JP2000093745A - 排ガス処理方法および処理装置 - Google Patents

排ガス処理方法および処理装置

Info

Publication number
JP2000093745A
JP2000093745A JP10285900A JP28590098A JP2000093745A JP 2000093745 A JP2000093745 A JP 2000093745A JP 10285900 A JP10285900 A JP 10285900A JP 28590098 A JP28590098 A JP 28590098A JP 2000093745 A JP2000093745 A JP 2000093745A
Authority
JP
Japan
Prior art keywords
gas
exhaust gas
water
hydrogen
gas treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10285900A
Other languages
English (en)
Inventor
Toshiaki Kato
利明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kashiyama Industries Ltd
Original Assignee
Kashiyama Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kashiyama Industries Ltd filed Critical Kashiyama Industries Ltd
Priority to JP10285900A priority Critical patent/JP2000093745A/ja
Publication of JP2000093745A publication Critical patent/JP2000093745A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Treating Waste Gases (AREA)

Abstract

(57)【要約】 【課題】 水難溶性でかつ支燃性のハロゲン系ガスを有
害ガスとして含有する排ガスを、高い除害効率と安いラ
ンニングコストで安全性を確保しながら無害化処理する
ことができる排ガス処理方法と処理装置を提供する。 【解決手段】 水難溶性でかつ支燃性のハロゲン系ガス
を無害化する排ガスの処理方法において、これらを含有
する排ガスに水素ガスを混入して還元性触媒に接触さ
せ、還元反応させた後、生成したハロゲン化水素ガスを
湿式スクラバーで吸収液に吸収させるか、あるいは吸着
器の吸着剤に吸着させることを特徴とする排ガス処理方
法および処理装置。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、例えば半導体デバ
イスや液晶ディスプレイデバイスの製造装置より排出さ
れる排ガス中に含まれる有害ガス、特に水難溶性でかつ
支燃性のハロゲン系ガスである塩素、三フッ化窒素、三
フッ化塩素等の処理技術に関するものである。
【0002】
【従来の技術】近年、半導体、電子関連産業の発展と共
に半導体デバイスや液晶ディスプレイデバイスの製造装
置が増加しつつあり、これらの製造装置内では多種類の
有害あるいは引火性、爆発性のある危険度の高いガスが
使用されている。そしてこれらの装置から排出される排
ガスは、完全に反応あるいは分解されず、極端な場合は
殆どが分解されずに排出されているケースがあり、これ
を無害化する処理装置が必要不可欠である。
【0003】従来、この種の排ガス処理装置は、各製造
装置の排気管を集めて集合配管とし、屋外に設置した大
型の無害化装置で一括処理しているケースが多かった
が、この方式であると配管が長くなってしまうため、管
内に堆積物が生じたり、腐食で漏れが生じて火災が発生
する等の事故が起こる可能性があった。そこで、最近で
はこうした事故を未然に防止するために、排ガス処理装
置を製造装置のなるべく近傍に設置して用いられるよう
になってきている。従って、屋内設置用の小型の処理装
置が使用されることが多い。
【0004】屋内設置用の装置としては、ガスの吸着現
象を利用した吸着固定式、メタン、プロパン等を燃料と
する燃焼バーナを利用した燃焼式、電気ヒータを使った
熱分解式、化学反応を利用した反応分解方式、水や薬液
等を使用した湿式等多くの方式を利用した排ガス処理装
置が用いられている。
【0005】一方、除害対象として塩素を処理する場
合、塩素は水への溶解度が極めて小さい水難溶性のハロ
ゲン系ガスであるため、湿式スクラバーによる吸収方法
では、満足な吸収効率が得られない。また、吸収されて
も塩素分子は水と反応して、塩素イオン(Cl- )と共
に次亜塩素酸イオン(ClO- )を生じる。これらのイ
オンは、排水された後、水処理設備等の中和槽でアルカ
リ性水溶液で中和された時等に再度塩素ガスに戻って放
出されてしまうため、満足すべき除害方法とは言えな
い。
【0006】また、活性炭や活性炭にアルカリ性薬品を
吸着させた吸着剤で処理する方法もあるが、これらの吸
着剤は塩素を物理的に吸着させているだけであるから、
吸着飽和後、吸着剤を水で洗浄して吸着物を追い出し、
排水処理することになるが、結局、前述のようなイオン
が発生し、この方法も有効な除害方法とは言えない。さ
らにこの吸着剤を焼却する場合もあるが、この場合はさ
らに危険で、塩素酸系の有害ガスやダイオキシン等の猛
毒の有機塩素化合物を発生させることになってしまう。
また、吸着剤をコンクリートで固めて埋め立てるケース
もあるが、これも本質的に除害しているとは言えず、し
かもランニングコストも高く、論外である。別途、高温
下、酸化カルシウム等と反応させて無害な塩化カルシウ
ムに転化させる方法もあるが、設備費も運転経費も高価
であり、固体、粉体を取り扱うので運転操作も複雑でト
ラブルも多い欠点がある。
【0007】次に、三フッ化窒素を無害化させる方法と
しては、前記塩素ガスの場合と同様水難溶性ハロゲン系
ガスであるから、湿式スクラバーや吸着式だけでは処理
出来ず、加熱した金属シリコン等と反応させて一端フッ
化けい素ガスとし、後段で湿式スクラバーや吸着剤で捕
捉する方法があるが、シリコン等の反応剤は消耗品であ
るため、頻繁に補充しなければならず、ランニングコス
トが高価になる欠点がある。また、シリコン表面の酸化
物と反応した時は、副生成物として有害な窒素酸化物を
発生し、完全な除害とは言えない。さらに、別の有害ガ
スと同時に処理する場合、燃焼式装置で燃焼処理するケ
ースも多くあるが、燃焼された三フッ化窒素は全て窒素
酸化物となって排出され、なおかつこのガスは水には溶
けにくいため、多くはそのまま排出されるので問題はよ
り大きくなる。
【0008】また、三フッ化塩素を無害化する方法につ
いては、このガスは水によって極めて容易に分解し、塩
素、フッ素、塩化水素、フッ化水素等を生成するので、
吸着式、熱分解式、湿式が用いられているが、これらの
内塩素ガスについては、前記したように有効な除害方法
がなく、解決を要する問題点を有することには変わりが
ない。
【0009】そして、前記の塩素、フッ素、三フッ化窒
素、三フッ化塩素等は支燃性ガスと呼ばれ、酸素のよう
に可燃性ガス(水素、シラン、炭化水素等)と爆発的に
反応を起こすガスを指している。これら支燃性ガスを無
害化する方法として、従来から行われている塩酸合成の
ように、生ガスで直接塩素と水素を燃焼させる反応が考
えられるが、排ガス処理のように排ガス中の支燃性ガス
濃度が低濃度であったり他のガスと混合している場合に
は、通常の空気による燃焼式が採用されているため、前
記したように例えば三フッ化窒素の場合は有害な窒素酸
化物を発生し、これを後の工程で処理しなければならな
いという問題があった。
【0010】特に、近年環境面に関する関心の高まりと
共に、半導体製造メーカーでは有害ガスの処理が、処理
後のガスが工場から出た後も、処理が完全に為されてい
るか否か監視する責任を負担するような潮流になってき
ており、装置の除害原理の本質が問われ、除害能力に対
する要求が厳しくなってきている。
【0011】
【発明が解決しようとする課題】そこで、本発明は、こ
のような問題点に鑑みなされたもので、ハロゲン系ガス
の中でも、特に、水難溶性でかつ支燃性のハロゲン系ガ
スを有害ガスとして含有する排ガスを、高い除害効率と
安いランニングコストで安全性を確保しながら無害化処
理することができる排ガス処理方法と処理装置を提供す
ることを目的とする。
【0012】
【課題を解決するための手段】上記課題を解決するた
め、本発明の請求項1に記載した発明は、水難溶性でか
つ支燃性のハロゲン系ガスを無害化する排ガスの処理方
法において、これらを含有する排ガスに水素ガスを混入
して還元性触媒に接触させ、還元反応させた後、生成し
たハロゲン化水素ガスを湿式スクラバーで吸収液に吸収
させるか、あるいは吸着器の吸着剤に吸着させることを
特徴とする排ガス処理方法である。
【0013】このように、プロセスより排出される排ガ
ス中に含まれる水難溶性でかつ支燃性のハロゲン系有害
ガスに水素ガスを混入して還元性触媒に接触させ、爆発
的な燃焼反応を抑えて還元反応させた後、生成したハロ
ゲン化水素ガスを湿式スクラバーで吸収液に吸収させる
か、あるいは吸着器の吸着剤に吸着させれば、有害ガス
のほぼ全量を還元して無害化することができ、有害ガス
の排出量を著しく低減することができると共に安全性を
確保して排ガス処理能力の向上を図ることができる。ま
た、従来の各種処理方法と比較して設備費もランニング
コストも低減化し、排ガス処理のコストダウンを図るこ
ともできる。
【0014】この場合、請求項2に記載したように、水
難溶性でかつ支燃性のハロゲン系ガスを塩素、三フッ化
窒素、三フッ化塩素あるいはこれらの内2種以上が混入
するガスとすることができる。このように、本発明では
処理が難しい水難溶性でかつ支燃性のハロゲン系ガスが
塩素、三フッ化窒素、三フッ化塩素で、それぞれがプロ
セスより排出される排ガス中に単独であるいは混合状態
で存在しても、これらは前記還元反応によってほぼ完全
にハロゲン化水素まで還元されるので、無害化されると
共に、後段の吸収あるいは吸着処理により容易に、ほぼ
完全に回収することができる。
【0015】さらに請求項3に記載したように、還元性
触媒を白金、パラジウム、ロジウム、イリジウムまたは
これらの内2種以上の合金から成るものとすることがで
きる。このような貴金属を例えば多孔質球状担体に担持
した還元性触媒を使用すれば、高い接触効率で爆発燃焼
反応を抑えて水難溶性でかつ支燃性のハロゲン系ガスを
水素還元することができる。
【0016】また、本発明の請求項4に記載したよう
に、還元反応における反応温度を400℃以上とするこ
とができると共に、請求項5に記載したように、還元反
応における水素ガス量を、被処理水難溶性でかつ支燃性
のハロゲン系ガスの理論反応量の1.5倍以上でかつ爆
発限界より少量とすることができる。このように、還元
反応条件として、反応温度は上記還元性触媒を使用する
ことによって比較的低温の400℃以上で高い反応効率
を得ることができる。また、水素ガス量は、被処理水難
溶性でかつ支燃性のハロゲン系ガス総量の理論反応量の
1.5倍以上でかつ爆発限界より少量とすれば、還元反
応は確実に進行すると共に安全性を確保することができ
る。
【0017】次に本発明の請求項6に記載した発明は、
水難溶性でかつ支燃性のハロゲン系ガスを無害化する排
ガスの処理装置において、少なくとも還元性触媒を充填
した触媒層を有する反応器および該反応器で生成したハ
ロゲン化水素ガスを吸収する湿式スクラバーあるいは該
ハロゲン化水素ガスを吸着する吸着剤を充填した吸着器
とから成ることを特徴とする排ガス処理装置である。
【0018】このような装置とすれば、プロセスから排
出される排ガス中の有害ガス成分が水難溶性でかつ支燃
性のハロゲン系ガスであっても、水素ガスを混合して前
段の反応器の加熱された還元性触媒層を通すことによっ
て、ほぼ完全にハロゲン化水素ガスまで還元されるの
で、後段の湿式スクラバーによって水に容易に吸収させ
ることができるし、吸着器の吸着剤に吸着させて回収す
ることもできる。従って有害ガスの排出量を著しく低減
することができ、殆ど大気汚染を起こすことのない排ガ
ス処理装置となると共に、従来の各種処理方法と比較し
て設備費もランニングコストも低減化し、排ガス処理の
コストダウンを図ることのできる排ガス処理装置とな
る。
【0019】以下、本発明についてさらに詳細に説明す
る。本発明者は、各種プロセスから発生する排ガスに含
まれる有害ガスの内、特に処理が難しい水難溶性でかつ
支燃性のハロゲン系ガスの無害化処理に適した処理方法
と処理装置について、種々調査、検討を重ねた結果、水
難溶性でかつ支燃性のハロゲン系ガスを水素ガスで燃焼
する還元反応を触媒上で行えば、爆発的な反応を抑え
て、容易に無害のハロゲン化水素を生成させることがで
きることを知見し、諸条件を精査して本発明を完成させ
たものである。
【0020】本発明の対象とした排ガスは、各種プロセ
スから排出される排ガス中に含まれる水難溶性でかつ支
燃性のハロゲン系有害ガスであって、具体的には塩素
(Cl2 )、三フッ化窒素(NF3 )、三フッ化塩素
(ClF3 )等である。ここで塩素とは、塩素それ自体
の他、上記ClF3 のように、水によって容易に分解す
るが、分解生成物が塩素、フッ素、塩化水素、フッ化水
素等で、塩素以外は水に易溶性で吸収、吸着、中和等の
処理方法により容易に無害化し回収できるが、塩素につ
いては水に難溶性のため別の無害化処理を必要とするよ
うな、分解によって塩素を発生する化合物も指してお
り、これにはBCl3 等が挙げられる。
【0021】また、前記の塩素、フッ素、三フッ化窒
素、三フッ化塩素等は支燃性ガスと呼ばれ、酸素のよう
に可燃性ガス(水素、シラン、炭化水素等)と爆発的に
反応を起こすガスを指しており、本発明では、従来無害
化処理が困難とされていたこれら支燃性ガスを処理の対
象として取り上げた。
【0022】本発明の排ガス処理方法の特徴は、水難溶
性でかつ支燃性のハロゲン系ガスを無害化する排ガスの
処理方法において、これらを含有する排ガスに水素ガス
を混入して還元性触媒に接触させ、還元反応させた後、
生成したハロゲン化水素ガスを湿式スクラバーで吸収液
に吸収させるか、あるいは吸着器の吸着剤に吸着させる
ことにある。
【0023】このように、プロセスより排出される排ガ
ス中に含まれる水難溶性でかつ支燃性のハロゲン系有害
ガスに水素ガスを混入して還元性触媒に接触させ、爆発
的な燃焼反応を抑えて還元反応させた後、生成したハロ
ゲン化水素ガスを湿式スクラバーで吸収液に吸収させる
か、あるいは吸着器の吸着剤に吸着させれば、有害ガス
のほぼ全量を還元して無害化することができ、有害ガス
の排出量を著しく低減することができると共に、安全性
を確保して排ガス処理能力の向上を図ることができる。
また、従来の各種処理方法と比較して設備費もランニン
グコストも低減化し、排ガス処理のコストダウンを図る
こともできる。
【0024】この還元反応に使用する還元性触媒には、
白金、パラジウム、ロジウム、イリジウムまたはこれら
の内2種以上の合金から成るものが適しており、このよ
うな貴金属を例えば多孔質球状担体に担持した触媒を使
用することができる。市販品としては、例えば、DAS
H−220(エヌ・イー ケムキャット社製商品名、白
金・アルミナ球(2〜4mmφ)触媒)、OCAS(東
洋シーシーアイ社製商品名、Pt/Pd・アルミナ球触
媒)等があり、これらの触媒を使用すれば、高い接触効
率で爆発燃焼反応を抑えて、水難溶性でかつ支燃性のハ
ロゲン系ガスを水素還元することができる。
【0025】還元性触媒による還元反応の条件として
は、反応温度を400℃以上とすると共に、水素ガス量
を被処理水難溶性でかつ支燃性のハロゲン系ガスの理論
反応量の1.5倍以上でかつ爆発限界より少量とするの
がよい。このように、反応温度は上記還元性触媒を使用
することによって比較的低温で高い反応効率を得ること
ができる(ちなみに、塩素・水素燃焼反応は約1300
℃になる)。また、水素ガス量は、被処理水難溶性でか
つ支燃性のハロゲン系ガス総量の理論反応量の1.5倍
以上でかつ爆発限界より少量とすれば、還元反応は確実
に進行すると共に安全性を確保することができる。さら
に爆発限界から脱するには窒素ガス等の不活性ガスで希
釈すればよい。
【0026】
【発明の実施の形態】以下、本発明の実施の形態につい
て添付した図面に基づいて具体的に説明するが、本発明
はこれらに限定されるものではない。ここで、図1は本
発明の排ガス処理装置の構成例を示す概要図である。
【0027】図1に示したように、本発明の排ガス処理
装置1は、例えば、少なくとも還元性触媒を充填した還
元性触媒層4を有する反応器2、および反応器2で生成
したハロゲン化水素ガスを吸収する湿式スクラバー3あ
るいは該ハロゲン化水素ガスを吸着する吸着剤を充填し
た吸着器16とから構成されている。
【0028】反応器2は、縦形の円筒状で、円筒内の2
枚の多孔板の間に球状の還元性触媒を充填した還元性触
媒層4を設け、触媒層4の外周には加熱ヒータ5を配置
し、断熱材6で断熱保温している。
【0029】反応器2へ排ガスを送る方法としては、プ
ロセスからの排ガスを排ガス処理装置1の排ガス導入管
7を通って排ガスポンプ8を用いて反応器2へ押し込む
方法、あるいは反応器2の下流に排ガスファン(不図
示)を設置して吸引する方法があるが、そのいずれでも
よい。反応器2に還元用として導入される水素ガスは、
水素ガス導入管10から水素ガスポンプ(不図示)で圧
入され、希釈用(パージ用)の窒素ガスは、窒素ガス導
入管9から窒素ガスポンプ(不図示)によって導入され
る。
【0030】混合状態で反応器2に導入された水難溶性
でかつ支燃性のハロゲン系ガスと水素ガスは所定の温度
に保たれた触媒上で反応し、還元されてハロゲン化水素
となって反応器2から排出される。このハロゲン化水素
ガスを含む排ガスは、後段の湿式スクラバー3で吸収処
理するか、吸着剤を充填した吸着器16を通して吸着処
理することになる。
【0031】湿式スクラバー3は塔内に気液接触効率を
高める気液接触部11を設けて、該気液接触部11の上
部から吸収液を吸収液散水管12を通して散水する。こ
の時、該気液接触部11の下部からは反応器2を出たハ
ロゲン化水素ガスを含む排ガスが導入され、気液接触部
11を介して吸収液と排ガスは交流接触し、排ガス中の
ハロゲン化水素ガスは吸収液に吸収されて塔底に溜り、
脱ハロゲン化水素ガスは塔頂より排出される。塔底に溜
った吸収液は、吸収液循環ポンプ13により吸収液散水
管12を経て再びスプレーされる。このように吸収液は
循環して所定濃度に達するまでハロゲン化水素ガスを吸
収し、循環系の途中から吸収液排出管15を通して少し
づつ排出される。新吸収液は、排水量に見合う量が吸収
液供給管14を通して供給される。
【0032】この気液接触部11において気液接触させ
る方法としては、スリット板、多孔板あるいは泡鐘板等
を用いて液中に排ガスをバブリングするスクラバー方
式、スプレーノズルや分散板によって排ガス中に吸収液
を散水する方法、充填物を積み重ねた充填層で気液を交
流させる方法等いわゆる吸収塔や充填塔を使用する方法
が挙げられるが、いずれの方法でも有効である。
【0033】反応器2を出たハロゲン化水素を含む排ガ
スと接触する吸収液は、塔外部から吸収液供給管14を
通して新しく供給する吸収液でも良いが、吸収液循環ポ
ンプ13を用いて、吸収、中和に用いた液をそのまま循
環使用してもよい。吸収液は処理する排ガス中の有害ガ
スの種類、物性、反応性に応じて使い分ける必要があ
り、例えば、ハロゲン化水素ガスのように水溶性の高い
ガスの場合は、水で補集するか稀アルカリ水溶液で中和
すればよい。
【0034】湿式スクラバー3によって吸収処理を終え
た排ガスは、有害ガスの含有量が大幅に低減しているの
で、そのまま大気に放出してもよいが、より完全を期す
るために、反応器2の下流側に吸着器を通して吸着処理
することが可能である。
【0035】また、本発明では、反応器2で還元された
排ガスを、湿式スクラバーで処理するのではなく、吸着
器16に通し、ハロゲン化水素を吸着するようにしても
よい。吸着剤としては活性炭等が挙げられる。
【0036】以上のように構成した装置とすれば、プロ
セスから排出される排ガス中の有害ガスが水難溶性でか
つ支燃性のハロゲン系ガスであっても、水素ガスを混合
して前段の反応器の加熱された還元性触媒層を通すこと
によって、ほぼ完全にハロゲン化水素ガスまで還元さ
れ、後段の湿式スクラバーによって水に容易に吸収させ
ることができるし、吸着器の吸着剤に吸着させて回収す
ることもできる。従って有害ガスの排出量を著しく低減
することができ、殆ど大気汚染を起こすことのない排ガ
ス処理装置となると共に、従来の各種処理方法と比較し
て設備費もランニングコストも低減化し、排ガス処理の
コストダウンを図ることのできる排ガス処理装置とな
る。
【0037】
【実施例】次に、本発明の実施例と比較例を挙げて、本
発明を詳細に説明するが、これらは本発明を限定するも
のではない。 (実施例1)アルミニウムのドライエッチング装置から
排出される100sccmpm(standard cubic centi
meter per minute)の塩素(Cl2 )と30sccmp
mの塩化ホウ素(BCl3 )の混合排ガスに、排気用ド
ライポンプでパージ用の窒素ガスを混合して約40sl
pm(standard litre per minute )の流量とし、さら
に途中で水素を400sccmpm混合した。この排ガ
スを500℃に加熱されたパラジウム還元触媒(エヌ・
イー ケムキャット社製)層(体積30リットル、層高
さ15cm)を有する反応器を通して還元した。この反
応器から出た排ガスをさらに湿式スクラバー SBS−
4 FU−3(セイコー化工機(株)製商品名)で処理
し、先の反応器2で生成した塩化水素を水で吸収した。
湿式スクラバー出口の排気中塩素濃度を測定した結果、
検知限度(0.1ppm)以下であった。また、BCl
3 の出口濃度も検知限度(0.1ppm)以下であっ
た。
【0038】(比較例1)実施例1の排ガスに水素ガス
を混合せず、触媒反応器を通さずに直接湿式スクラバー
に通した以外は実施例1と同様の条件で排ガス処理を行
った。その結果、湿式スクラバー出口の排気中塩素濃度
は、約10ppmであった。
【0039】(実施例2)半導体プロセスのドライエッ
チング装置から排出される50sccmpmの臭化水素
(HBr)と100sccmpmの三フッ化窒素(NF
3 )の混合排ガスに排気用ドライポンプでパージ用の窒
素ガスを混合して約30slpmの流量とし、さらに途
中で水素ガスを400sccmpm混合した。この排ガ
スを500℃に加熱された白金還元触媒(エヌ・イー
ケムキャット社製)層(体積30リットル、層高さ15
cm)を有する反応器を通して還元した。この反応器の
排ガスをさらに湿式スクラバー(セイコー化工機社製、
SBS−4 FU−3)で処理し、フッ化水素、臭化水
素を水で吸収した。湿式スクラバー出口の排気中NF3
の濃度を測定した結果、検知限度(1ppm)以下であ
った。また、HBrの出口濃度も検知限度(1ppm)
以下であった。
【0040】(比較例2)実施例2の排ガスに水素ガス
を混合せず、触媒反応器を通さずに直接湿式スクラバー
に導入した以外は実施例2と同様の条件で排ガス処理を
行った。その結果、湿式スクラバー出口の排気中NF3
濃度は、処理前とほぼ同じで処理効果はなかった。
【0041】(実施例3)LPCVD成膜装置(減圧C
VD)のチャンバークリーニングとして流した100s
ccmpmの三フッ化塩素(ClF3 )ガスに排気用ド
ライポンプで50slpmの窒素ガスをパージ用に混合
し、その後500sccmpmの水素を混入し、実施例
2と同様に反応器の白金触媒で還元処理し、この反応器
の排ガスをさらに湿式スクラバー(セイコー化工機
(株)製SBS−4 FU−3)で処理し、フッ化水
素、塩化水素を水で吸収した。スクラバー出口の排気中
ClF3 の濃度を測定した結果、検知限度(0.1pp
m)以下であった。また、塩素、塩化水素、フッ素、フ
ッ化水素のいずれも検知限度以下であった。
【0042】(比較例3)実施例3の排ガスに水素ガス
を混合せず、触媒反応器を通さずに直接湿式スクラバー
に通した以外は実施例3と同様の条件で排ガス処理を行
った。その結果、湿式スクラバー出口の排気中Cl2
度は、約8ppmもあった。
【0043】以上の結果、触媒反応器の水素還元触媒は
極めて有効に作用し、塩素、三フッ化窒素、三フッ化塩
素のいずれもほぼ完全に塩化水素、フッ化水素等にまで
還元され、後段の湿式スクラバーで水に吸収され、ほぼ
完全に除害を完了したことが判る。
【0044】尚、本発明は、上記実施形態に限定される
ものではない。上記実施形態は、例示であり、本発明の
特許請求の範囲に記載された技術的思想と実質的に同一
な構成を有し、同様な作用効果を奏するものは、いかな
るものであっても本発明の技術的範囲に包含される。
【0045】例えば、本発明の排ガス処理方法および処
理装置は、前述の半導体プロセス等のみに適用されるも
のではない。水素還元によって無害化可能な有害ガスを
発生するプロセスは、本発明が適用できることは言うま
でもない。また、本発明でいう湿式スクラバーは、その
名称に拘泥されるものではない。湿式で排ガスを吸収、
分解するものであれば、本発明の範囲であり、名称が充
填塔、吸収塔等その他であっても、本発明の範囲である
ことは言うまでもない。また、本発明における還元反応
の温度は、400℃以上で行う場合を挙げたが、本発明
はこれには限られず、触媒、処理ガスの種類によって
は、常温で処理も可能であり、適宜反応温度を選択すれ
ばよい。
【0046】
【発明の効果】以上のように本発明によれば、プロセス
より排出される排ガス中に含まれる水難溶性でかつ支燃
性のハロゲン系有害ガスに水素ガスを混入して還元性触
媒に接触させ、爆発的な燃焼反応を抑えて還元反応させ
た後、生成したハロゲン化水素ガスを湿式スクラバーで
吸収液に吸収させるか、あるいは吸着器の吸着剤に吸着
させるようにしたので、有害ガスのほぼ全量を還元して
無害化することができ、有害ガスの排出量を著しく低減
することができると共に安全性を確保して排ガス処理能
力の向上を図ることができる。また、従来の各種処理方
法と比較して設備費もランニングコストも低減化し、排
ガス処理のコストダウンを図ることもできる。
【図面の簡単な説明】
【図1】本発明の排気ガス処理装置の構成例を示す概要
図である。
【符号の説明】
1…排ガス処理装置、2…反応器、3…湿式スクラバ
ー、4…還元性触媒層、5…加熱ヒータ、6…断熱材、
7…排ガス導入管、8…排ガスポンプ、9…窒素ガス導
入管、10…水素ガス導入管、11…気液接触部、12
…吸収液散水管、13…吸収液循環ポンプ、14…吸収
液供給管、15…吸収液排出管、16…吸着器。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 53/34 134C 53/36 ZABZ Fターム(参考) 4D002 AA19 AA23 AC10 BA02 BA04 CA01 DA35 DA41 EA02 HA02 4D048 AA11 AB02 AC01 BA03Y BA30X BA31X BA33Y BA41Y BD01 CA07 CC29 CC38 CC43 DA03 DA06 4G069 AA03 AA08 AA15 BC70A BC70B BC72A BC72B BC74A BC74B BC75A BC75B CA02 CA08 CA11 DA06 FA02 FB77

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 水難溶性でかつ支燃性のハロゲン系ガス
    を無害化する排ガスの処理方法において、これらを含有
    する排ガスに水素ガスを混入して還元性触媒に接触さ
    せ、還元反応させた後、生成したハロゲン化水素ガスを
    湿式スクラバーで吸収液に吸収させるか、あるいは吸着
    器の吸着剤に吸着させることを特徴とする排ガス処理方
    法。
  2. 【請求項2】 前記水難溶性でかつ支燃性のハロゲン系
    ガスが塩素、三フッ化窒素、三フッ化塩素あるいはこれ
    らの内2種以上が混入するガスであることを特徴とする
    請求項1に記載の排ガス処理方法。
  3. 【請求項3】 前記還元性触媒が、白金、パラジウム、
    ロジウム、イリジウムまたはこれらの内2種以上の合金
    から成ることを特徴とする請求項1または請求項2に記
    載の排ガス処理方法。
  4. 【請求項4】 前記還元反応における反応温度を400
    ℃以上とすることを特徴とする請求項1ないし請求項3
    のいずれか1項に記載の排ガス処理方法。
  5. 【請求項5】 前記還元反応における水素ガス量を、被
    処理水難溶性でかつ支燃性のハロゲン系ガスの理論反応
    量の1.5倍以上でかつ爆発限界より少量とすることを
    特徴とする請求項1ないし請求項4のいずれか1項に記
    載の排ガス処理方法。
  6. 【請求項6】 水難溶性でかつ支燃性のハロゲン系ガス
    を無害化する排ガスの処理装置において、少なくとも還
    元性触媒を充填した触媒層を有する反応器および該反応
    器で生成したハロゲン化水素ガスを吸収する湿式スクラ
    バーあるいは該ハロゲン化水素ガスを吸着する吸着剤を
    充填した吸着器とから成ることを特徴とする排ガス処理
    装置。
JP10285900A 1998-09-22 1998-09-22 排ガス処理方法および処理装置 Pending JP2000093745A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10285900A JP2000093745A (ja) 1998-09-22 1998-09-22 排ガス処理方法および処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10285900A JP2000093745A (ja) 1998-09-22 1998-09-22 排ガス処理方法および処理装置

Publications (1)

Publication Number Publication Date
JP2000093745A true JP2000093745A (ja) 2000-04-04

Family

ID=17697485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10285900A Pending JP2000093745A (ja) 1998-09-22 1998-09-22 排ガス処理方法および処理装置

Country Status (1)

Country Link
JP (1) JP2000093745A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010067677A1 (ja) * 2008-12-11 2010-06-17 セントラル硝子株式会社 三フッ化塩素の除害方法
JP2011069330A (ja) * 2009-09-28 2011-04-07 Toyota Motor Corp 内燃機関の筒内圧取得装置
CN111499051A (zh) * 2020-05-28 2020-08-07 马鞍山市华清环保工程有限公司 一种氢氟酸废液处理反应釜及其处理方法
KR102170628B1 (ko) * 2020-07-13 2020-10-27 유한회사 네오클 기체상 이산화염소를 이용하여 배기가스 중의 질소산화물과 이산화황을 제거하는 시스템 및 방법
WO2024101331A1 (ja) * 2022-11-08 2024-05-16 株式会社レゾナック 塩素ガスの分解方法および塩素ガスの除去方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010067677A1 (ja) * 2008-12-11 2010-06-17 セントラル硝子株式会社 三フッ化塩素の除害方法
JP2010158664A (ja) * 2008-12-11 2010-07-22 Central Glass Co Ltd 三フッ化塩素の除害方法
CN102143793A (zh) * 2008-12-11 2011-08-03 中央硝子株式会社 三氟化氯的除害方法
KR101343961B1 (ko) 2008-12-11 2013-12-20 샌트랄 글래스 컴퍼니 리미티드 3불화염소 및 불소를 포함하는 혼합 가스의 제해 방법
JP2011069330A (ja) * 2009-09-28 2011-04-07 Toyota Motor Corp 内燃機関の筒内圧取得装置
CN111499051A (zh) * 2020-05-28 2020-08-07 马鞍山市华清环保工程有限公司 一种氢氟酸废液处理反应釜及其处理方法
KR102170628B1 (ko) * 2020-07-13 2020-10-27 유한회사 네오클 기체상 이산화염소를 이용하여 배기가스 중의 질소산화물과 이산화황을 제거하는 시스템 및 방법
WO2024101331A1 (ja) * 2022-11-08 2024-05-16 株式会社レゾナック 塩素ガスの分解方法および塩素ガスの除去方法

Similar Documents

Publication Publication Date Title
KR19990045278A (ko) 과불화물의 처리 방법 및 그 처리 장치
EP0793995A1 (en) A method for treating gas containing organohalogen compounds, and catalyst for decomposing the organohalogen compounds
JP3266759B2 (ja) 有機ハロゲン化合物の処理方法及びその処理装置
JP2000093745A (ja) 排ガス処理方法および処理装置
JPH03106419A (ja) フロン含有ガスの処理方法及びフロン分解用触媒
KR20010006396A (ko) 배기가스중의 질소산화물의 제거방법
JP2001300260A (ja) ガス中の非金属フッ化物の光分解方法
JPH02273511A (ja) 窒素または炭素のハロゲン化物の無毒化方法
CN111151231B (zh) 一种脱硝氯化铁吸附剂再生的方法
JP2000271429A (ja) 排ガス処理方法および処理装置
JPH0824572A (ja) 臭化メチル含有排ガスの処理方法
JP2005125285A (ja) N2o含有排ガスの処理方法およびその装置
JP2000058464A (ja) 排気ガス処理方法および処理装置
JP2000157830A (ja) 排ガス処理方法および処理装置
JPH0910553A (ja) 揮発性有機ハロゲン化合物含有排ガスの処理方法
WO2005077496A1 (en) Method and apparatus for treating gas containing fluorine-containing compounds
JP4831924B2 (ja) Hf含有ガスの乾式処理装置及び処理方法
JP2681034B2 (ja) フロンの無害化方法
JP3360353B2 (ja) 揮発性有機ハロゲン化合物の処理方法
JPH10216479A (ja) 三弗化窒素ガスの除害方法
JPH06134315A (ja) 揮発性有機ハロゲン化合物の還元処理用触媒
JPH0483515A (ja) フロン系冷媒の分解方法
TWI359692B (en) Exhaust gas treating apparatus and method for trea
JP2004105903A (ja) ヒドラジン含有排水の処理法
JPH06106171A (ja) 揮発性有機ハロゲン化合物の処理方法