WO2020145173A1 - 波長可変レーザ - Google Patents

波長可変レーザ Download PDF

Info

Publication number
WO2020145173A1
WO2020145173A1 PCT/JP2019/051061 JP2019051061W WO2020145173A1 WO 2020145173 A1 WO2020145173 A1 WO 2020145173A1 JP 2019051061 W JP2019051061 W JP 2019051061W WO 2020145173 A1 WO2020145173 A1 WO 2020145173A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
light
input
tunable laser
optical
Prior art date
Application number
PCT/JP2019/051061
Other languages
English (en)
French (fr)
Inventor
勇介 村中
松尾 慎治
伸浩 布谷
橋本 俊和
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/418,597 priority Critical patent/US20220077645A1/en
Publication of WO2020145173A1 publication Critical patent/WO2020145173A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/136Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity
    • H01S3/137Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity for stabilising of frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/142External cavity lasers using a wavelength selective device, e.g. a grating or etalon which comprises an additional resonator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/083Ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers

Definitions

  • the present invention relates to a wavelength tunable laser, and more particularly to a wavelength tunable laser used in wavelength multiplexing large capacity communication.
  • the link connecting nodes has increased the transmission capacity by bundling signals having multiple wavelengths on which different signals are superimposed and transmitting them simultaneously.
  • a laser capable of generating light having a minute wavelength difference is indispensable, and a wavelength tunable laser has been conventionally used.
  • Compound semiconductors such as GaAs (gallium arsenide) and InP (indium phosphide) are used as the material of the light emitting element of the wavelength tunable laser that operates in the communication wavelength band.
  • a wavelength tunable laser using a semiconductor material plays an important role in wavelength multiplexing large capacity communication.
  • FIG. 1 is a block diagram of a conventional monolithic integrated wavelength tunable laser 1 including a ring resonator.
  • the gain region and the phase adjustment region include the input/output waveguide 13, and the filter region includes the Sagnac interferometer.
  • One output port of the 2 ⁇ 2 optical coupler 18 is connected to one input port of the 2 ⁇ 2 optical coupler 17 via the curved waveguide 10a.
  • One output port of the 2 ⁇ 2 optical coupler 17 is connected to one input port of the 2 ⁇ 2 optical coupler 18 via the curved waveguide 10b.
  • the two linear waveguides 11 and 12 are arranged close to a ring waveguide including two 2 ⁇ 2 optical couplers 17 and 18 and two curved waveguides 10a and 10b.
  • the filter region is a Sagnac interferometer having a ring resonator configuration.
  • the Sagnac interferometer functions as a loop mirror.
  • This ring resonator functions as an optical filter in which the intensity of transmitted light increases at regular frequency intervals (Free Spectral Range, hereinafter referred to as FSR).
  • the light from the gain region and the phase adjustment region passes through the input/output waveguide 13 and is equally distributed by the 1 ⁇ 2 optical coupler 19 constituting the optical branching/coupling unit 16, and the linear waveguides 11 and After passing through 12, optical coupling is generated in the optical coupling portions 14 and 15, and the optical coupling circuit circulates in the ring waveguide clockwise and counterclockwise, again enters the 1 ⁇ 2 optical coupler 19, and is emitted to the outside. ..
  • FSR is increased, that is, the resonator length (optical path length in the ring resonator) is shortened.
  • a high-mesa optical waveguide that can increase the curvature of the curved waveguide is often used.
  • FIG. 2 is a schematic diagram of a cross section of an example of a conventionally used high-mesa optical waveguide 2.
  • the high-mesa waveguide 2 is laminated on the substrate 20, the lower clad 22, the core layer 23, and the upper clad 24 in this order from the lower side.
  • a lower electrode 25b is provided below the lowermost substrate, and an upper electrode 25a is provided above the uppermost upper cladding 24.
  • the substrate 20 and the lower cladding 22 are composed of n-InP
  • the core layer 23 is composed of InGaAsP
  • the upper cladding 24 is composed of p-InP
  • the upper electrode 25a is composed of InGaAsP doped with a p-type dopant.
  • the optical branching/coupling unit 16 between the filter region and the gain region and the optical coupling units 14 and 15 connected to the ring waveguide (curved waveguide 10) forming the ring resonator have multimode interference ( MMI) coupler is used.
  • MMI multimode interference
  • FIG. 3 is an enlarged view of the ring resonator.
  • the refractive index can be modulated at high speed in about nanoseconds.
  • the longitudinal mode interval is finely adjusted, and it is possible to accurately adjust to a desired oscillation wavelength. This phase adjustment is also performed by current injection.
  • Finesse is one of the indicators of the performance of the ring resonator type tunable laser.
  • the finesse represents the sharpness of resonance at the resonance frequency, and the finesse improves as the number of revolutions inside the ring resonator increases.
  • 50% MMI optical couplers are used as the 2 ⁇ 2 optical couplers 17 and 18 that configure the optical coupling units 14 and 15, 50% of the MMI optical couplers are used outside the rings each time the MMI coupler is passed. It will emit light.
  • Patent Document 1 by changing the branching ratio of the MMI coupler and suppressing the light emission rate to the outside of the ring, the light output to the output 2 without being coupled to the ring resonator becomes large.
  • the finesse can be improved by increasing the number of turns of the light coupled to the ring resonator.
  • the coupling length of the MMI is generally long, and the bending waveguide 10 forming the ring resonator is required to have a smaller radius.
  • a relatively small bending radius can be realized by the high-mesa optical waveguide, a waveguide having a small bending radius has a large propagation loss, which is not preferable. It is required to realize a structure capable of expanding FSR while increasing the bending radius of the waveguide in the ring resonator.
  • the finesse deteriorates because the proportion of light emitted to the outside increases. Also in this case, finesse can be improved by using the ring resonator configured by connecting the bar ports among the output ports of the MMI coupler.
  • the waveguide connected to the radiation waveguide that discards light other than the resonance peak wavelength serves as an inner port of the MMI coupler, light other than the resonance peak wavelength remains inside the ring resonator. Light other than the resonance peak wavelength from the radiation waveguide cannot be escaped to the outside of the ring and is coupled to the ring resonator to deteriorate the filter characteristics.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to realize good filter characteristics in a wavelength tunable laser capable of improving finesse.
  • the first aspect of the present invention is a wavelength tunable laser provided with a filter region having a wavelength selection function for light from the gain region.
  • the filter region is a Sagnac interferometer that functions as a loop mirror, and includes two ring resonators, and the ring resonator includes two optical couplers and two optical couplers.
  • a first and a second curved waveguide that connect to each other, and two optical couplers each input light from a gain region from an input/output port, and have a resonance peak light and a light other than the resonance peak wavelength.
  • the resonance peak light is coupled to the bar port of the input/output port, and the light other than the resonance peak wavelength is coupled to the cross port of the input/output port.
  • the input/output ports of the optical coupler are connected between the bar ports, and the second curved waveguide is connected between the cross ports of the ports to which the first curved waveguides of the two optical couplers are connected.
  • FIG. 6 is an enlarged view of a portion of a ring resonator having an MMI coupler with a coupling efficiency of 50:50. It is an enlarged view of a part of a ring resonator having an MMI coupler with a coupling efficiency of 85:15.
  • FIG. 3 is an enlarged view of a ring resonator portion of the wavelength tunable laser according to the embodiment of the present invention. 3 is an enlarged view of a portion of the ring resonator according to the first embodiment.
  • FIG. FIG. 7 is an enlarged view of a portion of a ring resonator according to a modified example of the first embodiment.
  • FIG. 6 is an enlarged view of a portion of a ring resonator according to a second embodiment.
  • a high-mesa optical waveguide capable of realizing a steep bending radius is used as the ring waveguide for connecting the 2 ⁇ 2 optical coupler forming the ring resonator. ..
  • an MMI optical coupler which has low loss and can be easily manufactured is used.
  • the length of the optical coupling portion optical coupling length
  • the known directional coupler composed of a high-mesa optical waveguide has a manufacturing problem. ..
  • the high-mesa optical waveguide has a large relative refractive index difference with air, so that light seeps out in the lateral direction is small.
  • the distance between the two high-mesa optical waveguides must be 0.1 micron or less in order to shorten the optical coupling length.
  • the MMI optical coupler has the above-mentioned advantages, it has a drawback that only fixed optical coupling efficiency can be obtained.
  • the length L MMI of the MMI optical coupler that determines the optical coupling efficiency of the light incident on the input port to the cross port is expressed by the following equation (1).
  • n eq is the equivalent refractive index
  • W wg is the width of the input/output waveguide
  • W gap is the input/output waveguide spacing
  • is the wavelength used.
  • the ring resonator has a feature that the finesse is improved as the optical coupling efficiency to the cross port is reduced in the optical coupling section. That is, the light further circulates around the ring resonator, the resonance becomes sharp, and the wavelength selection performance is improved. Therefore, the branching ratio is changed from 50% so that more light circulates inside the ring.
  • FIG. 4 shows an enlarged view of the ring resonator part when an MMI optical coupler with a coupling efficiency of 85% is used.
  • M in the formula (1) 3/2 times 50% MMI, and the ratio of the MMI optical coupler length to the resonator length (the length of the waveguide forming the ring resonator) is large.
  • the curved waveguide is required to have a small bending radius.
  • the above influence is particularly large, and therefore, the FSR that can be manufactured is limited.
  • a structure using an MMI optical coupler with a coupling efficiency of 15% is adopted, and a structure not using a structure in which cross ports of an MMI optical coupler generally used in a conventional ring resonator are connected but a bar port is used. The structure will be connected.
  • FIG. 5 shows a configuration of a ring resonator 500 using an MMI optical coupler with a coupling efficiency of 15% according to this embodiment.
  • the ring resonator 500 includes two 2-input/2-output MMI optical couplers 50 and 51 and curved waveguides 56 and 57 that connect the two MMI optical couplers 50 and 51.
  • the ring resonator 500 includes a light input linear waveguide and an optical discard waveguide 510 a connected to the MMI optical coupler 51, and an optical output linear waveguide and an optical discard waveguide connected to the MMI optical coupler 50.
  • the waveguide 510b is further provided.
  • the linear waveguide for optical input is connected to the first input/output port 52 of the MMI optical coupler 51.
  • the curved waveguide 56 is connected to the bar port 54 for the first input/output port 52 of the MMI optical coupler 51 and the bar port 55 for the first input/output port 53 of the MMI optical coupler 50.
  • the optical output linear waveguide is connected to the bar port 53 for the first input/output port 55 of the MMI optical coupler 50.
  • the curved waveguide 57 is connected to the cross port 509 for the first input/output port 55 of the MMI optical coupler 50 and the second input/output port 508 of the MMI optical coupler 51.
  • An optical discarding waveguide 510a is connected to a cross port (bar port for the second input/output port 508) 58 for the first input/output port 55 of the MMI optical coupler 51.
  • An optical discarding waveguide 510b is connected to the second input/output port of the MMI optical coupler 50.
  • the cross ports of the MMI optical coupler are connected by a waveguide to form a ring resonator,
  • the cross port waveguide from the input 1 is a waste waveguide inside the ring resonator.
  • FIG. 6 is a configuration diagram of the ring resonator 600 according to the first embodiment.
  • the input 1 waveguide is input to the 15:85 MMI optical coupler 51, 15% of the light is coupled to the ring waveguide (curved waveguide 56) of the ring resonator 600, and 85% of the light is inside the ring resonator.
  • the sacrificial waveguide is bent with a smaller bend radius than the curved waveguide 56 of the ring resonator and is connected to the slab region 60 in the center of the ring.
  • the slab region 60 has an elliptical shape, light entering the slab waveguide is reflected at the boundary of the slab region 60, and all light reflected at any angle is focused on the ellipse. With the structure shown in FIG. 6, the light input to the discarding waveguide is uniformly scattered and absorbed, so that the light returning to the inside of the ring resonator can be reduced.
  • the bending radius of the connecting portion of the discarding waveguides (optical discarding waveguides 510a and 510b) with the slab region 60 is made smaller so that the slab region 60 at the center of the connecting ring is acutely angled to the slab region 60.
  • FIG. 8 is a structural diagram of the ring resonator 800 according to the second embodiment.
  • the input 1 waveguide is input to the 15:85 MMI optical coupler 51, and 15% of the light is coupled to the ring waveguide (curved waveguide 56) of the ring resonator 800, and 85%.
  • Light is coupled to the waste waveguide (light discarding waveguide 510a) inside the ring resonator.
  • the sacrificial waveguide is bent with a smaller bend radius than the curved waveguide 56 of the ring resonator and is connected to the absorption region 80 in the center of the ring.
  • the active layer used for the gain region of the wavelength tunable laser is left in an elliptical shape, and the light absorbing function of the active layer is used.
  • unnecessary light can be absorbed, so that optical coupling to the inside of the ring resonator due to scattering can be reduced.

Abstract

フィネスを向上可能な波長可変レーザにおいて、良好なフィルタ特性を実現する。利得領域からの光に対する波長選択機能を有するフィルタ領域を備えた波長可変レーザは、フィルタ領域はサニャック干渉計であり、2つのリング共振器(500)を含む。リング共振器は、2つの光結合器(50,51)と、2つの光結合器を接続する第1および第2の曲線導波路(56,57)とを有し、2つの光結合器は各々に、入出力ポート(52,53)から利得領域からの光を入力し、共振ピークの光を入出力ポートのバーポート(54,55)に結合し、共振ピーク波長以外の光を前記入出力ポートのクロスポート(58,59)に結合するように構成され、第1の曲線導波路は2つの光結合器の入出力ポートのバーポート間を、第2の曲線導波路は2つの光結合器の第1の曲線導波路が接続されたポートのクロスポート間を接続する。

Description

波長可変レーザ
 本発明は、波長可変レーザに関し、より詳細には、波長多重大容量通信において用いる波長可変レーザに関する。
 近年、通信トラフィックの急激な増大に対応すべく、ノード間を結ぶリンクは、それぞれ異なる信号が重畳された複数の波長を有する信号を束ねて同時に伝送することにより、伝送容量を増加させている。この波長多重信号の伝送の実現するためには、微少な波長差を有する光を生成可能なレーザが不可欠であり、従来、波長可変レーザが用いられている。
 通信波長帯で動作する波長可変レーザの発光素子の材料は、GaAs(ヒ化ガリウム)やInP(リン化インジウム)などの化合物半導体が用いられている。半導体材料を用いた波長可変レーザ(半導体波長可変レーザ)は、波長多重大容量通信において重要な役割を担っている。
 図1は、従来の、リング共振器を備えるモノリシック集積型波長可変レーザ1の構成図である。利得領域および位相調整領域は入出力導波路13を含み、フィルタ領域はサニャック干渉計を含む。
 2×2光カプラ18の1つの出力ポートは、曲線導波路10aを介して、2×2光カプラ17の1つの入力ポートに接続されている。2×2光カプラ17の1つの出力ポートは、曲線導波路10bを介して、2×2光カプラ18の1つの入力ポートに接続されている。ここで、2本の直線導波路11,12は、2つの2×2光カプラ17,18と2本の曲線導波路10a,10bを含んでなるリング導波路と近接して配置されている。すなわち、フィルタ領域は、リング共振器の構成を有するサニャック干渉計である。サニャック干渉計はループミラーとして機能する。このリング共振器は、一定の周波数間隔(Free Spectral Range、以下FSRという)で透過光の強度が増大する光フィルタとして機能する。
 この構成において、利得領域、位相調整領域からの光は、入出力導波路13を通過し、光分岐・結合部16を構成する1×2光カプラ19により等分配され、それぞれ直線導波路11,12を通過して光カップリング部14,15で光カップリングを生じ、右回りと左回りにリング導波路内を周回し、再び1×2光カプラ19に入射され、外部へと放出される。
 一般に利用される通信波長帯、例えばC帯(波長1530~1570nm)をカバーするように大きな波長可変範囲を得るためには、FSRを大きく、すなわち共振器長(リング共振器における光路長)を短くする必要がある。そのため、曲線導波路の曲率をより大きくすることが可能なハイメサ光導波路が用いられることが多い。
 図2は、従来利用されているハイメサ光導波路2の1例の断面の模式図である。ハイメサ導波路2は、下側から順に、基板20、下部クラッド22、コア層23、上部クラッド24に積層されている。最下層の基板の下側に下部電極25b、最上層の上部クラッド24の上部に上部電極25aが設けられている。基板20および下部クラッド22はn-InPで、コア層23はInGaAsPで、上部クラッド24はp-InPで、上部電極25aはp型ドーパントがドープされているInGaAsPで、それぞれ構成されている。図2のハイメサ光導波路2は、下部クラッド層22まで垂直に半導体をエッチングした構造である。フィルタ領域と利得領域との間の光分岐・結合部16や、リング共振器を構成するリング導波路(曲線導波路10)と接続された光カップリング部14,15には、マルチモード干渉(MMI)カプラを用いている。
 図3は、リング共振器を拡大した図である。電流注入により、ナノ秒程度で高速に屈折率変調が可能である。さらに位相調整用の光導波路(位相調整領域)をレーザ内に設けることにより縦モード間隔を微調整し、正確に所望の発振波長に調整可能としている。この位相調整も電流注入によって行う。
特開2013-093627号公報
 リング共振器型波長可変レーザの性能を示す指標の一つとして、フィネスが挙げられる。フィネスは共振周波数における共振の鋭さを表し、リング共振器内部での周回回数が多い程、フィネスが向上する。図1では、光カップリング部14,15を構成する2×2光カプラ17,18として、50%のMMI光カプラを用いているため、MMIカプラを通過するたびに、リング外部に50%の光を放出することになる。特許文献1に示されているように、MMIカプラの分岐比を変え、リング外部への光の放出率を抑えることで、リング共振器に結合せず出力2に出力される光は大きくなるが、リング共振器に結合された光の周回回数を増やすことでフィネスの向上が可能である。しかし、この場合一般的にMMIの結合長は長くなり、リング共振器を形成する曲げ導波路10の半径はより小さなものが要求される。ハイメサ光導波路により、比較的小さな曲げ半径が実現可能ではあるが、曲げ半径の小さい導波路は伝搬損失が大きく、好ましくない。リング共振器内の導波路曲げ半径を大きくとりつつ、FSRの拡大が可能な構造の実現が求められる。
 図3の一般的な結合効率50%のMMIカプラを利用した場合に対して、逆に、バーポートへの結合効率を下げることでMMIカプラの結合長を小さくすることが可能となるが、リング外部に放出する光の割合が上がるため、フィネスは劣化する。この場合においても、MMIカプラの出力ポートのうちバーポート間を接続して構成したリング共振器とすることで、フィネスの向上が可能である。しかしながら、共振ピーク波長以外の光を廃棄する放射導波路に接続される導波路はMMIカプラの内側のポートとなるため、共振ピーク波長以外の光はリング共振器内部に残ることとなる。この放射導波路からの共振ピーク波長以外の光はリング外部に逃す術がなくリング共振器に結合し、フィルタ特性を劣化させる。
 本発明は、上記課題を鑑みなされたものであり、フィネスを向上可能な波長可変レーザにおいて、良好なフィルタ特性を実現することを目的とする。
 このような目的を達成するために、本発明の第1の態様は、利得領域からの光に対する波長選択機能を有するフィルタ領域を備えた波長可変レーザある。一実施形態に係る波長可変レーザにおいて、フィルタ領域は、ループミラーとして機能するサニャック干渉計であり、2つのリング共振器を含み、リング共振器は、2つの光結合器と、2つの光結合器を接続する第1および第2の曲線導波路とを有し、2つの光結合器は各々に、入出力ポートから利得領域からの光を入力し、共振ピークの光と共振ピーク波長以外の光とに分岐し、共振ピークの光を入出力ポートのバーポートに結合し、共振ピーク波長以外の光を入出力ポートのクロスポートに結合するように構成され、第1の曲線導波路は2つの光結合器の入出力ポートのバーポート間を接続し、第2の曲線導波路は2つの光結合器の第1の曲線導波路が接続されたポートのクロスポート間を接続する。
 以上説明したように、本発明によれば、フィネスを向上可能な波長可変レーザにおいて、良好なフィルタ特性を実現することが可能となる。
従来の波長可変レーザを説明するための図である。 ハイメサ光導波路の断面の模式図である。 結合効率50:50のMMIカプラを有するリング共振器の部分の拡大図である。 結合効率85:15のMMIカプラを有するリング共振器の部分の拡大図である。 本発明の実施形態に係る波長可変レーザのリング共振器の部分の拡大図である。 実施例1に係るリング共振器の部分の拡大図である。 実施例1の変形例に係るリング共振器の部分の拡大図である 実施例2に係るリング共振器の部分の拡大図である。
 以下図面を参照して本願発明の実施形態を説明する。同一または類似の参照符号は、同一または類似の要素を示すものとし、重複する説明は省略する。
 本実施形態では、図2、図3を参照して説明したようにリング共振器を構成する2×2光カプラを接続するリング導波路として、急峻な曲げ半径を実現可能なハイメサ光導波路を用いる。また、2×2光カプラには低損失かつ容易に作製可能なMMI光カプラを用いる。共振器長Lを小さくするには光カップリング部の長さ(光結合長)も縮小しなければならないが、ハイメサ光導波路で構成される公知の方向性結合器では、作製上の問題がある。ハイメサ光導波路は、空気との比屈折率差が大きいため光の横方向へのしみ出しが小さい。したがって、光カップリング部にハイメサ光導波路で構成された方向性結合器を用いた場合、光結合長を短くするためには2本のハイメサ光導波路の間隔を0.1ミクロン以下にする必要があるが、0.1ミクロン程度の幅をもつ深い溝(一般に深さが3~4ミクロン)をエッチング等で形成することは加工上、非常に困難である。
 MMI光カプラは、上述した利点をもつ一方で、固定の光結合効率しか得られないという欠点をもつ。リング共振器に用いる2×2MMI光カプラの場合、入力ポートに入射された光のクロスポートへの光結合効率を決めるMMI光カプラの長さLMMIは、次式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 ここで、neqは等価屈折率、Wwgは入出力導波路の幅、Wgapは入出力導波路間隔、λは使用波長である。50%MMIの場合、式中のMを2とすることで、入力光フィールドは等しく分岐され、結合効率50%のカプラとして動作する。リング共振器は、その光カップリング部においてクロスポートへの光結合効率が小さくなればなるほどフィネスが向上する特徴がある。すなわち、光がリング共振器をより周回し共振が鋭くなり波長選択性能が向上する。そこで、分岐比を50%から変化させて、より多くの光がリング内部で周回するように調整する。
 図4は、結合効率85%のMMI光カプラを用いた場合のリング共振器の部分の拡大図を示す。式(1)中のMを3とすることで、MMIに入力された光の85%がバーポートに結合させることができる。しかしながらこの場合、MMI光カプラの長さは50%MMIの3/2倍となり、共振器長(リング共振器を構成する導波路の長さ)に対する、MMI光カプラ長の割合が大きくなる。それによって、MMI間を接続する光導波路を短くする必要があり、曲線導波路には小さい曲げ半径が求められる。FSRの大きいリング共振器では、上記の影響は特に大きいため、作製可能なFSRに制限が加わる。
 そこで本実施形態では、結合効率15%のMMI光カプラを用いた構造を採用し、従来のリング共振器で一般的に用いられたMMI光カプラのクロスポート間を接続した構造ではなく、バーポート間を接続した構造とする。
 図5は、本実施形態の結合効率15%のMMI光カプラを用いたリング共振器500の構成を示す。リング共振器500は、2つの2入力2出力のMMI光カプラ50、51と、2つのMMI光カプラ50、51を接続する曲線導波路56、57とを備える。また、リング共振器500は、MMI光カプラ51に接続された光入力用の直線導波路および光破棄用導波路510a、MMI光カプラ50に接続された光出力用の直線導波路および光破棄用導波路510bをさらに備える。
 光入力用の直線導波路はMMI光カプラ51の第1入出力ポート52に接続されている。曲線導波路56はMMI光カプラ51の第1入出力ポート52に対するバーポート54およびMMI光カプラ50の第1入出力ポート53に対するバーポート55に接続されている。光出力用の直線導波路はMMI光カプラ50の第1入出力ポート55に対するバーポート53に接続されている。曲線導波路57はMMI光カプラ50の第1入出力ポート55に対するクロスポート509およびMMI光カプラ51の第2入出力ポート508に接続されている。MMI光カプラ51の第1入出力ポート55に対するクロスポート(第2入出力ポート508に対するバーポート)58には光破棄用導波路510aが接続されている。MMI光カプラ50の第2の入出力ポートには光破棄用導波路510bが接続されている。
 MMI光カプラ50、51において、式(1)中のMを1とすることでMMIに入力された光の15%がバーポートに結合される。MMI光カプラのバーポートに15%の光が結合されるとき、85%の光はクロスポートに接続されるため、MMI光カプラのクロスポート間を導波路で接続して、リング共振器とし、入力1からのクロスポートの導波路はリング共振器内部の捨て導波路とする。
 この場合、捨て導波路はリング内部で光が放射されるため、リングを構成する導波路に再度結合し、共振する光に影響を与えるため、レーザの特性を劣化させる要因となり得る。そこで、捨て導波路の光をリング共振器に結合させない構造の実施例を以下に示す。
 [実施例1]
 図6は、実施例1に係るリング共振器600の構成図である。入力1の導波路は15:85のMMI光カプラ51に入力され、15%の光がリング共振器600のリング導波路(曲線導波路56)に結合され、85%の光はリング共振器内部の捨て導波路(光廃棄用導波路510a)に結合される。捨て導波路は、リング共振器の曲線導波路56よりも小さい曲げ半径で曲げられ、リング中央のスラブ領域60に接続される。スラブ領域60は楕円形状とし、スラブ導波路に入った光はスラブ領域60の境界で反射され、どのような角度で反射された光もすべて、楕円の焦点に集まる。図6の構造とすることで、捨て導波路に入力された光は均一に散乱、および吸収されるため、リング共振器内部に戻る光を少なくすることができる。
 さらに、図7のように捨て導波路(光廃棄用導波路510a,510b)のスラブ領域60との接続部の曲げ半径をより小さくし、スラブ領域60に鋭角に接続リング中央のスラブ領域60への入力角度を調整することで、例えば、スラブ導波路60に鋭角に接続することで、スラブ導波路結合時の反射の影響を抑えることが可能となる。
 [実施例2]
 図8は、実施例2に係るリング共振器800の構造図である。実施例1と同様に、入力1の導波路は15:85のMMI光カプラ51に入力され、15%の光がリング共振器800のリング導波路(曲線導波路56)に結合され、85%の光はリング共振器内部の捨て導波路(光廃棄用導波路510a)に結合される。捨て導波路は、リング共振器の曲線導波路56よりも小さい曲げ半径で曲げられ、リング中央の吸収領域80に接続される。リング中央の吸収領域80には、波長可変レーザの利得領域に用いる活性層を楕円形に残し、活性層の光の吸収機能を利用する。実施例1の楕円構造に加えて、不要な光の吸収が可能となるため、散乱によるリング共振器内部への光結合を少なくすることができる。
1 モノリシック集積型波長可変レーザ
10a,10b 曲線導波路
11,12 直線導波路
13 入出力導波路
14,15 光カップリング部
16 光分岐・結合部
17,18 2×2光カプラ
19 1×2光カプラ
2 ハイメサ光導波路
20 基板
22 下部クラッド
23 コア層
24 上部クラッド
25a 上部電極
25b 下部電極
3,4 リング共振器
40、41 2×2光カプラ
50、51 分岐比15:85のMMI光カプラ
500 リング共振器
52、55 第1入出力ポート
53、54 バーポート
56、57 曲線導波路
58、509 クロスポート
59、508 第2入出力ポート
510a、510b 光破棄用導波路
60 スラブ領域
600 リング共振器
70a、70b 接続部
80 吸収領域
800 リング共振器

Claims (8)

  1.  利得領域からの光に対する波長選択機能を有するフィルタ領域を備えた波長可変レーザであって、
     前記フィルタ領域は、ループミラーとして機能するサニャック干渉計であり、2つのリング共振器を含み、
     前記リング共振器は、2つの光結合器と、前記2つの光結合器を接続する第1および第2の曲線導波路とを有し、
     前記2つの光結合器は各々に、入出力ポートから前記利得領域からの光を入力し、共振ピークの光と共振ピーク波長以外の光とに分岐し、前記共振ピークの光を前記入出力ポートのバーポートに結合し、前記共振ピーク波長以外の光を前記入出力ポートのクロスポートに結合するように構成され、
     前記第1の曲線導波路は前記2つの光結合器の前記入出力ポートのバーポート間を接続し、前記第2の曲線導波路は前記2つの光結合器の前記第1の曲線導波路が接続されたポートのクロスポート間を接続する、波長可変レーザ。
  2.  前記リング共振器の周回内部に、前記2つの光結合器の前記入出力ポートの前記クロスポートに接続された、前記共振ピーク波長以外の光を廃棄する2つの放射導波路をさらに備えた、請求項1に記載の波長可変レーザ。
  3.  前記2つの光結合器は、前記共振ピーク波長以外の光が前記放射導波路へ結合される割合が、前記共振ピークの光が前記第1の曲線導波路へ結合される割合に比べて高くなるように構成されている、請求項2に記載の波長可変レーザ。
  4.  前記放射導波路が、前記リング共振器の周回内部において、楕円形状のスラブ導波路に接続されている、請求項2または3に記載の波長可変レーザ。
  5.  前記放射導波路が、前記楕円形状のスラブ導波路に鋭角に接続されている、請求項4に記載の波長可変レーザ。
  6.  前記放射導波路が、前記リング共振器の周回内部において、前記レーザ利得領域の活性層と同じ活性層を有する導波路に接続されている、請求項2または3に記載の波長可変レーザ。
  7.  前記光結合器はマルチモード干渉カプラである、請求項1から6のいずれか一項に記載の波長可変レーザ。
  8.  前記光結合器は方向性結合器である、請求項1から6のいずれか一項に記載の波長可変レーザ。
PCT/JP2019/051061 2019-01-07 2019-12-26 波長可変レーザ WO2020145173A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/418,597 US20220077645A1 (en) 2019-01-07 2019-12-26 Tunable Laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019000813A JP7095605B2 (ja) 2019-01-07 2019-01-07 波長可変レーザ
JP2019-000813 2019-01-07

Publications (1)

Publication Number Publication Date
WO2020145173A1 true WO2020145173A1 (ja) 2020-07-16

Family

ID=71520682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051061 WO2020145173A1 (ja) 2019-01-07 2019-12-26 波長可変レーザ

Country Status (3)

Country Link
US (1) US20220077645A1 (ja)
JP (1) JP7095605B2 (ja)
WO (1) WO2020145173A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172919A1 (ja) * 2021-02-09 2022-08-18 古河電気工業株式会社 光学デバイスおよび波長可変レーザ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012198465A (ja) * 2011-03-23 2012-10-18 Toshiba Corp リング光変調器
JP2013093627A (ja) * 2013-02-18 2013-05-16 Nippon Telegr & Teleph Corp <Ntt> 半導体波長可変レーザ
WO2013145271A1 (ja) * 2012-03-30 2013-10-03 富士通株式会社 光素子、光送信素子、光受信素子、ハイブリッドレーザ、光送信装置
US20180102625A1 (en) * 2016-10-07 2018-04-12 Ecole Polytechnique Federale De Lausanne (Epfl) Theta Laser

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003215515A (ja) * 2002-01-18 2003-07-30 Nippon Telegr & Teleph Corp <Ntt> 半導体波長可変フィルタ
JP4905854B2 (ja) * 2007-03-09 2012-03-28 日本電気株式会社 直接変調波長可変レーザ
JP2011142191A (ja) * 2010-01-06 2011-07-21 Nippon Telegr & Teleph Corp <Ntt> 半導体波長可変レーザ
US10466523B2 (en) * 2016-11-02 2019-11-05 Innolux Corporation Display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012198465A (ja) * 2011-03-23 2012-10-18 Toshiba Corp リング光変調器
WO2013145271A1 (ja) * 2012-03-30 2013-10-03 富士通株式会社 光素子、光送信素子、光受信素子、ハイブリッドレーザ、光送信装置
JP2013093627A (ja) * 2013-02-18 2013-05-16 Nippon Telegr & Teleph Corp <Ntt> 半導体波長可変レーザ
US20180102625A1 (en) * 2016-10-07 2018-04-12 Ecole Polytechnique Federale De Lausanne (Epfl) Theta Laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172919A1 (ja) * 2021-02-09 2022-08-18 古河電気工業株式会社 光学デバイスおよび波長可変レーザ

Also Published As

Publication number Publication date
JP7095605B2 (ja) 2022-07-05
JP2020109812A (ja) 2020-07-16
US20220077645A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
JP4942429B2 (ja) 半導体波長可変レーザ
JP5764875B2 (ja) 半導体光装置
JP5811273B2 (ja) 光素子、光送信素子、光受信素子、ハイブリッドレーザ、光送信装置
JP5772989B2 (ja) レーザ素子
JP5458194B2 (ja) 半導体波長可変レーザ
US7151876B2 (en) Optical resonator
US20090154505A1 (en) Wavelength tunable laser diode using double coupled ring resonator
US7149381B2 (en) Optical filtering device and method
CN108732667B (zh) 一种超结构光栅和可调谐激光器
US11342726B2 (en) Tunable semiconductor laser based on half-wave coupled partial reflectors
JP2011142191A (ja) 半導体波長可変レーザ
US7027476B2 (en) Tunable semiconductor lasers
WO2020145173A1 (ja) 波長可変レーザ
JP2012256667A (ja) 半導体レーザ光源
WO2020145176A1 (ja) 波長可変レーザ
WO2020145174A1 (ja) 波長可変レーザ
CN113644543B (zh) 一种波长可调谐的半导体激光器
US8379300B2 (en) Wavelength-variable light source with dual resonator loop circuit
JP2750667B2 (ja) 波長分割マルチプレクシング光通信システム用共振フィルター
JP2019091780A (ja) 半導体光素子
JP6714894B2 (ja) アレイ型光導波路、および半導体光集積素子
JPS63299291A (ja) 半導体レ−ザ
US20230089696A1 (en) Optical filter and wavelength tunable laser element
EP3499657A1 (en) Widely tunable laser with cross-connected ring resonator
JP5524821B2 (ja) 半導体レーザモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908754

Country of ref document: EP

Kind code of ref document: A1