CN113122525B - Formaldehyde conversion protein and application thereof - Google Patents

Formaldehyde conversion protein and application thereof Download PDF

Info

Publication number
CN113122525B
CN113122525B CN202010044853.0A CN202010044853A CN113122525B CN 113122525 B CN113122525 B CN 113122525B CN 202010044853 A CN202010044853 A CN 202010044853A CN 113122525 B CN113122525 B CN 113122525B
Authority
CN
China
Prior art keywords
ala
leu
gly
val
asp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010044853.0A
Other languages
Chinese (zh)
Other versions
CN113122525A (en
Inventor
朱蕾蕾
唐梓静
蔡韬
谭子瑊
孙红兵
马延和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Institute of Industrial Biotechnology of CAS
Original Assignee
Tianjin Institute of Industrial Biotechnology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Institute of Industrial Biotechnology of CAS filed Critical Tianjin Institute of Industrial Biotechnology of CAS
Priority to CN202010044853.0A priority Critical patent/CN113122525B/en
Publication of CN113122525A publication Critical patent/CN113122525A/en
Application granted granted Critical
Publication of CN113122525B publication Critical patent/CN113122525B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • C12P7/26Ketones
    • C12P7/28Acetone-containing products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention discloses a formaldehyde-converting protein mutant and application thereof, in particular relates to a plurality of formaldehyde-converting protein mutants with improved activity, and belongs to the field of biochemical engineering. Several mutants of formaldehyde-converting protein with improved activity are obtained by genetic engineering methods. The mutant can efficiently catalyze formaldehyde conversion.

Description

Formaldehyde conversion protein and application thereof
Technical Field
The invention belongs to the technical field of biochemical engineering, and particularly relates to a formaldehyde conversion protein variant and application thereof.
Background
One carbon compound is widely focused as a green energy substance with great application prospect, and can be used for synthesizing basic organic chemical raw materials, fuels and other high-added-value chemicals. Because of the characteristics of low cost and easy availability, the carbon compound becomes the compound which has the most development prospect for preparing high-value compounds by replacing petroleum, and has important scientific significance and development value in the fields of medicine, food and chemical industry. Meanwhile, the utilization and conversion of the carbon compound can also obviously reduce the negative influence on the ecological environment caused by people in the use process of fossil fuel and synthetic materials.
The formaldehyde can be converted from other carbon compounds, further is converted into a bioavailable intermediate substance, has the characteristics of wide sources, low price and the like, and has wide application prospects in industrial biotechnology. Although the use of a carbon compound by modifying a microorganism has been successful, a carbon compound such as formaldehyde, methanol, etc. does not provide the growth of the microorganism as the sole carbon source, and in addition, the yield of a high-value compound synthesized by metabolism of the microorganism using methanol is low and by-products are many.
Siegel et al reported in 2015 that a formaldehyde-converted protein (FLS) can catalyze formaldehyde condensation to produce DHA, but it has a high K m Values. Formaldehyde has serious toxicity to thalli and high K m FLS of the value is detrimental to the intracellular synthesis of DHA from formaldehyde and further the synthesis of high value compounds. Modification and application of FLS enzymes are now less studied. Obtaining high activity FLS is critical for formaldehyde conversion and utilization and offers more possibilities.
Disclosure of Invention
In order to overcome the defects of the prior art, the invention aims to provide a formaldehyde conversion protein variant with improved formaldehyde conversion capability, and a coding gene and related application thereof.
In a first aspect, the invention claims formaldehyde-converting protein variants.
The formaldehyde conversion protein variant disclosed by the invention is obtained by performing point mutation on formaldehyde conversion protein, and the mutation site contains (or is) part or all of the following components: from the N-terminal, the 28 th, 90 th and 283 th bits are formed.
Preferably, the amino acid sequence of the formaldehyde-converting protein variant has more than 95% identity to a sequence comprising only the above-described mutation sites.
Further, the formaldehyde-converting protein variant is characterized in that: the formaldehyde-converting protein variant is a protein obtained by mutating amino acid residues of at least the following sites of the formaldehyde-converting protein: position 28 from the N-terminus.
Further, the formaldehyde-converting protein variant is a protein obtained by mutating amino acid residues of at least the following sites of the formaldehyde-converting protein: from the N end, the 28 th and 90 th positions are obtained.
Further, the formaldehyde-converting protein variant is a protein obtained by mutating amino acid residues of at least the following sites of the formaldehyde-converting protein: from the N end, the 28 th bit and the 283 th bit are arranged.
Still further, the formaldehyde-converting protein variant is a protein obtained by mutating amino acid residues of at least the following sites of the formaldehyde-converting protein: from the N end, the 28 th, 90 th and 283 th bits.
Further, the formaldehyde-converting protein variant may be any one of the following:
(A1) The formaldehyde-converting protein variant is a protein obtained by mutating amino acid residues of at least the following sites (or the following sites) of the formaldehyde-converting protein: position 28 from the N-terminus (corresponding mutant V1 or V2);
(A2) The formaldehyde-converting protein variant is a protein obtained by mutating amino acid residues of at least the following sites (or the following sites) of the formaldehyde-converting protein: from the N-terminus, at positions 28 and 90 (corresponding mutants V3, V4 or V5);
(A3) The formaldehyde-converting protein variant is a protein obtained by mutating amino acid residues of at least the following sites (or the following sites) of the formaldehyde-converting protein: positions 28 and 283 from the N-terminus (corresponding mutants V6, V7 or V8);
(A4) The formaldehyde-converting protein variant is a protein obtained by mutating amino acid residues of at least the following sites (or the following sites) of the formaldehyde-converting protein: position 28, 90 and 283 from the N-terminus (corresponding mutant V9);
wherein the amino acid sequence of the formaldehyde conversion protein is shown as SEQ ID No. 1.
In the formaldehyde-converting protein variant, the 28 th amino acid from the N end can be mutated to leucine or phenylalanine, the 90 th amino acid can be mutated to valine, leucine or alanine, and the 283 th amino acid can be mutated to histidine, serine or glutamine.
For amino acid substitutions, the following nomenclature is used: original amino acid (wild type), position (i.e. position in SEQ ID No. 1), substituted amino acid. Accordingly, substitution of leucine for the original isoleucine at position 28 of SEQ ID No.1 is designated "I28L".
In a specific embodiment of the present invention, the formaldehyde-converting protein variant is specifically any one of the following:
(a1) The formaldehyde conversion protein variant is a protein obtained by mutating amino acid residues of the following sites of the formaldehyde conversion protein shown in SEQ ID No. 1: I28L (corresponding mutant V1, the amino acid sequence of which is shown as SEQ ID No. 2);
(a2) The formaldehyde conversion protein variant is a protein obtained by mutating amino acid residues of the following sites of the formaldehyde conversion protein shown in SEQ ID No. 1: I28L-T90V (corresponding mutant V3, the amino acid sequence of which is shown as SEQ ID No. 4);
(a3) The formaldehyde conversion protein variant is a protein obtained by mutating amino acid residues of the following sites of the formaldehyde conversion protein shown in SEQ ID No. 1: I28L-T90L (corresponding mutant V4, the amino acid sequence of which is shown as SEQ ID No. 5);
(a4) The formaldehyde conversion protein variant is a protein obtained by mutating amino acid residues of the following sites of the formaldehyde conversion protein shown in SEQ ID No. 1: I28L-T90A (corresponding mutant V5, the amino acid sequence of which is shown as SEQ ID No. 6);
(a5) The formaldehyde conversion protein variant is a protein obtained by mutating amino acid residues of the following sites of the formaldehyde conversion protein shown in SEQ ID No. 1: I28L-N283H (corresponding mutant V6, amino acid sequence shown as SEQ ID No. 7);
(a6) The formaldehyde conversion protein variant is a protein obtained by mutating amino acid residues of the following sites of the formaldehyde conversion protein shown in SEQ ID No. 1: I28L-N283S (corresponding mutant V7, amino acid sequence shown in SEQ ID No. 8);
(a7) The formaldehyde conversion protein variant is a protein obtained by mutating amino acid residues of the following sites of the formaldehyde conversion protein shown in SEQ ID No. 1: I28L-N283Q (corresponding mutant V8, amino acid sequence shown in SEQ ID No. 9);
(a8) The formaldehyde conversion protein variant is a protein obtained by mutating amino acid residues of the following sites of the formaldehyde conversion protein shown in SEQ ID No. 1: I28L-N283H-T90L (corresponding mutant V9, amino acid sequence shown as SEQ ID No. 10);
(a9) The formaldehyde conversion protein variant is a protein obtained by mutating amino acid residues of the following sites of the formaldehyde conversion protein shown in SEQ ID No. 1: I28L (corresponding mutant V2, the amino acid sequence of which is shown as SEQ ID No. 3);
in a second aspect, the invention claims a formaldehyde-converting protein variant related biomaterial that is any one of the following:
(I) A nucleic acid molecule encoding the formaldehyde-converting protein variant of any one of claims 1-5;
(II) expression cassettes, recombinant vectors, recombinant bacteria or transgenic cell lines containing said nucleic acid molecules.
Wherein, the nucleic acid molecule encoding the formaldehyde conversion protein is a DNA molecule shown in SEQ ID No. 11.
Further, the nucleic acid molecule encoding the formaldehyde-converting protein variant is specifically any one of the following:
(B1) A DNA molecule shown in SEQ ID No.12 (corresponding mutant V1);
(B2) A DNA molecule shown in SEQ ID No.14 (corresponding mutant V3);
(B3) A DNA molecule shown in SEQ ID No.15 (corresponding mutant V4);
(B4) A DNA molecule shown in SEQ ID No.16 (corresponding mutant V5);
(B5) A DNA molecule shown in SEQ ID No.17 (corresponding mutant V6);
(B6) A DNA molecule shown in SEQ ID No.18 (corresponding mutant V7);
(B7) A DNA molecule shown in SEQ ID No.19 (corresponding mutant V8);
(B8) A DNA molecule shown in SEQ ID No.20 (corresponding mutant V9);
(B9) The DNA molecule shown in SEQ ID No.13 (corresponding mutant V2).
In a specific embodiment of the present invention, the recombinant vector is a recombinant plasmid obtained by cloning the "nucleic acid molecule encoding the formaldehyde-converting protein variant" into the region of the multiple cloning site of pET21 a.
The recombinant bacterium may be E.coli containing the nucleic acid molecule.
In a third aspect, the invention claims the use of a formaldehyde conversion variant or biomaterial as hereinbefore described in any of the following:
(C1) Producing 1, 3-dihydroxyacetone or hydroxyacetaldehyde;
(C2) Improving the yield of 1, 3-dihydroxyacetone or hydroxy acetaldehyde;
(C3) Preparing a downstream product thereof by producing 1, 3-dihydroxyacetone;
(C4) Preparation of saccharides, organic acids and amino acids
In a fourth aspect, the invention claims a process for producing 1, 3-dihydroxyacetone or hydroxyacetaldehyde and/or for producing a downstream product of 1, 3-dihydroxyacetone or hydroxyacetaldehyde. The method can comprise the following steps: expressing any one of the formaldehyde conversion protein variants in a recipient bacterium to obtain a recombinant bacterium; fermenting and culturing the recombinant bacteria to obtain 1, 3-dihydroxyacetone or hydroxyaldehyde or downstream products from fermentation broth;
further, expression of the formaldehyde-converting protein variant in the recipient bacterium is achieved by introducing into the recipient bacterium the "nucleic acid molecule encoding the formaldehyde-converting protein variant".
Advantageous effects
The invention obtains the mutant of the enzyme by carrying out molecular transformation on formaldehyde conversion protein (FLS), thereby greatly improving the efficiency of producing 1, 3-dihydroxyacetone by formaldehyde condensation.
Drawings
Fig. 1: DHA standard curve
Terminology and definitions
In the present invention, amino acids are represented by single letter or three letter codes, having the following meanings: a: ala (alanine); i: ile (isoleucine); g: gly (glycine); n: asn (asparagine); w: trp (tryptophan); l: leu (leucine); t: thr (threonine); k: lys (lysine); r: arg (arginine); h: his (histidine); f: phe (phenylalanine); v: val (valine); s: ser (serine); q: gln (glutamine).
In the present invention, "homology" has the meaning conventional in the art, referring to "identity" between two nucleic acid or amino acid sequences, the percentage of which represents the statistically significant percentage of identical nucleotide or amino acid residues between the two sequences to be compared obtained after optimal alignment (best alignment), the differences between the two sequences being randomly distributed over their entire length.
The term "mutation" with respect to an amino acid position or residue means that the amino acid at a particular position has been replaced with another amino acid.
The expression "XaY" is used herein to denote a mutation or substitution of an amino acid, wherein a denotes the position of the amino acid in SEQ ID No.1, X denotes the wild-type amino acid species at the a-position in SEQ ID No.1, and Y denotes the amino acid species after the mutation at the a-position in SEQ ID No. 1. For example, "I28L" means that isoleucine I at position 28 corresponding to SEQ ID No.1 is replaced with leucine L as aligned with SEQ ID No. 1.
Detailed Description
The technical scheme of the invention will be further described in detail below with reference to specific embodiments. It is to be understood that the following examples are illustrative only and are not to be construed as limiting the scope of the invention. All techniques implemented based on the above description of the invention are intended to be included within the scope of the invention.
Unless otherwise indicated, the starting materials and reagents used in the following examples were either commercially available or may be prepared by known methods. The experimental methods used in the following examples are conventional methods unless otherwise specified.
EXAMPLE 1 construction of expression vector for Formaldehyde converting protein
Formaldehyde converting protein (FLS) is an amino acid mutant of benzaldehyde lyase (benzaldehyde lyase) derived from Pseudomonas fluorescens (Pseudomonas fluorescens biovar I), and comprises mutation into A28I-A394G-G419N-A480W-L90T-W89K-R188H, the nucleotide sequence of which is SEQ ID No.11, and the formaldehyde converting protein shown in SEQ ID No.1 is encoded. The recombinant plasmid pET21a-fls of the mutant is used as a template, a primer (an upstream primer: 5'-GTTTAACTTTAAGAAGGAGATATACATATGGC-3' downstream primer: 5'-GCTTTGTTAGCAGCCGGATC-3') is designed, and error-prone PCR is carried out to randomly mutate a target gene.
After the PCR is completed, the target gene is recovered by gel, and the mutated FLS gene is connected to a vector pET21 a. The vector linear fragment was transformed into E.coli BL21 Gold (DE 3) and incubated in an incubator at 37℃until a monoclonal was grown.
EXAMPLE 2 screening of mutants of Formaldehyde converting protein
The obtained clones of the mutants were picked up and put into 96-well plates containing LB medium, cultured overnight in a shaker at 37℃at 800rpm, and transferred into 96-well plates, cultured for a certain period of time in a shaker at 37℃at 800rpm, and then cultured at 20 ℃.
After the completion of the culture, the cells were collected by centrifugation. The cells were resuspended in pH7.4 buffer and reacted at 30℃for 3 hours with the addition of formaldehyde solution (pH 7.4) and 1mM TPP. After completion of the reaction, 60. Mu.L of Buffer1 (0.6 mg/mL galactose oxidase, 32U/mL horseradish peroxidase, pH 7.4) was added, followed by 50. Mu.L of Buffer2 (8 mM ABTS, pH 7.4) and detection was performed at 410nm for 20min.
Compared with the original FLS, the obtained strain is a beneficial mutant strain with higher catalytic efficiency, and then the corresponding mutant amino acid is found through gene sequencing. Through screening of three site-directed saturated mutant libraries, seven mutants with remarkably improved enzyme activity and stable activity are finally obtained. The names and corresponding mutant amino acids of the seven mutants are shown in Table 1 through gene sequencing.
TABLE 1 mutant names and corresponding mutant amino acids
Figure BDA0002368999150000071
EXAMPLE 3 expression of Formaldehyde-converting protein and mutants thereof in E.coli
The inoculating needle picks up positive bacteria of the original FLS and mutant, inoculates in LB medium, cultures for 12h at 37 ℃, then inoculates in 100mL LB medium with 1% (V/V) inoculum size, cultures at 37 ℃ and carries on IPTG induction expression. Collecting the culture bacterial liquid into a centrifuge tube, centrifuging, discarding the supernatant, re-suspending and cleaning the bacterial cells with a buffer solution, and preserving the bacterial cells at a low temperature.
EXAMPLE 4DHA standard curve
90. Mu.L of DHA solutions of different concentrations, 0.125mM, 0.25mM, 0.5mM, 1mM, 2mM, 5mM and 8mM, respectively, were added to the reaction system, 60. Mu.L of Buffer1 (0.6 mg/mL galactose oxidase, 32U/mL horseradish peroxidase, pH 7.4) was added, and then 50. Mu.L of Buffer2 (8 mM ABTS, pH 7.4) was added, followed by detection under light absorption at 410nm for 20min. A DHA standard curve (y=0.0058x+0.0004) was obtained
EXAMPLE 5 Formaldehyde-converting protein and assay for mutant Activity thereof
The cells of example 3 were collected by centrifugation at 4℃and the supernatant was collected by centrifugation after re-suspension and ultrasonic disruption.
The cell resuspension was mixed with formaldehyde solution and 1mM TPP, reacted at 30℃for 3 hours, after the completion of the reaction, 60. Mu.L of tool enzyme Buffer1 (0.6 mg/mL galactose oxidase, 32U/mL horseradish peroxidase, pH 7.4) was added, and then 50. Mu.L of Buffer2 (8 mM ABTS, pH 7.4) was added, followed by detection under light absorption at 410nm for 20 minutes. The wild-type FLS and mutant whole-cell enzyme activities were calculated, and the percentage of mutant enzyme activities relative to the wild-type is shown in the following table (100% of the wild-type whole-cell enzyme activity).
TABLE 2 Whole cells of formaldehyde transformed variants were active at 5mM formaldehyde concentration
Figure BDA0002368999150000081
EXAMPLE 6 detection of formaldehyde to DHA by chromogenic method
The cells of example 3 were collected by centrifugation at 4℃and Hepes buffer (100 mM Hepes-NaCl, pH 7.4) was resuspended, and the supernatant was collected by centrifugation.
The cell resuspension was mixed with formaldehyde solution, reacted at 30℃for 3 hours, after the completion of the reaction, 60. Mu.L of Toolse Buffer1 (0.6 mg/mL galactose oxidase, 32U/mL horseradish peroxidase, pH 7.4) was added, and then 50. Mu.L of Buffer2 (8 mM ABTS, pH 7.4) was added, followed by detection under light absorption at 410nm for 20 minutes. The amounts of wild-type FLS and mutant DHA were calculated from the DHA standard curve in example 4 (y=0.0058x+0.0004), as shown in the table below.
TABLE 3 amount of DHA produced by whole cells of Formaldehyde converting protein variants at 5mM formaldehyde concentration
Figure BDA0002368999150000091
EXAMPLE 7 purification of Formaldehyde converting proteins and mutants thereof
The cells collected in example 3 were resuspended in pH7.4 buffer, sonicated in an ice bath, and the supernatant collected by centrifugation using Ni 2+ And (3) performing affinity chromatography purification on the expressed mutant by using a chromatographic column, eluting by using imidazole, desalting by using a desalting column, and storing the purified protein in a buffer solution for later use.
Example 8 determination of kinetic parameters of Formaldehyde converting proteins and their mutant pure enzymes
Adding pure enzyme with the same concentration into a reaction system, taking substrates with different concentrations to detect absorbance values, and determining the initial rate of each reaction. The specific detection method comprises the following steps:
1. the purified mutant was diluted to a concentration of 3mg/mL with pH7.4 buffer.
2. Formaldehyde solutions with different concentrations (pH 7.4buffer containing formaldehyde with different concentrations and 1mM TPP) are added as substrates (the final concentration is 2-225mM respectively), 3mg/mL of pure enzyme is added into the reaction system, and the reaction is carried out at 30 ℃. The reaction samples were taken over time and 90. Mu.L of Toolse Buffer1 (0.6 mg/mL galactose oxidase, 32U/mL horseradish peroxidase, pH 7.4) was added, followed by 50. Mu.L of Toolse Buffer2 (8 mM ABTS, pH 7.4) and detected at 410nm for 20min.
3. Calculating the initial speed of the enzymatic reaction under different substrate concentrations according to the detection result, and calculating K m Value sum V max Further calculate k cat The values and calculation results are shown in Table 3.
TABLE 4 kinetic parameters of Formaldehyde conversion protein variants
Figure BDA0002368999150000101
While the invention has been described in detail in the foregoing general description and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that modifications and improvements can be made thereto. Accordingly, all changes and modifications that may be made without departing from the spirit of the invention are intended to be within the scope of the invention as claimed.
Sequence listing
<110> institute of Tianjin Industrial biotechnology, national academy of sciences
<120> a formaldehyde conversion protein and use thereof
<130> 2020.1.16
<160> 20
<170> SIPOSequenceListing 1.0
<210> 1
<211> 575
<212> PRT
<213> Artificial sequence ()
<400> 1
Met Ala Met Ile Thr Gly Gly Glu Leu Val Val Arg Thr Leu Ile Lys
1 5 10 15
Ala Gly Val Glu His Leu Phe Gly Leu His Gly Ile His Ile Asp Thr
20 25 30
Ile Phe Gln Ala Cys Leu Asp His Asp Val Pro Ile Ile Asp Thr Arg
35 40 45
His Glu Ala Ala Ala Gly His Ala Ala Glu Gly Tyr Ala Arg Ala Gly
50 55 60
Ala Lys Leu Gly Val Ala Leu Val Thr Ala Gly Gly Gly Phe Thr Asn
65 70 75 80
Ala Val Thr Pro Ile Ala Asn Ala Arg Thr Asp Arg Thr Pro Val Leu
85 90 95
Phe Leu Thr Gly Ser Gly Ala Leu Arg Asp Asp Glu Thr Asn Thr Leu
100 105 110
Gln Ala Gly Ile Asp Gln Val Ala Met Ala Ala Pro Ile Thr Lys Trp
115 120 125
Ala His Arg Val Met Ala Thr Glu His Ile Pro Arg Leu Val Met Gln
130 135 140
Ala Ile Arg Ala Ala Leu Ser Ala Pro Arg Gly Pro Val Leu Leu Asp
145 150 155 160
Leu Pro Trp Asp Ile Leu Met Asn Gln Ile Asp Glu Asp Ser Val Ile
165 170 175
Ile Pro Asp Leu Val Leu Ser Ala His Gly Ala His Pro Asp Pro Ala
180 185 190
Asp Leu Asp Gln Ala Leu Ala Leu Leu Arg Lys Ala Glu Arg Pro Val
195 200 205
Ile Val Leu Gly Ser Glu Ala Ser Arg Thr Ala Arg Lys Thr Ala Leu
210 215 220
Ser Ala Phe Val Ala Ala Thr Gly Val Pro Val Phe Ala Asp Tyr Glu
225 230 235 240
Gly Leu Ser Met Leu Ser Gly Leu Pro Asp Ala Met Arg Gly Gly Leu
245 250 255
Val Gln Asn Leu Tyr Ser Phe Ala Lys Ala Asp Ala Ala Pro Asp Leu
260 265 270
Val Leu Met Leu Gly Ala Arg Phe Gly Leu Asn Thr Gly His Gly Ser
275 280 285
Gly Gln Leu Ile Pro His Ser Ala Gln Val Ile Gln Val Asp Pro Asp
290 295 300
Ala Cys Glu Leu Gly Arg Leu Gln Gly Ile Ala Leu Gly Ile Val Ala
305 310 315 320
Asp Val Gly Gly Thr Ile Glu Ala Leu Ala Gln Ala Thr Ala Gln Asp
325 330 335
Ala Ala Trp Pro Asp Arg Gly Asp Trp Cys Ala Lys Val Thr Asp Leu
340 345 350
Ala Gln Glu Arg Tyr Ala Ser Ile Ala Ala Lys Ser Ser Ser Glu His
355 360 365
Ala Leu His Pro Phe His Ala Ser Gln Val Ile Ala Lys His Val Asp
370 375 380
Ala Gly Val Thr Val Val Ala Asp Gly Gly Leu Thr Tyr Leu Trp Leu
385 390 395 400
Ser Glu Val Met Ser Arg Val Lys Pro Gly Gly Phe Leu Cys His Gly
405 410 415
Tyr Leu Asn Ser Met Gly Val Gly Phe Gly Thr Ala Leu Gly Ala Gln
420 425 430
Val Ala Asp Leu Glu Ala Gly Arg Arg Thr Ile Leu Val Thr Gly Asp
435 440 445
Gly Ser Val Gly Tyr Ser Ile Gly Glu Phe Asp Thr Leu Val Arg Lys
450 455 460
Gln Leu Pro Leu Ile Val Ile Ile Met Asn Asn Gln Ser Trp Gly Trp
465 470 475 480
Thr Leu His Phe Gln Gln Leu Ala Val Gly Pro Asn Arg Val Thr Gly
485 490 495
Thr Arg Leu Glu Asn Gly Ser Tyr His Gly Val Ala Ala Ala Phe Gly
500 505 510
Ala Asp Gly Tyr His Val Asp Ser Val Glu Ser Phe Ser Ala Ala Leu
515 520 525
Ala Gln Ala Leu Ala His Asn Arg Pro Ala Cys Ile Asn Val Ala Val
530 535 540
Ala Leu Asp Pro Ile Pro Pro Glu Glu Leu Ile Leu Ile Gly Met Asp
545 550 555 560
Pro Phe Ala Gly Ser Thr Glu Asn Leu Tyr Phe Gln Ser Gly Ala
565 570 575
<210> 2
<211> 575
<212> PRT
<213> Artificial sequence ()
<400> 2
Met Ala Met Ile Thr Gly Gly Glu Leu Val Val Arg Thr Leu Ile Lys
1 5 10 15
Ala Gly Val Glu His Leu Phe Gly Leu His Gly Leu His Ile Asp Thr
20 25 30
Ile Phe Gln Ala Cys Leu Asp His Asp Val Pro Ile Ile Asp Thr Arg
35 40 45
His Glu Ala Ala Ala Gly His Ala Ala Glu Gly Tyr Ala Arg Ala Gly
50 55 60
Ala Lys Leu Gly Val Ala Leu Val Thr Ala Gly Gly Gly Phe Thr Asn
65 70 75 80
Ala Val Thr Pro Ile Ala Asn Ala Arg Thr Asp Arg Thr Pro Val Leu
85 90 95
Phe Leu Thr Gly Ser Gly Ala Leu Arg Asp Asp Glu Thr Asn Thr Leu
100 105 110
Gln Ala Gly Ile Asp Gln Val Ala Met Ala Ala Pro Ile Thr Lys Trp
115 120 125
Ala His Arg Val Met Ala Thr Glu His Ile Pro Arg Leu Val Met Gln
130 135 140
Ala Ile Arg Ala Ala Leu Ser Ala Pro Arg Gly Pro Val Leu Leu Asp
145 150 155 160
Leu Pro Trp Asp Ile Leu Met Asn Gln Ile Asp Glu Asp Ser Val Ile
165 170 175
Ile Pro Asp Leu Val Leu Ser Ala His Gly Ala His Pro Asp Pro Ala
180 185 190
Asp Leu Asp Gln Ala Leu Ala Leu Leu Arg Lys Ala Glu Arg Pro Val
195 200 205
Ile Val Leu Gly Ser Glu Ala Ser Arg Thr Ala Arg Lys Thr Ala Leu
210 215 220
Ser Ala Phe Val Ala Ala Thr Gly Val Pro Val Phe Ala Asp Tyr Glu
225 230 235 240
Gly Leu Ser Met Leu Ser Gly Leu Pro Asp Ala Met Arg Gly Gly Leu
245 250 255
Val Gln Asn Leu Tyr Ser Phe Ala Lys Ala Asp Ala Ala Pro Asp Leu
260 265 270
Val Leu Met Leu Gly Ala Arg Phe Gly Leu Asn Thr Gly His Gly Ser
275 280 285
Gly Gln Leu Ile Pro His Ser Ala Gln Val Ile Gln Val Asp Pro Asp
290 295 300
Ala Cys Glu Leu Gly Arg Leu Gln Gly Ile Ala Leu Gly Ile Val Ala
305 310 315 320
Asp Val Gly Gly Thr Ile Glu Ala Leu Ala Gln Ala Thr Ala Gln Asp
325 330 335
Ala Ala Trp Pro Asp Arg Gly Asp Trp Cys Ala Lys Val Thr Asp Leu
340 345 350
Ala Gln Glu Arg Tyr Ala Ser Ile Ala Ala Lys Ser Ser Ser Glu His
355 360 365
Ala Leu His Pro Phe His Ala Ser Gln Val Ile Ala Lys His Val Asp
370 375 380
Ala Gly Val Thr Val Val Ala Asp Gly Gly Leu Thr Tyr Leu Trp Leu
385 390 395 400
Ser Glu Val Met Ser Arg Val Lys Pro Gly Gly Phe Leu Cys His Gly
405 410 415
Tyr Leu Asn Ser Met Gly Val Gly Phe Gly Thr Ala Leu Gly Ala Gln
420 425 430
Val Ala Asp Leu Glu Ala Gly Arg Arg Thr Ile Leu Val Thr Gly Asp
435 440 445
Gly Ser Val Gly Tyr Ser Ile Gly Glu Phe Asp Thr Leu Val Arg Lys
450 455 460
Gln Leu Pro Leu Ile Val Ile Ile Met Asn Asn Gln Ser Trp Gly Trp
465 470 475 480
Thr Leu His Phe Gln Gln Leu Ala Val Gly Pro Asn Arg Val Thr Gly
485 490 495
Thr Arg Leu Glu Asn Gly Ser Tyr His Gly Val Ala Ala Ala Phe Gly
500 505 510
Ala Asp Gly Tyr His Val Asp Ser Val Glu Ser Phe Ser Ala Ala Leu
515 520 525
Ala Gln Ala Leu Ala His Asn Arg Pro Ala Cys Ile Asn Val Ala Val
530 535 540
Ala Leu Asp Pro Ile Pro Pro Glu Glu Leu Ile Leu Ile Gly Met Asp
545 550 555 560
Pro Phe Ala Gly Ser Thr Glu Asn Leu Tyr Phe Gln Ser Gly Ala
565 570 575
<210> 3
<211> 575
<212> PRT
<213> Artificial sequence ()
<400> 3
Met Ala Met Ile Thr Gly Gly Glu Leu Val Val Arg Thr Leu Ile Lys
1 5 10 15
Ala Gly Val Glu His Leu Phe Gly Leu His Gly Phe His Ile Asp Thr
20 25 30
Ile Phe Gln Ala Cys Leu Asp His Asp Val Pro Ile Ile Asp Thr Arg
35 40 45
His Glu Ala Ala Ala Gly His Ala Ala Glu Gly Tyr Ala Arg Ala Gly
50 55 60
Ala Lys Leu Gly Val Ala Leu Val Thr Ala Gly Gly Gly Phe Thr Asn
65 70 75 80
Ala Val Thr Pro Ile Ala Asn Ala Arg Thr Asp Arg Thr Pro Val Leu
85 90 95
Phe Leu Thr Gly Ser Gly Ala Leu Arg Asp Asp Glu Thr Asn Thr Leu
100 105 110
Gln Ala Gly Ile Asp Gln Val Ala Met Ala Ala Pro Ile Thr Lys Trp
115 120 125
Ala His Arg Val Met Ala Thr Glu His Ile Pro Arg Leu Val Met Gln
130 135 140
Ala Ile Arg Ala Ala Leu Ser Ala Pro Arg Gly Pro Val Leu Leu Asp
145 150 155 160
Leu Pro Trp Asp Ile Leu Met Asn Gln Ile Asp Glu Asp Ser Val Ile
165 170 175
Ile Pro Asp Leu Val Leu Ser Ala His Gly Ala His Pro Asp Pro Ala
180 185 190
Asp Leu Asp Gln Ala Leu Ala Leu Leu Arg Lys Ala Glu Arg Pro Val
195 200 205
Ile Val Leu Gly Ser Glu Ala Ser Arg Thr Ala Arg Lys Thr Ala Leu
210 215 220
Ser Ala Phe Val Ala Ala Thr Gly Val Pro Val Phe Ala Asp Tyr Glu
225 230 235 240
Gly Leu Ser Met Leu Ser Gly Leu Pro Asp Ala Met Arg Gly Gly Leu
245 250 255
Val Gln Asn Leu Tyr Ser Phe Ala Lys Ala Asp Ala Ala Pro Asp Leu
260 265 270
Val Leu Met Leu Gly Ala Arg Phe Gly Leu Asn Thr Gly His Gly Ser
275 280 285
Gly Gln Leu Ile Pro His Ser Ala Gln Val Ile Gln Val Asp Pro Asp
290 295 300
Ala Cys Glu Leu Gly Arg Leu Gln Gly Ile Ala Leu Gly Ile Val Ala
305 310 315 320
Asp Val Gly Gly Thr Ile Glu Ala Leu Ala Gln Ala Thr Ala Gln Asp
325 330 335
Ala Ala Trp Pro Asp Arg Gly Asp Trp Cys Ala Lys Val Thr Asp Leu
340 345 350
Ala Gln Glu Arg Tyr Ala Ser Ile Ala Ala Lys Ser Ser Ser Glu His
355 360 365
Ala Leu His Pro Phe His Ala Ser Gln Val Ile Ala Lys His Val Asp
370 375 380
Ala Gly Val Thr Val Val Ala Asp Gly Gly Leu Thr Tyr Leu Trp Leu
385 390 395 400
Ser Glu Val Met Ser Arg Val Lys Pro Gly Gly Phe Leu Cys His Gly
405 410 415
Tyr Leu Asn Ser Met Gly Val Gly Phe Gly Thr Ala Leu Gly Ala Gln
420 425 430
Val Ala Asp Leu Glu Ala Gly Arg Arg Thr Ile Leu Val Thr Gly Asp
435 440 445
Gly Ser Val Gly Tyr Ser Ile Gly Glu Phe Asp Thr Leu Val Arg Lys
450 455 460
Gln Leu Pro Leu Ile Val Ile Ile Met Asn Asn Gln Ser Trp Gly Trp
465 470 475 480
Thr Leu His Phe Gln Gln Leu Ala Val Gly Pro Asn Arg Val Thr Gly
485 490 495
Thr Arg Leu Glu Asn Gly Ser Tyr His Gly Val Ala Ala Ala Phe Gly
500 505 510
Ala Asp Gly Tyr His Val Asp Ser Val Glu Ser Phe Ser Ala Ala Leu
515 520 525
Ala Gln Ala Leu Ala His Asn Arg Pro Ala Cys Ile Asn Val Ala Val
530 535 540
Ala Leu Asp Pro Ile Pro Pro Glu Glu Leu Ile Leu Ile Gly Met Asp
545 550 555 560
Pro Phe Ala Gly Ser Thr Glu Asn Leu Tyr Phe Gln Ser Gly Ala
565 570 575
<210> 4
<211> 575
<212> PRT
<213> Artificial sequence ()
<400> 4
Met Ala Met Ile Thr Gly Gly Glu Leu Val Val Arg Thr Leu Ile Lys
1 5 10 15
Ala Gly Val Glu His Leu Phe Gly Leu His Gly Leu His Ile Asp Thr
20 25 30
Ile Phe Gln Ala Cys Leu Asp His Asp Val Pro Ile Ile Asp Thr Arg
35 40 45
His Glu Ala Ala Ala Gly His Ala Ala Glu Gly Tyr Ala Arg Ala Gly
50 55 60
Ala Lys Leu Gly Val Ala Leu Val Thr Ala Gly Gly Gly Phe Thr Asn
65 70 75 80
Ala Val Thr Pro Ile Ala Asn Ala Arg Val Asp Arg Thr Pro Val Leu
85 90 95
Phe Leu Thr Gly Ser Gly Ala Leu Arg Asp Asp Glu Thr Asn Thr Leu
100 105 110
Gln Ala Gly Ile Asp Gln Val Ala Met Ala Ala Pro Ile Thr Lys Trp
115 120 125
Ala His Arg Val Met Ala Thr Glu His Ile Pro Arg Leu Val Met Gln
130 135 140
Ala Ile Arg Ala Ala Leu Ser Ala Pro Arg Gly Pro Val Leu Leu Asp
145 150 155 160
Leu Pro Trp Asp Ile Leu Met Asn Gln Ile Asp Glu Asp Ser Val Ile
165 170 175
Ile Pro Asp Leu Val Leu Ser Ala His Gly Ala His Pro Asp Pro Ala
180 185 190
Asp Leu Asp Gln Ala Leu Ala Leu Leu Arg Lys Ala Glu Arg Pro Val
195 200 205
Ile Val Leu Gly Ser Glu Ala Ser Arg Thr Ala Arg Lys Thr Ala Leu
210 215 220
Ser Ala Phe Val Ala Ala Thr Gly Val Pro Val Phe Ala Asp Tyr Glu
225 230 235 240
Gly Leu Ser Met Leu Ser Gly Leu Pro Asp Ala Met Arg Gly Gly Leu
245 250 255
Val Gln Asn Leu Tyr Ser Phe Ala Lys Ala Asp Ala Ala Pro Asp Leu
260 265 270
Val Leu Met Leu Gly Ala Arg Phe Gly Leu Asn Thr Gly His Gly Ser
275 280 285
Gly Gln Leu Ile Pro His Ser Ala Gln Val Ile Gln Val Asp Pro Asp
290 295 300
Ala Cys Glu Leu Gly Arg Leu Gln Gly Ile Ala Leu Gly Ile Val Ala
305 310 315 320
Asp Val Gly Gly Thr Ile Glu Ala Leu Ala Gln Ala Thr Ala Gln Asp
325 330 335
Ala Ala Trp Pro Asp Arg Gly Asp Trp Cys Ala Lys Val Thr Asp Leu
340 345 350
Ala Gln Glu Arg Tyr Ala Ser Ile Ala Ala Lys Ser Ser Ser Glu His
355 360 365
Ala Leu His Pro Phe His Ala Ser Gln Val Ile Ala Lys His Val Asp
370 375 380
Ala Gly Val Thr Val Val Ala Asp Gly Gly Leu Thr Tyr Leu Trp Leu
385 390 395 400
Ser Glu Val Met Ser Arg Val Lys Pro Gly Gly Phe Leu Cys His Gly
405 410 415
Tyr Leu Asn Ser Met Gly Val Gly Phe Gly Thr Ala Leu Gly Ala Gln
420 425 430
Val Ala Asp Leu Glu Ala Gly Arg Arg Thr Ile Leu Val Thr Gly Asp
435 440 445
Gly Ser Val Gly Tyr Ser Ile Gly Glu Phe Asp Thr Leu Val Arg Lys
450 455 460
Gln Leu Pro Leu Ile Val Ile Ile Met Asn Asn Gln Ser Trp Gly Trp
465 470 475 480
Thr Leu His Phe Gln Gln Leu Ala Val Gly Pro Asn Arg Val Thr Gly
485 490 495
Thr Arg Leu Glu Asn Gly Ser Tyr His Gly Val Ala Ala Ala Phe Gly
500 505 510
Ala Asp Gly Tyr His Val Asp Ser Val Glu Ser Phe Ser Ala Ala Leu
515 520 525
Ala Gln Ala Leu Ala His Asn Arg Pro Ala Cys Ile Asn Val Ala Val
530 535 540
Ala Leu Asp Pro Ile Pro Pro Glu Glu Leu Ile Leu Ile Gly Met Asp
545 550 555 560
Pro Phe Ala Gly Ser Thr Glu Asn Leu Tyr Phe Gln Ser Gly Ala
565 570 575
<210> 5
<211> 575
<212> PRT
<213> Artificial sequence ()
<400> 5
Met Ala Met Ile Thr Gly Gly Glu Leu Val Val Arg Thr Leu Ile Lys
1 5 10 15
Ala Gly Val Glu His Leu Phe Gly Leu His Gly Leu His Ile Asp Thr
20 25 30
Ile Phe Gln Ala Cys Leu Asp His Asp Val Pro Ile Ile Asp Thr Arg
35 40 45
His Glu Ala Ala Ala Gly His Ala Ala Glu Gly Tyr Ala Arg Ala Gly
50 55 60
Ala Lys Leu Gly Val Ala Leu Val Thr Ala Gly Gly Gly Phe Thr Asn
65 70 75 80
Ala Val Thr Pro Ile Ala Asn Ala Arg Leu Asp Arg Thr Pro Val Leu
85 90 95
Phe Leu Thr Gly Ser Gly Ala Leu Arg Asp Asp Glu Thr Asn Thr Leu
100 105 110
Gln Ala Gly Ile Asp Gln Val Ala Met Ala Ala Pro Ile Thr Lys Trp
115 120 125
Ala His Arg Val Met Ala Thr Glu His Ile Pro Arg Leu Val Met Gln
130 135 140
Ala Ile Arg Ala Ala Leu Ser Ala Pro Arg Gly Pro Val Leu Leu Asp
145 150 155 160
Leu Pro Trp Asp Ile Leu Met Asn Gln Ile Asp Glu Asp Ser Val Ile
165 170 175
Ile Pro Asp Leu Val Leu Ser Ala His Gly Ala His Pro Asp Pro Ala
180 185 190
Asp Leu Asp Gln Ala Leu Ala Leu Leu Arg Lys Ala Glu Arg Pro Val
195 200 205
Ile Val Leu Gly Ser Glu Ala Ser Arg Thr Ala Arg Lys Thr Ala Leu
210 215 220
Ser Ala Phe Val Ala Ala Thr Gly Val Pro Val Phe Ala Asp Tyr Glu
225 230 235 240
Gly Leu Ser Met Leu Ser Gly Leu Pro Asp Ala Met Arg Gly Gly Leu
245 250 255
Val Gln Asn Leu Tyr Ser Phe Ala Lys Ala Asp Ala Ala Pro Asp Leu
260 265 270
Val Leu Met Leu Gly Ala Arg Phe Gly Leu Asn Thr Gly His Gly Ser
275 280 285
Gly Gln Leu Ile Pro His Ser Ala Gln Val Ile Gln Val Asp Pro Asp
290 295 300
Ala Cys Glu Leu Gly Arg Leu Gln Gly Ile Ala Leu Gly Ile Val Ala
305 310 315 320
Asp Val Gly Gly Thr Ile Glu Ala Leu Ala Gln Ala Thr Ala Gln Asp
325 330 335
Ala Ala Trp Pro Asp Arg Gly Asp Trp Cys Ala Lys Val Thr Asp Leu
340 345 350
Ala Gln Glu Arg Tyr Ala Ser Ile Ala Ala Lys Ser Ser Ser Glu His
355 360 365
Ala Leu His Pro Phe His Ala Ser Gln Val Ile Ala Lys His Val Asp
370 375 380
Ala Gly Val Thr Val Val Ala Asp Gly Gly Leu Thr Tyr Leu Trp Leu
385 390 395 400
Ser Glu Val Met Ser Arg Val Lys Pro Gly Gly Phe Leu Cys His Gly
405 410 415
Tyr Leu Asn Ser Met Gly Val Gly Phe Gly Thr Ala Leu Gly Ala Gln
420 425 430
Val Ala Asp Leu Glu Ala Gly Arg Arg Thr Ile Leu Val Thr Gly Asp
435 440 445
Gly Ser Val Gly Tyr Ser Ile Gly Glu Phe Asp Thr Leu Val Arg Lys
450 455 460
Gln Leu Pro Leu Ile Val Ile Ile Met Asn Asn Gln Ser Trp Gly Trp
465 470 475 480
Thr Leu His Phe Gln Gln Leu Ala Val Gly Pro Asn Arg Val Thr Gly
485 490 495
Thr Arg Leu Glu Asn Gly Ser Tyr His Gly Val Ala Ala Ala Phe Gly
500 505 510
Ala Asp Gly Tyr His Val Asp Ser Val Glu Ser Phe Ser Ala Ala Leu
515 520 525
Ala Gln Ala Leu Ala His Asn Arg Pro Ala Cys Ile Asn Val Ala Val
530 535 540
Ala Leu Asp Pro Ile Pro Pro Glu Glu Leu Ile Leu Ile Gly Met Asp
545 550 555 560
Pro Phe Ala Gly Ser Thr Glu Asn Leu Tyr Phe Gln Ser Gly Ala
565 570 575
<210> 6
<211> 575
<212> PRT
<213> Artificial sequence ()
<400> 6
Met Ala Met Ile Thr Gly Gly Glu Leu Val Val Arg Thr Leu Ile Lys
1 5 10 15
Ala Gly Val Glu His Leu Phe Gly Leu His Gly Leu His Ile Asp Thr
20 25 30
Ile Phe Gln Ala Cys Leu Asp His Asp Val Pro Ile Ile Asp Thr Arg
35 40 45
His Glu Ala Ala Ala Gly His Ala Ala Glu Gly Tyr Ala Arg Ala Gly
50 55 60
Ala Lys Leu Gly Val Ala Leu Val Thr Ala Gly Gly Gly Phe Thr Asn
65 70 75 80
Ala Val Thr Pro Ile Ala Asn Ala Arg Ala Asp Arg Thr Pro Val Leu
85 90 95
Phe Leu Thr Gly Ser Gly Ala Leu Arg Asp Asp Glu Thr Asn Thr Leu
100 105 110
Gln Ala Gly Ile Asp Gln Val Ala Met Ala Ala Pro Ile Thr Lys Trp
115 120 125
Ala His Arg Val Met Ala Thr Glu His Ile Pro Arg Leu Val Met Gln
130 135 140
Ala Ile Arg Ala Ala Leu Ser Ala Pro Arg Gly Pro Val Leu Leu Asp
145 150 155 160
Leu Pro Trp Asp Ile Leu Met Asn Gln Ile Asp Glu Asp Ser Val Ile
165 170 175
Ile Pro Asp Leu Val Leu Ser Ala His Gly Ala His Pro Asp Pro Ala
180 185 190
Asp Leu Asp Gln Ala Leu Ala Leu Leu Arg Lys Ala Glu Arg Pro Val
195 200 205
Ile Val Leu Gly Ser Glu Ala Ser Arg Thr Ala Arg Lys Thr Ala Leu
210 215 220
Ser Ala Phe Val Ala Ala Thr Gly Val Pro Val Phe Ala Asp Tyr Glu
225 230 235 240
Gly Leu Ser Met Leu Ser Gly Leu Pro Asp Ala Met Arg Gly Gly Leu
245 250 255
Val Gln Asn Leu Tyr Ser Phe Ala Lys Ala Asp Ala Ala Pro Asp Leu
260 265 270
Val Leu Met Leu Gly Ala Arg Phe Gly Leu Asn Thr Gly His Gly Ser
275 280 285
Gly Gln Leu Ile Pro His Ser Ala Gln Val Ile Gln Val Asp Pro Asp
290 295 300
Ala Cys Glu Leu Gly Arg Leu Gln Gly Ile Ala Leu Gly Ile Val Ala
305 310 315 320
Asp Val Gly Gly Thr Ile Glu Ala Leu Ala Gln Ala Thr Ala Gln Asp
325 330 335
Ala Ala Trp Pro Asp Arg Gly Asp Trp Cys Ala Lys Val Thr Asp Leu
340 345 350
Ala Gln Glu Arg Tyr Ala Ser Ile Ala Ala Lys Ser Ser Ser Glu His
355 360 365
Ala Leu His Pro Phe His Ala Ser Gln Val Ile Ala Lys His Val Asp
370 375 380
Ala Gly Val Thr Val Val Ala Asp Gly Gly Leu Thr Tyr Leu Trp Leu
385 390 395 400
Ser Glu Val Met Ser Arg Val Lys Pro Gly Gly Phe Leu Cys His Gly
405 410 415
Tyr Leu Asn Ser Met Gly Val Gly Phe Gly Thr Ala Leu Gly Ala Gln
420 425 430
Val Ala Asp Leu Glu Ala Gly Arg Arg Thr Ile Leu Val Thr Gly Asp
435 440 445
Gly Ser Val Gly Tyr Ser Ile Gly Glu Phe Asp Thr Leu Val Arg Lys
450 455 460
Gln Leu Pro Leu Ile Val Ile Ile Met Asn Asn Gln Ser Trp Gly Trp
465 470 475 480
Thr Leu His Phe Gln Gln Leu Ala Val Gly Pro Asn Arg Val Thr Gly
485 490 495
Thr Arg Leu Glu Asn Gly Ser Tyr His Gly Val Ala Ala Ala Phe Gly
500 505 510
Ala Asp Gly Tyr His Val Asp Ser Val Glu Ser Phe Ser Ala Ala Leu
515 520 525
Ala Gln Ala Leu Ala His Asn Arg Pro Ala Cys Ile Asn Val Ala Val
530 535 540
Ala Leu Asp Pro Ile Pro Pro Glu Glu Leu Ile Leu Ile Gly Met Asp
545 550 555 560
Pro Phe Ala Gly Ser Thr Glu Asn Leu Tyr Phe Gln Ser Gly Ala
565 570 575
<210> 7
<211> 575
<212> PRT
<213> Artificial sequence ()
<400> 7
Met Ala Met Ile Thr Gly Gly Glu Leu Val Val Arg Thr Leu Ile Lys
1 5 10 15
Ala Gly Val Glu His Leu Phe Gly Leu His Gly Leu His Ile Asp Thr
20 25 30
Ile Phe Gln Ala Cys Leu Asp His Asp Val Pro Ile Ile Asp Thr Arg
35 40 45
His Glu Ala Ala Ala Gly His Ala Ala Glu Gly Tyr Ala Arg Ala Gly
50 55 60
Ala Lys Leu Gly Val Ala Leu Val Thr Ala Gly Gly Gly Phe Thr Asn
65 70 75 80
Ala Val Thr Pro Ile Ala Asn Ala Arg Thr Asp Arg Thr Pro Val Leu
85 90 95
Phe Leu Thr Gly Ser Gly Ala Leu Arg Asp Asp Glu Thr Asn Thr Leu
100 105 110
Gln Ala Gly Ile Asp Gln Val Ala Met Ala Ala Pro Ile Thr Lys Trp
115 120 125
Ala His Arg Val Met Ala Thr Glu His Ile Pro Arg Leu Val Met Gln
130 135 140
Ala Ile Arg Ala Ala Leu Ser Ala Pro Arg Gly Pro Val Leu Leu Asp
145 150 155 160
Leu Pro Trp Asp Ile Leu Met Asn Gln Ile Asp Glu Asp Ser Val Ile
165 170 175
Ile Pro Asp Leu Val Leu Ser Ala His Gly Ala His Pro Asp Pro Ala
180 185 190
Asp Leu Asp Gln Ala Leu Ala Leu Leu Arg Lys Ala Glu Arg Pro Val
195 200 205
Ile Val Leu Gly Ser Glu Ala Ser Arg Thr Ala Arg Lys Thr Ala Leu
210 215 220
Ser Ala Phe Val Ala Ala Thr Gly Val Pro Val Phe Ala Asp Tyr Glu
225 230 235 240
Gly Leu Ser Met Leu Ser Gly Leu Pro Asp Ala Met Arg Gly Gly Leu
245 250 255
Val Gln Asn Leu Tyr Ser Phe Ala Lys Ala Asp Ala Ala Pro Asp Leu
260 265 270
Val Leu Met Leu Gly Ala Arg Phe Gly Leu His Thr Gly His Gly Ser
275 280 285
Gly Gln Leu Ile Pro His Ser Ala Gln Val Ile Gln Val Asp Pro Asp
290 295 300
Ala Cys Glu Leu Gly Arg Leu Gln Gly Ile Ala Leu Gly Ile Val Ala
305 310 315 320
Asp Val Gly Gly Thr Ile Glu Ala Leu Ala Gln Ala Thr Ala Gln Asp
325 330 335
Ala Ala Trp Pro Asp Arg Gly Asp Trp Cys Ala Lys Val Thr Asp Leu
340 345 350
Ala Gln Glu Arg Tyr Ala Ser Ile Ala Ala Lys Ser Ser Ser Glu His
355 360 365
Ala Leu His Pro Phe His Ala Ser Gln Val Ile Ala Lys His Val Asp
370 375 380
Ala Gly Val Thr Val Val Ala Asp Gly Gly Leu Thr Tyr Leu Trp Leu
385 390 395 400
Ser Glu Val Met Ser Arg Val Lys Pro Gly Gly Phe Leu Cys His Gly
405 410 415
Tyr Leu Asn Ser Met Gly Val Gly Phe Gly Thr Ala Leu Gly Ala Gln
420 425 430
Val Ala Asp Leu Glu Ala Gly Arg Arg Thr Ile Leu Val Thr Gly Asp
435 440 445
Gly Ser Val Gly Tyr Ser Ile Gly Glu Phe Asp Thr Leu Val Arg Lys
450 455 460
Gln Leu Pro Leu Ile Val Ile Ile Met Asn Asn Gln Ser Trp Gly Trp
465 470 475 480
Thr Leu His Phe Gln Gln Leu Ala Val Gly Pro Asn Arg Val Thr Gly
485 490 495
Thr Arg Leu Glu Asn Gly Ser Tyr His Gly Val Ala Ala Ala Phe Gly
500 505 510
Ala Asp Gly Tyr His Val Asp Ser Val Glu Ser Phe Ser Ala Ala Leu
515 520 525
Ala Gln Ala Leu Ala His Asn Arg Pro Ala Cys Ile Asn Val Ala Val
530 535 540
Ala Leu Asp Pro Ile Pro Pro Glu Glu Leu Ile Leu Ile Gly Met Asp
545 550 555 560
Pro Phe Ala Gly Ser Thr Glu Asn Leu Tyr Phe Gln Ser Gly Ala
565 570 575
<210> 8
<211> 575
<212> PRT
<213> Artificial sequence ()
<400> 8
Met Ala Met Ile Thr Gly Gly Glu Leu Val Val Arg Thr Leu Ile Lys
1 5 10 15
Ala Gly Val Glu His Leu Phe Gly Leu His Gly Leu His Ile Asp Thr
20 25 30
Ile Phe Gln Ala Cys Leu Asp His Asp Val Pro Ile Ile Asp Thr Arg
35 40 45
His Glu Ala Ala Ala Gly His Ala Ala Glu Gly Tyr Ala Arg Ala Gly
50 55 60
Ala Lys Leu Gly Val Ala Leu Val Thr Ala Gly Gly Gly Phe Thr Asn
65 70 75 80
Ala Val Thr Pro Ile Ala Asn Ala Arg Thr Asp Arg Thr Pro Val Leu
85 90 95
Phe Leu Thr Gly Ser Gly Ala Leu Arg Asp Asp Glu Thr Asn Thr Leu
100 105 110
Gln Ala Gly Ile Asp Gln Val Ala Met Ala Ala Pro Ile Thr Lys Trp
115 120 125
Ala His Arg Val Met Ala Thr Glu His Ile Pro Arg Leu Val Met Gln
130 135 140
Ala Ile Arg Ala Ala Leu Ser Ala Pro Arg Gly Pro Val Leu Leu Asp
145 150 155 160
Leu Pro Trp Asp Ile Leu Met Asn Gln Ile Asp Glu Asp Ser Val Ile
165 170 175
Ile Pro Asp Leu Val Leu Ser Ala His Gly Ala His Pro Asp Pro Ala
180 185 190
Asp Leu Asp Gln Ala Leu Ala Leu Leu Arg Lys Ala Glu Arg Pro Val
195 200 205
Ile Val Leu Gly Ser Glu Ala Ser Arg Thr Ala Arg Lys Thr Ala Leu
210 215 220
Ser Ala Phe Val Ala Ala Thr Gly Val Pro Val Phe Ala Asp Tyr Glu
225 230 235 240
Gly Leu Ser Met Leu Ser Gly Leu Pro Asp Ala Met Arg Gly Gly Leu
245 250 255
Val Gln Asn Leu Tyr Ser Phe Ala Lys Ala Asp Ala Ala Pro Asp Leu
260 265 270
Val Leu Met Leu Gly Ala Arg Phe Gly Leu Ser Thr Gly His Gly Ser
275 280 285
Gly Gln Leu Ile Pro His Ser Ala Gln Val Ile Gln Val Asp Pro Asp
290 295 300
Ala Cys Glu Leu Gly Arg Leu Gln Gly Ile Ala Leu Gly Ile Val Ala
305 310 315 320
Asp Val Gly Gly Thr Ile Glu Ala Leu Ala Gln Ala Thr Ala Gln Asp
325 330 335
Ala Ala Trp Pro Asp Arg Gly Asp Trp Cys Ala Lys Val Thr Asp Leu
340 345 350
Ala Gln Glu Arg Tyr Ala Ser Ile Ala Ala Lys Ser Ser Ser Glu His
355 360 365
Ala Leu His Pro Phe His Ala Ser Gln Val Ile Ala Lys His Val Asp
370 375 380
Ala Gly Val Thr Val Val Ala Asp Gly Gly Leu Thr Tyr Leu Trp Leu
385 390 395 400
Ser Glu Val Met Ser Arg Val Lys Pro Gly Gly Phe Leu Cys His Gly
405 410 415
Tyr Leu Asn Ser Met Gly Val Gly Phe Gly Thr Ala Leu Gly Ala Gln
420 425 430
Val Ala Asp Leu Glu Ala Gly Arg Arg Thr Ile Leu Val Thr Gly Asp
435 440 445
Gly Ser Val Gly Tyr Ser Ile Gly Glu Phe Asp Thr Leu Val Arg Lys
450 455 460
Gln Leu Pro Leu Ile Val Ile Ile Met Asn Asn Gln Ser Trp Gly Trp
465 470 475 480
Thr Leu His Phe Gln Gln Leu Ala Val Gly Pro Asn Arg Val Thr Gly
485 490 495
Thr Arg Leu Glu Asn Gly Ser Tyr His Gly Val Ala Ala Ala Phe Gly
500 505 510
Ala Asp Gly Tyr His Val Asp Ser Val Glu Ser Phe Ser Ala Ala Leu
515 520 525
Ala Gln Ala Leu Ala His Asn Arg Pro Ala Cys Ile Asn Val Ala Val
530 535 540
Ala Leu Asp Pro Ile Pro Pro Glu Glu Leu Ile Leu Ile Gly Met Asp
545 550 555 560
Pro Phe Ala Gly Ser Thr Glu Asn Leu Tyr Phe Gln Ser Gly Ala
565 570 575
<210> 9
<211> 575
<212> PRT
<213> Artificial sequence ()
<400> 9
Met Ala Met Ile Thr Gly Gly Glu Leu Val Val Arg Thr Leu Ile Lys
1 5 10 15
Ala Gly Val Glu His Leu Phe Gly Leu His Gly Leu His Ile Asp Thr
20 25 30
Ile Phe Gln Ala Cys Leu Asp His Asp Val Pro Ile Ile Asp Thr Arg
35 40 45
His Glu Ala Ala Ala Gly His Ala Ala Glu Gly Tyr Ala Arg Ala Gly
50 55 60
Ala Lys Leu Gly Val Ala Leu Val Thr Ala Gly Gly Gly Phe Thr Asn
65 70 75 80
Ala Val Thr Pro Ile Ala Asn Ala Arg Thr Asp Arg Thr Pro Val Leu
85 90 95
Phe Leu Thr Gly Ser Gly Ala Leu Arg Asp Asp Glu Thr Asn Thr Leu
100 105 110
Gln Ala Gly Ile Asp Gln Val Ala Met Ala Ala Pro Ile Thr Lys Trp
115 120 125
Ala His Arg Val Met Ala Thr Glu His Ile Pro Arg Leu Val Met Gln
130 135 140
Ala Ile Arg Ala Ala Leu Ser Ala Pro Arg Gly Pro Val Leu Leu Asp
145 150 155 160
Leu Pro Trp Asp Ile Leu Met Asn Gln Ile Asp Glu Asp Ser Val Ile
165 170 175
Ile Pro Asp Leu Val Leu Ser Ala His Gly Ala His Pro Asp Pro Ala
180 185 190
Asp Leu Asp Gln Ala Leu Ala Leu Leu Arg Lys Ala Glu Arg Pro Val
195 200 205
Ile Val Leu Gly Ser Glu Ala Ser Arg Thr Ala Arg Lys Thr Ala Leu
210 215 220
Ser Ala Phe Val Ala Ala Thr Gly Val Pro Val Phe Ala Asp Tyr Glu
225 230 235 240
Gly Leu Ser Met Leu Ser Gly Leu Pro Asp Ala Met Arg Gly Gly Leu
245 250 255
Val Gln Asn Leu Tyr Ser Phe Ala Lys Ala Asp Ala Ala Pro Asp Leu
260 265 270
Val Leu Met Leu Gly Ala Arg Phe Gly Leu Gln Thr Gly His Gly Ser
275 280 285
Gly Gln Leu Ile Pro His Ser Ala Gln Val Ile Gln Val Asp Pro Asp
290 295 300
Ala Cys Glu Leu Gly Arg Leu Gln Gly Ile Ala Leu Gly Ile Val Ala
305 310 315 320
Asp Val Gly Gly Thr Ile Glu Ala Leu Ala Gln Ala Thr Ala Gln Asp
325 330 335
Ala Ala Trp Pro Asp Arg Gly Asp Trp Cys Ala Lys Val Thr Asp Leu
340 345 350
Ala Gln Glu Arg Tyr Ala Ser Ile Ala Ala Lys Ser Ser Ser Glu His
355 360 365
Ala Leu His Pro Phe His Ala Ser Gln Val Ile Ala Lys His Val Asp
370 375 380
Ala Gly Val Thr Val Val Ala Asp Gly Gly Leu Thr Tyr Leu Trp Leu
385 390 395 400
Ser Glu Val Met Ser Arg Val Lys Pro Gly Gly Phe Leu Cys His Gly
405 410 415
Tyr Leu Asn Ser Met Gly Val Gly Phe Gly Thr Ala Leu Gly Ala Gln
420 425 430
Val Ala Asp Leu Glu Ala Gly Arg Arg Thr Ile Leu Val Thr Gly Asp
435 440 445
Gly Ser Val Gly Tyr Ser Ile Gly Glu Phe Asp Thr Leu Val Arg Lys
450 455 460
Gln Leu Pro Leu Ile Val Ile Ile Met Asn Asn Gln Ser Trp Gly Trp
465 470 475 480
Thr Leu His Phe Gln Gln Leu Ala Val Gly Pro Asn Arg Val Thr Gly
485 490 495
Thr Arg Leu Glu Asn Gly Ser Tyr His Gly Val Ala Ala Ala Phe Gly
500 505 510
Ala Asp Gly Tyr His Val Asp Ser Val Glu Ser Phe Ser Ala Ala Leu
515 520 525
Ala Gln Ala Leu Ala His Asn Arg Pro Ala Cys Ile Asn Val Ala Val
530 535 540
Ala Leu Asp Pro Ile Pro Pro Glu Glu Leu Ile Leu Ile Gly Met Asp
545 550 555 560
Pro Phe Ala Gly Ser Thr Glu Asn Leu Tyr Phe Gln Ser Gly Ala
565 570 575
<210> 10
<211> 575
<212> PRT
<213> Artificial sequence ()
<400> 10
Met Ala Met Ile Thr Gly Gly Glu Leu Val Val Arg Thr Leu Ile Lys
1 5 10 15
Ala Gly Val Glu His Leu Phe Gly Leu His Gly Leu His Ile Asp Thr
20 25 30
Ile Phe Gln Ala Cys Leu Asp His Asp Val Pro Ile Ile Asp Thr Arg
35 40 45
His Glu Ala Ala Ala Gly His Ala Ala Glu Gly Tyr Ala Arg Ala Gly
50 55 60
Ala Lys Leu Gly Val Ala Leu Val Thr Ala Gly Gly Gly Phe Thr Asn
65 70 75 80
Ala Val Thr Pro Ile Ala Asn Ala Arg Leu Asp Arg Thr Pro Val Leu
85 90 95
Phe Leu Thr Gly Ser Gly Ala Leu Arg Asp Asp Glu Thr Asn Thr Leu
100 105 110
Gln Ala Gly Ile Asp Gln Val Ala Met Ala Ala Pro Ile Thr Lys Trp
115 120 125
Ala His Arg Val Met Ala Thr Glu His Ile Pro Arg Leu Val Met Gln
130 135 140
Ala Ile Arg Ala Ala Leu Ser Ala Pro Arg Gly Pro Val Leu Leu Asp
145 150 155 160
Leu Pro Trp Asp Ile Leu Met Asn Gln Ile Asp Glu Asp Ser Val Ile
165 170 175
Ile Pro Asp Leu Val Leu Ser Ala His Gly Ala His Pro Asp Pro Ala
180 185 190
Asp Leu Asp Gln Ala Leu Ala Leu Leu Arg Lys Ala Glu Arg Pro Val
195 200 205
Ile Val Leu Gly Ser Glu Ala Ser Arg Thr Ala Arg Lys Thr Ala Leu
210 215 220
Ser Ala Phe Val Ala Ala Thr Gly Val Pro Val Phe Ala Asp Tyr Glu
225 230 235 240
Gly Leu Ser Met Leu Ser Gly Leu Pro Asp Ala Met Arg Gly Gly Leu
245 250 255
Val Gln Asn Leu Tyr Ser Phe Ala Lys Ala Asp Ala Ala Pro Asp Leu
260 265 270
Val Leu Met Leu Gly Ala Arg Phe Gly Leu His Thr Gly His Gly Ser
275 280 285
Gly Gln Leu Ile Pro His Ser Ala Gln Val Ile Gln Val Asp Pro Asp
290 295 300
Ala Cys Glu Leu Gly Arg Leu Gln Gly Ile Ala Leu Gly Ile Val Ala
305 310 315 320
Asp Val Gly Gly Thr Ile Glu Ala Leu Ala Gln Ala Thr Ala Gln Asp
325 330 335
Ala Ala Trp Pro Asp Arg Gly Asp Trp Cys Ala Lys Val Thr Asp Leu
340 345 350
Ala Gln Glu Arg Tyr Ala Ser Ile Ala Ala Lys Ser Ser Ser Glu His
355 360 365
Ala Leu His Pro Phe His Ala Ser Gln Val Ile Ala Lys His Val Asp
370 375 380
Ala Gly Val Thr Val Val Ala Asp Gly Gly Leu Thr Tyr Leu Trp Leu
385 390 395 400
Ser Glu Val Met Ser Arg Val Lys Pro Gly Gly Phe Leu Cys His Gly
405 410 415
Tyr Leu Asn Ser Met Gly Val Gly Phe Gly Thr Ala Leu Gly Ala Gln
420 425 430
Val Ala Asp Leu Glu Ala Gly Arg Arg Thr Ile Leu Val Thr Gly Asp
435 440 445
Gly Ser Val Gly Tyr Ser Ile Gly Glu Phe Asp Thr Leu Val Arg Lys
450 455 460
Gln Leu Pro Leu Ile Val Ile Ile Met Asn Asn Gln Ser Trp Gly Trp
465 470 475 480
Thr Leu His Phe Gln Gln Leu Ala Val Gly Pro Asn Arg Val Thr Gly
485 490 495
Thr Arg Leu Glu Asn Gly Ser Tyr His Gly Val Ala Ala Ala Phe Gly
500 505 510
Ala Asp Gly Tyr His Val Asp Ser Val Glu Ser Phe Ser Ala Ala Leu
515 520 525
Ala Gln Ala Leu Ala His Asn Arg Pro Ala Cys Ile Asn Val Ala Val
530 535 540
Ala Leu Asp Pro Ile Pro Pro Glu Glu Leu Ile Leu Ile Gly Met Asp
545 550 555 560
Pro Phe Ala Gly Ser Thr Glu Asn Leu Tyr Phe Gln Ser Gly Ala
565 570 575
<210> 11
<211> 1725
<212> DNA
<213> Artificial sequence ()
<400> 11
atggctatga ttactggtgg tgaactggtt gttcgtaccc tgattaaagc tggcgtagaa 60
catctgtttg gcctgcatgg cattcatatt gacaccattt ttcaggcttg cctggaccac 120
gacgtcccaa tcattgatac tcgccacgaa gcggcggcag gccacgctgc ggaaggttat 180
gcccgcgcgg gcgctaaact gggtgttgcc ctggtgaccg ctggcggtgg ctttaccaat 240
gccgttacgc cgatcgcgaa cgctcggacc gatcgcactc cggttctgtt cctgaccggt 300
tctggtgctc ttcgtgatga cgaaaccaac accctgcagg ccggtattga tcaggtggcc 360
atggcggccc cgatcacgaa atgggctcat cgtgttatgg caactgaaca catcccgcgt 420
ctggttatgc aggccattcg tgccgctctg agcgccccac gtggcccggt gctgctggat 480
ctgccatggg acatcctgat gaaccaaatc gatgaagatt ccgttatcat cccagacctg 540
gtgctgtctg ctcacggtgc ccatccagac ccggctgacc tggaccaggc tctggcactg 600
ctgcgtaaag ccgaacgccc agttatcgta ctgggctccg aggcgtcccg caccgcacgc 660
aagaccgcac tgagcgcatt cgtagcggcg accggtgtac cggttttcgc tgactatgaa 720
ggcctgtcca tgctgagcgg cctgccggac gctatgcgtg gcggcctggt gcagaacctg 780
tactcctttg caaaagctga tgcagctccg gacctggtac tgatgctggg tgctcgtttc 840
ggtctgaaca ccggtcatgg ttccggtcaa ctgatcccgc attctgctca ggtgatccag 900
gtggatccag acgcgtgtga actgggtcgc ctgcaaggca tcgcgctggg tatcgtggct 960
gatgtaggtg gcaccattga agcgctggct caggcgaccg cacaggacgc cgcgtggccg 1020
gaccgcggcg actggtgcgc caaggtaact gacctggccc aggagcgtta cgcttccatc 1080
gcggctaaat ccagctctga acatgcgctg cacccgttcc acgcttctca ggttatcgcg 1140
aaacacgtgg acgcaggcgt gaccgtcgtt gcggatggtg gcctgactta tctgtggctg 1200
tccgaagtta tgtctcgtgt caaaccaggc ggcttcctgt gccacggcta tctgaacagc 1260
atgggtgtag gcttcggtac tgccctgggt gcgcaggttg cggatctgga ggcaggtcgt 1320
cgtaccatcc tggtgaccgg cgacggctct gttggttatt ccattggcga attcgacacc 1380
ctggtacgca aacagctgcc gctgattgta attatcatga acaaccagtc ttggggctgg 1440
accctgcact ttcagcagct ggccgttggt cctaaccgtg tcaccggcac ccgcctggaa 1500
aatggttcct atcacggcgt tgctgcggca ttcggtgctg atggttacca cgtcgactct 1560
gtcgagagct tcagcgccgc tctggctcag gcactggcac acaaccgccc ggcatgcatc 1620
aacgttgctg tggccctgga cccgatcccg ccggaggaac tgatcctgat tggcatggac 1680
ccgtttgcgg gctccacgga gaatctgtat ttccaatccg gcgcg 1725
<210> 12
<211> 1725
<212> DNA
<213> Artificial sequence ()
<400> 12
atggctatga ttactggtgg tgaactggtt gttcgtaccc tgattaaagc tggcgtagaa 60
catctgtttg gcctgcatgg cctacatatt gacaccattt ttcaggcttg cctggaccac 120
gacgtcccaa tcattgatac tcgccacgaa gcggcggcag gccacgctgc ggaaggttat 180
gcccgcgcgg gcgctaaact gggtgttgcc ctggtgaccg ctggcggtgg ctttaccaat 240
gccgttacgc cgatcgcgaa cgctcggacc gatcgcactc cggttctgtt cctgaccggt 300
tctggtgctc ttcgtgatga cgaaaccaac accctgcagg ccggtattga tcaggtggcc 360
atggcggccc cgatcacgaa atgggctcat cgtgttatgg caactgaaca catcccgcgt 420
ctggttatgc aggccattcg tgccgctctg agcgccccac gtggcccggt gctgctggat 480
ctgccatggg acatcctgat gaaccaaatc gatgaagatt ccgttatcat cccagacctg 540
gtgctgtctg ctcacggtgc ccatccagac ccggctgacc tggaccaggc tctggcactg 600
ctgcgtaaag ccgaacgccc agttatcgta ctgggctccg aggcgtcccg caccgcacgc 660
aagaccgcac tgagcgcatt cgtagcggcg accggtgtac cggttttcgc tgactatgaa 720
ggcctgtcca tgctgagcgg cctgccggac gctatgcgtg gcggcctggt gcagaacctg 780
tactcctttg caaaagctga tgcagctccg gacctggtac tgatgctggg tgctcgtttc 840
ggtctgaaca ccggtcatgg ttccggtcaa ctgatcccgc attctgctca ggtgatccag 900
gtggatccag acgcgtgtga actgggtcgc ctgcaaggca tcgcgctggg tatcgtggct 960
gatgtaggtg gcaccattga agcgctggct caggcgaccg cacaggacgc cgcgtggccg 1020
gaccgcggcg actggtgcgc caaggtaact gacctggccc aggagcgtta cgcttccatc 1080
gcggctaaat ccagctctga acatgcgctg cacccgttcc acgcttctca ggttatcgcg 1140
aaacacgtgg acgcaggcgt gaccgtcgtt gcggatggtg gcctgactta tctgtggctg 1200
tccgaagtta tgtctcgtgt caaaccaggc ggcttcctgt gccacggcta tctgaacagc 1260
atgggtgtag gcttcggtac tgccctgggt gcgcaggttg cggatctgga ggcaggtcgt 1320
cgtaccatcc tggtgaccgg cgacggctct gttggttatt ccattggcga attcgacacc 1380
ctggtacgca aacagctgcc gctgattgta attatcatga acaaccagtc ttggggctgg 1440
accctgcact ttcagcagct ggccgttggt cctaaccgtg tcaccggcac ccgcctggaa 1500
aatggttcct atcacggcgt tgctgcggca ttcggtgctg atggttacca cgtcgactct 1560
gtcgagagct tcagcgccgc tctggctcag gcactggcac acaaccgccc ggcatgcatc 1620
aacgttgctg tggccctgga cccgatcccg ccggaggaac tgatcctgat tggcatggac 1680
ccgtttgcgg gctccacgga gaatctgtat ttccaatccg gcgcg 1725
<210> 13
<211> 1725
<212> DNA
<213> Artificial sequence ()
<400> 13
atggctatga ttactggtgg tgaactggtt gttcgtaccc tgattaaagc tggcgtagaa 60
catctgtttg gcctgcatgg ctttcatatt gacaccattt ttcaggcttg cctggaccac 120
gacgtcccaa tcattgatac tcgccacgaa gcggcggcag gccacgctgc ggaaggttat 180
gcccgcgcgg gcgctaaact gggtgttgcc ctggtgaccg ctggcggtgg ctttaccaat 240
gccgttacgc cgatcgcgaa cgctcggacc gatcgcactc cggttctgtt cctgaccggt 300
tctggtgctc ttcgtgatga cgaaaccaac accctgcagg ccggtattga tcaggtggcc 360
atggcggccc cgatcacgaa atgggctcat cgtgttatgg caactgaaca catcccgcgt 420
ctggttatgc aggccattcg tgccgctctg agcgccccac gtggcccggt gctgctggat 480
ctgccatggg acatcctgat gaaccaaatc gatgaagatt ccgttatcat cccagacctg 540
gtgctgtctg ctcacggtgc ccatccagac ccggctgacc tggaccaggc tctggcactg 600
ctgcgtaaag ccgaacgccc agttatcgta ctgggctccg aggcgtcccg caccgcacgc 660
aagaccgcac tgagcgcatt cgtagcggcg accggtgtac cggttttcgc tgactatgaa 720
ggcctgtcca tgctgagcgg cctgccggac gctatgcgtg gcggcctggt gcagaacctg 780
tactcctttg caaaagctga tgcagctccg gacctggtac tgatgctggg tgctcgtttc 840
ggtctgaaca ccggtcatgg ttccggtcaa ctgatcccgc attctgctca ggtgatccag 900
gtggatccag acgcgtgtga actgggtcgc ctgcaaggca tcgcgctggg tatcgtggct 960
gatgtaggtg gcaccattga agcgctggct caggcgaccg cacaggacgc cgcgtggccg 1020
gaccgcggcg actggtgcgc caaggtaact gacctggccc aggagcgtta cgcttccatc 1080
gcggctaaat ccagctctga acatgcgctg cacccgttcc acgcttctca ggttatcgcg 1140
aaacacgtgg acgcaggcgt gaccgtcgtt gcggatggtg gcctgactta tctgtggctg 1200
tccgaagtta tgtctcgtgt caaaccaggc ggcttcctgt gccacggcta tctgaacagc 1260
atgggtgtag gcttcggtac tgccctgggt gcgcaggttg cggatctgga ggcaggtcgt 1320
cgtaccatcc tggtgaccgg cgacggctct gttggttatt ccattggcga attcgacacc 1380
ctggtacgca aacagctgcc gctgattgta attatcatga acaaccagtc ttggggctgg 1440
accctgcact ttcagcagct ggccgttggt cctaaccgtg tcaccggcac ccgcctggaa 1500
aatggttcct atcacggcgt tgctgcggca ttcggtgctg atggttacca cgtcgactct 1560
gtcgagagct tcagcgccgc tctggctcag gcactggcac acaaccgccc ggcatgcatc 1620
aacgttgctg tggccctgga cccgatcccg ccggaggaac tgatcctgat tggcatggac 1680
ccgtttgcgg gctccacgga gaatctgtat ttccaatccg gcgcg 1725
<210> 14
<211> 1725
<212> DNA
<213> Artificial sequence ()
<400> 14
atggctatga ttactggtgg tgaactggtt gttcgtaccc tgattaaagc tggcgtagaa 60
catctgtttg gcctgcatgg cctacatatt gacaccattt ttcaggcttg cctggaccac 120
gacgtcccaa tcattgatac tcgccacgaa gcggcggcag gccacgctgc ggaaggttat 180
gcccgcgcgg gcgctaaact gggtgttgcc ctggtgaccg ctggcggtgg ctttaccaat 240
gccgttacgc cgatcgcgaa cgctcgggtg gatcgcactc cggttctgtt cctgaccggt 300
tctggtgctc ttcgtgatga cgaaaccaac accctgcagg ccggtattga tcaggtggcc 360
atggcggccc cgatcacgaa atgggctcat cgtgttatgg caactgaaca catcccgcgt 420
ctggttatgc aggccattcg tgccgctctg agcgccccac gtggcccggt gctgctggat 480
ctgccatggg acatcctgat gaaccaaatc gatgaagatt ccgttatcat cccagacctg 540
gtgctgtctg ctcacggtgc ccatccagac ccggctgacc tggaccaggc tctggcactg 600
ctgcgtaaag ccgaacgccc agttatcgta ctgggctccg aggcgtcccg caccgcacgc 660
aagaccgcac tgagcgcatt cgtagcggcg accggtgtac cggttttcgc tgactatgaa 720
ggcctgtcca tgctgagcgg cctgccggac gctatgcgtg gcggcctggt gcagaacctg 780
tactcctttg caaaagctga tgcagctccg gacctggtac tgatgctggg tgctcgtttc 840
ggtctgaaca ccggtcatgg ttccggtcaa ctgatcccgc attctgctca ggtgatccag 900
gtggatccag acgcgtgtga actgggtcgc ctgcaaggca tcgcgctggg tatcgtggct 960
gatgtaggtg gcaccattga agcgctggct caggcgaccg cacaggacgc cgcgtggccg 1020
gaccgcggcg actggtgcgc caaggtaact gacctggccc aggagcgtta cgcttccatc 1080
gcggctaaat ccagctctga acatgcgctg cacccgttcc acgcttctca ggttatcgcg 1140
aaacacgtgg acgcaggcgt gaccgtcgtt gcggatggtg gcctgactta tctgtggctg 1200
tccgaagtta tgtctcgtgt caaaccaggc ggcttcctgt gccacggcta tctgaacagc 1260
atgggtgtag gcttcggtac tgccctgggt gcgcaggttg cggatctgga ggcaggtcgt 1320
cgtaccatcc tggtgaccgg cgacggctct gttggttatt ccattggcga attcgacacc 1380
ctggtacgca aacagctgcc gctgattgta attatcatga acaaccagtc ttggggctgg 1440
accctgcact ttcagcagct ggccgttggt cctaaccgtg tcaccggcac ccgcctggaa 1500
aatggttcct atcacggcgt tgctgcggca ttcggtgctg atggttacca cgtcgactct 1560
gtcgagagct tcagcgccgc tctggctcag gcactggcac acaaccgccc ggcatgcatc 1620
aacgttgctg tggccctgga cccgatcccg ccggaggaac tgatcctgat tggcatggac 1680
ccgtttgcgg gctccacgga gaatctgtat ttccaatccg gcgcg 1725
<210> 15
<211> 1725
<212> DNA
<213> Artificial sequence ()
<400> 15
atggctatga ttactggtgg tgaactggtt gttcgtaccc tgattaaagc tggcgtagaa 60
catctgtttg gcctgcatgg cctacatatt gacaccattt ttcaggcttg cctggaccac 120
gacgtcccaa tcattgatac tcgccacgaa gcggcggcag gccacgctgc ggaaggttat 180
gcccgcgcgg gcgctaaact gggtgttgcc ctggtgaccg ctggcggtgg ctttaccaat 240
gccgttacgc cgatcgcgaa cgctcggctg gatcgcactc cggttctgtt cctgaccggt 300
tctggtgctc ttcgtgatga cgaaaccaac accctgcagg ccggtattga tcaggtggcc 360
atggcggccc cgatcacgaa atgggctcat cgtgttatgg caactgaaca catcccgcgt 420
ctggttatgc aggccattcg tgccgctctg agcgccccac gtggcccggt gctgctggat 480
ctgccatggg acatcctgat gaaccaaatc gatgaagatt ccgttatcat cccagacctg 540
gtgctgtctg ctcacggtgc ccatccagac ccggctgacc tggaccaggc tctggcactg 600
ctgcgtaaag ccgaacgccc agttatcgta ctgggctccg aggcgtcccg caccgcacgc 660
aagaccgcac tgagcgcatt cgtagcggcg accggtgtac cggttttcgc tgactatgaa 720
ggcctgtcca tgctgagcgg cctgccggac gctatgcgtg gcggcctggt gcagaacctg 780
tactcctttg caaaagctga tgcagctccg gacctggtac tgatgctggg tgctcgtttc 840
ggtctgaaca ccggtcatgg ttccggtcaa ctgatcccgc attctgctca ggtgatccag 900
gtggatccag acgcgtgtga actgggtcgc ctgcaaggca tcgcgctggg tatcgtggct 960
gatgtaggtg gcaccattga agcgctggct caggcgaccg cacaggacgc cgcgtggccg 1020
gaccgcggcg actggtgcgc caaggtaact gacctggccc aggagcgtta cgcttccatc 1080
gcggctaaat ccagctctga acatgcgctg cacccgttcc acgcttctca ggttatcgcg 1140
aaacacgtgg acgcaggcgt gaccgtcgtt gcggatggtg gcctgactta tctgtggctg 1200
tccgaagtta tgtctcgtgt caaaccaggc ggcttcctgt gccacggcta tctgaacagc 1260
atgggtgtag gcttcggtac tgccctgggt gcgcaggttg cggatctgga ggcaggtcgt 1320
cgtaccatcc tggtgaccgg cgacggctct gttggttatt ccattggcga attcgacacc 1380
ctggtacgca aacagctgcc gctgattgta attatcatga acaaccagtc ttggggctgg 1440
accctgcact ttcagcagct ggccgttggt cctaaccgtg tcaccggcac ccgcctggaa 1500
aatggttcct atcacggcgt tgctgcggca ttcggtgctg atggttacca cgtcgactct 1560
gtcgagagct tcagcgccgc tctggctcag gcactggcac acaaccgccc ggcatgcatc 1620
aacgttgctg tggccctgga cccgatcccg ccggaggaac tgatcctgat tggcatggac 1680
ccgtttgcgg gctccacgga gaatctgtat ttccaatccg gcgcg 1725
<210> 16
<211> 1725
<212> DNA
<213> Artificial sequence ()
<400> 16
atggctatga ttactggtgg tgaactggtt gttcgtaccc tgattaaagc tggcgtagaa 60
catctgtttg gcctgcatgg cctacatatt gacaccattt ttcaggcttg cctggaccac 120
gacgtcccaa tcattgatac tcgccacgaa gcggcggcag gccacgctgc ggaaggttat 180
gcccgcgcgg gcgctaaact gggtgttgcc ctggtgaccg ctggcggtgg ctttaccaat 240
gccgttacgc cgatcgcgaa cgctcgggcg gatcgcactc cggttctgtt cctgaccggt 300
tctggtgctc ttcgtgatga cgaaaccaac accctgcagg ccggtattga tcaggtggcc 360
atggcggccc cgatcacgaa atgggctcat cgtgttatgg caactgaaca catcccgcgt 420
ctggttatgc aggccattcg tgccgctctg agcgccccac gtggcccggt gctgctggat 480
ctgccatggg acatcctgat gaaccaaatc gatgaagatt ccgttatcat cccagacctg 540
gtgctgtctg ctcacggtgc ccatccagac ccggctgacc tggaccaggc tctggcactg 600
ctgcgtaaag ccgaacgccc agttatcgta ctgggctccg aggcgtcccg caccgcacgc 660
aagaccgcac tgagcgcatt cgtagcggcg accggtgtac cggttttcgc tgactatgaa 720
ggcctgtcca tgctgagcgg cctgccggac gctatgcgtg gcggcctggt gcagaacctg 780
tactcctttg caaaagctga tgcagctccg gacctggtac tgatgctggg tgctcgtttc 840
ggtctgaaca ccggtcatgg ttccggtcaa ctgatcccgc attctgctca ggtgatccag 900
gtggatccag acgcgtgtga actgggtcgc ctgcaaggca tcgcgctggg tatcgtggct 960
gatgtaggtg gcaccattga agcgctggct caggcgaccg cacaggacgc cgcgtggccg 1020
gaccgcggcg actggtgcgc caaggtaact gacctggccc aggagcgtta cgcttccatc 1080
gcggctaaat ccagctctga acatgcgctg cacccgttcc acgcttctca ggttatcgcg 1140
aaacacgtgg acgcaggcgt gaccgtcgtt gcggatggtg gcctgactta tctgtggctg 1200
tccgaagtta tgtctcgtgt caaaccaggc ggcttcctgt gccacggcta tctgaacagc 1260
atgggtgtag gcttcggtac tgccctgggt gcgcaggttg cggatctgga ggcaggtcgt 1320
cgtaccatcc tggtgaccgg cgacggctct gttggttatt ccattggcga attcgacacc 1380
ctggtacgca aacagctgcc gctgattgta attatcatga acaaccagtc ttggggctgg 1440
accctgcact ttcagcagct ggccgttggt cctaaccgtg tcaccggcac ccgcctggaa 1500
aatggttcct atcacggcgt tgctgcggca ttcggtgctg atggttacca cgtcgactct 1560
gtcgagagct tcagcgccgc tctggctcag gcactggcac acaaccgccc ggcatgcatc 1620
aacgttgctg tggccctgga cccgatcccg ccggaggaac tgatcctgat tggcatggac 1680
ccgtttgcgg gctccacgga gaatctgtat ttccaatccg gcgcg 1725
<210> 17
<211> 1725
<212> DNA
<213> Artificial sequence ()
<400> 17
atggctatga ttactggtgg tgaactggtt gttcgtaccc tgattaaagc tggcgtagaa 60
catctgtttg gcctgcatgg cctacatatt gacaccattt ttcaggcttg cctggaccac 120
gacgtcccaa tcattgatac tcgccacgaa gcggcggcag gccacgctgc ggaaggttat 180
gcccgcgcgg gcgctaaact gggtgttgcc ctggtgaccg ctggcggtgg ctttaccaat 240
gccgttacgc cgatcgcgaa cgctcggacc gatcgcactc cggttctgtt cctgaccggt 300
tctggtgctc ttcgtgatga cgaaaccaac accctgcagg ccggtattga tcaggtggcc 360
atggcggccc cgatcacgaa atgggctcat cgtgttatgg caactgaaca catcccgcgt 420
ctggttatgc aggccattcg tgccgctctg agcgccccac gtggcccggt gctgctggat 480
ctgccatggg acatcctgat gaaccaaatc gatgaagatt ccgttatcat cccagacctg 540
gtgctgtctg ctcacggtgc ccatccagac ccggctgacc tggaccaggc tctggcactg 600
ctgcgtaaag ccgaacgccc agttatcgta ctgggctccg aggcgtcccg caccgcacgc 660
aagaccgcac tgagcgcatt cgtagcggcg accggtgtac cggttttcgc tgactatgaa 720
ggcctgtcca tgctgagcgg cctgccggac gctatgcgtg gcggcctggt gcagaacctg 780
tactcctttg caaaagctga tgcagctccg gacctggtac tgatgctggg tgctcgtttc 840
ggtctgcata ccggtcatgg ttccggtcaa ctgatcccgc attctgctca ggtgatccag 900
gtggatccag acgcgtgtga actgggtcgc ctgcaaggca tcgcgctggg tatcgtggct 960
gatgtaggtg gcaccattga agcgctggct caggcgaccg cacaggacgc cgcgtggccg 1020
gaccgcggcg actggtgcgc caaggtaact gacctggccc aggagcgtta cgcttccatc 1080
gcggctaaat ccagctctga acatgcgctg cacccgttcc acgcttctca ggttatcgcg 1140
aaacacgtgg acgcaggcgt gaccgtcgtt gcggatggtg gcctgactta tctgtggctg 1200
tccgaagtta tgtctcgtgt caaaccaggc ggcttcctgt gccacggcta tctgaacagc 1260
atgggtgtag gcttcggtac tgccctgggt gcgcaggttg cggatctgga ggcaggtcgt 1320
cgtaccatcc tggtgaccgg cgacggctct gttggttatt ccattggcga attcgacacc 1380
ctggtacgca aacagctgcc gctgattgta attatcatga acaaccagtc ttggggctgg 1440
accctgcact ttcagcagct ggccgttggt cctaaccgtg tcaccggcac ccgcctggaa 1500
aatggttcct atcacggcgt tgctgcggca ttcggtgctg atggttacca cgtcgactct 1560
gtcgagagct tcagcgccgc tctggctcag gcactggcac acaaccgccc ggcatgcatc 1620
aacgttgctg tggccctgga cccgatcccg ccggaggaac tgatcctgat tggcatggac 1680
ccgtttgcgg gctccacgga gaatctgtat ttccaatccg gcgcg 1725
<210> 18
<211> 1725
<212> DNA
<213> Artificial sequence ()
<400> 18
atggctatga ttactggtgg tgaactggtt gttcgtaccc tgattaaagc tggcgtagaa 60
catctgtttg gcctgcatgg cctacatatt gacaccattt ttcaggcttg cctggaccac 120
gacgtcccaa tcattgatac tcgccacgaa gcggcggcag gccacgctgc ggaaggttat 180
gcccgcgcgg gcgctaaact gggtgttgcc ctggtgaccg ctggcggtgg ctttaccaat 240
gccgttacgc cgatcgcgaa cgctcggacc gatcgcactc cggttctgtt cctgaccggt 300
tctggtgctc ttcgtgatga cgaaaccaac accctgcagg ccggtattga tcaggtggcc 360
atggcggccc cgatcacgaa atgggctcat cgtgttatgg caactgaaca catcccgcgt 420
ctggttatgc aggccattcg tgccgctctg agcgccccac gtggcccggt gctgctggat 480
ctgccatggg acatcctgat gaaccaaatc gatgaagatt ccgttatcat cccagacctg 540
gtgctgtctg ctcacggtgc ccatccagac ccggctgacc tggaccaggc tctggcactg 600
ctgcgtaaag ccgaacgccc agttatcgta ctgggctccg aggcgtcccg caccgcacgc 660
aagaccgcac tgagcgcatt cgtagcggcg accggtgtac cggttttcgc tgactatgaa 720
ggcctgtcca tgctgagcgg cctgccggac gctatgcgtg gcggcctggt gcagaacctg 780
tactcctttg caaaagctga tgcagctccg gacctggtac tgatgctggg tgctcgtttc 840
ggtctgtcga ccggtcatgg ttccggtcaa ctgatcccgc attctgctca ggtgatccag 900
gtggatccag acgcgtgtga actgggtcgc ctgcaaggca tcgcgctggg tatcgtggct 960
gatgtaggtg gcaccattga agcgctggct caggcgaccg cacaggacgc cgcgtggccg 1020
gaccgcggcg actggtgcgc caaggtaact gacctggccc aggagcgtta cgcttccatc 1080
gcggctaaat ccagctctga acatgcgctg cacccgttcc acgcttctca ggttatcgcg 1140
aaacacgtgg acgcaggcgt gaccgtcgtt gcggatggtg gcctgactta tctgtggctg 1200
tccgaagtta tgtctcgtgt caaaccaggc ggcttcctgt gccacggcta tctgaacagc 1260
atgggtgtag gcttcggtac tgccctgggt gcgcaggttg cggatctgga ggcaggtcgt 1320
cgtaccatcc tggtgaccgg cgacggctct gttggttatt ccattggcga attcgacacc 1380
ctggtacgca aacagctgcc gctgattgta attatcatga acaaccagtc ttggggctgg 1440
accctgcact ttcagcagct ggccgttggt cctaaccgtg tcaccggcac ccgcctggaa 1500
aatggttcct atcacggcgt tgctgcggca ttcggtgctg atggttacca cgtcgactct 1560
gtcgagagct tcagcgccgc tctggctcag gcactggcac acaaccgccc ggcatgcatc 1620
aacgttgctg tggccctgga cccgatcccg ccggaggaac tgatcctgat tggcatggac 1680
ccgtttgcgg gctccacgga gaatctgtat ttccaatccg gcgcg 1725
<210> 19
<211> 1725
<212> DNA
<213> Artificial sequence ()
<400> 19
atggctatga ttactggtgg tgaactggtt gttcgtaccc tgattaaagc tggcgtagaa 60
catctgtttg gcctgcatgg cctacatatt gacaccattt ttcaggcttg cctggaccac 120
gacgtcccaa tcattgatac tcgccacgaa gcggcggcag gccacgctgc ggaaggttat 180
gcccgcgcgg gcgctaaact gggtgttgcc ctggtgaccg ctggcggtgg ctttaccaat 240
gccgttacgc cgatcgcgaa cgctcggacc gatcgcactc cggttctgtt cctgaccggt 300
tctggtgctc ttcgtgatga cgaaaccaac accctgcagg ccggtattga tcaggtggcc 360
atggcggccc cgatcacgaa atgggctcat cgtgttatgg caactgaaca catcccgcgt 420
ctggttatgc aggccattcg tgccgctctg agcgccccac gtggcccggt gctgctggat 480
ctgccatggg acatcctgat gaaccaaatc gatgaagatt ccgttatcat cccagacctg 540
gtgctgtctg ctcacggtgc ccatccagac ccggctgacc tggaccaggc tctggcactg 600
ctgcgtaaag ccgaacgccc agttatcgta ctgggctccg aggcgtcccg caccgcacgc 660
aagaccgcac tgagcgcatt cgtagcggcg accggtgtac cggttttcgc tgactatgaa 720
ggcctgtcca tgctgagcgg cctgccggac gctatgcgtg gcggcctggt gcagaacctg 780
tactcctttg caaaagctga tgcagctccg gacctggtac tgatgctggg tgctcgtttc 840
ggtctgcaga ccggtcatgg ttccggtcaa ctgatcccgc attctgctca ggtgatccag 900
gtggatccag acgcgtgtga actgggtcgc ctgcaaggca tcgcgctggg tatcgtggct 960
gatgtaggtg gcaccattga agcgctggct caggcgaccg cacaggacgc cgcgtggccg 1020
gaccgcggcg actggtgcgc caaggtaact gacctggccc aggagcgtta cgcttccatc 1080
gcggctaaat ccagctctga acatgcgctg cacccgttcc acgcttctca ggttatcgcg 1140
aaacacgtgg acgcaggcgt gaccgtcgtt gcggatggtg gcctgactta tctgtggctg 1200
tccgaagtta tgtctcgtgt caaaccaggc ggcttcctgt gccacggcta tctgaacagc 1260
atgggtgtag gcttcggtac tgccctgggt gcgcaggttg cggatctgga ggcaggtcgt 1320
cgtaccatcc tggtgaccgg cgacggctct gttggttatt ccattggcga attcgacacc 1380
ctggtacgca aacagctgcc gctgattgta attatcatga acaaccagtc ttggggctgg 1440
accctgcact ttcagcagct ggccgttggt cctaaccgtg tcaccggcac ccgcctggaa 1500
aatggttcct atcacggcgt tgctgcggca ttcggtgctg atggttacca cgtcgactct 1560
gtcgagagct tcagcgccgc tctggctcag gcactggcac acaaccgccc ggcatgcatc 1620
aacgttgctg tggccctgga cccgatcccg ccggaggaac tgatcctgat tggcatggac 1680
ccgtttgcgg gctccacgga gaatctgtat ttccaatccg gcgcg 1725
<210> 20
<211> 1725
<212> DNA
<213> Artificial sequence ()
<400> 20
atggctatga ttactggtgg tgaactggtt gttcgtaccc tgattaaagc tggcgtagaa 60
catctgtttg gcctgcatgg cctacatatt gacaccattt ttcaggcttg cctggaccac 120
gacgtcccaa tcattgatac tcgccacgaa gcggcggcag gccacgctgc ggaaggttat 180
gcccgcgcgg gcgctaaact gggtgttgcc ctggtgaccg ctggcggtgg ctttaccaat 240
gccgttacgc cgatcgcgaa cgctcggctg gatcgcactc cggttctgtt cctgaccggt 300
tctggtgctc ttcgtgatga cgaaaccaac accctgcagg ccggtattga tcaggtggcc 360
atggcggccc cgatcacgaa atgggctcat cgtgttatgg caactgaaca catcccgcgt 420
ctggttatgc aggccattcg tgccgctctg agcgccccac gtggcccggt gctgctggat 480
ctgccatggg acatcctgat gaaccaaatc gatgaagatt ccgttatcat cccagacctg 540
gtgctgtctg ctcacggtgc ccatccagac ccggctgacc tggaccaggc tctggcactg 600
ctgcgtaaag ccgaacgccc agttatcgta ctgggctccg aggcgtcccg caccgcacgc 660
aagaccgcac tgagcgcatt cgtagcggcg accggtgtac cggttttcgc tgactatgaa 720
ggcctgtcca tgctgagcgg cctgccggac gctatgcgtg gcggcctggt gcagaacctg 780
tactcctttg caaaagctga tgcagctccg gacctggtac tgatgctggg tgctcgtttc 840
ggtctgcata ccggtcatgg ttccggtcaa ctgatcccgc attctgctca ggtgatccag 900
gtggatccag acgcgtgtga actgggtcgc ctgcaaggca tcgcgctggg tatcgtggct 960
gatgtaggtg gcaccattga agcgctggct caggcgaccg cacaggacgc cgcgtggccg 1020
gaccgcggcg actggtgcgc caaggtaact gacctggccc aggagcgtta cgcttccatc 1080
gcggctaaat ccagctctga acatgcgctg cacccgttcc acgcttctca ggttatcgcg 1140
aaacacgtgg acgcaggcgt gaccgtcgtt gcggatggtg gcctgactta tctgtggctg 1200
tccgaagtta tgtctcgtgt caaaccaggc ggcttcctgt gccacggcta tctgaacagc 1260
atgggtgtag gcttcggtac tgccctgggt gcgcaggttg cggatctgga ggcaggtcgt 1320
cgtaccatcc tggtgaccgg cgacggctct gttggttatt ccattggcga attcgacacc 1380
ctggtacgca aacagctgcc gctgattgta attatcatga acaaccagtc ttggggctgg 1440
accctgcact ttcagcagct ggccgttggt cctaaccgtg tcaccggcac ccgcctggaa 1500
aatggttcct atcacggcgt tgctgcggca ttcggtgctg atggttacca cgtcgactct 1560
gtcgagagct tcagcgccgc tctggctcag gcactggcac acaaccgccc ggcatgcatc 1620
aacgttgctg tggccctgga cccgatcccg ccggaggaac tgatcctgat tggcatggac 1680
ccgtttgcgg gctccacgga gaatctgtat ttccaatccg gcgcg 1725

Claims (5)

1. A formaldehyde-converting protein variant, characterized by: the amino acid sequence of the mutant is shown as SEQ ID No.2-SEQ ID No. 10.
2. A formaldehyde-converted protein variant related biomaterial characterized by: is any one of the following:
(I) A nucleic acid molecule encoding the formaldehyde-converting protein variant of claim 1;
(II) an expression cassette, recombinant vector, recombinant bacterium or transgenic cell line comprising the nucleic acid molecule of (I), said transgenic cell line being of a non-animal or plant variety.
3. The biomaterial according to claim 2, characterized in that: the nucleic acid molecule encoding the formaldehyde-converting protein variant is any one of the following:
(B1) A DNA molecule shown in SEQ ID No. 12;
(B2) A DNA molecule shown in SEQ ID No. 14;
(B3) A DNA molecule shown in SEQ ID No. 15;
(B4) A DNA molecule shown in SEQ ID No. 16;
(B5) A DNA molecule shown in SEQ ID No. 17;
(B6) A DNA molecule shown in SEQ ID No. 18;
(B7) A DNA molecule shown in SEQ ID No. 19;
(B8) A DNA molecule shown in SEQ ID No. 20;
(B9) A DNA molecule shown in SEQ ID No. 13; or (b)
The recombinant bacterium is escherichia coli containing the nucleic acid molecule.
4. Use of a formaldehyde conversion variant or biomaterial according to any one of claims 1 to 3 in any one of the following:
(C1) Producing 1, 3-dihydroxyacetone or hydroxyacetaldehyde;
(C2) Improving the yield of 1, 3-dihydroxyacetone or hydroxyacetaldehyde;
(C3) The downstream products are prepared by producing 1, 3-dihydroxyacetone or hydroxyacetaldehyde.
5. A process for producing 1, 3-dihydroxyacetone or hydroxyacetaldehyde and/or for producing a downstream product of 1, 3-dihydroxyacetone or hydroxyacetaldehyde, characterized by: the method comprises the following steps: expressing the formaldehyde conversion protein variant of claim 1 in a recipient bacterium to obtain a recombinant bacterium; fermenting and culturing the recombinant bacteria to obtain 1, 3-dihydroxyacetone or hydroxyaldehyde or downstream products from fermentation broth; further, expression of the formaldehyde-converting protein variant in the recipient bacterium is achieved by introducing into the recipient bacterium the nucleic acid molecule encoding the formaldehyde-converting protein variant of claim 3.
CN202010044853.0A 2020-01-16 2020-01-16 Formaldehyde conversion protein and application thereof Active CN113122525B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010044853.0A CN113122525B (en) 2020-01-16 2020-01-16 Formaldehyde conversion protein and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010044853.0A CN113122525B (en) 2020-01-16 2020-01-16 Formaldehyde conversion protein and application thereof

Publications (2)

Publication Number Publication Date
CN113122525A CN113122525A (en) 2021-07-16
CN113122525B true CN113122525B (en) 2023-04-21

Family

ID=76771597

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010044853.0A Active CN113122525B (en) 2020-01-16 2020-01-16 Formaldehyde conversion protein and application thereof

Country Status (1)

Country Link
CN (1) CN113122525B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT526405A1 (en) 2022-08-08 2024-02-15 Univ Wien Tech Synthetic formolase pathway

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303981A (en) * 1993-04-21 1994-11-01 Toyobo Co Ltd Dna having genetic information on protein having formaldehyde dehydrogenase activity and production of formaldehyde dehydrogenase
CN107858340A (en) * 2017-12-22 2018-03-30 浙江大学 The phosphate aldolase A mutant of D fructose 6, recombinant expression carrier, genetic engineering bacterium and its application of high catalytic activity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303981A (en) * 1993-04-21 1994-11-01 Toyobo Co Ltd Dna having genetic information on protein having formaldehyde dehydrogenase activity and production of formaldehyde dehydrogenase
CN107858340A (en) * 2017-12-22 2018-03-30 浙江大学 The phosphate aldolase A mutant of D fructose 6, recombinant expression carrier, genetic engineering bacterium and its application of high catalytic activity

Also Published As

Publication number Publication date
CN113122525A (en) 2021-07-16

Similar Documents

Publication Publication Date Title
CN108467857B (en) PET hydrolase mutant and application thereof
CN113151230B (en) Mutant protein of formaldehyde lyase and application thereof
CN108103039B (en) Fucosyltransferase mutants and screening method and application thereof
CN109055324B (en) Improved ketoreductase and application thereof
CN113122525B (en) Formaldehyde conversion protein and application thereof
CN112852765B (en) Formaldehyde conversion mutant protein and application thereof
CN112481244B (en) Aspartase mutant and coding gene, vector, recombinant bacterium and application thereof
CN110358751B (en) Recombinant lipase mutant, encoding gene, recombinant engineering bacterium and application
CN110423787B (en) Preparation method of uniform brown algae trisaccharide
CN110904062B (en) Strain capable of producing L-alanine at high yield
CN116676280A (en) Glutathione bifunctional synthetase mutant and application thereof
US20230332116A1 (en) Polypeptide with aspartate kinase activity and use thereof in production of amino acid
CN111004794B (en) Subtilisin E mutant with improved thermal stability and application thereof
CN110157691B (en) 5-amino-acetopropionic acid synthetase mutant and host cell and application thereof
CN114686547A (en) Method for enzymatic synthesis of acetyl coenzyme A by taking diacerein as donor
CN114621944B (en) Arginine deiminase mutant with improved enzyme activity
CN115786296B (en) Meso-diaminopimelate dehydrogenase mutant and production method thereof
CN117925586A (en) Carbon chain elongase BAL variants and uses thereof
RU2813283C2 (en) Recombinant strain based on escherichia coli, a method of its construction and use
CN117925587A (en) Carbon chain elongase BFD variant and application thereof
CN115725560B (en) Pinus massoniana multifunctional terpene synthase mutant and application thereof in production of sesquiterpene products
CN114150024B (en) Bifunctional enzyme biocatalyst and preparation method and application thereof
CN117925546A (en) Carbon chain elongase BAL variant and application thereof
RU2813511C2 (en) Recombinant strain based on escherichia coli and method of its construction and use
CN110904087B (en) L-arabinose epimerase mutant and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant