JPH06303981A - Dna having genetic information on protein having formaldehyde dehydrogenase activity and production of formaldehyde dehydrogenase - Google Patents

Dna having genetic information on protein having formaldehyde dehydrogenase activity and production of formaldehyde dehydrogenase

Info

Publication number
JPH06303981A
JPH06303981A JP9454793A JP9454793A JPH06303981A JP H06303981 A JPH06303981 A JP H06303981A JP 9454793 A JP9454793 A JP 9454793A JP 9454793 A JP9454793 A JP 9454793A JP H06303981 A JPH06303981 A JP H06303981A
Authority
JP
Japan
Prior art keywords
formaldehyde dehydrogenase
gly
ala
val
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9454793A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ito
伊藤  潔
Tadashi Yoshimoto
忠 芳本
Onori Tsuru
大典 鶴
Mari Takahashi
真理 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP9454793A priority Critical patent/JPH06303981A/en
Publication of JPH06303981A publication Critical patent/JPH06303981A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To feed a large amount of a DNA having the non-glutathione- dependent formaldehyde dehydrogenase in a pure form at a low cost without producing other enzymes accompanying thereto in natural bacteria. CONSTITUTION:The DNA fragment contains a base sequence described in sequence No.1 of the sequence table and a recombinant vector has the DNA fragment. The transformant is obtained by transformation with the recombinant vector and the method for producing a formaldehyde dehydrogenase is characterized by culturing the transformant in a culture medium, producing the formaldehyde dehydrogenase and collecting the formaldehyde dehydrogenase. Although cleatininamide hydrolase, cleatininamidinohydrolase, sarcosine dehydrogenase, etc., are especially contained in the enzyme produced from natural bacteria and many steps are required for removing them, the steps for purification thereof can be simplified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、体液中のクレアチン測
定、クレアチニン測定、尿酸測定あるいはカタラーゼ測
定に用いられる、グルタチオン非依存性ホルムアルデヒ
ド脱水素酵素活性を有する蛋白質の遺伝情報を有するD
NA断片、該DNA断片を有する組換えベクター、該ベ
クターで形質転換された形質転換体及び該形質転換体を
使用するホルムアルデヒド脱水素酵素を製造する方法に
関する。
FIELD OF THE INVENTION The present invention has a genetic information of a protein having glutathione-independent formaldehyde dehydrogenase activity, which is used for creatine measurement, creatinine measurement, uric acid measurement or catalase measurement in body fluids.
The present invention relates to an NA fragment, a recombinant vector having the DNA fragment, a transformant transformed with the vector, and a method for producing formaldehyde dehydrogenase using the transformant.

【0002】[0002]

【従来の技術】ホルムアルデヒド脱水素酵素(EC 1.2.
1.46 )は、ホルムアルデヒドから蟻酸への酸化を触媒
する酵素で、グルタチオン依存性、非依存性の2つのタ
イプがある。グルタチオン依存性ホルムアルデヒド脱水
素酵素は、広く生物界に存在し、大腸菌から人に至るま
で多くの生物から精製されている。一方、グルタチオン
非依存性ホルムアルデヒド脱水素酵素としては、現在ま
でのところシュードモナス属細菌が生産する酵素が唯一
のものである。活性発現にグルタチオンを必要としない
点で、シュードモナス属細菌が生産するホルムアルデヒ
ド脱水素酵素は、クレアチニン、クレアチン等の測定に
おける実用面において優れている。しかしながら、これ
らのシュードモナス属細菌は本来、ホルムアルデヒド脱
水素酵素の他に、クレアチニン、クレアチンの測定に必
要であるクレアチニン・アミドヒドロラーゼ、クレアチ
ンアミジノヒドロラーゼ、ザルコシン脱水素酵素なども
ともに産生する。したがって該細菌からホルムアルデヒ
ド脱水素酵素を精製して純粋なものを得るには多大な工
程が必要である。またシュードモナス属細菌のホルムア
ルデヒド脱水素酵素生産性はあまり十分なものではな
く、工業的にホルムアルデヒド脱水素酵素を多量に生産
することも求められていた。
[Prior Art] Formaldehyde dehydrogenase (EC 1.2.
1.46) is an enzyme that catalyzes the oxidation of formaldehyde to formic acid. There are two types, glutathione-dependent and glutathione-independent. Glutathione-dependent formaldehyde dehydrogenase exists widely in the living world and is purified from many organisms from Escherichia coli to humans. On the other hand, the only glutathione-independent formaldehyde dehydrogenase to date is the enzyme produced by Pseudomonas bacteria. Formaldehyde dehydrogenase produced by a Pseudomonas bacterium is excellent in practical use in the measurement of creatinine, creatine, etc. in that glutathione is not required for activity expression. However, these Pseudomonas bacteria originally produce not only formaldehyde dehydrogenase but also creatinine, creatinine amide hydrolase, creatine amidinohydrolase, sarcosine dehydrogenase, etc. which are necessary for the measurement of creatine. Therefore, a large number of steps are required to purify formaldehyde dehydrogenase from the bacterium to obtain a pure product. Further, the productivity of formaldehyde dehydrogenase of Pseudomonas bacteria is not so sufficient, and it has been required to industrially produce a large amount of formaldehyde dehydrogenase.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、グル
タチオン非依存性ホルムアルデヒド脱水素酵素活性を有
する蛋白質の遺伝情報を有するDNA断片を単離し、そ
の分子構造を明らかにするとともに、ホルムアルデヒド
脱水素酵素活性を有する蛋白質を遺伝子工学的手法によ
って天然の細菌において随伴する他の酵素を産生せず、
純粋な形で安価に大量供給しうる手段を提供することに
ある。
The object of the present invention is to isolate a DNA fragment carrying the genetic information of a protein having glutathione-independent formaldehyde dehydrogenase activity, clarify its molecular structure, and determine the formaldehyde dehydrogenase. Proteins having enzymatic activity are not produced by genetic engineering techniques in other bacteria that accompany them in natural bacteria,
It is to provide a means capable of mass-producing in a pure form at low cost.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記目的
を達成するため、グルタチオン非依存性ホルムアルデヒ
ド脱水素酵素生産菌としてシュードモナス・プチダ(Pse
udomonas putida)を選び、該菌体より抽出した染色体D
NAよりホルムアルデヒド脱水素酵素遺伝子の単離に成
功し、そのDNAの全構造を決定した。更に本ホルムア
ルデヒド脱水素酵素を遺伝子工学的手法によって形質転
換体に高生産させることに成功し、高純度なホルムアル
デヒド脱水素酵素を安価に大量供給することを可能にし
た。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present inventors have established Pseudomonas putida as a glutathione-independent formaldehyde dehydrogenase-producing bacterium.
udomonas putida), and the chromosome D extracted from the cells
The formaldehyde dehydrogenase gene was successfully isolated from NA, and the entire structure of the DNA was determined. Furthermore, we succeeded in highly producing this formaldehyde dehydrogenase in transformants by a genetic engineering method, and made it possible to inexpensively supply a large amount of highly pure formaldehyde dehydrogenase.

【0005】すなわち本発明はグルタチオン非依存性ホ
ルムアルデヒド脱水素酵素活性を有する蛋白質の遺伝情
報を有するDNA断片であり、その一例をして配列表の
配列番号1に記載された塩基配列を含有するものが挙げ
られる。
That is, the present invention is a DNA fragment having the genetic information of a protein having glutathione-independent formaldehyde dehydrogenase activity, and an example of the DNA fragment contains the nucleotide sequence shown in SEQ ID NO: 1 in the sequence listing. Is mentioned.

【0006】また本発明は上記DNA断片を有する組換
えベクターである。
The present invention is also a recombinant vector having the above DNA fragment.

【0007】さらに本発明は上記組換えベクターで形質
転換された形質転換体である。
Further, the present invention is a transformant transformed with the above recombinant vector.

【0008】また本発明は上記形質転換体を培地で培養
し、ホルムアルデヒド脱水素酵素を生成させ、該ホルム
アルデヒド脱水素酵素を採取することを特徴とするホル
ムアルデヒド脱水素酵素の製造法である。
Further, the present invention is a method for producing formaldehyde dehydrogenase, which comprises culturing the above transformant in a medium to produce formaldehyde dehydrogenase and collecting the formaldehyde dehydrogenase.

【0009】本発明のグルタチオン非依存性ホルムアル
デヒド脱水素酵素生産菌としては、シュドモナス属細菌
であれば、いかなるものでのよいが、例えばシュードモ
ナス・プチダ、シュードモナス・アエルギノーサ、シュ
ードモナス・セバシアやシュードモナス・フルオレッセ
ンス等が挙げられる。本願発明の実施例においては、シ
ュードモナス・プチダPSー7を利用した。
As the glutathione-independent formaldehyde dehydrogenase-producing bacterium of the present invention, any bacterium belonging to the genus Pseudomonas may be used. Etc. Pseudomonas putida PS-7 was used in the Example of this invention.

【0010】これらの菌を培養する培地とは、炭素源、
窒素源、無機イオン、更に必要に応じて硝酸塩、リン酸
塩等を含有するものである。炭素源としては、澱粉ある
いは澱粉加水分解物、糖密、ペプトン類等が用いられ
る。窒素源としては、ポリペプトン、トリプトン、肉エ
キス、酵母エキス等が使用できる。培養は好気的条件下
で培地のpH及び温度を適宜調節することが望ましい
が、形質転換された菌によっては必ずしもその必要はな
い。培養時間は培養物のホルムアルデヒド脱水素酵素活
性が最高になるところまで行なう。
A medium for culturing these bacteria is a carbon source,
It contains a nitrogen source, inorganic ions, and if necessary, nitrates, phosphates and the like. As the carbon source, starch or starch hydrolyzate, sugar condensate, peptones and the like are used. As the nitrogen source, polypeptone, tryptone, meat extract, yeast extract and the like can be used. It is desirable to appropriately adjust the pH and temperature of the medium during the culture under aerobic conditions, but this is not always necessary depending on the transformed bacterium. The culture time is until the formaldehyde dehydrogenase activity of the culture reaches its maximum.

【0011】培養物より、ホルムアルデヒド脱水素酵素
を精製するには、従来、次の様な方法が用いられてい
る。培養物を遠心分離して集菌し、次いでこれを溶菌さ
せることによってホルムアルデヒド脱水素酵素含有溶菌
物を調製する。溶菌方法としては、例えばリゾチームや
β−グルカナーゼなどの細胞壁溶解酵素による処理や超
音波破砕、ダイノミル破砕処理等の物理的破砕法が好適
である。この様にして得られた溶菌物を硫安沈澱分画
し、脱塩した後、陽イオン交換カラム、陰イオン交換カ
ラムやヒドロキシルアパタイトカラム等の担体にかけて
カラムクロマトグラフィーによる分画を行う。シュード
モナス属細菌は、ホルムアルデヒド脱水素酵素の他に、
クレアチニン、クレアチンの測定に用いられるクレアチ
ニンアミドヒドロラーゼ、クレアチンアミジノヒドロラ
ーゼ、ザルコシン脱水素酵素などもともに産生する。た
とえばシュードモナス・プチダPS-7は約 1単位/ml のク
レアチニンアミドヒドロラーゼ、約 1単位/ml のクレア
チンアミジノヒドロラーゼ、約 0.5単位/ml のザルコシ
ン脱水素酵素を生産する。これらの酵素がホルムアルデ
ヒド脱水素酵素の精製標品に混入していると、本来の設
定値より過剰な量の酵素が測定物の存在することとな
り、測定誤差が生じる原因となる。したがって該細菌か
らホルムアルデヒド脱水素酵素を精製して純粋なものを
得るには多大な工程が必要である。すなわち2種類以上
のカラムクロマトグラフィーの組み合わせ、および他の
精製法との併用を検討することが必要となる。
To purify formaldehyde dehydrogenase from the culture, the following methods have been conventionally used. A lysate containing formaldehyde dehydrogenase is prepared by centrifuging the culture to collect the cells and then lysing the cells. As a lysis method, for example, a treatment with a cell wall lysing enzyme such as lysozyme or β-glucanase, or a physical disruption method such as ultrasonic disruption or dynomill disruption is suitable. The lysate thus obtained is subjected to ammonium sulfate precipitation fractionation, desalted, and then applied to a carrier such as a cation exchange column, anion exchange column or hydroxylapatite column for fractionation by column chromatography. Pseudomonas bacteria, in addition to formaldehyde dehydrogenase,
It also produces creatinine, creatinine amidohydrolase, creatine amidinohydrolase, and sarcosine dehydrogenase, which are used for the measurement of creatine. For example, Pseudomonas putida PS-7 produces about 1 unit / ml creatinine amide hydrolase, about 1 unit / ml creatine amidinohydrolase, and about 0.5 unit / ml sarcosine dehydrogenase. If these enzymes are mixed in the purified preparation of formaldehyde dehydrogenase, an excess amount of the enzyme than the original set value will be present in the measured substance, which causes a measurement error. Therefore, a large number of steps are required to purify formaldehyde dehydrogenase from the bacterium to obtain a pure product. That is, it is necessary to consider a combination of two or more types of column chromatography and a combination with other purification methods.

【0012】本発明のグルタチオン非依存性ホルムアル
デヒド脱水素酵素活性を有する蛋白質の遺伝情報を有す
るDNA(以下、ホルムアルデヒド脱水素酵素遺伝子と
もいう)は、シュードモナス属細菌、例えばシュードモ
ナス・プチダから抽出してもよく、また合成することも
できる。このような塩基配列としては、例えば配列表の
配列番号1に記載された塩基配列または配列表の配列番
号2に記載されたアミノ酸配列をコードする塩基配列を
挙げることができる。なお、本発明のDNAは遺伝子組
換え技術により基本となるDNAの特定部位に、該DN
Aがコードするホルムアルデヒド脱水素酵素の基本的な
特性を変化させる事なく、或いはその特性を改善するよ
うに人為的に変異、例えば置換,削除,挿入などを起こ
させたものも含むものである。
The DNA having the genetic information of the protein having glutathione-independent formaldehyde dehydrogenase activity of the present invention (hereinafter, also referred to as formaldehyde dehydrogenase gene) can be extracted from Pseudomonas bacteria such as Pseudomonas putida. Well, it can also be synthesized. Examples of such a base sequence include the base sequence described in SEQ ID NO: 1 of the sequence listing or the base sequence encoding the amino acid sequence described in SEQ ID NO: 2 of the sequence listing. It should be noted that the DNA of the present invention is prepared by gene recombination technology at the specific site of the basic DNA
The formaldehyde dehydrogenase encoded by A does not change the basic characteristics, or those artificially mutated such as substitution, deletion, or insertion so as to improve the characteristics are included.

【0013】本発明のDNAは、例えばシュードモナス
・プチダのDNAを分離・精製した後、超音波,制限酵
素などを用いて、DNAを切断したものとリニヤーな発
現ベクターとを両DNAの平滑または接着末端部におい
てDNAリガーゼなどにより結合閉環させて組換えベク
ターとする。こうして得られた組換えベクターは複製可
能な宿主微生物に移入した後、ベクターのマーカーとホ
ルムアルデヒド脱水素酵素活性、あるいはホルムアルデ
ヒド脱水素酵素遺伝子に特異的なプローブとのハイブリ
ダイゼーションを指標としてスクリーニングして該組換
えベクターを保持する微生物を得る。該微生物を培養
し、該培養菌体から該組換えベクターを分離・精製し、
次いで該組換えベクターからホルムアルデヒド脱水素酵
素遺伝子を採取すればよい。
The DNA of the present invention is obtained by, for example, separating and purifying DNA of Pseudomonas putida, and then blunting or adhering the cut DNA and a linear expression vector with ultrasonic waves or restriction enzymes. At the end portion, a ligation ring is closed by a DNA ligase or the like to obtain a recombinant vector. The recombinant vector thus obtained is transferred to a replicable host microorganism, and then screened using the marker of the vector and formaldehyde dehydrogenase activity or hybridization with a probe specific to the formaldehyde dehydrogenase gene as an index. A microorganism carrying the recombinant vector is obtained. Culturing the microorganism, separating and purifying the recombinant vector from the cultured cells,
Then, the formaldehyde dehydrogenase gene may be collected from the recombinant vector.

【0014】次にDNAの採取方法をより詳細に説明す
る。遺伝子の供与体である微生物に由来するDNAは次
の如くにして採取される。すなわち、供与微生物である
上述した細菌を例えば液体培地で約1〜3日間通気撹拌
培養し、得られる培養物を遠心分離して集菌し、次いで
これを溶菌させることによってホルムアルデヒド脱水素
酵素遺伝子の含有溶菌物を調製することができる。溶菌
方法としてはたとえばリゾチームやβ−グルカナーゼな
どの細胞壁溶解酵素による処理が施され、必要により、
プロテアーゼなどの他の酵素やラウリル硫酸ナトリウム
などの界面活性剤が併用され、更に細胞壁の物理的破砕
法である凍結融解やフレンチプレス処理を上述の溶菌法
との組み合せで行ってもよい。この様にして得られた溶
菌物からDNAを分離・精製するには常法に従って例え
ばフェノール抽出による除蛋白処理、プロテアーゼ処
理、リボヌクレアーゼ処理、アルコール沈澱遠心分離な
どの方法を適宜組み合わせることにより行なうことがで
きる。
Next, the method for collecting DNA will be described in more detail. DNA derived from a microorganism that is a gene donor is collected as follows. That is, for example, the above-mentioned bacteria that are donor microorganisms are cultivated in a liquid medium with aeration and stirring for about 1 to 3 days, the resulting culture is centrifuged to collect the cells, and then the cells are lysed to lyse the formaldehyde dehydrogenase gene. A lysate containing can be prepared. As a lysing method, for example, treatment with a cell wall lysing enzyme such as lysozyme or β-glucanase is performed, and if necessary,
Other enzymes such as protease and a surfactant such as sodium lauryl sulfate may be used in combination, and further freeze-thawing or French press treatment, which are physical disruption methods of cell walls, may be performed in combination with the above-mentioned lysis method. In order to separate and purify DNA from the lysate thus obtained, a method such as deproteinization treatment by phenol extraction, protease treatment, ribonuclease treatment, alcohol precipitation centrifugation etc. may be appropriately combined according to a conventional method. it can.

【0015】微生物から分離・精製されたDNAを切断
する方法は、例えば超音波処理,制限酵素処理などを行
なうことができるが、得られる微生物DNA断片とベク
ターとの結合を容易ならしめるため、制限酵素とりわけ
特定ヌクレオチド配列に作用する、例えばEcoRI, Hind
II,BamHIなどのII型制限酵素が適している。ベクター
としては、宿主微生物で自律的に増殖しうるファージま
たはプラスミドから遺伝子組換え用として構築されたも
のが適している。ファージとしては、例えばエシェリヒ
ア・コリー(Escherichia coli)を宿主微生物とする場合
には、λgt・10,λgt・11 などが使用できる。また、プラ
スミドとしては、例えばエシェリヒア・コリーを宿主微
生物とする場合にはpBR322,pUC18などが使用できる。こ
の様なベクターを、先に述べたホルムアルデヒド脱水素
酵素遺伝子供与体である微生物DNAの切断に使用した
制限酵素と同じ制限酵素で切断して、ベクター断片を得
ることが望ましい。微生物DNA断片をベクター断片と
結合させる方法は、公知のDNAリガーゼを用いる方法
であればよく、例えば微生物DNA断片の接着末端とベ
クター断片の接着末端とのアニーリングの後、適当なD
NAリガーゼの使用により微生物DNA断片とベクター
断片との組換えベクターを作成する。必要ならば、アニ
ーリングの後、宿主微生物に移入して、生体内のDNA
リガーゼを利用し、組換えベクターを作成することもで
きる。
As a method for cleaving the DNA separated and purified from the microorganism, for example, ultrasonic treatment or restriction enzyme treatment can be carried out. However, since it facilitates the binding between the obtained microbial DNA fragment and the vector, there is a restriction. Enzymes, especially acting on specific nucleotide sequences, eg EcoRI, Hind
Type II restriction enzymes such as II and BamHI are suitable. Suitable vectors are those constructed for gene recombination from phages or plasmids capable of autonomous growth in host microorganisms. As the phage, for example, when Escherichia coli is used as the host microorganism, λgt · 10, λgt · 11 and the like can be used. As the plasmid, for example, pBR322, pUC18, etc. can be used when Escherichia coli is used as the host microorganism. It is desirable to obtain a vector fragment by cleaving such a vector with the same restriction enzyme as that used for cleaving the microbial DNA which is the above-mentioned formaldehyde dehydrogenase gene donor. The method of ligating the microbial DNA fragment with the vector fragment may be a method using a known DNA ligase. For example, after annealing the cohesive ends of the microbial DNA fragment and the vector fragment, a suitable D
A recombinant vector of a microbial DNA fragment and a vector fragment is prepared by using NA ligase. If necessary, after annealing, transfer to host microorganisms and
A ligase can also be used to create a recombinant vector.

【0016】宿主微生物としては、組換えベクターが安
定、且つ自律的に増殖可能で、且つ外来性DNAの形質
が発現できるものであればよく、例えば宿主微生物がエ
シェリヒア・コリー W3110, エシェリヒア・コリーC60
0, エシェリヒア・コリーJM109 ,エシェリヒア・コリ
ーDH5 αなどが利用できる。宿主微生物に組換えベクタ
ーを移入する方法としては、例えば宿主微生物がエシェ
リヒア属に属する微生物の場合には、カルシウムイオン
の存在下で組換えDNA の移入を行なう方法などを採用す
ることができ、更にエレクトロポレーション法を用いて
も良い。こうして得られた形質転換体である微生物は、
栄養培地で培養されることにより、多量のホルムアルデ
ヒド脱水素酵素を安定して生産し得ることを見出した。
宿主微生物への目的組換えベクター移入の有無について
の選択は、目的とするDNAを保持するベクターの薬剤
耐性マーカーとホルムアルデヒド脱水素酵素とを同時に
発現し得る微生物を検索すればよく、例えば薬剤耐性マ
ーカーに基づく選択培地で生育し、且つホルムアルデヒ
ド脱水素酵素を生産する微生物を選択すればよい。
The host microorganism may be any as long as the recombinant vector can stably and autonomously grow and can express the trait of the foreign DNA. For example, the host microorganism can be Escherichia coli W3110, Escherichia coli C60.
0, Escherichia coli JM109, Escherichia coli DH5 α, etc. can be used. As a method for transferring the recombinant vector to the host microorganism, for example, when the host microorganism is a microorganism belonging to the genus Escherichia, a method of transferring the recombinant DNA in the presence of calcium ions can be adopted. An electroporation method may be used. The transformant microorganism thus obtained is
It was found that a large amount of formaldehyde dehydrogenase can be stably produced by culturing in a nutrient medium.
The selection as to whether or not the target recombinant vector is transferred into the host microorganism may be carried out by searching for a microorganism capable of simultaneously expressing the drug resistance marker of the vector carrying the target DNA and the formaldehyde dehydrogenase, for example, the drug resistance marker. A microorganism that grows in a selective medium based on and produces formaldehyde dehydrogenase may be selected.

【0017】上述の方法により得られたホルムアルデヒ
ド脱水素酵素遺伝子の塩基配列はサイエンス(Scienc
e),214,1205 〜1210(1981)に記載されているジデオキシ
法で解読し、またホルムアルデヒド脱水素酵素のアミノ
酸配列は塩基配列より推定した。 この様にして、一度
選択されたホルムアルデヒド脱水素酵素遺伝子を保有す
る組換えベクターは、形質転換微生物から取り出され、
他の宿主微生物に移入することも容易に実施できる。ま
た、ホルムアルデヒド脱水素酵素遺伝子を保持する組換
えベクターから制限酵素などにより切断してホルムアル
デヒド脱水素酵素遺伝子を含有するDNAを切り出し、
これを同様な方法により切断して得られるベクター断片
とを結合させて、宿主微生物に移入することも容易に実
施できる。形質転換体である宿主微生物の培養形態は宿
主の栄養生理的性質を考慮して培養条件を選択すればよ
く、通常多くの場合は液体培養で行うが、工業的には通
気撹拌培養を行うのが有利である。培地の栄養源として
は微生物の培養に通常用いられるものが広く使用され得
る。炭素源としては資化可能な炭素化合物であればよ
く、例えばグルコ−ス、シュークロース、ラクトース、
マルトース、フラクトース、糖蜜、ピルビン酸などが使
用される。窒素源としては利用可能な窒素化合物であれ
ばよく、例えばペプトン、肉エキス、酵母エキス、カゼ
イン加水分解物、大豆粕アルカリ抽出物などが使用され
る。その他、リン酸塩、炭酸塩、硫酸塩、マグネシウ
ム、カルシウム、カリウム、鉄、マンガン、亜鉛などの
塩類、特定のアミノ酸、特定のビタミンなどが必要に応
じて使用される。
The nucleotide sequence of the formaldehyde dehydrogenase gene obtained by the above method is
e), 214, 1205 to 1210 (1981), using the dideoxy method, and the amino acid sequence of formaldehyde dehydrogenase was deduced from the nucleotide sequence. In this way, the recombinant vector carrying the once selected formaldehyde dehydrogenase gene is removed from the transformed microorganism,
Transfer to other host microorganisms is also easy. In addition, a DNA containing the formaldehyde dehydrogenase gene is excised by cutting with a restriction enzyme from a recombinant vector carrying the formaldehyde dehydrogenase gene,
It can also be easily transferred to a host microorganism by ligating it with a vector fragment obtained by cleaving it by the same method. Regarding the culture form of the host microorganism that is a transformant, the culture conditions may be selected in consideration of the nutritional physiological properties of the host. Usually, in most cases, liquid culture is performed, but industrially, aeration stirring culture is performed. Is advantageous. As the nutrient source of the medium, those usually used for culturing microorganisms can be widely used. The carbon source may be any assimilable carbon compound, for example, glucose, sucrose, lactose,
Maltose, fructose, molasses, pyruvic acid, etc. are used. Any available nitrogen compound may be used as the nitrogen source, and for example, peptone, meat extract, yeast extract, casein hydrolyzate, soybean meal alkali extract, etc. are used. In addition, salts such as phosphates, carbonates, sulfates, magnesium, calcium, potassium, iron, manganese and zinc, specific amino acids, specific vitamins and the like are used as necessary.

【0018】培養温度は菌が発育し、ホルムアルデヒド
脱水素酵素を生産する範囲で適宜変更し得るが、エシュ
リヒア・コリーの場合、好ましくは20〜42℃程度であ
る。培養時間は条件によって多少異なるが、ホルムアル
デヒド脱水素酵素が最高収量に達する時期を見計らって
適当時期に培養を終了すればよく、通常は6〜48時間程
度である。培地pHは菌が発育しホルムアルデヒド脱水素
酵素を生産する範囲で適宜変更し得るが、特に好ましく
はpH6.0 〜9.0 程度である。培養物中のホルムアルデヒ
ド脱水素酵素を生産する菌体を含む培養液をそのまま採
取し利用することもできるが、一般には常法に従ってホ
ルムアルデヒド脱水素酵素が培養液中に存在する場合は
濾過,遠心分離などにより、ホルムアルデヒド脱水素酵
素含有溶液と微生物菌体とを分離した後に利用される。
ホルムアルデヒド脱水素酵素が菌体内に存在する場合に
は、得られた培養物を濾過または遠心分離などの手段に
より菌体を採取し、次いでこの菌体を機械的方法または
リゾチームなどの酵素的方法で破壊し、また必要に応じ
てEDTA等のキレート剤及びまたは界面活性剤を添加して
ホルムアルデヒド脱水素酵素を可溶化し、水溶液として
分離採取する。
The culturing temperature can be appropriately changed within the range where the bacterium grows and produces formaldehyde dehydrogenase, but in the case of Escherichia coli, it is preferably about 20 to 42 ° C. Although the culturing time varies slightly depending on the conditions, it may be completed at a suitable time in consideration of the time when the maximum yield of formaldehyde dehydrogenase is reached, and it is usually about 6 to 48 hours. The pH of the medium can be appropriately changed within the range in which the bacterium grows and produces formaldehyde dehydrogenase, but it is particularly preferably about pH 6.0 to 9.0. The culture solution containing the formaldehyde dehydrogenase-producing cells in the culture can be directly collected and used, but generally, when formaldehyde dehydrogenase is present in the culture solution, filtration and centrifugation are performed. It is used after separating the formaldehyde dehydrogenase-containing solution and the microbial cells by, for example,
When formaldehyde dehydrogenase is present in the microbial cells, the obtained culture is harvested by means such as filtration or centrifugation, and then the microbial cells are subjected to a mechanical method or an enzymatic method such as lysozyme. It is destroyed, and if necessary, a chelating agent such as EDTA and / or a surfactant is added to solubilize the formaldehyde dehydrogenase, and separated and collected as an aqueous solution.

【0019】この様にして得られたホルムアルデヒド脱
水素酵素含有溶液を例えば減圧濃縮、膜濃縮、更に硫酸
アンモニウム、硫酸ナトリウムなどの塩析処理、或いは
親水性有機溶媒、例えばメタノール、エタノール、アセ
トンなどによる分別沈澱法により沈澱せしめればよい。
また、加熱処理や等電点処理も有効な精製手段である。
吸着剤或いはゲル濾過剤などによるゲル濾過,吸着クロ
マトグラフィー、イオン交換クロマトグラフィー、アフ
ィニティークロマトグラフィーにより、精製されたホル
ムアルデヒド脱水素酵素を得ることができる。
The formaldehyde dehydrogenase-containing solution thus obtained is concentrated under reduced pressure, membrane concentration, salting out with ammonium sulfate, sodium sulfate or the like, or fractionation with a hydrophilic organic solvent such as methanol, ethanol or acetone. It may be precipitated by a precipitation method.
Further, heat treatment and isoelectric point treatment are also effective refining means.
Purified formaldehyde dehydrogenase can be obtained by gel filtration using an adsorbent or a gel filtration agent, adsorption chromatography, ion exchange chromatography, or affinity chromatography.

【0020】[0020]

【実施例】以下、本発明を実施例により具体的に説明す
る。実施例中、ホルムアルデヒド脱水素酵素の活性測定
は以下のように行なった。すなわち、21mMリン酸緩衝液
(pH7.5) 、4.2mM ホルムアルデヒド、0.46mM NAD、
27μM PMS、0.1mM NTB、0.21% トリトンX−10
0中で酵素を37℃、15分反応させ、生成したNAD
HによりPMSを介してNTBを還元し、生成したジホ
ルマザンの570nm における吸光度を測定する。酵素活性
の1単位は、この条件下で1分間当たり1/2マイクロ
モルのジホルマザンを生成する酵素量とした。
EXAMPLES The present invention will be specifically described below with reference to examples. In the examples, formaldehyde dehydrogenase activity was measured as follows. That is, 21 mM phosphate buffer
(pH7.5), 4.2mM formaldehyde, 0.46mM NAD,
27 μM PMS, 0.1 mM NTB, 0.21% Triton X-10
NAD produced by reacting the enzyme at 37 ° C for 15 minutes in
NTB is reduced with H via PMS, and the absorbance of the produced diformazan at 570 nm is measured. One unit of enzyme activity was defined as the amount of enzyme that produced 1/2 micromol of diformazan per minute under this condition.

【0021】実施例1 グルタチオン非依存性ホルムアルデヒド脱水素酵素のア
ミノ酸配列の決定 グルタチオン非依存性ホルムアルデヒド脱水素酵素粉末
(東洋紡製)をSuperdex200 カラムでのゲル濾過クロマ
トグラフィー及びヒドロキシアパタイトカラムクロマト
グラフィーにより精製した。最終精製標品をSDS ー PAGE
でチェックしたところ、ほぼ均一なバンドが得られ、サ
ブユニットの分子量は約42000ダルトンと計算され
た。この標品をアンモニア−蟻酸緩衝液に対し透析後、
凍結乾燥し、マニュアルエドマン分解法によって精製し
た酵素のN末端からのアミノ酸配列を決定した(配列表
の配列番号3)。また、同標品を臭化シアンによって分
解して得たペプチド混合物を逆相HPLCで分離、精製
し、マニュアルエドマン分解法によりペプチド断片のア
ミノ酸配列を決定した(配列表の配列番号4)。
Example 1 Determination of amino acid sequence of glutathione-independent formaldehyde dehydrogenase Glutathione-independent formaldehyde dehydrogenase powder (manufactured by Toyobo) was purified by gel filtration chromatography on Superdex 200 column and hydroxyapatite column chromatography. . SDS-PAGE the final purified sample
, A nearly uniform band was obtained, and the molecular weight of the subunit was calculated to be about 42,000 daltons. After dialyzing this preparation against ammonia-formate buffer,
The amino acid sequence from the N-terminal of the enzyme which was freeze-dried and purified by the manual Edman degradation method was determined (SEQ ID NO: 3 in the sequence listing). Further, the peptide mixture obtained by decomposing the same sample with cyanogen bromide was separated and purified by reverse phase HPLC, and the amino acid sequence of the peptide fragment was determined by the manual Edman degradation method (SEQ ID NO: 4 in the sequence listing).

【0022】実施例2 染色体DNAの分離 シュードモナス・プチダPSー7の染色体DNAを次の方法
で分離した。同菌株を100ml のLB培地(1.0%ポリペプ
トン、0.5%酵母エキス、0.5%塩化ナトリウム(pH7.2)で
37℃一晩振盪培養後、遠心(8000rpm,10 分) により集菌
した。15mMクエン酸ナトリウム,0.15M塩化ナトリウムを
含んだ溶液で菌体を洗浄した後、20% シュークロース,1
mMEDTA, 50mMトリス塩酸(pH7.6) を含んだ溶液 5ml
に懸濁させ、0.5ml のリゾチーム溶液(100mg/ml)を加え
て37℃,30分間保温した。次いで11mlの 1% ラウロイル
サルコシン、0.1MEDTA(pH9.6)を含む溶液を加え
た。この懸濁液に臭化エチジウム溶液を0.5%塩化セシウ
ムを約100%加え、撹拌混合し、55.000rpm ,20時間の超
遠心でDNAを分取した。分取したDNAは、10mMトリ
ス塩酸(pH8.0) ,1mM EDTAを含んだ溶液(TE)で透析
し、精製DNA標品とした。エシェリヒア・コリー DH5
αのコンピテントセルは Hanahanの方法により作成し、
ライブラリー作成の宿主として用いた。
Example 2 Separation of chromosomal DNA Pseudomonas putida PS-7 chromosomal DNA was separated by the following method. The strain was treated with 100 ml of LB medium (1.0% polypeptone, 0.5% yeast extract, 0.5% sodium chloride (pH 7.2)).
After shaking culture at 37 ° C overnight, the cells were collected by centrifugation (8000 rpm, 10 minutes). After washing the cells with a solution containing 15 mM sodium citrate and 0.15 M sodium chloride, 20% sucrose, 1
5 ml of a solution containing mMEDTA and 50 mM Tris-HCl (pH 7.6)
The mixture was suspended in 0.5 ml of lysozyme solution (100 mg / ml) and kept at 37 ° C for 30 minutes. Then 11 ml of a solution containing 1% lauroyl sarcosine, 0.1 M EDTA (pH 9.6) was added. About 100% of 0.5% cesium chloride was added to this suspension with an ethidium bromide solution, the mixture was stirred and mixed, and the DNA was fractionated by ultracentrifugation at 55.000 rpm for 20 hours. The separated DNA was dialyzed against a solution (TE) containing 10 mM Tris-HCl (pH 8.0) and 1 mM EDTA to obtain a purified DNA sample. Escherichia Collie DH5
The α competent cells were created by the method of Hanahan,
Used as host for library construction.

【0023】実施例3 ホルムアルデヒド脱水素酵素遺
伝子を含有するDNA断片及び該DNA断片を有する組
換えベクターの調製 実施例1で決定したアミノ酸配列をもとに2種類のプロ
ーブ(配列表の配列番号5,6)を作成し、実施例2で
得た染色体DNAを鋳型としてPCR法によるホルムア
ルデヒド脱水素酵素遺伝子断片の増幅を行ない、約0.5k
bpの増幅断片を得た。次に得られた断片をプローブとし
て実施例2で得た染色体DNAのサザンハイブリダイゼ
ーションを行なった結果、9kbpEcoRI の特異的バンドが
検出された。そこで、この部分のDNAを抽出し、EcoR
I(東洋紡製)で切断したpBR322とT4-DNAリガーゼ
(東洋紡製)で反応させ、DNAを連結した。連結した
DNAはエシェリヒア・コリー DH5αのコンピテントセ
ルを用いて形質転換した。得られたコロニーをPCR法
で増幅した断片をプローブとしたコロニーハイブリダイ
ゼーションでスクリーニングして、ホルムアルデヒド脱
水素酵素遺伝子を含有する9kbpEcoRI DNA断片を持つ
組換えベクターを得た(E1と命名)。
Example 3 Preparation of DNA Fragment Containing Formaldehyde Dehydrogenase Gene and Recombinant Vector Having the DNA Fragment Based on the amino acid sequence determined in Example 1, two types of probes (SEQ ID NO: 5 in the sequence listing) were prepared. , 6) was prepared, and the formaldehyde dehydrogenase gene fragment was amplified by the PCR method using the chromosomal DNA obtained in Example 2 as a template.
An amplified fragment of bp was obtained. Next, Southern hybridization of the chromosomal DNA obtained in Example 2 was carried out using the obtained fragment as a probe, and a specific band of 9 kbp EcoRI was detected. Therefore, the DNA of this part was extracted and EcoR
The pBR322 digested with I (manufactured by Toyobo) was reacted with T4-DNA ligase (manufactured by Toyobo) to ligate the DNA. The ligated DNA was transformed with Escherichia coli DH5α competent cells. The obtained colonies were screened by colony hybridization using a fragment amplified by the PCR method as a probe to obtain a recombinant vector having a 9 kbp EcoRI DNA fragment containing a formaldehyde dehydrogenase gene (designated E1).

【0024】次いで組換えベクターE1より挿入DNA
断片を種々の制限酵素による切断、あるいはエキソヌク
レアーゼIII(東洋紡製)による消化処理を行なって、
ブルースクリプト(pBluescript) にサブクローニング
し、約2.1kbpの挿入DNA断片を有する組換えベクター
K3DN71を得、エシェリヒア・コリー DH5αを形質
転換した。組換えベクターE1及びK3DN71を含む
その派生プラスミドの挿入DNA制限酵素地図を図1に
示した。
Next, insert DNA from the recombinant vector E1
The fragment is digested with various restriction enzymes or digested with exonuclease III (Toyobo),
Subcloning into pBluescript to obtain a recombinant vector K3DN71 having an inserted DNA fragment of about 2.1 kbp was used to transform Escherichia coli DH5α. The insert DNA restriction map of recombinant vectors E1 and its derivative plasmids containing K3DN71 is shown in FIG.

【0025】実施例4 塩基配列の決定 組換えベクターK3DN71の挿入DNA断片について
種々の制限酵素で切断してサブクローンを調製した。種
々のサブクローンは常法に従い、塩基配列決定用キット
(SEQUENASE VERSION 2.0 7-deaza-dGTP kit)(東洋紡
製)を用いて塩基配列の決定を行った。決定した塩基配
列及びアミノ酸配列を配列表の配列番号1および配列番
号2に示した。
Example 4 Determination of nucleotide sequence The inserted DNA fragment of the recombinant vector K3DN71 was cleaved with various restriction enzymes to prepare subclones. Various subclones can be sequenced according to standard methods
The base sequence was determined using (SEQUENASE VERSION 2.0 7-deaza-dGTP kit) (manufactured by Toyobo). The determined nucleotide sequence and amino acid sequence are shown in SEQ ID NO: 1 and SEQ ID NO: 2 in the sequence listing.

【0026】実施例5 形質転換体の培養とホルムアル
デヒド脱水素酵素の生成 ホルムアルデヒド脱水素酵素生産培地(1.0%肉エキス,
1.0% ポリペプトン,0.5%NaCl(pH7.5))50mlを 500m
lフラスコに分注し、 121℃,15分間オートクレーブを
行い放冷後、別途無菌濾過した抗生物質(50mg/ml アン
ピシリン(ナカライテスク製))を添加した。この培地に
上記と同一組成の培地で予め30℃で18時間振盪培養した
K3DN71組換え体の培養液 5mlを接種し、30℃で通
気撹拌培養した。培養開始より20時間後で、K3DN7
1組換え体は約 6.5U/mlのホルムアルデヒド脱水素酵素
活性を示した。この値は、同条件下でのシュードモナス
・プチダPSー7のホルムアルデヒド脱水素酵素活性の約4
0倍に相当し、本ホルムアルデヒド脱水素酵素遺伝子が
エシェリヒア・コリー内において、効率的に発現するこ
とが明らかとなった。
Example 5 Cultivation of transformants and production of formaldehyde dehydrogenase Formaldehyde dehydrogenase production medium (1.0% meat extract,
50 ml of 1.0% polypeptone, 0.5% NaCl (pH 7.5) 500m
The mixture was dispensed into a flask, autoclaved at 121 ° C. for 15 minutes, allowed to cool, and then an aseptically filtered antibiotic (50 mg / ml ampicillin (manufactured by Nacalai Tesque)) was added. This medium was inoculated with 5 ml of a culture solution of the K3DN71 recombinant, which had been shake-cultured at 30 ° C. for 18 hours in advance in a medium having the same composition as described above, and the mixture was aerated with stirring at 30 ° C. 20 hours after the start of culture, K3DN7
One recombinant showed a formaldehyde dehydrogenase activity of about 6.5 U / ml. This value is approximately 4 times the formaldehyde dehydrogenase activity of Pseudomonas putida PS-7 under the same conditions.
It was revealed that this formaldehyde dehydrogenase gene was efficiently expressed in Escherichia coli, which corresponds to 0 times.

【0027】[0027]

【発明の効果】本発明によってグルタチオン非依存性ホ
ルムアルデヒド脱水素酵素遺伝子の塩基配列及びアミノ
酸配列が明らかになり、また遺伝子工学的手法によりホ
ルムアルデヒド脱水素酵素を容易に高純度で大量生産す
ることが出来る。特に天然の細菌から生産した酵素に
は、他の酵素、クレアチニンアミドヒドロラーゼ、クレ
アチンアミジノヒドロラーゼ、ザルコシン脱水素酵素が
含有され、その除外には多大の工程を必要としたが、本
発明においてはこれらの精製工程を簡略化することが可
能となった。また本発明のグルタチオン非依存性ホルム
アルデヒド脱水素酵素遺伝子と種々の蛋白質工学的手法
とを用いることにより、より高活性な、或いはより安定
性の高い新規ホルムアルデヒド脱水素酵素を作ることも
可能になる。
INDUSTRIAL APPLICABILITY According to the present invention, the nucleotide sequence and amino acid sequence of glutathione-independent formaldehyde dehydrogenase gene have been clarified, and formaldehyde dehydrogenase can be easily mass-produced in high purity by genetic engineering techniques. . In particular, the enzymes produced from natural bacteria include other enzymes, creatinine amide hydrolase, creatine amidinohydrolase, and sarcosine dehydrogenase, which require a large number of steps for their exclusion, but in the present invention, these It has become possible to simplify the purification process. Further, by using the glutathione-independent formaldehyde dehydrogenase gene of the present invention and various protein engineering techniques, it becomes possible to prepare a novel formaldehyde dehydrogenase having higher activity or higher stability.

【0028】[0028]

【配列表】[Sequence list]

配列番号: 1 配列の長さ:1296 配列の型:核酸(DNA) 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:genomic DNA 起源 生物名:シュードモナス プチダ(Pseudomonas PUTIDA) 株名:PS-7 配列 CCTTTGTATT CACAACAACA ACGGAGAATT ACGC ATG TCT GGT AAT CGT GGT 52 Met Ser Gly Asn Arg Gly 1 5 GTC GTT TAT CTC GGT TCG GGC AAG GTC GAA GTC CAG AAG ATC GAC TAC 100 Val Val Tyr Leu Gly Ser Gly Lys Val Glu Val Gln Lys Ile Asp Tyr 10 15 20 CCC AAA ATG CAG GAC CCT CGC GGC AAG AAG ATC GAG CAC GGG GTC ATC 148 Pro Lys Met Gln Asp Pro Arg Gly Lys Lys Ile Glu His Gly Val Ile 25 30 35 CTG AAA GTC GTC TCC ACC AAC ATC TGC GGC TCG GAC CAG CAC ATG GTG 196 Leu Lys Val Val Ser Thr Asn Ile Cys Gly Ser Asp Gln His Met Val 40 45 50 CGC GGT CGT ACC ACC GCC CAG GTA GGC CTC GTG CTT GGC CAC GAG ATC 244 Arg Gly Arg Thr Thr Ala Gln Val Gly Leu Val Leu Gly His Glu Ile 55 60 65 70 ACC GGT GAG GTG ATC GAG AAG GGC CGT GAC GTA GAG AAC CTG CAG ATC 292 Thr Gly Glu Val Ile Glu Lys Gly Arg Asp Val Glu Asn Leu Gln Ile 75 80 85 GGC GAC CTG GTT TCC GTA CCC TTC AAC GTG GCC TGC GGC CGC TGC CGT 340 Gly Asp Leu Val Ser Val Pro Phe Asn Val Ala Cys Gly Arg Cys Arg 90 95 100 TCC TGC AAG GAA ATG CAC ACC GGC GTT TGC CTG ACC GTC AAT CCG GCC 388 Ser Cys Lys Glu Met His Thr Gly Val Cys Leu Thr Val Asn Pro Ala 105 110 115 CGC GCT GGC GGC GCC TAC GGC TAT GTC GAC ATG GGC GAC TGG ACC GGT 436 Arg Ala Gly Gly Ala Tyr Gly Tyr Val Asp Met Gly Asp Trp Thr Gly 120 125 130 GGC CAG GCC GAG TAC TTG CTG GTG CCC TAC GCC GAC TTC AAC CTG CTC 484 Gly Gln Ala Glu Tyr Leu Leu Val Pro Tyr Ala Asp Phe Asn Leu Leu 135 140 145 150 AAG CTG CCG GAT CGC GAC AAG GCC ATG GAG AAG ATC CGT GAC CTG ACC 532 Lys Leu Pro Asp Arg Asp Lys Ala Met Glu Lys Ile Arg Asp Leu Thr 155 160 165 TGC CTT TCC GAC ATC CTG CCC ACC GGC TAC CAC GGC GCC GTA ACT GCC 580 Cys Leu Ser Asp Ile Leu Pro Thr Gly Tyr His Gly Ala Val Thr Ala 170 175 180 GGC GTT GGC CCG GGC AGC ACC GTG TAC GTG GCC GGT GCC GGC CCG GTC 628 Gly Val Gly Pro Gly Ser Thr Val Tyr Val Ala Gly Ala Gly Pro Val 185 190 195 GGC CTG GCC GCT GCC GCC TCC GCT CGC CTG CTG GGC GCC GCC GTG GTT 676 Gly Leu Ala Ala Ala Ala Ser Ala Arg Leu Leu Gly Ala Ala Val Val 200 205 210 ATC GTC GGC GAC CTC AAC CCC GCC CGA CTG GCC CAC GCC AAG GCG CAG 724 Ile Val Gly Asp Leu Asn Pro Ala Arg Leu Ala His Ala Lys Ala Gln 215 220 225 230 GGC TTC GAG ATC GCC GAC CTG TCG CTG GAC ACC CCG CTG CAC GAG CAG 772 Gly Phe Glu Ile Ala Asp Leu Ser Leu Asp Thr Pro Leu His Glu Gln 235 240 245 ATC GCT GCG CTG CTG GGA GAG CCG GAA GTG GAT TGC GCG GTG GAT GCG 820 Ile Ala Ala Leu Leu Gly Glu Pro Glu Val Asp Cys Ala Val Asp Ala 250 255 260 GTG GGC TTC GAA GCT CGC GGC CAC GGC CAC GAA GGT GCC AAG CAC GAA 868 Val Gly Phe Glu Ala Arg Gly His Gly His Glu Gly Ala Lys His Glu 265 270 275 GCC CCG GCC ACT GTG CTG AAC TCG CTC ATG CAA GTC ACC CGC GTG GCC 916 Ala Pro Ala Thr Val Leu Asn Ser Leu Met Gln Val Thr Arg Val Ala 280 285 290 GGC AAG ATC GGT ATC CCC GGC CTT TAC GTC ACC GAA GAT CCG GGT GCC 964 Gly Lys Ile Gly Ile Pro Gly Leu Tyr Val Thr Glu Asp Pro Gly Ala 295 300 305 310 GTG GAG CCC GCG GCG AAG ATC GGC AGC CTG AGT ATT CGC TTC GGC CTC 1012 Val Glu Pro Ala Ala Lys Ile Gly Ser Leu Ser Ile Arg Phe Gly Leu 315 320 325 GGC TGG GCG AAA TCC CAC AGC TTC CAC ACT GGC CAG ACC CCG GTG ATG 1060 Gly Trp Ala Lys Ser His Ser Phe His Thr Gly Gln Thr Pro Val Met 330 335 340 AAG TAC AAC CGC GCA CTC ATG CAA GCG ATC ATG TGG GAC CGC ATC AAT 1108 Lys Tyr Asn Arg Ala Leu Met Gln Ala Ile Met Trp Asp Arg Ile Asn 345 350 355 ATC GCC GAA GTG GTG GGC GTG CAG GTC ATC AGC CTG GAC GAC GCA CCG 1156 Ile Ala Glu Val Val Gly Val Gln Val Ile Ser Leu Asp Asp Ala Pro 360 365 370 CGT GGC TAT GGC GAG TTC GAT GCC GGC GTG CCG AAG AAG TTC GTC ATC 1204 Arg Gly Tyr Gly Glu Phe Asp Ala Gly Val Pro Lys Lys Phe Val Ile 375 380 385 390 GAC CCG CAC AAG ACC TTC AGC GCG GCC TGATCGACTG CAATACCCCC 1251 Asp Pro His Lys Thr Phe Ser Ala Ala 395 GACGCCGTGA TGTGACAGCC GCGGCGTCTG TCCCTCAAGG GGCCC 1296 SEQ ID NO: 1 Sequence length: 1296 Sequence type: Nucleic acid (DNA) Number of strands: Double stranded Topology: Linear Sequence type: genomic DNA Origin organism name: Pseudomonas PUTIDA Strain name: PS -7 Sequence CCTTTGTATT CACAACAACA ACGGAGAATT ACGC ATG TCT GGT AAT CGT GGT 52 Met Ser Gly Asn Arg Gly 1 5 GTC GTT TAT CTC GGT TCG GGC AAG GTC GAA GTC CAG AAG ATC GAC TAC 100 Val Val Tyr Leu Gly Ser Gly Lys Val Glu Val Gln Lys Ile Asp Tyr 10 15 20 CCC AAA ATG CAG GAC CCT CGC GGC AAG AAG ATC GAG CAC GGG GTC ATC 148 Pro Lys Met Gln Asp Pro Arg Gly Lys Lys Ile Glu His Gly Val Ile 25 30 35 CTG AAA GTC GTC TCC ACC AAC ATC TGC GGC TCG GAC CAG CAC ATG GTG 196 Leu Lys Val Val Ser Thr Asn Ile Cys Gly Ser Asp Gln His Met Val 40 45 50 CGC GGT CGT ACC ACC GCC CAG GTA GGC CTC GTG CTT GGC CAC GAG ATC 244 Arg Gly Arg Thr Thr Ala Gln Val Gly Leu Val Leu Gly His Glu Ile 55 60 65 70 ACC GGT GAG GTG ATC GAG AAG GGC CGT GAC GTA GAG AAC CTG CAG ATC 292 Thr Gly Glu Val Ile Glu Lys Gly Arg Asp Val Glu Asn Leu Gln Ile 75 80 85 GGC GAC CTG GTT TCC GTA CCC TTC AAC GTG GCC TGC GGC CGC TGC CGT 340 Gly Asp Leu Val Ser Val Pro Phe Asn Val Ala Cys Gly Arg Cys Arg 90 95 100 TCC TGC AAG GAA ATG CAC ACC GGC GTT TGC CTG ACC GTC AAT CCG GCC 388 Ser Cys Lys Glu Met His Thr Gly Val Cys Leu Thr Val Asn Pro Ala 105 110 115 CGC GCT GGC GGC GCC TAC GGC TAT GTC GAC ATG GGC GAC TGG ACC GGT 436 Arg Ala Gly Gly Ala Tyr Gly Tyr Val Asp Met Gly Asp Trp Thr Gly 120 125 130 GGC CAG GCC GAG TAC TTG CTG GTG CCC TAC GCC GAC TTC AAC CTG CTC 484 Gly Gln Ala Glu Tyr Leu Leu Val Pro Tyr Ala Asp Phe Asn Leu Leu 135 140 145 150 AAG CTG CCG GAT CGC GAC AAG GCC ATG GAG AAG ATC CGT GAC CTG ACC 532 Lys Leu Pro Asp Arg Asp Lys Ala Met Glu Lys Ile Arg Asp Leu Thr 155 160 165 TGC CTT TCC GAC ATC CTG CCC ACC GGC TAC CAC GGC GCC GTA ACT GCC 580 Cys Leu Ser Asp Ile Leu Pro Thr Gly Tyr His Gly Ala Val Thr Ala 170 175 180 GGC GTT GGC CCG GGC AGC ACC GTG TAC GTG GCC GGT GCC GGC CCG GTC 628 Gly Val Gly Pro Gly Ser Thr Val Tyr Val Ala Gly Ala Gly Pro Val 185 190 195 GGC CTG GCC GCT GCC GCC TCC GCT CGC CTG CTG GGC GCC GCC GTG GTT 676 Gly Leu Ala Ala Ala Ala Ser Ala Arg Leu Leu Gly Ala Ala Val Val 200 205 210 ATC GTC GGC GAC CTC AAC CCC GCC CGA CTG GCC CAC GCC AAG GCG CAG 724 Ile Val Gly Asp Leu Asn Pro Ala Arg Leu Ala His Ala Lys Ala Gln 215 220 225 230 GGC TTC GAG ATC GCC GAC CTG TCG CTG GAC ACC CCG CTG CAC GAG CAG 772 Gly Phe Glu Ile Ala Asp Leu Ser Leu Asp Thr Pro Leu His Glu Gln 235 240 245 ATC GCT GCG CTG CTG GGA GAG CCG GAA GTG GAT TGC GCG GTG GAT GCG 820 Ile Ala Ala Leu Leu Gly Glu Pro Glu Val Asp Cys Ala Val Asp Ala 250 255 260 GTG GGC TTC GAA GCT CGC GGC CAC GGC CAC GAA GGT GCC AAG CAC GAA 868 Val Gly Phe Glu Ala Arg Gly His Gly His Glu Gly Ala Lys His Glu 265 270 275 GCC CCG GCC ACT GTG CTG AAC TCG CTC ATG CAA GTC ACC CGC GTG GCC 916 Ala Pro Ala Thr Val Leu Asn Ser Leu Met Gln Val Thr Arg Val Ala 280 285 290 GGC AAG ATC GGT ATC CCC GGC CTT TAC GTC ACC GAA GAT CCG GGT GCC 964 Gly Lys Ile Gly Ile Pro Gly Leu Tyr Val Thr Glu Asp Pro Gly Ala 295 300 305 310 GTG GAG CCC GCG GCG AAG ATC GGC AGC CTG AGT ATT CGC TTC GGC CTC 1012 Val Glu Pro Ala Ala Lys Ile Gly Ser Leu Ser Ile Arg Phe Gly Leu 315 320 325 GGC TGG GCG AAA TCC CAC AGC TTC CAC ACT GGC CAG ACC CCG GTG ATG 1060 Gly Trp Ala Lys Ser His Ser Phe His Thr Gly Gln Thr Pro Val Met 330 335 340 AAG TAC AAC CGC GCA CTC ATG CAA GCG ATC ATG TGG GAC CGC ATC AAT 1108 Lys Tyr Asn Arg Ala Leu Met Gln Ala Ile Met Trp Asp Arg Ile Asn 345 350 355 ATC GCC GAA GTG GTG GGC GTG CAG GTC ATC AGC CTG GAC GAC GCA CCG 1156 Ile Ala Glu Val Val Gly Val Gln Val Ile Ser Leu Asp Asp Ala Pro 360 365 370 CGT GGC TAT GGC GAG TTC GAT GCC GGC GTG CCG AAG AAG TTC GTC ATC 1204 Arg Gly Tyr Gly Glu Phe Asp Ala Gly Val Pro Lys Lys Phe Val Ile 375 380 385 390 GAC CCG CAC AAG ACC TTC AGC GCG GCC TGATCGACTG CAATACCCCC 1251 Asp Pro His Lys Thr Phe Ser Ala Ala 395 GACGCCGTGA TGTGACAGCC GCGGCGTCTG TCCCTCAAGG GGCCC 1296

【0029】配列番号: 2 配列の長さ:399 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:蛋白質 起源 生物名:シュードモナス プチダ(Pseudomonas PUTIDA) 株名:PS-7 配列 Met Ser Gly Asn Arg Gly Val Val Tyr Leu Gly Ser Gly Lys Val Glu 1 5 10 15 Val Gln Lys Ile Asp Tyr Pro Lys Met Gln Asp Pro Arg Gly Lys Lys 20 25 30 Ile Glu His Gly Val Ile Leu Lys Val Val Ser Thr Asn Ile Cys Gly 35 40 45 Ser Asp Gln His Met Val Arg Gly Arg Thr Thr Ala Gln Val Gly Leu 50 55 60 Val Leu Gly His Glu Ile Thr Gly Glu Val Ile Glu Lys Gly Arg Asp 65 70 75 80 Val Glu Asn Leu Gln Ile Gly Asp Leu Val Ser Val Pro Phe Asn Val 85 90 95 Ala Cys Gly Arg Cys Arg Ser Cys Lys Glu Met His Thr Gly Val Cys 100 105 110 Leu Thr Val Asn Pro Ala Arg Ala Gly Gly Ala Tyr Gly Tyr Val Asp 115 120 125 Met Gly Asp Trp Thr Gly Gly Gln Ala Glu Tyr Leu Leu Val Pro Tyr 130 135 140 Ala Asp Phe Asn Leu Leu Lys Leu Pro Asp Arg Asp Lys Ala Met Glu 145 150 155 160 Lys Ile Arg Asp Leu Thr Cys Leu Ser Asp Ile Leu Pro Thr Gly Tyr 165 170 175 His Gly Ala Val Thr Ala Gly Val Gly Pro Gly Ser Thr Val Tyr Val 180 185 190 Ala Gly Ala Gly Pro Val Gly Leu Ala Ala Ala Ala Ser Ala Arg Leu 195 200 205 Leu Gly Ala Ala Val Val Ile Val Gly Asp Leu Asn Pro Ala Arg Leu 210 215 220 Ala His Ala Lys Ala Gln Gly Phe Glu Ile Ala Asp Leu Ser Leu Asp 225 230 235 240 Thr Pro Leu His Glu Gln Ile Ala Ala Leu Leu Gly Glu Pro Glu Val 245 250 255 Asp Cys Ala Val Asp Ala Val Gly Phe Glu Ala Arg Gly His Gly His 260 265 270 Glu Gly Ala Lys His Glu Ala Pro Ala Thr Val Leu Asn Ser Leu Met 275 280 285 Gln Val Thr Arg Val Ala Gly Lys Ile Gly Ile Pro Gly Leu Tyr Val 290 295 300 Thr Glu Asp Pro Gly Ala Val Glu Pro Ala Ala Lys Ile Gly Ser Leu 305 310 315 320 Ser Ile Arg Phe Gly Leu Gly Trp Ala Lys Ser His Ser Phe His Thr 325 330 335 Gly Gln Thr Pro Val Met Lys Tyr Asn Arg Ala Leu Met Gln Ala Ile 340 345 350 Met Trp Asp Arg Ile Asn Ile Ala Glu Val Val Gly Val Gln Val Ile 355 360 365 Ser Leu Asp Asp Ala Pro Arg Gly Tyr Gly Glu Phe Asp Ala Gly Val 370 375 380 Pro Lys Lys Phe Val Ile Asp Pro His Lys Thr Phe Ser Ala Ala 385 390 395 SEQ ID NO: 2 Sequence length: 399 Sequence type: Amino acid Topology: Linear Sequence type: Protein Origin organism name: Pseudomonas PUTIDA Strain name: PS-7 Sequence Met Ser Gly Asn Arg Gly Val Val Tyr Leu Gly Ser Gly Lys Val Glu 1 5 10 15 Val Gln Lys Ile Asp Tyr Pro Lys Met Gln Asp Pro Arg Gly Lys Lys 20 25 30 Ile Glu His Gly Val Ile Leu Lys Val Val Ser Thr Asn Ile Cys Gly 35 40 45 Ser Asp Gln His Met Val Arg Gly Arg Thr Thr Ala Gln Val Gly Leu 50 55 60 Val Leu Gly His Glu Ile Thr Gly Glu Val Ile Glu Lys Gly Arg Asp 65 70 75 80 Val Glu Asn Leu Gln Ile Gly Asp Leu Val Ser Val Pro Phe Asn Val 85 90 95 Ala Cys Gly Arg Cys Arg Ser Cys Lys Glu Met His Thr Gly Val Cys 100 105 110 Leu Thr Val Asn Pro Ala Arg Ala Gly Gly Ala Tyr Gly Tyr Val Asp 115 120 125 Met Gly Asp Trp Thr Gly Gly Gln Ala Glu Tyr Leu Leu Val Pro Tyr 130 135 140 Ala Asp Phe Asn Leu Leu Lys Leu Pro Asp Arg Asp Lys Ala Met Glu 145 150 155 160 Lys Ile Arg Asp Leu Thr Cys Leu Ser Asp Ile Leu Pro Thr Gly Tyr 165 170 175 His Gly Ala Val Thr Ala Gly Val Gly Pro Gly Ser Thr Val Tyr Val 180 185 190 Ala Gly Ala Gly Pro Val Gly Leu Ala Ala Ala Ala Ser Ala Arg Leu 195 200 205 Leu Gly Ala Ala Val Val Ile Val Gly Asp Leu Asn Pro Ala Arg Leu 210 215 220 Ala His Ala Lys Ala Gln Gly Phe Glu Ile Ala Asp Leu Ser Leu Asp 225 230 235 240 Thr Pro Leu His Glu Gln Ile Ala Ala Leu Leu Gly Glu Pro Glu Val 245 250 255 Asp Cys Ala Val Asp Ala Val Gly Phe Glu Ala Arg Gly His Gly His 260 265 270 Glu Gly Ala Lys His Glu Ala Pro Ala Thr Val Leu Asn Ser Leu Met 275 280 285 Gln Val Thr Arg Val Ala Gly Lys Ile Gly Ile Pro Gly Leu Tyr Val 290 295 300 Thr Glu Asp Pro Gly Ala Val Glu Pro Ala Ala Lys Ile Gly Ser Leu 305 310 315 320 Ser Ile Arg Phe Gly Leu Gly Trp Ala Lys Ser His Ser Phe His Thr 325 330 335 Gly Gln Thr Pro Val Met Lys Tyr Asn Arg Ala Leu Met Gln Ala Ile 340 345 350 Met Trp Asp Arg Ile Asn Ile Ala Glu Val Val Gly Val Gln Val Ile 355 360 365 Ser Leu Asp Asp Ala Pro Arg Gly Tyr Gly Glu Phe Asp Ala Gly Val 370 375 380 Pro Lys Lys Phe Val Ile Asp Pro His Lys Thr Phe Ser Ala Ala 385 390 395

【0030】配列番号: 3 配列の長さ:10 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 起源 生物名:シュードモナス プチダ(Pseudomonas PUTIDA) 株名:PS-7 SEQ ID NO: 3 Sequence length: 10 Sequence type: Amino acid Topology: Linear Sequence type: Peptide Origin Biological name: Pseudomonas PUTIDA Strain name: PS-7

【0031】配列番号: 4 配列の長さ: 6 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 起源 生物名:シュードモナス プチダ(Pseudomonas PUTIDA) 株名:PS-7 SEQ ID NO: 4 Sequence length: 6 Sequence type: Amino acid Topology: Linear Sequence type: Peptide Origin Biological name: Pseudomonas PUTIDA Strain name: PS-7

【0032】配列番号: 5 配列の長さ:20 配列の型:核酸(DNA) 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:合成DNA 配列 MAWCGTGGTG TNGTNTAYYT 20SEQ ID NO: 5 Sequence length: 20 Sequence type: Nucleic acid (DNA) Number of strands: Single-stranded Topology: Linear Sequence type: Synthetic DNA sequence MAWCGTGGTG TNGTNTAYYT 20

【0033】配列番号: 6 配列の長さ:20 配列の型:核酸(DNA) 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:合成DNA 配列 ARRTCiCKiA TYTTYTCCAT 20SEQ ID NO: 6 Sequence length: 20 Sequence type: Nucleic acid (DNA) Number of strands: Single strand Topology: Linear Sequence type: Synthetic DNA Sequence ARRTCiCKiA TYTTYTCCAT 20

【図面の簡単な説明】[Brief description of drawings]

【図1】E1及びその派生プラスミドの挿入DNAの制
限酵素地図を示す。
FIG. 1 shows a restriction map of insert DNAs of E1 and its derivative plasmids.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C12R 1:40) (C12N 1/21 C12R 1:19) (C12N 9/02 C12R 1:19) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C12R 1:40) (C12N 1/21 C12R 1:19) (C12N 9/02 C12R 1:19)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 グルタチオン非依存性ホルムアルデヒド
脱水素酵素活性を有する蛋白質の遺伝情報を有するDN
A断片。
1. A DN having the genetic information of a protein having glutathione-independent formaldehyde dehydrogenase activity.
A fragment.
【請求項2】 配列表の配列番号1に記載された塩基配
列を含有する請求項1記載のDNA断片。
2. The DNA fragment according to claim 1, which contains the nucleotide sequence set forth in SEQ ID NO: 1 in the sequence listing.
【請求項3】 請求項2に記載されたDNA断片を有す
る組換えベクター。
3. A recombinant vector having the DNA fragment according to claim 2.
【請求項4】 請求項3に記載された組換えベクターで
形質転換された形質転換体。
4. A transformant transformed with the recombinant vector according to claim 3.
【請求項5】 請求項4に記載された形質転換体を培地
で培養し、ホルムアルデヒド脱水素酵素を生成させ、該
ホルムアルデヒド脱水素酵素を採取することを特徴とす
るホルムアルデヒド脱水素酵素の製造法。
5. A method for producing formaldehyde dehydrogenase, which comprises culturing the transformant according to claim 4 in a medium to produce formaldehyde dehydrogenase and collecting the formaldehyde dehydrogenase.
JP9454793A 1993-04-21 1993-04-21 Dna having genetic information on protein having formaldehyde dehydrogenase activity and production of formaldehyde dehydrogenase Withdrawn JPH06303981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9454793A JPH06303981A (en) 1993-04-21 1993-04-21 Dna having genetic information on protein having formaldehyde dehydrogenase activity and production of formaldehyde dehydrogenase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9454793A JPH06303981A (en) 1993-04-21 1993-04-21 Dna having genetic information on protein having formaldehyde dehydrogenase activity and production of formaldehyde dehydrogenase

Publications (1)

Publication Number Publication Date
JPH06303981A true JPH06303981A (en) 1994-11-01

Family

ID=14113341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9454793A Withdrawn JPH06303981A (en) 1993-04-21 1993-04-21 Dna having genetic information on protein having formaldehyde dehydrogenase activity and production of formaldehyde dehydrogenase

Country Status (1)

Country Link
JP (1) JPH06303981A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997031682A1 (en) * 1996-03-01 1997-09-04 Bitop Gesellschaft Für Biotechnische Optimierung Mbh Process for microbial decomposition of harmful substances in media charged with harmful substances, and micro-organisms suitable for this purpose
JP2010022328A (en) * 2008-07-23 2010-02-04 Aisin Seiki Co Ltd Method for stabilizing coenzyme-binding enzyme, and composition, enzyme sensor and fuel cell prepared by using the stabilization method
WO2015137565A1 (en) * 2014-03-13 2015-09-17 건국대학교 산학협력단 Novel formaldehyde dehydrogenase and method for preparing formaldehyde using same
CN113122525B (en) * 2020-01-16 2023-04-21 中国科学院天津工业生物技术研究所 Formaldehyde conversion protein and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997031682A1 (en) * 1996-03-01 1997-09-04 Bitop Gesellschaft Für Biotechnische Optimierung Mbh Process for microbial decomposition of harmful substances in media charged with harmful substances, and micro-organisms suitable for this purpose
JP2010022328A (en) * 2008-07-23 2010-02-04 Aisin Seiki Co Ltd Method for stabilizing coenzyme-binding enzyme, and composition, enzyme sensor and fuel cell prepared by using the stabilization method
WO2015137565A1 (en) * 2014-03-13 2015-09-17 건국대학교 산학협력단 Novel formaldehyde dehydrogenase and method for preparing formaldehyde using same
US9963684B2 (en) 2014-03-13 2018-05-08 Konkuk University Industrial Cooperation Corp. Formaldehyde dehydrogenase and method for preparing formaldehyde using same
CN113122525B (en) * 2020-01-16 2023-04-21 中国科学院天津工业生物技术研究所 Formaldehyde conversion protein and application thereof

Similar Documents

Publication Publication Date Title
JPH06303981A (en) Dna having genetic information on protein having formaldehyde dehydrogenase activity and production of formaldehyde dehydrogenase
JP3508871B2 (en) DNA having genetic information of protein having creatinine deiminase activity and method for producing creatinine deiminase
JP3132618B2 (en) Stabilized modified protein
JP3904098B2 (en) Modified sarcosine oxidase and uses thereof
JP4102138B2 (en) Method for producing glucose dehydrogenase
JP3491695B2 (en) Method for producing N-acylneuraminic acid aldolase
JP3829950B2 (en) Novel creatinine amide hydrolase
JP2706223B2 (en) Use of DNA having genetic information of pyruvate oxidase
JPH10248574A (en) New lactic acid-oxidizing enzyme
JP3358686B2 (en) Gene encoding novel glutamate dehydrogenase and method for producing glutamate dehydrogenase using the gene
JP3396740B2 (en) Gene encoding phosphoenolpyruvate carboxylase
JP4161232B2 (en) Novel protein having sarcosine oxidase activity and method for producing the same
JP2001037480A (en) Mutated glucose-6-phosphate dehydrogenase and its production
JPH06113840A (en) Protein having sarcosine oxidase activity, dna having its genetic information and production of sarcosine oxidase
JP3173619B2 (en) Method for producing pyroglutamyl aminopeptidase
JP4066203B2 (en) Novel creatinine amide hydrolase
JP4161236B2 (en) Novel L-α-glycerophosphate oxidase and method for producing the same
JPH08238087A (en) Sarcosine oxidase and its production
JPH0638769A (en) Dna fragment having genetic information of proline iminopeptidase and its use
JP2001275669A (en) New catalase gene and method for producing new catalase using the gene
JP2000245471A (en) Formate dehydrogenase gene, recombinant vector containing the same, transformant containing the recombinant vector and production of formate dehydrogenase using the transformant
JP3803832B2 (en) Gene encoding creatine amidinohydrolase
JPH10262674A (en) Gene coding for alkaline phosphatase
JP3003785B2 (en) DNA having genetic information of isocitrate dehydrogenase and use thereof
JPH10257890A (en) New creatine amidinohydrolase

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061204