JP2000183108A - Semiconductor integrated circuit device and its manufacture - Google Patents

Semiconductor integrated circuit device and its manufacture

Info

Publication number
JP2000183108A
JP2000183108A JP10360336A JP36033698A JP2000183108A JP 2000183108 A JP2000183108 A JP 2000183108A JP 10360336 A JP10360336 A JP 10360336A JP 36033698 A JP36033698 A JP 36033698A JP 2000183108 A JP2000183108 A JP 2000183108A
Authority
JP
Japan
Prior art keywords
integrated circuit
semiconductor integrated
circuit device
interlayer insulating
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10360336A
Other languages
Japanese (ja)
Other versions
JP3173488B2 (en
Inventor
Hiroshi Yamakawa
博 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP36033698A priority Critical patent/JP3173488B2/en
Publication of JP2000183108A publication Critical patent/JP2000183108A/en
Application granted granted Critical
Publication of JP3173488B2 publication Critical patent/JP3173488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent cracks due to thermal stresses attributed to reflow works by a method, wherein a semiconductor integrated circuit device is provided with a heat emission part near an outer circumference of a cover the through- hole. SOLUTION: A first interlayer insulating film 4 is formed on a silicon substrate 1, and a second interlayer insulating film 6 is formed on the first interlayer insulation film 4. A first layer wire 5 is pinched between the first interlayer insulating film 4 and second interlayer insulating film 6 in an aspect of coming into contact with the first interlayer insulating film 4, and a second layer wire 7 is provided on the second interlayer insulating film 6, and surfaces of the second interlayer insulating film 6 and the second layer wire 7 are coated with a third interlayer insulating film 8. Furthermore, a structured thermal emission part is coated with a surface protective film 9 provided with a groove 13, so as to enclose a pad electrode 2 on the third interlayer insulating film 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】本発明は、半導体集積回路装置、
特にワイヤレスボンディング工程におけるフリップチッ
プ接続用電極パッドとその電極パッド近傍の表面保護膜
構造に関するものである。
The present invention relates to a semiconductor integrated circuit device,
In particular, the present invention relates to a flip chip connection electrode pad in a wireless bonding process and a surface protective film structure near the electrode pad.

【0002】[0002]

【従来の技術】近年、半導体集積回路装置に搭載される
素子数が増加するに伴い、係る半導体集積回路装置の入
出力用信号ピン数も増加している。また、電子機器の小
型化という点においては、実装面積を少なくした高密度
実装の電子機器が求められていることから、多数の信号
ピンを高密度で実装できるフリップチップ接続による実
装方法が注目されている。このフリップチップ接続方法
が提案されたのは古く、International BusinessMachin
e Corporationによって、その解説記事がSemiconductor
World増刊 サーフェイスマウントテクノロジー(1993
年冬号)等に紹介されている。
2. Description of the Related Art In recent years, as the number of elements mounted on a semiconductor integrated circuit device has increased, the number of input / output signal pins of the semiconductor integrated circuit device has also increased. In addition, in terms of miniaturization of electronic devices, there is a demand for high-density electronic devices with a small mounting area, so mounting methods using flip-chip connection that can mount a large number of signal pins at high density are attracting attention. ing. This flip-chip connection method has been proposed for a long time, and
e Corporation explains the article by Semiconductor
World special issue surface mount technology (1993
Winter issue).

【0003】フリップチップ接続に用いるハンダバンプ
電極の形成方法の一例を図面を参照して以下に説明す
る。図10はLSIチップAの電極面の平面図であり、
シリコン基板1上にパッド電極2がアレイ状に配設され
ている。この図10における1つのパッド電極2を取り
出したものが図11であり、また図11に記載されたB
−B’線における断面図が図12である。この図12に
示されるように、LSIチップAはシリコン基板1上
に、第1の層間絶縁膜4が形成され、係る第1の層間絶
縁膜4上に第2の層間絶縁膜6が形成されている。第1
層配線5は前記第1の層間絶縁膜4と接した態様で第1
の層間絶縁膜4と第2の層間絶縁膜6とに挟まれて形成
されている。第2層配線7は前記第2の層間絶縁膜6上
に設けられており、その第2の層間絶縁膜6と第2層配
線7との表面を覆う態様で第3の層間絶縁膜8が形成さ
れているが、係る第3の層間絶縁膜8は第2層配線7の
表面の一部で分断されている。第3の層間絶縁膜8上に
は表面保護膜9が形成されており、前記第3の層間絶縁
膜8が分断されている箇所、すなわち、第2層配線7上
と前記表面保護膜9の側面とを覆う態様でバリアメタル
10が円環状に形成されている。また、係るバリアメタ
ル10上には、パッド電極2が前記バリアメタル10に
対して所定の厚さを有して設けられている。
An example of a method for forming a solder bump electrode used for flip chip connection will be described below with reference to the drawings. FIG. 10 is a plan view of the electrode surface of the LSI chip A,
Pad electrodes 2 are arranged in an array on a silicon substrate 1. FIG. 11 shows one pad electrode 2 in FIG. 10 taken out.
FIG. 12 is a sectional view taken along line -B '. As shown in FIG. 12, in the LSI chip A, a first interlayer insulating film 4 is formed on a silicon substrate 1, and a second interlayer insulating film 6 is formed on the first interlayer insulating film 4. ing. First
The layer wiring 5 is a first layer in a state where the layer wiring 5 is in contact with the first interlayer insulating film 4.
Is formed between the first interlayer insulating film 4 and the second interlayer insulating film 6. The second layer wiring 7 is provided on the second interlayer insulating film 6. The third interlayer insulating film 8 is formed so as to cover the surfaces of the second interlayer insulating film 6 and the second layer wiring 7. Although formed, the third interlayer insulating film 8 is divided at a part of the surface of the second-layer wiring 7. A surface protection film 9 is formed on the third interlayer insulating film 8, and a portion where the third interlayer insulating film 8 is divided, that is, a portion between the second layer wiring 7 and the surface protection film 9. The barrier metal 10 is formed in an annular shape so as to cover the side surfaces. Further, the pad electrode 2 is provided on the barrier metal 10 so as to have a predetermined thickness with respect to the barrier metal 10.

【0004】以上に説明した各層間絶縁膜は、各配線を
導電体として独立させて機能させるために設けられてお
り、LSIチップAの作成工程におけるリソグラフィー
技術を簡便に行うために各層間絶縁膜上に各配線が設置
される。また、前記表面保護膜9の膜厚を十分に設定し
なければLSIチップA内部を外部の熱などによる影響
から保護しなければならないことから、前記パッド電極
2もそれに伴って十分な厚さを設定する必要を有する。
The above-described interlayer insulating films are provided to make each wiring function independently as a conductor, and to facilitate the lithography technique in the process of manufacturing the LSI chip A, each interlayer insulating film is provided. Each wiring is installed on the top. If the thickness of the surface protection film 9 is not set sufficiently, the inside of the LSI chip A must be protected from the influence of external heat and the like, so that the pad electrode 2 also has a sufficient thickness. You have to set.

【0005】次に、図10に示されるパッド電極2の形
成方法を以下に説明する。図13aにおいて、シリコン
基板1上にトランジスタ素子(図示せず)を形成した
後、第1の層間絶縁膜4を形成する。次に、第1の層間
絶縁膜4上に第1層配線5をパターニングした後、第2
の層間絶縁膜6、第2層配線7を同様に形成する。この
とき、第2層配線7はCuを含有するAl合金である。
また、その膜厚は約1μmであり、第2層配線7により
形成されるパッドのサイズは約200μmである。
Next, a method of forming the pad electrode 2 shown in FIG. 10 will be described below. In FIG. 13A, after forming a transistor element (not shown) on a silicon substrate 1, a first interlayer insulating film 4 is formed. Next, after patterning the first layer wiring 5 on the first interlayer insulating film 4,
Are formed in the same manner. At this time, the second layer wiring 7 is an Al alloy containing Cu.
The film thickness is about 1 μm, and the size of the pad formed by the second-layer wiring 7 is about 200 μm.

【0006】次に、図14bに示すように第2層配線7
を保護する第3の層間絶縁膜8及び表面保護膜9を形成
する。このとき、第3の層間絶縁膜8は酸化膜と窒化膜
の2層構造を成しており、その膜厚は各々約0.1μ
m、約1μmである。また、従来、前記表面保護膜9に
はポリイミド樹脂が使用されており、耐熱性に富むこの
樹脂は膜形成における欠陥が少なく、形成膜の膜厚を比
較的自由に設定することができ、平坦性に優れていると
いう特徴があるためである。
[0006] Next, as shown in FIG.
A third interlayer insulating film 8 and a surface protection film 9 for protecting the semiconductor device are formed. At this time, the third interlayer insulating film 8 has a two-layer structure of an oxide film and a nitride film, each having a thickness of about 0.1 μm.
m, about 1 μm. Conventionally, a polyimide resin is used for the surface protective film 9, and this resin having high heat resistance has few defects in film formation, the film thickness of the formed film can be set relatively freely, and This is because it has a characteristic of being excellent in property.

【0007】感光性ポリイミド樹脂からなる表面保護膜
9を、フォトリソグラフィー工程にて露光、現像したも
のを図14aに示す。この工程からさらに、表面保護膜
9自身をフォトマスクとして、第3の層間絶縁膜8をR
IE法により第2層配線7を露出させ、バリアメタル1
0を形成し、連続してその後に、Cuを材料とするパッ
ド電極2を10μmの厚さで形成する。その図が図14
bである。ここで、バリアメタル材料とは半田(PbS
n)からLSIチップA側のAl配線へPb、Snが拡
散することで、Al配線の信頼性を低下させるのを防ぐ
高融点金属であり、主にPd、Ni、CrCu、Ti
W、Ti等が用いられる。
FIG. 14A shows a surface protective film 9 made of a photosensitive polyimide resin, which is exposed and developed in a photolithography process. From this step, the third interlayer insulating film 8 is further formed by using the surface protective film 9 itself as a photomask.
The second layer wiring 7 is exposed by the IE method, and the barrier metal 1 is exposed.
0 is formed, and subsequently, a pad electrode 2 made of Cu is formed with a thickness of 10 μm. Fig. 14
b. Here, the barrier metal material is solder (PbS
n) is a refractory metal that prevents Pb and Sn from diffusing into the Al wiring on the side of the LSI chip A, thereby lowering the reliability of the Al wiring, and is mainly composed of Pd, Ni, CrCu, Ti
W, Ti, etc. are used.

【0008】次に、図15に示すようにカバースルーホ
ール11を覆うようにフォトレジスト12を形成し、こ
のフォトレジスト12をマスクとしてバリアメタル1
0、パッド電極2のエッチングを行い、図12に示され
る構造が得られる。
Next, a photoresist 12 is formed so as to cover the cover through hole 11 as shown in FIG.
0, the pad electrode 2 is etched to obtain the structure shown in FIG.

【0009】ワイヤレスボンディング工程におけるフリ
ップチップ法は図16に示されるように、LSIチップ
Aを裏返しにし、半田ボール18をカバースルーホール
11に載置し、接続するべきリードフレーム(図示せ
ず)に対しリフローさせることによって接続されてその
工程を完了する。
In the flip chip method in the wireless bonding step, as shown in FIG. 16, the LSI chip A is turned upside down, the solder balls 18 are placed in the cover through holes 11, and a lead frame (not shown) to be connected is provided. On the other hand, they are connected by reflow to complete the process.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、従来の
この半導体集積回路の実装工程においては次のような問
題があった。一般に、プリント基板等と接続するリード
フレーム(図示せず)とLSIチップとは前記半田ボー
ル18を介して繋がっている。半導体集積回路装置のお
かれる環境下に前記リフロー作業などの温度変化が生じ
ると、LSIチップとプリント基板等との熱膨張係数が
異なるために熱起因の応力が発生し、半田ボールに亀裂
が生じることがあった。
However, there are the following problems in the conventional mounting process of this semiconductor integrated circuit. Generally, a lead frame (not shown) connected to a printed circuit board or the like is connected to the LSI chip via the solder ball 18. When a temperature change such as the reflow operation occurs in an environment where a semiconductor integrated circuit device is placed, heat-induced stress occurs due to a difference in thermal expansion coefficient between an LSI chip and a printed circuit board, and a solder ball is cracked. There was something.

【0011】この熱起因による応力を緩和するために、
LSIチップとプリント基板等との間に樹脂を注入する
ことがよく知られている。しかし、係る樹脂注入により
半田ボールの亀裂は防止できるが、熱起因による応力自
身が消失する訳ではなく、熱起因による応力はLSIチ
ップの内部に多大な悪影響を与える。具体的には、熱起
因による応力は半田ボールを介してLSIチップへ働
き、表面保護膜に亀裂を生じさせるという問題が挙げら
れる。係る亀裂の発生により、表面保護膜自体が本来の
役目を果たさず、結果として半導体集積回路装置の信頼
性を低下させるという問題を生じていた。
In order to alleviate the heat-induced stress,
It is well known that a resin is injected between an LSI chip and a printed circuit board or the like. However, cracks in the solder balls can be prevented by the resin injection, but the stress due to heat does not disappear, and the stress due to heat has a great adverse effect on the inside of the LSI chip. Specifically, there is a problem that a stress due to heat acts on an LSI chip via a solder ball and causes a crack in a surface protective film. Due to the occurrence of such cracks, the surface protective film itself does not perform its original function, and as a result, there has been a problem that the reliability of the semiconductor integrated circuit device is reduced.

【0012】本発明に係る半導体集積回路装置は、以上
の従来技術における問題に鑑みてなされたものであり、
リフロー作業に起因する熱ストレスによって生じる亀裂
を防止する表面保護膜の構造を提供することが目的であ
る。
A semiconductor integrated circuit device according to the present invention has been made in view of the above-mentioned problems in the prior art,
It is an object of the present invention to provide a structure of a surface protective film that prevents cracks caused by thermal stress caused by a reflow operation.

【0013】[0013]

【課題を解決するための手段】前記課題を解決するため
に提供する本願第一の発明に係る半導体集積回路装置
は、カバースルーホールの外周囲近傍に熱放射部が設け
られていることを特徴とする。
According to a first aspect of the present invention, there is provided a semiconductor integrated circuit device provided with a heat radiation portion near an outer periphery of a cover through hole. And

【0014】カバースルーホールの外周囲近傍が熱放射
機能を有する形状に形成されていることにより、LSI
チップをプリント基板等と接続する際に起因する熱スト
レスの影響を表面保護膜において緩和させ、半導体素子
にまでその影響を至らしめることを防ぐことができる。
Since the vicinity of the outer periphery of the cover through hole is formed in a shape having a heat radiation function, an LSI
The effect of thermal stress caused when the chip is connected to a printed circuit board or the like can be reduced in the surface protective film, and the effect can be prevented from reaching the semiconductor element.

【0015】前記課題を解決するために提供する本願第
二の発明に係る半導体集積回路装置は、前記熱放射部は
孔が形成されてなることを特徴とする。
A semiconductor integrated circuit device according to a second aspect of the present invention, which is provided to solve the above problem, is characterized in that the heat radiating portion is formed with a hole.

【0016】前記熱放射部に孔が形成されてなることに
より、前記熱放射機能を孔が形成する表面積の大きさで
高めることができる。
By forming the holes in the heat radiating portion, the heat radiating function can be enhanced by the size of the surface area formed by the holes.

【0017】前記課題を解決するために提供する本願第
三の発明に係る半導体集積回路装置は、前記孔が表面保
護膜内に形成されていることを特徴とする。
A semiconductor integrated circuit device according to a third aspect of the present invention provided to solve the above-mentioned problem is characterized in that the hole is formed in a surface protection film.

【0018】前記孔が表面保護膜内に形成されているこ
とにより、半導体内部素子に熱による応力の影響を与え
ることなく、前記孔が形成する表面積を最大限に生かす
ことができる。
Since the holes are formed in the surface protective film, the surface area formed by the holes can be maximized without exerting an influence of thermal stress on the internal semiconductor element.

【0019】前記課題を解決するために提供する本願第
四の発明に係る半導体集積回路装置は、前記孔が円環状
に形成されていることを特徴とする。
According to a fourth aspect of the present invention, there is provided a semiconductor integrated circuit device provided to solve the above-mentioned problem, wherein the hole is formed in an annular shape.

【0020】前記孔が円環状に形成されていることによ
り、熱による応力を均一に分散させることが可能とな
り、表面保護膜内における前記孔の形成分布に起因する
熱放射の歪みなどが生じない。
Since the holes are formed in an annular shape, it is possible to uniformly disperse the stress caused by heat, so that distortion of heat radiation caused by the formation distribution of the holes in the surface protective film does not occur. .

【0021】前記課題を解決するために提供する本願第
五の発明に係る半導体集積回路装置は、前記孔が多重の
円環状に形成されていることを特徴とする。
According to a fifth aspect of the present invention, there is provided a semiconductor integrated circuit device provided in order to solve the above-mentioned problem, wherein the holes are formed in multiple annular shapes.

【0022】前記孔が多重の円環状に形成されているこ
とにより、さらに均一な熱放射機能を実現することが可
能となる。
Since the holes are formed in multiple annular shapes, it is possible to realize a more uniform heat radiation function.

【0023】前記課題を解決するために提供する本願第
六の発明に係る半導体集積回路装置は、前記熱放射部は
溝が形成されてなることを特徴とする。
A semiconductor integrated circuit device according to a sixth aspect of the present invention provided to solve the above-mentioned problem is characterized in that the heat radiating portion is formed with a groove.

【0024】前記カバースルーホールの外周囲に溝が形
成されていることにより、表面保護膜及び半導体内部素
子に係る熱による応力を効果的に緩和することが可能で
ある。
Since the groove is formed around the outer periphery of the cover through hole, it is possible to effectively reduce the thermal stress on the surface protection film and the semiconductor internal element.

【0025】前記課題を解決するために提供する本願第
七の発明に係る半導体集積回路装置は、前記溝が表面保
護膜内に形成されていることを特徴とする。
A semiconductor integrated circuit device according to a seventh aspect of the present invention provided to solve the above-mentioned problem is characterized in that the groove is formed in a surface protection film.

【0026】前記溝が表面保護膜内に形成されているこ
とにより、半導体内部素子に熱による応力の影響を与え
ることなく、前記溝が形成する表面積を最大限に生かす
ことができる。
Since the groove is formed in the surface protective film, the surface area formed by the groove can be maximized without affecting the internal semiconductor element by the thermal stress.

【0027】前記課題を解決するために提供する本願第
八の発明に係る半導体集積回路装置は、前記溝が円環状
に形成されていることを特徴とする。
A semiconductor integrated circuit device according to an eighth aspect of the present invention provided to solve the above-mentioned problem is characterized in that the groove is formed in an annular shape.

【0028】前記溝が円環状に形成されていることによ
り、熱による応力を均一に分散させることが可能とな
る。
Since the grooves are formed in an annular shape, it is possible to uniformly disperse the thermal stress.

【0029】前記課題を解決するために提供する本願第
九の発明に係る半導体集積回路装置は、前記溝が多重の
円環状に形成されていることを特徴とする。
According to a ninth aspect of the present invention, there is provided a semiconductor integrated circuit device in which the grooves are formed in a multiple annular shape.

【0030】前記溝が多重の円環状に形成されているこ
とにより、さらに均一な熱放射機能を実現することが可
能となる。
Since the grooves are formed in multiple annular shapes, a more uniform heat radiation function can be realized.

【0031】前記課題を解決するために提供する本願第
十の発明に係る半導体集積回路装置の製造方法は、パッ
ド電極上に表面保護膜を形成し、係る表面保護膜にカバ
ースルーホールを形成する半導体集積回路装置の製造方
法において、前記表面保護膜に、感光性樹脂の解像度以
下のサイズのパターンを用いて溝を形成することを特徴
とする。
According to a tenth aspect of the present invention, there is provided a method of manufacturing a semiconductor integrated circuit device in which a surface protective film is formed on a pad electrode and a cover through hole is formed in the surface protective film. In the method for manufacturing a semiconductor integrated circuit device, a groove is formed in the surface protective film using a pattern having a size equal to or smaller than the resolution of the photosensitive resin.

【0032】前記表面保護膜に、感光性樹脂の解像度以
下のサイズのパターンを用いて溝を形成することによ
り、複雑な構造又は、余分な工程を経ることなく熱放射
機能を有する表面保護膜を形成することが可能となる。
By forming a groove in the surface protective film using a pattern having a size smaller than the resolution of the photosensitive resin, a surface protective film having a complicated structure or a heat radiation function without passing through an extra step is formed. It can be formed.

【0033】前記課題を解決するために提供する本願第
十一の発明に係る半導体集積回路装置の製造方法は、前
記表面保護膜に、感光性樹脂の解像度以下のサイズのパ
ターンを用いて孔を形成することを特徴とする。
According to an eleventh aspect of the present invention, there is provided a method of manufacturing a semiconductor integrated circuit device, comprising the steps of: forming a hole in the surface protective film by using a pattern having a size equal to or smaller than the resolution of a photosensitive resin; It is characterized by forming.

【0034】前記表面保護膜に、感光性樹脂の解像度以
下のサイズのパターンを用いて孔を形成することによ
り、強度を保ちつつ、十分な熱放射機能を有する表面保
護膜を形成することが可能となる。
By forming holes in the surface protective film using a pattern having a size smaller than the resolution of the photosensitive resin, it is possible to form a surface protective film having a sufficient heat radiation function while maintaining strength. Becomes

【0035】[0035]

【発明の実施の形態】以下に、本発明に係る半導体集積
回路装置及びその製造方法の一実施の形態を図面を参照
しながら説明する。図1は、本発明に係る半導体集積回
路装置における、パッド電極2の周囲に溝13を形成し
たときのLSIチップAの電極面の平面図である。LS
IチップAはシリコン基板1上に各層にわたって半導体
素子(図示せず)が形成されてなり、図1に示すよう
に、係るLSIチップA表面にはパッド電極2がアレイ
状に配設され、その周囲には溝13が形成されている。
さらに、係るパッド電極2付近の拡大図である図2に示
されるように、溝13は個々のパッド電極2の外周を取
り囲むように形成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a semiconductor integrated circuit device and a method of manufacturing the same according to the present invention will be described with reference to the drawings. FIG. 1 is a plan view of an electrode surface of an LSI chip A when a groove 13 is formed around a pad electrode 2 in a semiconductor integrated circuit device according to the present invention. LS
The I chip A has a semiconductor element (not shown) formed on each layer on a silicon substrate 1. As shown in FIG. 1, pad electrodes 2 are arranged in an array on the surface of the LSI chip A. A groove 13 is formed around the periphery.
Further, as shown in FIG. 2 which is an enlarged view near the pad electrode 2, the groove 13 is formed so as to surround the outer periphery of each pad electrode 2.

【0036】ここで、図2A−A’線断面図、すなわち
本発明に係る半導体集積回路装置の断面図を図3に示
す。図3に示されるように、シリコン基板1上に、第1
の層間絶縁膜4が形成され、係る第1の層間絶縁膜4上
に第2の層間絶縁膜6が形成されている。第1層配線5
は前記第1の層間絶縁膜4と接した態様で第1の層間絶
縁膜4と第2の層間絶縁膜6とに挟まれて形成されてい
る。第2層配線7は前記第2の層間絶縁膜6上に設けら
れており、その第2の層間絶縁膜6と第2層配線7との
表面を覆う態様で第3の層間絶縁膜8が形成されている
が、係る第3の層間絶縁膜8は第2層配線7の表面の一
部で分断されている。第3の層間絶縁膜8上には表面保
護膜9が形成されており、前記第3の層間絶縁膜8が分
断されている箇所、すなわち、第2層配線7上と前記表
面保護膜9の側面とを覆う態様でバリアメタル10が円
柱状に形成されている。また、係るバリアメタル10上
には、パッド電極2が前記バリアメタル10に対して所
定の厚さを有して設けられている。さらに、前記表面保
護膜9には、前記パッド電極2を囲むように溝13が設
けられ、係る溝13の深さは前記表面保護膜9の底部に
達しない深さで設定されている。
FIG. 3 is a sectional view taken along the line AA 'of FIG. 2, that is, a sectional view of the semiconductor integrated circuit device according to the present invention. As shown in FIG. 3, the first
Is formed, and a second interlayer insulating film 6 is formed on the first interlayer insulating film 4. First layer wiring 5
Is formed so as to be in contact with the first interlayer insulating film 4 and sandwiched between the first interlayer insulating film 4 and the second interlayer insulating film 6. The second layer wiring 7 is provided on the second interlayer insulating film 6. The third interlayer insulating film 8 is formed so as to cover the surfaces of the second interlayer insulating film 6 and the second layer wiring 7. Although formed, the third interlayer insulating film 8 is divided at a part of the surface of the second-layer wiring 7. A surface protection film 9 is formed on the third interlayer insulating film 8, and a portion where the third interlayer insulating film 8 is divided, that is, a portion between the second layer wiring 7 and the surface protection film 9. The barrier metal 10 is formed in a columnar shape so as to cover the side surfaces. Further, the pad electrode 2 is provided on the barrier metal 10 so as to have a predetermined thickness with respect to the barrier metal 10. Further, a groove 13 is provided in the surface protection film 9 so as to surround the pad electrode 2, and the depth of the groove 13 is set to a depth that does not reach the bottom of the surface protection film 9.

【0037】以上に記載の溝13が表面保護膜9に設け
られたことによって、表面保護膜9に係る熱の応力は前
記溝13によって解消され、表面保護膜9に過度の応力
が掛かるのを防ぐことが可能となり、表面保護膜9の亀
裂を防止できることから、半導体集積回路装置の信頼性
の低下を防ぐことが可能となる。また、カバースルーホ
ール11の開口後に、新たにフォトレジストを塗布して
エッチングを行うという溝13形成のための余分な工程
を必要としないという利点がある。
Since the groove 13 described above is provided in the surface protection film 9, the thermal stress on the surface protection film 9 is eliminated by the groove 13, and excessive stress is applied to the surface protection film 9. Since the surface protection film 9 can be prevented from cracking, it is possible to prevent a decrease in the reliability of the semiconductor integrated circuit device. In addition, there is an advantage that an additional process for forming the groove 13 such that a new photoresist is applied and etched after the opening of the cover through hole 11 is not required.

【0038】以上に記載されたLSIチップ及び溝の形
成方法を図を参照にして以下に説明する。図4aに示す
ように、シリコン基板1上にトランジスタ素子(図示せ
ず)を形成した後、第1の層間絶縁膜4を形成する。係
る第1の層間絶縁膜4の上に第1層配線5をパターニン
グし、第2の層間絶縁膜6及び第2層配線7を上記と同
様に形成する。ここで、第2層配線7はその上下をTi
Nにより挟まれた構造を有するCu含有のAl合金であ
り、係る第2層配線7の膜厚は約1μmである。また、
第2層配線7により形成されたアルミパッドのサイズは
約200μmである。
The method of forming the above-described LSI chip and groove will be described below with reference to the drawings. As shown in FIG. 4A, after forming a transistor element (not shown) on the silicon substrate 1, a first interlayer insulating film 4 is formed. The first layer wiring 5 is patterned on the first interlayer insulating film 4 to form the second interlayer insulating film 6 and the second layer wiring 7 in the same manner as described above. Here, the upper and lower portions of the second layer wiring 7 are Ti
It is a Cu-containing Al alloy having a structure sandwiched by N, and the thickness of the second-layer wiring 7 is about 1 μm. Also,
The size of the aluminum pad formed by the second layer wiring 7 is about 200 μm.

【0039】次に、図4bに示すように第2層配線7を
保護する第3の層間絶縁膜8及び表面保護膜9を形成す
る。本発明における半導体集積回路装置の実施例におい
ても、表面保護膜9は、感光基をもつ感光性ポリイミド
樹脂を用い、その塗布膜厚は約10μmとする。また、
第3の層間絶縁膜8は酸化膜と窒化膜との2層構造であ
り、その膜厚は各々約0.1μm、約1μmである。
Next, as shown in FIG. 4B, a third interlayer insulating film 8 and a surface protection film 9 for protecting the second layer wiring 7 are formed. Also in the embodiment of the semiconductor integrated circuit device according to the present invention, the surface protective film 9 is made of a photosensitive polyimide resin having a photosensitive group, and has a coating thickness of about 10 μm. Also,
The third interlayer insulating film 8 has a two-layer structure of an oxide film and a nitride film, and has a thickness of about 0.1 μm and about 1 μm, respectively.

【0040】次に、図5に示すように、石英基板14の
表面にカバースルーホール11及び溝13とを形成する
パターンA16,パターンB17とを形成したCrマス
ク15を通して、感光性ポリイミド樹脂からなる表面保
護膜9の露光を行う。このときのパターンA16のサイ
ズは約160μmとし、パターンB17のサイズは、感
光性ポリイミド樹脂内に含まれる感光基が有する解像度
よりも小さいサイズであり、感光基の光化学反応が表面
保護膜9内部において終了することで前記溝13は表面
保護膜9の底部まで到達しない深度で形成される。ここ
で、前記感光性樹脂の解像度は、前述のように感光性ポ
リイミド樹脂の膜厚を約10μmとしたため、溝13に
必要な深さを約7μmに設定し、約2μmのパターン径
にて前記溝13が形成できるように感光性ポリイミド樹
脂内に含まれる感光基の環や分子鎖の長さを調整するこ
とで解像度を調整する。また、本発明の実施の形態にお
いては、ポジ型の感光基を有する感光性ポリイミド樹脂
を例として挙げたが、ネガ型の感光基を有する感光性ポ
リイミド樹脂を用いても良い。
Next, as shown in FIG. 5, a photosensitive polyimide resin is passed through a Cr mask 15 on which a pattern A16 and a pattern B17 for forming the cover through hole 11 and the groove 13 are formed on the surface of the quartz substrate 14. The surface protection film 9 is exposed. At this time, the size of the pattern A16 is about 160 μm, and the size of the pattern B17 is smaller than the resolution of the photosensitive group contained in the photosensitive polyimide resin. When the process is completed, the groove 13 is formed at a depth that does not reach the bottom of the surface protection film 9. Here, as for the resolution of the photosensitive resin, since the thickness of the photosensitive polyimide resin was set to about 10 μm as described above, the depth required for the groove 13 was set to about 7 μm, and the pattern diameter was set to about 2 μm. The resolution is adjusted by adjusting the length of the ring or molecular chain of the photosensitive group contained in the photosensitive polyimide resin so that the groove 13 can be formed. In the embodiment of the present invention, a photosensitive polyimide resin having a positive photosensitive group has been described as an example, but a photosensitive polyimide resin having a negative photosensitive group may be used.

【0041】次に、図6に示されるように、前述の露光
工程完了時点での表面保護膜9の形状をマスクとして第
3の層間絶縁膜8をRIE法により除去し、第2層配線
7の露出を行う。さらに、前工程で露出された第2層配
線7と表面保護膜9の側面とを覆う態様でバリアメタル
10,パッド電極2とを連続して形成し、フォトリソグ
ラフィ技術によるパターニングを行うことで、前述の図
3に示す構造を得る。このバリアメタル10の材料とし
ては、Pd、Ni、CrCu、TiW、Ti等が提案さ
れているが、本発明の実施の形態においては従来の配線
技術にしばしば用いられているTiWを使用し、その膜
厚を約0.2μmとした。また、パッド電極2はCuと
し、その膜厚を約6μmとした。その後、図7に示され
るように、フリップチップ法によって、半導体チップを
裏返しにし、半田ボール18をカバースルーホール11
に載置し、接続するべきリードフレーム(図示せず)に
対しリフローさせることによって接続されてその工程を
完了する。
Next, as shown in FIG. 6, the third interlayer insulating film 8 is removed by RIE using the shape of the surface protective film 9 at the time of completion of the above-mentioned exposure step as a mask, and the second layer wiring 7 is removed. Exposure. Further, the barrier metal 10 and the pad electrode 2 are continuously formed so as to cover the second layer wiring 7 exposed in the previous step and the side surface of the surface protection film 9, and are patterned by photolithography. The structure shown in FIG. 3 is obtained. As a material of the barrier metal 10, Pd, Ni, CrCu, TiW, Ti, and the like have been proposed. In the embodiment of the present invention, TiW, which is often used in the conventional wiring technology, is used. The film thickness was about 0.2 μm. The pad electrode 2 was made of Cu, and its film thickness was about 6 μm. Thereafter, as shown in FIG. 7, the semiconductor chip is turned over by the flip chip method, and the solder balls 18 are covered with the cover through holes 11.
And connected by reflowing to a lead frame (not shown) to be connected to complete the process.

【0042】また、パッド電極2周囲に配設された溝1
3の形成に用いるパターンB17を感光性ポリイミド樹
脂の有する解像度以下のサイズとなるように、感光基の
調整を行うことにより、パターンB17による感光性ポ
リイミド樹脂の光反応が感光性ポリイミド樹脂内で止ま
り、溝13の深度は係る感光性ポリイミド樹脂の深度以
内で形成される。この方法により、感光性ポリイミド樹
脂の途中で、溝13を止まらせるために、表面保護膜9
内にエッチングストッパー用の膜を挟んだサンドイッチ
構造を構成しなければならないといった工程上の煩雑さ
がなくなる。
The groove 1 provided around the pad electrode 2
The photoreaction of the photosensitive polyimide resin by the pattern B17 stops in the photosensitive polyimide resin by adjusting the photosensitive group so that the size of the pattern B17 used for the formation of the pattern 3 is equal to or smaller than the resolution of the photosensitive polyimide resin. The depth of the groove 13 is formed within the depth of the photosensitive polyimide resin. According to this method, the surface protective film 9 is formed to stop the groove 13 in the middle of the photosensitive polyimide resin.
There is no need for a complicated process in which a sandwich structure in which a film for an etching stopper is sandwiched is formed.

【0043】尚、図8に示すように、表面保護膜9に溝
13を多重に形成することによって、熱による応力緩和
効果がさらに高まるといった効果を奏する。また、図9
aに示すように、表面保護膜9に溝13を孔3の群に置
換した構成とすることによって、表面保護膜9の強度を
保ちつつ、熱による応力緩和の効果を十分に奏する。
As shown in FIG. 8, by forming the grooves 13 in the surface protective film 9 in a multiplex manner, the effect of relaxing the stress by heat is further enhanced. FIG.
As shown in FIG. 3A, by employing a configuration in which the grooves 13 are replaced with the group of the holes 3 in the surface protection film 9, the effect of relaxing stress by heat is sufficiently exhibited while maintaining the strength of the surface protection film 9.

【0044】ここで、Crマスク15を光が透過したと
ころで、係るCrマスク15がネガであれば高分子の光
架橋反応、ポジであれば光分解反応が起こり、そのCr
マスク15により光が当たる箇所と当たらない箇所とを
分けることで前記溝13を分断し、図9aに示されるよ
うなパッド電極2外周を取り囲む態様で孔3を形成する
ことが可能である。また、表面保護膜内9に孔3を形成
し、その後、感光性樹脂の解像度を落とすことでマスク
パターン縁部で光の境界線が等しい軌跡、すなわちパタ
ーンの実効的な境界線であるエッジを不明瞭な形状にし
て前記孔3同士を連通させることによって溝13を形成
させることも可能である。ここで、孔3を形成する方法
として、図5に示されたCrマスク15がネガであれば
高分子の光架橋反応、ポジであれば光分解反応が起こる
ことを利用し、そのCrマスク15により光が当たる箇
所と当たらない箇所とを任意に分けることで前記溝13
を分断し、図9aに示されるような孔3を表面保護膜9
に形成することが可能である。また、表面保護膜内9に
孔3を形成した後、感光性樹脂の解像度を落とすことで
マスクパターン縁部で光の境界線が等しい軌跡、すなわ
ちパターンの実効的な境界線であるエッジを不明瞭な形
状にして前記孔3同士を連通させることによって溝13
を形成させることも可能である。さらに、図9bに示す
ように、前述の表面保護膜9に溝13を多重に形成する
と同様、表面保護膜9に孔3を多重に形成することによ
り、表面保護膜9の強度を損なうことなく、リフロー作
業による熱を放射させる機能を十分に実現させることが
可能である。
Here, when light is transmitted through the Cr mask 15, if the Cr mask 15 is negative, a photocrosslinking reaction of a polymer occurs. If the Cr mask 15 is positive, a photolysis reaction occurs.
The groove 13 is divided by dividing a portion where light is irradiated and a portion where light is not irradiated by the mask 15, and the hole 3 can be formed so as to surround the outer periphery of the pad electrode 2 as shown in FIG. 9A. In addition, holes 3 are formed in the surface protective film 9 and then the resolution of the photosensitive resin is reduced so that the trajectory where the light boundaries are equal at the edges of the mask pattern, that is, the edges that are the effective boundaries of the pattern are formed. It is also possible to form the groove 13 by making the holes 3 communicate with each other in an unclear shape. Here, as a method of forming the holes 3, a method in which a photocrosslinking reaction of a polymer occurs when the Cr mask 15 shown in FIG. The groove 13 can be arbitrarily divided into a portion where light is applied and a portion where light is not applied.
And the holes 3 as shown in FIG.
It is possible to form. Also, after the holes 3 are formed in the surface protective film 9, the resolution of the photosensitive resin is reduced to make the trajectory of the light boundary equal at the edge of the mask pattern, that is, the edge which is the effective boundary of the pattern. The grooves 13 are formed by communicating the holes 3 with each other in a clear shape.
Can also be formed. Further, as shown in FIG. 9B, similarly to the case where the grooves 13 are multiplexed in the surface protective film 9, the holes 3 are multiplexed in the surface protective film 9, without impairing the strength of the surface protective film 9. In addition, it is possible to sufficiently realize a function of radiating heat by the reflow operation.

【0045】また、本発明に係る半導体集積回路装置
は、フリップチップ構造において説明したが、通常のモ
ールド封止パッケージやボールグリッドアレイ(BG
A)に適用しても同様の効果が得られると考えられる。
The semiconductor integrated circuit device according to the present invention has been described with reference to the flip chip structure.
It is considered that the same effect can be obtained by applying the method to A).

【0046】[0046]

【発明の効果】以上に記載した様に、本発明に係る半導
体集積回路装置によれば、カバースルーホールを取り巻
くように表面保護膜内に孔又は溝を形成することで、半
田ボールを介して表面保護膜に掛かる熱による応力が前
記孔又は溝によって緩衝される。従って、表面保護膜の
亀裂を防止する高信頼性の半導体集積回路装置を提供す
ることが可能となる。また、前記溝の形成には、感光性
ポリイミド樹脂の解像度以下のパターンを用いることに
より、複雑な構造あるいは余分な工程を加えることな
く、半導体集積回路装置を提供することが可能となる。
As described above, according to the semiconductor integrated circuit device of the present invention, by forming a hole or a groove in the surface protective film so as to surround the cover through hole, the semiconductor integrated circuit device can be connected via the solder ball. Stress due to heat applied to the surface protection film is buffered by the holes or grooves. Therefore, it is possible to provide a highly reliable semiconductor integrated circuit device that prevents cracks in the surface protective film. In addition, by using a pattern having a resolution equal to or less than the resolution of the photosensitive polyimide resin for forming the groove, a semiconductor integrated circuit device can be provided without adding a complicated structure or an extra step.

【0047】[0047]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る半導体集積回路装置の一実施例に
おけるLSIチップの平面図
FIG. 1 is a plan view of an LSI chip in one embodiment of a semiconductor integrated circuit device according to the present invention.

【図2】図1におけるパッド電極付近を拡大した平面図FIG. 2 is an enlarged plan view showing the vicinity of a pad electrode in FIG. 1;

【図3】図2に記載されたA−A’線における断面図FIG. 3 is a sectional view taken along line A-A ′ shown in FIG. 2;

【図4】本発明に係る半導体集積回路装置の製造方法の
一例を工程順に示す断面図
FIG. 4 is a sectional view showing an example of a method for manufacturing a semiconductor integrated circuit device according to the present invention in the order of steps.

【図5】本発明に係る半導体集積回路装置の製造方法の
一例を工程順に示す断面図
FIG. 5 is a sectional view showing an example of a method for manufacturing a semiconductor integrated circuit device according to the present invention in the order of steps.

【図6】本発明に係る半導体集積回路装置の製造方法の
一例を工程順に示す断面図
FIG. 6 is a sectional view showing an example of a method for manufacturing a semiconductor integrated circuit device according to the present invention in the order of steps.

【図7】本発明に係る半導体集積回路装置の半田ボール
形成後の断面図
FIG. 7 is a sectional view of the semiconductor integrated circuit device according to the present invention after the formation of solder balls;

【図8】本発明に係る半導体集積回路装置の他の実施の
形態における、パッド電極付近の平面図
FIG. 8 is a plan view showing the vicinity of a pad electrode in another embodiment of the semiconductor integrated circuit device according to the present invention.

【図9】本発明に係る半導体集積回路装置の他の実施の
形態における、パッド電極付近の平面図
FIG. 9 is a plan view showing the vicinity of a pad electrode in another embodiment of the semiconductor integrated circuit device according to the present invention.

【図10】従来技術におけるLSIチップの平面図FIG. 10 is a plan view of a conventional LSI chip.

【図11】従来技術における、一つのパッド電極付近を
拡大した平面図
FIG. 11 is an enlarged plan view showing the vicinity of one pad electrode in the related art.

【図12】図11に記載されたB−B’線における断面
FIG. 12 is a sectional view taken along the line BB ′ shown in FIG. 11;

【図13】従来技術における半導体集積回路装置の製造
工程図
FIG. 13 is a manufacturing process diagram of a semiconductor integrated circuit device according to a conventional technique.

【図14】従来技術における半導体集積回路装置の製造
工程図
FIG. 14 is a manufacturing process diagram of a semiconductor integrated circuit device according to a conventional technique.

【図15】従来技術における半導体集積回路装置の製造
工程図
FIG. 15 is a manufacturing process diagram of a semiconductor integrated circuit device according to a conventional technique.

【図16】従来技術における、半田ボール形成後の半導
体集積回路装置の断面図
FIG. 16 is a cross-sectional view of a semiconductor integrated circuit device after a solder ball is formed in a conventional technique.

【符号の説明】[Explanation of symbols]

1.シリコン基板 2.パッド電極 3.孔 4.第1の層間絶縁膜 5.第1層配線 6.第2の層間絶縁膜 7.第2層配線 8.第3の層間絶縁膜 9.表面保護膜 10.バリアメタル 11.カバースルーホール 12.フォトレジスト膜 13.溝 14.石英基板 15.Crマスク 16.パターンA 17.パターンB 18.半田ボール A.LSIチップ 1. 1. Silicon substrate 2. Pad electrode Hole 4. 4. First interlayer insulating film First layer wiring 6. 6. Second interlayer insulating film 7. Second layer wiring 8. Third interlayer insulating film Surface protective film 10. Barrier metal 11. Cover through hole 12. Photoresist film 13. Groove 14. Quartz substrate 15. Cr mask 16. Pattern A 17. Pattern B 18. Solder ball A. LSI chip

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】パッド電極と、係るパッド電極を覆う表面
保護膜と、パッド電極上の前記表面保護膜に形成された
カバースルーホールとを有する半導体集積回路装置にお
いて、カバースルーホールの外周囲に熱放射部が設けら
れていることを特徴とする半導体集積回路装置。
In a semiconductor integrated circuit device having a pad electrode, a surface protection film covering the pad electrode, and a cover through hole formed in the surface protection film on the pad electrode, the semiconductor device is provided around a periphery of the cover through hole. A semiconductor integrated circuit device provided with a heat radiation part.
【請求項2】前記熱放射部は孔が形成されてなることを
特徴とする請求項1に記載の半導体集積回路装置。
2. The semiconductor integrated circuit device according to claim 1, wherein said heat radiating portion is formed with a hole.
【請求項3】前記孔が表面保護膜内に形成されているこ
とを特徴とする請求項2に記載の半導体集積回路装置。
3. The semiconductor integrated circuit device according to claim 2, wherein said holes are formed in a surface protection film.
【請求項4】前記孔が円環状に形成されていることを特
徴とする請求項2又は請求項3に記載の半導体集積回路
装置。
4. The semiconductor integrated circuit device according to claim 2, wherein said hole is formed in an annular shape.
【請求項5】前記孔が多重の円環状に形成されているこ
とを特徴とする請求項4に記載の半導体集積回路装置。
5. The semiconductor integrated circuit device according to claim 4, wherein said holes are formed in multiple annular shapes.
【請求項6】前記熱放射部は溝が形成されてなることを
特徴とする請求項1に記載の半導体集積回路装置。
6. The semiconductor integrated circuit device according to claim 1, wherein said heat radiating portion is formed with a groove.
【請求項7】前記溝が表面保護膜内に形成されているこ
とを特徴とする請求項6に記載の半導体集積回路装置。
7. The semiconductor integrated circuit device according to claim 6, wherein said groove is formed in a surface protection film.
【請求項8】前記溝が円環状に形成されていることを特
徴とする請求項6又は請求項7に記載の半導体集積回路
装置。
8. The semiconductor integrated circuit device according to claim 6, wherein said groove is formed in an annular shape.
【請求項9】前記溝が多重の円環状に形成されているこ
とを特徴とする請求項8に記載の半導体集積回路装置。
9. The semiconductor integrated circuit device according to claim 8, wherein said grooves are formed in multiple annular shapes.
【請求項10】パッド電極上に表面保護膜を形成し、係
る表面保護膜にカバースルーホールを形成する半導体集
積回路装置の製造方法において、前記表面保護膜に、感
光性樹脂の解像度以下のサイズのパターンを用いて溝を
形成することを特徴とする半導体集積回路装置の製造方
法。
10. A method of manufacturing a semiconductor integrated circuit device, wherein a surface protective film is formed on a pad electrode and a cover through hole is formed in the surface protective film. Forming a groove by using the pattern of (1).
【請求項11】前記表面保護膜に、感光性樹脂の解像度
以下のサイズのパターンを用いて孔を形成することを特
徴とする請求項10に記載の半導体集積回路装置の製造
方法。
11. The method for manufacturing a semiconductor integrated circuit device according to claim 10, wherein holes are formed in said surface protective film using a pattern having a size smaller than the resolution of a photosensitive resin.
JP36033698A 1998-12-18 1998-12-18 Semiconductor integrated circuit device and method of manufacturing the same Expired - Fee Related JP3173488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36033698A JP3173488B2 (en) 1998-12-18 1998-12-18 Semiconductor integrated circuit device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36033698A JP3173488B2 (en) 1998-12-18 1998-12-18 Semiconductor integrated circuit device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000183108A true JP2000183108A (en) 2000-06-30
JP3173488B2 JP3173488B2 (en) 2001-06-04

Family

ID=18468965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36033698A Expired - Fee Related JP3173488B2 (en) 1998-12-18 1998-12-18 Semiconductor integrated circuit device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3173488B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100744A (en) * 2001-09-21 2003-04-04 Ricoh Co Ltd Semiconductor device and method of manufacturing the same
JP2010171253A (en) * 2009-01-23 2010-08-05 Toshiba Corp Semiconductor device, and manufacturing method thereof
JP2013115054A (en) * 2011-11-24 2013-06-10 Rohm Co Ltd Semiconductor chip and semiconductor package
JP2013128145A (en) * 2013-03-11 2013-06-27 Rohm Co Ltd Semiconductor device
JP2015097244A (en) * 2013-11-15 2015-05-21 日立オートモティブシステムズ株式会社 Semiconductor integrated circuit
WO2018186131A1 (en) * 2017-04-06 2018-10-11 株式会社デンソー Semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100744A (en) * 2001-09-21 2003-04-04 Ricoh Co Ltd Semiconductor device and method of manufacturing the same
JP2010171253A (en) * 2009-01-23 2010-08-05 Toshiba Corp Semiconductor device, and manufacturing method thereof
JP2013115054A (en) * 2011-11-24 2013-06-10 Rohm Co Ltd Semiconductor chip and semiconductor package
JP2013128145A (en) * 2013-03-11 2013-06-27 Rohm Co Ltd Semiconductor device
JP2015097244A (en) * 2013-11-15 2015-05-21 日立オートモティブシステムズ株式会社 Semiconductor integrated circuit
WO2018186131A1 (en) * 2017-04-06 2018-10-11 株式会社デンソー Semiconductor device
JP2018181962A (en) * 2017-04-06 2018-11-15 株式会社デンソー Semiconductor device

Also Published As

Publication number Publication date
JP3173488B2 (en) 2001-06-04

Similar Documents

Publication Publication Date Title
JP3387083B2 (en) Semiconductor device and manufacturing method thereof
KR100432329B1 (en) Semiconductor appratus and method for fabricating the same
US20040180296A1 (en) Novel method to improve bump reliability for flip chip device
JPH01214141A (en) Flip-chip type semiconductor device
KR101095409B1 (en) Semiconductor device
JP2009021620A (en) Method of mounting electronic component
KR20010043672A (en) Semiconductor device, method of manufacture thereof, circuit board, and electronic device
JPH11297873A (en) Semiconductor device and its manufacture
JPH05251455A (en) Semiconductor device
JP4097660B2 (en) Semiconductor device
US9698112B2 (en) Semiconductor device including a protective film
US20100221910A1 (en) Method of producing semiconductor device
JP3173488B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP4513973B2 (en) Manufacturing method of semiconductor device
JP3410651B2 (en) Semiconductor device and manufacturing method thereof
JP3664707B2 (en) Semiconductor device and manufacturing method thereof
JP3275306B2 (en) Method for manufacturing semiconductor device
JPH0766207A (en) Surface mount device, manufacture thereof, and soldering method
JP3722784B2 (en) Semiconductor device
JP2003318211A (en) Semiconductor device
JPH02121333A (en) Semiconductor device and its manufacture
JP2005093931A (en) Semiconductor device
JP2000164622A (en) Chip-sized package and its manufacture
JPH0541469A (en) Resin sealed semiconductor device
JP2005268604A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees