JP2000252461A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JP2000252461A
JP2000252461A JP11052396A JP5239699A JP2000252461A JP 2000252461 A JP2000252461 A JP 2000252461A JP 11052396 A JP11052396 A JP 11052396A JP 5239699 A JP5239699 A JP 5239699A JP 2000252461 A JP2000252461 A JP 2000252461A
Authority
JP
Japan
Prior art keywords
silicon carbide
interface
insulating film
hydrogen
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11052396A
Other languages
Japanese (ja)
Other versions
JP3443589B2 (en
Inventor
Kazuo Arai
和雄 荒井
Sadaji Yoshida
貞史 吉田
Kiyoko Nagai
清子 永井
Toshihiro Sekikawa
敏弘 関川
Kenji Fukuda
憲司 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
New Energy and Industrial Technology Development Organization
Original Assignee
Agency of Industrial Science and Technology
New Energy and Industrial Technology Development Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, New Energy and Industrial Technology Development Organization filed Critical Agency of Industrial Science and Technology
Priority to JP05239699A priority Critical patent/JP3443589B2/en
Publication of JP2000252461A publication Critical patent/JP2000252461A/en
Application granted granted Critical
Publication of JP3443589B2 publication Critical patent/JP3443589B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a MOS capacitor of interface level density by forming at least one layer of oxide film and nitride film as a gate insulating film on a semiconductor substrate comprising a silicon carbide on the top layer before annealing in the atmosphere containing hydrogen at a temperature in specified range. SOLUTION: On a semiconductor substrate comprising a silicon carbide(SiC) on its top, at least one layer of gate insulating film comprising oxide film and nitride film is formed for annealing in the atmosphere containing hydrogen at 600-1600 deg.C thereafter, so that dangling bond of carbon or silicon present at an insulating film/silicon carbide interface is terminated, thus reducing an interface level density for better interface. Al is used for a gate electrode and ohmic contact to produce a MOS capacitor, eventually. Thus, an insulating film/silicon carbide interface sufficiently resistant for actual use is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、半導体として炭化珪
素を用いた、金属−酸化膜−半導体(MOS)構造、或
はMOS電界効果型トランジスタを搭載した半導体装
置、半導体集積回路等において、界面準位密度の低い良
好なゲート絶縁膜と炭化珪素界面を形成するようにした
半導体装置の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device using a metal-oxide-semiconductor (MOS) structure using silicon carbide as a semiconductor or a MOS field-effect transistor, a semiconductor integrated circuit, and the like. The present invention relates to a method for manufacturing a semiconductor device in which a favorable gate insulating film having a low level density and a silicon carbide interface are formed.

【0002】[0002]

【従来の技術】ワイドギャップ半導体である、炭化珪素
基板(SiC基板)上に形成されたゲート絶縁膜/炭化珪素
界面に発生する界面準位密度は、シリコン基板を熱的に
酸化して形成された、ゲート酸化膜/シリコン界面に発
生する界面準位密度より1桁以上高く、低チャネル移動
度の原因の一つとなっている。
2. Description of the Related Art An interface state density generated at a gate insulating film / silicon carbide interface formed on a silicon carbide substrate (SiC substrate), which is a wide gap semiconductor, is formed by thermally oxidizing a silicon substrate. In addition, the interface state density generated at the gate oxide film / silicon interface is at least one order of magnitude higher, which is one of the causes of low channel mobility.

【0003】また、通常シリコン基板を用いて作製され
たMOSキャパシタでは、400℃で水素アニールをし
て、ダングリングボンドを終端することによりゲート酸
化膜/シリコン界面に発生する界面準位密度を低減して
良好な界面を形成するようにしているが、炭化珪素基板
を用いて作製されたMOSキャパシタでは、400℃でア
ニールをしてもゲート絶縁膜/炭化珪素界面に発生する
界面準位密度を低減するような際立った効果がない。
[0003] In a MOS capacitor usually manufactured using a silicon substrate, hydrogen annealing is performed at 400 ° C to terminate dangling bonds, thereby reducing the interface state density generated at the gate oxide film / silicon interface. However, in the case of a MOS capacitor manufactured using a silicon carbide substrate, the interface state density generated at the gate insulating film / silicon carbide interface can be reduced even after annealing at 400 ° C. There is no noticeable effect of reducing.

【0004】[0004]

【発明が解決しようとする課題】そこで、この発明にお
いては炭化珪素基板を用いて作製されたMOSキャパシ
タ界面においける、シリコン或は炭素の未結合手を終端
して、界面準位密度の低い良好な界面を形成することを
目的とする。
Therefore, in the present invention, the dangling bonds of silicon or carbon at the interface of a MOS capacitor manufactured using a silicon carbide substrate are terminated to reduce the interface state density. The purpose is to form a good interface.

【0005】以上の課題を解決するため、本願発明者ら
は鋭意研究の結果、炭化珪素基板を用いて作製されたM
OSキャパシタを、高温下の水素を含んだ雰囲気でアニ
ールすることにより、界面準位密度のMOSキャパシタ
が得られることを見出したのである。
In order to solve the above problems, the present inventors have conducted intensive studies and as a result, have found that M
It has been found that by annealing the OS capacitor in an atmosphere containing hydrogen at a high temperature, a MOS capacitor having an interface state density can be obtained.

【0006】[0006]

【課題を解決するための手段】この発明は、上記知見に
基づいて少なくとも最上層に炭化珪素を有する半導体基
板上に、ゲート絶縁膜として酸化膜及び/或は窒化膜の
1層又は2層以上を形成した後、600〜1600℃の範囲で水
素を含んだ雰囲気でアニールする半導体装置の製造方法
を提案するものである。
According to the present invention, based on the above findings, an oxide film and / or a nitride film as a gate insulating film is formed on a semiconductor substrate having silicon carbide in at least the uppermost layer.
The present invention proposes a method of manufacturing a semiconductor device in which one or two or more layers are formed and then annealed in an atmosphere containing hydrogen at a temperature in the range of 600 to 1600 ° C.

【0007】なお、炭化珪素(SiC)には、3C-SiC、4
H-SiC、6H-SiC、15R-SiCなど非常に多くのポリタイプ
があるが、この発明において半導体基板として使用する
炭化珪素はSiCであれば、何れのタイプのものでもよ
い。
[0007] Silicon carbide (SiC) includes 3C-SiC,
There are numerous polytypes such as H-SiC, 6H-SiC and 15R-SiC, but any type of silicon carbide used as a semiconductor substrate in the present invention may be used as long as it is SiC.

【0008】また、半導体基板の構造は最上層がSiCで
あれば、Si上に3C-SiCがある構造、6H-SiCや4H-SiC
の上に3C-SiCがある構造でもよい。
The structure of the semiconductor substrate is such that, when the uppermost layer is SiC, 3C-SiC on Si, 6H-SiC or 4H-SiC
A structure having 3C-SiC on the top may be used.

【0009】酸化膜乃至窒化膜としては、シリコン酸化
膜乃至シリコン窒化膜が一般的であるが、これに限定さ
れることなく、アルミニウム酸化膜、タンタル酸化膜、
別の条件で作製した窒化アルミニウム膜、ガリウム窒化
膜など何れの酸化膜乃至窒化膜でもよい。
As the oxide film or the nitride film, a silicon oxide film or a silicon nitride film is generally used. However, the present invention is not limited thereto, and an aluminum oxide film, a tantalum oxide film,
Any oxide film or nitride film such as an aluminum nitride film and a gallium nitride film manufactured under different conditions may be used.

【0010】炭化珪素基板上に酸化膜を積層する方法と
しては、炭化珪素基板上に成膜法により酸化膜を形成し
てもよいが、炭化珪素基板を熱的に酸化して酸化膜を形
成してもよい。
As a method of laminating an oxide film on a silicon carbide substrate, an oxide film may be formed on the silicon carbide substrate by a film forming method. However, the oxide film is formed by thermally oxidizing the silicon carbide substrate. May be.

【0011】成膜法により炭化珪素基板上にシリコン酸
化膜を形成する場合にも、例えばシリコンをMBE法(Mol
ecular beam epitaxy法)やCVD法(化学気相法)で炭化
珪素基板上に形成した後に、熱酸化して形成してもよ
く、またシリコン酸化膜をCVD法や、SOG法(spin on
glass法)で形成してもよい。
In the case where a silicon oxide film is formed on a silicon carbide substrate by a film forming method, for example, silicon is formed by an MBE method (Mol
After being formed on a silicon carbide substrate by an ecular beam epitaxy method or a CVD method (chemical vapor deposition method), it may be formed by thermal oxidation, or a silicon oxide film may be formed by a CVD method or an SOG method (spin on method).
(glass method).

【0012】一方、炭化珪素基板上に窒化膜を積層する
方法としては、LPCVD法(低圧化学気相法)やプラズマ
窒化法を採用することができる。
On the other hand, as a method of laminating a nitride film on a silicon carbide substrate, an LPCVD method (low-pressure chemical vapor deposition) or a plasma nitriding method can be adopted.

【0013】[0013]

【作用】即ち、炭化珪素(SiC)基板上に酸化膜或は
窒化膜からなるゲート絶縁膜を形成した後、600℃〜160
0℃の水素を含んだ雰囲気でアニールすることにより、
絶縁膜/炭化珪素界面に存在するシリコン或は炭素のダ
ングリングボンドが終端され、界面準位密度を低減して
良好な界面を形成することができる。
After a gate insulating film made of an oxide film or a nitride film is formed on a silicon carbide (SiC) substrate,
By annealing in an atmosphere containing hydrogen at 0 ° C,
Dangling bonds of silicon or carbon existing at the interface between the insulating film and the silicon carbide are terminated, and the interface state density can be reduced to form a good interface.

【0014】600℃以下でアニールする場合には、ゲー
ト絶縁膜/炭化珪素界面に存在するシリコン或は炭素の
ダングリングボンドの終端が十分になされず、また例え
ばゲート絶縁膜として使用されるシリコン酸化膜の融点
が1600℃であるため、アニール温度を600℃〜1600℃の
範囲とした。
When annealing is performed at a temperature of 600 ° C. or less, dangling bonds of silicon or carbon existing at the interface between the gate insulating film and silicon carbide are not sufficiently terminated. Since the melting point of the film is 1600 ° C., the annealing temperature was set in the range of 600 ° C. to 1600 ° C.

【0015】また、水素アニールの際の水素圧力は0.1P
a以下では、水素圧力が低すぎてダングリングボンドが
終端する効果がなく、また水素圧力が常圧(1.01×105P
a)以上であると、水素圧力が高すぎて例えばゲート絶
縁膜として使用されるシリコン酸化膜から酸素を還元し
て、酸化膜の膜質を低下させて、絶縁破壊電圧の低下を
招くので、水素圧力を0.1Pa〜1.01×105Paの範囲とし
た。
The hydrogen pressure during the hydrogen annealing is 0.1 P
Below a, the hydrogen pressure is too low to have the effect of terminating dangling bonds and the hydrogen pressure is normal pressure (1.01 × 10 5 P
a) If the pressure is higher than the above, hydrogen pressure is too high, for example, oxygen is reduced from a silicon oxide film used as a gate insulating film, and the film quality of the oxide film is reduced, thereby lowering the breakdown voltage. The pressure was in the range of 0.1 Pa to 1.01 × 10 5 Pa.

【0016】また、この発明による水素アニールは、水
素ガス中の他、水素と不活性ガス、特に窒素、アルゴ
ン、ヘリウム等の不活性ガスとの混合ガス雰囲気中で行
うことができる。
The hydrogen annealing according to the present invention can be carried out in a mixed gas atmosphere of hydrogen and an inert gas, particularly an inert gas such as nitrogen, argon, helium, etc., in addition to the hydrogen gas.

【0017】この場合ガス雰囲気の圧力を常圧(1.01×
105Pa)に固定して、混合ガスにおける水素濃度(水素流
量/(水素流量+不活性ガス流量))が0.5 %以下で
あると、水素濃度が低すぎて、ダングリングボンドが終
端する効果がなく、水素濃度を0.5%〜100%の範囲とし
た。
In this case, the pressure of the gas atmosphere is set to a normal pressure (1.01 ×
10 5 Pa), and the hydrogen concentration (hydrogen flow rate / (hydrogen flow rate + inert gas flow rate)) in the mixed gas is 0.5 %, The hydrogen concentration is too low and there is no effect of terminating dangling bonds, and the hydrogen concentration is set in the range of 0.5% to 100%.

【0018】更に、水素アニール時間が10秒以下である
と、アニール時間が短すぎてダングリングボンドが十分
に終端できず、またアニール時間が3時間以上である
と、アニール時間が長すぎてゲート絶縁膜として使用さ
れるシリコン酸化膜の酸素が還元され、酸化膜の膜質が
低下し、絶縁破壊電圧の低下を招くので、アニール時間
を10秒〜3時間の範囲とした。
Further, if the hydrogen annealing time is less than 10 seconds, the annealing time is too short to terminate the dangling bond sufficiently, and if the annealing time is more than 3 hours, the annealing time is too long and the gate is too long. Since the oxygen of the silicon oxide film used as the insulating film is reduced, the quality of the oxide film is reduced, and the dielectric breakdown voltage is reduced, the annealing time is set in the range of 10 seconds to 3 hours.

【0019】[0019]

【実施例】以下、この発明の実施例を示す。 実施例1 8゜オフ4H-SiCエピ基板((0001)Si面、n型、Nd−Na
=1×1016/cm3)を通常のRCA洗浄後、犠牲酸化膜を形成
し、HFで除去した。次いで、1100℃でドライ酸化により
36nm〜50nmの酸化膜を形成した後、1100℃から室温まで
急冷した。その後、水素アニールを、温度を400℃〜100
0℃まで変えて30分間行った。水素圧力は1000℃で5.6×
103Paだった。最終的にAlをゲート電極とオーミックコ
ンタクトに用いてMOSキャパシタが作製された。
Embodiments of the present invention will be described below. Example 1 8 ゜ off 4H-SiC epi-substrate ((0001) Si plane, n-type, Nd-Na
= 1 × 10 16 / cm 3 ), after normal RCA cleaning, a sacrificial oxide film was formed and removed by HF. Then, by dry oxidation at 1100 ° C
After forming an oxide film of 36 to 50 nm, it was rapidly cooled from 1100 ° C. to room temperature. After that, hydrogen annealing is performed at a temperature of
The operation was performed for 30 minutes while changing to 0 ° C. Hydrogen pressure is 5.6x at 1000 ℃
It was 10 3 Pa. Finally, a MOS capacitor was manufactured using Al for the gate electrode and the ohmic contact.

【0020】図1は、実施例1で得られたMOSキャパシ
タを模式的に示す断面図であり、図2はこのMOSキャ
パシタを用いて測定した高周波(f=100kHz)CV
特性における水素アニール温度効果を示すものである。
FIG. 1 is a sectional view schematically showing the MOS capacitor obtained in Example 1, and FIG. 2 is a high-frequency (f = 100 kHz) CV measured using this MOS capacitor.
9 shows the effect of a hydrogen annealing temperature on characteristics.

【0021】CV、IV特性は、シールドされた金属の
箱の中で、暗闇の条件で測定され、図2中左側の破線
は、25Vでの酸化膜容量とNd-Na=1×1016/cm3から計算さ
れた理想曲線であり、右側の破線は水素アニールをしな
い場合のCV特性曲線であり、右側の破線と左側の破線
で挟まれた実線は右側より400℃、500℃、600℃、700
℃、1000℃で夫々水素アニールした場合のCV特性曲線
である。
The CV and IV characteristics were measured in a shielded metal box under dark conditions. The left broken line in FIG. 2 indicates the oxide film capacity at 25 V and Nd-Na = 1 × 10 16 / cm 3 The dashed line on the right is a CV characteristic curve when hydrogen annealing is not performed, and the solid line between the dashed line on the right and the dashed line on the left is 400 ° C., 500 ° C., 600 ° C., and 700 ° C. from the right.
It is a CV characteristic curve at the time of hydrogen annealing at 1000 degreeC and 1000 degreeC, respectively.

【0022】図中、ゲート電圧が−5Vより低い場合
に、計算された値より、実際に測定された値が低いの
は、4H-SiCのワイドギャップのために、室温で発生す
る少数キャリアが非常に少なく、平衡状態にならないた
めである。
In the figure, when the gate voltage is lower than -5 V, the actually measured value is lower than the calculated value because minority carriers generated at room temperature are generated due to the wide gap of 4H-SiC. This is because it is very small and does not reach an equilibrium state.

【0023】また、水素アニールをしない場合のCV特
性曲線(右側の破線)において、フラットバンド電圧シ
フトは、15.7Vと非常に大きく、ゲート電圧の行きと帰
りで約1Vのヒステリシスを示しており、これは、界面
準位密度が非常に多いことを意味している。
In the CV characteristic curve without hydrogen annealing (broken line on the right), the flat band voltage shift is as large as 15.7 V, showing a hysteresis of about 1 V between the going and returning of the gate voltage. This means that the interface state density is very high.

【0024】右側の破線と左側の破線で挟まれた実線の
CV特性曲線においては、400℃〜500℃で水素アニール
した場合にはフラットバンド電圧シフトが減少するが、
依然としてその値は大きく、且つヒステリシスも大きい
ので、実際には使用できない。
In the solid CV characteristic curve sandwiched between the right broken line and the left broken line, the flat band voltage shift decreases when hydrogen annealing is performed at 400 ° C. to 500 ° C.
Since the value is still large and the hysteresis is large, it cannot be actually used.

【0025】一方、600℃で水素アニールした場合に
は、ほぼヒステリシスが消失し、実際に使用できる状態
にあり、1000℃で水素アニールした場合にはヒステリシ
スは消失して理想曲線に近づく。
On the other hand, when hydrogen annealing is performed at 600 ° C., the hysteresis almost disappears, and it is in a practically usable state. When hydrogen annealing is performed at 1000 ° C., the hysteresis disappears and approaches an ideal curve.

【0026】なお、1000℃以上で水素アニールした場合
にはヒステリシスが完全に消失して理想曲線に更に近づ
くことが予想されるが、一般にゲート絶縁膜として使用
されているシリコン酸化膜の融点は1600℃であるので、
アニール温度の範囲を600℃〜1600℃とした。
When hydrogen annealing is performed at 1000 ° C. or more, it is expected that the hysteresis completely disappears and the curve approaches an ideal curve. However, the melting point of a silicon oxide film generally used as a gate insulating film is 1600 ° C. ℃
The range of the annealing temperature was 600 ° C to 1600 ° C.

【0027】[0027]

【発明の効果】以上要するに、この発明によればゲート
絶縁膜/炭化珪素界面に存在するシリコン或は炭素のタ
ングリングボンドを水素で終端することにより、界面準
位密度を十分に減らして、実際の使用に十分に耐える良
好な絶縁膜/炭化珪素界面を得ることができる。
In summary, according to the present invention, by terminating the silicon or carbon tangling bonds existing at the gate insulating film / silicon carbide interface with hydrogen, the interface state density can be sufficiently reduced, And a good insulating film / silicon carbide interface that can sufficiently withstand the use of GaN.

【図面の簡単な説明】[Brief description of the drawings]

【図1】容量−電圧特性の評価に使用したMOS構造の
断面模式図
FIG. 1 is a schematic cross-sectional view of a MOS structure used for evaluating capacitance-voltage characteristics.

【図2】高周波CV特性に対する水素アニールの温度効果
を示す図
FIG. 2 is a diagram showing the temperature effect of hydrogen annealing on high-frequency CV characteristics

【手続補正書】[Procedure amendment]

【提出日】平成11年12月20日(1999.12.
20)
[Submission date] December 20, 1999 (1999.12.
20)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0014】なお、ゲート絶縁膜としてシリコン酸化膜
を使用する場合には、シリコン酸化膜の融点が1600℃で
あるため、アニールは600℃〜1600℃の範囲で可能であ
るが、後述する本願発明者らの実験結果に依れば、最適
アニール温度は600℃〜1000℃である。 ─────────────────────────────────────────────────────
Note that a silicon oxide film is used as a gate insulating film.
When using, the melting point of the silicon oxide film is 1600 ℃
Therefore, annealing can be performed in the range of 600 to 1600 ° C.
However, according to the experimental results of the present inventors described below, the optimum
The annealing temperature is between 600C and 1000C. ────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年5月29日(2000.5.2
9)
[Submission date] May 29, 2000 (2005.2
9)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0006】[0006]

【課題を解決するための手段】この発明は、上記知見に
基づいて少なくとも最上層に炭化珪素を有する半導体基
板上に、ゲート絶縁膜として酸化珪素を形成した後、6
00〜1000℃の範囲で水素を含み、且つ水素圧力を
0.1Pa〜1.01×10 Paにした雰囲気で10秒〜3時間
ニールしてゲート絶縁膜と炭化珪素との界面準位密度を
低減するようにした半導体装置の製造方法を提案するも
のである。
According to the present invention, based on the above findings, after forming silicon oxide as a gate insulating film on a semiconductor substrate having silicon carbide at least in the uppermost layer,
Containing hydrogen in the range of 00 to 1000 ° C. and increasing the hydrogen pressure
A method of manufacturing a semiconductor device in which an interface state density between a gate insulating film and silicon carbide is reduced by annealing for 10 seconds to 3 hours in an atmosphere of 0.1 Pa to 1.01 × 10 5 Pa is proposed. Is what you do.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 貞史 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 (72)発明者 永井 清子 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 (72)発明者 関川 敏弘 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 (72)発明者 福田 憲司 茨城県つくば市梅園1丁目1番4 工業技 術院電子技術総合研究所内 Fターム(参考) 5F040 DA00 DC02 EC10 FC00 5F058 BA11 BA20 BB10 BD01 BD04 BD10 BH01 BH20  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Sadafumi Yoshida 1-1-4 Umezono, Tsukuba, Ibaraki Pref. Inside the Research Institute of Electronics and Technology (72) Inventor Kiyoko Nagai 1-1-1, Umezono, Tsukuba, Ibaraki 4 Within the Institute of Technology, Electronic Technology Research Institute (72) Inventor Toshihiro Sekikawa 1-4-1, Umezono, Tsukuba, Ibaraki Pref. No. 4 F-term in the Electronic Technology Research Laboratory, National Institute of Industrial Science (reference) 5F040 DA00 DC02 EC10 FC00 5F058 BA11 BA20 BB10 BD01 BD04 BD10 BH01 BH20

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】少なくとも最上層に炭化珪素を有する半導
体基板上に、ゲート絶縁膜として酸化膜及び/或は窒化
膜の1層又は2層以上を形成した後、600〜1600℃の範囲
で水素を含んだ雰囲気でアニールすることを特徴とする
半導体装置の製造方法。
At least one layer of an oxide film and / or a nitride film as a gate insulating film is formed on a semiconductor substrate having silicon carbide at least as an uppermost layer. A method of manufacturing a semiconductor device, wherein annealing is performed in an atmosphere containing.
【請求項2】水素圧力を0.1Pa〜1.01×105Paにした請
求項1記載の方法。
2. The method according to claim 1, wherein the hydrogen pressure is 0.1 Pa to 1.01 × 10 5 Pa.
【請求項3】ガス雰囲気の圧力を常圧(1.01×105Pa)に
固定して、水素濃度(水素流量/(水素流量+不活性ガ
ス流量))が0.5%〜100%にした請求項1記載の方法。
3. The pressure of a gas atmosphere is fixed to a normal pressure (1.01 × 10 5 Pa), and a hydrogen concentration (hydrogen flow rate / (hydrogen flow rate + inert gas flow rate)) is set to 0.5% to 100%. Method according to 1.
【請求項4】不活性ガスとして、窒素、アルゴン、ヘリ
ウムを使用する請求項3記載の方法。
4. The method according to claim 3, wherein nitrogen, argon or helium is used as the inert gas.
【請求項5】アニール時間を10秒〜3時間にした請求項1
或は請求項2或は請求項3或は請求項4記載の方法。
5. The method according to claim 1, wherein the annealing time is 10 seconds to 3 hours.
A method according to claim 2 or claim 3 or claim 4.
JP05239699A 1999-03-01 1999-03-01 Method for manufacturing semiconductor device Expired - Lifetime JP3443589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05239699A JP3443589B2 (en) 1999-03-01 1999-03-01 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05239699A JP3443589B2 (en) 1999-03-01 1999-03-01 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2000252461A true JP2000252461A (en) 2000-09-14
JP3443589B2 JP3443589B2 (en) 2003-09-02

Family

ID=12913656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05239699A Expired - Lifetime JP3443589B2 (en) 1999-03-01 1999-03-01 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3443589B2 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196579A (en) * 2000-01-07 2001-07-19 Japan Atom Energy Res Inst Manufacturing method of silicon carbide semiconductor metal-oxide film semiconductor field-effect transistor using silicon carbide semiconductor element formed using hydrogen treatment of gate oxide film
JP2003069012A (en) * 2001-08-27 2003-03-07 National Institute Of Advanced Industrial & Technology Method of manufacturing semiconductor device
US6610366B2 (en) 2000-10-03 2003-08-26 Cree, Inc. Method of N2O annealing an oxide layer on a silicon carbide layer
WO2004003989A1 (en) * 2002-06-28 2004-01-08 National Institute Of Advanced Industrial Science And Technology Semiconductor device and its manufacturing method
JP2004511101A (en) * 2000-10-03 2004-04-08 クリー インコーポレイテッド Method for producing oxide layer on silicon carbide layer using N2O
US6841436B2 (en) 2001-10-15 2005-01-11 Denso Corporation Method of fabricating SiC semiconductor device
JP2005277253A (en) * 2004-03-26 2005-10-06 National Institute Of Advanced Industrial & Technology Method of manufacturing semiconductor device and hydrogen treatment apparatus
US6956238B2 (en) 2000-10-03 2005-10-18 Cree, Inc. Silicon carbide power metal-oxide semiconductor field effect transistors having a shorting channel and methods of fabricating silicon carbide metal-oxide semiconductor field effect transistors having a shorting channel
US6972436B2 (en) 1998-08-28 2005-12-06 Cree, Inc. High voltage, high temperature capacitor and interconnection structures
US7022378B2 (en) 2002-08-30 2006-04-04 Cree, Inc. Nitrogen passivation of interface states in SiO2/SiC structures
US7067176B2 (en) 2000-10-03 2006-06-27 Cree, Inc. Method of fabricating an oxide layer on a silicon carbide layer utilizing an anneal in a hydrogen environment
JP2006196713A (en) * 2005-01-13 2006-07-27 National Institute Of Advanced Industrial & Technology Semiconductor device, fabricating method thereof, and deuterium processor
JP2007096263A (en) * 2005-08-31 2007-04-12 Denso Corp SiC SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING SAME
WO2007102281A1 (en) * 2006-03-07 2007-09-13 National Institute Of Advanced Industrial Science And Technology Method for manufacturing silicon carbide semiconductor device, and silicon carbide semiconductor device
JP2008004680A (en) * 2006-06-21 2008-01-10 Nissan Motor Co Ltd Semiconductor device and method of manufacturing the same
JP2008147365A (en) * 2006-12-08 2008-06-26 Tohoku Univ Semiconductor device and manufacturing method thereof
JP2008244456A (en) * 2007-02-28 2008-10-09 Denso Corp Silicon carbide semiconductor device and manufacturing method thereof
JP2008244455A (en) * 2007-02-28 2008-10-09 Denso Corp Silicon carbide semiconductor device and manufacturing method thereof
US7488640B2 (en) 2001-01-08 2009-02-10 International Business Machines Corporation Aluminum nitride and aluminum oxide/aluminum nitride heterostructure gate dielectric stack based field effect transistors and method for forming same
JP2009065174A (en) * 2008-09-25 2009-03-26 Fuji Electric Device Technology Co Ltd Oxide film forming method of silicon carbide semiconductor substrate
JP2010027962A (en) * 2008-07-23 2010-02-04 Sumitomo Electric Ind Ltd Method of manufacturing silicon carbide semiconductor device and silicon carbide semiconductor device
US7709403B2 (en) 2003-10-09 2010-05-04 Panasonic Corporation Silicon carbide-oxide layered structure, production method thereof, and semiconductor device
US7727904B2 (en) 2005-09-16 2010-06-01 Cree, Inc. Methods of forming SiC MOSFETs with high inversion layer mobility
US7880173B2 (en) 2002-06-28 2011-02-01 National Institute Of Advanced Industrial Science And Technology Semiconductor device and method of manufacturing same
JP2012186490A (en) * 2012-05-07 2012-09-27 National Institute Of Advanced Industrial & Technology Semiconductor device and semiconductor substrate deuterium treatment apparatus
US8835987B2 (en) 2007-02-27 2014-09-16 Cree, Inc. Insulated gate bipolar transistors including current suppressing layers
US9029945B2 (en) 2011-05-06 2015-05-12 Cree, Inc. Field effect transistor devices with low source resistance
US9117739B2 (en) 2010-03-08 2015-08-25 Cree, Inc. Semiconductor devices with heterojunction barrier regions and methods of fabricating same
US9142662B2 (en) 2011-05-06 2015-09-22 Cree, Inc. Field effect transistor devices with low source resistance
JP2016058658A (en) * 2014-09-11 2016-04-21 国立研究開発法人産業技術総合研究所 Silicon carbide semiconductor device
US9373617B2 (en) 2011-09-11 2016-06-21 Cree, Inc. High current, low switching loss SiC power module
US9548374B2 (en) 2006-08-17 2017-01-17 Cree, Inc. High power insulated gate bipolar transistors
US9640617B2 (en) 2011-09-11 2017-05-02 Cree, Inc. High performance power module
US9640652B2 (en) 2009-03-27 2017-05-02 Cree, Inc. Semiconductor devices including epitaxial layers and related methods
US9673283B2 (en) 2011-05-06 2017-06-06 Cree, Inc. Power module for supporting high current densities
US9984894B2 (en) 2011-08-03 2018-05-29 Cree, Inc. Forming SiC MOSFETs with high channel mobility by treating the oxide interface with cesium ions
US10186596B2 (en) 2016-05-30 2019-01-22 Kabushiki Kaisha Toshiba Silicon carbide (SiC) MOSFET with a silicon oxide layer capable of suppressing deterioration of carrier mobility and variation in threshold voltage
CN111415866A (en) * 2020-03-31 2020-07-14 中国科学院微电子研究所 Silicon carbide MOS capacitor device and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010024243A1 (en) 2008-08-26 2012-01-26 本田技研工業株式会社 Bipolar semiconductor device and manufacturing method thereof
JP5733623B2 (en) * 2011-06-10 2015-06-10 国立大学法人九州大学 Manufacturing method of semiconductor device

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998322B2 (en) 1998-08-28 2006-02-14 Cree, Inc. Methods of fabricating high voltage, high temperature capacitor and interconnection structures
US6972436B2 (en) 1998-08-28 2005-12-06 Cree, Inc. High voltage, high temperature capacitor and interconnection structures
JP2001196579A (en) * 2000-01-07 2001-07-19 Japan Atom Energy Res Inst Manufacturing method of silicon carbide semiconductor metal-oxide film semiconductor field-effect transistor using silicon carbide semiconductor element formed using hydrogen treatment of gate oxide film
US6956238B2 (en) 2000-10-03 2005-10-18 Cree, Inc. Silicon carbide power metal-oxide semiconductor field effect transistors having a shorting channel and methods of fabricating silicon carbide metal-oxide semiconductor field effect transistors having a shorting channel
US6610366B2 (en) 2000-10-03 2003-08-26 Cree, Inc. Method of N2O annealing an oxide layer on a silicon carbide layer
JP2004511101A (en) * 2000-10-03 2004-04-08 クリー インコーポレイテッド Method for producing oxide layer on silicon carbide layer using N2O
US7067176B2 (en) 2000-10-03 2006-06-27 Cree, Inc. Method of fabricating an oxide layer on a silicon carbide layer utilizing an anneal in a hydrogen environment
US7488640B2 (en) 2001-01-08 2009-02-10 International Business Machines Corporation Aluminum nitride and aluminum oxide/aluminum nitride heterostructure gate dielectric stack based field effect transistors and method for forming same
EP2259288A3 (en) * 2001-04-12 2011-01-05 Cree, Inc. Method of fabricating an oxide layer on a silicon carbide layer utilizing an anneal in a hydrogen environment
EP1378006B1 (en) * 2001-04-12 2008-09-03 Cree, Inc. Method of fabricating an oxide layer on a silicon carbide layer utilizing an anneal in a hydrogen environment
US6764963B2 (en) 2001-08-27 2004-07-20 National Institute Of Advanced Industrial Science And Technology Manufacturing method of semiconductor devices
JP2003069012A (en) * 2001-08-27 2003-03-07 National Institute Of Advanced Industrial & Technology Method of manufacturing semiconductor device
JP4525958B2 (en) * 2001-08-27 2010-08-18 独立行政法人産業技術総合研究所 Manufacturing method of semiconductor device
US6841436B2 (en) 2001-10-15 2005-01-11 Denso Corporation Method of fabricating SiC semiconductor device
WO2004003989A1 (en) * 2002-06-28 2004-01-08 National Institute Of Advanced Industrial Science And Technology Semiconductor device and its manufacturing method
US7880173B2 (en) 2002-06-28 2011-02-01 National Institute Of Advanced Industrial Science And Technology Semiconductor device and method of manufacturing same
US7338869B2 (en) 2002-06-28 2008-03-04 National Institute Of Advanced Industrial Science And Technology Semiconductor device and its manufacturing method
JP2009224797A (en) * 2002-06-28 2009-10-01 National Institute Of Advanced Industrial & Technology Semiconductor device
US7022378B2 (en) 2002-08-30 2006-04-04 Cree, Inc. Nitrogen passivation of interface states in SiO2/SiC structures
US7709403B2 (en) 2003-10-09 2010-05-04 Panasonic Corporation Silicon carbide-oxide layered structure, production method thereof, and semiconductor device
JP2005277253A (en) * 2004-03-26 2005-10-06 National Institute Of Advanced Industrial & Technology Method of manufacturing semiconductor device and hydrogen treatment apparatus
JP2006196713A (en) * 2005-01-13 2006-07-27 National Institute Of Advanced Industrial & Technology Semiconductor device, fabricating method thereof, and deuterium processor
JP2007096263A (en) * 2005-08-31 2007-04-12 Denso Corp SiC SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING SAME
US8536066B2 (en) 2005-09-16 2013-09-17 Cree, Inc. Methods of forming SiC MOSFETs with high inversion layer mobility
US7727904B2 (en) 2005-09-16 2010-06-01 Cree, Inc. Methods of forming SiC MOSFETs with high inversion layer mobility
WO2007102281A1 (en) * 2006-03-07 2007-09-13 National Institute Of Advanced Industrial Science And Technology Method for manufacturing silicon carbide semiconductor device, and silicon carbide semiconductor device
US7811874B2 (en) 2006-03-07 2010-10-12 National Institute Of Advanced Industrial Science And Technology Method for manufacturing silicon carbide semiconductor device, and silicon carbide semiconductor device
JP2008004680A (en) * 2006-06-21 2008-01-10 Nissan Motor Co Ltd Semiconductor device and method of manufacturing the same
US9548374B2 (en) 2006-08-17 2017-01-17 Cree, Inc. High power insulated gate bipolar transistors
JP2008147365A (en) * 2006-12-08 2008-06-26 Tohoku Univ Semiconductor device and manufacturing method thereof
US8835987B2 (en) 2007-02-27 2014-09-16 Cree, Inc. Insulated gate bipolar transistors including current suppressing layers
US9064840B2 (en) 2007-02-27 2015-06-23 Cree, Inc. Insulated gate bipolar transistors including current suppressing layers
US8133787B2 (en) 2007-02-28 2012-03-13 Denso Corporation SiC semiconductor device and method for manufacturing the same
US7824995B2 (en) 2007-02-28 2010-11-02 Denso Corporation SiC semiconductor device and method for manufacturing the same
JP2008244455A (en) * 2007-02-28 2008-10-09 Denso Corp Silicon carbide semiconductor device and manufacturing method thereof
JP2008244456A (en) * 2007-02-28 2008-10-09 Denso Corp Silicon carbide semiconductor device and manufacturing method thereof
EP1965430A3 (en) * 2007-02-28 2009-08-12 Denso Corporation Sic semiconductor device and method for manufacturing the same
JP2010027962A (en) * 2008-07-23 2010-02-04 Sumitomo Electric Ind Ltd Method of manufacturing silicon carbide semiconductor device and silicon carbide semiconductor device
JP2009065174A (en) * 2008-09-25 2009-03-26 Fuji Electric Device Technology Co Ltd Oxide film forming method of silicon carbide semiconductor substrate
US9640652B2 (en) 2009-03-27 2017-05-02 Cree, Inc. Semiconductor devices including epitaxial layers and related methods
US9117739B2 (en) 2010-03-08 2015-08-25 Cree, Inc. Semiconductor devices with heterojunction barrier regions and methods of fabricating same
US9673283B2 (en) 2011-05-06 2017-06-06 Cree, Inc. Power module for supporting high current densities
US9142662B2 (en) 2011-05-06 2015-09-22 Cree, Inc. Field effect transistor devices with low source resistance
US9029945B2 (en) 2011-05-06 2015-05-12 Cree, Inc. Field effect transistor devices with low source resistance
US9984894B2 (en) 2011-08-03 2018-05-29 Cree, Inc. Forming SiC MOSFETs with high channel mobility by treating the oxide interface with cesium ions
US10141302B2 (en) 2011-09-11 2018-11-27 Cree, Inc. High current, low switching loss SiC power module
US9640617B2 (en) 2011-09-11 2017-05-02 Cree, Inc. High performance power module
US9373617B2 (en) 2011-09-11 2016-06-21 Cree, Inc. High current, low switching loss SiC power module
US10153364B2 (en) 2011-09-11 2018-12-11 Cree, Inc. Power module having a switch module for supporting high current densities
US11024731B2 (en) 2011-09-11 2021-06-01 Cree, Inc. Power module for supporting high current densities
US11171229B2 (en) 2011-09-11 2021-11-09 Cree, Inc. Low switching loss high performance power module
JP2012186490A (en) * 2012-05-07 2012-09-27 National Institute Of Advanced Industrial & Technology Semiconductor device and semiconductor substrate deuterium treatment apparatus
JP2016058658A (en) * 2014-09-11 2016-04-21 国立研究開発法人産業技術総合研究所 Silicon carbide semiconductor device
US10186596B2 (en) 2016-05-30 2019-01-22 Kabushiki Kaisha Toshiba Silicon carbide (SiC) MOSFET with a silicon oxide layer capable of suppressing deterioration of carrier mobility and variation in threshold voltage
CN111415866A (en) * 2020-03-31 2020-07-14 中国科学院微电子研究所 Silicon carbide MOS capacitor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP3443589B2 (en) 2003-09-02

Similar Documents

Publication Publication Date Title
JP2000252461A (en) Manufacture of semiconductor device
US6136727A (en) Method for forming thermal oxide film of silicon carbide semiconductor device
EP1523032B1 (en) Method of production of a silicon carbide-oxide layered structure
Chung et al. Effects of anneals in ammonia on the interface trap density near the band edges in 4H–silicon carbide metal-oxide-semiconductor capacitors
US20020102358A1 (en) Method of fabricating an oxide layer on a silicon carbide layer utilizing an anneal in a hydrogen environment
JP2003069012A (en) Method of manufacturing semiconductor device
EP2062289B1 (en) Method for improving inversion layer mobility in a silicon carbide mosfet
US8119539B2 (en) Methods of fabricating oxide layers on silicon carbide layers utilizing atomic oxygen
JPH11505073A (en) Method for reducing defects in an oxide layer on silicon carbide
TW200926303A (en) Semiconductor device manufacturing method and semiconductor device
JP2005166930A (en) Sic-misfet and its manufacturing method
US8524585B2 (en) Method of manufacturing semiconductor device
JP3491050B2 (en) Method for forming thermal oxide film on silicon carbide semiconductor device
JP2009212366A (en) Method of manufacturing semiconductor device
JP3148982B2 (en) Semiconductor device and manufacturing method thereof
JP2005136386A (en) Silicon carbide-oxide laminate, manufacturing method therefor, and semiconductor device
JP2006156478A (en) Silicon carbide semiconductor device and its manufacturing method
JPH09321323A (en) Silicon carbide substrate, manufacture thereof and silicon carbide semiconductor device using the same substrate
JP6162388B2 (en) Method for manufacturing silicon carbide semiconductor device
JP2000001398A (en) Production of silicon carbide semiconductor substrate
JPH10112460A (en) Manufacture of silicon carbide semiconductor device
JP3372528B2 (en) Manufacturing method of semiconductor device
Hosoi et al. Investigation of surface and interface morphology of thermally grown SiO2 dielectrics on 4H-SiC (0001) substrates
CN210156382U (en) SiC-based MOS device
US5173127A (en) Semi-insulating inp single crystals, semiconductor devices having substrates of the crystals and processes for producing the same

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term