JP2000097864A - Floodlight device for visual inspection - Google Patents
Floodlight device for visual inspectionInfo
- Publication number
- JP2000097864A JP2000097864A JP26663198A JP26663198A JP2000097864A JP 2000097864 A JP2000097864 A JP 2000097864A JP 26663198 A JP26663198 A JP 26663198A JP 26663198 A JP26663198 A JP 26663198A JP 2000097864 A JP2000097864 A JP 2000097864A
- Authority
- JP
- Japan
- Prior art keywords
- illumination
- light source
- illumination light
- glass substrate
- fresnel lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、大型液晶ガラス基
板などの外観検査に用いられる外観検査用投光装置に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light projector for visual inspection used for visual inspection of large liquid crystal glass substrates and the like.
【0002】[0002]
【従来の技術】従来、液晶ディスプレイのガラス基板の
品質を安定して保つため、基板上のレジストなどの膜厚
のむらやITO膜上のピンホールなどの外観検査を始
め、基板上に印刷されたパターンの乱れやむら、あるい
は基板表面に付着したごみや傷などの外観検査が極めて
重要になっている。2. Description of the Related Art Conventionally, in order to stably maintain the quality of a glass substrate of a liquid crystal display, an inspection of the appearance of unevenness in the thickness of a resist or the like on a substrate, a pinhole on an ITO film, etc., and a printing on the substrate have been carried out. It is very important to inspect the appearance of patterns for irregularities and irregularities, and dust and scratches attached to the substrate surface.
【0003】しかして、従来、このような外観検査に
は、外観検査用投光装置が用いられるが、このような外
観検査用投光装置のうち基板上のレジストなどの膜厚の
むらやITO膜上のピンホールなどの外観検査に適した
ものとして、図6に示すように光源101の背部に楕円
回転ミラー102を配置し、光源101からの照明光
を、楕円回転ミラー102で反射させ熱線吸収フィルタ
103を介してゲート104に集め、さらにフィルタ1
05を通して集光用フレネルレンズ106に入射させて
平行光束に規制し、この集光用フレネルレンズ106に
より規制される平行光束中に被検査部材としてガラス基
板107を所定の角度を持たせて配置して、このガラス
基板107面をむらなく照明するとともに、ガラス基板
107面より発生される微小な散乱光を観察者108の
目視により観察することで、基板上のレジストなどの膜
厚のむらやITO膜上のピンホールなどの欠陥部109
を検出するようにしたものがある。Conventionally, a light projector for visual inspection is used for such visual inspection. Among such light projectors for visual inspection, unevenness in film thickness of a resist or the like on a substrate and ITO film. As shown in FIG. 6, an elliptical rotating mirror 102 is arranged on the back of the light source 101 as a material suitable for visual inspection of the upper pinhole and the like, and the illumination light from the light source 101 is reflected by the elliptical rotating mirror 102 to absorb heat rays. Collected at the gate 104 via the filter 103,
05, the light is incident on the Fresnel lens 106 for condensing, and is regulated to a parallel light flux. The glass substrate 107 as a member to be inspected is arranged at a predetermined angle in the parallel light flux regulated by the Fresnel lens 106 for condensing. The surface of the glass substrate 107 is evenly illuminated, and minute scattering light generated from the surface of the glass substrate 107 is visually observed by an observer 108. Defective part 109 such as upper pinhole
Is detected.
【0004】また、基板上に印刷されたパターンの乱れ
やむら、あるいは基板表面に付着したごみや傷などの外
観検査に適したものとして、図6と同一部分には同符号
を付した図7に示すように集光用フレネルレンズ106
により規制される平行光束中に、さらに投光用フレネル
レンズ110を配置し、この投光用フレネルレンズ11
0による光束の収束位置Aの手前の光路中に被検査部材
としてのガラス基板107を所定の角度を持たせて配置
し、このガラス基板107面をむらなく照明するととも
に、ガラス基板107からの反射光の収束位置Sの近傍
から、ガラス基板107面より発生される微小な散乱光
を観察者108の目視により観察することで、基板上に
印刷されたパターンの乱れやむら、あるいは基板表面に
付着したごみや傷などの欠陥部111を検出するように
したものがある。FIG. 7 shows the same parts as those shown in FIG. 6 with the same reference numerals as those shown in FIG. 6, which are suitable for inspecting the appearance of the pattern printed on the substrate, such as disturbance or unevenness, or dust or scratches attached to the substrate surface. As shown in FIG.
The light projecting Fresnel lens 110 is further arranged in the parallel light flux regulated by
A glass substrate 107 as a member to be inspected is arranged at a predetermined angle in the optical path before the convergence position A of the light flux due to 0, and the surface of the glass substrate 107 is evenly illuminated and reflected from the glass substrate 107. By observing the minute scattered light generated from the surface of the glass substrate 107 from the vicinity of the light convergence position S with the visual observation of the observer 108, the pattern printed on the substrate is disturbed or uneven, or adheres to the substrate surface. There is one that detects a defective portion 111 such as dust or scratches.
【0005】ところで、最近、液晶ディスプレイは、ま
すます大型化の傾向にあり、これにともない、これに用
いられるガラス基板も大型化される傾向にある。ところ
が、上述した構成のものは、いずれもガラス基板が大型
化されると、この時のガラス基板の大きさと同等以上の
集光用フレネルレンズ106や投光用フレネルレンズ1
10が必要となるため、これら集光用フレネルレンズ1
06や投光用フレネルレンズ110は、ますます大型化
する傾向にある。現在の技術では、レンズ径を必要以上
に大きくすることは、レンズ性能を一定に保つ上で製作
が困難であり、また、これによりガラス基板107上を
むらなく照明するのも難しくなることから、外観検査の
信頼性が低下するという問題がある。また大型の集光用
フレネルレンズ106や投光用フレネルレンズ110を
使用すると、焦点距離も大きくなるため、図示のように
縦型タイプのものでは、高さ方向の寸法が著しく大きく
なり、装置の大型化も避けられないという問題があっ
た。[0005] Recently, liquid crystal displays have been increasing in size, and accordingly, the glass substrates used for them have also been increasing in size. However, in any of the above-described configurations, when the size of the glass substrate is increased, the condensing Fresnel lens 106 or the light projecting Fresnel lens 1 having a size equal to or larger than the size of the glass substrate at this time is used.
10 are required, so that these light-collecting Fresnel lenses 1
06 and the Fresnel lens 110 for light projection tend to be larger and larger. With the current technology, making the lens diameter larger than necessary is difficult to manufacture in order to keep the lens performance constant, and this also makes it difficult to illuminate the glass substrate 107 evenly. There is a problem that the reliability of the visual inspection is reduced. In addition, if a large-sized Fresnel lens 106 for condensing or a Fresnel lens 110 for projecting is used, the focal length becomes large. Therefore, in the case of the vertical type as shown in the figure, the dimension in the height direction becomes extremely large, and There is a problem that the size cannot be avoided.
【0006】そこで、最近、ガラス基板の大型化に対応
するものとして、特開平9−273996号公報に開示
されたものが考えられている。図8は、かかる外観検査
用投光装置の概略構成を示すもので、2個の光源12
1、125を有し、一方の光源121からの照明光を楕
円回転ミラー122で反射させ、熱線吸収フィルタ12
3を介してゲート124より、フィルタ130を通って
集光用フレネルレンズ132の一方の分割集光用フレネ
ルレンズ1321に照射し、同様にして、他方の光源1
25からの照明光を、楕円回転ミラー126で反射さ
せ、熱線吸収フィルタ128を介してゲート129よ
り、フィルタ131を通って集光用フレネルレンズ13
2の他方の分割集光用フレネルレンズ1322に照射し
ている。また、これら分割集光用フレネルレンズ132
1、1322より規制される平行光束を、さらに投光用
フレネルレンズ133の分割投光用フレネルレンズ13
31、1332に照射し、収束光束としてガラス基板1
35面を照射するようにしている。この場合、光源12
1、125の、それぞれの照明光軸121a、125a
に対して分割集光用フレネルレンズ1321、1322
のそれぞれの光軸1321a、1322aを所定角度ず
らして配置し、各光源121、125の光源像位置を分
割投光用フレネルレンズ1331、1332による光束
の収束位置Aに一致させており、この状態から、ガラス
基板135からの反射光の収束位置Sの近傍から、ガラ
ス基板135上の欠陥部136に原因する微小な散乱光
を観察者137の目視により観察することで、基板上に
印刷されたパターンの乱れやむら、あるいは基板表面に
付着したごみや傷などの欠陥部136を検出するように
している。Therefore, recently, as one corresponding to the enlargement of the glass substrate, one disclosed in Japanese Patent Application Laid-Open No. 9-273996 is considered. FIG. 8 shows a schematic configuration of such a light projecting device for visual inspection.
1 and 125, the illumination light from one light source 121 is reflected by an elliptical rotating mirror 122, and the heat ray absorbing filter 12
The light from the gate 124 is passed through the filter 130 to one of the divided Fresnel lenses 1321 of the Fresnel lens 132 through the filter 124, and similarly, the other light source 1
The illumination light from the mirror 25 is reflected by the elliptical rotating mirror 126, and is transmitted from the gate 129 via the heat ray absorbing filter 128 to the condensing Fresnel lens 13 through the filter 131.
Irradiation is performed on the other divided light-collecting Fresnel lens 1322. In addition, these divided light-collecting Fresnel lenses 132
1 and 1322, the parallel light flux is further divided into light-emitting Fresnel lenses 13 of light-emitting Fresnel lens 133.
31 and 1332, and the glass substrate 1
Irradiation is performed on 35 surfaces. In this case, the light source 12
1, 125, the respective illumination optical axes 121a, 125a
Fresnel lenses 1321 and 1322
The optical axes 1321a and 1322a are displaced by a predetermined angle, and the light source image positions of the light sources 121 and 125 are made to coincide with the convergence position A of the luminous flux by the divided light projecting Fresnel lenses 1331 and 1332. By observing the minute scattered light caused by the defect 136 on the glass substrate 135 from the vicinity of the converging position S of the reflected light from the glass substrate 135 by the observer 137, the pattern printed on the substrate is obtained. Defective portions 136 such as turbulence and unevenness, and dust and scratches attached to the substrate surface are detected.
【0007】[0007]
【発明が解決しようとする課題】ところが、このように
構成したものは、光源を始めとして、楕円回転ミラー、
熱線吸収フィルタなどを含む照明光学系を複数組配置す
る必要があるため、部品点数が多くなり、装置が大型化
するとともに、価格的にも高価になるという問題があっ
た。However, the above-mentioned structure has a light source, an elliptical rotating mirror,
Since it is necessary to arrange a plurality of sets of illumination optical systems including a heat ray absorption filter and the like, the number of components is increased, and the apparatus is increased in size and the price is increased.
【0008】本発明は、上記事情に鑑みてなされたもの
で、大型の被検査部材に対しても全体をむらなく照明で
き、しかも、構成が簡単で価格的にも安価にできる外観
検査用投光装置を提供することを目的とする。The present invention has been made in view of the above circumstances, and can illuminate the entirety of a large member to be inspected evenly, and has a simple structure and can be manufactured at low cost. It is an object to provide an optical device.
【0009】[0009]
【課題を解決するための手段】請求項1記載の発明は、
反射ミラーを介して被検査部材に対して部分照明する照
明光源と、この照明光源と前記反射ミラーの相対位置関
係に応じて照明光束の照射方向を可変する照射可変手段
とにより構成している。According to the first aspect of the present invention,
It comprises an illumination light source for partially illuminating a member to be inspected via a reflection mirror, and irradiation variable means for changing an irradiation direction of an illumination light beam according to a relative positional relationship between the illumination light source and the reflection mirror.
【0010】請求項2記載の発明は、請求項1記載の発
明において、照射可変手段は、前記照明光源を直線移動
可能に設け、被検査部材に対して前記部分照明を複数箇
所に設定可能にしたことを特徴としている。According to a second aspect of the present invention, in the first aspect of the invention, the irradiation variable means is provided so that the illumination light source is linearly movable, and the partial illumination can be set at a plurality of positions with respect to the member to be inspected. It is characterized by doing.
【0011】請求項3記載の発明は、請求項1記載の発
明において、照射可変手段は、前記照明光源を直線移動
可能に設け、被検査部材の大きさに応じて前記照明光源
の移動範囲を調整可能にしたことを特徴としている。According to a third aspect of the present invention, in the first aspect of the present invention, the irradiation variable means is provided so that the illumination light source can be moved linearly, and the movement range of the illumination light source is changed according to the size of the member to be inspected. It is characterized by being adjustable.
【0012】請求項4記載の発明は、請求項1記載の発
明において、照明可変手段は、前記反射ミラーを揺動可
能に設け、被検査部材の大きさに応じて反射ミラーの揺
動角度を調整可能にしたことを特徴としている。According to a fourth aspect of the present invention, in the first aspect of the present invention, the illumination variable means is provided so as to be capable of swinging the reflection mirror, and adjusts the swing angle of the reflection mirror according to the size of the member to be inspected. It is characterized by being adjustable.
【0013】この結果、本発明によれば、部分照明の照
射方向を変えることにより、小さな光源でも大形の非検
査部材の全面をむらなく照明することができ、また、照
明光源および光学手段を含む照明光学系を1組設けるだ
けなので、部品点数を少なくできる。また、本発明によ
れば、被検査部材の大きさに応じて部分範囲の照明範囲
を調整できるので、それぞれの被検査部材の全面をむら
なく照明することができる。As a result, according to the present invention, by changing the irradiation direction of the partial illumination, even the small light source can illuminate the entire surface of the large non-inspection member uniformly, and the illumination light source and the optical means can be used. Since only one set of illumination optical system is provided, the number of parts can be reduced. Further, according to the present invention, since the illumination range of the partial range can be adjusted according to the size of the inspected member, the entire surface of each inspected member can be evenly illuminated.
【0014】[0014]
【発明の実施の形態】以下、本発明の実施の形態を図面
に従い説明する。 (第1の実施の形態)図1は、本発明が適用される外観
検査投光装置の概略構成を示している。図において、1
は装置本体で、この装置本体1の内部には被検査部材保
持手段としてホルダ2を配置している。このホルダ2
は、被検査部材としてLCDなどのフラットディスプレ
イに用いられる大型のガラス基板3を保持するもので、
装置本体1の前面側の端部を回動自在に支持され、この
支持部を中心に所定角度の範囲で起倒可能になってい
る。Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1 shows a schematic configuration of an appearance inspection light emitting device to which the present invention is applied. In the figure, 1
Is an apparatus main body. Inside the apparatus main body 1, a holder 2 is disposed as a member to be inspected holding means. This holder 2
Holds a large glass substrate 3 used for a flat display such as an LCD as a member to be inspected.
The front end of the apparatus main body 1 is rotatably supported, and can be turned upside down within a predetermined angle around this support.
【0015】装置本体1の上方には、例えば、メタルハ
ライドランプからなる照明光源4を設けている。この照
明光源4は、図2に示すように装置本体1の幅方向に沿
って配置されるガイド5に沿って図示しない駆動手段に
より往復移動可能になっていて、ガイド5の両端部に対
応する図示実線の照明位置Aと図示破線の照明位置A’
にそれぞれ位置決めされるようになっている。また、照
明光源4は、ガイド5に沿った移動により、照明位置A
にある場合、中心線Oに対して角度θだけ傾いて位置さ
れ、また、照明位置A’にある場合、中心線Oに対して
角度θ’だけ傾いて位置されるようになっている。Above the apparatus main body 1, an illumination light source 4 composed of, for example, a metal halide lamp is provided. The illumination light source 4 is reciprocally movable by a driving means (not shown) along a guide 5 arranged along the width direction of the apparatus main body 1 as shown in FIG. Illumination position A indicated by a solid line and illumination position A ′ indicated by a broken line
, Respectively. The illumination light source 4 is moved along the guide 5 so that the illumination position A
Is located at an angle θ with respect to the center line O, and when at the illumination position A ′, it is located at an angle θ ′ with respect to the center line O.
【0016】照明光源4に対向させて反射ミラー6を、
図示例では45°傾けて配置し、照明光源4からの光を
反射してフレネルレンズ7に与えるようにしている。フ
レネルレンズ7は、第1のフレネルレンズ71と第2の
フレネルレンズ72からなるもので、第1のフレネルレ
ンズ71は、反射ミラー6より入射される照明光より平
行光束を出射し、第2のフレネルレンズ72は、照明光
源4の照明位置A、A’に応じて第1のフレネルレンズ
71より入射される平行光束から図3(a)(b)に示
すような所定の点B、B’で収束する照明光束8、8’
をガラス基板3上に照射するものである。つまり、第2
のフレネルレンズ72は、照明光源4が照明位置Aにあ
る場合、ガラス基板3の図3(a)の斜線で示す面を照
明する照明光束8を出射し、照明光源4が照明位置A’
にある場合、ガラス基板3の図3(b)の斜線で示す面
を照明する照明光束8’を出射するようにしている。The reflecting mirror 6 is opposed to the illumination light source 4.
In the illustrated example, they are arranged at an angle of 45 ° so that the light from the illumination light source 4 is reflected and given to the Fresnel lens 7. The Fresnel lens 7 includes a first Fresnel lens 71 and a second Fresnel lens 72. The first Fresnel lens 71 emits a parallel light beam from illumination light incident from the reflection mirror 6, and outputs a second light beam. The Fresnel lens 72 receives predetermined points B and B ′ as shown in FIGS. 3A and 3B from a parallel light beam incident from the first Fresnel lens 71 according to the illumination positions A and A ′ of the illumination light source 4. Illumination flux 8, 8 'converging at
Is irradiated onto the glass substrate 3. That is, the second
When the illumination light source 4 is located at the illumination position A, the Fresnel lens 72 emits the illumination light beam 8 that illuminates the surface of the glass substrate 3 indicated by oblique lines in FIG.
In this case, the illumination light beam 8 'for illuminating the surface of the glass substrate 3 indicated by oblique lines in FIG. 3B is emitted.
【0017】次に、以上のように構成した実施の形態の
動作を説明する。まず、ホルダ2上に被検査部材である
ガラス基板3を載置保持し、図1に示すように観察者の
視線の高さに対応させてホルダ2を立ち上げ所定角度に
傾斜させる。この状態で、ず2に示すように、照明光源
4をガイド5の一方端部の照明位置Aに移動させると、
照明光源4の光軸が中心線Oに対して角度θ傾く。Next, the operation of the embodiment configured as described above will be described. First, a glass substrate 3, which is a member to be inspected, is placed and held on the holder 2, and as shown in FIG. 1, the holder 2 is raised and inclined at a predetermined angle corresponding to the height of the line of sight of the observer. In this state, when the illumination light source 4 is moved to the illumination position A at one end of the guide 5 as shown in FIG.
The optical axis of the illumination light source 4 is inclined at an angle θ with respect to the center line O.
【0018】すると、照明光源4からの光は、反射ミラ
ー6で反射され、第1のフレネルレンズ71より平行光
束として出射され、さらに、第2のフレネルレンズ72
より点Bで収束する照明光束8として出射され、ホルダ
2上のガラス基板3の図3(a)の斜線で示す面を照射
する。これにより、照明光束8で照射された左半分を含
む基板面について、傷や汚れなどを目視によるマクロ検
査が行なわれる。Then, the light from the illumination light source 4 is reflected by the reflection mirror 6, emitted as a parallel light beam from the first Fresnel lens 71, and further emitted from the second Fresnel lens 72.
The light is emitted as an illumination light flux 8 converging at point B, and irradiates the surface of the glass substrate 3 on the holder 2 indicated by oblique lines in FIG. As a result, a macro inspection is visually performed on the substrate surface including the left half irradiated with the illumination light beam 8 for scratches, dirt, and the like.
【0019】次に、照明光源4を図示しない駆動手段に
よりガイド5に沿ってガイド5の他方端部の照明位置
A’に移動させると、照明光源4の光軸が中心線Oに対
して角度θ’傾く。Next, when the illumination light source 4 is moved along the guide 5 to the illumination position A 'at the other end of the guide 5 by a driving means (not shown), the optical axis of the illumination light source 4 becomes an angle with respect to the center line O. θ 'tilt.
【0020】すると、照明光源4からの光は、反射ミラ
ー6で反射され、第1のフレネルレンズ71より平行光
束として出射され、さらに、第2のフレネルレンズ72
より点Bで収束する照明光束8’として出射され、ホル
ダ2上のガラス基板3の図3(b)の斜線で示す面を照
射する。これにより、照明光束8’で照射された右半分
を含む基板面について傷や汚れなどを目視によるマクロ
検査が行なわれる。Then, the light from the illumination light source 4 is reflected by the reflection mirror 6, emitted as a parallel light beam from the first Fresnel lens 71, and further emitted from the second Fresnel lens 72.
The light is emitted as an illumination light beam 8 ′ that converges at the point B, and irradiates the surface of the glass substrate 3 on the holder 2 shown by oblique lines in FIG. As a result, a macro inspection is visually performed on the substrate surface including the right half irradiated with the illumination light beam 8 'for scratches and dirt.
【0021】従って、このようにすれば、ガイド5に沿
って照明光源4を移動させることにより、照明光源(部
分照明)を走査させることが可能になる。また、この照
明光源4を照明位置A、A’に切換えることで、ガラス
基板3が大型になっても、基板全面をむらなく照射する
ことができるようになり、傷や汚れなどを検査するマク
ロ観察を行なうことができる。また、照明光源4を始
め、反射ミラー6、第1のフレネルレンズ71、第2の
フレネルレンズ72を有する照明光学系を1組設けるだ
けなので、部品点数が少なくなり、装置も小型化できる
とともに、価格的にも安価にできる。さらに、部分照明
にすることにより、基板面上での照射面積を小さくでき
るので、同程度の明るさを得るのに、小さなパワーの照
明光源を用いることができる。Accordingly, by moving the illumination light source 4 along the guide 5, it becomes possible to scan the illumination light source (partial illumination). Further, by switching the illumination light source 4 to the illumination positions A and A ', even if the glass substrate 3 becomes large, it is possible to irradiate the entire surface of the glass substrate evenly, and a macro for inspecting scratches, dirt, etc. Observations can be made. In addition, since only one set of illumination optical system including the illumination light source 4, the reflection mirror 6, the first Fresnel lens 71, and the second Fresnel lens 72 is provided, the number of parts is reduced, and the apparatus can be downsized. It can be cheaper in price. Furthermore, by using partial illumination, the irradiation area on the substrate surface can be reduced, so that an illumination light source with a small power can be used to obtain the same level of brightness.
【0022】なお、上述した実施の形態では、照明光源
4の照明位置を移動させることで、ガラス基板3全面を
照射できるようにしたが、反射ミラー6の反射角度を調
整して、この反射ミラー6で反射される照明光束により
ガラス基板3全面を照射できるようにしても、上述した
と同様な効果が得られる。 (第2の実施の形態)図4(a)(b)は、本発明の第
2の実施の形態の概略構成を示すもので、図1と同一部
分には、同符号を付している。In the above-described embodiment, the entire surface of the glass substrate 3 can be illuminated by moving the illumination position of the illumination light source 4. However, the reflection angle of the reflection mirror 6 is adjusted, and Even if the entire surface of the glass substrate 3 can be illuminated by the illumination light beam reflected by 6, the same effect as described above can be obtained. (Second Embodiment) FIGS. 4A and 4B show a schematic configuration of a second embodiment of the present invention, and the same parts as those in FIG. 1 are denoted by the same reference numerals. .
【0023】この場合、照明光源4は、図4(a)に示
すように装置本体1の幅方向に沿って複数の照明位置P
1、P2、P3に位置決め可能になっている。また、ガ
ラス基板3は、その大きさに応じた外形データを図示し
ない制御装置に入力することで、図4(b)に示すよう
に複数の観察区画C1、C2、C3が設定されるように
なっている。In this case, the illumination light source 4 includes a plurality of illumination positions P along the width direction of the apparatus main body 1 as shown in FIG.
Positioning is possible at 1, P2 and P3. The glass substrate 3 is configured such that a plurality of observation sections C1, C2, and C3 are set as shown in FIG. 4B by inputting external shape data corresponding to the size to a control device (not shown). Has become.
【0024】このような構成において、観察者が、ガラ
ス基板3の大きさに応じて外形データを制御装置に入力
すると、この時の外形データに応じて、例えば図4
(b)に示すように複数の観察区画C1、C2、C3が
設定される。In such a configuration, when the observer inputs the outer shape data to the control device according to the size of the glass substrate 3, the observer inputs the outer shape data according to the outer shape data at this time, for example, as shown in FIG.
As shown in (b), a plurality of observation sections C1, C2, C3 are set.
【0025】この状態から、照明光源4を点灯すると、
制御装置からの制御信号により照明光源4は、装置本体
1の幅方向に沿って照明位置P1まで移動され、この時
の照明光束81によりガラス基板3上の観察区画C1を
含む領域を照明する。これにより、ガラス基板3上の観
察区画C1でのマクロ観察を行なうことができる。次
に、観察区画C1でのマクロ観察が終了すると、照明光
源4は、照明光照明位置P2に移動され、照明光束82
によりガラス基板3上の観察区画C2を照射するように
なり、今度は、観察区画C2でのマクロ観察を行なうこ
とができる。さらに、この観察区画C2でのマクロ観察
が終了すると、照明光源4は、照明光照明位置P3に移
動され、照明光束83によりガラス基板3上の観察区画
C3を照射するようになり、観察区画C3でのマクロ観
察を行なうことができる。From this state, when the illumination light source 4 is turned on,
The illumination light source 4 is moved to the illumination position P1 along the width direction of the apparatus main body 1 by a control signal from the control device, and illuminates an area including the observation section C1 on the glass substrate 3 with the illumination light beam 81 at this time. Thereby, macro observation in the observation section C1 on the glass substrate 3 can be performed. Next, when the macro observation in the observation section C1 ends, the illumination light source 4 is moved to the illumination light illumination position P2, and the illumination light flux 82
As a result, the observation section C2 on the glass substrate 3 is irradiated, and this time, macro observation can be performed in the observation section C2. Further, when the macro observation in the observation section C2 is completed, the illumination light source 4 is moved to the illumination light illumination position P3, and irradiates the observation section C3 on the glass substrate 3 with the illumination light beam 83, and the observation section C3 Macro observation can be performed.
【0026】このようにして、照明光源4を照明位置P
1、P2、P3に順次移動させることで、ガラス基板3
の分割された観察区画C1、C2、C3を順番に照射す
ることができるので、ガラス基板3全面についてマクロ
観察を行なうことができる。Thus, the illumination light source 4 is moved to the illumination position P
The glass substrate 3 is sequentially moved to 1, P2 and P3.
Since the divided observation sections C1, C2, and C3 can be sequentially irradiated, macro observation can be performed on the entire surface of the glass substrate 3.
【0027】従って、このようにすれば、ガラス基板3
が、さらに大形化しても、ガラス基板3全面を小型の照
明光源でむらなく照明することができる。また、同一基
板を複数の観察区画に分けることにより、観察区画ごと
に集中して目視観察できるので、観察精度を向上させる
ことができるとともに、観察者の目の動きが小さくな
り、疲労を抑えることができる。Therefore, in this way, the glass substrate 3
However, even if the size of the glass substrate 3 is further increased, the entire surface of the glass substrate 3 can be evenly illuminated with a small illumination light source. In addition, by dividing the same substrate into a plurality of observation sections, visual observation can be concentrated on each observation section, so that the observation accuracy can be improved, and the movement of the observer's eyes is reduced, and fatigue is suppressed. Can be.
【0028】なお、上述した実施の形態では、ガラス基
板3を観察区画C1、C2、C3の3区画に分割した例
を述べたが、3区画以上に設定することもできる。この
場合は、照明光源4による照明位置も4箇所以上とな
る。 (第3の実施の形態)図5(a)(b)は、本発明の第
3の実施の形態の概略構成を示すもので、図1と同一部
分には、同符号を付している。In the above-described embodiment, an example has been described in which the glass substrate 3 is divided into three observation sections C1, C2, and C3. However, the glass substrate 3 can be set to three or more sections. In this case, the illumination position by the illumination light source 4 is also four or more. (Third Embodiment) FIGS. 5A and 5B show a schematic configuration of a third embodiment of the present invention, and the same parts as those in FIG. 1 are denoted by the same reference numerals. .
【0029】この場合、照明光源4は、ガラス基板3の
大きさに応じた外形データを図示しない制御装置に入力
することで、図5(a)(b)に示すように装置本体1
の幅方向に沿った移動距離をL1とL2に切換えできる
ようになっている。In this case, as shown in FIGS. 5A and 5B, the illumination light source 4 inputs external shape data corresponding to the size of the glass substrate 3 to a control device (not shown).
Can be switched between L1 and L2 in the width direction.
【0030】このような構成において、観察者が、ガラ
ス基板3の大きさに応じて外形データを制御装置に入力
するが、いま、図5(a)に示すようにガラス基板3の
外形寸法が大きい場合は、この時の外形データに応じ
て、照明光源4の移動距離はL1に設定される。In such a configuration, the observer inputs the outer shape data to the control device according to the size of the glass substrate 3, but now, as shown in FIG. If it is larger, the moving distance of the illumination light source 4 is set to L1 according to the outer shape data at this time.
【0031】この状態から、照明光源4を点灯すると、
制御装置からの制御信号により照明光源4は、移動距離
L1を移動するようになり、この移動範囲L1で照明光
源4を移動させることで、外形寸法の大きいガラス基板
3全面を照射することができる。In this state, when the illumination light source 4 is turned on,
The illumination light source 4 moves by the movement distance L1 according to a control signal from the control device, and by moving the illumination light source 4 within this movement range L1, the entire surface of the glass substrate 3 having a large external dimension can be irradiated. .
【0032】また、図5(b)に示すようにガラス基板
3の外形寸法が小さい場合は、この時の外形データに応
じて、照明光源4の移動距離L2が設定される。この状
態から、照明光源4を点灯すると、制御装置からの制御
信号により照明光源4は、移動距離L2を移動するよう
になり、この移動範囲L2で、照明光源4を移動させる
ことで、外形寸法が小さいガラス基板3全面を照射する
ことができる。When the external dimensions of the glass substrate 3 are small as shown in FIG. 5B, the moving distance L2 of the illumination light source 4 is set according to the external data at this time. When the illumination light source 4 is turned on from this state, the illumination light source 4 moves by a movement distance L2 according to a control signal from the control device, and by moving the illumination light source 4 within this movement range L2, the external dimensions are obtained. Can irradiate the entire surface of the glass substrate 3 having a small size.
【0033】このようにすると、ガラス基板3の大きさ
が異なる場合も、それぞれのガラス基板3全面をむらな
く照射することができるとともに、基板の大きさに応じ
た最適な照明走査範囲または観察区画を容易に設定する
ことができる。Thus, even when the sizes of the glass substrates 3 are different, it is possible to irradiate the entire surface of each glass substrate 3 evenly, and to set an optimum illumination scanning range or observation section according to the size of the substrates. Can be easily set.
【0034】[0034]
【発明の効果】以上のべたように、本発明によれば、変
更可能な照明光束の出射方向に応じて被検査部材を部分
照明するようにしたので、被検査部材が大型になって
も、基板全面をむらなく照射することができ、傷や汚れ
などを検査するマクロ観察を行なうことができる。ま
た、照明光源および光学手段を含む照明光学系を1組設
けるだけなので、部品点数を少なくでき、装置を小型化
できるとともに、価格的にも安価にできる。As described above, according to the present invention, the member to be inspected is partially illuminated in accordance with the emission direction of the illuminating light beam which can be changed, so that even if the member to be inspected becomes large, The entire surface of the substrate can be irradiated evenly, and macro observation for inspecting for scratches and dirt can be performed. Further, since only one set of the illumination optical system including the illumination light source and the optical means is provided, the number of parts can be reduced, the device can be reduced in size, and the cost can be reduced.
【0035】また、被検査部材が、さらに大形化して
も、被検査部材全面をむらなく照射することができるの
で、非検査部材前面に対して安定したマクロ観察を行な
うことができる。さらに、被検査部材の大きさが異なる
場合でも、基板の大きさに応じた最適な照射範囲または
観察区画を容易に設定することができる。Further, even if the member to be inspected becomes larger, the entire surface of the member to be inspected can be irradiated uniformly, so that a stable macro observation can be performed on the front surface of the non-inspection member. Furthermore, even when the sizes of the members to be inspected are different, it is possible to easily set the optimum irradiation range or observation section according to the size of the substrate.
【図1】本発明の第1の実施の形態の概略構成を示す
図。FIG. 1 is a diagram showing a schematic configuration of a first embodiment of the present invention.
【図2】第1の実施の形態の照明光源の移動構造を示す
図。FIG. 2 is a diagram showing a moving structure of an illumination light source according to the first embodiment.
【図3】第1の実施の形態の照明光束による照明状態を
説明するための図。FIG. 3 is a diagram for explaining an illumination state by an illumination light beam according to the first embodiment.
【図4】第2の実施の形態の概略構成を示す図。FIG. 4 is a diagram showing a schematic configuration of a second embodiment.
【図5】本発明の第3の実施の形態の概略構成を示す
図。FIG. 5 is a diagram showing a schematic configuration of a third embodiment of the present invention.
【図6】従来の外観検査用投光装置の概略構成を示す
図。FIG. 6 is a diagram showing a schematic configuration of a conventional light emitting device for visual inspection.
【図7】従来の外観検査用投光装置の概略構成を示す
図。FIG. 7 is a diagram showing a schematic configuration of a conventional light emitting device for visual inspection.
【図8】従来の外観検査用投光装置の概略構成を示す
図。FIG. 8 is a diagram showing a schematic configuration of a conventional light emitting device for visual inspection.
1…装置本体 2…ホルダ 3…ガラス基板 4…照明光源 5…ガイド 6…反射ミラー 7…フレネルレンズ 71…第1のフレネルレンズ 72…第2のフレネルレンズ 8.8’.81.82.83…照明光束 A.A’…照明位置 B.B’…点 P1.P2.P3…照明位置 C1.C2.C3…観察区画 L1.L2…移動距離 DESCRIPTION OF SYMBOLS 1 ... Device main body 2 ... Holder 3 ... Glass substrate 4 ... Illumination light source 5 ... Guide 6 ... Reflection mirror 7 ... Fresnel lens 71 ... 1st Fresnel lens 72 ... 2nd Fresnel lens 8.8 '. 81.82.83 ... Illumination light flux A ': Illumination position B. B '... Point P1. P2. P3: Illumination position C1. C2. C3: Observation section L1. L2: Moving distance
Claims (4)
部分照明する照明光源と、 この照明光源と前記反射ミラーの相対位置関係に応じて
照明光束の照射方向を可変する照射可変手段とを具備し
たことを特徴とする外観検査用投光装置。An illumination light source for partially illuminating a member to be inspected via a reflection mirror, and an irradiation variable means for changing an irradiation direction of an illumination light beam according to a relative positional relationship between the illumination light source and the reflection mirror. An appearance inspection light emitting device, comprising:
動可能に設け、被検査部材に対して前記部分照明を複数
箇所に設定可能にしたことを特徴とする請求項1記載の
外観検査用投光装置。2. The visual inspection system according to claim 1, wherein the irradiation variable means is provided so that the illumination light source is linearly movable, and the partial illumination can be set at a plurality of positions with respect to the member to be inspected. Floodlight device.
動可能に設け、被検査部材の大きさに応じて前記照明光
源の移動範囲を調整可能にしたことを特徴とする請求項
1記載の外観検査用投光装置。3. The illumination variable means according to claim 1, wherein said illumination light source is provided so as to be linearly movable, and a movement range of said illumination light source is adjustable according to a size of a member to be inspected. Light projector for visual inspection.
可能に設け、被検査部材の大きさに応じて反射ミラーの
揺動角度を調整可能にしたことを特徴とする請求項1記
載の外観検査用投光装置。4. The illumination variable means according to claim 1, wherein said reflecting mirror is provided so as to be swingable, and the swing angle of the reflecting mirror is adjustable according to the size of the member to be inspected. Light projector for visual inspection.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26663198A JP4576006B2 (en) | 1998-09-21 | 1998-09-21 | Projection device for visual inspection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26663198A JP4576006B2 (en) | 1998-09-21 | 1998-09-21 | Projection device for visual inspection |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2000097864A true JP2000097864A (en) | 2000-04-07 |
JP2000097864A5 JP2000097864A5 (en) | 2005-11-04 |
JP4576006B2 JP4576006B2 (en) | 2010-11-04 |
Family
ID=17433519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26663198A Expired - Fee Related JP4576006B2 (en) | 1998-09-21 | 1998-09-21 | Projection device for visual inspection |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4576006B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002016916A1 (en) * | 2000-08-24 | 2002-02-28 | Olympus Optical Co., Ltd. | Floodlight for appearance inspection |
WO2003102562A1 (en) * | 2002-05-31 | 2003-12-11 | Olympus Corporation | Macro illumination device |
JP2006234721A (en) * | 2005-02-28 | 2006-09-07 | Olympus Corp | Visual inspection device and visual inspection method |
KR100622853B1 (en) | 2004-09-22 | 2006-09-19 | 주식회사 에이디피엔지니어링 | Device for appearance inspection |
KR100694531B1 (en) * | 2004-09-22 | 2007-03-13 | 주식회사 에이디피엔지니어링 | Device for appearance inspection |
JP2008164321A (en) * | 2006-12-27 | 2008-07-17 | Olympus Corp | Light projector for visual inspection |
JP2008164322A (en) * | 2006-12-27 | 2008-07-17 | Olympus Corp | Light projector for visual inspection |
JP2012078145A (en) * | 2010-09-30 | 2012-04-19 | Toppan Printing Co Ltd | Inspection device for object with glossy surface |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0358014A (en) * | 1989-07-27 | 1991-03-13 | Omron Corp | Beam scanning device |
JPH05232040A (en) * | 1992-02-19 | 1993-09-07 | Olympus Optical Co Ltd | External appearance inspecting floodlight device |
JPH063278A (en) * | 1992-06-17 | 1994-01-11 | Olympus Optical Co Ltd | Substrate appearance inspection device |
JPH08166350A (en) * | 1994-12-14 | 1996-06-25 | Omron Corp | Inspection-indicating apparatus |
JPH09273996A (en) * | 1996-04-03 | 1997-10-21 | Olympus Optical Co Ltd | Projector for inspecting appearance |
JPH1062354A (en) * | 1996-08-20 | 1998-03-06 | Nachi Fujikoshi Corp | Device and method of inspecting transparent plate for defect |
-
1998
- 1998-09-21 JP JP26663198A patent/JP4576006B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0358014A (en) * | 1989-07-27 | 1991-03-13 | Omron Corp | Beam scanning device |
JPH05232040A (en) * | 1992-02-19 | 1993-09-07 | Olympus Optical Co Ltd | External appearance inspecting floodlight device |
JPH063278A (en) * | 1992-06-17 | 1994-01-11 | Olympus Optical Co Ltd | Substrate appearance inspection device |
JPH08166350A (en) * | 1994-12-14 | 1996-06-25 | Omron Corp | Inspection-indicating apparatus |
JPH09273996A (en) * | 1996-04-03 | 1997-10-21 | Olympus Optical Co Ltd | Projector for inspecting appearance |
JPH1062354A (en) * | 1996-08-20 | 1998-03-06 | Nachi Fujikoshi Corp | Device and method of inspecting transparent plate for defect |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002016916A1 (en) * | 2000-08-24 | 2002-02-28 | Olympus Optical Co., Ltd. | Floodlight for appearance inspection |
WO2003102562A1 (en) * | 2002-05-31 | 2003-12-11 | Olympus Corporation | Macro illumination device |
KR100622853B1 (en) | 2004-09-22 | 2006-09-19 | 주식회사 에이디피엔지니어링 | Device for appearance inspection |
KR100694531B1 (en) * | 2004-09-22 | 2007-03-13 | 주식회사 에이디피엔지니어링 | Device for appearance inspection |
JP2006234721A (en) * | 2005-02-28 | 2006-09-07 | Olympus Corp | Visual inspection device and visual inspection method |
JP4633499B2 (en) * | 2005-02-28 | 2011-02-16 | オリンパス株式会社 | Appearance inspection apparatus and appearance inspection method |
JP2008164321A (en) * | 2006-12-27 | 2008-07-17 | Olympus Corp | Light projector for visual inspection |
JP2008164322A (en) * | 2006-12-27 | 2008-07-17 | Olympus Corp | Light projector for visual inspection |
JP2012078145A (en) * | 2010-09-30 | 2012-04-19 | Toppan Printing Co Ltd | Inspection device for object with glossy surface |
Also Published As
Publication number | Publication date |
---|---|
JP4576006B2 (en) | 2010-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6362884B1 (en) | Apparatus for inspecting a substrate | |
JP3385432B2 (en) | Inspection device | |
JP5489186B2 (en) | Surface inspection device | |
TWI557434B (en) | Lighting system | |
JP2007078581A (en) | Illumination device for visual inspection | |
TWI702386B (en) | Telecentric bright field and annular dark field seamlessly fused illumination | |
TWI817991B (en) | Optical system, illumination module and automated optical inspection system | |
CN107796829B (en) | Inspection apparatus | |
JP4576006B2 (en) | Projection device for visual inspection | |
KR102633672B1 (en) | Methods and apparatus for detecting surface defects on glass sheets | |
JP4383047B2 (en) | Light projection device for visual inspection and visual inspection device | |
TWM528423U (en) | External appearance inspection apparatus and inspection system | |
KR100873057B1 (en) | Illumination device for visual inspection based on reflected light and transmitted light | |
JP3831744B1 (en) | Board inspection lighting system | |
JP3625953B2 (en) | Projection device for visual inspection | |
KR20080019395A (en) | A defect detecting apparatus for flat panel display | |
JP3095855B2 (en) | Light inspection device for visual inspection | |
JP2006194896A (en) | Floodlight for visual inspection | |
JP2009092481A (en) | Lighting device for visual inspection and visual inspection device | |
KR20110119869A (en) | Illumination device and substrate inspection apparatus including the same | |
JP2001004492A (en) | Projection lens inspection device and method | |
JP3095856B2 (en) | Light inspection device for visual inspection | |
JP2002071571A (en) | Projector for visual inspection | |
JP4380311B2 (en) | Defect inspection equipment | |
JP2008170153A (en) | Macro inspection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050920 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050920 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080402 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080930 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090512 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090709 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091208 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100803 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100823 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130827 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |