JP2000332254A - Thin-film transistor device - Google Patents

Thin-film transistor device

Info

Publication number
JP2000332254A
JP2000332254A JP14154199A JP14154199A JP2000332254A JP 2000332254 A JP2000332254 A JP 2000332254A JP 14154199 A JP14154199 A JP 14154199A JP 14154199 A JP14154199 A JP 14154199A JP 2000332254 A JP2000332254 A JP 2000332254A
Authority
JP
Japan
Prior art keywords
film
semiconductor layer
region
gate insulating
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14154199A
Other languages
Japanese (ja)
Inventor
Tsutomu Uemoto
勉 上本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14154199A priority Critical patent/JP2000332254A/en
Publication of JP2000332254A publication Critical patent/JP2000332254A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable manufacture of a liquid-crystal display device, having satisfactory display quality with a high manufacturing yield by preventing poor display characteristics due to degradation of voltage-retaining characteristics of a pixel electrode or circuit leakage in using a TFT in the liquid-crystal display device, wherein the current along side surface of a semiconductor layer brings adverse effects to the characteristics of the TFT. SOLUTION: In a thin-film transistor device, the side surfaces of semiconductor layers 21, 22 are made amorphous and then oxidized to form underlying regions 23, 24 underneath the gate insulating film 27, and further a silicon oxide(SiO2) film 26, which is the surface region of the gate insulating film 27, is formed on the semiconductor layers 21, 22. Thereby, the film thickness on the side surfaces of the semiconductor layers 21, 22 is larger than the film thickness of the gate insulating film 27. As a consequence, the characteristics of an n-type p-SiTFT 16 and of a p-type p-SiTFT are stabilized, and lowering of the yield due to poor display characteristics of the liquid-crystal display device is prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ゲート絶縁膜を介
して半導体層上にゲート電極を有するトップゲート型の
薄膜トランジスタ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a top gate type thin film transistor device having a gate electrode on a semiconductor layer via a gate insulating film.

【0002】[0002]

【従来の技術】近年、多結晶シリコン(以下p−Siと
略称する。)膜や非結晶シリコン(以下a−Siと略称
する。)膜を半導体層として用いてなる薄膜トランジス
タ装置(以下TFTと略称する。)を、画素電極のスイ
ッチング素子とするアクティブマトリクス型液晶表示装
置の実用化が図られ、中でもp−Siを半導体層として
用いるp−SiTFTは、移動度が大きく良好な半導体
特性を有することから、上記画素電極のスイッチング素
子を動作させるための駆動回路素子としての実用化も図
られている。
2. Description of the Related Art In recent years, a thin film transistor device (hereinafter abbreviated as TFT) using a polycrystalline silicon (hereinafter abbreviated as p-Si) film or an amorphous silicon (hereinafter abbreviated as a-Si) film as a semiconductor layer. The active matrix type liquid crystal display device, which uses p-Si as a semiconductor layer, has a high mobility and good semiconductor characteristics. Accordingly, practical use as a drive circuit element for operating the switching element of the pixel electrode has been attempted.

【0003】このようなp−SiTFTの構造として
は、ゲート電極をマスクにしてp−Si膜に自己整合的
に不純物を注入することによりソース領域及びドレイン
領域を高い製造精度で形成するよう、従来、図9乃至図
11に示すトップゲート型が多く採用されている。即ち
アンダーコート層1aを介しガラス基板1上にp−Si
膜2を島状に形成後、このp−Si膜2を酸化シリコン
(SiO2)からなるゲート絶縁膜3で被覆し、更にゲ
ート絶縁膜3上にゲート電極4を配線し、ゲート電極を
マスクにしてp−Si膜2に自己整合的に不純物を注入
してソース領域6及びドレイン領域7を形成している。
そしてこの後更に層間絶縁膜8を形成後、層間絶縁膜8
上に信号線10、11を配線し、コンタクトホールを介
しソース領域6あるいはドレイン領域7と接続し、p−
SiTFT12を形成していた。
The structure of such a p-Si TFT is such that a source region and a drain region are formed with high manufacturing accuracy by implanting impurities into a p-Si film in a self-aligned manner using a gate electrode as a mask. The top gate type shown in FIGS. 9 to 11 is often used. That is, p-Si is formed on the glass substrate 1 through the undercoat layer 1a.
After the film 2 is formed in an island shape, the p-Si film 2 is covered with a gate insulating film 3 made of silicon oxide (SiO 2 ), a gate electrode 4 is formed on the gate insulating film 3, and the gate electrode is masked. Then, an impurity is implanted into the p-Si film 2 in a self-aligned manner to form a source region 6 and a drain region 7.
Then, after further forming the interlayer insulating film 8, the interlayer insulating film 8 is formed.
The signal lines 10 and 11 are wired thereon, connected to the source region 6 or the drain region 7 via the contact holes, and the p-
The SiTFT 12 was formed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記トッ
プゲート型のp−SiTFT12にあっては、ゲート絶
縁膜である酸化シリコン(SiO2)が、p−Si膜2
の側面で薄膜化されてしまう。しかも島状のp−Si膜
2の側面2a、2b上方にもゲート電極4が配線される
ことから、 p−SiTFT12はp−Si膜2の側面
2a、2bの影響を受け、その特性は、p−Si膜2の
上面を流れる電流の他にp−Si膜2の側面2a、2b
を流れる電流が重ね合わさった構造となり、この側面2
a、2bを流れる電流は、特に低電圧時の p−SiT
FT12の電流特性に影響を与えてしまう。
In the p-SiTFT12 of however the top gate type [0005] has a gate insulating film is a silicon oxide (SiO 2), p-Si film 2
The film becomes thin on the side surface. Moreover, since the gate electrode 4 is also wired above the side surfaces 2a and 2b of the island-shaped p-Si film 2, the p-Si TFT 12 is affected by the side surfaces 2a and 2b of the p-Si film 2, and its characteristics are as follows. In addition to the current flowing on the upper surface of the p-Si film 2, the side surfaces 2a, 2b of the p-Si film 2
The current flowing through the side is superposed, and this side 2
a, 2b are particularly low current p-SiT
The current characteristics of the FT 12 are affected.

【0005】従ってこのようなp−SiTFT12を液
晶表示装置の画素電極のスイッチング素子に用いるとそ
の電圧保持特性を低下させる一方、駆動回路素子に用い
ると回路のリーク原因となり、電流の立ち上がりが遅
く、均一な表示が成されず、ひいては画像上に斑点を生
じてしまい表示品位を著しく低下し、表示不良を生じる
という問題を有していた。
Therefore, when such a p-Si TFT 12 is used as a switching element of a pixel electrode of a liquid crystal display device, its voltage holding characteristic is reduced. On the other hand, when it is used as a driving circuit element, it causes a circuit leak, and the rise of current is slow. There has been a problem that uniform display is not achieved, and spots are formed on an image, resulting in remarkable deterioration of display quality and poor display.

【0006】そこで本発明は上記課題を除去するもの
で、トップゲート型のp−SiTFTにおいてp−Si
膜の側面の電流による影響を低減し、特性の安定化を図
り、p−SiTFTを液晶表示装置に用いた場合画素電
極の電圧保持特性を向上し、あるいは駆動回路素子のリ
ークを防止して、良好な表示品位を有する液晶表示装置
を高い歩留まりで得られる、薄膜トランジスタ装置を提
供することを目的とする。
Accordingly, the present invention has been made to solve the above-mentioned problem, and a p-Si TFT in a top gate type p-Si TFT has been proposed.
The effect of the current on the side surface of the film is reduced, the characteristics are stabilized, and when a p-Si TFT is used in a liquid crystal display device, the voltage holding characteristic of the pixel electrode is improved, or the leakage of the driving circuit element is prevented. It is an object of the present invention to provide a thin film transistor device capable of obtaining a liquid crystal display device having good display quality at a high yield.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するための手段として、絶縁性基板と、この絶縁性基板
上に島状に形成されチャネル領域及びこのチャネル領域
を挟みソース領域並びにドレイン領域を有する半導体層
と、この半導体層側面に被着する膜厚が前記半導体層上
面に被着する膜厚より厚くなるよう前記半導体層を被覆
するゲート絶縁膜と、このゲート絶縁膜上の前記チャネ
ル領域に対応する領域に形成されるゲート電極とを設け
るものである。
In order to solve the above-mentioned problems, the present invention provides an insulating substrate, a channel region formed on the insulating substrate in an island shape, and a source region and a drain region sandwiching the channel region. A semiconductor layer having a region, a gate insulating film covering the semiconductor layer such that a film thickness applied to a side surface of the semiconductor layer is thicker than a film thickness applied to an upper surface of the semiconductor layer, and And a gate electrode formed in a region corresponding to the channel region.

【0008】上記構成により、p−Si膜の側面の絶縁
性を向上する事により、安定した半導体特性を有するp
−SiTFTを得ることが出来る。従ってこのようなp
−SiTFTを液晶表示装置に用いれば、画素電極は表
示画像を良好に保持可能となり、又駆動回路素子にあっ
ては安定した駆動特性を得られることから表示品位が向
上され、表示不良による歩留まりの低下の防止により製
造コストの低減も可能となる。
With the above structure, the insulating property on the side surface of the p-Si film is improved, so that the p-Si film has stable semiconductor characteristics.
-Si TFT can be obtained. Therefore, such a p
-If the SiTFT is used in a liquid crystal display device, the pixel electrode can hold a display image well, and in the case of a drive circuit element, stable drive characteristics can be obtained, so that display quality can be improved and yield due to display failure can be reduced. Prevention of the reduction also makes it possible to reduce the manufacturing cost.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を図1
乃至図5を参照して説明する。図1は例えば液晶表示装
置(図示せず)の画素電極(図示せず)を駆動するn型
p−SiTFT16及び、駆動回路として用いられるp
型p−SiTFT17を示す。n型p−SiTFT16
及び、p型p−SiTFT17は共にトップゲート型で
あり、絶縁性基板であるガラス基板18上には、膜厚3
00nmの窒化シリコン(SiN)からなるアンダー
コート層20を介し膜厚50nmのn型p−SiTFT
16の半導体層21及びp型p−SiTFT17の半導
体層22が島状にパターン形成されている。
FIG. 1 is a block diagram showing an embodiment of the present invention.
This will be described with reference to FIGS. FIG. 1 shows, for example, an n-type p-Si TFT 16 for driving a pixel electrode (not shown) of a liquid crystal display device (not shown) and a p-type TFT 16 used as a drive circuit.
3 shows a type p-Si TFT 17. n-type p-Si TFT16
Further, the p-type p-Si TFT 17 is a top gate type, and a film thickness of 3 is formed on a glass substrate 18 which is an insulating substrate.
N-type p-Si TFT having a thickness of 50 nm through an undercoat layer 20 made of 00 nm silicon nitride (SiN x )
Sixteen semiconductor layers 21 and a semiconductor layer 22 of the p-type p-Si TFT 17 are patterned in an island shape.

【0010】半導体層21は、チャネル領域21a、チ
ャネル領域21aに隣接しリン(P +)イオンを低濃度
でドーピングしたLDD(Lightly Doped
Drain)領域21b、21c、更にLDD領域2
1b、21cに隣接しリン(P+)イオンを高濃度でド
ーピングしてなるソース領域21d、ドレイン領域21
eから成っている。半導体層22は、チャネル領域22
a及びホウ素(B+)イオンを高濃度でドーピングして
なるソース領域22b、ドレイン領域22cから成って
いる。
The semiconductor layer 21 includes a channel region 21a and a channel region 21a.
Phosphorus (P) adjacent to the channel region 21a. +) Low concentration of ions
LDD (Lightly Doped)
 Drain) regions 21b and 21c, and LDD region 2
Phosphorus (P) adjacent to 1b, 21c+) Doping ions at high concentration
Source region 21d and drain region 21
e. The semiconductor layer 22 includes a channel region 22
a and boron (B+) Doping ions at high concentration
Source region 22b and drain region 22c
I have.

【0011】各半導体層21、22の側面にはアモルフ
ァス化されたp−Siを酸化してなる下地領域23、2
4が隣接され、更に半導体層21、22は、その上から
表面領域である膜厚100nmの酸化シリコン(SiO
2)膜26により被覆される。この酸化シリコン(Si
2)膜26は、下地領域23、24と共にゲート絶縁
膜27を構成している。即ちゲート絶縁膜27は、半導
体層21、22の上面にあっては、酸化シリコン(Si
2)膜26のみからなり、その膜厚は100nmとさ
れ、半導体層21、22の側面にあっては、下地領域2
3、24と酸化シリコン(SiO2)膜26とからな
り、その膜厚は500nmとされる。
On the side surfaces of the semiconductor layers 21 and 22, underlying regions 23 and 2 formed by oxidizing amorphous p-Si are formed.
4 are adjacent to each other, and the semiconductor layers 21 and 22 have a surface region of 100 nm thick silicon oxide (SiO 2) from above.
2 ) Coated with film 26. This silicon oxide (Si
The O 2 ) film 26 constitutes a gate insulating film 27 together with the underlying regions 23 and 24. That is, the gate insulating film 27 is formed on the upper surfaces of the semiconductor layers 21 and 22 by silicon oxide (Si).
O 2) film made 26 alone, its thickness is set to 100 nm, In the side surface of the semiconductor layer 21, underlying region 2
3, 24 and a silicon oxide (SiO 2 ) film 26 having a thickness of 500 nm.

【0012】又両半導体層21、22上のチャネル領域
21a、22aに対応する位置には、ゲート絶縁膜27
を介しモリブデン(Mo)及びタングステン(W)の合
金である金属膜からなりゲート線(図示せず)と一体的
に形成される厚さ250nmのゲート電極28、30が
形成され、更に酸化シリコン膜( SiO2)からなる層
間絶縁膜46にて被覆されている。層間絶縁膜46及び
ゲート絶縁膜27にはコンタクトホールが形成され、こ
のコンタクトホールを介して、モリブデン(Mo)、ア
ルミニウム( Al)、モリブデン(Mo)を順次50
nm、400nm、50nm積層してなりソース領域2
1d、22bに接続されるソース電極47、48及び、
ドレイン領域21e、22cに接続されるドレイン電極
50、51が形成されている。
A gate insulating film 27 is formed on the semiconductor layers 21 and 22 at a position corresponding to the channel regions 21a and 22a.
The gate electrodes 28 and 30 having a thickness of 250 nm formed of a metal film which is an alloy of molybdenum (Mo) and tungsten (W) and formed integrally with a gate line (not shown) are formed through the silicon oxide film. It is covered with an interlayer insulating film 46 made of (SiO 2 ). Contact holes are formed in the interlayer insulating film 46 and the gate insulating film 27, and molybdenum (Mo), aluminum (Al), and molybdenum (Mo) are sequentially deposited through the contact holes.
nm, 400 nm, and 50 nm stacked source region 2
Source electrodes 47 and 48 connected to 1d and 22b;
Drain electrodes 50 and 51 connected to the drain regions 21e and 22c are formed.

【0013】次に図2及び図3を参照してn型p−Si
TFT16及び、p型p−SiTFT17の製造方法に
ついて述べる。先ず図2(a)に示す様に、ガラス基板
18上に窒化シリコン(SiN)膜からなるアンダー
コート層20及びa−Si層32をプラズマCVD(C
hemical Vapour Depositio
n)法により夫々300nm、50nm成膜する。その
後600℃で1時間アニールし、a−Si層32中の水
素濃度をおよそ0.1atomic%以下になるよう脱水素を
行い、図2(b)に示す様に、ボロンイオン(B)を
1E12/cm2程度イオンドーピングし、更にELA
(エキシマレーザアニール)法によりXeClエキシマ
レーザを照射してa−Si層32を瞬時溶融し、多結晶
化してp−Si層33を形成する。
Next, referring to FIGS. 2 and 3, n-type p-Si
A method for manufacturing the TFT 16 and the p-type p-Si TFT 17 will be described. First, as shown in FIG. 2A, an undercoat layer 20 made of a silicon nitride (SiN x ) film and an a-Si layer 32 are formed on a glass substrate 18 by plasma CVD (C).
chemical Vapor Deposition
Films of 300 nm and 50 nm are formed by the method n). Thereafter, annealing is performed at 600 ° C. for 1 hour, dehydrogenation is performed so that the hydrogen concentration in the a-Si layer 32 becomes approximately 0.1 atomic% or less, and boron ions (B + ) are formed as shown in FIG. Ion doping of about 1E12 / cm 2 and ELA
The a-Si layer 32 is instantaneously melted by irradiating a XeCl excimer laser by an (excimer laser annealing) method, and polycrystallized to form a p-Si layer 33.

【0014】次に図2(c)に示す様に、p−Si層3
3上にPEP(Photo Engraving Pr
ocess)法によりフォトレジスト36、37をパタ
ーン形成し、このフォトレジスト36、37をマスクに
してp−Si層33を島状にエッチング加工して半導体
層21、22をパターン形成する。この後図2(d)に
示す様に、アッシングによりフォトレジスト36、37
の周囲を後退させ、半導体層21、22の側面にアルゴ
ンイオン(Ar)を10keVでイオン注入して、半導
体層21、22側面をアモルファス化する。これによ
り、次の工程の酸素(O2)プラズマによる側面の酸化
時に、表面のみでなく全領域を酸化可能とする。
Next, as shown in FIG. 2C, the p-Si layer 3
PEP (Photo Engraving Pr)
The photoresists 36 and 37 are pattern-formed by the process, and the semiconductor layers 21 and 22 are patterned by etching the p-Si layer 33 into an island shape using the photoresists 36 and 37 as a mask. Thereafter, as shown in FIG. 2D, photoresists 36 and 37 are formed by ashing.
Is receded, and argon ions (Ar) are implanted into the side surfaces of the semiconductor layers 21 and 22 at 10 keV to make the side surfaces of the semiconductor layers 21 and 22 amorphous. Thus, when the side surface is oxidized by the oxygen (O 2 ) plasma in the next step, not only the surface but also the entire region can be oxidized.

【0015】次いでフォトレジスト36、37を除去し
た後アモルファス化した半導体層21、22側面の全領
域を酸素(O2)プラズマで酸化して図2(e)に示す
ように、下地領域23、24を形成する。更に図2
(f)に示すように、下地領域23、24を形成された
半導体層21、22上に、TEOS(tetra et
hyl ortho silicate )を原料とし
て用いたプラズマCVD法により、酸化シリコン(Si
2)膜26を100nm程度成長させてゲート絶縁膜
27を形成する。
Next, after removing the photoresists 36 and 37, the entire regions on the side surfaces of the semiconductor layers 21 and 22 which have been made amorphous are oxidized by oxygen (O 2 ) plasma to form the underlying regions 23 and 22 as shown in FIG. 24 are formed. FIG. 2
As shown in FIG. 1F, TEOS (tetra et al.) Is formed on the semiconductor layers 21 and 22 on which the underlying regions 23 and 24 are formed.
silicon oxide (Si) by a plasma CVD method using hydrogen orthosilicate as a raw material.
An O 2 ) film 26 is grown to a thickness of about 100 nm to form a gate insulating film 27.

【0016】続いて図2(g)に示す様に、スパッタリ
ング法によりモリブデン(Mo)及びタングステン
(W)の合金からなる金属膜40を250nmの膜厚に
形成後、PEP法により形成されたフォトレジスト(図
示せず)をマスクに金属膜40をエッチングしてゲート
電極28、30をパターン形成し、次いで図2(h)に
示すようにリンイオン(P)を、ドーズ量3E13/
cm2、加圧電圧80keVで低濃度イオンドーピングす
る。
Subsequently, as shown in FIG. 2 (g), a metal film 40 made of an alloy of molybdenum (Mo) and tungsten (W) is formed to a thickness of 250 nm by a sputtering method, and then the photo film formed by the PEP method is formed. Using a resist (not shown) as a mask, the metal film 40 is etched to pattern the gate electrodes 28 and 30, and then, as shown in FIG. 2H, phosphorus ions (P + ) are added at a dose of 3E13 /
Low concentration ion doping is performed at a pressure of 80 keV and cm 2 .

【0017】次にレジストを塗布後PEP法により、p
型p−SiTFT17全体を被覆するフォトレジスト4
1及びn型p−SiTFT16のゲート電極28よりわ
ずかに大きい領域を被覆するフォトレジスト42をパタ
ーン形成後、図3(a)に示すようにホスフィン(PH
)ガスを用いリンイオン(P)を、ドーズ量2E1
5/cm2、加圧電圧70keVで高濃度イオンドーピン
グする。これによりn型p−SiTFT16の半導体層
のイオン高濃度のソース領域21d及びドレイン領域2
1eとチャネル領域21aとの間には、イオン低濃度の
LDD領域21b、21cが形成される。このLDD領
域21b、21cは、リーク電流を低減し、n型p−S
iTFT16の劣化を防止する。
Next, after a resist is applied, p
Photoresist 4 covering the whole of the p-Si TFT 17
After patterning a photoresist 42 covering an area slightly larger than the gate electrode 28 of the 1-type and n-type p-Si TFTs 16, as shown in FIG.
3 ) Phosphorus ions (P + ) are added using gas and the dose amount is 2E1.
High-concentration ion doping is performed at 5 / cm 2 and a pressurization voltage of 70 keV. As a result, the source region 21d and the drain region 2 having a high ion concentration in the semiconductor layer of the n-type p-Si TFT 16
The low ion concentration LDD regions 21b and 21c are formed between 1e and the channel region 21a. The LDD regions 21b and 21c reduce the leak current and provide n-type p-S
Deterioration of the iTFT 16 is prevented.

【0018】続いてアッシング法によりフォトレジスト
41、42を除去した後、再度レジストを塗布後PEP
法により、n型p−SiTFT16全体を被覆するフォ
トレジスト43をパターン形成し、図3(b)に示すよ
うにボロンイオン(B)を、ドーズ量2E1015/cm
2、加圧電圧70keVで高濃度イオンドーピングす
る。その後アッシング法によりフォトレジスト43を除
去した後、図3(c)に示すようにドーピングしたイオ
ンを活性化させるためにガラス基板18を500℃で1
時間アニールする。
Subsequently, after removing the photoresists 41 and 42 by an ashing method, the resist is applied again and then PEP is applied.
A photoresist 43 covering the entire n-type p-Si TFT 16 is formed by a patterning method, and boron ions (B + ) are implanted at a dose of 2E10 15 / cm 2 as shown in FIG.
2. High-concentration ion doping at a pressurization voltage of 70 keV. Thereafter, the photoresist 43 is removed by an ashing method. Then, as shown in FIG. 3C, the glass substrate 18 is heated at 500 ° C. for 1 hour to activate the doped ions.
Anneal for a time.

【0019】次に図3(d)に示す様に、プラズマCV
D法により酸化シリコン( SiO2)からなる層間絶縁
膜46を400nm成膜する。更にPEP法により形成
されるマスク(図示せず)を用い、層間絶縁膜46及び
ゲート絶縁膜27にコンタクトホール23をエッチング
形成し、図3(e)に示すように、スパッタリング法に
よりモリブデン(Mo)、アルミニウム( Al)、モ
リブデン(Mo)を順次50nm、400nm、50n
m積層し金属膜47を形成する。この後、PEP法によ
り形成されるマスクを用い図3(f)に示すようにソー
ス電極48、50、ドレイン電極51、52をパターン
形成して所望の n型p−SiTFT16及び、p型p
−SiTFT17を得る事となる。
Next, as shown in FIG.
An interlayer insulating film 46 made of silicon oxide (SiO 2 ) is formed to a thickness of 400 nm by Method D. Further, using a mask (not shown) formed by the PEP method, a contact hole 23 is formed in the interlayer insulating film 46 and the gate insulating film 27 by etching, and as shown in FIG. ), Aluminum (Al), and molybdenum (Mo) in order of 50 nm, 400 nm, and 50 n.
The metal film 47 is formed by stacking m. Thereafter, using a mask formed by the PEP method, source electrodes 48 and 50 and drain electrodes 51 and 52 are patterned to form desired n-type p-Si TFTs 16 and p-type p-type TFTs as shown in FIG.
-Si TFT 17 is obtained.

【0020】即ちこの様にして得られた n型p−Si
TFT16及び、p型p−SiTFT17は、図4及び
図5に示すように半導体層21、22側面の下地領域2
3、24及び酸化シリコン(SiO2)膜からなるゲー
ト絶縁膜27の膜厚が、半導体層21、22上面の酸化
シリコン(SiO2)膜26からなるゲート絶縁膜27
の膜厚に比し厚く形成されていて、半導体層21、22
側面の絶縁性を良好に保持出来、側面の電流によるTF
T特性への悪影響が低減される。
That is, the n-type p-Si thus obtained is
As shown in FIGS. 4 and 5, the TFT 16 and the p-type p-Si TFT 17 are formed in the underlying regions 2 on the side surfaces of the semiconductor layers 21 and 22.
3,24 and silicon oxide (SiO 2) film thickness of the gate insulating film 27 made of film, the gate insulating film 27 made of the semiconductor layer 21, 22 top silicon oxide (SiO 2) film 26
The semiconductor layers 21 and 22 are formed thicker than
TF due to side current can maintain good insulation on the side
The adverse effect on the T characteristic is reduced.

【0021】この様に構成すれば、 n型p−SiTF
T16及び、p型p−SiTFT17は、半導体層2
1、22側面に不所望な電流が流れることなく、安定し
た特性を得られ、これらを液晶表示装置に用いた場合、
画素電極の電圧保持特性を向上出来ることから良好な表
示を得られ、更に駆動回路素子のリークが防止され、図
6に実線で示すように半導体層側面のゲート絶縁膜の薄
い従来例に比し、電圧(Vg)印加時に急峻な電流(I
d)の立ち上がりを得られることから、斑点を生じるこ
となく全面にわたり均一な表示をえられ、表示不良によ
る歩留まりの低下を防止出来良好な表示品位を有する液
晶表示装置の低価格化の実現も図れる。
With this structure, n-type p-SiTF
T16 and the p-type p-Si TFT 17 are formed in the semiconductor layer 2
Undesirable current does not flow on the side surfaces 1 and 22 and stable characteristics can be obtained. When these are used for a liquid crystal display device,
Since the voltage holding characteristic of the pixel electrode can be improved, a good display can be obtained, and further, the leakage of the driving circuit element is prevented. As shown by a solid line in FIG. 6, the gate insulating film on the side of the semiconductor layer is thinner than the conventional example. Current (Ig) when a voltage (Vg) is applied.
Since the rise of d) can be obtained, uniform display can be obtained over the entire surface without causing spots, a decrease in yield due to display defects can be prevented, and a low-cost liquid crystal display device having good display quality can be achieved. .

【0022】尚本発明は上記実施の形態に限られるもの
でなく、その趣旨を変えない範囲での変更は可能であっ
て、例えば半導体層を被覆するゲート絶縁膜の膜厚は半
導体層の上面より側面の方が厚ければ限定されない。
The present invention is not limited to the above embodiment, but can be modified without departing from the spirit of the present invention. For example, the thickness of the gate insulating film covering the semiconductor layer is limited to the upper surface of the semiconductor layer. There is no limitation as long as the sides are thicker.

【0023】又半導体層側面の下地領域の形成方法も限
定されず、上記実施の形態のように、半導体層側面をア
モルファス化することなく、例えば図7に示す第1の変
形例のように、半導体層上に1層目の酸化膜を形成後、
半導体層上面が露出するまで1層目の酸化膜を均一にエ
ッチングすれば、エッチング終了後半導体層側面に酸化
膜が残るのでこれを下地領域としても良い。
Further, the method of forming the underlying region on the side surface of the semiconductor layer is not limited. For example, as shown in FIG. 7, a first modified example shown in FIG. After forming the first oxide film on the semiconductor layer,
If the first oxide film is uniformly etched until the upper surface of the semiconductor layer is exposed, an oxide film remains on the side surface of the semiconductor layer after the etching is completed, and this may be used as a base region.

【0024】即ち図7(a)に示すように、ガラス基板
55上にアンダーコート層56を介してp−Siからな
る半導体層57、58をパターン形成後、図7(b)に
示すように、プラズマCVD法により1層目の酸化シリ
コン(SiO2)膜60を500nm程度成長させ、続
いて図7(c)に示すように酸化シリコン(SiO2
膜60を均一にエッチングし、半導体層57、58上面
を露出させる。この時半導体層57、58側面には酸化
シリコン(SiO2)膜60a〜60dが残る。
That is, as shown in FIG. 7A, after patterning semiconductor layers 57 and 58 made of p-Si on a glass substrate 55 via an undercoat layer 56, as shown in FIG. , a plasma CVD method by the first layer of silicon oxide (SiO 2) film 60 is grown approximately 500 nm, followed by as shown in FIG. 7 (c) silicon dioxide (SiO 2)
The film 60 is uniformly etched to expose the upper surfaces of the semiconductor layers 57 and 58. At this time, silicon oxide (SiO 2 ) films 60a to 60d remain on the side surfaces of the semiconductor layers 57 and 58.

【0025】従ってこの上からTEOS(tetra
ethyl ortho silicate )を原料
として用いたプラズマCVD法により2層目の酸化シリ
コン(SiO2)膜61を100nm程度成長させ酸化
シリコン(SiO2)膜60a〜60dと共にゲート絶
縁膜62を構成すれば、図7(d)に示すように、半導
体層57、58側面には、酸化シリコン(SiO2)膜
60a〜60dに更に2層目の酸化シリコン(Si
2)膜61からなるゲート絶縁膜62が被着され、半
導体層57、58上面を被覆する2層目の酸化シリコン
(SiO2)膜61のみからなるゲート絶縁膜62より
その膜厚は厚くされる。
Therefore, TEOS (tetra
If a second silicon oxide (SiO 2 ) film 61 is grown to a thickness of about 100 nm by a plasma CVD method using ethyl orthosilicate as a raw material to form a gate insulating film 62 together with silicon oxide (SiO 2 ) films 60a to 60d, As shown in FIG. 7D, the silicon oxide (SiO 2 ) films 60a to 60d are further provided on the side surfaces of the semiconductor layers 57 and 58 with a second silicon oxide (Si) layer.
A gate insulating film 62 made of an O 2 ) film 61 is applied, and the film thickness is larger than that of the gate insulating film 62 made of only a second silicon oxide (SiO 2 ) film 61 covering the upper surfaces of the semiconductor layers 57 and 58. Be killed.

【0026】更に半導体層側面の下地領域は、図8に示
す第2の変形例のように、半導体層上に1層目の酸化膜
を形成後、半導体層上面が露出するまで、半導体層上面
の酸化膜のみをエッチングするようにして形成しても良
い。このようにすれば、1層目の酸化膜の膜厚により半
導体層側面に残る下地領域としての酸化膜の膜厚を制御
可能となる。
Further, as shown in a second modification shown in FIG. 8, after forming the first oxide film on the semiconductor layer, the underlying region on the side surface of the semiconductor layer is kept until the upper surface of the semiconductor layer is exposed. May be formed by etching only the oxide film. With this configuration, the thickness of the oxide film as a base region remaining on the side surface of the semiconductor layer can be controlled by the thickness of the first oxide film.

【0027】即ち図8(a)に示すように、ガラス基板
65上にアンダーコート層66を介してp−Siからな
る半導体層67、68をパターン形成後、図8(b)に
示すように、プラズマCVD法により1層目の酸化シリ
コン(SiO2)膜70を成長させ、続いて図8(c)
に示すように、1層目の酸化シリコン(SiO2)膜7
0の半導体層67、68上方のみをエッチングし、半導
体層57、58上面を露出させる。この時ガラス基板6
5上には酸化シリコン(SiO2)膜70a〜70cが
残る。
That is, as shown in FIG. 8A, after semiconductor layers 67 and 68 made of p-Si are formed on a glass substrate 65 via an undercoat layer 66 by patterning, as shown in FIG. Then, a first silicon oxide (SiO 2 ) film 70 is grown by a plasma CVD method, and then FIG.
As shown in the figure, the first silicon oxide (SiO 2 ) film 7
Only the upper portions of the semiconductor layers 67 and 68 are etched to expose the upper surfaces of the semiconductor layers 57 and 58. At this time, the glass substrate 6
The silicon oxide (SiO 2 ) films 70 a to 70 c remain on 5.

【0028】従ってこの上からTEOS(tetra
ethyl ortho silicate )を原料
として用いたプラズマCVD法により2層目の酸化シリ
コン(SiO2)膜71を成長させ、酸化シリコン(S
iO2)膜70a〜70cと共にゲート絶縁膜72を構
成すれば、図8(d)に示すように、半導体層67、6
8側面には、酸化シリコン(SiO2)膜70a〜70
cに更に2層目の酸化シリコン(SiO2)膜71から
なるゲート絶縁膜72が被着され、半導体層67、68
上面を被覆する2層目の酸化シリコン(SiO2)膜7
1のみからなるゲート絶縁膜72よりその膜厚は厚くさ
れる。
Therefore, TEOS (tetra
A second silicon oxide (SiO 2 ) film 71 is grown by a plasma CVD method using ethyl orthosilicate as a raw material, and silicon oxide (S
When the gate insulating film 72 is formed together with the iO 2 ) films 70a to 70c, the semiconductor layers 67 and 6 are formed as shown in FIG.
On the eight side surfaces, silicon oxide (SiO 2 ) films 70 a to 70
Further, a gate insulating film 72 made of a second-layer silicon oxide (SiO 2 ) film 71 is deposited on c, and semiconductor layers 67 and 68 are formed.
Second silicon oxide (SiO 2 ) film 7 covering the upper surface
The film thickness is made larger than that of the gate insulating film 72 consisting of only one.

【0029】[0029]

【発明の効果】以上説明したように本発明によれば、半
導体層側面のゲート絶縁膜が、半導体層上面のゲート絶
縁膜より厚いので、半導体層側面に不所望に流れる電流
が低減し、TFTの特性に悪影響を及ぼす事がなく、T
FTは均一且つ安定した良好な特性を得られる。従って
この様な安定したTFTを液晶表示装置に用いれば、表
示不良が解消され、その歩留まりを向上出来、良好な表
示品位を有する液晶表示装置の価格低減も可能となる。
As described above, according to the present invention, the gate insulating film on the side surface of the semiconductor layer is thicker than the gate insulating film on the upper surface of the semiconductor layer. Without adversely affecting the characteristics of
FT can obtain uniform and stable good characteristics. Therefore, if such a stable TFT is used in a liquid crystal display device, display defects can be eliminated, the yield can be improved, and the price of a liquid crystal display device having good display quality can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態のn型p−SiTFT及び
p型p−SiTFTを示す概略断面図である。
FIG. 1 is a schematic sectional view showing an n-type p-SiTFT and a p-type p-SiTFT according to an embodiment of the present invention.

【図2】本発明の実施の形態のn型p−SiTFT及び
p型p−SiTFTの製造方法を示し、(a)はそのp
−Si層形成時、(b)はそのp−Si層形成時、
(c)はその半導体層パターン形成時、(d)はその半
導体層側面のアモルファス化時、(e)はその下地領域
形成時、(f)はそのゲート絶縁膜の形成時、(g)は
その金属膜形成時、(h)はその半導体層への低濃度で
のリンイオン(P)ドーピング時を示す概略説明図で
ある。
FIG. 2 shows a method for manufacturing an n-type p-SiTFT and a p-type p-SiTFT according to an embodiment of the present invention.
(B) at the time of forming the p-Si layer,
(C) when the semiconductor layer pattern is formed, (d) when the side surface of the semiconductor layer is made amorphous, (e) when the base region is formed, (f) when the gate insulating film is formed, and (g) when the gate insulating film is formed. (H) is a schematic explanatory view showing the time of doping the semiconductor layer with phosphorus ions (P + ) at a low concentration when the metal film is formed.

【図3】本発明の実施の形態のn型p−SiTFT及び
p型p−SiTFTの製造方法を示し、(a)はそのn
型p−SiTFTへの高濃度でのリンイオン(P)ド
ーピング時、(b)はそのp型p−SiTFTへの高濃
度でのボロンイオン(B+)ドーピング時、 (c)は
その半導体層活性化時、(d)はその層間絶縁膜形成
時、(e)はその金属膜形成時、(f)はそのソース・
ドレイン電極形成時を示す概略説明図である。
FIG. 3 shows a method for manufacturing an n-type p-SiTFT and a p-type p-SiTFT according to an embodiment of the present invention.
During phosphorus ions (P +) doped at high concentration to the type p-SiTFT, (b) when boron ions (B +) doped at a high concentration to that p-type p-SiTFT, (c) its semiconductor layer activity (D) when the interlayer insulating film is formed, (e) when the metal film is formed, and (f) when the source
FIG. 4 is a schematic explanatory view showing a state when a drain electrode is formed.

【図4】本発明の実施の形態の半導体層上にゲート電極
を形成した状態を示す概略斜視図である。
FIG. 4 is a schematic perspective view showing a state in which a gate electrode is formed on a semiconductor layer according to the embodiment of the present invention.

【図5】本発明の実施の形態の図4のA−A´線におけ
る概略断面図である。
FIG. 5 is a schematic sectional view taken along line AA ′ in FIG. 4 of the embodiment of the present invention.

【図6】本発明の実施の形態の電流立ち上がり特性比較
を示すグラフである。
FIG. 6 is a graph showing a comparison of current rise characteristics according to the embodiment of the present invention.

【図7】本発明の第1の変形例の半導体側面の下地領域
の形成方法を示し、(a)はその半導体層パターン形成
時、(b)はその1層目の酸化シリコン膜形成時、
(c)はその1層目の酸化シリコン膜エッチング時、
(d)はその2層目の酸化シリコン膜形成時を示す概略
説明図である。
FIGS. 7A and 7B show a method of forming a base region on a semiconductor side surface according to a first modified example of the present invention, wherein FIG. 7A shows a method for forming a semiconductor layer pattern, FIG.
(C) shows the etching of the first silicon oxide film,
(D) is a schematic explanatory view showing the time of forming the second silicon oxide film.

【図8】本発明の第2の変形例の半導体側面の下地領域
の形成方法を示し、(a)はその半導体層パターン形成
時、(b)はその1層目の酸化シリコン膜形成時、
(c)はその1層目の酸化シリコン膜エッチング時、
(d)はその2層目の酸化シリコン膜形成時を示す概略
説明図である。
8A and 8B show a method of forming a base region on a semiconductor side surface according to a second modified example of the present invention, wherein FIG. 8A shows a method of forming a semiconductor layer pattern thereof, FIG.
(C) shows the etching of the first silicon oxide film,
(D) is a schematic explanatory view showing the time of forming the second silicon oxide film.

【図9】従来の装置のp−SiTFTを示す概略断面図
である。
FIG. 9 is a schematic sectional view showing a p-Si TFT of a conventional device.

【図10】従来の装置の半導体層上にゲート電極を形成
した状態を示す概略斜視図である。
FIG. 10 is a schematic perspective view showing a state in which a gate electrode is formed on a semiconductor layer of a conventional device.

【図11】従来の装置の図10のB−B´線における概
略断面図である。
11 is a schematic cross-sectional view of the conventional device taken along line BB ′ in FIG.

【符号の説明】[Explanation of symbols]

16… n型p−SiTFT 17… p型p−SiTFT 18…ガラス基板 20…アンダーコート層 21…半導体層 21a…チャネル領域 21b、21c…LDD領域 21d…ソース領域 21e…ドレイン領域 22…半導体層 22a…チャネル領域 22b…ソース領域 22c…ドレイン領域 23、24…下地領域 26…酸化シリコン膜 27…ゲート絶縁膜 28、30…ゲート電極 46…層間絶縁膜 47、48…ソース電極 50、51…ドレイン電極 Reference Signs List 16 n-type p-Si TFT 17 p-type p-Si TFT 18 glass substrate 20 undercoat layer 21 semiconductor layer 21 a channel regions 21 b and 21 c LDD region 21 d source region 21 e drain region 22 semiconductor layer 22 a ... channel region 22b ... source region 22c ... drain region 23, 24 ... base region 26 ... silicon oxide film 27 ... gate insulating film 28, 30 ... gate electrode 46 ... interlayer insulating film 47, 48 ... source electrode 50, 51 ... drain electrode

フロントページの続き Fターム(参考) 2H092 JA24 JA25 JA34 JA37 KA04 KA05 KB25 MA08 MA17 MA23 MA29 NA29 PA01 5F110 AA06 BB02 BB04 CC02 DD02 DD14 DD24 EE06 EE44 FF02 FF30 GG02 GG13 GG22 GG25 GG32 GG34 GG39 GG45 GG51 GG58 HJ01 HJ04 HJ12 HJ23 HL03 HL04 HL12 HM02 HM15 NN02 NN04 NN23 NN35 PP03 PP33 PP35 QQ02 QQ09 QQ11Continued on the front page F-term (reference) 2H092 JA24 JA25 JA34 JA37 KA04 KA05 KB25 MA08 MA17 MA23 MA29 NA29 PA01 5F110 AA06 BB02 BB04 CC02 DD02 DD14 DD24 EE06 EE44 FF02 FF30 GG02 GG13 GG22 GG25 GG32 H03 GG34 JG HL04 HL12 HM02 HM15 NN02 NN04 NN23 NN35 PP03 PP33 PP35 QQ02 QQ09 QQ11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性基板と、この絶縁性基板上に島状
に形成されチャネル領域及びこのチャネル領域を挟みソ
ース領域並びにドレイン領域を有する半導体層と、この
半導体層側面に被着する膜厚が前記半導体層上面に被着
する膜厚より厚くなるよう前記半導体層を被覆するゲー
ト絶縁膜と、このゲート絶縁膜上の前記チャネル領域に
対応する領域に形成されるゲート電極とを具備する事を
特徴とする薄膜トランジスタ装置。
An insulating substrate, a semiconductor layer formed in an island shape on the insulating substrate and having a channel region, a source region and a drain region sandwiching the channel region, and a film thickness to be deposited on a side surface of the semiconductor layer A gate insulating film covering the semiconductor layer so as to be thicker than a film deposited on the upper surface of the semiconductor layer; and a gate electrode formed in a region on the gate insulating film corresponding to the channel region. A thin film transistor device characterized by the above-mentioned.
【請求項2】 ゲート絶縁膜が、半導体層側面に隣接さ
れる下地領域及びこの下地領域と共に前記半導体層を被
覆してなる表面領域とからなることを特徴とする請求項
1に記載の薄膜トランジスタ装置。
2. The thin film transistor device according to claim 1, wherein the gate insulating film includes a base region adjacent to a side surface of the semiconductor layer and a surface region covering the semiconductor layer together with the base region. .
【請求項3】 下地領域が、半導体層側面を露出して酸
化する事により形成されることを特徴とする請求項2に
記載の薄膜トランジスタ装置。
3. The thin film transistor device according to claim 2, wherein the base region is formed by exposing and oxidizing a side surface of the semiconductor layer.
【請求項4】 下地領域が、半導体層全面を酸化して酸
化膜を形成後、前記半導体層上面が露出するまで前記酸
化膜を均一にエッチング除去する事により形成されるこ
とを特徴とする請求項2に記載の薄膜トランジスタ装
置。
4. An underlayer region formed by oxidizing the entire surface of the semiconductor layer to form an oxide film and then uniformly etching and removing the oxide film until the upper surface of the semiconductor layer is exposed. Item 3. A thin film transistor device according to item 2.
【請求項5】 下地領域が、半導体層全面を酸化して酸
化膜を形成後、前記半導体層上面上方の前記酸化膜のみ
をエッチング除去する事により形成されることを特徴と
する請求項2に記載の薄膜トランジスタ装置。
5. The semiconductor device according to claim 2, wherein the base region is formed by oxidizing the entire surface of the semiconductor layer to form an oxide film, and then etching away only the oxide film above the upper surface of the semiconductor layer. The thin-film transistor device according to claim 1.
JP14154199A 1999-05-21 1999-05-21 Thin-film transistor device Pending JP2000332254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14154199A JP2000332254A (en) 1999-05-21 1999-05-21 Thin-film transistor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14154199A JP2000332254A (en) 1999-05-21 1999-05-21 Thin-film transistor device

Publications (1)

Publication Number Publication Date
JP2000332254A true JP2000332254A (en) 2000-11-30

Family

ID=15294379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14154199A Pending JP2000332254A (en) 1999-05-21 1999-05-21 Thin-film transistor device

Country Status (1)

Country Link
JP (1) JP2000332254A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327977A (en) * 2003-04-11 2004-11-18 Semiconductor Energy Lab Co Ltd Thin film transistor and method for manufacturing the same
JP2008153387A (en) * 2006-12-15 2008-07-03 Mitsubishi Electric Corp Display device and its manufacturing method
JP2008166749A (en) * 2006-12-05 2008-07-17 Semiconductor Energy Lab Co Ltd Thin film transistor and its manufacturing method, as well as semiconductor device having the thin film transistor
JP2008211192A (en) * 2007-01-30 2008-09-11 Semiconductor Energy Lab Co Ltd Display device
US7473972B2 (en) 2006-07-20 2009-01-06 Mitsubishi Electric Corporation Thin film transistor substrate and method for manufacturing the same
US7709841B2 (en) 2005-08-10 2010-05-04 Mitsubishi Denki Kabushiki Kaisha Thin film transistor having an island like semiconductor layer on an insulator
US7727822B2 (en) 2005-03-03 2010-06-01 Sharp Kabushiki Kaisha Active matrix substrate and liquid crystal display device, production methods thereof and electronic device
US8120111B2 (en) 2003-04-11 2012-02-21 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor including insulating film and island-shaped semiconductor film
CN106629573A (en) * 2016-12-29 2017-05-10 上海集成电路研发中心有限公司 Structure and method for improving incomplete etching of film at sidewall of step

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327977A (en) * 2003-04-11 2004-11-18 Semiconductor Energy Lab Co Ltd Thin film transistor and method for manufacturing the same
US8120111B2 (en) 2003-04-11 2012-02-21 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor including insulating film and island-shaped semiconductor film
US9362307B2 (en) 2003-04-11 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, electronic device having the same, and method for manufacturing the same
US7727822B2 (en) 2005-03-03 2010-06-01 Sharp Kabushiki Kaisha Active matrix substrate and liquid crystal display device, production methods thereof and electronic device
US7709841B2 (en) 2005-08-10 2010-05-04 Mitsubishi Denki Kabushiki Kaisha Thin film transistor having an island like semiconductor layer on an insulator
US7473972B2 (en) 2006-07-20 2009-01-06 Mitsubishi Electric Corporation Thin film transistor substrate and method for manufacturing the same
JP2008166749A (en) * 2006-12-05 2008-07-17 Semiconductor Energy Lab Co Ltd Thin film transistor and its manufacturing method, as well as semiconductor device having the thin film transistor
JP2008153387A (en) * 2006-12-15 2008-07-03 Mitsubishi Electric Corp Display device and its manufacturing method
JP2008211192A (en) * 2007-01-30 2008-09-11 Semiconductor Energy Lab Co Ltd Display device
CN106629573A (en) * 2016-12-29 2017-05-10 上海集成电路研发中心有限公司 Structure and method for improving incomplete etching of film at sidewall of step

Similar Documents

Publication Publication Date Title
JP3212060B2 (en) Semiconductor device and manufacturing method thereof
US7344930B2 (en) Semiconductor device and manufacturing method thereof
US7309625B2 (en) Method for fabricating metal oxide semiconductor with lightly doped drain
JPH07176750A (en) Manufacture of thin-film transistor
JP2000332254A (en) Thin-film transistor device
JPH0964364A (en) Manufacture of semiconductor device
JP2000077665A (en) Thin-film transistor device and its manufacture
US20050148119A1 (en) Method of manufacturing thin film transistor, method of manufacturing flat panel display, thin film transistor, and flat panel display
JP2805590B2 (en) Method for manufacturing semiconductor device
JP4675433B2 (en) Method for manufacturing semiconductor device
JP2840812B2 (en) Semiconductor device and manufacturing method thereof
JPH0637314A (en) Thin-film transistor and manufacture thereof
JPH05206166A (en) Thin film transistor
JPH1065181A (en) Semiconductor device and its manufacture
JP4197270B2 (en) Method for manufacturing semiconductor integrated circuit
JP2004336073A (en) Top gate type thin film transistor and its manufacturing method
JPH0778782A (en) Semiconductor device and manufacture thereof
JPH07193252A (en) Thin film transistor and its manufacture
JPH1197696A (en) Thin-film semiconductor device
JPH09213962A (en) Thin film transistor and its manufacture
JP2002190606A (en) Method for manufacturing top gate thin-film transistor
JP2001094108A (en) Field effect transistor, transistor array substrate, and manufacturing method for the substrate
JP3312541B2 (en) Method for manufacturing thin film semiconductor device
JP2001189461A (en) Thin-film transistor and liquid crystal display using the same
JPH06132535A (en) Film transistor and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060427

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060519

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106