JP2000164961A - レ―ザのマルチモ―ド化挙動を抑制するためのシステム及び方法 - Google Patents

レ―ザのマルチモ―ド化挙動を抑制するためのシステム及び方法

Info

Publication number
JP2000164961A
JP2000164961A JP11333157A JP33315799A JP2000164961A JP 2000164961 A JP2000164961 A JP 2000164961A JP 11333157 A JP11333157 A JP 11333157A JP 33315799 A JP33315799 A JP 33315799A JP 2000164961 A JP2000164961 A JP 2000164961A
Authority
JP
Japan
Prior art keywords
light
cavity
laser
mode
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11333157A
Other languages
English (en)
Other versions
JP2000164961A5 (ja
Inventor
Glenn H Rankin
グレン・エイチ・ランキン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agilent Technologies Inc
Original Assignee
Agilent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agilent Technologies Inc filed Critical Agilent Technologies Inc
Publication of JP2000164961A publication Critical patent/JP2000164961A/ja
Publication of JP2000164961A5 publication Critical patent/JP2000164961A5/ja
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/08022Longitudinal modes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/0632Thin film lasers in which light propagates in the plane of the thin film
    • H01S3/0635Thin film lasers in which light propagates in the plane of the thin film provided with a periodic structure, e.g. using distributed feed-back, grating couplers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

(57)【要約】 【課題】 レーザキャビティ内でのサイドモードの増幅
を低減させることによりマルチモード化を抑制するシス
テム及び方法を提供すること。 【解決手段】 レーザ(21)により生成される光のマルチ
モード化を低減させる方法及び装置である。レーザキャ
ビティ(23)内で増幅される光の非対称的な分散を増強さ
せるために非対称分散エンハンサ(64a,64b)がレーザキ
ャビティ(23)内に配設される。その結果として、レーザ
キャビティ(23)を通る光のサイドモードが該光の基本モ
ードを中心として非対称的に配置され、このため、レー
ザキャビティ(23)内におけるサイドモードの増幅度が小
さくなる。結果的に、光のマルチモード化が一層良好に
抑制されることになる。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、一般にレーザに関
し、特にレーザキャビティ内における光のサイドモード
(side mode)の増幅を低減させることによりレーザのマ
ルチモード化挙動(multimoding behavior)を抑制するシ
ステム及び方法に関する。このサイドモードの増幅の低
減は、レーザキャビティに非対称分散(asymmetirc disp
ersion)を導入して基本モードを中心としてサイドモー
ドを非対称に配置することにより実施される。
【0002】
【従来の技術】当業界で周知の多種多様なレーザが存在
する。レーザは一般に、共振キャビティ内に光生成/増
幅機構を備えている。該光生成/増幅機構は、光を生成
し増幅する利得媒体を有している。一般に、該利得媒体
内を光が進む距離が長くなるほど光の増幅率は大きくな
る。
【0003】利得媒体により生成される光の増幅率を高
めるために、一般に2つのミラーが、キャビティの向か
い合った端部に配置され、該2つのミラー間で、前記光
生成/増幅機構により生成された光が前後に多数回にわ
たり反射される。利得媒体は、それ自体中を光が通過す
る毎に該光を増幅させる。結果的に、光は、該2つのミ
ラー間で前後に反射されるにつれて次第に増幅されてい
くことになる。
【0004】通常、ミラーの少なくとも一方は光の一部
の通過を許容するものとなる。このため、該ミラーを通
過する光が使用されて、レーザにより出力されるレーザ
ビームが形成される。このレーザビームは、例えば光信
号といった、当業界で周知の様々な機能を果たすために
利用することが可能である。
【0005】複数の離散的な波長範囲(「モード」と呼
ばれる)の光がキャビティ内で顕著に増幅される、とい
うのが大部分のレーザキャビティの性質である。しか
し、多くの状況では、レーザビームを形成する光は、所
定の単一モード又は波長範囲を有していることが望まし
い。例えば、「基本モード」と呼ばれる単一波長範囲
は、通常は最大の増幅を受けるものとなる。また、「サ
イドモード」と呼ばれる別のモードは、最大の増幅を受
けた光だけがレーザから伝搬するように抑制するのが望
ましい。サイドモードを抑制できないことは、「マルチ
モード化(multimoding)」と呼ばれることが多い。
【0006】サイドモードを抑制するために、多くのレ
ーザは、光学的なフィルタをキャビティ内に配置してい
る。2つのミラー間で反射される光は、該フィルタを通
過し、該フィルタは、基本モード外の光を減衰させ、基
本モードの光を通過させる。代替的には、サイドモード
光をフィルタリングするために、ミラーの一方を基本モ
ード光だけを反射するように構成することも可能であ
る。サイドモード光をフィルタリングすることにより、
基本モード光だけを出力するようにレーザを構成するこ
とが可能になる。
【0007】しかし、大部分の従来のフィルタリング手
段は、サイドモードに関連する光の全てを有効にフィル
タリングすることができないものである。結果として、
従来のレーザでは、マルチモード化を十分に抑制するこ
とができない。
【0008】
【発明が解決しようとする課題】したがって、本発明の
目的は、レーザにおけるサイドモードを抑制するための
改善されたシステム及び方法を提供することにある。
【0009】
【課題を解決するための手段】本発明は、上述の先行技
術の弱点及び欠陥を克服するものである。一般に、本発
明は、レーザキャビティ内でのサイドモードの増幅を低
減させることによりマルチモード化を抑制するシステム
及び方法を提供する。
【0010】本発明は、レーザのキャビティ内で光生成
/増幅機構及び非対称分散エンハンサを使用する。光生
成/増幅機構は、光を生成し増幅する利得媒体を備えて
いる。また非対称分散エンハンサは、前記利得媒体によ
り生成された光を受容して、該光の非対称的な分散を強
める。その結果として、キャビティを通過する光のサイ
ドモードが、基本モードを中心にして非対称的に分散さ
れ、これによりサイドモードの増幅が低減される。
【0011】本発明はまた、マルチモード化を抑制する
ための方法も提供する。簡単に述べると、該方法は、レ
ーザキャビティを設け、該レーザキャビティ内で光を増
幅し、該光をフィルタリングし、該光の基本モードを中
心として該光のサイドモードを非対称的に分布させる、
という各ステップを有するものとして、広範に概念化す
ることができるものである。
【0012】本発明は多数の利点を有するものであり、
その幾つかをその単なる例に関して以下で説明すること
にする。
【0013】本発明の利点の1つは、レーザにより増幅
された所定の範囲外の波長を有する光を抑制することが
できる点である。
【0014】本発明のもう1つの利点は、レーザキャビ
ティを通過する光に付随するサイドモードの増幅を低減
させることができる点である。
【0015】本発明の他の特徴及び利点については、当
該技術者であれば、添付の図面に関連して下記の詳細な
説明を検討することにより明らかとなろう。かかる特徴
及び利点の全てを特許請求の範囲で規定する本発明に包
含させることが意図されている。
【0016】
【発明の実施の形態】本発明は、図面を参照することに
より一層良好に理解することができよう。同図面におけ
る構成要素は、互いに同図中の縮尺を有する必要のない
ものであり、本発明の原理を説明するために強調が加え
られたものである。更に、同様の符号は、複数の図にわ
たって対応する要素を示すものである。 一般に、本発
明は、レーザキャビティに非対称分散を導入することに
より、レーザにおけるマルチモード化を低減させるもの
である。該非対称分散により、サイドモードの波長が変
更され、該サイドモードが基本モードを中心として非対
称的に分布することになる。基本モードを中心としてサ
イドモードを非対称に分布させることにより、サイドモ
ードの増幅が低減され、したがって、マルチモード化の
傾向が弱まることになる。
【0017】本発明は、従来のレーザ21を示す図1を参
照することにより一層良好に理解することができる。該
レーザ21はキャビティ23を有している。該キャビティ23
内にある光生成/増幅機構25により、光が生成され、増
幅される。多種多様な光生成/増幅機構25が存在し、市
販されている。例えば、光を生成し増幅するために利用
可能な半導体チップが現在入手可能である。図2A及び
図2Bは、光生成/増幅機構25として利用可能な典型的
な半導体チップを一層詳細に示す図である。
【0018】図2Aを参照する。光生成/増幅機構25
は、コア29と、該コア29を包囲する周囲材料33とを備え
ている。該コア29は、図2Bでは三日月形であるが、多
種多様な形状のコア29が利用可能である。当業界で既知
であるように、周囲材料33の特性(例えば屈折率)は、
コア29の特性とは異なっている。その結果として、コア
29は、光生成/増幅機構25を通過する光の導波路の働き
をする。
【0019】コア29は、光を生成し、それを通る光を増
幅する、一般に「利得媒体」と呼ばれる材料から構成さ
れる。更に、図2Bに示すように、光生成/増幅機構25
の反対側の表面に導電性電極32が取り付けられる。該導
電性電極32間に印加される電圧によって、コア29が光を
放出又は生成することになる。例示のため、コア29によ
り生成される光は、当初は端部25a(図2A)に向かっ
てx方向に進行するものとする。該生成された光は、コ
ア29を通過する際に該コア29により増幅される。
【0020】光は、光生成/増幅機構25の端部25aから
出て、既知の技法により光をフィルタリングする光学フ
ィルタ35(図1)を通過する。これに関し、光学フィル
タ35は、狭い範囲の光学波長を除く全てを減衰させる帯
域通過特性を有している。該光学フィルタ35を通過した
後、光はレンズ36により受光される。該レンズ36は、ミ
ラー39により反射された光が効率的に集束されて光生成
/増幅機構25に戻ることを保証するものである。該レン
ズ36は、レーザ21の性能を改善することはできるがレー
ザ21に必須の機能ではない、という点に留意されたい。
実際に、従来のレーザ21には、レンズ36を備えていない
ものがある。
【0021】ミラー39は、光を反射して、該光をレンズ
36及び光学フィルタ35を介して光生成/増幅機構25へと
送り返す。光生成/増幅機構25の端部25aは、通常は反
射防止コーティングが施されている。該反射防止コーテ
ィングは、端部25aにより反射される光量を減少させる
ことにより、光生成/増幅機構25に進入する光量を増大
させるものである。コア29に進入した後、光は、該コア
29内を通って端部25bに向かうにつれて増幅される。
【0022】端部25bとその周囲との屈折率の相違のた
め、光の一部が端部25bで反射され、残りの光が端部25b
から光生成/増幅機構を出る。端部25bで反射された光
は、光生成/増幅機構内を端部25aに向かって戻り、光
を増幅しミラー39により光を反射して光生成/増幅機構
25に戻す上述のプロセスが更に繰り返される。このよう
にキャビティ23を介して(即ちミラー39と端部25bとの
間で)光を前後に反射させることにより、該光が「飽和
レベル」とも呼ばれる状態まで次第に増幅されていく。
該「飽和レベル」は、コア29内の利得媒体にとって到達
可能な最大増幅レベルである。
【0023】上述のように、光の全てが端部25bで反射
されるわけではない。端部25bで反射されない光は、光
生成/増幅機構25から出射する。多くの従来のレーザ21
では、端部25bで受光した光の約30%が反射されて光生
成/増幅機構25に戻り、端部25bで受光した光の約70パ
ーセントが光生成/増幅機構25から出射する。光生成/
増幅機構25の端部25bから出射する光がレーザビームを
形成する。
【0024】当業界で既知であるように、キャビティ23
の長さは、レーザ21の重要な特性の1つである。キャビ
ティ23の長さは、ミラー39と端部25bとの間の距離であ
る。キャビティの長さの重要性は、部分的には、キャビ
ティ23の長さが変化するとレーザ21の共振波長に影響を
及ぼすという事実によるものである。これに関し、下記
の方程式が満たされると共振が生じる。
【0025】θ=2πN 式(1) ここで、Nは、1以上の任意の整数であり、θは、光が
キャビティ23内でちょうど1往復する(例えば端部25b
からミラー39まで進行した後に端部25bに戻る)際に光
が被る光学的な位相遅延である。
【0026】キャビティ23をちょうど1回横切る(即ち
端部25bからミラー39まで移動した後に端部25bに戻る)
光の位相遅延(θ)は、光の角周波数(ω)の関数とし
て示すことが可能である。このため、時間遅延(τ)
は、下記の方程式により計算することが可能である。
【0027】τ=dθ/dω 式(2) 該τを求めると、下記の方程式によりキャビティ23の有
効長(L)(即ち端部25bとミラー39との間の光路長)
を計算することが可能になる。
【0028】L=τc/2 式(3) ここで、cは光速である。
【0029】以上の方程式により、キャビティ23の有効
長(L)を求めることができる。方程式(2)〜(3)
によるキャビティ23の有効長の計算は周知のプロセスで
あり、ここではこれ以上詳細な説明は行わない。
【0030】キャビティ23を通過する光は、通常は、キ
ャビティ21が共振する波長において更に増幅される。例
えば、図3は、キャビティ23を通過する光の「振幅」対
「波長」の典型的なグラフを示している。該グラフは、
例証のためだけに示されたものであり、当業者には明ら
かなように、トレース52は、図3に示すものとは異なる
形状及び/又は値となることも可能である。同図のトレ
ース52から明らかなように、モード53a〜53eに対応する
波長の光は、他の波長の光よりも大きく増幅されてい
る。
【0031】光の増幅が最大になる単一モード53a(一
般に「基本モード」と呼ばれる)が存在するのが普通で
ある。更に、該基本モード53aよりも短い波長に対応す
る複数の下方サイドモード53b,53cが存在し、及び該基
本モード53aよりも長い波長に対応する複数の上方サイ
ドモード53d,53eが存在するのが普通である。上方及び
下方サイドモード53b〜53eは、一般に基本モード53aよ
り僅かに小さく増幅される。
【0032】基本モード53aは1つしか存在しないが、
サイドモード53b〜53eの数は変動する可能性がある。当
業界で既知であるように、各々の下方サイドモード53b,
53cは、四波混合(four wave mixing)により、上方サイ
ドモード53d,53eの1つと結合させることが可能であ
る。図3に示す例の場合、下方サイドモード53bは、上
方サイドモード53eと結合され、下方サイドモード53c
は、上方サイドモード53dと結合される。キャビティ23
内の非対称分散が不十分な場合には、結合された各サイ
ドモード対は、基本モード53aを中心として対称的に分
布する。換言すれば、基本モード53aとサイドモード53c
との間の波長差52aが、基本モード53aとサイドモード53
dとの間の波長差52bとほぼ等しくなる。同様に、波長差
52c,52dもほぼ同じになる。しかし、非結合のサイドモ
ード間に所定の関係が必ずしも存在するとは限らない。
例えば、モード53b,53c間の波長差は必ずしも波長差52a
と同じとは限らない。
【0033】多くの場合、レーザ21(図1)が光のモー
ド53a〜53eのうちの1つしか伝搬しないことが望まし
い。通常、伝搬用に選択される単一モードは、基本モー
ド53aである。これは、基本モード53aの増幅が最大にな
るからである。他のモード53b〜53eを抑制するために、
光学フィルタ35(図1)は、基本モード53aと異なる波
長の光信号を減衰させるよう設計されるのが普通であ
る。したがって、該光学フィルタ35は、レーザ21のマル
チモード化挙動をある程度抑制する(即ちサイドモード
53b〜53eをある程度減衰させる)ものとなる。
【0034】光学フィルタ35以外のデバイスを用いてレ
ーザ21のマルチモード化挙動を抑制することが可能であ
る。例えば、ミラー39の代わりに、基本モード53a内の
波長の光を反射してキャビティ23に戻すが基本モード53
a外の波長の光をキャビティ23外へ送る反射刻線(reflec
tive ruled)回折格子を用いることが可能である。該回
折格子を用いた結果として、基本モード53a外の波長の
光がキャビティ23から有効に除去され、これによりサイ
ドモード53b〜53eがある程度に抑制される。サイドモー
ド53b〜53eを抑制するための当業界で既知である他の装
置及び/又は方法もまた存在し得る。
【0035】マルチモード化を抑制するための従来の技
術は、サイドモード53b〜53eをある程度減衰させるもの
ではあるが、上述のような殆どの従来技術による装置及
び/又は方法は、サイドモード53b〜53eを完全に抑制す
ることができないものである。性能上の制限により、か
かる装置は、基本モードとサイドモードとの間に十分に
大きい利得差を与えるだけの十分な選択性を提供するこ
とができない。かかる制限により、基本モード53aの波
長に最も近いサイドモード(即ちサイドモード53c,53
d)をフィルタリングするのが特に困難になる。したが
って、サイドモード53b〜53e(特にサイドモード53c,53
d)を更に抑制することにより従来のレーザ21を改善す
るシステム又は方法が必要である。
【0036】図4は、本発明のレーザキャビティ61aを
示している。該キャビティ61aの構成は、上述のキャビ
ティ23(図1)の構成と同様であるが、キャビティ23内
のミラー39及び光学フィルタ35の代わりに非対称分散エ
ンハンサ64aが使用される点で異なっている。望ましい
実施態様の場合、非対称分散エンハンサ64aは、キャビ
ティ61a内における光の非対称性を有する分散を増強さ
せる反射性フィルタである。該非対称分散エンハンサ64
aは、所定の波長帯域内の波長を有する光だけを反射し
てキャビティ61a内に戻す。基本モード53aを伝搬させる
のが望ましいため、該反射帯域が、基本モード53aと一
致する波長を含むことが望ましい。更に、該反射帯域
は、他の波長を中心とすることも可能性であるが、基本
モード53aの利得を最大限にするために該基本モード53a
の中心を中心とするのが望ましい。
【0037】狭い波長帯域内の光を反射させることに加
えて、非対称分散エンハンサ64aは、キャビティ61aを通
過する光の非対称分散も増強するものとなる。「非対称
分散」とは、一対の結合されたサイドモード(例えば53
c,53d)が基本モード53aを中心として一層非対称性を増
すようにする光の分散である。例えば、図5は、キャビ
ティ61aを通過する光の非対称分散がかなり増強された
時点で、該キャビティ61aを通過する光の「振幅」対
「波長」のグラフを示したものである。同図から分かる
ように、等しくない波長差52a,52bにより、一対の結合
されたサイドモード53c,53dが基本モード53aから分離さ
れる。非対称分散エンハンサ64aを通過する光の非対称
分散が増強されるにつれて、基本モード53aを中心とし
たサイドモード53c,53dの非対称性が強まり、即ち、波
長差52a,52bが更に大きく異なるようになる。非対称分
散エンハンサ64aにより導入される非対称分散の増強に
より、一対の結合されたサイドモード53c,43dが、基本
モード53aを中心として更に非対称に分布することにな
る。同様に、非対称分散エンハンサ64aにより導入され
る非対称分散の増強により、波長差52c,52d間の差が増
大し、一対の結合されたサイドモード53b,53eが基本モ
ード53aを中心として更に非対称に分布することにな
る。
【0038】共振及び非線形的な結合の性質のため、サ
イドモード53b〜53eは、それらの分布が基本モード53a
を中心として非対称性を増すにつれて、それらの増幅の
度合いが小さくなる。非対称分散エンハンサ64aにより
導入される非対称的な分散のため、基本モード53aを中
心とした結合されたサイドモード対53b,53e及び53c,53d
の対称性が弱まるので、コア29によるサイドモード53b
〜53eの増幅は一層小さくなる。その結果、レーザキャ
ビティ61aにより出力される光のマルチモード化が、一
層良好に抑制されることになる。
【0039】キャビティ61aを通過する光の非対称分散
を増強させるには、一対の結合されたサイドモードを構
成する各サイドモード(例えば53c,53d)に関するキャ
ビティ61aの有効長の差を大きくすべきである。サイド
モード53cの光に関するキャビティ61aの有効長とサイド
モード53dの光に関するキャビティ61aの有効長との差が
増大するにつれて、サイドモード53c,53dが基本モード5
3aを中心として更に非対称に分布される。その結果とし
て、キャビティ61a内におけるサイドモード53c,53dの増
幅度が低下することになる。
【0040】一対の結合されたサイドモードを構成する
各サイドモード(例えばサイドモード53c,53d)に関す
るキャビティ61aの有効長の差は、非対称分散エンハン
サ64aの光路長に沿って該非対称分散エンハンサ64aのコ
アの屈折率を変化させることにより、大きくすることが
可能である。図6に示すように、該非対称分散エンハン
サ64aは、それ自体を通過する光の導波路であるコア67
を備えている。一例として、非対称分散エンハンサ64a
は、それ自体を通過する光の非対称分散を増強させるよ
うに構成されたファイバブラッグ格子(fiber Bragg gra
ting)とすることが可能である。光が非対称分散エンハ
ンサに入射してx方向に通過する際に、コア67の屈折率
の変化により、それぞれに異なるポイントで反射され
て、逆方向に、即ち光生成/増幅機構25に向かって戻さ
れる。
【0041】図7を参照すると分かるように、コア67に
関する屈折率の変化又は振動(oscillation)の空間周波
数は、光路長に対して変動する。換言すれば、コア67の
屈折率の連続した最大値間の距離(p)が光路長に沿っ
て変化(例えば増減)する。当業界で既知のように、導
波路の光路長は、導波路の物理的な長さに該導波路の有
効屈折率を乗算した値である。特定の一時(temporal)周
波数を有する光の場合、導波路の有効屈折率は、光が自
由空間で有する波長と該光が導波として有する波長との
比である。したがって、図7に示す屈折率の振動の空間
周波数は、非対称分散エンハンサ64aの物理的な長さ及
び有効屈折率の関数となる。換言すれば、「屈折率の振
動の空間周波数」対「光路長」は、コア67の物理的な長
さに沿った屈折率の振動の空間周波数を変化させること
により、又はコア67の物理的な長さに沿った有効屈折率
を変化させることにより、コア67の長さに沿って変動さ
せることが可能である。
【0042】図6は、修正されたファイバブラッグ格子
をベースにした分散エンハンサ64aの好適な実施態様を
示すものであり、この場合、コア67の物理的な長さに沿
った屈折率の振動の空間周波数の変動により、光の非対
称分散が提供される。図6のコア67における異なる種類
のハッチングは、屈折率の値の範囲が異なることを表し
ている。例えば、ハッチング69は、屈折率の中央値を超
える屈折率を有する領域を表し、別のハッチング71は、
前記中央値未満の屈折率を有する領域を表している。
【0043】コア67の物理的な長さに沿った屈折率の振
動の空間周波数を変化させる代わりに又はそれと組み合
わせて、コア67の物理的な長さに沿った非対称分散エン
ハンサ64aの有効屈折率を変化させる(即ち高める又は
低める)ことにより、コア67の光路長に沿った屈折率の
空間周波数を変動させることが可能である。これに関連
して、コア67の物理的な長さに沿った有効屈折率を高め
ることには、コア67の光路長に沿った屈折率の空間周波
数を低下させる効果があり、またコア67の物理的な長さ
に沿った有効屈折率を低めることには、コア67の光路長
に沿った屈折率の空間周波数を上昇させる効果がある。
以下で詳述する第2の実施態様は、コア67の物理的な長
さに沿った有効屈折率を変化させるデバイスを示すもの
である。
【0044】したがって、第2の実施態様で詳述するよ
うに、コア67の物理的な長さに沿った屈折率の振動の空
間周波数を変化させることにより、及び/又はコア67の
物理的な長さに沿った有効屈折率を変化させることによ
り、コア67の光路長に対して該コア67の屈折率を変動さ
せる(即ち高く又は低くする)。光路長に沿った屈折率
の振動の空間周波数を変動させると、一対の結合された
サイドモードを構成するサイドモードの各々についてキ
ャビティ61aの有効長が異なることになる。その結果と
して、該一対の結合されたサイドモードが、基本モード
53aを中心として非対称に配置され、サイドモード53b〜
53eの光のキャビティ61a内における増幅度が低くなる。
このため、キャビティ61aを通過する光のマルチモード
化の抑制が改善される。
【0045】留意すべきは、非対称分散エンハンサ64a
により提供される必要のある分散の量が、サイドモード
53b〜53eの所望の抑制レベルによって決まるという点で
ある。低レベルのマルチモード化挙動を許容可能な用途
もあれば、マルチモード化挙動を可能な限り抑制すべき
用途もある。したがって、ある用途に関して十分な分散
を提供する非対称エンハンサ64aが、別の用途では十分
な分散を提供できない場合もある。更に、非対称分散エ
ンハンサ64aにより導入される分散度が増大するほど、
サイドモード53b〜53eがより一層抑制されることにな
る。したがって、サイドモード53b〜53eの所望の抑制レ
ベルに達するまで分散度を増大させるべきである。しか
し、分散度を増大させると、サイドモード53b〜53eに対
する基本モード53aの利得の量が低下することによりキ
ャビティ61aに関する振幅応答に影響を与える可能性が
ある。このため、振幅応答の劣化とサイドモード53b〜5
3eの抑制との間にはトレードオフが存在する。
【0046】更に留意すべきは、図1の光学フィルタ35
が、必要に応じてキャビティ61a内に挿入することがで
きるという点である。非対称分散エンハンサ64aは、キ
ャビティ61a内において必要とされる光学的なバンドパ
スフィルタリングの全てを提供する必要はなく、光学フ
ィルタ35等の別のデバイスにより該フィルタリングの一
部又は全てを提供することも可能である。しかし、非対
称分散エンハンサ64aは、サイドモード53a〜53eの減衰
を抑制するために、キャビティ61aを通過する光の分散
を増強させるべきである。
【0047】図8は、本発明の第2の実施態様を示して
いる。該実施態様の場合、非対称分散エンハンサ64b
は、好適には、内部を通過する光の分散を増強させるよ
うに修正された(音響光学同調フィルタ(AOTF:aco
ustic-optic tuned filter)又はその他のタイプの導波
フィルタ等の)光学フィルタ35(図1)となる。このた
め、本発明の第2の実施態様は、図1に示す従来のレー
ザ21と構造的にほぼ同一のものであるが、従来のフィル
タ35の代わりに、キャビティ61bを通過する光の非対称
分散を増強する非対称分散エンハンサ64bを用いている
点で異なっている。
【0048】図9A,9Bは、第2の実施態様の非対称
分散エンハンサ64bを示している。該非対称分散エンハ
ンサ64bは、非対称分散を増強するためにコアがテーパ
状になっている点を除き、従来の光導波路フィルタと同
様のものである。このため、図9A,9Bは、図の単純
化のため、非対称分散エンハンサ64bのコア72及びそれ
を取り囲む材料73しか示していない。しかし、非対称分
散エンハンサ64bは、光信号のフィルタリングその他の
機能を実施するための当業界で既知の他の構成要素(図
示せず)を備えることも可能である。
【0049】非対称分散エンハンサ64bのコア72は、光
学的な導波路である。しかし、非対称分散エンハンサ64
bを通過する光の非対称分散を増強するため、コアの断
面積は、非対称分散エンハンサ64bの長さに沿って、即
ち、x方向で変化する。コア72の長さに沿ったコア72の
断面積の変化(即ち増減)により、コア67の物理的な長
さに沿った非対称分散エンハンサ64の有効屈折率が変動
する。したがって、コア67の屈折率の振動の空間周波数
が、コア67の光路長に沿って変化する。このため、結合
されて対をなすサイドモード53b,53e及び53c,53dの基本
モード53aを中心とした対称性が弱まり、その結果、サ
イドモード53b〜53eの増幅度が低下する。
【0050】留意すべきは、他のデバイスを用いて、キ
ャビティを通過する光の非対称分散を増強させることも
可能であるという点である。サイドモード53b〜53eを所
望のレベルまで抑制するのに十分な量だけ光の非対称分
散を増強することが可能なあらゆるデバイスは本発明の
実施に適したものとなる。更に、本明細書では、線形レ
ーザについてしか図示及び説明しなかったが、非対称分
散エンハンサ64a,64bは、当業界で既知の他のタイプの
レーザにも利用可能である。
【0051】発明の詳細な説明を終えるに当たり、留意
すべきは、当業者には明らかなように、本発明をほぼ逸
脱することなくその好適実施態様に様々な変更及び修正
を加えることが可能であるという点である。かかる変更
及び修正は全て、特許請求の範囲の欄で規定された本発
明の範囲内に含まれるものとする。
【0052】以下においては、本発明の種々の構成要件
の組み合わせからなる例示的な実施態様を示す。 1.キャビティ(23)を有するレーザ(21)であって、前記
キャビティ(23)内に配置された利得媒体(25)と、前記キ
ャビティ(23)内に配置された非対称分散エンハンサ(64
a、64b)とを備えている、レーザ(21)。 2.前記非対称分散エンハンサ(64a、64b)が、屈折率及
び光路長を有するコア(67)を備えており、前記屈折率
が、変動する空間周波数で前記光路長に関して振動す
る、前項1に記載のレーザ(21)。 3.前記非対称分散エンハンサ(64a、64b)が、テーパが
つけられたコア(72)を備えている、前項1に記載のレー
ザ(21)。 4.前記非対称分散エンハンサ(64a、64b)が、光ファイ
バを備えている、前項1に記載のレーザ(21)。 5.レーザ(21)であって、レーザキャビティ(23)を画定
する手段(25b)と、前記レーザキャビティ(23)内で光を
増幅させる手段(25)と、前記光の基本モードを中心とし
て、前記光のサイドモードが非対称に分布するように、
前記光を分散させる分散手段(64a、64b)とを備えてい
る、レーザ(21)。 6.前記分散手段が、屈折率及び光路長を有するコアを
備えており、前記屈折率が、変動する空間周波数で前記
光路長に関して振動する、前項5に記載のレーザ(21)。 7.前記分散手段(64a、64b)が、テーパがつけられた断
面積を有するコア(72)を備えている、前項5に記載のレ
ーザ(21)。 8.レーザ(21)におけるマルチモード化を抑制する方法
であって、レーザキャビティ(23)を設け、前記キャビテ
ィ(23)内で光を増幅させ、前記光をフィルタリングし、
前記光の基本モードを中心として前記光のサイドモード
を非対称に分布させる、という各ステップを有してい
る、マルチモード化抑制方法。
【図面の簡単な説明】
【図1】従来のレーザ内の共振キャビティを示すブロッ
ク図である。
【図2A】図1の共振キャビティ内の光生成/増幅機構
を示す平面図である。
【図2B】図2Aの光生成/増幅機構の正面図である。
【図3】図1の共振キャビティを通過する光の「振幅」
対「波長」を示すグラフである。
【図4】本発明の望ましい実施態様の共振キャビティを
示すブロック図である。
【図5】図4の共振キャビティを通過する光の「振幅」
対「波長」を示すグラフである。
【図6】図4に示す非対称分散エンハンサの縦断面図で
ある。
【図7】図6の非対称分散エンハンサの「屈折率」対
「光路長」を示すグラフである。
【図8】本発明の第2の実施態様の共振キャビティを示
すブロック図である。
【図9A】図8に示す非対称分散エンハンサの正面図で
ある。
【図9B】図9Aに示す非対称エンハンサの平面図であ
る。
【符号の説明】
21 レーザ 23 キャビティ 25 利得媒体 64a 非対称分散エンハンサ 64b 非対称分散エンハンサ 67 コア 72 テーパ状コア
───────────────────────────────────────────────────── フロントページの続き (71)出願人 399117121 395 Page Mill Road P alo Alto,California U.S.A.

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 キャビティ(23)を有するレーザ(21)であ
    って、 前記キャビティ(23)内に配置された利得媒体(25)と、 前記キャビティ(23)内に配置された非対称分散エンハン
    サ(64a、64b)と を備えている、レーザ(21)。
JP11333157A 1998-11-24 1999-11-24 レ―ザのマルチモ―ド化挙動を抑制するためのシステム及び方法 Pending JP2000164961A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/199,987 US6487232B1 (en) 1998-11-24 1998-11-24 System and method for suppressing multimoding behavior of lasers
US199987 1998-11-24

Publications (2)

Publication Number Publication Date
JP2000164961A true JP2000164961A (ja) 2000-06-16
JP2000164961A5 JP2000164961A5 (ja) 2006-09-07

Family

ID=22739852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11333157A Pending JP2000164961A (ja) 1998-11-24 1999-11-24 レ―ザのマルチモ―ド化挙動を抑制するためのシステム及び方法

Country Status (4)

Country Link
US (1) US6487232B1 (ja)
EP (1) EP1005118B1 (ja)
JP (1) JP2000164961A (ja)
DE (1) DE69927338T2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6487232B1 (en) * 1998-11-24 2002-11-26 Agilent Technologies, Inc. System and method for suppressing multimoding behavior of lasers
JP2006019516A (ja) * 2004-07-01 2006-01-19 Fujitsu Ltd 波長可変レーザ及びその制御方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3395366A (en) 1963-09-19 1968-07-30 American Optical Corp Mode selective laser structure
US4615032A (en) * 1984-07-13 1986-09-30 At&T Bell Laboratories Self-aligned rib-waveguide high power laser
US4719632A (en) * 1985-06-19 1988-01-12 California Institute Of Technology Single contact tailored gain chirped arrays of diode lasers for supermode control with single-lobed farfield patterns
GB8805016D0 (en) * 1988-03-02 1988-03-30 British Telecomm Laser amplifier
DE69131383T2 (de) * 1990-02-20 2000-01-20 British Telecommunications P.L.C., London Durchstimmbare optische filter
US5333219A (en) * 1992-12-17 1994-07-26 At&T Bell Laboratories Asymmetric Y-branch optical device
US5499261A (en) * 1993-01-07 1996-03-12 Sdl, Inc. Light emitting optical device with on-chip external cavity reflector
US5561676A (en) * 1995-02-06 1996-10-01 The United States Of America As Represented By The Secretary Of The Navy Compound-cavity, high-power, modelocked semiconductor laser
US5513196A (en) * 1995-02-14 1996-04-30 Deacon Research Optical source with mode reshaping
US5764681A (en) * 1995-11-03 1998-06-09 Cornell Research Foundation, Inc. Directional control method and apparatus for ring laser
CA2279420C (en) * 1997-02-13 2007-11-06 Ionas A/S Polarisation asymmetric active optical waveguide, method of its production, and its uses
US5818630A (en) * 1997-06-25 1998-10-06 Imra America, Inc. Single-mode amplifiers and compressors based on multi-mode fibers
US6134257A (en) * 1998-04-21 2000-10-17 Lucent Technologies Inc. Solid state laser for operation in librational modes
US5949801A (en) * 1998-07-22 1999-09-07 Coretek, Inc. Tunable laser and method for operating the same
US6487232B1 (en) * 1998-11-24 2002-11-26 Agilent Technologies, Inc. System and method for suppressing multimoding behavior of lasers

Also Published As

Publication number Publication date
EP1005118A3 (en) 2000-09-20
EP1005118B1 (en) 2005-09-21
DE69927338T2 (de) 2006-06-22
EP1005118A2 (en) 2000-05-31
US6487232B1 (en) 2002-11-26
DE69927338D1 (de) 2006-02-02

Similar Documents

Publication Publication Date Title
US5541947A (en) Selectively triggered, high contrast laser
US20110211598A1 (en) Fiber-Based Ultrafast Laser
JPH04287384A (ja) 縦モ−ド選択レ−ザ−
JPH08171104A (ja) チャープ・ブラッグ格子による光パルス増幅方法および増幅装置
JP6687060B2 (ja) 光導波路、それを用いた光部品および波長可変レーザ
JP2010091737A (ja) 光共振器及び波長可変レーザ
JP2004193545A (ja) スペクトル依存性空間フィルタリングによるレーザの同調方法およびレーザ
US6807338B2 (en) Multiwavelength cascaded raman resonator
US20050008045A1 (en) Laser with reflective etalon tuning element
US11451006B2 (en) Fiber laser device, production method for fiber laser device, and setting method
JP3460724B2 (ja) 光学発振器
US3660779A (en) Athermalization of laser rods
JP2000164961A (ja) レ―ザのマルチモ―ド化挙動を抑制するためのシステム及び方法
EP1553666B1 (en) Cascaded Raman laser with unpaired reflector
WO2002093704A1 (en) Optical fiber and system containing same
US6959023B1 (en) Laser with reflective etalon tuning element
JP2006019516A (ja) 波長可変レーザ及びその制御方法
WO2020145173A1 (ja) 波長可変レーザ
US20110249689A1 (en) Devices, systems, and methods providing micro-ring and/or micro-racetrack resonator
JP2000019328A (ja) 光損失フィルタ
JP4107426B2 (ja) ゲインクランプ光増幅器
JP2004511914A (ja) 波長可変単一モードレーザ装置
JPH09211504A (ja) レーザパルス圧縮装置
US20060056465A1 (en) Laser with reflective etalon tuning element
JP2002076509A (ja) レーザ光源

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303