JP2000021782A - Method of forming single crystal silicon layer and manufacture of semiconductor device - Google Patents

Method of forming single crystal silicon layer and manufacture of semiconductor device

Info

Publication number
JP2000021782A
JP2000021782A JP18446798A JP18446798A JP2000021782A JP 2000021782 A JP2000021782 A JP 2000021782A JP 18446798 A JP18446798 A JP 18446798A JP 18446798 A JP18446798 A JP 18446798A JP 2000021782 A JP2000021782 A JP 2000021782A
Authority
JP
Japan
Prior art keywords
crystal silicon
silicon layer
substrate
forming
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18446798A
Other languages
Japanese (ja)
Inventor
Hisayoshi Yamoto
久良 矢元
Hideo Yamanaka
英雄 山中
Yuichi Sato
勇一 佐藤
Hajime Yagi
肇 矢木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP18446798A priority Critical patent/JP2000021782A/en
Priority to CNB998010499A priority patent/CN1146020C/en
Priority to PCT/JP1999/003521 priority patent/WO2000001004A1/en
Publication of JP2000021782A publication Critical patent/JP2000021782A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76248Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using lateral overgrowth techniques, i.e. ELO techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Abstract

PROBLEM TO BE SOLVED: To uniformly epitaxially grow an Si layer at low temps. to make semiconductor elements of a high current density at a high rate by forming steps on a substrate and forming a single crystal Si layer of specified thickness on the substrate including the steps by the catalytic CVD method. SOLUTION: A photo resist 2 is formed in specified pattern on one main surface of an insulation substrate 1 of quartz glass, crystallized glass, etc., and irradiated with e.g. F+ ions 3 of a plasma of CF4 with this resist used as a mask to form a plurality of steps 4 on the substrate 1 by the reactive ion etching(RIE) where the steps 4 are seeds for the epitaxial growth of a single crystal Si and may have a depth d of 0.1 μm and width w of 1.5-1.9 μm, the photo resist 2 is removed and a single crystal Si film 7 is epitaxially grown at several microns to 0.005 μm thick on the entire surface including the steps 4 by the catalytic CVD method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、単結晶シリコン層
の形成方法及び半導体装置の製造方法に関し、特に絶縁
基板上にエピタキシャル成長させた単結晶シリコン層を
能動領域に用いる絶縁ゲート型電界効果トランジスタな
どの半導体素子の製造に好適な方法に関するものであ
る。
The present invention relates to a method of forming a single crystal silicon layer and a method of manufacturing a semiconductor device, and more particularly to an insulated gate field effect transistor using a single crystal silicon layer epitaxially grown on an insulating substrate as an active region. The present invention relates to a method suitable for manufacturing a semiconductor device.

【0002】[0002]

【従来の技術】従来、基板上に形成した単結晶シリコン
層を用いたMOSFET(Metal-oxide-semiconductor
field effect transistor)であるTFT(薄膜トランジ
スタ)は、ポリシリコン層を用いたものと比べて、数倍
も大きい電子移動度を有し、高速動作に好適であること
が知られている(文献,R.P.Zingg et al,"First MOSt
ransistors on Insulator by Silicon Saturated Liqui
d Solution Epitaxy".IEEE ELECTRON DEVICE LETTERS.V
OL.13,NO.5,MAY 1992 p294-6. 、特公平4-57098 号公
報、松村 正清、" 薄膜トランジスタ" 応用物理、第65
巻 第8 号(1996)pp842-848,参照) 。
2. Description of the Related Art Conventionally, a MOSFET (Metal-oxide-semiconductor) using a single crystal silicon layer formed on a substrate.
It is known that a TFT (thin film transistor), which is a field effect transistor, has electron mobility several times larger than that using a polysilicon layer and is suitable for high-speed operation (literature, RPZingg). et al, "First MOSt
ransistors on Insulator by Silicon Saturated Liqui
d Solution Epitaxy ".IEEE ELECTRON DEVICE LETTERS.V
OL.13, NO.5, MAY 1992 p294-6., Japanese Patent Publication No. 4-57098, Masayoshi Matsumura, "Thin Film Transistor" Applied Physics, No. 65
Volume 8 (1996) pp842-848).

【0003】こうした半導体素子において、単結晶シリ
コン層を基板上に形成するために、以下の種々の成膜技
術(1)〜(5)が知られている。
In such a semiconductor device, the following various film forming techniques (1) to (5) are known for forming a single crystal silicon layer on a substrate.

【0004】(1)温度約800〜1200℃、水素雰
囲気、100〜760Torrで、シラン、ジクロルシ
ラン、トリクロルシラン、四塩化シリコンを分解させて
単結晶シリコンを成長させる。
(1) Silane, dichlorosilane, trichlorosilane and silicon tetrachloride are decomposed at a temperature of about 800 to 1200 ° C. in a hydrogen atmosphere at 100 to 760 Torr to grow single crystal silicon.

【0005】(2)単結晶シリコン基板をシードにし
て、920〜930℃に加熱されたインジウム・シリコ
ン溶液又はインジウム・ガリウム・シリコン溶液から、
冷却処理によりシリコンエピタキシー層を形成し、この
層の上にシリコン半導体層を作成する。(文献1,Soo
Hong Lee,"VERY-LOW-TEMPERATURE LIQUID-PHASE EPITAX
IAL GROWTH OF SILICON".MATERIALS LETTERS. Vol.9.N
o.2,3(Jan.,1990)pp53-56. 文献2,R.Bergmann et al,"M
OS transistors with epitaxial Si,laterally grown o
ver SiO/Sub 2/ by liquid phase epitaxy."J.Applied
Physics A,vol.A54,no.1 p.103-5.文献3,R.P.Zingg et
al,"First MOS transistors on Insulatorby Silicon S
aturated Liquid Solution Epitaxy."IEEE ELECTRON DE
VICE LETTERS.VOL.13,NO.5,MAY 1992 p294-6.)
(2) Using a single crystal silicon substrate as a seed, an indium silicon solution or an indium gallium silicon solution heated to 920 to 930 ° C.
A silicon epitaxy layer is formed by a cooling process, and a silicon semiconductor layer is formed on this layer. (Reference 1, Soo
Hong Lee, "VERY-LOW-TEMPERATURE LIQUID-PHASE EPITAX
IAL GROWTH OF SILICON ".MATERIALS LETTERS. Vol.9.N
o.2,3 (Jan., 1990) pp53-56. Reference 2, R. Bergmann et al, "M
OS transistors with epitaxial Si, laterally grown o
ver SiO / Sub 2 / by liquid phase epitaxy. "J.Applied
Physics A, vol.A54, no.1 p.103-5.Reference 3, RPZingg et
al, "First MOS transistors on Insulatorby Silicon S
aturated Liquid Solution Epitaxy. "IEEE ELECTRON DE
(VICE LETTERS.VOL.13, NO.5, MAY 1992 p294-6.)

【0006】(3)サファイア基板上にシリコンをエピ
タキシャル成長させる。(文献4,G.A.Garcia,R.E.Reed
y,and M.L.Burger,"High-quality CMOS in thin (100n
m)silicon on sapphire,"IEEE ELECTRON DEVICE LETTER
S.VOL.9,pp32-34,Jan.1988.)
(3) Silicon is epitaxially grown on a sapphire substrate. (Reference 4, GAGarcia, REReed
y, and MLBurger, "High-quality CMOS in thin (100n
m) silicon on sapphire, "IEEE ELECTRON DEVICE LETTER
(S.VOL.9, pp32-34, Jan.1988.)

【0007】(4)酸素イオン注入法により、絶縁基板
上にシリコン層を形成する。(文献5,K.Izumi,M.Doken,
and H.Ariyoshtl,"CMOS device fabrication on buried
SiO2 layers formed by oxygen implantation into si
licon,"Electron.Lett.,vol.14,no.18,pp593-594,Aug.1
978.)
(4) A silicon layer is formed on an insulating substrate by an oxygen ion implantation method. (Reference 5, K. Izumi, M. Doken,
and H. Ariyoshtl, "CMOS device fabrication on buried
SiO 2 layers formed by oxygen implantation into si
licon, "Electron.Lett., vol.14, no.18, pp593-594, Aug.1
978.)

【0008】(5)石英基板の上にステップを形成し、
この上にポリシリコン層を形成し、次にこれをレーザー
光やストリップヒータで1400℃以上に加熱する。加
熱されたポリシリコン層は、石英基板上に形成されたス
テップを核にして、エピタキシャル成長層を形成する。
(文献6,古川 静二郎,"グラフォエピタキシー" 、電子
通信学会誌、Vol.66,No.5,pp486-489.(1983.May). 文献
7,Geis,M.W.,et al.:"Crystallographic orientation o
f silicon on an amorphous substrate usingan artifi
cial-relief grating and laser crystallization",App
l.Phys.Letter,35,1,pp71-74(July 1979). 文献8,Geis,
M.W.,et al.:"Silicon graphoepitaxy",Jpn.J.Appl.Phy
s.,Suppl.20-1,pp.39-42(1981).)
(5) forming steps on a quartz substrate,
A polysilicon layer is formed thereon, and this is heated to 1400 ° C. or higher by a laser beam or a strip heater. The heated polysilicon layer forms an epitaxial growth layer with the steps formed on the quartz substrate as nuclei.
(Reference 6, Seijiro Furukawa, "Graphoepitaxy", IEICE Journal, Vol.66, No.5, pp486-489. (1983.May).
7, Geis, MW, et al.:"Crystallographic orientation o
f silicon on an amorphous substrate usingan artifi
cial-relief grating and laser crystallization ", App
l.Phys.Letter, 35,1, pp71-74 (July 1979).
MW, et al .: "Silicon graphoepitaxy", Jpn.J.Appl.Phy
s., Suppl. 20-1, pp. 39-42 (1981).)

【0009】[0009]

【発明が解決しようとする課題】しかしながら、これま
での公知技術においては、化学反応/単結晶成長に要す
るエネルギーは、全て熱エネルギー(加熱)の形で、供
給されているので、エピタキシー温度を約800℃から
大幅に低下させることができない。従って、歪点が比較
的低く、しかも大型のガラス板上に、シリコンエピタキ
シー層を形成できる技術は存在しない。また、ガラス板
上にステップを形成し、これをエピタキシャル成長の核
にしてシリコンを成長させる技術において、シリコンを
低温でかつ均一にエピタキシャル成長させることはでき
ない。
However, in the prior art, the energy required for the chemical reaction / single crystal growth is all supplied in the form of thermal energy (heating). It cannot be lowered significantly from 800 ° C. Therefore, there is no technique capable of forming a silicon epitaxy layer on a large glass plate having a relatively low strain point. Further, in a technique of forming a step on a glass plate and using the step as a nucleus of epitaxial growth to grow silicon, it is impossible to grow silicon epitaxially at low temperature and uniformly.

【0010】本発明の目的は、歪点が比較的低い大型の
ガラス基板であっても低温で均一にシリコン層をエピタ
キシャル成長させ、高速で大電流密度の半導体素子を作
り込むことのできる方法を提供することにある。
An object of the present invention is to provide a method capable of uniformly growing a silicon layer at a low temperature even on a large-sized glass substrate having a relatively low strain point, thereby producing a semiconductor device having a high current density at a high speed. Is to do.

【0011】[0011]

【課題を解決するための手段】即ち、本発明は、基板上
に段差を形成する工程と、前記段差を含む前記基板上に
触媒CVD法によって単結晶シリコン層を所定厚さに形
成する工程とを有する、単結晶シリコン層の形成方法に
係るものである。
That is, the present invention comprises a step of forming a step on a substrate, and a step of forming a single-crystal silicon layer to a predetermined thickness on the substrate including the step by a catalytic CVD method. And a method for forming a single crystal silicon layer.

【0012】また、本発明は、上記の前記単結晶シリコ
ン層を形成する工程に加えて、その後に、前記単結晶シ
リコン層に所定の処理を施して半導体素子を作製する工
程を更に有する半導体装置の製造方法も提供するもので
ある。
In addition, the present invention provides a semiconductor device further comprising, in addition to the above-described step of forming the single-crystal silicon layer, a step of thereafter performing a predetermined process on the single-crystal silicon layer to manufacture a semiconductor element. Is also provided.

【0013】本発明の方法によれば、基板に形成した段
差をシードにして触媒CVD法によって単結晶シリコン
の堆積(エピタキシャル成長)を行なっているので、次
の(A)〜(C)に示す顕著な作用効果を得ることがで
きる。
According to the method of the present invention, the single crystal silicon is deposited (epitaxially grown) by the catalytic CVD method using the step formed on the substrate as a seed, so that the following (A) to (C) are remarkable. Various operational effects can be obtained.

【0014】(A)上記した段差をシリコンエピタキシ
ーの核として用い、かつこの段差上に、触媒CVD法
(触媒を用いた化学的気相成長:基板温度200〜80
0℃、特に200〜600℃)という低温成膜技術で形
成できるから、基板上に低温でシリコン単結晶膜を均一
に形成することができる。
(A) The above-mentioned step is used as a nucleus of silicon epitaxy, and a catalytic CVD method (chemical vapor deposition using a catalyst: substrate temperature of 200 to 80) is formed on this step.
Since it can be formed by a low-temperature film forming technique of 0 ° C., particularly 200 to 600 ° C.), a silicon single crystal film can be uniformly formed on a substrate at a low temperature.

【0015】(B)従って、基板として石英ガラスは勿
論、歪点の比較的低いガラス基板やセラミックス基板な
どの入手し易く、低コストで物性も良好な基板を用いる
ことができ、また基板の長尺化(100m以上)、大型
化(1m2 以上)も可能となる。
(B) Therefore, not only quartz glass, but also a glass substrate or a ceramic substrate having a relatively low strain point, which is easily available, can be used at a low cost, and has good physical properties, can be used. It can be made longer (100 m or more) and larger (1 m 2 or more).

【0016】(C)ガラス基板等の上に低温で形成した
シリコン単結晶薄膜の電子移動度は、540cm2 /v
・sec(前述の文献3)であって、シリコン基板並の
大きな値が得られるため、高速で大電流密度のトップゲ
ート型、ボトムゲート型、デュアルゲート型のLCD
(液晶表示装置)用TFTをはじめ、EL(エレクトロ
ルミネセンス素子)、FED(電界放出型表示素子)用
のトランジスタや、高性能のダイオード、太陽電池、キ
ャパシタ、抵抗等の半導体素子、或いはこれらを集積し
た電子回路をガラス基板等の上に作成することができ
る。
(C) The electron mobility of a silicon single crystal thin film formed on a glass substrate or the like at a low temperature is 540 cm 2 / v
· Sec (Reference 3 mentioned above), and since a value as large as that of a silicon substrate can be obtained, a high-speed, high-current-density top-gate, bottom-gate, or dual-gate LCD
(Liquid Crystal Display) TFT, EL (Electro Luminescence Element), FED (Field Emission Type Display Element) Transistor, High-Performance Diode, Solar Cell, Capacitor, Resistor and Other Semiconductor Elements An integrated electronic circuit can be formed on a glass substrate or the like.

【0017】[0017]

【発明の実施の形態】本発明の方法においては、前記段
差をリアクティブイオンエッチングなどのドライエッチ
ングによって絶縁基板に形成し、前記単結晶シリコン層
を触媒CVD法(基板温度約200〜800℃)で形成
することができる。
In the method of the present invention, the steps are formed on an insulating substrate by dry etching such as reactive ion etching, and the single-crystal silicon layer is formed by catalytic CVD (substrate temperature of about 200 to 800 ° C.). Can be formed.

【0018】前記触媒CVD法による前記単結晶シリコ
ン層の形成に際しては、水素化ケイ素を主成分とするガ
スを例えば800〜2000℃(融点未満)に加熱され
た触媒体に接触させて分解させ、前記基板上に前記単結
晶シリコン層を堆積させることができる。
In forming the single-crystal silicon layer by the catalytic CVD method, a gas containing silicon hydride as a main component is brought into contact with a catalyst heated to, for example, 800 to 2000 ° C. (less than the melting point) to decompose it. The single crystal silicon layer can be deposited on the substrate.

【0019】この場合、前記水素化ケイ素としてシラン
を使用し、前記触媒体としてタングステン、酸化トリウ
ムを含有するタングステン、モリブデン、白金、パラジ
ウム、シリコン、アルミナ、金属を付着したセラミック
ス、及び炭化ケイ素からなる群より選ばれた少なくとも
1種の材料を使用してよい。
In this case, silane is used as the silicon hydride, and the catalyst is made of tungsten, tungsten containing thorium oxide, molybdenum, platinum, palladium, silicon, alumina, a ceramic to which a metal is attached, and silicon carbide. At least one material selected from the group may be used.

【0020】本発明の方法においては、基板として、絶
縁基板、特に歪点の低いガラス基板を用い得るので、大
型ガラス基板(1m2 以上)上に半導体結晶層を作成す
ることが可能であるが、触媒CVD時の基板温度が上記
したように低いため、ガラス基板として、歪点が470
〜670℃と低いガラスを用いることができる。これ
は、安価で、薄板化が容易であり、長尺ロール化された
ガラス板を作製できる。これを用いて、長尺ロール化ガ
ラス板上に、上記手法を用いて、薄いエピタキシー層を
連続して又は非連続に作製することができる。
In the method of the present invention, an insulating substrate, in particular, a glass substrate having a low strain point can be used as the substrate, so that a semiconductor crystal layer can be formed on a large-sized glass substrate (1 m 2 or more). Since the substrate temperature during catalytic CVD is low as described above, the glass substrate has a strain point of 470.
Glass as low as 6670 ° C. can be used. This is inexpensive, easy to thin, and can produce a long rolled glass sheet. Using this, a thin epitaxy layer can be produced continuously or discontinuously on a long rolled glass plate using the above technique.

【0021】このように、歪点が低いガラスの上層へ
は、このガラスから、その構成元素が拡散し易いので、
これを抑える目的で、拡散バリア層の薄膜(例えばシリ
コンナイトライド:厚さ10〜1000Å程度)を形成
するのがよい。
As described above, the constituent elements are easily diffused from the glass to the upper layer of the glass having a low strain point.
For the purpose of suppressing this, it is preferable to form a thin film of the diffusion barrier layer (for example, silicon nitride: thickness of about 10 to 1000 °).

【0022】上記した段差をシードとして前記単結晶シ
リコン層を析出させた後に、前記単結晶シリコン層に所
定の処理を施して半導体素子を作製することができる。
After depositing the single-crystal silicon layer using the above-described steps as a seed, a predetermined process is performed on the single-crystal silicon layer to manufacture a semiconductor device.

【0023】なお、上記の単結晶シリコン成膜時に、3
族又は5族元素(B、P、Sb、Asなど)をB2 6
やPH3 などとして供給し、適量ドープしておけば、成
長するシリコンエピ層のP型/N型及び/又はキャリア
濃度を任意に制御することができる。
It should be noted that, during the above-mentioned single-crystal silicon film formation, 3
Group or group V element (B, P, Sb, As, etc.) B 2 H 6
And PH 3 was supplied as such, if appropriate amount dope, it is possible to arbitrarily control the P-type / N-type and / or the carrier concentration of the growing silicon epitaxial layer.

【0024】このように、基板上にエピタキシャル成長
した前記単結晶シリコン層を絶縁ゲート型電界効果トラ
ンジスタのチャネル領域、ソース領域及びドレイン領域
に適用し、これら各領域の不純物種及び/又はその濃度
を制御することができる。
As described above, the single crystal silicon layer epitaxially grown on the substrate is applied to the channel region, the source region, and the drain region of the insulated gate field effect transistor, and the impurity species and / or the concentration of each of these regions are controlled. can do.

【0025】次に、本発明を好ましい実施の形態につい
て更に詳細に説明する。
Next, preferred embodiments of the present invention will be described in more detail.

【0026】図1〜図7について、本実施の形態を説明
する。
This embodiment will be described with reference to FIGS.

【0027】まず、図1の(1)に示すように、石英ガ
ラス、結晶化ガラスなどの絶縁基板1(特に、歪点が約
470〜1400℃、更には470〜670℃、厚さ5
0μm〜数mmのガラス基板)の一主面に、フォトレジ
スト2を所定パターンに形成し、これをマスクとして例
えばCF4 プラズマのF+ イオン3を照射し、リアクテ
ィブイオンエッチング(RIE)によって基板1に段差
4を複数個形成する。この場合、段差4は、後述の単結
晶シリコンのエピタキシャル成長時のシードとなるもの
であって、深さd0.1μm、幅w1.5〜1.9μm
であってよい。
First, as shown in FIG. 1A, an insulating substrate 1 made of quartz glass, crystallized glass or the like (in particular, having a strain point of about 470 to 1400 ° C., further 470 to 670 ° C., and a thickness of 5 to 5 ° C.)
On one main surface of a glass substrate (0 μm to several mm), a photoresist 2 is formed in a predetermined pattern, and using this as a mask, for example, F + ions 3 of CF 4 plasma are irradiated, and the substrate is subjected to reactive ion etching (RIE). A plurality of steps 4 are formed in one. In this case, the step 4 serves as a seed at the time of epitaxial growth of single-crystal silicon described later, and has a depth d of 0.1 μm and a width w of 1.5 to 1.9 μm.
It may be.

【0028】次いで、図1の(2)に示すように、フォ
トレジスト2の除去後に、特開昭63−40314号公
報などにも示されている触媒CVD法(基板温度200
〜800℃)によって、段差4を含む全面に単結晶シリ
コン膜7を数μm〜0.005μm(例えば0.1μ
m)の厚みにエピタキシャル成長させる。
Next, as shown in FIG. 1 (2), after the photoresist 2 is removed, a catalytic CVD method (substrate temperature of 200) disclosed in JP-A-63-40314 or the like is used.
Up to 800 ° C., the single-crystal silicon film 7 is formed on the entire surface including the step 4 by several μm to 0.005 μm (for example, 0.1 μm).
m) is epitaxially grown to a thickness of m).

【0029】この場合、触媒CVDは、図5に示す装置
を用いて行なってよい。この触媒CVD装置によれば、
水素化ケイ素(例えばモノシラン)ガス40(及び必要
に応じてB2 6 やPH3 などのドーピングガス)は供
給導管から堆積室41へ導入される。堆積室41の内部
には、基板1を支持するためのサセプター42と、この
サセプターに対向配置されたコイル状の触媒体43とが
それぞれ配されている。そして、基板1は外部加熱手段
44(例えば電熱手段)で加熱され、また触媒体43は
例えば抵抗線として融点以下(特に800〜2000
℃、タングステンの場合は約1700℃)に加熱して活
性化される。
In this case, the catalytic CVD may be performed using the apparatus shown in FIG. According to this catalytic CVD apparatus,
The silicon hydride (e.g., monosilane) gas 40 (and optionally the doping gas such as B 2 H 6 and PH 3) is introduced from the supply conduit to the deposition chamber 41. Inside the deposition chamber 41, a susceptor 42 for supporting the substrate 1 and a coil-shaped catalyst body 43 arranged opposite to the susceptor are arranged. Then, the substrate 1 is heated by an external heating means 44 (for example, an electric heating means), and the catalyst body 43 is formed, for example, as a resistance wire at a melting point or lower (especially 800 to 2000).
C., and about 1700 ° C. in the case of tungsten).

【0030】そして、堆積室41内では、雰囲気を窒素
から水素に換気(約15〜20分)してから約200〜
800℃に昇温し、シランガスが触媒体43と接触して
触媒的に分解し、低温(例えば300℃)に保持された
基板1上に堆積する。堆積時間は成長させるエピ層厚か
ら求め、また成長終了後は降温させ、水素を窒素に換気
し、基板1を取出す。このようにして、触媒体43によ
る触媒反応または熱分解反応によって、高エネルギーを
もつシリコン原子又は原子の集団を形成し、しかもシー
ドとなる段差4上に堆積させるので、通常の熱CVD法
における堆積可能温度より著しく低い低温の領域でシリ
コン膜を堆積させることができる。
In the deposition chamber 41, the atmosphere is vented from nitrogen to hydrogen (about 15 to 20 minutes),
The temperature is raised to 800 ° C., and the silane gas comes into contact with the catalyst body 43 to be catalytically decomposed and deposited on the substrate 1 maintained at a low temperature (for example, 300 ° C.). The deposition time is determined from the thickness of the epitaxial layer to be grown. After the growth is completed, the temperature is lowered, hydrogen is ventilated to nitrogen, and the substrate 1 is taken out. In this manner, a silicon atom or a group of atoms having high energy is formed by the catalytic reaction or the thermal decomposition reaction by the catalyst body 43 and is deposited on the step 4 serving as a seed. The silicon film can be deposited in a low temperature region that is significantly lower than the possible temperature.

【0031】しかも、堆積した単結晶シリコン層7は
(100)面が基板上にエピタキシャル成長したもので
あるが、これは、グラフォエピタキシーと称される公知
の現象によるものである(前述の文献6、7、8参
照)。これについては、図6に示すように、非晶質基板
(ガラス)1に上記の段差4の如き垂直な壁を作り、こ
の上にエピタキシー層を形成すると、図6(a)のよう
なランダムな面方位であったものが図6(b)のように
(100)面が段差4の面に沿って結晶成長する。この
単結晶粒の大きさは、温度・時間に比例して大きくなる
が、温度・時間を低く、短くする時は、上記段差の間隔
を短くしなければならない。また、上記段差の形状を図
7(a)〜(e)のように種々に変えることによって、
成長層の結晶方位を制御することができる。MOSトラ
ンジスタを作成する場合は、(100)面が最も多く採
用されている。
Furthermore, the deposited single-crystal silicon layer 7 has a (100) plane epitaxially grown on a substrate, which is caused by a known phenomenon called graphoepitaxy (see the above-mentioned document 6). , 7, 8). As shown in FIG. 6, when a vertical wall such as the above-described step 4 is formed on an amorphous substrate (glass) 1 and an epitaxy layer is formed thereon, as shown in FIG. 6B, the (100) plane grows along the plane of the step 4 as shown in FIG. The size of the single crystal grain increases in proportion to the temperature and time. However, when the temperature and time are reduced or shortened, the interval between the steps must be shortened. Also, by changing the shape of the above-described steps variously as shown in FIGS.
The crystal orientation of the growth layer can be controlled. When fabricating MOS transistors, the (100) plane is most often employed.

【0032】こうして、触媒CVD法とグラフォエピタ
キシーによって基板1上に単結晶シリコン層7を堆積さ
せた後、単結晶シリコン層7をチャネル領域とするMO
Sトランジスタ(TFT)の作製を行う。
After the single-crystal silicon layer 7 is deposited on the substrate 1 by the catalytic CVD method and the graphoepitaxy, an MO having the single-crystal silicon layer 7 as a channel region is formed.
An S transistor (TFT) is manufactured.

【0033】即ち、図2(3)に示すように、酸化処理
(950℃)によって単結晶シリコン層7の表面に厚さ
350Åのゲート酸化膜8を形成する。
That is, as shown in FIG. 2C, a gate oxide film 8 having a thickness of 350.degree. Is formed on the surface of the single crystal silicon layer 7 by oxidation treatment (950.degree. C.).

【0034】次いで、図2の(4)に示すように、Nチ
ャネルMOSトランジスタ用のチャネル領域の不純物濃
度制御のために、PチャネルMOSトランジスタ部をフ
ォトレジスト9でマスクし、P型不純物イオン(例えば
+ )10を例えば10kVで2.7×1011 ato
ms/cm2 のドーズ量で打込み、単結晶シリコン層7
の導電型を更にP型化したシリコン層11とする。
Next, as shown in FIG. 2D, in order to control the impurity concentration in the channel region for the N-channel MOS transistor, the P-channel MOS transistor is masked with a photoresist 9 and the P-type impurity ions ( For example, B + ) 10 is 2.7 × 10 11 at 10 kV, for example.
ms / cm 2 and a single crystal silicon layer 7
Is a silicon layer 11 having a P-type conductivity.

【0035】次いで、図2の(5)に示すように、Pチ
ャネルMOSトランジスタ用のチャネル領域の不純物濃
度制御のために、今度はNチャネルMOSトランジスタ
部をフォトレジスト12でマスクし、N型不純物イオン
(例えばP+ )13を例えば10kVで1×1011at
oms/cm2 のドーズ量で打込み、単結晶シリコン層
7のP型を補償したシリコン層14とする。
Next, as shown in (5) of FIG. 2, in order to control the impurity concentration in the channel region for the P-channel MOS transistor, the N-channel MOS transistor portion is masked with a photoresist 12 this time, and the N-type impurity is removed. The ions (for example, P + ) 13 are converted to 1 × 10 11 at, for example, 10 kV.
The single crystal silicon layer 7 is implanted at a dose of oms / cm 2 to form the P-type compensated silicon layer 14.

【0036】次いで、図3の(6)に示すように、ゲー
ト電極材料としてのリンドープドポリシリコン層15を
例えば、CVD法(620℃)によって厚さ4000Å
に堆積させる。
Next, as shown in FIG. 3 (6), a phosphorus-doped polysilicon layer 15 as a gate electrode material is formed to a thickness of 4000 ° C. by, for example, a CVD method (620 ° C.).
To be deposited.

【0037】次いで、図3の(7)に示すように、フォ
トレジスト16を所定パターンに形成し、これをマスク
にしてポリシリコン層15をゲート電極形状にパターニ
ングし、更に、フォトレジスト16の除去後に図3の
(8)に示すように、例えば900℃で60分間、O2
中での酸化処理でゲートポリシリコン15の表面に酸化
膜17を形成する。
Next, as shown in FIG. 3 (7), a photoresist 16 is formed in a predetermined pattern, the polysilicon layer 15 is patterned into a gate electrode shape using the photoresist 16 as a mask, and the photoresist 16 is removed. Later, as shown in FIG. 3 (8), for example, O 2 at 900 ° C. for 60 minutes.
Oxide film 17 is formed on the surface of gate polysilicon 15 by oxidation treatment in the inside.

【0038】次いで、図3の(9)に示すように、Pチ
ャネルMOSトランジスタ部をフォトレジスト18でマ
スクし、N型不純物である例えばAs+ イオン19を例
えば20kVで5×1015atoms/cm2 のドーズ
量でイオン注入し、950℃で40分間、N2 中でのア
ニールによって、NチャネルMOSトランジスタのN+
型ソース領域20及びドレイン領域21をそれぞれ形成
する。
Next, as shown in FIG. 3 (9), the P-channel MOS transistor portion is masked with a photoresist 18, and for example, As + ions 19, which are N-type impurities, are subjected to 5 × 10 15 atoms / cm at, eg, 20 kV. implanted with 2 dose, 40 minutes at 950 ° C., by annealing in N 2, the N-channel MOS transistor N +
Form source region 20 and drain region 21 are formed respectively.

【0039】次いで、図4の(10)に示すように、N
チャネルMOSトランジスタ部をフォトレジスト22で
マスクし、P型不純物である例えばB+ イオン23を例
えば10kVで5×1015atoms/cm2 のドーズ
量でイオン注入し、900℃で5分間、N2 中でのアニ
ールによって、PチャネルMOSトランジスタのP+
ソース領域24及びドレイン領域25をそれぞれ形成す
る。
Next, as shown in FIG.
The channel MOS transistor portion is masked with a photoresist 22 and, for example, B + ions 23 as P-type impurities are ion-implanted at, for example, 10 kV at a dose of 5 × 10 15 atoms / cm 2 , and N 2 is applied at 900 ° C. for 5 minutes. By annealing in the inside, a P + type source region 24 and a drain region 25 of the P channel MOS transistor are formed, respectively.

【0040】次いで、図4の(11)に示すように、全
面にCVD法によって、SiO2 膜26を例えば750
℃で500Åの厚みに、SiN膜27を例えば420℃
で2000Åの厚みに積層し、更に、ボロン及びリンド
ープドシリケートガラス(BPSG)膜28をリフロー
膜として例えば450℃で6000Åの厚みに形成し、
このBPSG膜28を例えば900℃でN2 中でリフロ
ーする。
Next, as shown in FIG. 4 (11), an SiO 2 film 26 is formed on the entire surface by CVD, for example, at 750.
The thickness of the SiN film 27 is set to, for example, 420.degree.
Then, a boron and phosphorus-doped silicate glass (BPSG) film 28 is formed as a reflow film to a thickness of 6000 ° at 450 ° C.
The BPSG film 28 is reflowed at 900 ° C. in N 2 , for example.

【0041】次いで、図4の(12)に示すように、絶
縁膜の所定位置にコンタクト窓開けを行い、各ホールを
含む全面にアルミニウムなどの電極材料をスパッタ法等
で150℃で1μmの厚みに堆積し、これをパターニン
グして、PチャネルMOSFET及びNチャネルMOS
FETのそれぞれのソース又はドレイン電極29(S又
はD)とゲート取出し電極又は配線30(G)を形成
し、各MOSトランジスタを完成する。
Next, as shown in FIG. 4 (12), a contact window is opened at a predetermined position of the insulating film, and an electrode material such as aluminum is applied to the entire surface including each hole by sputtering or the like at 150 ° C. to a thickness of 1 μm. And a P-channel MOSFET and an N-channel MOS
The source or drain electrode 29 (S or D) and the gate extraction electrode or wiring 30 (G) of each FET are formed to complete each MOS transistor.

【0042】以上に説明したように、本実施の形態によ
れば、次の如き顕著な作用効果が得られる。
As described above, according to the present embodiment, the following remarkable functions and effects can be obtained.

【0043】(a)触媒CVD法により段差4をシード
としてガラス基板1上に、200〜600℃と低温でシ
リコン単結晶薄膜7を均一に形成することができる。
(A) The silicon single crystal thin film 7 can be uniformly formed on the glass substrate 1 at a low temperature of 200 to 600 ° C. by using the step 4 as a seed by the catalytic CVD method.

【0044】(b)従って、低歪点ガラス基板のみなら
ず、セラミック基板などの絶縁基板上に、シリコン単結
晶薄膜を形成できるため、歪点が低く、低コストで物性
も良好な基板材質を任意に選択でき、また、基板の大型
化も可能となる。
(B) Therefore, since a silicon single crystal thin film can be formed not only on a glass substrate having a low strain point but also on an insulating substrate such as a ceramic substrate, a substrate material having a low strain point, low cost and good physical properties can be obtained. It can be arbitrarily selected, and the size of the substrate can be increased.

【0045】(c)ガラス基板等の上に形成したシリコ
ン単結晶薄膜7の電子移動度は、540cm2 /v・s
ecとシリコン基板並の大きな値が得られるため、高速
で大電流密度のトランジスタを作成することができる。
トランジスタ以外にも、ダイオード、キャパシタ、抵抗
等や、これらを集積した電子回路をガラス基板上に作成
することができる。MOSトランジスタ等のシリコン半
導体素子を形成するプロセスは、従来公知のポリシリコ
ンTFT作製プロセスと殆んど変わらない。
(C) The electron mobility of the silicon single crystal thin film 7 formed on a glass substrate or the like is 540 cm 2 / v · s
Since ec and a value as large as that of a silicon substrate can be obtained, a transistor with high speed and high current density can be manufactured.
In addition to transistors, diodes, capacitors, resistors, and the like, and electronic circuits in which these are integrated can be formed over a glass substrate. The process of forming a silicon semiconductor device such as a MOS transistor is almost the same as the conventionally known process of fabricating a polysilicon TFT.

【0046】以上に述べた本発明の実施の形態は、本発
明の技術的思想に基いて種々変形が可能である。
The embodiments of the present invention described above can be variously modified based on the technical idea of the present invention.

【0047】[0047]

【発明の作用効果】本発明の方法によれば、基板に形成
した段差をシードにして触媒CVD法によって単結晶シ
リコンの堆積を行なっているので、基板上に低温でシリ
コン単結晶膜を均一に形成することができる。
According to the method of the present invention, single-crystal silicon is deposited by the catalytic CVD method using the step formed on the substrate as a seed, so that a silicon single-crystal film can be uniformly formed on the substrate at a low temperature. Can be formed.

【0048】従って、歪点の比較的低いガラス基板やセ
ラミックス基板などの入手し易く、低コストで物性も良
好な基板を用いることができ、また基板の大型化も可能
となり、また、シリコン単結晶薄膜の電子移動度は、5
40cm2 /v・secであって、シリコン基板並の大
きな値が得られるため、高速で大電流密度のトランジス
タをはじめ、高性能のダイオード、キャパシタ、抵抗等
の半導体素子、或いはこれらを集積した電子回路をガラ
ス基板等の上に作成することができる。
Accordingly, a glass substrate or a ceramic substrate having a relatively low strain point can be easily obtained, a low-cost substrate having good physical properties can be used, the substrate can be made large, and a silicon single crystal can be obtained. The electron mobility of the thin film is 5
40 cm 2 / v · sec, a value as large as that of a silicon substrate can be obtained. Therefore, high-speed, high-current-density transistors, high-performance semiconductor devices such as diodes, capacitors, resistors, and the like, or electronic devices in which these are integrated. The circuit can be formed on a glass substrate or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態による半導体装置の製造プ
ロセスを工程順に示す断面図である。
FIG. 1 is a sectional view illustrating a manufacturing process of a semiconductor device according to an embodiment of the present invention in the order of steps.

【図2】本発明の実施の形態による半導体装置の製造プ
ロセスを工程順に示す断面図である。
FIG. 2 is a sectional view illustrating a manufacturing process of the semiconductor device according to the embodiment of the present invention in the order of steps;

【図3】本発明の実施の形態による半導体装置の製造プ
ロセスを工程順に示す断面図である。
FIG. 3 is a cross-sectional view showing a manufacturing process of the semiconductor device according to the embodiment of the present invention in the order of steps;

【図4】本発明の実施の形態による半導体装置の製造プ
ロセスを工程順に示す断面図である。
FIG. 4 is a sectional view illustrating a manufacturing process of the semiconductor device according to the embodiment of the present invention in the order of steps;

【図5】本発明の実施の形態による半導体装置の製造に
用いる触媒CVD装置の概略図である。
FIG. 5 is a schematic view of a catalytic CVD apparatus used for manufacturing a semiconductor device according to an embodiment of the present invention.

【図6】非晶質基板上のシリコン結晶成長の状況を説明
するための概略斜視図である。
FIG. 6 is a schematic perspective view for explaining the state of silicon crystal growth on an amorphous substrate.

【図7】グラフォエピタキシー技術における各種段差形
状とシリコン成長結晶方位を示す概略断面図である。
FIG. 7 is a schematic sectional view showing various step shapes and a silicon growth crystal orientation in the graphoepitaxy technique.

【符号の説明】[Explanation of symbols]

1…ガラス(又は石英)基板、4…段差、7…単結晶シ
リコン層、8…ゲート酸化膜、10、23…P型不純物
イオン、11…P型不純物注入層、13、19…N型不
純物イオン、14…N型不純物注入層、15…ゲート電
極(材料)、17…酸化膜、20、21…N+ 型ソース
又はドレイン領域、24、25…P+ 型ソース又はドレ
イン領域、26、27、28…絶縁膜、29、30…電
極又は配線
DESCRIPTION OF SYMBOLS 1 ... Glass (or quartz) substrate, 4 ... Step, 7 ... Single-crystal silicon layer, 8 ... Gate oxide film, 10, 23 ... P-type impurity ion, 11 ... P-type impurity implantation layer, 13, 19 ... N-type impurity Ion, 14 N-type impurity implanted layer, 15 gate electrode (material), 17 oxide film, 20, 21 N + source or drain region, 24, 25 P + source or drain region, 26, 27 , 28 ... insulating film, 29, 30 ... electrodes or wiring

フロントページの続き (72)発明者 佐藤 勇一 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 (72)発明者 矢木 肇 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 Fターム(参考) 5F045 AA03 AB02 AC01 AD06 AD07 AD08 AD09 AD10 AD11 AD12 AE29 AF07 AF12 BB07 CA15 DP04 EB02 EK06 EK26 5F052 CA04 EA11 FA13 JA04 KA10Continued on the front page (72) Inventor Yuichi Sato 6-7-35 Kita-Shinagawa, Shinagawa-ku, Tokyo Inside Sony Corporation (72) Inventor Hajime Yagi 6-35-35 Kita-Shinagawa, Shinagawa-ku, Tokyo Sony Stock In-house F-term (reference) 5F045 AA03 AB02 AC01 AD06 AD07 AD08 AD09 AD10 AD11 AD12 AE29 AF07 AF12 BB07 CA15 DP04 EB02 EK06 EK26 5F052 CA04 EA11 FA13 JA04 KA10

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 基板上に段差を形成する工程と、 前記段差を含む前記基板上に触媒CVD法によって単結
晶シリコン層を所定厚さに形成する工程とを有する、単
結晶シリコン層の形成方法。
1. A method for forming a single-crystal silicon layer, comprising: forming a step on a substrate; and forming a single-crystal silicon layer to a predetermined thickness on the substrate including the step by catalytic CVD. .
【請求項2】 前記段差をドライエッチングによって絶
縁基板に形成し、前記単結晶シリコン層を200〜80
0℃で形成する、請求項1に記載した単結晶シリコン層
の形成方法。
2. The method according to claim 1, wherein the step is formed on the insulating substrate by dry etching, and
The method for forming a single-crystal silicon layer according to claim 1, wherein the single-crystal silicon layer is formed at 0 ° C.
【請求項3】 前記触媒CVD法による前記単結晶シリ
コン層の形成に際し、水素化ケイ素を主成分とするガス
を加熱された触媒体に接触させて分解させ、前記基板上
に前記単結晶シリコン層を堆積させる、請求項1に記載
した単結晶シリコン層の形成方法。
3. When forming the single-crystal silicon layer by the catalytic CVD method, a gas containing silicon hydride as a main component is brought into contact with a heated catalyst to decompose the gas, and the single-crystal silicon layer is formed on the substrate. The method for forming a single-crystal silicon layer according to claim 1, wherein:
【請求項4】 前記水素化ケイ素としてシランを使用
し、前記触媒体としてタングステン、酸化トリウムを含
有するタングステン、モリブデン、白金、パラジウム、
シリコン、アルミナ、金属を付着したセラミックス、及
び炭化ケイ素からなる群より選ばれた少なくとも1種の
材料を使用する、請求項3に記載した単結晶シリコン層
の形成方法。
4. Use of silane as the silicon hydride, tungsten as the catalyst, tungsten containing thorium oxide, molybdenum, platinum, palladium,
4. The method for forming a single-crystal silicon layer according to claim 3, wherein at least one material selected from the group consisting of silicon, alumina, ceramics to which a metal is attached, and silicon carbide is used.
【請求項5】 前記絶縁基板としてガラス基板を使用す
る、請求項2に記載した単結晶シリコン層の形成方法。
5. The method according to claim 2, wherein a glass substrate is used as the insulating substrate.
【請求項6】 前記ガラス基板上に拡散バリア層を形成
し、この上に前記単結晶シリコン層を形成する、請求項
5に記載した単結晶シリコン層の形成方法。
6. The method for forming a single crystal silicon layer according to claim 5, wherein a diffusion barrier layer is formed on the glass substrate, and the single crystal silicon layer is formed thereon.
【請求項7】 前記単結晶シリコン層の成膜時に3族又
は5族の不純物元素を混入させ、これによって前記単結
晶シリコン層の不純物種及び/又はその濃度を制御す
る、請求項1に記載した単結晶シリコン層の形成方法。
7. The single crystal silicon layer according to claim 1, wherein an impurity element belonging to Group 3 or Group 5 is mixed during the formation of the single crystal silicon layer, thereby controlling the impurity species and / or concentration of the single crystal silicon layer. Forming a single crystal silicon layer.
【請求項8】 基板上に段差を形成する工程と、 前記段差を含む前記基板上に触媒CVD法によって単結
晶シリコン層を所定厚さに形成する工程と、 前記単結晶シリコン層に所定の処理を施して半導体素子
を作製する工程とを有する、半導体装置の製造方法。
8. A step of forming a step on the substrate, a step of forming a single-crystal silicon layer to a predetermined thickness on the substrate including the step by a catalytic CVD method, and a predetermined process on the single-crystal silicon layer. Forming a semiconductor element by performing the following.
【請求項9】 前記単結晶シリコン層を絶縁ゲート型電
界効果トランジスタのチャネル領域、ソース領域及びド
レイン領域に適用し、これら各領域の3族又は5族の不
純物種及び/又はその濃度を制御する、請求項8に記載
した半導体装置の製造方法。
9. The single crystal silicon layer is applied to a channel region, a source region, and a drain region of an insulated gate field effect transistor, and controls the impurity species and / or concentration of Group 3 or 5 of each of these regions. A method for manufacturing a semiconductor device according to claim 8.
【請求項10】 前記段差をドライエッチングによって
絶縁基板に形成し、前記単結晶シリコン層を200〜8
00℃で形成する、請求項8に記載した半導体装置の製
造方法。
10. The step is formed on an insulating substrate by dry etching, and the single crystal silicon layer is
The method for manufacturing a semiconductor device according to claim 8, wherein the method is performed at 00 ° C.
【請求項11】 前記触媒CVD法による前記単結晶シ
リコン層の形成に際し、水素化ケイ素を主成分とするガ
スを加熱された触媒体に接触させて分解させ、前記基板
上に前記単結晶シリコン層を堆積させる、請求項8に記
載した半導体装置の製造方法。
11. When forming the single-crystal silicon layer by the catalytic CVD method, a gas containing silicon hydride as a main component is brought into contact with a heated catalyst to be decomposed, and the single-crystal silicon layer is formed on the substrate. The method of manufacturing a semiconductor device according to claim 8, wherein is deposited.
【請求項12】 前記水素化ケイ素としてシランを使
用し、前記触媒体としてタングステン、酸化トリウムを
含有するタングステン、モリブデン、白金、パラジウ
ム、シリコン、アルミナ、金属を付着したセラミック
ス、及び炭化ケイ素からなる群より選ばれた少なくとも
1種の材料を使用する、請求項11に記載した半導体装
置の製造方法。
12. A group consisting of silane as said silicon hydride, tungsten, thorium-containing tungsten, molybdenum, platinum, palladium, silicon, alumina, metal-adhered ceramics and silicon carbide as said catalyst. The method for manufacturing a semiconductor device according to claim 11, wherein at least one material selected from the group consisting of:
【請求項13】 前記絶縁基板としてガラス基板を使用
する、請求項10に記載した半導体装置の製造方法。
13. The method for manufacturing a semiconductor device according to claim 10, wherein a glass substrate is used as said insulating substrate.
【請求項14】 前記ガラス基板上に拡散バリア層を形
成し、この上に前記単結晶シリコン層を形成する、請求
項13に記載した半導体装置の製造方法。
14. The method according to claim 13, wherein a diffusion barrier layer is formed on the glass substrate, and the single crystal silicon layer is formed thereon.
【請求項15】 前記単結晶シリコン層の成膜時に3族
又は5族の不純物元素を混入させ、これによって前記単
結晶シリコン層の不純物種及び/又はその濃度を制御す
る、請求項8に記載した半導体装置の製造方法。
15. The method according to claim 8, wherein an impurity element belonging to Group 3 or Group 5 is mixed during the formation of the single crystal silicon layer, thereby controlling the impurity species and / or concentration of the single crystal silicon layer. Of manufacturing a semiconductor device.
JP18446798A 1998-06-30 1998-06-30 Method of forming single crystal silicon layer and manufacture of semiconductor device Pending JP2000021782A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP18446798A JP2000021782A (en) 1998-06-30 1998-06-30 Method of forming single crystal silicon layer and manufacture of semiconductor device
CNB998010499A CN1146020C (en) 1998-06-30 1999-06-30 Method of forming singl-crystal silicon layer and method of manufacturing semiconductor device
PCT/JP1999/003521 WO2000001004A1 (en) 1998-06-30 1999-06-30 Method of forming single-crystal silicon layer and method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18446798A JP2000021782A (en) 1998-06-30 1998-06-30 Method of forming single crystal silicon layer and manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JP2000021782A true JP2000021782A (en) 2000-01-21

Family

ID=16153674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18446798A Pending JP2000021782A (en) 1998-06-30 1998-06-30 Method of forming single crystal silicon layer and manufacture of semiconductor device

Country Status (3)

Country Link
JP (1) JP2000021782A (en)
CN (1) CN1146020C (en)
WO (1) WO2000001004A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259828A (en) * 2004-03-10 2005-09-22 Sony Corp Solid state imaging device and its manufacturing method
US7119365B2 (en) 2002-03-26 2006-10-10 Sharp Kabushiki Kaisha Semiconductor device and manufacturing method thereof, SOI substrate and display device using the same, and manufacturing method of the SOI substrate
CN100454521C (en) * 2002-03-26 2009-01-21 夏普公司 Semiconductor device and its fabricating method, soi substrate and its production method and display device
JP2010118675A (en) * 2010-01-12 2010-05-27 Sony Corp Solid-state image sensing device and production method of the same
CN104392922A (en) * 2014-11-26 2015-03-04 上海华力微电子有限公司 Preparation method of intercalated silicon carbide

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924101B (en) * 2010-08-06 2013-09-11 锐迪科科技有限公司 Structure of semiconductor passive device and making method thereof
CN109652770B (en) * 2018-11-29 2020-10-30 天津大学 Method for regulating vapor deposition metal film texture by using semiconductor substrate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340314A (en) * 1986-08-05 1988-02-20 Hiroshima Univ Manufacture of thin film by catalytic cvd method and device therefor
JPH01259526A (en) * 1988-04-11 1989-10-17 Matsushita Electron Corp Formation of single crystal silicon film on insulating film
JP3453214B2 (en) * 1995-03-15 2003-10-06 科学技術振興事業団 Method of manufacturing thin film transistor by catalytic CVD method and thin film transistor
JP3889071B2 (en) * 1995-08-04 2007-03-07 株式会社半導体エネルギー研究所 Crystalline semiconductor manufacturing method
JP2970499B2 (en) * 1995-10-30 1999-11-02 日本電気株式会社 Method for manufacturing semiconductor device
JP3858319B2 (en) * 1996-12-05 2006-12-13 ソニー株式会社 Quantum wire manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119365B2 (en) 2002-03-26 2006-10-10 Sharp Kabushiki Kaisha Semiconductor device and manufacturing method thereof, SOI substrate and display device using the same, and manufacturing method of the SOI substrate
CN100454521C (en) * 2002-03-26 2009-01-21 夏普公司 Semiconductor device and its fabricating method, soi substrate and its production method and display device
US7619250B2 (en) 2002-03-26 2009-11-17 Sharp Kabushiki Kaisha Semiconductor device and manufacturing method thereof, SOI substrate and display device using the same, and manufacturing method of the SOI substrate
US7884367B2 (en) 2002-03-26 2011-02-08 Sharp Kabushiki Kaisha Semiconductor device and manufacturing method thereof, SOI substrate and display device using the same, and manufacturing method of the SOI substrate
JP2005259828A (en) * 2004-03-10 2005-09-22 Sony Corp Solid state imaging device and its manufacturing method
JP2010118675A (en) * 2010-01-12 2010-05-27 Sony Corp Solid-state image sensing device and production method of the same
CN104392922A (en) * 2014-11-26 2015-03-04 上海华力微电子有限公司 Preparation method of intercalated silicon carbide

Also Published As

Publication number Publication date
CN1273693A (en) 2000-11-15
WO2000001004A1 (en) 2000-01-06
CN1146020C (en) 2004-04-14

Similar Documents

Publication Publication Date Title
US6399429B1 (en) Method of forming monocrystalline silicon layer, method for manufacturing semiconductor device, and semiconductor device
US4808546A (en) SOI process for forming a thin film transistor using solid phase epitaxy
JPH03292741A (en) Manufacture of thin film semiconductor device
JPH113860A (en) Manufacture of thin film transistor
JP2000021782A (en) Method of forming single crystal silicon layer and manufacture of semiconductor device
KR100317639B1 (en) Thin film transistor, liquid crystal display device and the method of fabricating the same
JPH0824184B2 (en) Method for manufacturing thin film transistor
EP0073603B1 (en) Polycrystalline thin-film transistor,integrated circuit including such transistors and a display device including such a circuit
JP3994299B2 (en) Manufacturing method of semiconductor device
JP3203652B2 (en) Semiconductor thin film manufacturing method
JP4178619B2 (en) Silicon layer manufacturing method and semiconductor device manufacturing method
JP3981782B2 (en) Manufacturing method of semiconductor device
JP3978874B2 (en) Manufacturing method of semiconductor device
JP2864623B2 (en) Method for manufacturing semiconductor device
JP3978873B2 (en) Manufacturing method of semiconductor device
Pangal et al. Hydrogen plasma-enhanced crystallization of amorphous silicon for low-temperature polycrystalline silicon TFT's
JP2867402B2 (en) Method for manufacturing semiconductor device
JP2000133592A (en) Manufacture of silicon layer and semiconductor device
JP2565192B2 (en) Method for manufacturing semiconductor device
JP2000183352A (en) Substrate having silicon layer and its manufacture, and semiconductor device and its manufacture
JP4281103B2 (en) Device simulation method for polycrystalline semiconductor device, method for designing polycrystalline semiconductor device, and method for manufacturing polycrystalline semiconductor device
JP2000228368A (en) Manufacture of substrate and manufacture of semiconductor device
KR0128522B1 (en) Low temperature poly-silicon film structure and transistor, and making method thereof
JP2001185732A (en) Manufacturing method of semiconductor thin film, and thin film transistor and its manufacturing method
KR20130115625A (en) Method for crystallizing amorphous silicon thin film and method for fabricating poly crystalline thin film transistor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A131 Notification of reasons for refusal

Effective date: 20060626

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20070125

A131 Notification of reasons for refusal

Effective date: 20070810

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

A02 Decision of refusal

Effective date: 20080807

Free format text: JAPANESE INTERMEDIATE CODE: A02