JP2000252391A - Wiring board for mounting semiconductor device and its mounting structure - Google Patents

Wiring board for mounting semiconductor device and its mounting structure

Info

Publication number
JP2000252391A
JP2000252391A JP11051876A JP5187699A JP2000252391A JP 2000252391 A JP2000252391 A JP 2000252391A JP 11051876 A JP11051876 A JP 11051876A JP 5187699 A JP5187699 A JP 5187699A JP 2000252391 A JP2000252391 A JP 2000252391A
Authority
JP
Japan
Prior art keywords
semiconductor element
wiring board
mounting
sealing layer
package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11051876A
Other languages
Japanese (ja)
Other versions
JP3842478B2 (en
Inventor
Masaya Kokubu
正也 國分
Masahiko Azuma
昌彦 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP05187699A priority Critical patent/JP3842478B2/en
Publication of JP2000252391A publication Critical patent/JP2000252391A/en
Application granted granted Critical
Publication of JP3842478B2 publication Critical patent/JP3842478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase reliability in connection (continuity of connection terminals) between a package and a circuit board. SOLUTION: In a package A having a mounting structure H1 for a wiring board for mounting a semiconductor device, a semiconductor device B is mounted on an insulating substrate 1, and connection electrodes 8 of the semiconductor device B and a metallized interconnection layer 2 of the insulating substrate 1 are connected by wires 9. Then, the entire body is covered with a sealing layer 10 and a plurality of stress reducing recesses 13 are formed on the surface of the sealing layer 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体素子を実装し
た配線基板に関し、表面実装型の高熱膨張特性を有する
絶縁基板(配線基板)上に半導体素子を固定し、熱硬化
性樹脂により封止せしめた半導体素子実装配線基板なら
びにその実装構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wiring board on which a semiconductor element is mounted, and in which a semiconductor element is fixed on a surface-mount type insulating substrate (wiring board) having a high thermal expansion characteristic and sealed with a thermosetting resin. The present invention relates to a semiconductor element mounting wiring board and a mounting structure thereof.

【0002】[0002]

【従来の技術】配線基板は絶縁基板の表面あるいは内部
にメタライズ配線層が配設された構造であり、代表的な
例として、半導体素子、とくにLSI(大規模集積回路
素子)等の半導体集積回路素子を収容する半導体素子収
納用パッケージがある。
2. Description of the Related Art A wiring board has a structure in which a metallized wiring layer is provided on the surface or inside of an insulating substrate. As a typical example, a semiconductor element, particularly a semiconductor integrated circuit such as an LSI (large-scale integrated circuit element) is used. There is a semiconductor device housing package for housing an element.

【0003】半導体素子収納用パッケージは、アルミナ
セラミックスからなる絶縁基板の表面および内部にタン
グステン、モリブデン等の高融点金属粉末からなる複数
個のメタライズ配線層が配設され、半導体素子に形成さ
れた接続用電極と、パッケージ側の素子搭載部周辺に形
成されたメタライズ層とをワイヤでもって接続してい
る。このようなワイヤボンディング方式によれば、パッ
ケージの上に熱硬化性樹脂を塗布し、熱硬化性樹脂を介
して半導体素子を載置し、その樹脂を硬化させることで
固定する。
In a package for housing a semiconductor element, a plurality of metallized wiring layers made of a refractory metal powder such as tungsten or molybdenum are provided on the surface and inside of an insulating substrate made of alumina ceramics, and a connection formed on the semiconductor element is formed. The electrode for use and the metallized layer formed around the element mounting portion on the package side are connected by wires. According to such a wire bonding method, a thermosetting resin is applied onto a package, a semiconductor element is mounted via the thermosetting resin, and the resin is cured to fix the semiconductor element.

【0004】一般に半導体素子の集積度が高くなると、
半導体素子に形成される電極数が増大し、さらに半導体
収納用パッケージにおける端子数も増大する。さらに、
年々、パッケージに対する小型化が求められ、近年、半
導体素子のチップ面積がパッケージ面積の50%以上に
いたるチップサイズパッケージ(CSP)が主流であ
る。
In general, as the degree of integration of semiconductor devices increases,
The number of electrodes formed on the semiconductor element increases, and the number of terminals in the semiconductor storage package also increases. further,
The size of the package is required year by year, and in recent years, a chip size package (CSP) in which a chip area of a semiconductor element reaches 50% or more of the package area is mainly used.

【0005】また、半導体素子が固定されたパッケージ
(配線基板)をマザーボード用の外部電気回路基板に実
装する場合があり、その場合には配線基板の底面に形成
された接続端子と、外部電気回路基板に形成された配線
導体とをロウ材などの導電性接着剤によって電気的に接
続し実装される。この外部電気回路基板はプリント基板
などのガラスと合成樹脂との複合材で構成される。
In some cases, a package (wiring board) to which a semiconductor element is fixed is mounted on an external electric circuit board for a motherboard. In this case, a connection terminal formed on the bottom of the wiring board and an external electric circuit The wiring conductor formed on the substrate is electrically connected and mounted by a conductive adhesive such as a brazing material. This external electric circuit board is composed of a composite material of glass such as a printed board and a synthetic resin.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記構
成のようなボールグリッドアレイ(BGA)のような接
続端子を高密度に形成した配線基板においては、絶縁基
板をアルミナ、ムライト等のセラミックスにて形成する
が、このような配線基板をガラス−エポキシ樹脂複合材
料などの有機樹脂を含むプリント基板などの外部電気回
路基板に表面実装した場合、半導体素子の作動時に発す
る熱が絶縁基板と外部電気回路基板の双方に繰り返し印
加され、両者の熱膨張係数差に起因して熱応力が発生
し、この熱応力によって、接続端子が絶縁基板から剥離
したり、接続端子の接続部にクラックなどが生じ、これ
により、配線基板を外部電気回路基板上に長期にわたり
安定して固定されないという課題があった。
However, in a wiring board having connection terminals formed at a high density, such as a ball grid array (BGA), the insulating substrate is formed of ceramics such as alumina and mullite. However, when such a wiring board is surface-mounted on an external electric circuit board such as a printed circuit board containing an organic resin such as a glass-epoxy resin composite material, heat generated during operation of the semiconductor element is generated by the insulating substrate and the external electric circuit board. Is repeatedly applied to both of them, and a thermal stress is generated due to a difference in thermal expansion coefficient between the two, and the thermal stress causes the connection terminal to peel off from the insulating substrate or to cause a crack or the like at a connection portion of the connection terminal. Therefore, there is a problem that the wiring board is not stably fixed on the external electric circuit board for a long time.

【0007】この課題を解消するために、前記絶縁基板
をアルミナ、ムライト等のセラミックスに代えて高熱膨
張ガラスセラミックスにより形成し、これにより、配線
基板と外部電気回路基板との熱膨張差を小さくて接続信
頼性を改善する技術が提案されている(特開平8−27
9574号と特願平8−322038号参照)。
In order to solve this problem, the insulating substrate is formed of a high thermal expansion glass ceramic instead of ceramics such as alumina and mullite, thereby reducing the thermal expansion difference between the wiring substrate and the external electric circuit substrate. A technique for improving connection reliability has been proposed (Japanese Patent Laid-Open No. 8-27).
9574 and Japanese Patent Application No. 8-322038).

【0008】しかしながら、このような高熱膨張材料か
らなる絶縁基板を用いても、ワイヤおよび半導体素子を
熱硬化性樹脂により封止する構造において、配線基板を
外部電気回路基板に表面実装した場合、半導体素子の作
動時に発する熱で、熱硬化性樹脂もしくは絶縁基板との
間にて熱膨張係数およびヤング率が大きく異なることに
起因し、絶縁基板が変形し、これにより、外部電気回路
基板との接合界面に応力が集中し、接続端子が絶縁基板
より剥離し、長期にわたり安定して電気的接続状態が維
持されないという課題がある。
However, even when such an insulating substrate made of a high thermal expansion material is used, in a structure in which wires and semiconductor elements are sealed with a thermosetting resin, when a wiring board is surface-mounted on an external electric circuit board, the The heat generated during the operation of the element, resulting in a large difference in the coefficient of thermal expansion and the Young's modulus between the thermosetting resin and the insulating substrate. There is a problem that stress concentrates on the interface, the connection terminal peels off from the insulating substrate, and the electrical connection state cannot be stably maintained for a long time.

【0009】したがって本発明の目的は配線基板(絶縁
基板)の変形を可及的に小さくして、長期にわたり安定
して電気的接続状態が維持された長期信頼性に優れた半
導体素子配線基板ならびにその実装構造を提供すること
にある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a semiconductor element wiring board excellent in long-term reliability in which deformation of a wiring board (insulating substrate) is made as small as possible, and an electric connection state is stably maintained for a long time. It is to provide the mounting structure.

【0010】[0010]

【発明が解決するための手段】本発明の半導体素子実装
配線基板は、絶縁基板にメタライズ配線層を形成してな
る配線基板上に接着剤を介して半導体素子を固定し、メ
タライズ配線層と半導体素子とをワイヤによって電気的
に接続し、ワイヤおよび半導体素子を熱硬化性樹脂から
なる封止層により封止せしめたものであって、さらに封
止層の表面に複数の溝を設けてなることを特徴とする。
According to the present invention, there is provided a wiring board for mounting a semiconductor element, wherein a semiconductor element is fixed via an adhesive on a wiring board having a metallized wiring layer formed on an insulating substrate, and the metallized wiring layer and the semiconductor are mounted on the wiring board. The element and the element are electrically connected by a wire, and the wire and the semiconductor element are sealed with a sealing layer made of a thermosetting resin, and a plurality of grooves are provided on the surface of the sealing layer. It is characterized by.

【0011】また、本発明の半導体素子実装配線基板の
実装構造は、絶縁基板にメタライズ配線層を形成してな
る配線基板上に接着剤を介して半導体素子を固定し、メ
タライズ配線層と半導体素子とをワイヤによって電気的
に接続し、ワイヤおよび半導体素子を熱硬化性樹脂から
なる封止層により封止せしめた半導体素子実装配線基板
を、ガラスと合成樹脂との複合材からなる絶縁板により
構成された回路基板上に配設したものであって、さらに
封止層の表面に複数の溝を設けてなることを特徴とす
る。
Further, according to the mounting structure of a semiconductor element mounting wiring board of the present invention, a semiconductor element is fixed via an adhesive on a wiring board formed by forming a metallized wiring layer on an insulating substrate, and the metallized wiring layer is connected to the semiconductor element. And a semiconductor element mounting wiring board in which the wires and the semiconductor elements are electrically sealed by a sealing layer made of a thermosetting resin, which is composed of an insulating plate made of a composite material of glass and synthetic resin. And a plurality of grooves are provided on the surface of the sealing layer.

【0012】[0012]

【発明の実施の形態】本発明の半導体素子実装配線基板
としてボールグリッドアレイ(BGA)型のチップサイ
ズパッケージを例にして図1〜図12により説明する。
図1は半導体素子実装配線基板の実装構造H1の断面
図、図2の(1)〜(3)はその製造工程を示す斜視図
である。図3は他の半導体素子実装配線基板の実装構造
H2の断面図、図4〜図12は前記封止層の表面に形成
した溝の模様を示す平面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A ball grid array (BGA) type chip size package will be described as an example of a semiconductor element mounting wiring board of the present invention with reference to FIGS.
FIG. 1 is a sectional view of a mounting structure H1 of a semiconductor element mounting wiring board, and FIGS. 2 (1) to (3) are perspective views showing a manufacturing process thereof. FIG. 3 is a cross-sectional view of a mounting structure H2 of another semiconductor element mounting wiring board, and FIGS. 4 to 12 are plan views showing patterns of grooves formed on the surface of the sealing layer.

【0013】半導体素子実装配線基板 半導体素子実装配線基板の実装構造H1において、Aは
前記半導体素子実装配線基板であるBGA型のパッケー
ジ、Bは半導体素子、Cは回路基板であって、このパッ
ケージAを説明する。
[0013] In the semiconductor element mounting wiring board mounting a semiconductor element wiring mounting structure H1 of the substrate, A is BGA type package which is a semiconductor element mounting wiring board, B is a semiconductor device, C is a circuit board, the package A Will be described.

【0014】絶縁基板1の表面には半導体素子Bと接続
されるメタライズ配線層2が形成され、底面には回路基
板Cと接続するための接続パッド6が取り付けられてい
る。メタライズ配線層2や絶縁基板1の内部に形成され
たメタライズ配線層4はビアホール導体5を通して接続
パッド6に電気的に接続されている。接続端子3はボー
ル状の半田ボールにより構成され、接続パッド6に対し
て半田等により取着されている。
A metallized wiring layer 2 connected to the semiconductor element B is formed on the surface of the insulating substrate 1, and connection pads 6 for connecting to the circuit board C are mounted on the bottom surface. The metallized wiring layer 2 and the metallized wiring layer 4 formed inside the insulating substrate 1 are electrically connected to connection pads 6 through via hole conductors 5. The connection terminal 3 is formed of a ball-shaped solder ball, and is attached to the connection pad 6 by solder or the like.

【0015】半導体素子Bはシリコン(Si)材料から
なり、たとえば熱硬化性樹脂7でもって絶縁基板1の表
面に接着固定されている。熱硬化性樹脂7にノボラック
型エポキシやビスフェノールA型エポキシ樹脂を使用す
ると、絶縁基板1との接着性に優れる点でよい。また、
半導体素子Bには接続用電極8が設けられ、ワイヤ9に
よってメタライズ配線層2と電気的に接続されている。
さらに半導体素子Bおよびワイヤ9は封止用樹脂からな
る封止層10によって被覆されている。かかる封止用樹
脂はエポキシ樹脂、フェノール樹脂、ユリア樹脂、メラ
ニン樹脂、ポリイミド樹脂、シリコーン樹脂、不飽和ポ
リエステル樹脂、フタル酸ジアリル樹脂、ポリウレタン
樹脂等で形成するが、就中、ビスフェノール型エポキシ
やノボラック型エポキシなどのエポキシ樹脂がよい。
The semiconductor element B is made of a silicon (Si) material and is bonded and fixed to the surface of the insulating substrate 1 with, for example, a thermosetting resin 7. The use of a novolak type epoxy or a bisphenol A type epoxy resin as the thermosetting resin 7 is advantageous in that the adhesiveness to the insulating substrate 1 is excellent. Also,
The semiconductor element B is provided with a connection electrode 8 and is electrically connected to the metallized wiring layer 2 by a wire 9.
Further, the semiconductor element B and the wire 9 are covered with a sealing layer 10 made of a sealing resin. Such a sealing resin is formed of epoxy resin, phenol resin, urea resin, melanin resin, polyimide resin, silicone resin, unsaturated polyester resin, diallyl phthalate resin, polyurethane resin, etc. An epoxy resin such as a mold epoxy is preferred.

【0016】パッケージAに半導体素子Bを実装するに
は、絶縁基板1の表面に未硬化(軟質状態)の熱硬化性
樹脂を塗布した後、半導体素子Bを載置して接着し、約
100〜200℃の温度でもって加熱することで熱硬化
性樹脂を硬化させ固定する。その後、ワイヤ9にて半導
体素子Bの接続用電極8とパッケージAのメタライズ配
線層2とを接続し、熱硬化性樹脂からなる封止材を塗布
することにより封止し硬化させることで、封止層10と
なす。
In order to mount the semiconductor element B on the package A, an uncured (soft state) thermosetting resin is applied to the surface of the insulating substrate 1, and then the semiconductor element B is placed and adhered. The thermosetting resin is cured and fixed by heating at a temperature of about 200 ° C. After that, the connection electrode 8 of the semiconductor element B and the metallized wiring layer 2 of the package A are connected by the wire 9, and a sealing material made of a thermosetting resin is applied to seal and cure, thereby sealing. A stop layer 10 is formed.

【0017】そして、封止層10の表面に複数の応力緩
和溝13を、その封止材の硬化前もしくは硬化後のいず
れかにて形成する。
A plurality of stress relaxation grooves 13 are formed on the surface of the sealing layer 10 before or after the sealing material is cured.

【0018】封止層10の硬化前に応力緩和溝13を形
成するには、応力緩和溝13のパターンに対応するよう
な突起パターンを備えた治具を、封止材の塗布後に押し
当て、その後に硬化させる。硬化後であれば、回転刃や
レーザー等でもって応力緩和溝13のパターンとおりに
形成する。
In order to form the stress relaxation groove 13 before the sealing layer 10 is cured, a jig provided with a projection pattern corresponding to the pattern of the stress relaxation groove 13 is pressed after applying the sealing material, Then it is cured. After the curing, the stress relief grooves 13 are formed in the pattern of the stress relief grooves 13 using a rotary blade, a laser, or the like.

【0019】このような応力緩和溝13の代表例として
各応力緩和溝13a〜13iを図4〜図12に示す。図
4に示す応力緩和溝13aでは格子状に、図5の応力緩
和溝13bでは円環状に、図6の応力緩和溝13cでは
2通りの格子状を組合せて、図7の応力緩和溝13dで
は斜線状に形成している。図8〜図10に示す応力緩和
溝13e、13f、13gでは破線にて矩形状、斜線
状、円環状に形成している。図11に示す応力緩和溝1
3hでは放射状の溝を、図12に示す応力緩和溝13i
ではクロス状の溝を形成している。
FIGS. 4 to 12 show stress relief grooves 13a to 13i as typical examples of such stress relief grooves 13. FIG. The stress relaxing groove 13a shown in FIG. 4 has a lattice shape, the stress relaxing groove 13b of FIG. 5 has an annular shape, the stress relaxing groove 13c of FIG. 6 has a combination of two lattice shapes, and the stress relaxing groove 13d of FIG. It is formed obliquely. The stress relaxation grooves 13e, 13f, and 13g shown in FIGS. 8 to 10 are formed in a rectangular shape, a diagonal shape, and an annular shape by broken lines. Stress relief groove 1 shown in FIG.
3h, radial grooves are formed as stress relief grooves 13i shown in FIG.
Then, a cross-shaped groove is formed.

【0020】かくしてパッケージAによれば、封止層1
0の表面に複数の応力緩和溝13を、その封止材の硬化
前もしくは硬化後のいずれかにて形成することで、パッ
ケージAに反りが生じても応力が吸収される。
Thus, according to the package A, the sealing layer 1
By forming a plurality of stress relaxation grooves 13 on the surface of the package A either before or after the sealing material is cured, stress can be absorbed even if the package A is warped.

【0021】応力緩和溝13の幅は0.02〜0.2m
m、好適には0.05〜0.1mm、深さは0.02〜
0.3mm、好適には0.05〜0.1mmにするとよ
い。
The width of the stress relaxation groove 13 is 0.02 to 0.2 m
m, preferably 0.05-0.1 mm, depth 0.02-
0.3 mm, preferably 0.05 to 0.1 mm.

【0022】応力緩和溝13の幅が0.02mm未満の
場合、緩和効果が顕著にあらわれず、絶縁基板が変形
し、破壊が生じる。0.2mmを超えると幅が広すぎる
ことで応力により溝の破壊が生じ、基板自体を破壊して
しまう。
When the width of the stress relaxation groove 13 is less than 0.02 mm, the relaxation effect is not remarkably exhibited, and the insulating substrate is deformed and broken. If the thickness exceeds 0.2 mm, the width is too wide, and the groove is broken by stress, and the substrate itself is broken.

【0023】応力緩和溝13の深さが0.02mm未満
の場合、緩和効果が顕著にあらわれず、絶縁基板が変形
し、破壊が生じる。0.3mmを超えると深すぎること
で、応力により溝の破壊が生じ、基板自体を破壊してし
まう。
When the depth of the stress relaxation groove 13 is less than 0.02 mm, the relaxation effect is not remarkably exhibited, and the insulating substrate is deformed and destroyed. If it exceeds 0.3 mm, the groove is too deep, so that the groove is broken by the stress and the substrate itself is broken.

【0024】また、封止層10でもって絶縁基板1の反
りが吸収されるが、封止層10と絶縁基板1との熱膨張
係数差が大きいほどに顕著な効果が得られる。とくに封
止層10と絶縁基板1との熱膨張係数差が5ppm/℃
以上になると、封止層10でもって十分に反りが吸収さ
れなくなることから、もっとも顕著な効果が得られる。
Although the warpage of the insulating substrate 1 is absorbed by the sealing layer 10, a remarkable effect is obtained as the difference in thermal expansion coefficient between the sealing layer 10 and the insulating substrate 1 increases. In particular, the difference in thermal expansion coefficient between the sealing layer 10 and the insulating substrate 1 is 5 ppm / ° C.
Above, the most remarkable effect can be obtained because the warpage is not sufficiently absorbed by the sealing layer 10.

【0025】パッケージAの作製方法 絶縁基板1はたとえば高熱膨張セラミック材料により構
成するが、リチウム珪酸系ガラス、PbO系ガラス、Z
nO系ガラス、BaO系ガラス等のガラス成分に対し、
エンステタタイト、フォルステライト、SiO2 系(ク
オーツ、トリジマイト、クリストバライト)、MgO、
ZrO2 、ペタライト等の各種フィラーを複合したもの
が好適である(特開昭63−117929号参照)。
Method of Manufacturing Package A The insulating substrate 1 is made of, for example, a high thermal expansion ceramic material, and includes lithium silicate glass, PbO glass, Z
For glass components such as nO-based glass and BaO-based glass,
Enstatatite, forsterite, SiO 2 (quartz, tridymite, cristobalite), MgO,
Those obtained by combining various fillers such as ZrO 2 and petalite are preferable (see JP-A-63-117929).

【0026】たとえば、ガラス成分20〜90体積%、
フィラー80〜10体積%の混合物に、有機バインダー
を添加してスラリーを調整し、そのスラリーをシート状
に成形した後、そのシート状成形体の表面に銅、金、銀
などの低抵抗金属を含む導体ペーストを印刷塗布する。
さらに所望によりシート状成形体の所定部位にマイクロ
ドリルやレーザー等によりスルーホールを形成して、ホ
ール内に上記導体ペーストを充填する。そして、そのシ
ート状成形体を複数積層圧着して積層体を作製し、その
後、窒素雰囲気あるいは水蒸気を含む窒素雰囲気中で脱
脂をおこない、ついで800〜1000℃の温度で焼成
し、パッケージAとする。
For example, 20 to 90% by volume of a glass component,
An organic binder is added to a mixture of 80 to 10% by volume of a filler to prepare a slurry, and the slurry is formed into a sheet. Then, a low-resistance metal such as copper, gold, or silver is coated on the surface of the sheet-shaped formed body. The conductive paste containing is printed and applied.
Further, if necessary, a through hole is formed in a predetermined portion of the sheet-like molded body by a microdrill, a laser, or the like, and the hole is filled with the conductive paste. Then, a plurality of the sheet-shaped molded bodies are laminated and pressed to produce a laminated body. Thereafter, degreasing is performed in a nitrogen atmosphere or a nitrogen atmosphere containing water vapor, and then baked at a temperature of 800 to 1000 ° C. to obtain a package A. .

【0027】上記の如き絶縁基板1を40〜400℃に
おける熱膨張係数が8〜18ppm/℃の材料でもって
構成した場合、熱硬化性樹脂7の40℃〜ガラス転移温
度における熱膨張係数を20〜70ppm/℃にすると
よく、これにより、絶縁基板1と熱硬化性樹脂7との
間、熱硬化性樹脂7と半導体素子Bとの間、封止層10
と絶縁基板1との間とに発生する応力が小さくなり、そ
れぞれの界面で剥離などが生じ難いという利点がある。
When the insulating substrate 1 is made of a material having a thermal expansion coefficient of 8 to 18 ppm / .degree. C. at 40 to 400.degree. C., the thermosetting resin 7 has a thermal expansion coefficient of 20 to 40.degree. To 70 ppm / ° C., whereby the gap between the insulating substrate 1 and the thermosetting resin 7, the gap between the thermosetting resin 7 and the semiconductor element B, the sealing layer 10
There is an advantage that stress generated between the substrate and the insulating substrate 1 is reduced, and separation or the like hardly occurs at each interface.

【0028】このような熱硬化性樹脂7にはビスフェノ
ールA型エポキシやノボラック型エポキシなどのエポキ
シ樹脂に少量の硬化剤を加えて、平均粒度が3〜50μ
mのシリカやアルミナの粉末からなるフィラーを30〜
90重量%含有させたものを使用すればよい。
Such a thermosetting resin 7 is prepared by adding a small amount of a curing agent to an epoxy resin such as a bisphenol A type epoxy or a novolak type epoxy to have an average particle size of 3 to 50 μm.
m of silica or alumina powder from 30 to
What contained 90 weight% should just be used.

【0029】半導体素子実装配線基板の実装構造H1 つぎに上記構成のパッケージAを回路基板Cに実装した
半導体素子実装配線基板の実装構造H1を説明する。回
路基板Cはプリント基板などの有機樹脂としてエポキシ
樹脂、フェノール樹脂、アラミド樹脂、ポリイミド樹
脂、ポリオレフィン樹脂から選ばれる少なくとも1種の
熱硬化性樹脂を含み、さらにフィラー成分としてガラス
などを含むガラス−エポキシ樹脂、ガラス−ポリイミド
樹脂複合材料などの有機樹脂を含む材料からなる絶縁基
体11の表面に、Cu、Au、Al、Ni、Pb−Sn
から選ばれた少なくとも1種の金属を含む配線層12が
被着形成されたものである。
[0029] illustrating the mounting structure H1 of the semiconductor element mounting wiring board on which the package A semiconductor element mounting wiring board of the mounting structure H1 then the configuration on the circuit board C. The circuit board C contains at least one kind of thermosetting resin selected from an epoxy resin, a phenol resin, an aramid resin, a polyimide resin, and a polyolefin resin as an organic resin such as a printed board, and further includes glass-epoxy containing glass as a filler component. Cu, Au, Al, Ni, Pb-Sn are formed on the surface of an insulating substrate 11 made of a material containing an organic resin such as a resin or a glass-polyimide resin composite material.
And a wiring layer 12 containing at least one metal selected from the group consisting of:

【0030】そして、回路基板Cの配線層12の上に、
パッケージAの接続端子3が半田などのロウ材を介して
電気的に接続させることで、パッケージAが回路基板C
上に実装される。
Then, on the wiring layer 12 of the circuit board C,
When the connection terminals 3 of the package A are electrically connected via a brazing material such as solder, the package A
Implemented above.

【0031】かかるパッケージAおよび実装構造H1に
おいて、絶縁基板1は40〜400℃における熱膨張係
数が8〜18ppm/℃の材料、とくにセラミックスで
もって構成するとよい。すなわち、通常、半導体素子B
の熱膨張係数が2〜3ppm/℃、封止層10の熱膨張
係数が15〜70ppm/℃、回路基板Cの熱膨張係数
が12〜18ppm/℃であることで、絶縁基板1の熱
膨張係数を8〜18ppm/℃に規定することで総合的
に応力が小さくなる。絶縁基板1の熱膨張係数が8pp
m/℃未満である場合には、回路基板Cとの間の接続端
子や封止層10に高応力が発生しやすくなり、18pp
m/℃を超えると半導体素子Bとの間での応力が大きく
なる傾向にある。
In the package A and the mounting structure H1, the insulating substrate 1 is preferably made of a material having a coefficient of thermal expansion of 8 to 18 ppm / ° C. at 40 to 400 ° C., particularly ceramics. That is, usually, the semiconductor element B
The thermal expansion coefficient of the insulating substrate 1 is 2 to 3 ppm / ° C., the thermal expansion coefficient of the sealing layer 10 is 15 to 70 ppm / ° C., and the thermal expansion coefficient of the circuit board C is 12 to 18 ppm / ° C. By setting the coefficient to 8 to 18 ppm / ° C., the stress is reduced overall. The thermal expansion coefficient of the insulating substrate 1 is 8 pp
When the temperature is less than m / ° C., high stress is likely to be generated in the connection terminal between the circuit board C and the sealing layer 10, and the pressure is 18 pp.
If it exceeds m / ° C., the stress with the semiconductor element B tends to increase.

【0032】半導体素子実装配線基板の実装構造H1の
製造方法 上記構成の実装構造H1の製造工程を図2にて説明す
る。4個の実装構造H1を得るために、同図(1)に示
すようにベース基板14の上に、半導体素子Bが実装さ
れた4個の絶縁基板1を配設し、それぞれの絶縁基板1
にワイヤ9を接続し、ついで同図(2)に示すように熱
硬化性樹脂15を塗布して硬化させ、その後に破線にそ
ってカットし、同図(3)に示すように半導体素子実装
配線基板の実装構造H1を得る。
The mounting structure H1 of the semiconductor element mounting wiring board
Manufacturing Method A manufacturing process of the mounting structure H1 having the above configuration will be described with reference to FIG. In order to obtain four mounting structures H1, four insulating substrates 1 on each of which a semiconductor element B is mounted are arranged on a base substrate 14 as shown in FIG.
The wire 9 is connected, and then a thermosetting resin 15 is applied and cured as shown in FIG. 2B, and then cut along the broken line, and the semiconductor element is mounted as shown in FIG. The mounting structure H1 of the wiring board is obtained.

【0033】半導体素子実装配線基板の実装構造H2 つぎに他の半導体素子実装配線基板の実装構造H2を図
3により説明する。この実装構造H2では上記半導体素
子実装配線基板の実装構造H1と製造方法が異なる。な
お、半導体素子実装配線基板の実装構造H1と同一箇所
には同一符号を付す。
Next , the mounting structure H2 of another semiconductor element mounting wiring board will be described with reference to FIG. The mounting structure H2 is different from the mounting structure H1 of the semiconductor element mounting wiring board in a manufacturing method. The same parts as those of the mounting structure H1 of the semiconductor element mounting wiring board are denoted by the same reference numerals.

【0034】半導体素子実装配線基板の実装構造H2に
おいては、焼結前に個片化、あるいは焼結後に切断ある
いはスナップにより個片化した絶縁基板1上に半導体素
子Bを実装したものであって、つづけてワイヤ9をワイ
ヤーボンディングし、ワイヤ9と半導体素子Bとを覆う
ように熱硬化性樹脂を塗布して硬化させ、封止層10と
なし、パッケージA1を構成する。このパッケージA1
をあらかじめ用意した回路基板Cの上に実装する。
In the mounting structure H2 of the semiconductor element mounting wiring board, the semiconductor element B is mounted on the insulating substrate 1 which has been cut into pieces before sintering or cut or snapped after sintering. Subsequently, the wire 9 is wire-bonded, and a thermosetting resin is applied and cured so as to cover the wire 9 and the semiconductor element B, thereby forming the package A1 without the sealing layer 10. This package A1
Is mounted on a circuit board C prepared in advance.

【0035】半導体素子実装配線基板の実装構造H1と
半導体素子実装配線基板の実装構造H2とを対比する
に、双方の間にて封止層10用の熱硬化性樹脂の塗布方
法に違いが生じ、これに起因して半導体素子実装配線基
板の実装構造H2の方にて使用する封止層10の熱硬化
性樹脂の使用量が少なくなり、これにより、発生応力が
小さくなる。
When comparing the mounting structure H1 of the semiconductor element mounting wiring board and the mounting structure H2 of the semiconductor element mounting wiring board, a difference occurs in the method of applying the thermosetting resin for the sealing layer 10 between the two. As a result, the amount of the thermosetting resin used for the sealing layer 10 used in the mounting structure H2 of the semiconductor element mounting wiring board is reduced, thereby reducing the generated stress.

【0036】[0036]

【実施例】(例1)封止層10に図6に示すような応力
緩和溝13cを形成した半導体素子実装配線基板の実装
構造H2を作製して、耐熱サイクル試験をおこなった。
EXAMPLE 1 A mounting structure H2 of a semiconductor element mounting wiring board in which a stress relaxation groove 13c as shown in FIG. 6 was formed in the sealing layer 10 was manufactured, and a heat cycle test was performed.

【0037】パッケージA1をなす絶縁基板1について
は、ガラスセラミックス(リチウム珪酸系、鉛系、ジル
コニア系等のガラスに、シリカ系、フォルステライトな
どのフィラーを加えたもの)で構成し、これによって熱
膨張係数を11.5ppm/℃とした。このような材料
でもって絶縁基板1を作製するに際し、900℃の温度
で同時焼成することで、絶縁基板1の表面にはメタライ
ズ配線層2や144個の接続パッド6を、さらに絶縁基
板1の内部にメタライズ配線層4やビアホール導体5を
銅ペーストの印刷もしくは充填により形成し、パッケー
ジA1を得る。
The insulating substrate 1 forming the package A1 is made of glass ceramic (lithium silicate-based, lead-based, zirconia-based glass, and the like, and filler such as silica-based or forsterite-added). The expansion coefficient was 11.5 ppm / ° C. Simultaneous firing at a temperature of 900 ° C. at the time of manufacturing the insulating substrate 1 using such a material allows the metallized wiring layer 2 and 144 connection pads 6 on the surface of the insulating substrate 1, A metallized wiring layer 4 and a via-hole conductor 5 are formed inside by printing or filling with a copper paste to obtain a package A1.

【0038】ついで各接続パッド6の上に低融点半田
(Sn:Pb重量比=63:37)を介して高融点半田
ボール(Sn:Pb重量比=10:90、径:0.5m
m)を取り付けることでパッケージA1となした。かか
るパッケージ寸法は13mm×13mm×0.4mmで
ある。
Next, a high melting point solder ball (Sn: Pb weight ratio = 10: 90, diameter: 0.5 m) is provided on each connection pad 6 via a low melting point solder (Sn: Pb weight ratio = 63: 37).
m) was attached to form package A1. Such package dimensions are 13 mm × 13 mm × 0.4 mm.

【0039】上記構成のパッケージA1の上に8mm×
8mmの半導体素子B(40〜400℃における熱膨張
係数が2.6ppm/℃であるシリコン(Si)からな
る)をビスフェノール型エポキシからなる熱硬化性樹脂
7を介して実装する。
8 mm ×
An 8 mm semiconductor element B (made of silicon (Si) having a thermal expansion coefficient of 2.6 ppm / ° C. at 40 to 400 ° C.) is mounted via a thermosetting resin 7 made of bisphenol-type epoxy.

【0040】その後、ワイヤ9によって接続用電極8と
メタライズ配線層2とを電気的に接続し、さらに半導体
素子Bおよびワイヤ9をシリカフィラーを80重量%含
むノボラック型エポキシ樹脂からなる熱硬化性樹脂の封
止層10(熱膨張係数:19.5ppm/℃)によって
被覆し封止する。
Thereafter, the connection electrode 8 and the metallized wiring layer 2 are electrically connected by the wire 9, and the semiconductor element B and the wire 9 are thermosetting resin made of a novolak-type epoxy resin containing 80% by weight of a silica filler. And sealing with a sealing layer 10 (thermal expansion coefficient: 19.5 ppm / ° C.).

【0041】つづいてサイズを違えたさまざまな突起パ
ターンを備えた各種治具を塗布後の封止層10に押し当
て、その後に硬化させ、これによって表1に示すように
応力緩和溝13の幅と深さが異なるパッケージA1を作
製した。なお、封止層10の熱硬化性樹脂の硬化後に、
回転刃やレーザーでもって応力緩和溝13のパターンを
形成しても、双方の作成方法の違いにより特性上差があ
らわれなかった。
Subsequently, various jigs having various projection patterns of different sizes are pressed against the applied sealing layer 10 and then cured, whereby the width of the stress relief groove 13 is changed as shown in Table 1. And a package A1 having a different depth. After the thermosetting resin of the sealing layer 10 is cured,
Even when the pattern of the stress relaxation groove 13 was formed by using a rotary blade or a laser, no difference was observed in the characteristics due to the difference between the two forming methods.

【0042】[0042]

【表1】 [Table 1]

【0043】かくして得られた各種パッケージA1(試
料No.1〜試料No.13)を熱サイクル試験という
耐久テストをおこなった。試料No.1は応力緩和溝1
3を形成しない場合を示す。
The various packages A1 (Sample Nos. 1 to 13) thus obtained were subjected to a durability test called a heat cycle test. Sample No. 1 is stress relief groove 1
3 is not formed.

【0044】熱サイクル試験は2次実装サイクル寿命と
ワイヤ電気接続性熱サイクル寿命との双方でもって測定
評価した。
In the thermal cycle test, both the secondary mounting cycle life and the wire electrical connection thermal cycle life were measured and evaluated.

【0045】2次実装サイクル寿命とはパッケージA1
と回路基板Cとを電気的に接続している接続端子3の破
壊寿命であって、この接続端子3には、パッケージA1
と回路基板Cとの間の熱膨張係数差に起因し温度サイク
ル試験によって応力が発生し、それに伴う耐久性を評価
する。
The secondary mounting cycle life is defined as package A1.
Life of the connection terminal 3 that electrically connects the circuit board C to the connection terminal 3, and the connection terminal 3
A stress is generated by a temperature cycle test due to a difference in thermal expansion coefficient between the substrate and the circuit board C, and the resulting durability is evaluated.

【0046】ワイヤ電気接続性熱サイクル寿命とはワイ
ヤ9が断線する寿命である。すなわち、封止層10の厚
み(量)が十分である場合には断線しないが、本発明の
ように応力緩和溝を設けることで封止層10の厚みが小
さくなり、これにより、ワイヤ9に高い応力が発生する
が、このようなワイヤの耐久性を評価する。
The wire electrical connection thermal cycle life is the life of the wire 9 breaking. That is, the wire is not broken when the thickness (amount) of the sealing layer 10 is sufficient, but the thickness of the sealing layer 10 is reduced by providing the stress relaxation groove as in the present invention. Although high stress is generated, the durability of such a wire is evaluated.

【0047】これらの熱サイクル試験においては、各種
パッケージA1を回路基板Cに実装したそれぞれの半導
体素子実装配線基板の実装構造H2に対し、大気の雰囲
気において−40℃にて25分間保持し、ついで125
℃にて25分間保持することで、1サイクルとなし、そ
のようなサイクルを最高3000回繰り返す実験をおこ
ない、そして、2次実装サイクル寿命を評価するために
パッケージA1と回路基板Cとの間の接続状態(接続端
子3の通電)を、さらに半導体素子Bの接続用電極8と
パッケージA1のメタライズ配線層2との間の接続状態
(ワイヤ9の通電)を50サイクル毎に測定した。
In these thermal cycle tests, the mounting structure H2 of each semiconductor element mounting wiring board in which various packages A1 were mounted on the circuit board C was held at -40 ° C. for 25 minutes in the air atmosphere. 125
By holding at 25 ° C. for 25 minutes, one cycle was performed, and an experiment in which such a cycle was repeated up to 3,000 times was performed. In order to evaluate the secondary mounting cycle life, a test was conducted between the package A1 and the circuit board C. The connection state (energization of the connection terminal 3) and the connection state (energization of the wire 9) between the connection electrode 8 of the semiconductor element B and the metallized wiring layer 2 of the package A1 were measured every 50 cycles.

【0048】表1に示す結果から明らかなとおり、本発
明の試料No.2〜No.13においては、いずれもヒ
ートサイクルの耐久性に優れ、すなわち、高温から低温
になると封止層10が大きく収縮変形し、これにより、
パッケージA1と封止層10との界面に高応力が発生
し、この応力によりパッケージA1は周辺部にて持ち上
がるような変形が生じるが、その変形によって、とくに
パッケージ周辺部に位置する接続端子3に高い応力が発
生し、その接続端子3にクラックが発生し、断線しやす
くなるが、応力緩和溝を設けたことで、封止層10の変
形が小さくなり、接続端子3に発生する応力が低減で
き、2次実装サイクル寿命では1400サイクル以上の
優れた特性が得られた。これに対し従来の試料No.1
では、1000サイクルまでであった。また、本発明で
あれば、2次実装サイクル寿命についても1200サイ
クル以上の特性が得られた。
As is clear from the results shown in Table 1, the sample No. 2-No. In No. 13, all of them have excellent heat cycle durability, that is, when the temperature changes from a high temperature to a low temperature, the sealing layer 10 is largely contracted and deformed.
High stress is generated at the interface between the package A1 and the sealing layer 10, and the stress causes the package A1 to be deformed so as to be lifted at the peripheral portion. The deformation causes the connection terminal 3 particularly located at the package peripheral portion. Although high stress is generated and cracks are generated in the connection terminals 3 and disconnection is easily caused, deformation of the sealing layer 10 is reduced by providing the stress relaxation grooves, and stress generated in the connection terminals 3 is reduced. As a result, excellent characteristics of 1400 cycles or more in secondary mounting cycle life were obtained. On the other hand, the conventional sample No. 1
Then, it was up to 1000 cycles. Further, according to the present invention, a characteristic of a secondary mounting cycle life of 1200 cycles or more was obtained.

【0049】(例2)(例1)にして使用した絶縁基板
1は、ガラスセラミックスにより構成して熱膨張係数を
11.5ppm/℃としたが、これに代えてアルミナセ
ラミックスにより構成して熱膨張係数を6.0ppm/
℃とした。そして、表2に示すように応力緩和溝13の
幅と深さが異なるパッケージA1を作製し(試料No.
14〜試料No.26)、同様に2次実装サイクル寿命
とワイヤ電気接続性熱サイクル寿命を測定したところ、
表2に示すような結果が得られた。なお、試料No.1
4は応力緩和溝13を形成しない場合を示す。
Example 2 The insulating substrate 1 used in Example 1 was made of glass ceramics and had a coefficient of thermal expansion of 11.5 ppm / ° C. The expansion coefficient is 6.0 ppm /
° C. Then, as shown in Table 2, a package A1 having different widths and depths of the stress relaxation grooves 13 was manufactured.
14 to sample no. 26) Similarly, when the secondary mounting cycle life and the wire electrical connection thermal cycle life were measured,
The results as shown in Table 2 were obtained. The sample No. 1
4 shows a case where the stress relaxation groove 13 is not formed.

【0050】[0050]

【表2】 [Table 2]

【0051】この表から明らかなとおり、本発明の試料
No.15〜No.26においては、いずれもヒートサ
イクルの耐久性に優れ、2次実装サイクル寿命では11
00サイクル以上の優れた特性が得られた。これに対し
従来の試料No.14では、700サイクルまでであっ
た。また、本発明であれば、2次実装サイクル寿命につ
いても1200サイクル以上の特性が得られた。
As is clear from this table, the sample No. of the present invention. 15-No. 26, all have excellent heat cycle durability, and the secondary mounting cycle life is 11
Excellent characteristics of 00 cycles or more were obtained. On the other hand, the conventional sample No. 14 was up to 700 cycles. Further, according to the present invention, the characteristics of the secondary mounting cycle life of 1200 cycles or more were obtained.

【0052】(例3)(例1)においては半導体素子実
装配線基板の実装構造H2を作製したが、これに代えて
半導体素子実装配線基板の実装構造H1を作製した。た
だし、その他の構造は半導体素子実装配線基板の実装構
造H2とまったく同じにしている。そして、表3に示す
ように応力緩和溝13の幅と深さが異なるパッケージA
を作製し(試料No.27〜試料No.39)、同様に
2次実装サイクル寿命とワイヤ電気接続性熱サイクル寿
命を測定したところ、表3に示すような結果が得られ
た。なお、試料No.27は応力緩和溝13を形成しな
い場合を示す。
(Example 3) In (Example 1), the mounting structure H2 of the semiconductor element mounting wiring board was manufactured. Instead, the mounting structure H1 of the semiconductor element mounting wiring board was manufactured. However, the other structure is exactly the same as the mounting structure H2 of the semiconductor element mounting wiring board. Then, as shown in Table 3, the package A in which the width and the depth of the stress relaxation groove 13 are different.
(Sample No. 27 to Sample No. 39), and the secondary mounting cycle life and the wire electrical connection heat cycle life were similarly measured. The results shown in Table 3 were obtained. The sample No. 27 shows the case where the stress relaxation groove 13 is not formed.

【0053】[0053]

【表3】 [Table 3]

【0054】この表から明らかなとおり、本発明の試料
No.28〜No.39においては、いずれもヒートサ
イクルの耐久性に優れ、2次実装サイクル寿命では11
00サイクル以上の優れた特性が得られた。これに対し
従来の試料No.27では、800サイクルまでであっ
た。また、本発明であれば、2次実装サイクル寿命につ
いても1500サイクル以上の特性が得られた。
As is clear from this table, the sample No. of the present invention. 28-No. 39, all have excellent heat cycle durability, and the secondary mounting cycle life is 11
Excellent characteristics of 00 cycles or more were obtained. On the other hand, the conventional sample No. 27, it was up to 800 cycles. Further, according to the present invention, a characteristic of a secondary mounting cycle life of 1500 cycles or more was obtained.

【0055】(例4)(例1)においては図6に示すよ
うな応力緩和溝13cを形成した半導体素子実装配線基
板の実装構造H2を作製したが、これに代えて図5に示
すような応力緩和溝13bを形成した半導体素子実装配
線基板の実装構造H2を作製した。ただし、その他の構
造は(例1)とまったく同じにしている。そして、表4
に示すように応力緩和溝13bの幅と深さが異なるパッ
ケージAを作製し(試料No.40〜試料No.5
1)、同様に2次実装サイクル寿命とワイヤ電気接続性
熱サイクル寿命を測定したところ、表4に示すような結
果が得られた。
(Example 4) In (Example 1), the mounting structure H2 of the semiconductor element mounting wiring board in which the stress relaxation groove 13c was formed as shown in FIG. 6 was manufactured. Instead, as shown in FIG. The mounting structure H2 of the semiconductor element mounting wiring board in which the stress relaxation grooves 13b were formed was manufactured. However, other structures are exactly the same as in (Example 1). And Table 4
As shown in the figure, a package A having different widths and depths of the stress relaxation grooves 13b was manufactured.
1) Similarly, when the secondary mounting cycle life and the wire electrical connection thermal cycle life were measured, the results shown in Table 4 were obtained.

【0056】[0056]

【表4】 [Table 4]

【0057】この表から明らかなとおり、いずれもヒー
トサイクルの耐久性に優れ、2次実装サイクル寿命では
1700サイクル以上の優れた特性が得られた。また、
2次実装サイクル寿命についても1300サイクル以上
の特性が得られた。
As is clear from this table, all of the above have excellent heat cycle durability, and have excellent characteristics of 1700 cycles or more in the secondary mounting cycle life. Also,
Regarding the secondary mounting cycle life, a characteristic of 1300 cycles or more was obtained.

【0058】なお、本発明は上記実施形態例に限定され
るものではなく、本発明の要旨を逸脱しない範囲内で種
々の変更や改良等は何ら差し支えない。たとえば、上記
実施形態例では封止層10の表面に形成した溝を線条も
しくは破線状の応力緩和溝13にしたが、これに代えて
ドット状の溝を多数ランダムに並べたり、線条に並べた
りしてもよい。
It should be noted that the present invention is not limited to the above embodiment, and various changes and improvements may be made without departing from the scope of the present invention. For example, in the above embodiment, the grooves formed on the surface of the sealing layer 10 are formed into linear or broken stress relief grooves 13. However, instead of this, a large number of dot-shaped grooves are randomly arranged, or They may be arranged side by side.

【0059】[0059]

【発明の効果】以上のとおり、本発明の半導体素子実装
配線基板によれば、ワイヤおよび半導体素子を熱硬化性
樹脂からなる封止層により封止し、その封止層の表面に
複数の溝を設けたことで、その配線基板に反りが生じて
も、これに伴う応力が吸収され、その結果、高信頼性の
半導体素子実装配線基板が提供できた。
As described above, according to the semiconductor element mounting wiring board of the present invention, the wires and the semiconductor element are sealed by the sealing layer made of a thermosetting resin, and a plurality of grooves are formed on the surface of the sealing layer. With this arrangement, even if the wiring board is warped, the accompanying stress is absorbed, and as a result, a highly reliable semiconductor element mounting wiring board can be provided.

【0060】また、本発明の半導体素子実装配線基板の
実装構造によれば、かかる本発明の半導体素子実装配線
基板を用いたことで、その配線基板の変形が可及的に小
さくなり、長期にわたり安定して電気的接続状態が維持
された長期信頼性の半導体素子配線基板の実装構造が提
供できた。
Further, according to the mounting structure of the wiring board for mounting a semiconductor element of the present invention, the use of the wiring board for mounting a semiconductor element of the present invention minimizes the deformation of the wiring board. A long-term reliable semiconductor element wiring board mounting structure in which a stable electrical connection state is maintained can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体素子実装配線基板の実装構造の
断面図である。
FIG. 1 is a sectional view of a mounting structure of a semiconductor element mounting wiring board of the present invention.

【図2】(1)、(2)および(3)は本発明の半導体
素子実装配線基板の実装構造の製造工程を示す斜視図で
ある。
FIGS. 2 (1), (2) and (3) are perspective views showing steps of manufacturing a mounting structure of a semiconductor element mounting wiring board according to the present invention.

【図3】本発明の他の半導体素子実装配線基板の実装構
造の断面図である。
FIG. 3 is a sectional view of a mounting structure of another semiconductor element mounting wiring board according to the present invention.

【図4】本発明の半導体素子実装配線基板の封止層に形
成した溝の模様を示す平面図である。
FIG. 4 is a plan view showing a pattern of a groove formed in a sealing layer of the semiconductor element mounting wiring board of the present invention.

【図5】本発明の半導体素子実装配線基板の封止層に形
成した溝の模様を示す平面図である。
FIG. 5 is a plan view showing a pattern of a groove formed in a sealing layer of the semiconductor element mounting wiring board of the present invention.

【図6】本発明の半導体素子実装配線基板の封止層に形
成した溝の模様を示す平面図である。
FIG. 6 is a plan view showing a pattern of a groove formed in a sealing layer of the semiconductor element mounting wiring board of the present invention.

【図7】本発明の半導体素子実装配線基板の封止層に形
成した溝の模様を示す平面図である。
FIG. 7 is a plan view showing a pattern of a groove formed in a sealing layer of the semiconductor element mounting wiring board of the present invention.

【図8】本発明の半導体素子実装配線基板の封止層に形
成した溝の模様を示す平面図である。
FIG. 8 is a plan view showing a pattern of a groove formed in a sealing layer of the semiconductor element mounting wiring board of the present invention.

【図9】本発明の半導体素子実装配線基板の封止層に形
成した溝の模様を示す平面図である。
FIG. 9 is a plan view showing a pattern of a groove formed in a sealing layer of the semiconductor element mounting wiring board of the present invention.

【図10】本発明の半導体素子実装配線基板の封止層に
形成した溝の模様を示す平面図である。
FIG. 10 is a plan view showing a pattern of a groove formed in a sealing layer of the semiconductor element mounting wiring board of the present invention.

【図11】本発明の半導体素子実装配線基板の封止層に
形成した溝の模様を示す平面図である。
FIG. 11 is a plan view showing a pattern of a groove formed in a sealing layer of the semiconductor element mounting wiring board of the present invention.

【図12】本発明の半導体素子実装配線基板の封止層に
形成した溝の模様を示す平面図である。
FIG. 12 is a plan view showing a pattern of a groove formed in a sealing layer of the wiring board for mounting a semiconductor element of the present invention.

【符号の説明】[Explanation of symbols]

H1、H2 半導体素子実装配線基板の実装構造 A パッケージ B 半導体素子 C 回路基板 1 絶縁基板 2、4 メタライズ配線層 3 接続端子 5 ビアホール導体 6 接続パッド 7 熱硬化性樹脂 8 接続用電極 9 ワイヤ 10 封止層 11 絶縁基板 12 配線層 13、13a〜13i応力緩和溝 H1, H2 Mounting structure of semiconductor element mounting wiring board A package B semiconductor element C circuit board 1 insulating substrate 2, 4, metallized wiring layer 3 connection terminal 5 via hole conductor 6 connection pad 7 thermosetting resin 8 connection electrode 9 wire 10 sealing Stop layer 11 Insulating substrate 12 Wiring layer 13, 13a-13i Stress relaxation groove

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】絶縁基板にメタライズ配線層を形成してな
る配線基板上に接着剤を介して半導体素子を固定し、メ
タライズ配線層と半導体素子とをワイヤによって電気的
に接続し、ワイヤおよび半導体素子を熱硬化性樹脂から
なる封止層により封止せしめた半導体素子実装配線基板
において、前記封止層の表面に複数の溝を設けてなるこ
とを特徴とする半導体素子実装配線基板。
A semiconductor device is fixed via an adhesive on a wiring board having a metallized wiring layer formed on an insulating substrate, and the metallized wiring layer and the semiconductor element are electrically connected by wires. A semiconductor element mounting wiring board, wherein a plurality of grooves are provided on a surface of the sealing layer in a semiconductor element mounting wiring board in which an element is sealed with a sealing layer made of a thermosetting resin.
【請求項2】絶縁基板にメタライズ配線層を形成してな
る配線基板上に接着剤を介して半導体素子を固定し、メ
タライズ配線層と半導体素子とをワイヤによって電気的
に接続し、ワイヤおよび半導体素子を熱硬化性樹脂から
なる封止層により封止せしめた半導体素子実装配線基板
を、ガラスと合成樹脂との複合材からなる絶縁板により
構成された回路基板上に配設した半導体素子実装配線基
板の実装構造において、前記封止層の表面に複数の溝を
設けてなることを特徴とする半導体素子実装配線基板の
実装構造。
2. A semiconductor device is fixed via an adhesive on a wiring board having a metallized wiring layer formed on an insulating substrate, and the metallized wiring layer and the semiconductor element are electrically connected by wires. A semiconductor element mounting wiring board in which elements are sealed with a sealing layer made of a thermosetting resin, and a semiconductor element mounting wiring board is provided on a circuit board made of an insulating plate made of a composite material of glass and synthetic resin. A mounting structure for a semiconductor element mounting wiring board, wherein a plurality of grooves are provided on the surface of the sealing layer in the mounting structure of the substrate.
JP05187699A 1999-02-26 1999-02-26 Mounting structure of semiconductor device mounting wiring board Expired - Fee Related JP3842478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05187699A JP3842478B2 (en) 1999-02-26 1999-02-26 Mounting structure of semiconductor device mounting wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05187699A JP3842478B2 (en) 1999-02-26 1999-02-26 Mounting structure of semiconductor device mounting wiring board

Publications (2)

Publication Number Publication Date
JP2000252391A true JP2000252391A (en) 2000-09-14
JP3842478B2 JP3842478B2 (en) 2006-11-08

Family

ID=12899093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05187699A Expired - Fee Related JP3842478B2 (en) 1999-02-26 1999-02-26 Mounting structure of semiconductor device mounting wiring board

Country Status (1)

Country Link
JP (1) JP3842478B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007193597A (en) * 2006-01-19 2007-08-02 Toshiba Corp Ic card
CN100336208C (en) * 2003-06-05 2007-09-05 三洋电机株式会社 Semiconductor device
JP2010177388A (en) * 2009-01-29 2010-08-12 Panasonic Corp Semiconductor device, and method of manufacturing the same
JP2011253879A (en) * 2010-06-01 2011-12-15 Nec Corp Semiconductor element and substrate with built-in semiconductor
JP2012129437A (en) * 2010-12-17 2012-07-05 Fujitsu Ltd Electronic component, method of manufacturing electronic component, electronic apparatus, and method of manufacturing electronic apparatus
JP2013026234A (en) * 2011-07-14 2013-02-04 Mitsubishi Electric Corp Semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100336208C (en) * 2003-06-05 2007-09-05 三洋电机株式会社 Semiconductor device
JP2007193597A (en) * 2006-01-19 2007-08-02 Toshiba Corp Ic card
JP2010177388A (en) * 2009-01-29 2010-08-12 Panasonic Corp Semiconductor device, and method of manufacturing the same
JP2011253879A (en) * 2010-06-01 2011-12-15 Nec Corp Semiconductor element and substrate with built-in semiconductor
JP2012129437A (en) * 2010-12-17 2012-07-05 Fujitsu Ltd Electronic component, method of manufacturing electronic component, electronic apparatus, and method of manufacturing electronic apparatus
JP2013026234A (en) * 2011-07-14 2013-02-04 Mitsubishi Electric Corp Semiconductor device

Also Published As

Publication number Publication date
JP3842478B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
US7488897B2 (en) Hybrid multilayer substrate and method for manufacturing the same
JPH09298255A (en) Ceramic circuit board and semiconductor device using the board
JP3336240B2 (en) Semiconductor element mounting board
JP3842478B2 (en) Mounting structure of semiconductor device mounting wiring board
JP3631638B2 (en) Mounting structure of semiconductor device package
JP2001338999A (en) Semiconductor element storing package
JP4013339B2 (en) Manufacturing method of electronic component having bump
US8232481B2 (en) Wiring board with columnar conductor and method of making same
JPH09102560A (en) External lead pin joining structure for low-temperature baked ceramic substrate
JP4403820B2 (en) Multilayer electronic component and manufacturing method thereof
JP2000252392A (en) Wiring board for mounting semiconductor device and its mounting structure
JP3610239B2 (en) Wiring board for mounting semiconductor device and mounting structure thereof
JP3814429B2 (en) Package for storing semiconductor elements
JPH10242324A (en) Electrode-built-in ceramic substrate and manufacture thereof
JP4071893B2 (en) Wiring board and its mounting structure
JP2001244390A (en) Package for semiconductor device and mounting structure
JPH09260529A (en) Substrate for semiconductor device, and semiconductor device
JP2000188362A (en) Mounting structure of semiconductor element
JP2004288661A (en) Wiring board
JPH11274372A (en) Semiconductor device and its semiconductor package
JP3502759B2 (en) Semiconductor element mounting structure and wiring board mounting structure
JP2004288662A (en) Wiring board
JP2001185642A (en) Package substrate for mounting semiconductor
JP4416269B2 (en) Electronic equipment
JP2001102492A (en) Wiring board and mounting structure thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040625

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040713

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060810

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees