JP2000080496A - Filling plating method for base material having fine pore and/or fine groove - Google Patents

Filling plating method for base material having fine pore and/or fine groove

Info

Publication number
JP2000080496A
JP2000080496A JP10249456A JP24945698A JP2000080496A JP 2000080496 A JP2000080496 A JP 2000080496A JP 10249456 A JP10249456 A JP 10249456A JP 24945698 A JP24945698 A JP 24945698A JP 2000080496 A JP2000080496 A JP 2000080496A
Authority
JP
Japan
Prior art keywords
plating
grooves
fine
copper
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10249456A
Other languages
Japanese (ja)
Other versions
JP3694594B2 (en
JP2000080496A5 (en
Inventor
Mizuki Nagai
瑞樹 長井
Akihisa Hongo
明久 本郷
Kanji Ono
寛二 大野
Ryoichi Kimizuka
亮一 君塚
Emi Maruyama
恵美 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
JCU Corp
Original Assignee
Ebara Corp
Ebara Udylite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Udylite Co Ltd filed Critical Ebara Corp
Priority to JP24945698A priority Critical patent/JP3694594B2/en
Publication of JP2000080496A publication Critical patent/JP2000080496A/en
Publication of JP2000080496A5 publication Critical patent/JP2000080496A5/ja
Application granted granted Critical
Publication of JP3694594B2 publication Critical patent/JP3694594B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily execure copper plating free from voids in fine pores, grooves or the like with high efficiency without requiring special equipment, on a base material having fine pores or fine grooves, at first, by executing plating at low electric current in a short time, next increasing the electric current and executing plating to a prescribed film thickness. SOLUTION: The surface of a base material in which wiring grooves composed of fine pores and/or fine grooves with different sizes, widths and depths are formed is plated, at first, at low current density in a short time, e.g. at the average cathode current density of 0.03 to 0.5 A/dm2 for 10 sec to 10 min. In this way, the metal is precipitated to the inside of the wiring grooves. Next, the electric current is increased, and plating is executed, e.g. at the current density of about 0.5 to 10 A/dm2 to a prescribed thickness. In this way, the metal is precipitated without the clogging in the vicinities of the inlets of the pores and grooves, and the wiring grooves are filled with copper with hardly generating voids. Thus, the wiring pattern on the substrate obtd. thereby shows good copper plating volume resistivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微細孔および/ま
たは微細溝を有する基材の孔埋めめっき方法に関し、更
に詳細には、異なった径や幅あるいは深さの微細な孔や
溝を有する半導体デバイス用の基材を電解めっきで短時
間に孔埋めすることのできる方法を提供するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for filling a substrate having fine holes and / or fine grooves, and more particularly, to a method for forming fine holes or grooves having different diameters, widths or depths. An object of the present invention is to provide a method capable of filling a hole in a substrate for a semiconductor device by electrolytic plating in a short time.

【0002】[0002]

【従来の技術】半導体ウエハー面には、微細孔および/
または微細溝(以下、「配線溝」という)で配線パター
ンが形成されるが、従来この配線溝を埋める配線材料と
しては、アルミニウムまたはアルミニウム合金が用いら
れていた。 しかしながら、配線パターンの集積度が高
くなるにつれて電流密度が増加し、温度上昇やこれに伴
う熱応力が生じる。 そして、これらの現象は配線材料
として利用されたアルミニウムやアルミニウム合金にス
トレスマイグレーションやエレクトロマイグレーション
による断線等の問題が無視できなくなっていた。 この
ような問題を回避する手段としては、配線材料であるア
ルミニウム等への銅の添加や、高融点金属との積層化が
行われているが、十分なものとはいえなかった。
2. Description of the Related Art Microscopic holes and / or
Alternatively, a wiring pattern is formed by fine grooves (hereinafter, referred to as “wiring grooves”). Conventionally, aluminum or an aluminum alloy has been used as a wiring material for filling the wiring grooves. However, as the degree of integration of the wiring pattern increases, the current density increases, and the temperature rises and the resulting thermal stress. As for these phenomena, problems such as disconnection due to stress migration or electromigration in aluminum or aluminum alloy used as a wiring material cannot be ignored. As means for avoiding such a problem, addition of copper to aluminum or the like, which is a wiring material, or lamination with a high-melting-point metal has been performed, but it has not been sufficient.

【0003】そこで、通電による発熱を抑制するため、
アルミニウムより導電性の良い配線材料を用いて配線溝
を埋めることが検討されている。 アルミニウムより比
抵抗の低い材料としては、銅や銀が挙げられるが、この
うち銀は高価で、強度や耐食性が低く、しかも構成原子
が拡散しやすいという欠点を有する材料であるため、新
しい配線材料として銅や、銅合金に注目が集まってい
る。
Therefore, in order to suppress heat generation due to energization,
Filling the wiring groove with a wiring material having better conductivity than aluminum has been studied. Copper and silver are examples of materials having a lower specific resistance than aluminum. Among them, silver is a material that is expensive, has low strength and corrosion resistance, and has the disadvantage that constituent atoms are easily diffused. Attention has been focused on copper and copper alloys.

【0004】従来、半導体ウエハー面に形成された配線
溝にアルミニウム等を埋め込むために行われる方法(以
下、「ダマシン法」という)としては、スパッタリング
成膜とケミカルドライエッチングを組み合わせて用いる
方法がとられてきた。 しかし、この方法は、スパッタ
リング成膜でアスペクト比(深さと直径または幅の比)
の高い配線用の微細溝または微細孔への金属の充填、埋
込が困難であり、また、銅や銅合金に対するケミカルエ
ッチングも技術的に確立されていないという問題点があ
り、実用化は困難であると判断されるものである。
Conventionally, as a method for embedding aluminum or the like in a wiring groove formed on the surface of a semiconductor wafer (hereinafter, referred to as a “damascene method”), there is a method using a combination of sputtering film formation and chemical dry etching. I have been. However, this method uses an aspect ratio (ratio of depth to diameter or width) in sputtering film formation.
It is difficult to fill and bury metal in fine grooves or holes for high wiring, and there is a problem that chemical etching of copper or copper alloy has not been established technically, and practical application is difficult Is determined.

【0005】一方、ダマシン法における微細な配線溝へ
の金属の埋込手法としては、CVD法が知られている
が、この方法は析出金属層中に有機原料由来の炭素の混
入が避けられないという欠点のあるものであった。
On the other hand, as a technique for embedding a metal into a fine wiring groove in the damascene method, a CVD method is known, but this method cannot avoid incorporation of carbon derived from an organic material into a deposited metal layer. There was a drawback that.

【0006】このように、従来のダマシン法は、高集積
度を目的として銅または銅合金を利用する場合には適用
することができず、別の手法の開発が求められていた。
As described above, the conventional damascene method cannot be applied to the case where copper or a copper alloy is used for the purpose of high integration, and development of another method has been required.

【0007】最近、銅または銅合金を半導体ウエハー上
の微細な配線溝に埋め込む方法(以下、「銅ダマシン
法」という)として、めっき法が注目されている。 銅
の電気めっき法は、プロセスコストが低く、成膜速度が
速いという長所もあるが、その反面、電析中に気泡が発
生することがあり、この気泡が電析面に付着したままに
なった場合には、この部分がボイド(空孔)になってし
まうという問題があった。
[0007] Recently, a plating method has attracted attention as a method of embedding copper or a copper alloy in fine wiring grooves on a semiconductor wafer (hereinafter referred to as "copper damascene method"). Copper electroplating has the advantages of low process cost and high film deposition rate, but on the other hand, bubbles may be generated during electrodeposition, and these bubbles remain attached to the electrodeposited surface. In this case, there is a problem that this portion becomes a void (void).

【0008】例えば、通常の定電流でめっきした場合、
0.5A/dm以上では、析出速度ははやいが径や巾
が0.3μm以下の孔や溝は、めっきで完全に充填され
る前に、その入口付近が先に塞がり、孔や溝中にボイド
(空孔)が発生する危険が大きい。一方、0.5A/d
より低い電流にすれば微細孔を充填することはでき
るが、大きい孔を埋めるのに著しく時間を要し、生産効
率上好ましくない。
For example, when plating with a normal constant current,
At 0.5 A / dm 2 or more, the deposition rate is fast, but holes and grooves with a diameter and width of 0.3 μm or less are closed near the entrance before being completely filled with plating, and There is a great risk that voids (voids) will be generated in the holes. On the other hand, 0.5 A / d
If the current is lower than m 2, the fine holes can be filled, but it takes much time to fill the large holes, which is not preferable in terms of production efficiency.

【0009】またパルスめっきも提案されているがDC
パルスは、大電流を流すためボイドを生じやすい。PR
パルスは条件によってはボイドを防ぐことはできるが、
添加剤使用浴では、その条件設定が一定にしづらいばか
りか接点切れを起こす危険もあるほか、ボイド側にもめ
っきがつくためザラを生じやすく、好ましくない。
[0009] Pulse plating has also been proposed.
Pulses tend to cause voids because of the flow of a large current. PR
Pulses can prevent voids under certain conditions,
In the bath using the additive, not only is it difficult to set the conditions, but also there is a risk of breaking the contact, and plating is also formed on the void side.

【0010】[0010]

【発明が解決しようとする課題】このような事情から、
特別の電気的設備を必要とせず、簡単に、微細な溝ある
いは孔に対し、ボイドの発生を防ぎながら効率よく銅め
っきを行ない、基材上の配線溝を孔埋めする方法の開発
が求められていた。
SUMMARY OF THE INVENTION Under such circumstances,
There is a need for the development of a method to fill the wiring grooves on the base material by efficiently performing copper plating while preventing the generation of voids in fine grooves or holes without the need for special electrical equipment. I was

【0011】[0011]

【課題を解決するための手段】本発明者は、電気めっき
条件とボイドの発生の関係について数多くの試験を行
い、検討していたところ、最初に低電流でめっきを行
い、配線溝の内部まで金属を析出させた後に電流を上げ
た場合は、孔や溝の入り口付近が塞がりにくく、ボイド
もほとんど発生しないことを見出し、本発明を完成し
た。
The present inventor conducted a number of tests on the relationship between the electroplating conditions and the occurrence of voids and studied them. The inventors have found that when the current is increased after the metal is deposited, the vicinity of the entrance of the hole or groove is hardly closed and almost no void is generated, and the present invention has been completed.

【0012】すなわち本発明は、配線溝を有する基材上
に、最初に低電流で短時間のめっきを行い、次いで電流
を上げ、所定の膜厚までめっきすることを特徴とする配
線溝を有する基材の孔埋めめっき方法である。
That is, the present invention has a wiring groove which is characterized in that plating is first performed on a base material having a wiring groove at a low current for a short time, and then the current is increased to a predetermined film thickness. This is a plating method for filling a hole in a substrate.

【0013】[0013]

【発明の実施の形態】本発明方法は、銅や銀等の高電導
性金属イオンを含む金属めっき浴を準備し、常法によっ
て配線溝を有する基材を導電化した後、最初に1段目の
めっきとして、ごく低電流で短時間めっきし、径の小さ
い孔や溝の中まで金属を析出させた後に電流を上げ、大
きい孔を埋め、所定の膜厚までめっきすることにより実
施される。
BEST MODE FOR CARRYING OUT THE INVENTION The method of the present invention is to prepare a metal plating bath containing highly conductive metal ions such as copper and silver and to make a substrate having wiring grooves conductive by a conventional method. The second plating is performed by plating for a short time with a very low current, depositing a metal into a small hole or groove, increasing the current, filling a large hole, and plating to a predetermined film thickness. .

【0014】本発明方法の対象となる配線溝を有する基
材の好ましい例としては、径或いは巾が0.3μm以下
の微細孔あるいは微細溝と、それ以上の径や巾の微細孔
や微細溝を有する基材である。このような基材の例とし
ては、ロジックLSIシリコンウエハー等が挙げられ
る。
Preferred examples of the substrate having a wiring groove to be subjected to the method of the present invention include fine holes or fine grooves having a diameter or width of 0.3 μm or less, and fine holes or fine grooves having a diameter or width larger than 0.3 μm. Is a substrate having Examples of such a base material include a logic LSI silicon wafer.

【0015】また、高電導性金属イオンを含む金属めっ
き浴としては、ダマシン法においてアルミニウムに代わ
りうる電導性の良い金属であれば特に制約はないが、銅
や銀のめっき浴が好ましく、経済性の面からは特に銅が
好ましい。
The metal plating bath containing highly conductive metal ions is not particularly limited as long as it is a metal having good conductivity which can replace aluminum in the damascene method, but a copper or silver plating bath is preferable. In view of the above, copper is particularly preferable.

【0016】本発明方法において、最初のめっきは、平
均陰極電流密度0.03〜0.5A/dm程度の低電流
で、10秒〜10分間程度の時間行うことが好ましい。
また、その後のめっきは、金属めっき浴の一般的な条
件範囲で良く、例えば0.5〜10A/dm程度の電
流密度でめっきすることができる。なお、後のめっき
は、必ずしも一定の電流条件で行う必要はなく、電流密
度を複数段あるいは連続的に上昇させて実施しても差し
支えない。
In the method of the present invention, the first plating is preferably performed at a low current of about 0.03 to 0.5 A / dm 2 for about 10 seconds to 10 minutes.
Further, the subsequent plating may be performed in a general condition range of a metal plating bath, and for example, plating can be performed at a current density of about 0.5 to 10 A / dm 2 . In addition, the subsequent plating does not necessarily need to be performed under a constant current condition, and may be performed by increasing the current density in multiple steps or continuously.

【0017】以上説明した本発明方法は1種類の金属め
っき液で異なった孔径や溝径の配線溝を簡単に金属めっ
きで充填できる点に大きなメリットがあり、金属ダマシ
ン法として利用できるものである。
The method of the present invention described above has a great advantage in that wiring grooves having different hole diameters and groove diameters can be easily filled with metal plating with one kind of metal plating solution, and can be used as a metal damascene method. .

【0018】[0018]

【実施例】次に実施例を挙げ、本発明を更に詳しく説明
するが、本発明はこれら実施例になんら制約されるもの
ではない。
Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

【0019】実 施 例 1 硫酸銅めっき浴による孔埋めめっき: (1)孔径0.13〜0.25μm、深さ0.5μmの
孔、孔径0.5〜1.0μm、深さ0.5μmの孔、溝幅
0.13〜0.25μm、深さ0.5μmの溝および溝幅
0.5〜1.0μm、深さ0.5μmの溝を有するシリコ
ンウエハーの基材を、常法により導電化した後、下記の
硫酸銅めっき浴1を用い、銅めっきを施した。
Example 1 Filling plating with a copper sulfate plating bath: (1) 0.13 to 0.25 μm hole, 0.5 μm deep hole, 0.5 to 1.0 μm hole diameter, 0.5 μm depth A silicon wafer substrate having a hole having a groove width of 0.13 to 0.25 μm and a depth of 0.5 μm and a groove having a groove width of 0.5 to 1.0 μm and a depth of 0.5 μm is prepared by a conventional method. After being made conductive, copper plating was performed using the following copper sulfate plating bath 1.

【0020】初めの5分間は平均0.1A/dmでめ
っきし、次いで、1A/dm2で5分間めっきして、平
坦部でトータル1100nmの銅めっきを析出させた。
この基材を孔および溝を含むようにFIBで切断し、そ
の断面をFE−SEMで観察したところ、ボイドの発生
はなく孔や溝は全て、銅めっきで充填されていた。更に
平均部で測定した銅めっきの体積抵抗率は、1.9μΩ
・cmと良好であった。
For the first 5 minutes, plating was performed at an average of 0.1 A / dm 2 , and then plating was performed at 1 A / dm 2 for 5 minutes to deposit a total of 1100 nm copper plating on the flat portion.
This base material was cut by FIB so as to include holes and grooves, and the cross section was observed by FE-SEM. As a result, no voids were generated and all the holes and grooves were filled with copper plating. Further, the volume resistivity of the copper plating measured in the average part was 1.9 μΩ.
-Cm and good.

【0021】( 硫酸銅めっき浴 1 ) 硫酸銅五水塩 75 g/l 硫 酸 180 g/l 塩 酸 0.14ml/l (塩素イオンとして60mg/l) 添 加 剤 5ml/l 浴 温 28 ℃ * Cu−Brite THS(荏原ユージライト(株)
製)
(Copper sulfate plating bath 1) Copper sulfate pentahydrate 75 g / l Sulfuric acid 180 g / l Hydrochloric acid 0.14 ml / l (60 mg / l as chloride ion) Additive * 5 ml / l Bath temperature 28 ℃ * Cu-Brite THS (EBARA Eugerite Co., Ltd.)
Made)

【0022】(2)下記の硫酸銅めっき浴2を用い、上
記(1)で用いたのと同じ基板に硫酸銅めっきを行っ
た。 めっきは、初めの1分間は0.05A/dmの電
流密度で、次の1分間は0.1A/dmで、更に次の
1分は0.2A/dmで、最後の2分は2A/dm
で行なった。 この結果、平坦部でトータル900nm
の銅めっきがついた。
(2) Using the following copper sulfate plating bath 2, the same substrate as used in the above (1) was subjected to copper sulfate plating. Plating at a current density of 0.05 A / dm 2 for 1 minute in the beginning, the following 1 minute 0.1 A / dm 2, and more following 1 minute 0.2 A / dm 2, the last two minutes Is 2A / dm 2
Performed in As a result, a total of 900 nm
With copper plating.

【0023】上記(1)と同様に断面観察を行った結
果、0.13μmφでアスペクト比4の孔、0.6μm径
の孔と、同じ巾の溝の全てがボイドなく良好に充填され
ていた。 更に、銅皮膜の体積抵抗率は、1.85μΩ・
cmであった。
A cross section was observed in the same manner as in the above (1). As a result, all the holes having a diameter of 0.13 μmφ, an aspect ratio of 4 and a diameter of 0.6 μm, and all the grooves having the same width were well filled without voids. . Further, the volume resistivity of the copper film is 1.85 μΩ ·
cm.

【0024】( 硫酸銅めっき浴 2 ) 硫酸銅五水塩 200 g/l 硫 酸 60 g/l 塩 酸 0.14ml/l (塩素イオンとして60mg/l) 添 加 剤 5ml/l 浴 温 25 ℃ * Cu−Brite THS(荏原ユージライト(株)
製)
(Copper sulfate plating bath 2) Copper sulfate pentahydrate 200 g / l Sulfuric acid 60 g / l Hydrochloric acid 0.14 ml / l (60 mg / l as chlorine ion) Additive * 5 ml / l Bath temperature 25 ℃ * Cu-Brite THS (EBARA Eugerite Co., Ltd.)
Made)

【0025】実 施 例 2 ピロリン酸銅めっき浴による孔埋めめっき:有機添加剤
を全く含まない、下記のピロリン酸銅めっき浴を用い、
実施例1の(1)と同じ基板に銅めっきを行った。 め
っきは、初めの30秒間は、0.2A/dmの電流密
度で、次の30秒は0.5A/dmで、更にその後3
0秒かけて2A/dmまで電流を上げ、そのまま2分
間めっきした。 この結果、平坦部でトータル約110
0nmの銅めっきが析出した。
EXAMPLE 2 Filling plating with copper pyrophosphate plating bath: The following copper pyrophosphate plating bath containing no organic additives was used.
Copper plating was performed on the same substrate as in (1) of Example 1. The plating was performed at a current density of 0.2 A / dm 2 for the first 30 seconds, at 0.5 A / dm 2 for the next 30 seconds, and then at 3 A / dm 2.
The current was increased to 2 A / dm 2 over 0 seconds, and plating was continued for 2 minutes. As a result, a total of about 110
Copper plating of 0 nm was deposited.

【0026】実施例1の(1)と同様に断面観察した結
果、基材の有していた0.15〜1.0μmまでの孔や溝
は全て充填されており、ボイドは認められなかった。
また、銅めっき被膜の体積抵抗率は、2.0μΩ・cm
と良好な値であった。なお市販の有機添加剤を併用した
場合もほぼ同様な優れた孔埋めめっきが得られた。
As a result of observing the cross section in the same manner as (1) of Example 1, all the holes and grooves from 0.15 to 1.0 μm of the base material were filled, and no voids were observed. .
The volume resistivity of the copper plating film is 2.0 μΩ · cm.
And good values. In addition, almost the same excellent hole filling plating was obtained when a commercially available organic additive was used in combination.

【0027】( ピロリン酸銅めっき浴 ) ピロリン酸銅三水塩 90 g/l ピロリン酸カリウム 340 g/l アンモニア水(28%) 3ml/l 浴 温 55 ℃ pH 8.5(Copper pyrophosphate plating bath) Copper pyrophosphate trihydrate 90 g / l Potassium pyrophosphate 340 g / l Ammonia water (28%) 3 ml / l Bath temperature 55 ° C. pH 8.5

【0028】比 較 例 1 実施例1の(2)で用いた硫酸銅めっき浴2を使用し、
実施例1(2)で用いたのと同じ基材を2A/dm
3分間めっきした。 平坦部でのめっき厚は、約120
0nmで、体積抵抗率は、1.85μΩ・cmであっ
た。
Comparative Example 1 Using the copper sulfate plating bath 2 used in (2) of Example 1,
The same substrate as used in Example 1 (2) was plated at 2 A / dm 2 for 3 minutes. The plating thickness at the flat part is about 120
At 0 nm, the volume resistivity was 1.85 μΩ · cm.

【0029】めっき後の断面をFE−SEMで観察した
結果、0.6μm径、巾以上の孔や溝は良好に埋まって
いたが、0.13μmφの孔や0.2μm角・アスペクト
比4の孔には、孔の中心部から入口にかけてボイドを生
じているものが多く観察された。 また、0.1A/dm
でめっきを行った場合は、ボイドがみられなかった
が、めっき厚を必要量得るには、60分以上のめっき時
間がかかった。
As a result of observing the cross section after plating by FE-SEM, holes and grooves having a diameter and a width of 0.6 μm or more were satisfactorily filled, but holes having a diameter of 0.13 μm and a 0.2 μm square having an aspect ratio of 4 were obtained. In the holes, many voids were observed from the center to the entrance of the holes. In addition, 0.1 A / dm
When plating was performed in No. 2 , no voids were observed, but a plating time of 60 minutes or more was required to obtain a required plating thickness.

【0030】比 較 例 2 実施例2と同じピロリン酸銅浴を用い、実施例1の
(1)と同じ基板に1A/dmで5分間めっきし、平
坦部で約1000nmの銅めっきを得た。 この銅めっ
き被膜の体積抵抗率は2.0μΩ・cmであった。
Comparative Example 2 Using the same copper pyrophosphate bath as in Example 2, the same substrate as in (1) of Example 1 was plated at 1 A / dm 2 for 5 minutes to obtain a copper plating of about 1000 nm on a flat portion. Was. The volume resistivity of the copper plating film was 2.0 μΩ · cm.

【0031】断面観察の結果、0.5μmφ以上の孔
は、シームはあるものの良好に埋まっていたが、0.1
5〜0.3μmφまでの孔は、孔の中心部から入口にか
けて、細長い形状のボイドが多く観察された。 以 上
As a result of the cross-sectional observation, the hole having a diameter of 0.5 μmφ or more was buried well despite the seam.
In the hole of 5 to 0.3 μmφ, many elongated voids were observed from the center of the hole to the entrance. that's all

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本郷 明久 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 大野 寛二 神奈川県藤沢市善行坂1−1−6 荏原ユ ージライト株式会社内 (72)発明者 君塚 亮一 神奈川県藤沢市善行坂1−1−6 荏原ユ ージライト株式会社内 (72)発明者 丸山 恵美 神奈川県藤沢市善行坂1−1−6 荏原ユ ージライト株式会社内 Fターム(参考) 4K024 AA09 AB19 BA01 BB11 BC10 CA06 CA07 CB05 GA01 GA04 4M104 BB04 BB08 DD52  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Akihisa Hongo 11-1 Haneda Asahimachi, Ota-ku, Tokyo Ebara Corporation (72) Inventor Kanji Ohno 1-1-6 Yoshiyukizaka, Fujisawa-shi, Kanagawa Prefecture Yu Ebara (72) Inventor Ryoichi Kimizuka 1-1-6 Yoshiyukizaka, Fujisawa-shi, Kanagawa Prefecture Ebaralight Inc. (72) Inventor Emi Maruyama 1-1-6, Yoshiyukizaka, Fujisawa-shi, Kanagawa Eiji Light Elite Inc. Company F term (reference) 4K024 AA09 AB19 BA01 BB11 BC10 CA06 CA07 CB05 GA01 GA04 4M104 BB04 BB08 DD52

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 微細孔および/または微細溝を有する基
材上に、最初に低電流で短時間のめっきを行い、次いで
電流を上げ、所定の膜厚までめっきすることを特徴とす
る微細孔および/または微細溝を有する基材の孔埋めめ
っき方法。
1. A microporous substrate characterized in that a substrate having micropores and / or microgrooves is first plated with a low current for a short period of time, and then the current is increased to a predetermined thickness. And / or a method for filling a hole in a substrate having fine grooves.
【請求項2】 基材上の微細孔および/または微細溝が
異なった径や幅あるいは深さのものである請求項第1項
記載の微細孔および/または微細溝を有する基材の孔埋
めめっき方法。
2. The filling of a substrate having micropores and / or microgrooves according to claim 1, wherein the micropores and / or microgrooves on the substrate have different diameters, widths or depths. Plating method.
【請求項3】 最初のめっきを、平均陰極電流密度0.
03〜0.5A/dm で10秒〜10分間行う請求項
第1項または第2項記載の微細孔および/または微細溝
を有する基材の孔埋めめっき方法。
3. The method of claim 1, wherein the first plating is carried out at an average cathode current density of 0.5.
03-0.5A / dm 2For 10 seconds to 10 minutes
Item 3. Micropores and / or microgrooves according to item 1 or 2.
And a method of filling a hole in a substrate having a hole.
JP24945698A 1998-09-03 1998-09-03 Method for hole-filling plating of substrate having fine holes and / or fine grooves Expired - Lifetime JP3694594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24945698A JP3694594B2 (en) 1998-09-03 1998-09-03 Method for hole-filling plating of substrate having fine holes and / or fine grooves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24945698A JP3694594B2 (en) 1998-09-03 1998-09-03 Method for hole-filling plating of substrate having fine holes and / or fine grooves

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004076820A Division JP4307300B2 (en) 2004-03-17 2004-03-17 Method for hole-filling plating of base material having fine holes and / or fine grooves

Publications (3)

Publication Number Publication Date
JP2000080496A true JP2000080496A (en) 2000-03-21
JP2000080496A5 JP2000080496A5 (en) 2005-02-24
JP3694594B2 JP3694594B2 (en) 2005-09-14

Family

ID=17193241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24945698A Expired - Lifetime JP3694594B2 (en) 1998-09-03 1998-09-03 Method for hole-filling plating of substrate having fine holes and / or fine grooves

Country Status (1)

Country Link
JP (1) JP3694594B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240995A (en) * 1999-12-15 2001-09-04 Shipley Co Llc Method for repairing seed layer
JP2002526663A (en) * 1998-10-05 2002-08-20 セミトウール・インコーポレーテツド Submicron metallization using electrochemical deposition
JP2003318544A (en) * 2002-04-22 2003-11-07 Toppan Printing Co Ltd Multilayer wiring board and its manufacturing method
JP2005272874A (en) * 2004-03-23 2005-10-06 Sumitomo Bakelite Co Ltd Method for producing circuit board
JP2007220744A (en) * 2006-02-14 2007-08-30 Nec Electronics Corp Semiconductor device and manufacturing method thereof
JP2008028337A (en) * 2006-07-25 2008-02-07 Shinko Electric Ind Co Ltd Method of manufacturing electronic component
JP2008031506A (en) * 2006-07-27 2008-02-14 Nec Electronics Corp Method for producing semiconductor device and plating treatment device
JP2011225991A (en) * 2010-04-19 2011-11-10 Internatl Business Mach Corp <Ibm> Method of direct electrodeposition on semiconductor
JP2012122097A (en) * 2010-12-08 2012-06-28 Ebara Corp Electroplating method
JP2012167377A (en) * 2012-04-13 2012-09-06 Renesas Electronics Corp Method for manufacturing semiconductor device
JP2012231096A (en) * 2011-04-27 2012-11-22 Elpida Memory Inc Semiconductor device and manufacturing method of the same
US8853074B2 (en) 2010-03-24 2014-10-07 Ps4 Luxco S.A.R.L. Method of manufacturing semiconductor device
WO2019216012A1 (en) * 2018-05-11 2019-11-14 住友電気工業株式会社 Printed wiring board and method for manufacturing printed wiring board

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4307300B2 (en) * 2004-03-17 2009-08-05 株式会社荏原製作所 Method for hole-filling plating of base material having fine holes and / or fine grooves
JP4307408B2 (en) * 2005-05-18 2009-08-05 株式会社荏原製作所 Method for hole-filling plating of base material having fine holes and / or fine grooves

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337542A (en) * 1976-09-20 1978-04-06 Nippon Electric Co Constant current density bump plating method
JPS57210988A (en) * 1981-06-22 1982-12-24 Sumitomo Electric Ind Ltd Plating method
JPS58177488A (en) * 1982-04-09 1983-10-18 Fujitsu Ltd Electroplating method
JPS644091A (en) * 1987-06-26 1989-01-09 Sony Corp Plating
JPH05243730A (en) * 1992-03-03 1993-09-21 Hitachi Chem Co Ltd Manufacture of printed wiring board
JPH05295589A (en) * 1992-04-21 1993-11-09 Oki Electric Ind Co Ltd Bump electrode plating device for semiconductor wafer and plating method thereof
JPH06291191A (en) * 1993-04-01 1994-10-18 Nec Corp Manufacturing for semiconductor device
JPH07283219A (en) * 1994-04-13 1995-10-27 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPH0831834A (en) * 1994-07-20 1996-02-02 Nippondenso Co Ltd Semiconductor wafer plating method
WO1998040910A1 (en) * 1997-03-10 1998-09-17 Asahi Kasei Kogyo Kabushiki Kaisha Wiring forming method for semiconductor device and semiconductor device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337542A (en) * 1976-09-20 1978-04-06 Nippon Electric Co Constant current density bump plating method
JPS57210988A (en) * 1981-06-22 1982-12-24 Sumitomo Electric Ind Ltd Plating method
JPS58177488A (en) * 1982-04-09 1983-10-18 Fujitsu Ltd Electroplating method
JPS644091A (en) * 1987-06-26 1989-01-09 Sony Corp Plating
JPH05243730A (en) * 1992-03-03 1993-09-21 Hitachi Chem Co Ltd Manufacture of printed wiring board
JPH05295589A (en) * 1992-04-21 1993-11-09 Oki Electric Ind Co Ltd Bump electrode plating device for semiconductor wafer and plating method thereof
JPH06291191A (en) * 1993-04-01 1994-10-18 Nec Corp Manufacturing for semiconductor device
JPH07283219A (en) * 1994-04-13 1995-10-27 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPH0831834A (en) * 1994-07-20 1996-02-02 Nippondenso Co Ltd Semiconductor wafer plating method
WO1998040910A1 (en) * 1997-03-10 1998-09-17 Asahi Kasei Kogyo Kabushiki Kaisha Wiring forming method for semiconductor device and semiconductor device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002526663A (en) * 1998-10-05 2002-08-20 セミトウール・インコーポレーテツド Submicron metallization using electrochemical deposition
JP2001240995A (en) * 1999-12-15 2001-09-04 Shipley Co Llc Method for repairing seed layer
JP2003318544A (en) * 2002-04-22 2003-11-07 Toppan Printing Co Ltd Multilayer wiring board and its manufacturing method
JP2005272874A (en) * 2004-03-23 2005-10-06 Sumitomo Bakelite Co Ltd Method for producing circuit board
JP2007220744A (en) * 2006-02-14 2007-08-30 Nec Electronics Corp Semiconductor device and manufacturing method thereof
JP4676350B2 (en) * 2006-02-14 2011-04-27 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
JP2008028337A (en) * 2006-07-25 2008-02-07 Shinko Electric Ind Co Ltd Method of manufacturing electronic component
JP2008031506A (en) * 2006-07-27 2008-02-14 Nec Electronics Corp Method for producing semiconductor device and plating treatment device
US8853074B2 (en) 2010-03-24 2014-10-07 Ps4 Luxco S.A.R.L. Method of manufacturing semiconductor device
JP2011225991A (en) * 2010-04-19 2011-11-10 Internatl Business Mach Corp <Ibm> Method of direct electrodeposition on semiconductor
JP2012122097A (en) * 2010-12-08 2012-06-28 Ebara Corp Electroplating method
JP2012231096A (en) * 2011-04-27 2012-11-22 Elpida Memory Inc Semiconductor device and manufacturing method of the same
US9543204B2 (en) 2011-04-27 2017-01-10 Longitude Semicondutor S.A.R.L. Method for manufacturing semiconductor device
JP2012167377A (en) * 2012-04-13 2012-09-06 Renesas Electronics Corp Method for manufacturing semiconductor device
WO2019216012A1 (en) * 2018-05-11 2019-11-14 住友電気工業株式会社 Printed wiring board and method for manufacturing printed wiring board
JP2019197851A (en) * 2018-05-11 2019-11-14 住友電気工業株式会社 Printed wiring board and manufacturing method thereof
CN112106451A (en) * 2018-05-11 2020-12-18 住友电气工业株式会社 Printed wiring board and method for manufacturing printed wiring board
US11304309B2 (en) 2018-05-11 2022-04-12 Sumitomo Electric Industries, Ltd. Printed circuit board and method for manufacturing printed circuit board

Also Published As

Publication number Publication date
JP3694594B2 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
JP4307408B2 (en) Method for hole-filling plating of base material having fine holes and / or fine grooves
US6750144B2 (en) Method for electrochemical metallization and planarization of semiconductor substrates having features of different sizes
JP2000080496A (en) Filling plating method for base material having fine pore and/or fine groove
JP5346215B2 (en) Method and composition for direct copper plating and filling to form interconnects in the manufacture of semiconductor devices
US6881318B2 (en) Dynamic pulse plating for high aspect ratio features
US6524461B2 (en) Electrodeposition of metals in small recesses using modulated electric fields
CN102318041A (en) Process for electrodeposition of copper chip to chip, chip to wafer and wafer to wafer interconnects in through-silicon vias (tsv)
MXPA00005871A (en) Empty
US10472726B2 (en) Electrolyte and process for electroplating copper onto a barrier layer
JP6474410B2 (en) Copper electrodeposition bath containing electrochemically inert cations
US20050029662A1 (en) Semiconductor production method
JP2001303289A (en) Method for electrochemically depositing metal using modulated waveform
JP3967879B2 (en) Copper plating solution and method for manufacturing semiconductor integrated circuit device using the same
KR20070027753A (en) Electrochemical plating cell with an auxiliary electrode in an isolated anolyte compartment
US8524512B2 (en) Method for repairing copper diffusion barrier layers on a semiconductor solid substrate and repair kit for implementing this method
TW487968B (en) Electrochemical deposition for high aspect ratio structures using electrical plus modulation
JP4307300B2 (en) Method for hole-filling plating of base material having fine holes and / or fine grooves
US20130213816A1 (en) Incorporating High-Purity Copper Deposit As Smoothing Step After Direct On-Barrier Plating To Improve Quality Of Deposited Nucleation Metal In Microscale Features
JP2001077053A (en) Method for plating metal in submicron structure
JPH11269693A (en) Deposition method of copper and copper plating liquid
JP4537523B2 (en) Pulse plating method for Cu-based embedded wiring
KR100334959B1 (en) Metal wiring method of semiconductor device _
JP2001250824A (en) Semiconductor integrated circuit device and its manufacturing method
JP2008056968A (en) Method of manufacturing copper wiring and electrolyte for copper plating
TWI314592B (en) Copper plating of semiconductor devices using intermediate immersion step

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term