electrode disposed on the gate insulating film so as to face the channel region of the semiconductor layer; And a pixel electrode arranged in a matrix and connected to the source region of the thin film transistor, wherein the gate insulating film is formed such that the display region is thicker than the drive circuit region. An active matrix substrate.
【請求項2】 薄膜トランジスタが、表示領域に配置さ
れて画素電極を駆動するスイッチング素子と、駆動回路
領域に配置されて前記スイッチング素子に表示信号を供
給する駆動回路素子とからなることを特徴とする請求項
1に記載のアクティブマトリクス基板。
2. A thin film transistor comprising: a switching element arranged in a display area to drive a pixel electrode; and a driving circuit element arranged in a driving circuit area to supply a display signal to the switching element. The active matrix substrate according to claim 1.
【請求項3】 絶縁性基板上の表示領域及び駆動回路領
域とに、それぞれ半導体層をパターン形成する工程と、
前記半導体層上にゲート絶縁膜を形成する工程と、前記
ゲート絶縁膜上にゲート電極を形成する工程とを有する
アクティブマトリクス基板の製造方法において、前記ゲ
ート絶縁膜を形成する工程は、前記表示領域及び前記駆
動回路領域ともに同じ厚さの絶縁膜を形成し、前記駆動
回路領域の前記絶縁膜を薄膜化する工程を有することを
特徴とするアクティブマトリクス基板の製造方法。
A step of patterning a semiconductor layer in each of a display area and a drive circuit area on the insulating substrate;
In a method for manufacturing an active matrix substrate, comprising a step of forming a gate insulating film on the semiconductor layer and a step of forming a gate electrode on the gate insulating film, the step of forming the gate insulating film includes the step of: Forming an insulating film having the same thickness in both the drive circuit region and the drive circuit region, and reducing the thickness of the insulating film in the drive circuit region.
【請求項4】 表示領域におけるゲート絶縁膜が複数層
からなり、駆動回路領域におけるゲート絶縁膜が前記複
数層より少ない層からなることを特徴とする請求項1又
は請求項2のいずれかに記載のアクティブマトリクス基
板。
4. The device according to claim 1, wherein the gate insulating film in the display region has a plurality of layers, and the gate insulating film in the drive circuit region has a smaller number of layers than the plurality of layers. Active matrix substrate.
【請求項5】 ゲート絶縁膜を形成する工程は、表示領
域及び駆動回路領域ともに第1絶縁膜及びこの第1絶縁
膜とエッチングレートの異なる第2絶縁膜を形成し、前
記駆動回路領域の前記第2絶縁膜をエッチング除去する
工程を有することを特徴とする請求項3に記載のアクテ
ィブマトリクス基板の製造方法。
5. The step of forming a gate insulating film includes: forming a first insulating film and a second insulating film having an etching rate different from that of the first insulating film in both the display region and the drive circuit region; 4. The method according to claim 3, further comprising a step of etching and removing the second insulating film.
【請求項6】 絶縁性基板上の表示領域及び駆動回路領
域とに、それぞれ半導体層をパターン形成する工程と、
前記半導体層上にゲート絶縁膜を形成する工程と、前記
ゲート絶縁膜上にゲート電極を形成する工程とを有する
アクティブマトリクス基板の製造方法において、前記ゲ
ート絶縁膜を形成する工程は、前記表示領域および前記
駆動回路領域ともに第1絶縁膜を形成し、前記駆動回路
領域の前記第1絶縁膜を除去し、更に、前記表示領域お
よび前記駆動回路領域に第2絶縁膜を形成する工程とを
有することを特徴とするアクティブマトリクス基板の製
造方法。
6. A step of patterning a semiconductor layer in each of a display region and a drive circuit region on an insulating substrate;
In a method for manufacturing an active matrix substrate, comprising a step of forming a gate insulating film on the semiconductor layer and a step of forming a gate electrode on the gate insulating film, the step of forming the gate insulating film includes the step of: Forming a first insulating film in both the driving circuit region, removing the first insulating film in the driving circuit region, and forming a second insulating film in the display region and the driving circuit region. A method for manufacturing an active matrix substrate, comprising:
【請求項7】 表示領域におけるゲート絶縁膜の膜厚t
1が、 t1≧(半導体膜厚+200nm) であり、駆動回路領域におけるゲート絶縁膜の膜厚t2
が、 t2≦(半導体膜厚+100nm) であることを特徴とする請求項1又は請求項2のいずれ
かに記載のアクティブマトリクス基板。
7. The thickness t of a gate insulating film in a display region
1 is t1 ≧ (semiconductor film thickness + 200 nm), and the film thickness t2 of the gate insulating film in the drive circuit region
3. The active matrix substrate according to claim 1, wherein t2 ≦ (semiconductor film thickness + 100 nm).
JP11117977A 1999-04-26 1999-04-26 Active matrix substrate and production of active matrix substrate Pending JP2000305112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11117977A JP2000305112A (en) 1999-04-26 1999-04-26 Active matrix substrate and production of active matrix substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11117977A JP2000305112A (en) 1999-04-26 1999-04-26 Active matrix substrate and production of active matrix substrate

Publications (1)

Publication Number Publication Date
JP2000305112A true JP2000305112A (en) 2000-11-02

Family

ID=14724972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11117977A Pending JP2000305112A (en) 1999-04-26 1999-04-26 Active matrix substrate and production of active matrix substrate

Country Status (1)

Country Link
JP (1) JP2000305112A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700495B2 (en) 2001-12-20 2010-04-20 Sharp Kabushiki Kaisha Thin film transistor device and method of manufacturing the same, and liquid crystal display device
KR100975776B1 (en) * 2002-02-13 2010-08-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700495B2 (en) 2001-12-20 2010-04-20 Sharp Kabushiki Kaisha Thin film transistor device and method of manufacturing the same, and liquid crystal display device
KR100975776B1 (en) * 2002-02-13 2010-08-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting device

Similar Documents

Publication Publication Date Title
US6097453A (en) Display apparatus and fabrication process thereof
US7101807B2 (en) Method of fabricating semiconductor device
US20020182833A1 (en) Method of manufacturing an array substrate having drive integrated circuits
JP2001217424A (en) Thin film transistor and liquid crystal display using the same
TW474023B (en) Thin film transistor process of liquid crystal display
JPH1195256A (en) Active matrix substrate
JP2000077665A (en) Thin-film transistor device and its manufacture
JPH09293876A (en) Semiconductor element substrate, manufacture thereof, and semiconductor device using its substrate
US20130087802A1 (en) Thin film transistor, fabrication method therefor, and display device
JP2003007719A (en) Thin film transistor and display using the same
JPH1079514A (en) Method for manufacturing active matrix board
JP2000332254A (en) Thin-film transistor device
JP2000305112A (en) Active matrix substrate and production of active matrix substrate
JPH06169086A (en) Polycrystalline silicon thin film transistor
JPH07263698A (en) Thin film transistor and its manufacture
JP2001284600A (en) Thin-film transistor and manufacturing method thereof
JP3776183B2 (en) Method for manufacturing insulated gate field effect transistor
JP2000200763A (en) Semiconductor device and its manufacture
JPH07115205A (en) Manufacture of polycrystalline si tft
JPH10209452A (en) Thin film transistor and its manufacture
JP3749328B2 (en) Thin film transistor manufacturing method and liquid crystal display manufacturing method
JP3599513B2 (en) Method for manufacturing thin film transistor
JP2001111054A (en) Manufacturing method of thin-film transistor device
JP2002196700A (en) Semiconductor device and manufacturing method therefor, liquid crystal display device using the same, and electroluminescent display device
JPH10177968A (en) Thin film device, forming method thereof, and manufacturing method of this film transistor and liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060412

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060412

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317