JPH0831834A - Semiconductor wafer plating method - Google Patents

Semiconductor wafer plating method

Info

Publication number
JPH0831834A
JPH0831834A JP16816094A JP16816094A JPH0831834A JP H0831834 A JPH0831834 A JP H0831834A JP 16816094 A JP16816094 A JP 16816094A JP 16816094 A JP16816094 A JP 16816094A JP H0831834 A JPH0831834 A JP H0831834A
Authority
JP
Japan
Prior art keywords
plating
semiconductor wafer
plating solution
plated
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16816094A
Other languages
Japanese (ja)
Other versions
JP3362512B2 (en
Inventor
Kichiji Abe
吉次 阿部
Kazuo Tanaka
和夫 田中
Keiji Mayama
恵次 真山
Motoki Ito
基樹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP16816094A priority Critical patent/JP3362512B2/en
Publication of JPH0831834A publication Critical patent/JPH0831834A/en
Application granted granted Critical
Publication of JP3362512B2 publication Critical patent/JP3362512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To form a uniform and smooth plated film, using a plating liq. contg. no additive, by specifying both the jet flow rate of a plating liq. to be jetted by a multi-hole nozzle and the current density on a plating face. CONSTITUTION:Cu electrodes 7 are arranged along a circle of nearly the same diameter as that of a semiconductor wafer 1 and parallel to the wafer. A multi- hole nozzle 3 is so placed that the distance between each jet hole and wafer 1 equals the diameter of the wafer or less and is set to jet a plating liq. at a flow rate of 30 liters per minute or more. The current density at a plating face of the wafer 1 is set to 12.5A/dm<2> or more. The plating liq. is soln. of sulfuric acid and Cu sulfate dissolved in water at a sulfuric acid concn. of 75-150g/liter and Cu sulfate concn. of 75g/liter or more; the latter concn. is set to be a dissolvable concn. according to the sulfuric acid concn. Thus, a uniform plated film in a little film thickness dispersion can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体ウエハのめっき
方法に関し、特に、半導体ウエハに銅バンプ(突起状の
電極)を形成するためのめっき方法として好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor wafer plating method, and is particularly suitable as a plating method for forming copper bumps (protruding electrodes) on a semiconductor wafer.

【0002】[0002]

【従来の技術】従来より、フリップチップIC等に使用
されるワイヤレスボンディング用素子の電極部には、図
14に示すように、素子100をセラミック基板110
上に直接ボンディングするための銅バンプ120が形成
されている。この銅バンプ120の形成方法を、図4に
基づいて説明する。まず、半導体ウエハ130の片面に
金属薄膜140を被着させた後、その金属薄膜140上
にレジスト150を塗布する。その後、マスク(図示し
ない)を通してレジスト150に光を照射し、現像処理
を行って所望の位置に孔開けを行う。そして、この半導
体ウエハ130を陰極に設置して電解銅めっきを施すこ
とにより、孔開けされた位置(レジスト150が除去さ
れた位置)に銅バンプ120が電析形成される。
2. Description of the Related Art Conventionally, as shown in FIG. 14, an element 100 is provided with a ceramic substrate 110 in an electrode portion of an element for wireless bonding used in a flip chip IC or the like.
Copper bumps 120 for direct bonding are formed thereon. A method of forming the copper bump 120 will be described with reference to FIG. First, after depositing the metal thin film 140 on one surface of the semiconductor wafer 130, a resist 150 is applied on the metal thin film 140. After that, the resist 150 is irradiated with light through a mask (not shown), and development processing is performed to open holes at desired positions. Then, the semiconductor wafer 130 is set as a cathode and electrolytic copper plating is performed, so that the copper bumps 120 are electrodeposited and formed at positions where holes are formed (positions where the resist 150 is removed).

【0003】なお、図14に示す素子100は、銅バン
プ120が形成された半導体ウエハ130をチップ毎に
カットしたもので、銅バンプ120の上に印刷されたは
んだ160によってセラミック基板110の導体層(図
示しない)にボンディングされる。
The element 100 shown in FIG. 14 is obtained by cutting a semiconductor wafer 130 on which a copper bump 120 is formed into individual chips. The conductor layer of the ceramic substrate 110 is printed by solder 160 printed on the copper bump 120. Bonded (not shown).

【0004】この銅バンプ120を形成する電気めっき
の方法としては、図15に示すように、ハンガー170
にセットされた数枚の半導体ウエハ130を銅電極(陽
極)180と対向した状態でめっき浴に浸漬して電気め
っきを行う浸漬めっき方法がある。あるいは、図16に
示すように、円筒状のめっきセル190内に銅電極18
0を水平状態に配置して、半導体ウエハ130の被めっ
き面を下向きにして通電用ピン200の上にセットし、
押さえ治具210により半導体ウエハ130を押さえた
状態でめっき液をめっきセル190よりオーバフローさ
せて電気めっきを行うオーバフローめっき方法がある。
As a method of electroplating for forming the copper bumps 120, as shown in FIG. 15, a hanger 170 is used.
There is an immersion plating method in which several semiconductor wafers 130 set in the above are immersed in a plating bath in a state of facing the copper electrode (anode) 180 to perform electroplating. Alternatively, as shown in FIG. 16, a copper electrode 18 is provided in a cylindrical plating cell 190.
0 is placed in a horizontal state, and the surface to be plated of the semiconductor wafer 130 faces downward, and is set on the energizing pin 200,
There is an overflow plating method in which electroplating is performed by causing the plating solution to overflow from the plating cell 190 while the semiconductor wafer 130 is being held by the holding jig 210.

【0005】このような電気めっきにより素子に形成さ
れる銅バンプは、素子の組付け性、およびはんだの熱疲
労への影響を考慮して、寸法ばらつき(特に銅バンプ径
のばらつき)および表面粗度を一定の範囲内に抑える必
要がある(規格化されている)。しかし、上記の浸漬め
っき方法では、銅電極180に対する半導体ウエハ13
0の被めっき面に電流分布が発生し、この電流分布が銅
バンプ120の寸法ばらつきの原因となる。また、オー
バフローめっき方法では、めっき時に発生する水素ガス
気泡が半導体ウエハ130の被めっき面に付着して形状
不良の銅バンプ120が形成される虞がある。
The copper bumps formed on the element by such electroplating have dimensional variations (especially variations in copper bump diameter) and surface roughness in consideration of the assemblability of the element and the influence of solder on thermal fatigue. It is necessary to keep the degree within a certain range (standardized). However, in the above immersion plating method, the semiconductor wafer 13 for the copper electrode 180 is
A current distribution is generated on the surface 0 to be plated, and this current distribution causes the dimensional variation of the copper bumps 120. Further, in the overflow plating method, hydrogen gas bubbles generated during plating may adhere to the surface to be plated of the semiconductor wafer 130 to form the defective copper bump 120.

【0006】そこで、銅バンプの寸法ばらつきを低減す
るために、めっき被膜の均一化作用および平滑化作用を
有する添加剤がめっき浴に添加される。この添加剤の被
膜均一化作用および平滑化作用について説明する。添加
剤は、被めっき面の電位の高い所に選択的に吸着してめ
っき反応を抑制することにより、被めっき面での電流分
布を補正して被膜を均一化する。一方、銅原子の析出・
結晶化過程において、添加剤の一部成分は、めっき被膜
中に取り込まれて結晶の成長を抑制する。この結果、結
晶粒径が小さくなって被膜が平滑化する。
Therefore, in order to reduce the dimensional variation of the copper bumps, an additive having a uniformizing action and a smoothing action of the plating film is added to the plating bath. The film uniformizing action and smoothing action of this additive will be described. The additive selectively adsorbs to a high potential portion of the surface to be plated and suppresses the plating reaction, thereby correcting the current distribution on the surface to be plated and making the coating uniform. On the other hand, the precipitation of copper atoms
In the crystallization process, some components of the additive are taken into the plating film to suppress crystal growth. As a result, the crystal grain size is reduced and the coating is smoothed.

【0007】[0007]

【発明が解決しようとする課題】ところが、添加剤を使
用する場合は、添加剤の主成分濃度を適正な範囲(例え
ば0.25〜0.50 vol%)に管理する必要がある。
具体的には、添加剤の主成分であるジメルカプトベンゾ
チアゾール等のイオウ含有有機物の濃度が低い場合に
は、図17に示すように、銅バンプの寸法ばらつきが大
きくなる。一方、イオウ含有有機物の濃度が高くなる
と、イオウがめっき被膜中へ共析することで、図18に
示すように、銅バンプの耐久強度が低下する。
However, when an additive is used, it is necessary to control the main component concentration of the additive within an appropriate range (for example, 0.25 to 0.50 vol%).
Specifically, when the concentration of the sulfur-containing organic substance such as dimercaptobenzothiazole, which is the main component of the additive, is low, the dimensional variation of the copper bump becomes large as shown in FIG. On the other hand, when the concentration of the sulfur-containing organic substance is increased, the sulfur is co-deposited in the plating film, so that the durability strength of the copper bump is reduced as shown in FIG.

【0008】図17および図18に示すグラフは、上述
した浸漬めっき方法によりめっき浴中の添加剤の主成分
濃度を変化させて電気めっきを行った場合の銅バンプの
寸法ばらつき、および高温放置後(150℃、1000
時間)の耐久強度の変動を示すものである。但し、めっ
き浴は、硫酸銅50g/l、硫酸50g/l、および塩
酸60ppmにジメルカプトベンゾチアゾールを主成分
とする添加剤を添加した。また、電流密度を2A/dm
2 として、N2 バブリングによる攪拌を行った。 な
お、銅バンプの表面粗度は、添加剤の主成分濃度0.1
0 vol%を境として、これ以上の場合は5μm以下とな
った。
The graphs shown in FIGS. 17 and 18 show the dimensional variation of copper bumps when electroplating is performed by changing the main component concentration of the additive in the plating bath by the above-mentioned immersion plating method, and after high temperature standing. (150 ° C, 1000
It shows the variation of durability strength over time. However, in the plating bath, an additive containing dimercaptobenzothiazole as a main component was added to 50 g / l of copper sulfate, 50 g / l of sulfuric acid, and 60 ppm of hydrochloric acid. In addition, the current density is 2 A / dm
As No. 2 , stirring was performed by bubbling N 2 . The surface roughness of the copper bumps is 0.1% of the main component concentration of the additive.
With 0 vol% as the boundary, in the case of more than this, it became 5 μm or less.

【0009】このように、添加剤は、主成分であるイオ
ウ含有有機物が適正な濃度範囲内であれば、めっき被膜
の均一化作用および平滑化作用という優れた効果を有す
るが、ある濃度範囲を外れると、銅バンプの品質に対し
て逆に悪影響を及ぼすことになる。従って、適正な銅バ
ンプ品質を確保するためには、添加剤を所定濃度範囲内
で管理する必要がある。
As described above, the additive has an excellent effect of uniformizing and smoothing the plating film as long as the sulfur-containing organic substance as the main component is in an appropriate concentration range. If it comes off, it adversely affects the quality of the copper bump. Therefore, in order to ensure proper copper bump quality, it is necessary to control the additive within a predetermined concentration range.

【0010】しかしながら、めっき浴中に添加された添
加剤は、陽極(銅電極)と陰極(半導体ウエハの被めっ
き面)との面積比が大きいことから、電流密度の低い陽
極において異常に消耗する。また、その消耗度合いが必
ずしも一定ではなく、建浴直後では極めて激しく消耗す
ること等から、添加剤の濃度管理は容易ではなく、添加
剤の主成分濃度が適正な範囲を外れて上記のような不具
合(銅バンプの寸法ばらつき、耐久強度の低下)が発生
する場合が多い。
However, the additive added to the plating bath has a large area ratio between the anode (copper electrode) and the cathode (the surface to be plated of the semiconductor wafer), so that the additive is abnormally consumed in the anode having a low current density. . In addition, the degree of consumption is not always constant, and the consumption of the additive is extremely severe immediately after the bath is built.Therefore, it is not easy to control the concentration of the additive. In many cases, defects (variation in copper bump dimensions, reduced durability) occur.

【0011】このようなことから、現状では、比較的短
時間でめっき浴を更新する必要があるとともに、銅バン
プ品質の変動を常時チェックして、不具合が生じた時に
は添加剤の濃度調整を行うという経験的手法に頼ってお
り、量産ベースにおいて安定した銅バンプ品質を維持す
るのが困難である。
For this reason, under the present circumstances, it is necessary to renew the plating bath in a relatively short time, and the fluctuation of the copper bump quality is constantly checked to adjust the concentration of the additive when a defect occurs. Therefore, it is difficult to maintain stable copper bump quality on a mass production basis.

【0012】上記のような経緯から、本出願人は、濃度
管理の難しい添加剤を含まないめっき浴にてめっき被膜
の均一性および平滑性を向上するための検討を行った。
添加剤を含まない場合、純度の高いめっき被膜が得られ
ることから、耐久強度低下の少ない銅バンプを形成する
ことができるが、添加剤の作用である均一性および平滑
性を如何にして達成するかが問題となる。
From the above background, the applicant of the present invention conducted an examination for improving the uniformity and smoothness of the plating film in a plating bath containing no additive whose concentration control is difficult.
When the additive is not contained, a plating film with high purity can be obtained, so that a copper bump with less decrease in durability strength can be formed, but how to achieve the uniformity and smoothness which are the effects of the additive. Becomes a problem.

【0013】そこで、電気めっきによるめっき被膜の面
粗度(平滑性)および均一性について検討した。一般に
電気めっきにおける被膜の面粗度は、めっき時の電流密
度を高くすると小さくなる傾向にある。また、めっき被
膜の均一性は、陰極および陽極の幾何学的形状に基づい
て一次電流分布およびこの電流分布を変動させるめっき
界面でのめっき液の流速分布を均一化するとともに、め
っき液の導電性を増すことにより向上する傾向にある。
Therefore, the surface roughness (smoothness) and uniformity of the plating film formed by electroplating were examined. Generally, the surface roughness of a coating film in electroplating tends to decrease as the current density during plating increases. In addition, the uniformity of the plating film is based on the geometrical shapes of the cathode and the anode, and the uniform distribution of the primary current and the flow velocity distribution of the plating solution at the plating interface that fluctuates this current distribution. It tends to be improved by increasing.

【0014】これらを考慮して、めっき方法、電流条
件、および浴組成について詳細に検討した。まず、めっ
き時の電流密度を高くするには、被めっき面に銅イオン
が充分供給されるように、めっき液を高流速で噴流する
必要がある。一方、めっき液の噴流により生じる流れの
方向性によって電流分布が乱れるのを防止するために、
流れの方向性を小さくする必要がある。また、陰極およ
び陽極の幾何学的形状に基づく一次電流分布を均一化す
るためには、半導体ウエハと略同一径の銅電極を半導体
ウエハと平行に、且つ半導体ウエハの直径以下の間隔で
配置することが有効であると言える。
In consideration of these, the plating method, the current condition, and the bath composition were examined in detail. First, in order to increase the current density during plating, it is necessary to jet the plating solution at a high flow rate so that copper ions are sufficiently supplied to the surface to be plated. On the other hand, in order to prevent the current distribution from being disturbed by the flow direction generated by the jet of the plating solution,
It is necessary to reduce the flow directionality. Further, in order to make the primary current distribution based on the geometrical shapes of the cathode and the anode uniform, copper electrodes having substantially the same diameter as the semiconductor wafer are arranged in parallel with the semiconductor wafer and at intervals less than or equal to the diameter of the semiconductor wafer. Can be said to be effective.

【0015】また、めっき浴については、硫酸および硫
酸銅のみを用いる。そして、硫酸は、めっき浴の導電性
を増すために濃度を高くし、硫酸銅は、めっき浴の導電
性を低下させることなく、且つめっき界面へ銅イオンを
供給し得る濃度にするのが良い。以上のような考えに基
づいて、添加剤を含まないめっき液において、均一およ
び平滑な銅バンプを形成し得る方法、条件を見出した。
本発明は上記事情に基づいて成されたもので、その目的
は、添加剤を含まないめっき液を使用して、均一および
平滑なめっき被膜を形成することのできる半導体ウエハ
のめっき方法を提供することにある。
Further, for the plating bath, only sulfuric acid and copper sulfate are used. It is preferable that the sulfuric acid has a high concentration to increase the conductivity of the plating bath, and the copper sulfate has a concentration that can supply copper ions to the plating interface without lowering the conductivity of the plating bath. . Based on the above idea, the method and conditions which can form a uniform and smooth copper bump in the plating solution which does not contain an additive were discovered.
The present invention has been made based on the above circumstances, and an object thereof is to provide a method for plating a semiconductor wafer capable of forming a uniform and smooth plating film by using a plating solution containing no additive. Especially.

【0016】[0016]

【課題を解決するための手段】本発明は、上記目的を達
成するために、請求項1では、陽極と対向して配置され
た半導体ウエハの被めっき面に、多孔ノズルよりめっき
液を噴流させて前記被めっき面に金属めっき層を形成す
る半導体ウエハのめっき方法において、前記多孔ノズル
より噴流するめっき液の噴流流量を毎分30リットル以
上とし、且つ前記被めっき面の電流密度を12.5A/
dm2 以上とすることを技術的手段とする。
In order to achieve the above object, the present invention provides, in claim 1, a plating solution jetted from a porous nozzle onto a surface to be plated of a semiconductor wafer arranged facing an anode. In the method for plating a semiconductor wafer in which a metal plating layer is formed on the surface to be plated, the flow rate of the plating solution jetted from the multi-hole nozzle is 30 liters per minute or more, and the current density on the surface to be plated is 12.5 A. /
The technical means is to make it dm 2 or more.

【0017】請求項2では、陽極と対向して配置された
半導体ウエハの被めっき面に、多孔ノズルよりめっき液
を噴流させて前記被めっき面に金属めっき層を形成する
半導体ウエハのめっき方法において、前記陽極は、前記
半導体ウエハと略同一径の円形状に設けられて、前記半
導体ウエハと平行に配置され、前記多孔ノズルは、めっ
き液を噴流する各噴流口と前記半導体ウエハとの間隔が
前記半導体ウエハの径寸法以下となるように設置され、
前記めっき液は、硫酸と硫酸銅とを水に解かした溶液
で、硫酸濃度を75〜150g/lとし、硫酸銅濃度を
少なくとも75g/l以上で硫酸濃度に応じて溶解可能
な濃度とすることを技術的手段とする。
According to a second aspect of the present invention, there is provided a method for plating a semiconductor wafer, wherein a plating solution is jetted from a porous nozzle onto a surface to be plated of a semiconductor wafer arranged to face an anode to form a metal plating layer on the surface to be plated. The anode is provided in a circular shape having substantially the same diameter as the semiconductor wafer and is arranged in parallel with the semiconductor wafer, and the porous nozzle has a space between each jet port for jetting a plating solution and the semiconductor wafer. It is installed so that the diameter of the semiconductor wafer is less than or equal to
The plating solution is a solution in which sulfuric acid and copper sulfate are dissolved in water, the sulfuric acid concentration is 75 to 150 g / l, and the copper sulfate concentration is at least 75 g / l or more so that the concentration can be dissolved according to the sulfuric acid concentration. Is a technical means.

【0018】請求項3では、陽極と対向して配置された
半導体ウエハの被めっき面に、多孔ノズルよりめっき液
を噴流させて前記被めっき面に金属めっき層を形成する
半導体ウエハのめっき方法において、前記陽極は、前記
半導体ウエハと略同一径の円形状に設けられて、前記半
導体ウエハと平行に配置され、前記多孔ノズルは、めっ
き液を噴流する各噴流口と前記半導体ウエハとの間隔が
前記半導体ウエハの径寸法以下となるように設置され、
前記多孔ノズルより噴流するめっき液の噴流流量を毎分
30リットル以上とし、前記被めっき面の電流密度を1
2.5A/dm2 以上とし、前記めっき液は、硫酸と硫
酸銅とを水に解かした溶液で、硫酸濃度を75〜150
g/lとし、硫酸銅濃度を少なくとも75g/l以上で
硫酸濃度に応じて溶解可能な濃度とすることを技術的手
段とする。
According to a third aspect of the present invention, there is provided a method for plating a semiconductor wafer, wherein a plating solution is jetted from a porous nozzle to a surface to be plated of a semiconductor wafer arranged to face an anode to form a metal plating layer on the surface to be plated. The anode is provided in a circular shape having substantially the same diameter as the semiconductor wafer and is arranged in parallel with the semiconductor wafer, and the porous nozzle has a space between each jet port for jetting a plating solution and the semiconductor wafer. It is installed so that the diameter of the semiconductor wafer is less than or equal to
The flow rate of the plating solution jetted from the multi-hole nozzle is set to 30 liters per minute or more, and the current density on the surface to be plated is set to 1
The plating solution is 2.5 A / dm 2 or more, and the plating solution is a solution of sulfuric acid and copper sulfate dissolved in water and has a sulfuric acid concentration of 75 to 150.
The technical means is to make the concentration g / l and the concentration of copper sulfate to be at least 75 g / l or more so that it can be dissolved depending on the concentration of sulfuric acid.

【0019】請求項4では、請求項1〜3に記載された
何れかの半導体ウエハのめっき方法において、前記多孔
ノズルは、少なくとも9個の噴流口を有することを特徴
とする。
According to a fourth aspect of the present invention, in the method for plating a semiconductor wafer according to any of the first to third aspects, the multi-hole nozzle has at least nine jet holes.

【0020】請求項5では、請求項1〜4に記載された
何れかの半導体ウエハのめっき方法において、前記半導
体ウエハと前記多孔ノズルとの少なくとも一方を他方に
対して平行に揺動させながら電気めっきを行うことを特
徴とする。
According to a fifth aspect, in the method for plating a semiconductor wafer according to any one of the first to fourth aspects, at least one of the semiconductor wafer and the perforated nozzle is oscillated parallel to the other, and the electric It is characterized by performing plating.

【0021】[0021]

【作用および発明の効果】請求項1に示す発明では、多
孔ノズルより噴流させるめっき液の噴流流量を毎分30
リットル以上とし、且つ電流密度を12.5A/dm2
以上とすることにより、比較的平滑なめっき被膜を得る
ことが可能となる。これは、高電流密度のもとでは、銅
イオンの析出速度が速くなることから、析出した銅原子
が結晶成長しにくく、粒径の小さい銅めっき被膜が形成
されることによるものである。
According to the invention described in claim 1, the flow rate of the plating solution jetted from the multi-hole nozzle is set to 30 per minute.
Liter or more and current density of 12.5 A / dm 2
With the above, a relatively smooth plating film can be obtained. This is because, under a high current density, the deposition rate of copper ions is increased, and thus the deposited copper atoms are less likely to undergo crystal growth and a copper plating film having a small grain size is formed.

【0022】但し、許容電流密度以上の領域では、銅イ
オンの電析速度が速過ぎてめっき界面への銅イオンの供
給が間に合わなくなるとともに、水素ガスの発生に伴っ
て被めっき面に水酸化物または塩基性塩が沈着する(い
わゆる焦げが発生する)。そこで、多孔ノズルより毎分
30リットル以上のめっき液を噴流させることで所謂焦
げの発生する限界電流密度を充分に高くすることができ
る。
However, in a region where the current density is higher than the allowable current density, the deposition rate of copper ions is too fast to supply copper ions to the plating interface in time, and hydroxide is generated on the surface to be plated with the generation of hydrogen gas. Or basic salt is deposited (so-called charring occurs). Therefore, the limiting current density at which so-called charring occurs can be sufficiently increased by jetting 30 liters or more of plating solution per minute from the multi-hole nozzle.

【0023】請求項2に示す発明では、陽極を半導体ウ
エハと程同一径の円形状として半導体ウエハと平行に配
置し、且つ多孔ノズルの各噴流口と半導体ウエハとの間
隔を半導体ウエハの径寸法以下としたことにより、半導
体ウエハの被めっき面における一次電流分布の均一化を
図ることができる。また、多孔ノズルの採用により、め
っき界面でのめっき液の流速分布を均一化して、一次電
流分布を乱す要因となる流れの方向性を小さくすること
ができるとともに、めっき液濃度の適正化によりめっき
液の導電性を高めることができる。この結果、膜厚のば
らつきが小さい均一なめっき被膜を形成することが可能
となる。
According to the second aspect of the present invention, the anode is arranged in parallel with the semiconductor wafer in the form of a circle having the same diameter as the semiconductor wafer, and the distance between each jet port of the multi-hole nozzle and the semiconductor wafer is set to the diameter of the semiconductor wafer. With the following, it is possible to make the primary current distribution uniform on the surface to be plated of the semiconductor wafer. In addition, the adoption of a multi-hole nozzle makes it possible to make the flow velocity distribution of the plating solution uniform at the plating interface, reduce the flow direction that causes disturbance of the primary current distribution, and optimize the plating solution concentration. The conductivity of the liquid can be increased. As a result, it becomes possible to form a uniform plating film with a small variation in film thickness.

【0024】請求項3に示す発明では、請求項1に示す
めっき条件と請求項2に示すめっき条件(めっき浴条
件)とを満たすことで、均一且つ平滑な銅めっき被膜を
形成することが可能となる。また、本発明では、添加剤
を用いないため、純度の高いめっき被膜が得られ、添加
剤を用いる場合に比べて、めっき層の耐久強度を高める
ことができる。さらには、添加剤を用いないことからめ
っき浴の濃度変動が殆どなく、めっき浴の管理が容易と
なるため、フィルタ等で随時めっき液をろ過して有機不
純物を取り除くことにより、めっき浴の更新を不要とす
ることも可能である。
In the invention described in claim 3, it is possible to form a uniform and smooth copper plating film by satisfying the plating conditions described in claim 1 and the plating conditions described in claim 2 (plating bath conditions). Becomes Further, in the present invention, since the additive is not used, a plating film having high purity can be obtained, and the durability strength of the plating layer can be increased as compared with the case where the additive is used. In addition, since no additives are used, there is almost no fluctuation in the concentration of the plating bath, and it is easy to manage the plating bath. Therefore, the plating bath is renewed by filtering the plating solution at any time with a filter to remove organic impurities. Can be omitted.

【0025】[0025]

【実施例】次に、本発明の半導体ウエハのめっき方法の
第1実施例を図1〜図9に基づいて説明する。図1はめ
っき装置の全体構成図、図2はめっきセル内の構造を示
す断面図である。本実施例のめっき方法は、半導体ウエ
ハ1の被めっき面にめっき液を噴流させながら電気めっ
きを行う噴流めっき方式である。この噴流めっきを行う
ためのめっき装置は、図1に示すように、半導体ウエハ
1をセットするめっきセル2、このめっきセル2内に配
置された多孔ノズル3、めっき液を貯留するめっき液槽
4、このめっき液槽4とめっきセル2との間でめっき液
を循環させるめっき液循環手段(後述する)等より構成
されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the semiconductor wafer plating method of the present invention will be described with reference to FIGS. FIG. 1 is an overall configuration diagram of a plating apparatus, and FIG. 2 is a sectional view showing the structure inside a plating cell. The plating method of the present embodiment is a jet plating method in which electroplating is performed while jetting a plating solution onto the surface to be plated of the semiconductor wafer 1. As shown in FIG. 1, a plating apparatus for performing this jet plating includes a plating cell 2 for setting a semiconductor wafer 1, a porous nozzle 3 arranged in the plating cell 2, and a plating solution tank 4 for storing a plating solution. A plating solution circulating means (described later) for circulating the plating solution between the plating solution tank 4 and the plating cell 2 is constituted.

【0026】半導体ウエハ1は、被めっき面(図3の上
面)を下向きにしてめっきセル2にセットされ、めっき
液の噴流圧に対抗するために押さえ治具5によって押圧
されている。この時、半導体ウエハ1とめっきセル2と
の間は液密にシールされている。めっきセル2にセット
された半導体ウエハ1は、被めっき面が定電流電源6の
マイナス電極に接続される。なお、半導体ウエハ1の被
めっき面は、図3に示すように、金属薄膜1aの上に塗
布されたレジスト1bに露光、現像処理が行われて、所
望の位置に金属薄膜1aが露出した状態で孔部1cが形
成されている。
The semiconductor wafer 1 is set in the plating cell 2 with the surface to be plated (upper surface in FIG. 3) facing downward, and is pressed by the pressing jig 5 to counter the jet pressure of the plating solution. At this time, the semiconductor wafer 1 and the plating cell 2 are liquid-tightly sealed. The surface of the semiconductor wafer 1 set in the plating cell 2 is connected to the negative electrode of the constant current power supply 6. As shown in FIG. 3, the surface of the semiconductor wafer 1 to be plated is in a state in which the resist 1b applied on the metal thin film 1a is exposed and developed to expose the metal thin film 1a at a desired position. The hole 1c is formed by.

【0027】多孔ノズル3は、図2に示すように、めっ
きセル2内で半導体ウエハ1の被めっき面と対向して配
置されて、各噴流口3aより半導体ウエハ1の被めっき
面に向けてめっき液を噴流する。噴流口3aは、半導体
ウエハ1の被めっき面に対するめっき液の流速分布を均
一化するために、少なくとも9個が均等に配置されてい
る。また、多孔ノズル3は、各噴流口3aと半導体ウエ
ハ1との間隔が半導体ウエハ1の径寸法以下となるよう
に設置されている。
As shown in FIG. 2, the porous nozzle 3 is arranged in the plating cell 2 so as to face the surface of the semiconductor wafer 1 to be plated, and the jet nozzles 3a direct the surface of the semiconductor wafer 1 to be plated. Jet the plating solution. At least nine jet holes 3a are evenly arranged in order to make the flow velocity distribution of the plating solution uniform on the surface to be plated of the semiconductor wafer 1. Further, the multi-hole nozzle 3 is installed so that the distance between each jet port 3 a and the semiconductor wafer 1 is equal to or smaller than the diameter dimension of the semiconductor wafer 1.

【0028】多孔ノズル3内には、定電流電源6のプラ
ス電極に接続された銅電極7(本発明の陽極)が配置さ
れている。この銅電極7は、半導体ウエハ1と略同一径
の円形状に設けられて、半導体ウエハ1と平行に配置さ
れている。なお、銅電極7には、めっき液を通すための
通過孔7aが適宜開けられている(図2参照)。
Inside the porous nozzle 3, a copper electrode 7 (anode of the present invention) connected to the positive electrode of the constant current power source 6 is arranged. The copper electrode 7 is provided in a circular shape having substantially the same diameter as the semiconductor wafer 1, and is arranged in parallel with the semiconductor wafer 1. In addition, the copper electrode 7 is appropriately formed with a passage hole 7a for passing a plating solution (see FIG. 2).

【0029】めっき液槽4には、貯留するめっき液の温
度を一定(常温)に保つための温度調節装置8、および
めっき液のろ過装置9が設置されている。温度調節装置
8は、必要に応じてめっき液を加熱または冷却すること
でめっき液を常温に保つ。ろ過装置9は、めっき液槽4
に接続されたろ過用配管9aにポンプ9b、活性炭フィ
ルタ9c、および微粒子フィルタ9dを備え、ポンプ9
bの作動によって毎分10〜20リットルのめっき液を
各フィルタ9c、9dに通すことでめっき液中の有機不
純物をろ過することができる。なお、本実施例のめっき
装置で使用されるめっき液は、硫酸と硫酸銅とを水に解
かした溶液で、添加剤は使用していない。
The plating solution tank 4 is provided with a temperature control device 8 for keeping the temperature of the stored plating solution constant (normal temperature) and a plating solution filtering device 9. The temperature control device 8 keeps the plating solution at room temperature by heating or cooling the plating solution as needed. The filtering device 9 is the plating solution tank 4
The pump 9b, the activated carbon filter 9c, and the particulate filter 9d are provided in the filtration pipe 9a connected to the pump 9b.
The organic impurities in the plating solution can be filtered by passing 10 to 20 liters / minute of the plating solution through the filters 9c and 9d by the operation of b. The plating solution used in the plating apparatus of this example was a solution of sulfuric acid and copper sulfate dissolved in water, and no additive was used.

【0030】めっき液循環手段は、めっきセル2とめっ
き液槽4とを環状に接続する環状配管10、この環状配
管10に介在されたポンプ11、ポンプ11の下流に配
置されてポンプ11で圧送されるめっき液流量を測定す
る流量計12、およびポンプ11と流量計12との間に
配された微粒子フィルタ13より構成される。
The plating solution circulating means is an annular pipe 10 for annularly connecting the plating cell 2 and the plating solution tank 4, a pump 11 interposed in the annular pipe 10, and a pump 11 arranged downstream of the pump 11 and pumped by the pump 11. A flow meter 12 for measuring the flow rate of the plating solution and a fine particle filter 13 arranged between the pump 11 and the flow meter 12.

【0031】このめっき装置を使用して、半導体ウエハ
1の被めっき面に多孔ノズル3よりめっき液を噴流させ
ながら電気めっきを施して、被めっき面に設けられた孔
部1cに銅バンプ1d(本発明の金属めっき層)を形成
した(図4参照)。以下に、銅バンプ1dの表面粗度5
μm以下、および寸法(径)ばらつき10%以下を達成
するために必要なめっき条件およびめっき浴組成を求め
た。
Using this plating apparatus, electroplating is performed on the surface to be plated of the semiconductor wafer 1 while jetting the plating solution from the porous nozzle 3, and the copper bumps 1d ( The metal plating layer of the present invention) was formed (see FIG. 4). Below, the surface roughness of the copper bump 1d is 5
A plating condition and a plating bath composition necessary to achieve a value of μm or less and a size (diameter) variation of 10% or less were determined.

【0032】まず、半導体ウエハ1の被めっき面での電
流密度と銅バンプ1dの表面粗度との関係を測定した。
但し、めっき液は硫酸濃度および硫酸銅濃度ともに10
0g/lとし、めっき液の噴流流量を毎分60リットル
とした。測定結果は、図5に示すように、電流密度が高
くなる程、銅バンプ1dの表面粗度が小さくなり、電流
密度12.5A/dm2 以上で、表面粗度5μm以下を
達成することができる。
First, the relationship between the current density on the plated surface of the semiconductor wafer 1 and the surface roughness of the copper bump 1d was measured.
However, the plating solution has a sulfuric acid concentration and a copper sulfate concentration of 10 respectively.
The flow rate of the plating solution was 60 g / min. As shown in FIG. 5, the measurement result shows that the higher the current density, the smaller the surface roughness of the copper bump 1d, and that the current density is 12.5 A / dm 2 or more and the surface roughness is 5 μm or less. it can.

【0033】続いて、めっき液中の硫酸濃度と銅バンプ
1dの寸法(径)ばらつきとの関係を測定した。但し、
硫酸銅濃度を100g/l、めっき液の噴流流量を毎分
60リットル、電流密度を25A/dm2 とした。測定
結果は、図6に示すように、硫酸濃度が低い程、寸法ば
らつきが大きくなり、硫酸濃度が75g/l以上では寸
法ばらつきを10%以下に抑えることができた。
Subsequently, the relationship between the sulfuric acid concentration in the plating solution and the variation in the size (diameter) of the copper bump 1d was measured. However,
The copper sulfate concentration was 100 g / l, the flow rate of the plating solution was 60 liters per minute, and the current density was 25 A / dm 2 . As shown in FIG. 6, the measurement result shows that the smaller the sulfuric acid concentration is, the larger the dimensional variation is. When the sulfuric acid concentration is 75 g / l or more, the dimensional variation can be suppressed to 10% or less.

【0034】続いて、めっき液中の硫酸銅濃度と銅バン
プ1dの寸法(径)ばらつきとの関係を測定した。但
し、硫酸濃度を75g/l、めっき液の噴流流量を毎分
60リットル、電流密度を25A/dm2 とした。測定
結果は、図7に示すように、硫酸銅濃度の変化に対し
て、寸法ばらつきの変動が小さく、硫酸銅濃度75〜1
50g/lにおいては、寸法ばらつきを10%以下に抑
えることができた。
Subsequently, the relationship between the copper sulfate concentration in the plating solution and the size (diameter) variation of the copper bump 1d was measured. However, the sulfuric acid concentration was 75 g / l, the jet flow rate of the plating solution was 60 liters per minute, and the current density was 25 A / dm 2 . As shown in FIG. 7, the measurement result shows that the variation in dimensional variation is small with respect to the change in the copper sulfate concentration, and the copper sulfate concentration is 75 to 1
At 50 g / l, the dimensional variation could be suppressed to 10% or less.

【0035】続いて、本実施例の噴流めっき方式により
量産ベースで電気めっきを行った場合の銅バンプ1dの
寸法ばらつき、および銅バンプ1dの耐久強度を測定し
た。但し、めっき液の噴流流量を毎分60リットル、電
流密度を25A/dm2 、硫酸濃度および硫酸銅濃度と
もに100g/lとした。
Then, the dimensional variation of the copper bumps 1d and the durability of the copper bumps 1d were measured when electroplating was carried out on a mass production basis by the jet plating method of this example. However, the flow rate of the plating solution was 60 liters per minute, the current density was 25 A / dm 2 , and the sulfuric acid concentration and the copper sulfate concentration were 100 g / l.

【0036】寸法ばらつきについては、図8に示すよう
に、従来の浸漬めっき方法において添加剤を用いた場合
と同等のレベル(10%以下)まで低減することができ
た。この寸法ばらつきは、半導体ウエハ1と多孔ノズル
3との少なくとも一方を他方に対して平行に揺動させな
がら電気めっきを行う(平2−61089号公報参照)
ことで、さらに低減することが可能である。耐久強度に
ついては、図9に示すように、めっき浴に添加剤を用い
ないことでめっき被膜の純度が高くなったため、浸漬め
っき方法において添加剤を適用した場合と比べて安定化
した。
Regarding the dimensional variation, as shown in FIG. 8, it was possible to reduce the level to the same level (10% or less) as in the case of using the additive in the conventional immersion plating method. This dimensional variation is caused by performing electroplating while swinging at least one of the semiconductor wafer 1 and the porous nozzle 3 in parallel with the other (see Japanese Patent Laid-Open No. 2-61089).
Therefore, it is possible to further reduce. As for the durability, as shown in FIG. 9, the purity of the plating film was increased by not using the additive in the plating bath, so that it was stabilized as compared with the case where the additive was applied in the immersion plating method.

【0037】なお、本実施例のめっき装置において、半
導体ウエハ1と多孔ノズル3の噴流口3aとの距離を大
きくし過ぎると、銅バンプ1dの寸法ばらつきが大きく
なるため、少なくとも半導体ウエハ1の径寸法以下とす
る必要がある。また、多孔ノズル3は、噴流口3aを少
なくとも9個以上設けることで、各噴流口3aより噴流
しためっき液が互いに干渉し合って流れの方向性が打ち
消されることにより、被めっき面での電流分布を均一化
させることができる。
In the plating apparatus of this embodiment, if the distance between the semiconductor wafer 1 and the jet port 3a of the multi-hole nozzle 3 is made too large, the dimensional variation of the copper bump 1d becomes large, so at least the diameter of the semiconductor wafer 1 is increased. It must be less than or equal to the size. Further, in the multi-hole nozzle 3, by providing at least nine or more jet holes 3a, the plating solutions jetted from the jet holes 3a interfere with each other to cancel the flow direction, and thus the current on the surface to be plated is reduced. The distribution can be made uniform.

【0038】以上のように、添加剤を用いないで電気め
っきを行う場合には、以下のめっき条件およびめっき浴
組成を満足することで、安定した銅バンプ品質(平面粗
度5μm以下、寸法ばらつき10%以下)を確保するこ
とが可能である。 a)銅電極は、半導体ウエハと略同一径の円形状とし
て、半導体ウエハと平行に配置する。 b)多孔ノズルは、各噴流口と半導体ウエハとの間隔が
半導体ウエハの径寸法以下となるように設置する。 c)多孔ノズルより噴流するめっき液の噴流流量を毎分
30リットル以上とする。
As described above, when electroplating is performed without using any additive, stable copper bump quality (planar roughness 5 μm or less, dimensional variation) can be obtained by satisfying the following plating conditions and plating bath compositions. It is possible to secure 10% or less). a) The copper electrode has a circular shape having substantially the same diameter as the semiconductor wafer and is arranged in parallel with the semiconductor wafer. b) The multi-hole nozzle is installed so that the distance between each jet port and the semiconductor wafer is less than or equal to the diameter of the semiconductor wafer. c) The flow rate of the plating solution jetted from the multi-hole nozzle is set to 30 liters per minute or more.

【0039】d)半導体ウエハの被めっき面の電流密度
を12.5A/dm2 以上とする。 e)めっき液は、硫酸と硫酸銅とを水に解かした溶液
で、硫酸濃度を75〜150g/lとし、硫酸銅濃度を
少なくとも75g/l以上で硫酸濃度に応じて溶解可能
な濃度とする。なお、一般に硫酸銅めっきで添加剤と共
に用いられる塩酸(通常20〜80ppm)を添加した
場合は、塩素イオンが銅めっき界面に吸着して電析を抑
制するため、結晶粒径が大きくなり、いずれの硫酸濃
度、硫酸銅濃度においても表面粗度5μm以下の銅バン
プを形成することはできない。但し、量産ベースでより
長期間に渡ってめっき液の無更新化を図るためには、有
機不純物をろ過するシステム(ろ過装置9)を具備する
必要がある。
D) The current density on the plated surface of the semiconductor wafer is set to 12.5 A / dm 2 or more. e) The plating solution is a solution in which sulfuric acid and copper sulfate are dissolved in water, the sulfuric acid concentration is 75 to 150 g / l, and the copper sulfate concentration is at least 75 g / l or more so that it can be dissolved according to the sulfuric acid concentration. . When hydrochloric acid (usually 20 to 80 ppm) which is generally used together with an additive in copper sulfate plating is added, chloride ions are adsorbed on the copper plating interface to suppress electrodeposition, resulting in a large crystal grain size. It is not possible to form copper bumps having a surface roughness of 5 μm or less even with the sulfuric acid concentration and the copper sulfate concentration. However, in order to make the plating solution non-renewable for a longer period on a mass production basis, it is necessary to provide a system (filter device 9) for filtering organic impurities.

【0040】次に本発明の第2実施例を説明する。図1
0はめっきセル2の構造を示す断面図である。本実施例
のめっき方法は、第1実施例と同様に多孔ノズル3より
めっき液を噴流させる噴流めっき方式であるが、多孔ノ
ズル3より噴流されためっき液は、多孔ノズル3の各噴
流口3aと交互に配置された液戻りパイプ3bより排出
される構造である。このめっき装置を使用して半導体ウ
エハ1の被めっき面に銅バンプ1dを形成し、第1実施
例と同様に、銅バンプ1dの表面粗度5μm以下、およ
び寸法(径)ばらつき10%以下を達成するために必要
なめっき条件およびめっき浴組成を求めた。
Next, a second embodiment of the present invention will be described. FIG.
Reference numeral 0 is a sectional view showing the structure of the plating cell 2. The plating method of the present embodiment is a jet plating method in which the plating solution is jetted from the multi-hole nozzle 3 as in the first embodiment. However, the plating solution jetted from the multi-hole nozzle 3 has each jet port 3 a of the multi-hole nozzle 3. The liquid is returned from the liquid return pipes 3b arranged alternately. Using this plating apparatus, a copper bump 1d is formed on the surface to be plated of the semiconductor wafer 1, and the surface roughness of the copper bump 1d is 5 μm or less and the dimension (diameter) variation is 10% or less, as in the first embodiment. The plating conditions and plating bath composition required to achieve this were determined.

【0041】まず、半導体ウエハ1の被めっき面での電
流密度と銅バンプ1dの表面粗度との関係を測定した。
但し、めっき液は硫酸濃度および硫酸銅濃度ともに10
0g/lとし、めっき液の噴流流量を毎分60リットル
とした。測定結果は、図11に示すように、電流密度が
高くなる程、銅バンプ1dの表面粗度が小さくなり、電
流密度12.5A/dm2 以上で、表面粗度5μm以下
を達成した。
First, the relationship between the current density on the plated surface of the semiconductor wafer 1 and the surface roughness of the copper bump 1d was measured.
However, the plating solution has a sulfuric acid concentration and a copper sulfate concentration of 10 respectively.
The flow rate of the plating solution was 60 g / min. As shown in FIG. 11, the measurement result shows that the higher the current density is, the smaller the surface roughness of the copper bump 1d is, the current density is 12.5 A / dm 2 or more, and the surface roughness is 5 μm or less.

【0042】続いて、めっき液中の硫酸濃度と銅バンプ
1dの寸法(径)ばらつきとの関係を測定した。但し、
硫酸銅濃度を100g/l、めっき液の噴流流量を毎分
60リットル、電流密度を25A/dm2 とした。測定
結果は、図12に示すように、硫酸濃度が75〜150
g/lの範囲内において寸法ばらつきを10%以下に抑
えることができた。
Subsequently, the relationship between the sulfuric acid concentration in the plating solution and the variation in the size (diameter) of the copper bump 1d was measured. However,
The copper sulfate concentration was 100 g / l, the flow rate of the plating solution was 60 liters per minute, and the current density was 25 A / dm 2 . The measurement result shows that the sulfuric acid concentration is 75 to 150 as shown in FIG.
Within the range of g / l, the dimensional variation could be suppressed to 10% or less.

【0043】続いて、めっき液中の硫酸銅濃度と銅バン
プ1dの寸法(径)ばらつきとの関係を測定した。但
し、硫酸濃度を75g/l、めっき液の噴流流量を毎分
60リットル、電流密度を25A/dm2 とした。測定
結果は、図13に示すように、硫酸銅濃度の変化に対し
て、寸法ばらつきの変動が小さく、硫酸銅濃度75〜1
75g/lにおいては、寸法ばらつきを10%以下に抑
えることができた。
Subsequently, the relationship between the copper sulfate concentration in the plating solution and the size (diameter) variation of the copper bump 1d was measured. However, the sulfuric acid concentration was 75 g / l, the jet flow rate of the plating solution was 60 liters per minute, and the current density was 25 A / dm 2 . As shown in FIG. 13, the measurement result shows that the variation in dimensional variation is small with respect to the change in the copper sulfate concentration, and the copper sulfate concentration is 75 to 1
At 75 g / l, the dimensional variation could be suppressed to 10% or less.

【0044】続いて、第1実施例と同様に、本実施例の
噴流めっき方式により量産ベースで電気めっきを行った
場合の銅バンプ1dの寸法ばらつき、および銅バンプ1
dの耐久強度を測定した。但し、めっき液の噴流流量を
毎分60リットル、電流密度を25A/dm2 、硫酸濃
度および硫酸銅濃度ともに100g/lとした。
Subsequently, similarly to the first embodiment, the dimensional variation of the copper bump 1d and the copper bump 1 when the electroplating is performed on the mass production basis by the jet plating method of the present embodiment.
The durability strength of d was measured. However, the flow rate of the plating solution was 60 liters per minute, the current density was 25 A / dm 2 , and the sulfuric acid concentration and the copper sulfate concentration were 100 g / l.

【0045】寸法ばらつき(図8参照)、および耐久強
度(図9参照)ともに、第1実施例と同様、良好な結果
を得ることができた。なお、本実施例のめっき方法で
は、多孔ノズル3の各噴流口3aおよび液戻りパイプ3
bのサイズ等を適正化することにより、更に寸法ばらつ
きを低減することが可能である。
Similar to the first embodiment, good results were obtained in terms of dimensional variation (see FIG. 8) and durability strength (see FIG. 9). In the plating method of the present embodiment, each jet port 3a of the multi-hole nozzle 3 and the liquid return pipe 3 are used.
By optimizing the size of b and the like, it is possible to further reduce the dimensional variation.

【0046】〔変形例〕第1実施例および第2実施例に
示しためっき方法以外においても、以下の条件を満たす
めっき方法であれば良い。 a)多孔ノズルよりめっき液を半導体ウエハの被めっき
面に噴流して電気めっきを行うシステム。この時、半導
体ウエハは、めっきセルに対して液密に保持されるとと
もに、めっき液の噴流圧に耐え得るように固定されてい
ること。 b)銅電極は、半導体ウエハと略同一径の円形状とし
て、半導体ウエハと平行に配置すること。 c)多孔ノズルは、各噴流口と半導体ウエハとの間隔が
半導体ウエハの径寸法以下となるように設置すること。 d)多孔ノズルより噴流するめっき液の噴流流量を毎分
30リットル以上とすること。 e)半導体ウエハの被めっき面の電流密度を12.5A
/dm2 以上とする。 f)めっき液は、硫酸と硫酸銅とを水に解かした溶液
で、硫酸濃度を75〜150g/lとし、硫酸銅濃度を
少なくとも75g/l以上で硫酸濃度に応じて溶解可能
な濃度とすること。
[Modification] A plating method satisfying the following conditions may be used other than the plating methods shown in the first and second embodiments. a) A system in which a plating solution is jetted from a porous nozzle onto the surface of a semiconductor wafer to be plated for electroplating. At this time, the semiconductor wafer is held liquid-tight with respect to the plating cell and is fixed so as to withstand the jet pressure of the plating solution. b) The copper electrode has a circular shape having substantially the same diameter as the semiconductor wafer and is arranged in parallel with the semiconductor wafer. c) The multi-hole nozzle should be installed so that the distance between each jet port and the semiconductor wafer is less than or equal to the diameter of the semiconductor wafer. d) The flow rate of the plating solution jetted from the multi-hole nozzle should be 30 liters per minute or more. e) The current density of the plated surface of the semiconductor wafer is set to 12.5A.
/ Dm 2 or more. f) The plating solution is a solution in which sulfuric acid and copper sulfate are dissolved in water, the sulfuric acid concentration is 75 to 150 g / l, and the copper sulfate concentration is at least 75 g / l or more so that it can be dissolved depending on the sulfuric acid concentration. thing.

【0047】但し、上記a)のめっきシステムにおい
て、d)の噴流流量の条件、およびe)の電流密度の条
件を満足するめっき方法により、めっき被膜の表面粗度
を小さくすることは可能である。また、上記a)のめっ
きシステムにおいて、b)の銅電極の条件、c)の多孔
ノズルの条件、およびf)のめっき液の組成条件を満足
するめっき方法により、めっき被膜の均一性を向上させ
ることは可能である。
However, in the plating system of a) above, it is possible to reduce the surface roughness of the plating film by a plating method satisfying the conditions of the jet flow rate of d) and the current density condition of e). . Further, in the plating system of a), the uniformity of the plating film is improved by a plating method that satisfies the conditions of b) the copper electrode, c) the conditions of the porous nozzle, and f) the composition conditions of the plating solution. It is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例に係わるめっき装置の全体構成図で
ある。
FIG. 1 is an overall configuration diagram of a plating apparatus according to a first embodiment.

【図2】第1実施例に係わるめっきセル内の構造を示す
断面図である。
FIG. 2 is a cross-sectional view showing the structure inside a plating cell according to the first embodiment.

【図3】半導体ウエハの断面図である。FIG. 3 is a sectional view of a semiconductor wafer.

【図4】銅バンプが形成された半導体ウエハの断面図で
ある。
FIG. 4 is a cross-sectional view of a semiconductor wafer on which copper bumps are formed.

【図5】電流密度と銅バンプの表面粗度との関係を示す
グラフである。
FIG. 5 is a graph showing the relationship between current density and surface roughness of copper bumps.

【図6】硫酸濃度と銅バンプの寸法ばらつきとの関係を
示すグラフである。
FIG. 6 is a graph showing the relationship between sulfuric acid concentration and dimensional variation of copper bumps.

【図7】硫酸銅濃度と銅バンプの寸法ばらつきとの関係
を示すグラフである。
FIG. 7 is a graph showing the relationship between copper sulfate concentration and copper bump dimensional variation.

【図8】銅バンプの寸法ばらつきを比較するグラフであ
る。
FIG. 8 is a graph comparing dimensional variations of copper bumps.

【図9】銅バンプの耐久強度を比較するグラフである。FIG. 9 is a graph comparing durability of copper bumps.

【図10】第2実施例に係わるめっきセル内の構造を示
す断面図である。
FIG. 10 is a cross-sectional view showing the structure inside a plating cell according to the second embodiment.

【図11】電流密度と銅バンプの表面粗度との関係を示
すグラフである。
FIG. 11 is a graph showing the relationship between current density and surface roughness of copper bumps.

【図12】硫酸濃度と銅バンプの寸法ばらつきとの関係
を示すグラフである。
FIG. 12 is a graph showing the relationship between sulfuric acid concentration and dimensional variation of copper bumps.

【図13】硫酸銅濃度と銅バンプの寸法ばらつきとの関
係を示すグラフである。
FIG. 13 is a graph showing the relationship between the copper sulfate concentration and the dimensional variation of copper bumps.

【図14】フリップチップ素子の断面図である。FIG. 14 is a cross-sectional view of a flip chip device.

【図15】浸漬めっき方法の概略図である。FIG. 15 is a schematic view of an immersion plating method.

【図16】オーバフローめっき方法の概略図である。FIG. 16 is a schematic view of an overflow plating method.

【図17】添加剤の主成分濃度と銅バンプの寸法ばらつ
きとの関係を示すグラフである。
FIG. 17 is a graph showing the relationship between the main component concentration of an additive and the dimensional variation of copper bumps.

【図18】添加剤の主成分濃度と銅バンプの耐久強度と
の関係を示すグラフである。
FIG. 18 is a graph showing the relationship between the main component concentration of an additive and the durability strength of a copper bump.

【符号の説明】[Explanation of symbols]

1 半導体ウエハ 1d 銅バンプ(金属めっき層) 3 多孔ノズル 3a 噴流口 7 銅電極(陽極) 1 Semiconductor Wafer 1d Copper Bump (Metal Plating Layer) 3 Perforated Nozzle 3a Jet Port 7 Copper Electrode (Anode)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 基樹 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Motoki Ito 1-1-chome, Showa-cho, Kariya city, Aichi Prefecture Nihondenso Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】陽極と対向して配置された半導体ウエハの
被めっき面に、多孔ノズルよりめっき液を噴流させて前
記被めっき面に金属めっき層を形成する半導体ウエハの
めっき方法において、 前記多孔ノズルより噴流するめっき液の噴流流量を毎分
30リットル以上とし、且つ前記被めっき面の電流密度
を12.5A/dm2 以上とすることを特徴とする半導
体ウエハのめっき方法。
1. A method for plating a semiconductor wafer, which comprises forming a metal plating layer on the surface to be plated by jetting a plating solution from a porous nozzle onto the surface to be plated of the semiconductor wafer arranged facing the anode. A method for plating a semiconductor wafer, characterized in that the flow rate of the plating solution jetted from the nozzle is 30 liters per minute or more, and the current density of the surface to be plated is 12.5 A / dm 2 or more.
【請求項2】陽極と対向して配置された半導体ウエハの
被めっき面に、多孔ノズルよりめっき液を噴流させて前
記被めっき面に金属めっき層を形成する半導体ウエハの
めっき方法において、 a)前記陽極は、前記半導体ウエハと略同一径の円形状
に設けられて、前記半導体ウエハと平行に配置され、 b)前記多孔ノズルは、めっき液を噴流する各噴流口と
前記半導体ウエハとの間隔が前記半導体ウエハの径寸法
以下となるように設置され、 c)前記めっき液は、硫酸と硫酸銅とを水に解かした溶
液で、硫酸濃度を75〜150g/lとし、硫酸銅濃度
を少なくとも75g/l以上で硫酸濃度に応じて溶解可
能な濃度とすることを特徴とする半導体ウエハのめっき
方法。
2. A method for plating a semiconductor wafer, which comprises forming a metal plating layer on the surface to be plated by jetting a plating solution from a porous nozzle onto the surface to be plated of the semiconductor wafer arranged facing the anode. The anode is provided in a circular shape having substantially the same diameter as the semiconductor wafer, and is arranged in parallel with the semiconductor wafer. B) The multi-hole nozzle is arranged between each jet port for jetting a plating solution and the semiconductor wafer. Is set so as to be equal to or smaller than the diameter of the semiconductor wafer, and c) the plating solution is a solution of sulfuric acid and copper sulfate dissolved in water, the sulfuric acid concentration is 75 to 150 g / l, and the copper sulfate concentration is at least A method for plating a semiconductor wafer, wherein the concentration is 75 g / l or more and the concentration can be dissolved according to the sulfuric acid concentration.
【請求項3】陽極と対向して配置された半導体ウエハの
被めっき面に、多孔ノズルよりめっき液を噴流させて前
記被めっき面に金属めっき層を形成する半導体ウエハの
めっき方法において、 a)前記陽極は、前記半導体ウエハと略同一径の円形状
に設けられて、前記半導体ウエハと平行に配置され、 b)前記多孔ノズルは、めっき液を噴流する各噴流口と
前記半導体ウエハとの間隔が前記半導体ウエハの径寸法
以下となるように設置され、 c)前記多孔ノズルより噴流するめっき液の噴流流量を
毎分30リットル以上とし、 d)前記被めっき面の電流密度を12.5A/dm2
上とし、 e)前記めっき液は、硫酸と硫酸銅とを水に解かした溶
液で、硫酸濃度を75〜150g/lとし、硫酸銅濃度
を少なくとも75g/l以上で硫酸濃度に応じて溶解可
能な濃度とすることを特徴とする半導体ウエハのめっき
方法。
3. A method for plating a semiconductor wafer, which comprises forming a metal plating layer on the surface to be plated by jetting a plating solution from a porous nozzle onto the surface to be plated of the semiconductor wafer arranged facing the anode. The anode is provided in a circular shape having substantially the same diameter as the semiconductor wafer, and is arranged in parallel with the semiconductor wafer. B) The multi-hole nozzle is arranged between each jet port for jetting a plating solution and the semiconductor wafer. Is set to be equal to or smaller than the diameter of the semiconductor wafer, c) the flow rate of the plating solution jetted from the multi-hole nozzle is 30 liters per minute or more, and d) the current density of the plated surface is 12.5 A / dm 2 or more, and e) the plating solution is a solution of sulfuric acid and copper sulfate dissolved in water, has a sulfuric acid concentration of 75 to 150 g / l, and a copper sulfate concentration of at least 75 g / l or more. A method for plating a semiconductor wafer, wherein the concentration is set so as to be soluble according to the above.
【請求項4】前記多孔ノズルは、少なくとも9個の噴流
口を有することを特徴とする請求項1〜3に記載された
何れかの半導体ウエハのめっき方法。
4. The method for plating a semiconductor wafer according to claim 1, wherein the multi-hole nozzle has at least nine jet holes.
【請求項5】前記半導体ウエハと前記多孔ノズルとの少
なくとも一方を他方に対して平行に揺動させながら電気
めっきを行うことを特徴とする請求項1〜4に記載され
た何れかの半導体ウエハのめっき方法。
5. The semiconductor wafer according to claim 1, wherein electroplating is performed while rocking at least one of the semiconductor wafer and the multi-hole nozzle in parallel to the other. Plating method.
JP16816094A 1994-07-20 1994-07-20 Semiconductor wafer plating method and plating apparatus Expired - Fee Related JP3362512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16816094A JP3362512B2 (en) 1994-07-20 1994-07-20 Semiconductor wafer plating method and plating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16816094A JP3362512B2 (en) 1994-07-20 1994-07-20 Semiconductor wafer plating method and plating apparatus

Publications (2)

Publication Number Publication Date
JPH0831834A true JPH0831834A (en) 1996-02-02
JP3362512B2 JP3362512B2 (en) 2003-01-07

Family

ID=15862928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16816094A Expired - Fee Related JP3362512B2 (en) 1994-07-20 1994-07-20 Semiconductor wafer plating method and plating apparatus

Country Status (1)

Country Link
JP (1) JP3362512B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080496A (en) * 1998-09-03 2000-03-21 Ebara Corp Filling plating method for base material having fine pore and/or fine groove
WO2001053569A1 (en) * 2000-01-20 2001-07-26 Nikko Materials Company, Limited Copper electroplating liquid, pretreatment liquid for copper electroplating and method of copper electroplating
JP2004524436A (en) * 2000-07-06 2004-08-12 アプライド マテリアルズ インコーポレイテッド Flow diffuser used in electrochemical plating system
CN1310312C (en) * 2001-09-25 2007-04-11 夏普公司 Semiconductor integrated circuit, method and apparatus for mfg. same
SG132573A1 (en) * 2005-11-22 2007-06-28 Electroplating Eng Plating apparatus
US8932440B2 (en) 2010-09-24 2015-01-13 Denso Corporation Plating apparatus and plating method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080496A (en) * 1998-09-03 2000-03-21 Ebara Corp Filling plating method for base material having fine pore and/or fine groove
WO2001053569A1 (en) * 2000-01-20 2001-07-26 Nikko Materials Company, Limited Copper electroplating liquid, pretreatment liquid for copper electroplating and method of copper electroplating
JP2004524436A (en) * 2000-07-06 2004-08-12 アプライド マテリアルズ インコーポレイテッド Flow diffuser used in electrochemical plating system
CN1310312C (en) * 2001-09-25 2007-04-11 夏普公司 Semiconductor integrated circuit, method and apparatus for mfg. same
SG132573A1 (en) * 2005-11-22 2007-06-28 Electroplating Eng Plating apparatus
US8932440B2 (en) 2010-09-24 2015-01-13 Denso Corporation Plating apparatus and plating method

Also Published As

Publication number Publication date
JP3362512B2 (en) 2003-01-07

Similar Documents

Publication Publication Date Title
US8540857B1 (en) Plating method and apparatus with multiple internally irrigated chambers
US6610191B2 (en) Electro deposition chemistry
US20070158204A1 (en) Tin and tin alloy electroplating method with controlled internal stress and grain size of the resulting deposit
KR100697875B1 (en) Plating method and apparatus
US20080105555A1 (en) Plating Device, Plating Method, Semiconductor Device, And Method For Manufacturing Semiconductor Device
US6852209B2 (en) Insoluble electrode for electrochemical operations on substrates
WO2000014308A1 (en) Substrate plating device
US8926820B2 (en) Working electrode design for electrochemical processing of electronic components
KR102134929B1 (en) Method and apparatus for electroplating semiconductor wafer when controlling cations in electrolyte
EP3054035B1 (en) Method for forming a nickel film
CN112111761B (en) Electrolyte of high-elongation electrolytic copper foil and application thereof
US5181770A (en) Surface topography optimization through control of chloride concentration in electroformed copper foil
JPS61119699A (en) System and method for producing foil of metal or metal alloy
JP3362512B2 (en) Semiconductor wafer plating method and plating apparatus
EP1427869B1 (en) Regeneration method for a plating solution
JP2013112842A (en) Electroplating apparatus and plating method
JP2009242878A (en) Plating treatment device
KR100371564B1 (en) Metal finishing apparatus and metal finishing method using the same
US20230230847A1 (en) Electro-oxidative metal removal accompanied by particle contamination mitigation in semiconductor processing
TW202242201A (en) Electro-chemical plating apparatus
JP3091582B2 (en) Electroless plating method and apparatus
JP4553632B2 (en) Substrate plating method and substrate plating apparatus
TWI586847B (en) Plating device
JP3400278B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP3884150B2 (en) High speed plating apparatus and high speed plating method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091025

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101025

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees