JP2000245471A - Formate dehydrogenase gene, recombinant vector containing the same, transformant containing the recombinant vector and production of formate dehydrogenase using the transformant - Google Patents

Formate dehydrogenase gene, recombinant vector containing the same, transformant containing the recombinant vector and production of formate dehydrogenase using the transformant

Info

Publication number
JP2000245471A
JP2000245471A JP11052548A JP5254899A JP2000245471A JP 2000245471 A JP2000245471 A JP 2000245471A JP 11052548 A JP11052548 A JP 11052548A JP 5254899 A JP5254899 A JP 5254899A JP 2000245471 A JP2000245471 A JP 2000245471A
Authority
JP
Japan
Prior art keywords
formate dehydrogenase
ala
leu
gly
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11052548A
Other languages
Japanese (ja)
Inventor
Toshiro Mitsunaga
俊郎 光永
Yasuhiro Tanaka
靖浩 田中
Toyokazu Yoshida
豊和 吉田
Katsumi Watanabe
克美 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP11052548A priority Critical patent/JP2000245471A/en
Publication of JP2000245471A publication Critical patent/JP2000245471A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a new formate dehydrogenase gene which encodes a formate dehydrogenase containing a specific amino acid sequence and is useful in the inexpensive production or the like of the above enzyme that possesses high specific activity, shows a small Km value to formic acid and NAD+ and exerts the broad temperature or pH stability. SOLUTION: This formate dehydrogenase gene is a new gene which encodes a formate dehydrogenase comprising of the amino acid sequence represented by the formula or the amino acid sequence in which one or plural amino acids are deleted, substituted or added to the amino sequence represented by the formula and is useful for producing the formate dehydrogenase that possesses high specific activity, shows a small Km value to formic acid and nicotinamide adenine dinucleotide (NAD+) and exerts the broad temperature or pH stability conveniently in a large quantity and at a low cost. This gene is obtained by separating a chromosomal DNA from the genus Hyphomicrobium strain JT-17 (FERM P-16973) by a conventional method, preparing a chromosomal DNA library by the use of this chromosomal DNA and then screening out this library with a probe comprising the partial sequence.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はギ酸脱水素酵素遺伝
子と、この遺伝子を含有する組換えベクター、組換えベ
クターによる形質転換体、並びにこの形質転換体を用い
たギ酸脱水素酵素の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a formate dehydrogenase gene, a recombinant vector containing the gene, a transformant using the recombinant vector, and a method for producing formate dehydrogenase using the transformant. Things.

【0002】[0002]

【従来の技術】ニコチンアミドアデニンジヌクレオチド
(以下、NAD+と記す)を電子受容体として利用でき
るギ酸脱水素酵素[EC1.2.1.2]は、ギ酸とNAD+より
炭酸を副産物としてNADHを生成することから、NA
DHを必要とする酵素反応系においてNADH再生用酵
素として有望視されている。また、反応生成物が炭酸で
あることから副産物が反応系に蓄積しない利点があり、
工業的規模でのNADH再生用酵素として注目されてい
る。さらに、ギ酸に対するKm値の低い酵素は、ギ酸の
特異的検出や微量定量にも有用である。これまで上記の
ギ酸脱水素酵素は、モラキセラ属細菌(Moraxella sp.:
J. Bacteriol. vol.170, 3189, 1988年)やアクロモバ
クター・パーヴァラス(Achromobacter parvulus: Eur.
J. Biochem vol. 99, 569, 1979年)、シュードモナス
・オキザラティカス(Pseudomonas oxalaticus: Eur.
J. Biochem. vol. 83, 485, 1978年)など由来の酵素が
知られている。しかしながら、これらの菌株はギ酸脱水
素酵素の生産性が低く、また得られるギ酸脱水素酵素
は、比活性が低い、ギ酸及びNAD+に対するギ酸脱水
素酵素のKm値が大きい、温度安定性やpH安定性の範
囲が狭いことなどから、工業的利用に適さないものであ
った。
2. Description of the Related Art Formate dehydrogenase [EC1.2.1.2], which can use nicotinamide adenine dinucleotide (hereinafter referred to as NAD + ) as an electron acceptor, produces NADH from formic acid and NAD + by using carbonic acid as a by-product. To do, NA
Promising as an enzyme for NADH regeneration in an enzyme reaction system requiring DH. In addition, there is an advantage that by-products do not accumulate in the reaction system because the reaction product is carbonic acid,
It is attracting attention as an enzyme for regenerating NADH on an industrial scale. Furthermore, an enzyme having a low Km value for formic acid is also useful for specific detection of formic acid and microquantification. Until now, the above-mentioned formate dehydrogenase has been used for Moraxella sp.
J. Bacteriol. Vol. 170, 3189, 1988) and Achromobacter parvulus: Eur.
J. Biochem vol. 99, 569, 1979), Pseudomonas oxalaticus: Eur.
J. Biochem. Vol. 83, 485, 1978). However, these strains have low productivity of formate dehydrogenase, and the resulting formate dehydrogenase has low specific activity, a large Km value of formate dehydrogenase for formic acid and NAD + , temperature stability and pH. Because of its narrow stability range, it was not suitable for industrial use.

【0003】このような問題点を解決するために、本発
明者らはギ酸脱水素酵素の存在が知られているメタノー
ル資化性細菌の分離を広範囲に行った結果、ハイホマイ
クロビウム属(Hyphomicrobium sp.)の微生物が、高い
比活性を有し、ギ酸及びNAD+に対するKm値が小さ
く、かつ温度安定性やpH安定性の範囲が広いギ酸脱水
素酵素を生産することを見出し、このギ酸脱水素酵素及
びその製造方法について既に特許を出願している(特願
平10-250930号)。
[0003] In order to solve such a problem, the present inventors have conducted extensive separation of methanol-assimilating bacteria known to have formate dehydrogenase, and as a result, the genus Hyphomicrobium ( Hyphomicrobium sp.) Has a high specific activity, has a low Km value for formic acid and NAD + , and produces formate dehydrogenase having a wide range of temperature stability and pH stability. A patent has already been filed for a dehydrogenase and a method for producing the same (Japanese Patent Application No. 10-250930).

【0004】[0004]

【発明が解決しようとする課題】上記の発明により、高
い比活性を有し、ギ酸及びNAD+に対するKm値が小
さく、かつ温度安定性やpH安定性の範囲が広いギ酸脱
水素酵素が得られ、その精製も容易に行うことが可能と
なった。しかしながら、上記の発明において30Lの培
養でギ酸脱水素酵素を製造する場合、メタノールを単一
炭素源とする特殊な培地を用い、6日間という長期に渡
って生産菌体を培養する必要があり、さらにこの微生物
が産生するギ酸脱水素酵素が少量であるために、生産効
率が非常に悪く、ギ酸脱水素酵素の大量生産が困難であ
るという問題点は依然として未解決であった。
According to the above invention, a formate dehydrogenase having a high specific activity, a small Km value for formic acid and NAD + , and a wide range of temperature stability and pH stability can be obtained. And its purification can be easily performed. However, when producing formate dehydrogenase by culturing 30 L in the above invention, it is necessary to use a special medium containing methanol as a single carbon source and culture the produced cells for a long period of 6 days, Furthermore, the problem that the production efficiency is very poor due to the small amount of formate dehydrogenase produced by this microorganism and it is difficult to mass-produce formate dehydrogenase has not been solved yet.

【0005】本発明は、以上のとおりの事情に鑑みてな
されたものであり、上記のギ酸脱水素酵素を遺伝子工学
的に大量製造するための遺伝子操作材料と、この材料を
用いたギ酸脱水素酵素の製造方法を提供することを目的
としている。
[0005] The present invention has been made in view of the above circumstances, and a genetic engineering material for mass-producing the above-described formate dehydrogenase by genetic engineering, and a formate dehydrogenase using the material. It is intended to provide a method for producing an enzyme.

【0006】[0006]

【課題を解決するための手段】本発明者らは、このよう
な課題を解決するために鋭意研究の結果、ハイホマイク
ロビウム属(Hyphomicrobium sp.)の微生物が産生する
ギ酸脱水素酵素の遺伝子を単離し、その遺伝子のDNA
塩基配列を解明することにより、本発明に到達した。す
なわち、第1の発明は、配列番号1で示されるアミノ酸
配列又は配列番号1で示されるアミノ酸配列において1
もしくは数個のアミノ酸が欠失、置換もしくは付加され
たアミノ酸配列からなるギ酸脱水素酵素をコードする遺
伝子を要旨とするものである。また、第2の発明は、配
列番号2で示される塩基配列又は配列番号2で示される
塩基配列において1もしくは数個の塩基が欠失、置換も
しくは付加された塩基配列からなるDANを有し、かつ
ギ酸脱水素酵素をコードする遺伝子を要旨とするもので
ある。さらに、第3の発明は、上記の遺伝子を含有する
組換えベクターを要旨とするものである。第4の発明
は、上記の組換えベクターを含む形質転換体を、第5の
発明は、この形質転換体を培地中で培養し、培養物から
ギ酸脱水素酵素を採取することを特徴とするギ酸脱水素
酵素の製造方法を要旨とするものである。
Means for Solving the Problems The present inventors have conducted intensive studies to solve such problems, and as a result, have found that the formate dehydrogenase gene produced by a microorganism of the genus Hyphomicrobium sp. And the DNA of the gene
The present invention has been achieved by elucidating the nucleotide sequence. That is, the first invention relates to the amino acid sequence represented by SEQ ID NO: 1 or the amino acid sequence represented by SEQ ID NO: 1.
Alternatively, the gist is a gene encoding formate dehydrogenase comprising an amino acid sequence in which several amino acids have been deleted, substituted or added. Further, the second invention has a DNA comprising a base sequence represented by SEQ ID NO: 2 or a base sequence in which one or several bases are deleted, substituted or added in the base sequence represented by SEQ ID NO: 2, In addition, the gist is a gene encoding formate dehydrogenase. Further, a third invention is directed to a recombinant vector containing the above gene. A fourth invention is characterized in that a transformant containing the above-described recombinant vector is cultivated, and a fifth invention is that this transformant is cultured in a medium, and formate dehydrogenase is collected from the culture. The gist of the present invention is a method for producing formate dehydrogenase.

【0007】[0007]

【発明の実施の形態】本発明に係るギ酸脱水素酵素は、
配列番号1で示したアミノ酸配列、あるいは、配列番号
1で示されるアミノ酸配列における1もしくは数個のア
ミノ酸が欠失、置換もしくは付加されたアミノ酸配列を
有するタンパク質である。従って、本発明の遺伝子は上
記アミノ酸配列をコードする遺伝子であって、具体的に
は、配列番号2の塩基配列からなるDNAに代表される
遺伝子である。
DETAILED DESCRIPTION OF THE INVENTION The formate dehydrogenase according to the present invention comprises:
It is a protein having the amino acid sequence of SEQ ID NO: 1 or the amino acid sequence of SEQ ID NO: 1 in which one or several amino acids are deleted, substituted or added. Therefore, the gene of the present invention is a gene encoding the above amino acid sequence, and specifically, is a gene represented by DNA consisting of the nucleotide sequence of SEQ ID NO: 2.

【0008】このような遺伝子の単離及びこの遺伝子を
含有する組換えベクターの作成、組換えベクターによる
形質転換体の作成、並びに形質転換体の培養等は公知の
方法、例えばモレキュラー・クローニング(コールドス
プリングハーバー出版社、1989年)に記載されてい
る方法を組み合わせて行なうことができる。例えば遺伝
子は、配列番号2で示される塩基配列の一部配列を合成
し、この合成DNAをプローブとしてDNAライブラリ
ーから単離する方法、配列番号2で示される塩基配列の
両端部分の合成DNAをプライマーとし、染色体DNA
を鋳型とするPCR法によって目的遺伝子を増幅する方
法等によって取得することができる。
[0008] Isolation of such a gene and preparation of a recombinant vector containing this gene, preparation of a transformant using the recombinant vector, culturing of the transformant, and the like are performed by known methods such as molecular cloning (cold culturing). Spring Harbor Press, 1989). For example, a gene is obtained by synthesizing a partial sequence of the base sequence represented by SEQ ID NO: 2 and isolating it from a DNA library using this synthetic DNA as a probe. Chromosomal DNA as primer
Can be obtained by, for example, a method of amplifying a target gene by a PCR method using as a template.

【0009】本発明の組換えベクターは、上記のように
して得られたギ酸脱水素酵素をコードする遺伝子を含有
するものであり、ベクターに上記のようにして得られた
ギ酸脱水素酵素をコードする遺伝子を連結することによ
り得ることができる。ベクターとしては、特に限定され
るものではなく、例えばプラスミドベクターpKK223-3
(ファルマシア社製)、pUC19(宝酒造社製)、pBluesc
riptKS(+)(ストラタジーン社製)、pBR322(東洋紡社
製)等があげられる。また、このようにして得られた組
換えベクターを形質転換法により例えば大腸菌、枯草
菌、酵母等に導入することにより、ギ酸脱水素酵素の発
現能を有する形質転換体を得ることができる。このよう
にして製造した形質転換体を用いてギ酸脱水素酵素を製
造する方法としては、形質転換体をギ酸脱水素酵素の生
産に適しかつそれぞれの宿主微生物の生育に適した培地
で、培養、集菌した後、形質転換体の菌体を超音波或い
はリゾチーム等で溶菌し、遠心分離することによって製
造することができる。さらに、遠心上清は市販のイオン
交換樹脂、アフィニティー樹脂等を用いて精製すること
ができる。
[0009] The recombinant vector of the present invention contains the gene encoding formate dehydrogenase obtained as described above, and the vector encodes the formate dehydrogenase obtained as described above. Can be obtained by ligating the genes. The vector is not particularly limited. For example, the plasmid vector pKK223-3
(Pharmacia), pUC19 (Takara Shuzo), pBluesc
riptKS (+) (manufactured by Stratagene), pBR322 (manufactured by Toyobo) and the like. In addition, a transformant capable of expressing formate dehydrogenase can be obtained by introducing the thus obtained recombinant vector into, for example, Escherichia coli, Bacillus subtilis, yeast, or the like by a transformation method. As a method for producing formate dehydrogenase using the transformant thus produced, the transformant is cultured in a medium suitable for the production of formate dehydrogenase and suitable for the growth of each host microorganism, After harvesting, the transformant can be produced by lysing the cells with ultrasonic waves or lysozyme and centrifuging. Further, the centrifuged supernatant can be purified using a commercially available ion exchange resin, affinity resin or the like.

【0010】[0010]

【実施例】次に、本発明を実施例によって具体的に説明
する。
Next, the present invention will be described specifically with reference to examples.

【0011】実施例1:ハイブリダイゼーションプロー
ブの作製 (1)ギ酸脱水素酵素N末端アミノ酸配列の解析 ハイホマイクロビウム属JC−17株(FERM P−
16973)より精製したギ酸脱水素酵素を、気相ペプ
チドシーケンサー473A(Applied Biosytems社製)
を用いて、エドマン分解した後,PTHアミノ酸誘導体
とし、PTHアミノ酸誘導体分析装置120A(Applied
Biosytems社製)を用いてこの誘導体を解析した。その
結果、ギ酸脱水素酵素のN末端20アミノ酸残基の配列
が、配列番号3で示されるアミノ酸配列であることが解
った。
Example 1: Preparation of hybridization probe (1) Analysis of N-terminal amino acid sequence of formate dehydrogenase Hyphomicrobium sp. Strain JC-17 (FERM P-
16973) was purified from a gas-phase peptide sequencer 473A (Applied Biosytems).
After being subjected to Edman degradation using a PTH amino acid derivative, the PTH amino acid derivative analyzer 120A (Applied
This derivative was analyzed using Biosytems). As a result, it was found that the sequence of the N-terminal 20 amino acid residues of formate dehydrogenase was the amino acid sequence represented by SEQ ID NO: 3.

【0012】(2)FDH保存領域の解析 8種の異なる微生物に由来するギ酸脱水素酵素のアミノ
酸配列を比較したところ、完全に保存された領域とし
て、配列番号4で示されるアミノ酸配列を見出した。
(2) Analysis of FDH Conserved Region When the amino acid sequences of formate dehydrogenase derived from eight different microorganisms were compared, the amino acid sequence represented by SEQ ID NO: 4 was found as a completely conserved region. .

【0013】(3)PCRによるギ酸脱水素酵素遺伝子
の部分増幅とジゴキシゲニン(DIG)ラベル化 上記で解析したN末端アミノ酸配列よりセンスプライマ
ーを、また保存領域のアミノ酸配列よりアンチセンスプ
ライマーをデザインし、図1に示すDNAを合成した。
ハイホマイクロビウム属JC−17株(FERM P−
16973)の菌体1gを公知の方法(Saito & Miura,
Biochim.Biophys., Acta, vol.72, p619, 1963)に従い
リゾチーム(生化学工業社製)により溶菌後、SDS含
有アルカリ性緩衝液とフェノールでDNAを抽出した。
さらに、RNAをRNアーゼで分解して染色体DNAを
1mg精製した。公知の方法(Simpson et al., Bioche
m.Biophys. Res. Commun., vol.151. p487, 1988) に従
って、得られた染色体DNAのうち10ngをテンプレ
ートとし、上述のプライマーおよびサーマスアクアティ
カス由来のDNAポリメラーゼ(寶酒造社製)を用いた
PCRを、94℃1分、60℃90秒、72℃90秒の
条件で30サイクル行った。増幅したDNA断片(約9
00bp)は、アガロースゲルで分離した後、βアガラ
ーゼ(寶酒造社製)を用いて抽出精製した。このDNA
断片をDIGラベリングキット(ベーリンガー・マンハ
イム社製)を用いたランダムプライム法によってDIG
標識し、以下の実験に用いるプローブとした。
(3) Partial amplification of the formate dehydrogenase gene by PCR and digoxigenin (DIG) labeling A sense primer is designed from the N-terminal amino acid sequence analyzed above, and an antisense primer is designed from the amino acid sequence of the conserved region. The DNA shown in FIG. 1 was synthesized.
Hyphomicrobium sp. JC-17 strain (FERM P-
16973) was isolated by a known method (Saito & Miura,
After lysing with lysozyme (manufactured by Seikagaku Corporation) according to Biochim. Biophys., Acta, vol. 72, p619, 1963), DNA was extracted with an SDS-containing alkaline buffer and phenol.
Further, RNA was digested with RNase to purify 1 mg of chromosomal DNA. Known methods (Simpson et al., Bioche
In accordance with m. Biophys. Res. Commun., vol. 151. p487, 1988), 10 ng of the obtained chromosomal DNA was used as a template, and the above primers and a DNA polymerase derived from Thermus Aquaticus (manufactured by Takara Shuzo) were used. PCR was performed for 30 cycles at 94 ° C for 1 minute, 60 ° C for 90 seconds, and 72 ° C for 90 seconds. The amplified DNA fragment (about 9
00bp) was separated on an agarose gel, and then extracted and purified using β-agarase (Takara Shuzo). This DNA
The fragment was subjected to DIG by a random prime method using a DIG labeling kit (Boehringer Mannheim).
It was labeled and used as a probe for the following experiments.

【0014】実施例2:ギ酸脱水素酵素遺伝子の同定 (1)サザンブロット解析 上記で調製した染色体DNA1μgを制限酵素SalI(寶
酒造社製)で完全分解し、アガローズゲルで電気泳動し
た後、ナイロンメンブレンNY13N(Schliecher & S
chuel社製)にトランスファーした。このナイロンメン
ブレンに、上述のDIG標識プローブを60℃にて一晩
ハイブリダイズさせた後、室温にて5分間洗浄し、さら
に、60℃にて15分の洗浄を2度行った。DIGデテ
クションキット(ベーリンガー・マンハイム社製)を用
いたCSPDによる化学発光を、RXフィルム(富士写
真社製)で検出した結果、約5kbの陽性バンドを得
た。
Example 2: Identification of formate dehydrogenase gene (1) Southern blot analysis 1 µg of the chromosomal DNA prepared above was completely digested with a restriction enzyme SalI (Takara Shuzo), electrophoresed on an agarose gel, and then subjected to nylon membrane NY13N. (Schliecher & S
chuel). After the above-mentioned DIG-labeled probe was hybridized to this nylon membrane at 60 ° C. overnight, it was washed at room temperature for 5 minutes, and further washed twice at 60 ° C. for 15 minutes. As a result of detecting chemiluminescence by CSPD using a DIG detection kit (manufactured by Boehringer Mannheim) with an RX film (manufactured by Fuji Photo), a positive band of about 5 kb was obtained.

【0015】(2)ハイホマイクロビウム属JC−17
株(FERM P−16973)染色体DNAライブラ
リーの作製 上記で得た染色体DNAのうち10μgを制限酵素SalI
(寶酒造社製)で分解し、アガロースゲルで分離した
後、βアガラーゼ(寶酒造社製)を用いて5kb付近の
断片を抽出精製した。それとは別に、ベクターpBluescr
iptII(+)1μg(寶酒造社製)を制限酵素SalIで完全分
解し、細菌由来のアルカリフォスファターゼ(寶酒造社
製)で処理してベクターDNA断片0.8μgを得た。
得られた染色体DNA断片0.28μgとベクターDN
A断片0.1μgとをT4ファージ由来のDNAリガー
ゼ(寶酒造社製)を用いて16℃で30分間ライゲーシ
ョン反応を行い、組換え体DNAを得た。得られた組換
え体DNAを大腸菌HB101コンピテントセル200
μg(寶酒造社製)に混合し、0℃下で1時間静置した
後、42℃で120秒間加温することにより、形質転換
を行なった。
(2) Hyphomicrobium JC-17
Preparation of Strain (FERM P-16973) Chromosomal DNA Library 10 μg of the chromosomal DNA obtained above was subjected to restriction enzyme SalI.
After decomposing with agarose gel (manufactured by Takara Shuzo) and separating by agarose gel, a fragment of about 5 kb was extracted and purified using β-agarase (manufactured by Takara Shuzo). Apart from that, the vector pBluescr
1 μg of iptII (+) (manufactured by Takara Shuzo) was completely digested with a restriction enzyme SalI, and treated with bacterial alkaline phosphatase (manufactured by Takara Shuzo) to obtain 0.8 μg of a vector DNA fragment.
0.28 μg of the obtained chromosomal DNA fragment and vector DN
A ligation reaction was performed with 0.1 μg of the A fragment using a DNA ligase derived from T4 phage (Takara Shuzo) at 16 ° C. for 30 minutes to obtain a recombinant DNA. The obtained recombinant DNA was transformed into E. coli HB101 competent cell 200.
μg (manufactured by Takara Shuzo), left at 0 ° C. for 1 hour, and then heated at 42 ° C. for 120 seconds to perform transformation.

【0016】得られた形質転換体を1mlのL培地に植
菌し37℃で1時間培養後、培養液をアンピシリンを含
むL寒天平板培地に塗抹し、アンピシリン耐性菌株を得
た。これら菌株をアンピシリンを50μg/ml含むL
培地に植菌後一晩培養し、集菌後プラスミドをアルカリ
−SDS法により調製し、ハイホマイクロビウム染色体
DNAライブラリーとした。
The resulting transformant was inoculated into 1 ml of L medium and cultured at 37 ° C. for 1 hour, and the culture was spread on an L agar plate medium containing ampicillin to obtain an ampicillin-resistant strain. L-containing these strains containing 50 μg / ml of ampicillin
After inoculating the medium, the cells were cultured overnight, and after the cells were collected, the plasmid was prepared by the alkali-SDS method to obtain a Hyphomicrobium chromosome DNA library.

【0017】(3)ギ酸脱水素酵素の遺伝子の単離 上記のハイホマイクロビウム染色体DNAライブラリー
による形質転換体を、アンピシリンを含むL寒天平板培
地に載せたニトロセルローズフィルター上で一晩培養し
た。このフィルターを、200μg/mlのクロラムフ
ェニコールを含むL寒天平板培地上に移し、一晩培養し
た後SDSおよびアルカリで溶菌した。このニトロセル
ローズフィルターを、上述のサザンブロット解析と同じ
条件でコロニーハイブリダイゼーションすることによ
り、約2000のコロニーを調べた結果、4株の陽性ク
ローンを得た。
(3) Isolation of formate dehydrogenase gene The transformant obtained by the above-mentioned Hyphomicrobium chromosome DNA library was cultured overnight on a nitrocellulose filter placed on an L agar plate medium containing ampicillin. . The filter was transferred onto an L agar plate medium containing 200 μg / ml chloramphenicol, cultured overnight, and then lysed with SDS and alkali. The nitrocellulose filter was subjected to colony hybridization under the same conditions as in the Southern blot analysis described above. As a result, about 2,000 colonies were examined, and four positive clones were obtained.

【0018】(4)ギ酸脱水素酵素遺伝子の塩基配列の
決定 上記の4株の陽性クローンから1株を選び、アンピシリ
ンを50μg/ml含むL培地100mlに植菌した。
37℃にて一晩培養した後アルカリ−SDS法によりプ
ラスミドを調整し、このプラスミドをpFSIとした。pFSI
1μgを、公知の方法(Sanger, Nicklen & Coulson, P
roc. Natl. Acad. Sci., vol.74, p5463, 1977)に従
い、ダイデオキシチェーンターミネーション反応での塩
基配列解析に供した。反応にはTaq dye primer cycle S
equencing Kit(Applied Biosystems社製)を用いた。
上記反応物をDNAシーケンサー373A(Applied Bi
osystems社製)を用いて分析することにより、配列番号
2で示される1197塩基対の塩基配列を決定した。
(4) Determination of nucleotide sequence of formate dehydrogenase gene One strain was selected from the above four positive clones and inoculated into 100 ml of L medium containing 50 μg / ml of ampicillin.
After overnight culture at 37 ° C., a plasmid was prepared by the alkali-SDS method, and this plasmid was designated as pFSI. pFSI
1 μg is transcribed by a known method (Sanger, Nicklen & Coulson, P
roc. Natl. Acad. Sci., vol. 74, p5463, 1977), and subjected to nucleotide sequence analysis in a dideoxy chain termination reaction. Taq dye primer cycle S for reaction
The equencing Kit (Applied Biosystems) was used.
The above reaction product was subjected to DNA sequencer 373A (Applied Bi
osystems), and the nucleotide sequence of 1197 base pairs shown in SEQ ID NO: 2 was determined.

【0019】実施例3:ギ酸脱水素酵素発現プラスミド
の構築 配列番号5で示されるギ酸脱水素酵素遺伝子の開始コド
ン1塩基上流から19塩基目までの配列の5’末端にEc
oRI認識配列をつなげたDNAおよび、配列番号6で示
されるギ酸脱水素酵素遺伝子の終止コドン下流98塩基
目から117塩基までのアンチセンス配列の5’末端に
HindIII認識配列をつなげたDNAをそれぞれ合成し、
PCRプライマーとした。プラスミドpFSI10ngをテ
ンプレートとし、上述のプライマーおよびサーマスアク
アティカス由来のDNAポリメラーゼ(寶酒造社製)を
用いたPCRを、94℃で1分、60℃で90秒、72
℃で90秒の条件で30サイクル行った。増幅したDN
A断片(約1300bp)を、アガロースゲルで分離し
た後、βアガラーゼ(寶酒造社製)を用いて抽出精製し
た。このDNA断片と150ngとpT7Blue T-vector
(Novagen社製)100ngを混合し、T4ファージ由
来のDNAリガーゼ(寶酒造社製)を用い16℃で30
分間ライゲーションした。得られたプラスミドを、制限
酵素EcoRI(寶酒造社製)およびHindIII(寶酒造社製)
で切断し、アガロースゲルで分離した後、ギ酸脱水素酵
素遺伝子を含むDNA断片をβアガラーゼ(寶酒造社
製)を用いて抽出精製した。一方、pKK223-3(ファルマ
シア社製)を、SD配列下流に位置するEcoRI認識部位
およびマルチクローニングサイトのHindIII認識部位で
切断した。
Example 3 Construction of Formate Dehydrogenase Expression Plasmid Ec was added to the 5 'end of the sequence from the 1st base upstream to the 19th base of the initiation codon of the formate dehydrogenase gene represented by SEQ ID NO: 5.
At the 5 ′ end of the DNA linked with the oRI recognition sequence and the antisense sequence from the 98th base to the 117th base downstream of the stop codon of the formate dehydrogenase gene represented by SEQ ID NO: 6
Synthesizing each DNA linked HindIII recognition sequence,
PCR primers were used. Using 10 ng of plasmid pFSI as a template, PCR was performed at 94 ° C. for 1 minute, at 60 ° C. for 90 seconds, and at 72 ° C. for 1 minute using the above-mentioned primers and Thermus Aquaticus-derived DNA polymerase (manufactured by Takara Shuzo).
30 cycles were performed at 90 ° C. for 90 seconds. Amplified DN
The A fragment (about 1300 bp) was separated on an agarose gel and then extracted and purified using β-agarase (Takara Shuzo). This DNA fragment, 150ng and pT7Blue T-vector
100 ng (Novagen) and mixed with T4 phage-derived DNA ligase (Takara Shuzo) at 16 ° C.
Ligation for minutes. The obtained plasmid was subjected to restriction enzymes EcoRI (Takara Shuzo) and HindIII (Takara Shuzo).
After separation with agarose gel, a DNA fragment containing a formate dehydrogenase gene was extracted and purified using β-agarase (Takara Shuzo). On the other hand, pKK223-3 (manufactured by Pharmacia) was digested with an EcoRI recognition site located downstream of the SD sequence and a HindIII recognition site of a multiple cloning site.

【0020】上記のギ酸脱水素酵素遺伝子を含むDNA
断片150ngとベクターDNA(pKK223-3)断片10
0ngを、T4ファージ由来のDNAリガーゼ(寶酒造
社製品)を用い16℃で30分間連結反応を行い、ギ酸
脱水素酵素遺伝子を含有する組換えベクターpKKFDHを得
た。図1はこの組換えベクターpKKFDHの作製概要図であ
る。次いで、pKKFDHを大腸菌JM109コンピテントセル2
00μl(寶酒造社製)に混合し、0℃下で1時間静置
後、42℃で120秒間加温し、形質転換を行なった。
得られた形質転換体を1mlのL培地に植菌して37℃
で1時間培養した後、培養液をアンピシリンを50μg
/ml含むL寒天平板に塗抹して、ギ酸脱水素酵素遺伝
子を含む形質転換大腸菌のコロニーを100個得た。こ
れを大腸菌(エシェリチア・コリ)JM109/pKKFDHとし
た。
DNA containing the above formate dehydrogenase gene
Fragment 150ng and vector DNA (pKK223-3) fragment 10
Ligation reaction of 0 ng was carried out at 16 ° C. for 30 minutes using T4 phage-derived DNA ligase (manufactured by Takara Shuzo) to obtain a recombinant vector pKKFDH containing a formate dehydrogenase gene. FIG. 1 is a schematic diagram showing the construction of this recombinant vector pKKFDH. Then, pKKFDH was transferred to E. coli JM109 competent cell 2
After mixing at 0 ° C. for 1 hour, the mixture was heated at 42 ° C. for 120 seconds to perform transformation.
The resulting transformant was inoculated into 1 ml of L medium, and
After culturing for 1 hour, the culture solution was treated with 50 μg of ampicillin.
/ Ml of L-agar plate, and 100 colonies of transformed Escherichia coli containing the formate dehydrogenase gene were obtained. This was designated as Escherichia coli (Escherichia coli) JM109 / pKKFDH.

【0021】実施例4:大腸菌でのギ酸脱水素酵素の製
造 実施例3で作成した形質転換大腸菌JM109/pKKFDHをアン
ピシリン50μg/mlを含むL培地300mlに植菌
後、37℃にて一晩前培養を行なった。前培養液をアン
ピシリン50μg/mlを含むL培地30Lに植菌し、
37℃にて8時間培養後イソプロピルβチオガラクトピ
ラノシドを1mM加え、さらに10時間培養した後集菌
した。得られた菌体は、1mMのジチオスライトールを
含む50mMリン酸カリウム緩衝液(pH7.0)10
00mlに懸濁後、Insonator210M(KUBOTA社製)を用
いて超音波処理した。菌体破砕物を除いた上澄より、D
EAE−セファセルカラムクロマトグラフィー、フェニ
ルセファロースCL−4Bカラムクロマトグラフィーお
よび5’AMP−セファロース4Bカラムクロマトグラ
フィーを用いてギ酸脱水素酵素の精製を行ない、ギ酸脱
水素酵素を3000ユニット回収した。
Example 4: Production of formate dehydrogenase in E. coli The transformed E. coli JM109 / pKKFDH prepared in Example 3 was inoculated into 300 ml of L medium containing 50 μg / ml of ampicillin and then incubated at 37 ° C. overnight. Culture was performed. The preculture is inoculated into 30 L of L medium containing 50 μg / ml of ampicillin,
After culturing at 37 ° C. for 8 hours, 1 mM of isopropyl β-thiogalactopyranoside was added, and the cells were further cultured for 10 hours and then collected. The obtained cells were cultured in 50 mM potassium phosphate buffer (pH 7.0) containing 1 mM dithiothreitol.
After suspending in 00 ml, it was subjected to ultrasonic treatment using Insonator210M (manufactured by KUBOTA). From the supernatant excluding the crushed cells, D
The formate dehydrogenase was purified using EAE-Sephacel column chromatography, phenyl sepharose CL-4B column chromatography and 5′AMP-Sepharose 4B column chromatography, and 3,000 units of formate dehydrogenase were recovered.

【0022】以上の結果から、ハイホマイクロビウム属
JC−17株(FERM P−16973)を30L培
養する場合の培養時間は前培養を含めて約150時間、
酵素活性量は1500ユニットであるので、単位時間、
単位培養液量あたりのギ酸脱水素酵素生産量は、10倍
に向上することがわかる。また、得られたギ酸脱水素酵
素の性質を調べたところ、50℃、1時間処理後の残存
活性は100%、至適作用pHは6.0〜7.5、ギ酸
およびNAD+に対するKmはそれぞれ1.08mM、
0.05mMであった。これらの結果から、本発明の方
法によって得られたギ酸脱水素酵素が、ハイホマイクロ
ビウム属JC−17株(FERM P−16973)由
来のギ酸脱水素酵素と同じ性質を有するものでることが
確認された。
From the above results, the culture time for culturing 30 L of Hyphomicrobium sp. JC-17 strain (FERM P-16973) was about 150 hours including the preculture,
Since the enzyme activity amount is 1500 units, the unit time,
It can be seen that the amount of formate dehydrogenase produced per unit culture volume is improved 10 times. When the properties of the obtained formate dehydrogenase were examined, the residual activity after treatment at 50 ° C. for 1 hour was 100%, the optimum pH was 6.0 to 7.5, and the Km for formic acid and NAD + was 1.08 mM each,
It was 0.05 mM. From these results, it was confirmed that the formate dehydrogenase obtained by the method of the present invention had the same properties as the formate dehydrogenase derived from Hyphomicrobium sp. Strain JC-17 (FERM P-16973). Was done.

【0023】なお、ギ酸脱水素酵素の活性測定法並びに
活性表示法は以下の通りである。すなわち、活性測定に
用いた反応溶液組成は、50μmolKPB、5μmol
ギ酸、1μmolNAD+、適当量の蒸留水で最終体積を
1mlとした。反応は酵素溶液の添加によって開始し、
30℃で1分間行い、酵素反応によって生成するNAD
H増加の初速度を分光光度計(340nm)で測定し
た。NAD+の分子吸光係数は6220M-1cm-1
し、1μmolのギ酸を1分間に消費できる酵素量を1
ユニットとした。
The method for measuring the activity of formate dehydrogenase and the method for indicating the activity are as follows. That is, the composition of the reaction solution used for activity measurement was 50 μmol KPB, 5 μmol
The final volume was adjusted to 1 ml with formic acid, 1 μmol NAD + and an appropriate amount of distilled water. The reaction is started by the addition of the enzyme solution,
NAD generated by enzymatic reaction at 30 ° C for 1 minute
The initial rate of H increase was measured with a spectrophotometer (340 nm). The molecular extinction coefficient of NAD + was 6220 M −1 cm −1, and the amount of enzyme that can consume 1 μmol of formic acid per minute was 1
Unit.

【0024】[0024]

【発明の効果】本発明によれば、高い比活性を有し、ギ
酸及びNAD+に対するKm値が小さく、かつ温度安定
性やpH安定性の範囲が広いギ酸脱水素酵素を簡便な方
法で大量に、しかも低コストで製造することが可能とな
る。
According to the present invention, a large amount of formate dehydrogenase having a high specific activity, a small Km value for formic acid and NAD + , and a wide range of temperature stability and pH stability can be produced by a simple method. In addition, it can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のギ酸脱水素酵素遺伝子を含むプラスミ
ドpKKFDHの構築の手順を示す図である。
FIG. 1 is a diagram showing a procedure for constructing a plasmid pKKFDH containing a formate dehydrogenase gene of the present invention.

【配列表】 <110> UNITIKA LTD. <120> NUCLEIC ACIDS ENCODING FORMATE DEHYDROGENASE, VECTOR AND TRANSFORM ANT THEREOF, AND METHOD FOR PRODUSING FORMATE DEHYDROGENASE THEREWITH <130> P0017863 <160> 6 <210> 1 <211> 399 <212> PRT <213> Hyphomicrobium sp. <400> 1 Met Ala Lys Ile Val Cys Val Leu Tyr Asp Asp Pro Val Asn Gly Tyr 1 5 10 15 Pro Lys Ser Tyr Ala Arg Asp Asp Ile Pro Lys Ile Thr Lys Tyr Pro 20 25 30 Asp Gly Gln Thr Thr Pro Thr Pro Gln Ala Ile Asp Phe Val Pro Gly 35 40 45 His Leu Leu Gly Ser Val Ser Gly Glu Leu Gly Leu Arg Lys Tyr Leu 50 55 60 Glu Ser Asn Gly His Thr Leu Val Val Thr Ser Asp Lys Asp Gly Ala 65 70 75 80 Asn Ser Arg Leu Asp Gln Glu Leu Pro Asp Ala Glu Ile Val Ile Ser 85 90 95 Gln Pro Phe Trp Pro Ala Tyr Met Thr Ala Glu Arg Ile Ala Lys Ala 100 105 110 Pro Lys Leu Lys Met Ile Val Thr Ala Gly Ile Gly Ser Asp His Thr 115 120 125 Asp Leu Gln Ala Ala Met Asp Arg Gly Ile Thr Val Ala Glu Val Thr 130 135 140 Tyr Cys Asn Ser Asn Ser Val Ala Glu His Val Val Met Gln Met Leu 145 150 155 160 Ser Leu Val Arg Asn Tyr ile Pro Ser Tyr Asn Trp Val Ile Lys Gly 165 170 175 Gly Trp Asn Ile Ala Asp Cys Val Glu Arg Ser Tyr Asp Ile Glu Gly 180 185 190 Met His Val Gly Thr Val Ala Ala Gly Arg Ile Gly Leu Arg Val Leu 195 200 205 Arg Leu Leu Lys Pro Phe Asp Val His Leu His Tyr Met Asp Arg Tyr 210 215 220 Lys Leu Pro Asp Ala Val Glu Lys Glu Leu Asn Leu Thr His His Thr 225 230 235 240 Ser Leu Glu Ser Leu Thr Lys Ala Cys Asp Val Val Thr Leu Asn Cys 245 250 255 Pro Leu His Pro Glu Thr Glu His Met Ile Asn Asp Lys Thr Leu Lys 260 265 270 Asn Phe Lys Arg Gly Ala Tyr Leu Val Asn Thr Ala Arg Gly Lys Leu 275 280 285 Cys Asp Arg Asp Ala Ile Val Arg Ala Leu Glu Ser Gly Gln Leu Ala 290 295 300 Gly Tyr Ala Gly Asp Val Trp Phe Pro Gln Pro Ala Pro Gln Asp His 305 310 315 320 Pro Trp Arg Lys Met Pro His His Gly Met Thr Pro His Ile Ser Gly 325 330 335 Thr Ser Leu Ser Ala Gln Ala Arg Tyr Ala Ala Gly Thr Arg Glu Ile 340 345 350 Leu Glu Cys Tyr Phe Asp Lys Lys Pro Ile Arg Asn Glu Tyr Leu Ile 355 360 365 Val Gln Gly Gly Lys Leu Ala Gly Val Gly Ala His Ser Tyr Ser Ala 370 375 380 Gly Asn Ala Thr Ser Gly Ser Glu Glu Ala Ala Lys Phe Lys Arg 385 390 395 <210> 2 <211> 1197 <212> DNA <213> Hyphomicrobium sp. <400> 2 atg gct aag atc gta tgt gtg ctc tac gac gac ccc gtc aac gga tat 48 Met Ala Lys Ile Val Cys Val Leu Tyr Asp Asp Pro Val Asn Gly Tyr 1 5 10 15 ccg aaa tcc tac gcg cgg gac gac atc ccc aaa att acg aaa tac ccc 96 Pro Lys Ser Tyr Ala Arg Asp Asp Ile Pro Lys Ile Thr Lys Tyr Pro 20 25 30 gat gga caa acg acc ccg acg ccg cag gcg atc gat ttc gtt cca ggg 144 Asp Gly Gln Thr Thr Pro Thr Pro Gln Ala Ile Asp Phe Val Pro Gly 35 40 45 cat ctt ctc ggt agc gta tcg ggc gaa ctt ggg ctt cgc aaa tac cta 192 His Leu Leu Gly Ser Val Ser Gly Glu Leu Gly Leu Arg Lys Tyr Leu 50 55 60 gag agc aat ggc cat acg ctg gtt gtc acc tcc gac aag gat ggt gcc 240 Glu Ser Asn Gly His Thr Leu Val Val Thr Ser Asp Lys Asp Gly Ala 65 70 75 80 aat tcc aga ctg gac caa gaa ctg ccg gac gct gag atc gtc atc tcg 288 Asn Ser Arg Leu Asp Gln Glu Leu Pro Asp Ala Glu Ile Val Ile Ser 85 90 95 caa ccg ttc tgg cca gca tac atg acg gcg gag cga att gcg aaa gcg 336 Gln Pro Phe Trp Pro Ala Tyr Met Thr Ala Glu Arg Ile Ala Lys Ala 100 105 110 ccg aaa ctg aaa atg att gtt act gct ggc atc ggc tcc gat cac acc 384 Pro Lys Leu Lys Met Ile Val Thr Ala Gly Ile Gly Ser Asp His Thr 115 120 125 gac ctg cag gcg gcc atg gat cgc ggc att acc gtc gca gaa gtc acg 432 Asp Leu Gln Ala Ala Met Asp Arg Gly Ile Thr Val Ala Glu Val Thr 130 135 140 tac tgc aac tcc aac agc gtc gcc gag cat gtc gtc atg cag atg ctg 480 Tyr Cys Asn Ser Asn Ser Val Ala Glu His Val Val Met Gln Met Leu 145 150 155 160 tcg ctc gtc cgc aac tac atc ccc tcg tat aat tgg gta atc aag ggt 528 Ser Leu Val Arg Asn Tyr ile Pro Ser Tyr Asn Trp Val Ile Lys Gly 165 170 175 ggg tgg aac atc gcc gat tgc gtt gag cga tct tac gac atc gag ggt 576 Gly Trp Asn Ile Ala Asp Cys Val Glu Arg Ser Tyr Asp Ile Glu Gly 180 185 190 atg cac gtc ggt aca gtt gcg gca ggc cgc atc ggc ttg cgc gtg ttg 624 Met His Val Gly Thr Val Ala Ala Gly Arg Ile Gly Leu Arg Val Leu 195 200 205 cgt ctg ctg aaa ccc ttc gat gtg cat ctt cac tat atg gat cgc tac 672 Arg Leu Leu Lys Pro Phe Asp Val His Leu His Tyr Met Asp Arg Tyr 210 215 220 aag ctg ccc gat gca gtt gaa aag gaa ctc aac ctc acg cat cac acg 720 Lys Leu Pro Asp Ala Val Glu Lys Glu Leu Asn Leu Thr His His Thr 225 230 235 240 agc ctg gaa agc ctc acc aag gct tgc gac gtc gta acg ttg aac tgc 768 Ser Leu Glu Ser Leu Thr Lys Ala Cys Asp Val Val Thr Leu Asn Cys 245 250 255 ccg ctt cat ccc gaa acc gag cat atg atc aac gat aag acc ctg aaa 816 Pro Leu His Pro Glu Thr Glu His Met Ile Asn Asp Lys Thr Leu Lys 260 265 270 aac ttc aag cgc ggc gca tac ctt gtg aac aca gct cgc ggc aaa ctc 864 Asn Phe Lys Arg Gly Ala Tyr Leu Val Asn Thr Ala Arg Gly Lys Leu 275 280 285 tgc gat cgg gac gcc atc gta cgc gcg ctc gaa agc ggg cag ctt gca 912 Cys Asp Arg Asp Ala Ile Val Arg Ala Leu Glu Ser Gly Gln Leu Ala 290 295 300 ggt tat gcg ggt gac gtt tgg ttt cca cag ccg gcg ccg caa gac cat 960 Gly Tyr Ala Gly Asp Val Trp Phe Pro Gln Pro Ala Pro Gln Asp His 305 310 315 320 cct tgg cgg aag atg ccg cat cac ggc atg aca ccg cac att tcc ggc 1008 Pro Trp Arg Lys Met Pro His His Gly Met Thr Pro His Ile Ser Gly 325 330 335 acg tcg ctt tcg gca caa gca agg tac gca gcc gga acg cgg gaa att 1056 Thr Ser Leu Ser Ala Gln Ala Arg Tyr Ala Ala Gly Thr Arg Glu Ile 340 345 350 ctt gaa tgt tat ttc gac aag aag ccc atc cgc aac gag tac ttg att 1104 Leu Glu Cys Tyr Phe Asp Lys Lys Pro Ile Arg Asn Glu Tyr Leu Ile 355 360 365 gtt caa ggc ggc aag ctc gcc ggt gtc ggc gcg cac tcg tat agc gca 1152 Val Gln Gly Gly Lys Leu Ala Gly Val Gly Ala His Ser Tyr Ser Ala 370 375 380 ggc aac gca act tcc ggc tcg gaa gaa gcc gcg aag ttt aaa cgc 1197 Gly Asn Ala Thr Ser Gly Ser Glu Glu Ala Ala Lys Phe Lys Arg 385 390 395 <210> 3 <211> 20 <212> PRT <213> Hyphomicrobium sp. <400> 3 Ala Lys Ile Val Cys Val Leu Tyr Asp Asp Pro Val Asn Gly Tyr Pro 1 5 10 15 Lys Ser Tyr Ala 20 <210> 4 <211> 10 <212> PRT <213> Hyphomicrobium sp. <400> 4 Gly Asp Val Trp Phe Pro Gln Pro Ala Pro 1 5 10 <210> 5 <211> 26 <212> DNA <213> Artificial Sequence <400> 5 gaattcgatg gctaagatcg tatgtg 26 <210> 6 <211> 26 <212> DNA <213> Artificial Sequence <400> 6 aagcttctaa acggtgctgc ggagaa 26 [Sequence List] <110> UNITIKA LTD. <120> NUCLEIC ACIDS ENCODING FORMATE DEHYDROGENASE, VECTOR AND TRANSFORM ANT THEREOF, AND METHOD FOR PRODUSING FORMATE DEHYDROGENASE THEREWITH <130> P0017863 <160> 6 <210> 1 <211> 399 <212 > PRT <213> Hyphomicrobium sp. <400> 1 Met Ala Lys Ile Val Cys Val Leu Tyr Asp Asp Pro Val Asn Gly Tyr 1 5 10 15 Pro Lys Ser Tyr Ala Arg Asp Asp Ile Pro Lys Ile Thr Lys Tyr Pro 20 25 30 Asp Gly Gln Thr Thr Pro Thr Pro Gln Ala Ile Asp Phe Val Pro Gly 35 40 45 His Leu Leu Gly Ser Val Ser Gly Glu Leu Gly Leu Arg Lys Tyr Leu 50 55 60 Glu Ser Asn Gly His Thr Leu Val Val Thr Ser Asp Lys Asp Gly Ala 65 70 75 80 Asn Ser Arg Leu Asp Gln Glu Leu Pro Asp Ala Glu Ile Val Ile Ser 85 90 95 Gln Pro Phe Trp Pro Ala Tyr Met Thr Ala Glu Arg Ile Ala Lys Ala 100 105 110 Pro Lys Leu Lys Met Ile Val Thr Ala Gly Ile Gly Ser Asp His Thr 115 120 125 Asp Leu Gln Ala Ala Met Asp Arg Gly Ile Thr Val Ala Glu Val Thr Thr 130 135 140 Tyr Cys Asn Ser Asn Ser Val Ala Glu His Val Val Met Gln Met Leu 145 150 155 160 Ser Leu Val Arg Asn Tyr ile Pro Ser Tyr Asn Trp Val Ile Lys Gly 165 170 175 Gly Trp Asn Ile Ala Asp Cys Val Glu Arg Ser Tyr Asp Ile Glu Gly 180 185 190 Met His Val Gly Thr Val Ala Ala Gly Arg Ile Gly Leu Arg Val Leu 195 200 205 Arg Leu Leu Lys Pro Phe Asp Val His Leu His Tyr Met Asp Arg Tyr 210 215 220 Lys Leu Pro Asp Ala Val Glu Lys Glu Leu Asn Leu Thr His His Thr 225 230 235 240 Ser Leu Glu Ser Leu Thr Lys Ala Cys Asp Val Val Thr Leu Asn Cys 245 250 255 Pro Leu His Pro Glu Thr Glu His Met Ile Asn Asp Lys Thr Leu Lys 260 265 270 Asn Phe Lys Arg Gly Ala Tyr Leu Val Asn Thr Ala Arg Gly Lys Leu 275 280 285 Cys Asp Arg Asp Ala Ile Val Arg Ala Leu Glu Ser Gly Gln Leu Ala 290 295 300 Gly Tyr Ala Gly Asp Val Trp Phe Pro Gln Pro Ala Pro Gln Asp His 305 310 315 320 Pro Trp Arg Lys Met Pro His His Gly Met Thr Pro His Ile Ser Gly 325 330 335 Thr Ser Leu Ser Ala Gln Ala Arg Tyr Ala Ala Gly Thr Arg Glu Ile 340 345 350 Leu Glu Cys Tyr Phe Asp Lys Lys Pro Ile Arg Asn Glu Tyr Leu Ile 355360 365 Val Gln Gly Gly Lys Leu Ala Gly Val Gly Ala His Ser Tyr Ser Ala 370 375 380 Gly Asn Ala Thr Ser Gly Ser Glu Glu Ala Ala Lys Phe Lys Arg 385 390 395 <210> 2 <211> 1197 <212> DNA <213> Hyphomicrobium sp. <400> 2 atg gct aag atc gta tgt gtg ctc tac gac gac ccc gtc aac gga tat 48 Met Ala Lys Ile Val Cys Val Leu Tyr Asp Asp Pro Val Asn Gly Tyr 1 5 10 15 ccg aaa tcc tac gcg cgg gac gac atc ccc aaa att acg aaa tac ccc 96 Pro Lys Ser Tyr Ala Arg Asp Asp Ile Pro Lys Ile Thr Lys Tyr Pro 20 25 30 gat gga caa acg acc ccg acg ccg cag gcg atc gat ttc gtt cca ggg 144 Asp Gly Gln Thr Thr Pro Thr Pro Gln Ala Ile Asp Phe Val Pro Gly 35 40 45 cat ctt ctc ggt agc gta tcg ggc gaa ctt ggg ctt cgc aaa tac cta 192 His Leu Leu Gly Ser Val Ser Gly Glu Leu Gly Leu Arg Lys Tyr Leu 50 55 60 gag agc aat ggc cat acg ctg gtt gtc acc tcc gac aag gat ggt gcc 240 Glu Ser Asn Gly His Thr Leu Val Val Thr Ser Asp Lys Asp Gly Ala 65 70 75 80 aat tcc aga ctg gac caa gaa ctg ccg gac gct gag atc gtc atc tcg 288 Asn Ser Arg Leu Asp Gln Glu Leu Pro Asp Ala Glu Ile Val Ile Ser 85 90 95 caa ccg ttc tgg cca gca tac atg acg gcg gag cga att gcg aaa gcg 336 Gln Pro Phe Trp Pro Ala Tyr Met Thr Ala Glu Arg Ile Ala Lys Ala 100 105 110 ccg aaa ctg aaa atg att gtt act gct ggc atc ggc tcc gat cac acc 384 Pro Lys Leu Lys Met Ile Val Thr Ala Gly Ile Gly Ser Asp His Thr 115 120 125 gac ctg cag gcg gcc atg gat cgc ggc att acc gtc gca gaa gtc acg 432 Asp Leu Gln Ala Ala Met Asp Arg Gly Ile Thr Val Ala Glu Val Thr 130 135 140 tac tgc aac tcc aac agc gtc gcc gag cat gtc gtc atg cag atg ctg 480 Tyr Cys Asn Ser Asn Ser Ala Glu His Val Val Met Gln Met Leu 145 150 155 160 tcg ctc gtc cgc aac tac atc ccc tcg tat aat tgg gta atc aag ggt 528 Ser Leu Val Arg Asn Tyr ile Pro Ser Tyr Asn Trp Val Ile Lys Gly 165 170 175 ggg tgg aac atc gcc gat tgc gtt gag cga tct tac gac atc gag ggt 576 Gly Trp Asn Ile Ala Asp Cys Val Glu Arg Ser Tyr Asp Ile Glu Gly 180 185 190 atg cac gtc ggt aca gtt gcg gca ggc cgc atc ggc ttg 62 4 Met His Val Gly Thr Val Ala Ala Gly Arg Ile Gly Leu Arg Val Leu 195 200 205 cgt ctg ctg aaa ccc ttc gat gtg cat ctt cac tat atg gat cgc tac 672 Arg Leu Leu Lys Pro Phe Asp Val His Leu His Tyr Met Asp Arg Tyr 210 215 220 aag ctg ccc gat gca gtt gaa aag gaa ctc aac ctc acg cat cac acg 720 Lys Leu Pro Asp Ala Val Glu Lys Glu Leu Asn Leu Thr His His Thr 225 230 235 240 agc ctg gaa agc ctc accag gct tgc gac gtc gta acg ttg aac tgc 768 Ser Leu Glu Ser Leu Thr Lys Ala Cys Asp Val Val Thr Leu Asn Cys 245 250 255 ccg ctt cat ccc gaa acc gag cat atg atc aac gat aag acc ctg aaa 816 Pro Leu His Pro Glu Thr Glu His Met Ile Asn Asp Lys Thr Leu Lys 260 265 270 aac ttc aag cgc ggc gca tac ctt gtg aac aca gct cgc ggc aaa ctc 864 Asn Phe Lys Arg Gly Ala Tyr Leu Val Asn Thr Ala Arg Gly Lys Leu 285 tgc gat cgg gac gcc atc gta cgc gcg ctc gaa agc ggg cag ctt gca 912 Cys Asp Arg Asp Ala Ile Val Arg Ala Leu Glu Ser Gly Gln Leu Ala 290 295 300 ggt tat gcg ggt gac gtt tgg ttgcag ca a gac cat 960 Gly Tyr Ala Gly Asp Val Trp Phe Pro Gln Pro Ala Pro Gln Asp His 305 310 315 320 cct tgg cgg aag atg ccg cat cac ggc atg aca ccg cac att tcc ggc 1008 Pro Trp Arg Lys Met Pro His His Gly Met Thr Pro His Ile Ser Gly 325 330 335 acg tcg ctt tcg gca caa gca agg tac gca gcc gga acg cgg gaa att 1056 Thr Ser Leu Ser Ala Gln Ala Arg Tyr Ala Ala Gly Thr Arg Glu Ile 340 345 350 ctt gaa tgt tat ttc gac aag aag ccc atc cgc aac gag tac ttg att 1104 Leu Glu Cys Tyr Phe Asp Lys Lys Pro Ile Arg Asn Glu Tyr Leu Ile 355 360 365 gtt caa ggc ggc aag ctc gcc ggt gtc ggc gc g cg gc gc gc gc gc gc gc gc gc gc gc gc gc gc gc gc gc gc gc gc gc gc gc gc gc gc gg Gln Gly Gly Lys Leu Ala Gly Val Gly Ala His Ser Tyr Ser Ala 370 375 380 ggc aac gca act tcc ggc tcg gaa gaa gcc gcg aag ttt aaa cgc 1197 Gly Asn Ala Thr Ser Gly Ser Glu Glu Ala Ala Lys Phe Lys Arg 390 395 <210> 3 <211> 20 <212> PRT <213> Hyphomicrobium sp. <400> 3 Ala Lys Ile Val Cys Val Leu Tyr Asp Asp Pro Val Asn Gly Tyr Pro 1 5 10 15 Lys Ser Tyr Ala 20 < 210> 4 <211> 10 <212> PRT <213> Hyp homicrobium sp. <400> 4 Gly Asp Val Trp Phe Pro Gln Pro Ala Pro 1 5 10 <210> 5 <211> 26 <212> DNA <213> Artificial Sequence <400> 5 gaattcgatg gctaagatcg tatgtg 26 <210> 6 < 211> 26 <212> DNA <213> Artificial Sequence <400> 6 aagcttctaa acggtgctgc ggagaa 26

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12N 9/02 C12N 5/00 A Fターム(参考) 4B024 AA03 BA08 CA03 DA05 DA06 EA04 4B050 CC03 DD02 FF09E FF11E FF14E LL05 4B065 AA01X AA01Y AA26X AB01 AC14 CA28 CA60 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C12N 9/02 C12N 5/00 A F term (Reference) 4B024 AA03 BA08 CA03 DA05 DA06 EA04 4B050 CC03 DD02 FF09E FF11E FF14E LL05 4B065 AA01X AA01Y AA26X AB01 AC14 CA28 CA60

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 配列番号1で示されるアミノ酸配列又は
配列番号1で示されるアミノ酸配列において1もしくは
数個のアミノ酸が欠失、置換もしくは付加されたアミノ
酸配列からなるギ酸脱水素酵素をコードする遺伝子。
1. A gene encoding a formate dehydrogenase comprising an amino acid sequence represented by SEQ ID NO: 1 or an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 1. .
【請求項2】 配列番号2で示される塩基配列又は配列
番号2で示される塩基配列において1もしくは数個の塩
基が欠失、置換もしくは付加された塩基配列からなるD
NAを有し、かつギ酸脱水素酵素をコードする遺伝子。
2. A D sequence comprising the nucleotide sequence of SEQ ID NO: 2 or a nucleotide sequence in which one or several bases have been deleted, substituted or added in the nucleotide sequence of SEQ ID NO: 2.
A gene having NA and encoding formate dehydrogenase.
【請求項3】 請求項1ないし2の遺伝子を含有する組
換えベクター。
3. A recombinant vector containing the gene according to claim 1.
【請求項4】 請求項3記載の組換えベクターを含む形
質転換体。
A transformant comprising the recombinant vector according to claim 3.
【請求項5】 請求項4記載の形質転換体を培地中で培
養し、培養物からギ酸脱水素酵素を採取することを特徴
とするギ酸脱水素酵素の製造方法。
5. A method for producing formate dehydrogenase, comprising culturing the transformant according to claim 4 in a medium, and collecting formate dehydrogenase from the culture.
JP11052548A 1999-03-01 1999-03-01 Formate dehydrogenase gene, recombinant vector containing the same, transformant containing the recombinant vector and production of formate dehydrogenase using the transformant Pending JP2000245471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11052548A JP2000245471A (en) 1999-03-01 1999-03-01 Formate dehydrogenase gene, recombinant vector containing the same, transformant containing the recombinant vector and production of formate dehydrogenase using the transformant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11052548A JP2000245471A (en) 1999-03-01 1999-03-01 Formate dehydrogenase gene, recombinant vector containing the same, transformant containing the recombinant vector and production of formate dehydrogenase using the transformant

Publications (1)

Publication Number Publication Date
JP2000245471A true JP2000245471A (en) 2000-09-12

Family

ID=12917863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11052548A Pending JP2000245471A (en) 1999-03-01 1999-03-01 Formate dehydrogenase gene, recombinant vector containing the same, transformant containing the recombinant vector and production of formate dehydrogenase using the transformant

Country Status (1)

Country Link
JP (1) JP2000245471A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031626A1 (en) * 2001-10-09 2003-04-17 Kaneka Corporation Novel formate dehydrogenase tolerant to halogen compounds and process for producing the same
US8481294B2 (en) 2009-08-03 2013-07-09 Toyota Jidosha Kabushiki Kaisha Mutant formate dehydrogenase, gene encoding the same, and method for producing NADH

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031626A1 (en) * 2001-10-09 2003-04-17 Kaneka Corporation Novel formate dehydrogenase tolerant to halogen compounds and process for producing the same
US7432095B2 (en) 2001-10-09 2008-10-07 Kaneka Corporation Formate dehydrogenase tolerant to halogen compounds and process for producing the same
US8481294B2 (en) 2009-08-03 2013-07-09 Toyota Jidosha Kabushiki Kaisha Mutant formate dehydrogenase, gene encoding the same, and method for producing NADH

Similar Documents

Publication Publication Date Title
JPH04228079A (en) Cephalosporin acetylhydrolase gene and protein coded with the gene
JP2729628B2 (en) Method for preparing glucose dehydrogenase from macrobacteria
JP4529338B2 (en) DNA encoding hydantoinase, DNA encoding N-carbamyl-L-amino acid hydrolase, recombinant DNA, transformed cell, protein production method and optically active amino acid production method
CA2259954C (en) Process for the preparation of (s)- or (r)-3,3,3-trifluoro-2-hydroxy-2-methylpropionic acid
JP4216719B2 (en) Halogen compound-resistant novel formate dehydrogenase and method for producing the same
JP2000245471A (en) Formate dehydrogenase gene, recombinant vector containing the same, transformant containing the recombinant vector and production of formate dehydrogenase using the transformant
JP4880859B2 (en) Novel carbonyl reductase, its gene, and its use
JP3850557B2 (en) Novel gene and transformed cell carrying the gene
JPH06303981A (en) Dna having genetic information on protein having formaldehyde dehydrogenase activity and production of formaldehyde dehydrogenase
JP3132618B2 (en) Stabilized modified protein
JP2729045B2 (en) Sarcosine oxidase and method for producing the same
JP3508871B2 (en) DNA having genetic information of protein having creatinine deiminase activity and method for producing creatinine deiminase
JPH11318438A (en) Recombined microorganism 3-hydroxybutyric acid dehydrogenase, its production and its use
JP4485734B2 (en) 5-substituted hydantoin racemase, DNA encoding the same, recombinant DNA, transformed cell, and method for producing optically active amino acid
JP3489604B2 (en) 5-aminolevulinic acid synthase gene
JP2706223B2 (en) Use of DNA having genetic information of pyruvate oxidase
JP2003189863A (en) Method for producing aspartic acid amide and derivative thereof
JP4561021B2 (en) 5-substituted hydantoin racemase, DNA encoding the same, recombinant DNA, transformed cell, and method for producing optically active amino acid
JP3173619B2 (en) Method for producing pyroglutamyl aminopeptidase
JP3491695B2 (en) Method for producing N-acylneuraminic acid aldolase
JP3829950B2 (en) Novel creatinine amide hydrolase
JP3358686B2 (en) Gene encoding novel glutamate dehydrogenase and method for producing glutamate dehydrogenase using the gene
JP4161232B2 (en) Novel protein having sarcosine oxidase activity and method for producing the same
JP2001275669A (en) New catalase gene and method for producing new catalase using the gene
JP4066203B2 (en) Novel creatinine amide hydrolase