HUE031309T2 - Eljárás szemészeti lencsék öntésére szolgáló legalább egy szerszámfél lencseformázó felületének kezelésére - Google Patents

Eljárás szemészeti lencsék öntésére szolgáló legalább egy szerszámfél lencseformázó felületének kezelésére Download PDF

Info

Publication number
HUE031309T2
HUE031309T2 HUE12799413A HUE12799413A HUE031309T2 HU E031309 T2 HUE031309 T2 HU E031309T2 HU E12799413 A HUE12799413 A HU E12799413A HU E12799413 A HUE12799413 A HU E12799413A HU E031309 T2 HUE031309 T2 HU E031309T2
Authority
HU
Hungary
Prior art keywords
plasma
lens
argon
posit
vers vers
Prior art date
Application number
HUE12799413A
Other languages
English (en)
Inventor
Yasuo Matsuzawa
Harald Bothe
Original Assignee
Novartis Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novartis Ag filed Critical Novartis Ag
Publication of HUE031309T2 publication Critical patent/HUE031309T2/hu

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/70Maintenance
    • B29C33/72Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • B29D11/00125Auxiliary operations, e.g. removing oxygen from the mould, conveying moulds from a storage to the production line in an inert atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/0048Moulds for lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/70Maintenance
    • B29C33/72Cleaning
    • B29C2033/725Cleaning cleaning by plasma treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Eyeglasses (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

(12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: B29D 11IOO<200601> B29C 33I72<200601> 21.12.2016 Bulletin 2016/51 (86) International application number: (21) Application number: 12799413.5 PCT/US2012/066510 (22) Date of filing: 26.11.2012 (87) International publication number: WO 2013/081959 (06.06.2013 Gazette 2013/23)
(54) METHOD OF TREATING A LENS FORMING SURFACE OF AT LEAST ONE MOLD HALF FOR MOLDING OPHTHALMIC LENSES
VERFAHREN ZŰR BEHANDLUNG EINER OBERFLÁCHE ZUR FORMUNG EINER LINSE AUS MINDESTENS EINER GUSSFORMHÁLFTE ZUM GIESSEN VON KONTAKTLINSEN
PROCÉDÉ DE TRAITEMENT DE SURFACE FORMANT UNE LENTILLE D’AU MOINS UN DEMI-MOULE POUR MOULAGE DE LENTILLES OPHTALMIQUES (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB · MATSUZAWA, Yasuo GR HR HU IE IS IT LI LT LU LV NIC MK MT NL NO Roswell, GA 30076 (US) PL PT RO RS SE SI SK SM TR · BOTHE, Harald
Designated Extension States: 65527 Niedernhausen (DE)
BA ME
(74) Representative: Bohest AG (30) Priority: 29.11.2011 US 201161564443 P Holbeinstrasse 36-38 4051 Basel (CH) (43) Date of publication of application: 08.10.2014 Bulletin 2014/41 (56) References cited: EP-A1- 1 201 253 EP-A1- 1 407 866 (73) Proprietor: Novartis AG WO-A1-00/76738 US-A1-2003 163 196 4056 Basel (CH) US-B1- 6 841 008
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description
FIELD OF THE INVENTION
[0001] The present invention relates to a method of treating a lens forming surface of a least one mold half of a mold for molding an ophthalmic lens, in particular a contact lens, especially a soft contact lens.
BACKGROUND OF THE INVENTION
[0002] Mass production of ophthalmic lenses, in particular of contact lenses such as soft contact lenses, is usually performed in a fully automated process. Such process is described, for example, in WO 98/42497. In an embodiment of this fully automated process the contact lenses are manufactured with the aid of reusable molds comprising male and female mold halves. In a first processing station, a lens forming material is introduced into the female mold halves. A lens forming material known to be useful in such process is a prepolymer solution including prepolymers based on polyvinyl alcohols (PVA). The molds are then assembled in a subsequent processing station with the aid of corresponding male mold halves to form a mold cavity defining the shape of the contact lens to be formed. In a yet further subsequent processing station, the starting material within the mold cavity is polymerized and/or crosslinked by irradiation with ultraviolet radiation (UV-radiation) to form the soft contact lenses. Those portions of the lens forming material contained in the mold cavity which are not to be exposed to UV-radiation are shielded by a metal mask, which is arranged to surround the lens forming surface, so that the mask limits the space where the lens forming material enclosed between the male and female mold halves is exposed to UV-radiation. After exposure, the molds are opened and the so formed contact lenses are removed from the male or female mold halves, respectively, and are subsequently transported to further processing stations.
[0003] As has been outlined above, mass production of ophthalmic lenses includes the use of reusable molds or mold halves, respectively. The reusable molds or mold halves, or at least those parts thereof comprising the lens forming surfaces, are typically made from optically finished glass, for example from quartz glass. Such reusable molds are advantageous since they are transparent to UV-radiation, durable, can be easily cleaned after molding for subsequent re-use, etc. Therefore, they are particularly suitable for multiple use in mass production of ophthalmic lenses. However, depending on the lens forming material used, opening of the molds and subsequent removal of the contact lenses from the male or female mold half may turn out to be a task which is difficult to perform.
[0004] For example, when using lens forming materials for forming silicon hydrogel (SiHy) contact lenses, which are known to have excellent properties regarding oxygen permeability, wearing comfort, etc., considerably high forces are needed for opening the molds, that is to say for the separation of the male and female mold halves after the SiHy contact lens is formed by exposure to UV-radiation. Also, the adhesive forces between the lens forming surfaces and the formed SiHy contact lens may be very high. That is to say, even after opening of the molds the SiHy contact lens may strongly adhere to the lens forming surface of the male or female mold half, so that it is difficult to remove the contact lens from the mold half without damaging the lens (e.g. causing tears, starburst fractures, etc.). Accordingly, without further measures the result may be an increased number of damaged contact lenses which cannot be distributed to the consumers but must be disposed of. This may lead to an unacceptably high reject rate and may substantially affect the efficiency of the mass production process.
[0005] EP-0 686 469 and EP-0 740 997 suggest to apply a thin layer or film of a polymeric surfactant to an annular flange region extending about a mold surface of a plastic mold half. The thin layer of surfactant is supposed to facilitate removal of excess polymeric material (HEMA) which forms a ring extending externally of the mold cavity. With respect to SiHy contact lenses it has been suggested that the lens forming materials be provided with one or more mold release agents that should allow the more simple removal of the SiHy contact lens from the respective mold half, see WO 2009/085902. However, these mold release agents must be specifically adapted (tailored) to the respective lens forming material used to form the SiHy contact lens. In addition, even when using such mold release agents the above-mentioned problems related to the considerably high forces for separating the mold halves and related to the strong adhesive forces of the SiHy lens to the male or female mold half may continue to occur.
[0006] Methods for treating molds for forming lenses with plasma are disclosed in EP 1 407 866 A1 and US 2003/0163196 A1 [0007] It is therefore and object of the present invention to provide a remedy to the afore-mentioned problems of the prior art. In particular, a method shall be provided which facilitates separation of the mold halves and/or removal of the ophthalmic lens from the respective lens molding surface of the mold half to which the molded ophthalmic lens adheres, even in cases where the ophthalmic lenses are made from lens forming materials such as SiHy materials or other materials, which tend to strongly adhere to the lens molding surfaces of reusable glass molds or mold halves. Preferably, the method shall be capable of being fully integrated in automated continuous mass production processes of ophthalmic lenses, in particular contact lenses and especially soft contact lenses made from such materials.
SUMMARY OF THE INVENTION
[0008] In order to overcome the afore-mentioned disadvantages, the present invention according to claim 1 suggests a method of treating a lens forming surface of at least one mold half of a mold for molding an ophthalmic lens, in particular of the lens forming surface of a glass mold half for molding a contact lens, especially a soft contact lens. The method includes the steps of: providing a plasma under atmospheric pressure, and exposing the lens forming surface to the plasma under atmospheric pressure thereby hydrophilizing the lens forming surface without depositing any material on the lens forming surface.
[0009] By providing the plasma under atmospheric pressure and exposing the lens forming surface to the plasma under atmospheric pressure thereby hydrophilizing the exposed lens forming surface without depositing any material on the lens forming surface, surprisingly adhesion of the ophthalmic lens to the treated lens forming surface is at least very substantially reduced. Thus, ophthalmic lenses, and in particular SiHy contact lenses, may be produced which after demolding are free from any defects such as tears or starburst fractures. This is particularly surprising because it could not be expected that hydrophilization of a lens forming surface would result in a reduction of adhesive forces between such treated lens forming surface and SiHy contact lenses. Rather, one would have expected that the opposite treatment, namely a treatment of a lens forming surface rendering it more hydrophobic would result in the reduction of adhesive forces.
[0010] Due to the plasma treatment being accomplished under atmospheric pressure, it is capable of easily getting integrated into a mass production process for the manufacture of ophthalmic lenses, in particular into a mass production process for the manufacture of SiHy contact lenses. In particular, the method is advantageous in connection with reusable glass molds or mold halves, especially in connection with molds made of quartz glass.
[0011] In one embodiment of the method according to the invention, the mold comprises a male mold half and a female mold half, and the lens forming surfaces of the male mold half and of the female mold half are both exposed to the plasma. This embodiment is advantageous in that it facilitates removal of the lens from the respective mold half regardless of whether the lens adheres to the male mold half or to the female mold half.
[0012] In a further embodiment of the method according to the invention, the lens forming surfaces of the male mold half and of the female mold half are exposed to the plasma for different periods of time. This embodiment allows to preferably make the lens adhere to one of the two mold halves, for example to the male mold half, while at the same time maintaining the advantages of an easy demolding of the lens.
[0013] Alternatively, in accordance with another embodiment of the method according to the invention, the mold comprises a male mold half and a female mold half, and the lens forming surface of only one of the male and female mold halves is exposed to the plasma. This embodiment is also advantageous in that it makes the lens adhere to a predetermined one of the male and female mold halves (to that mold half not exposed to the plasma).
In particular in a fully automated continuous process for the mass production of contact lenses, this may be advantageous in that a step of transferring the lens from the male mold half to the female mold half or vice versa can be omitted due to the lens adhering to the predetermined (untreated) mold half. For example, upon treatment of only the female mold half the contact lenses, upon opening of the molds and subsequent demolding of the lenses, are all adhering only to the male mold half (~ 100 %), whereas without treatment of any of the two mold halves said proportion is usually only at about 90 % or less. The effort of collecting lenses from both mold halves without knowing to which mold half the lens actually adheres can thus be significantly reduced by the above described two preceding embodiments of the method according to the invention.
[0014] In accordance with a further embodiment of the method according to the invention, the plasma is a plasma of a gas selected from the group consisting of argon (Ar), helium (He), nitrogen (N2), oxygen (02), tetrafluoroethane (C2H2F4), air or a mixture of argon and oxygen (Ar/02) Ar/N2, Ar/air, Ar/C2H2F4, He/02, He/N2, He/air, He/C2H2F4, N2/02. Those gases or mixtures of gases, respectively, are easy in handling and do not require specific retaining measures nor special treatment ovens or the like additional equipment. Particularly suitable gases for the plasma used in the method according to the invention are argon (Ar) or a mixture of argon (Ar) and oxygen (02).
[0015] In accordance with a further method according to the invention, the lens forming surface is exposed to the plasma such that the water contact angle of the treated lens forming surface is smaller than 40°, preferably smaller than 20° and more preferably smaller than 10°. The water contact angle is an indicator of the hydrophilicity of the treated lens forming surface. It may be measured using a conventional contact angle goniometer. In a preferred embodiment of the invention the lens forming surface is exposed to the plasma such that the water contact angel is smaller than 30°. Even more preferably, the lens forming surface is exposed to the plasma such, that the water contact angle is smaller than 10°. In accordance with a further embodiment of the method according to the invention, the lens forming surface is exposed to the plasma for a time period not exceeding 20 seconds, preferably for a time period in the range of 0.1 to 20 seconds, and more preferably for a time period in the range of 1 to 20 seconds, in particular from 10 to 20 seconds. It is to be noted that the exposure time inter alia is dependent on the energy, the propagation rate and the geometry of the plasma. The exposure time has a direct influence on the reduction of the adhesive forces occurring upon opening the lens molds and upon demolding of the ophthalmic lens. While a very considerable reduction of the adhesive forces can be obtained already with exposure times of equal to or longer than 5 seconds, exposure times of equal to or longer than 10 seconds are preferred. However, while exposure times exceeding 20 seconds are also believed suitable, they do not appear to be practicable, in particular with respect to a possible integration of the plasma exposure into an automatic mass production process, in which the lens forming surfaces of one or both mold halves are exposed to plasma each time before a lens is produced.
[0016] According to the invention, the plasma is generated with the aid of a plasma torch comprising a plasma gun and a tubular plasma concentrator. The plasma concentrator sealingly (and non-conductively) surrounds the space between the plasma gun and the lens forming surface of the mold or mold half. Thus, the plasma is limited to the space surrounded by the plasma concentrator and the exposure can be limited to the lens forming surface. This constitutes a practical approach how the exposure of the lens forming surface of a mold half to plasma can be performed.
In particular, in accordance with a further embodiment of the method according to the invention, the mold half exposed to plasma is a male mold half which is provided with an annular mask made from metal, and this annular mask is arranged to surround the lens forming surface of the male mold half. The annular mask is shielded from exposure to the plasma by the plasma concentrator. The shielding of the annular mask prevents the mask from being negatively impacted by the plasma and in particular also prevents spark-over to occur (ion discharge).
[0017] As has already been mentioned, the inventive method is particularly advantageous in connection with a method of molding an ophthalmic lens, in particular a contact lens, especially a soft contact lens. Accordingly, another embodiment of the invention is directed to such method for molding.
[0018] This method comprises the steps of providing a mold comprising a male mold half and a female mold half, each of the male and female mold halves having a lens forming surface, introducing a lens forming material into male mold half or the female mold half, assembling the male and female mold halves, exposing the lens forming material arranged between the lens forming surfaces of the male and female mold halves to polymerizing and/or crosslinking energy to form the lens, disassembling the male and female mold halves to open the mold, and removing the lens from the male mold half or from the female mold half.
[0019] The lens forming surface either of both the male and female mold halves or of only one of the male and female mold halves is treated by a method as it has been described in the various embodiments above, prior to introducing the lens forming material into the male mold half or the female mold half. The advantages of such method for molding an ophthalmic lens have already been discussed above.
[0020] In one embodiment of the method for molding according to the invention, the mold halves are reusable and are reused to mold a plurality of ophthalmic lenses, and wherein the lens forming surface(s) of one of the mold halves or of both mold halves is exposed to the plasma again after molding a predetermined number of ophthalmic lenses. In this embodiment, the lens forming surfaces of one of the mold halves or of both mold halves are exposed to the plasma once and subsequently a predetermined number of lenses is produced.
[0021] In another embodiment of the method of molding according to the invention, the mold halves are reusable mold halves which are reused to mold a plurality of ophthalmic lenses, and wherein the lens forming surface(s) of one of the mold halves or of both mold halves is exposed to the plasma prior to molding of each ophthalmic lens. This embodiment is particularly advantageous in that the freshly treated lens forming surface is obtained each time before an ophthalmic lens is produced. Accordingly, this embodiment of the method allows for an easy integration in a fully automated production line for the mass manufacture of SiHy contact lenses in form of a plasma treatment station. Each time a contact lens has been produced and removed from the male mold half or the female mold half, the mold halves are cleaned and dried, and then the male and female mold halves arrive at the plasma treatment station, where the lens forming surface of one or both mold halves is/are exposed to the plasma before the next contact lens is produced using these mold halves.
[0022] As has already been discussed, while the method is generally advantageous for any type of material that strongly adheres to the lens forming surface, it is particularly advantageous for the production of a silicon hydrogel ophthalmic lens, in particular a silicon hydrogel soft contact lens.
[0023] It goes without saying, that in fully automated production lines for the mass production of ophthalmic lenses, in particular soft contact lenses, a plurality of molds or mold halves may be arranged in side by side configuration, in order to simultaneously manufacture a greater number of lenses. For an effective production, the lens forming surfaces of this plurality of molds or mold halves can be simultaneous exposed to a respective plasma.
BRIEF DESCRIPTION OF THE DRAWINGS
[0024] These and still further features and advantages of the invention will become apparent from the following description of an exemplary embodiment of the invention, reference being made to the schematic drawings which are not to scale, in which:
Fig. 1 shows an exemplary embodiment of an apparatus for carrying out the method according to the invention. DETAILED DESCRIPTION
[0025] The following description of an exemplary embodiment of the invention is for illustrative purposes only and is not intended to limit the scope of the invention.
[0026] Fig. 1 shows a male mold half 1 the convex lens forming surface 2 of which is exposed to an atmospheric plasma 10 in accordance with the method of the instant invention. Male mold half 1 is made of glass, preferably of quartz glass, and is provided with an annular mask 3 which is arranged to surround the lens forming surface 2. For example, mask 3 can be made from chromium or from any other suitable metal. A tubular plasma concentrator 4 is sealingly arranged on lens forming surface 2. A sealing gasket 5 is arranged to contact lens forming surface 2 such that the innermost borders of mask 3 are arranged radially outwardly of a contact region formed between sealing gasket 5 and lens forming surface 2. A plasma gun 6 is arranged generally above plasma concentrator 4. Plasma gun 6 has a plasma gas nozzle 7 that extends into plasma concentrator 4. Plasma gas nozzle 7 is provided with an orifice having a diameter of about 3 millimetres (mm), for example. In operation, the orifice of plasma gas nozzle 7 is arranged above an apex of lens forming surface 2 at a distance d not exceeding 30 mm but not smaller than 15 mm. Prior to exposure of lens forming surface 2 to the atmospheric plasma 10, the space within plasma concentrator 4 is flushed with a gas corresponding to that of the plasma. The flushing time may, for example amount from about 15 seconds to about 30 seconds.
[0027] Fig. 1 schematically shows the state when lens forming surface 2 is exposed to plasma 10 under atmospheric pressure. Sealing gasket 5, which is made of an electrically non-conductive material (as is plasma concentrator 4), delimits the radial extension of the plasma 10 and prevents mask 3 from being impacted by plasma 10. By means of the plasma treatment lens forming surface 2 is hydrophilized such that that after exposure the water contact angle is smaller than 40°. The water contact angle is an indicator of the hydrophilicity of the treated lens forming surface 2, and may be measured using a conventional contact angle goniometer. In a preferred embodiment of the method according to the invention the lens forming surface 2 is exposed to the atmospheric plasma 10 such, that after exposure the water contact angle of the treated lens forming surface is smaller than 20°. Even more preferably, lens forming surface 2 is exposed to the atmospheric plasma 10 such, that the water contact angle of the treated lens forming surface is smaller than 10°.
[0028] An automated continuous mass production processes for contact lenses, in particular for soft contact lenses made of SiHy material, into which the method of the invention can readily be integrated, is for example described in WO 2010/071691 from page 21, line 30 to page 23, line 3, as well as from page 5, line 35 to page 6, line 26, which is herein incorporated by reference.
EXAMPLES
[0029] In the following examples reusable molds are used comprising a female mold half made of glass (B-270, available from Schott, Germany) and a male mold half made of quartz glass (Lithosil-SQ1, available from Schott, Germany).
[0030] These molds are typically used in an automated continuous mass production process for manufacturing ophthalmic lenses, in particular for manufacturing soft contact lenses. Such a process is for example described in WO 2010/071691 from page 21, line 30 to page 23, line 3, as well as from page 5, line 35 to page 6, line 26, which is herein incorporated by reference. After each production cycle in a laboratory set up of said automated continuous manufacturing process, the mold halves are manually cleaned with a cleaning sponge soaked with 2-Propanol. After cleaning with the cleaning sponge the mold halves are rinsed with water and dried with pressurized air. After drying the concave lens forming surface on the female mold half and/or the convex lens forming surface on the male mold half, the respective mold halves are treated by exposure to a plasma under atmospheric pressure as shown in the table below.
[0031] The atmospheric plasma is generated by a Plasma Treatment System PT-2000P, available from Tri-Star Technologies, El Segundo, Ca, U.S.A. having a maximum internal plasma potential of 30 kV, a fundamental plasma frequency of 20 kHz and a typical power consumption of 50 W. The atmospheric plasma is generated with either Argon (Ar) being the plasma gas at a flow rate of 8501/h or with an Argon/Oxygen mixture (Ar/02) being the plasma gas at a flow rate of 850 1/h (Ar) and 1.7 1/h (02) or with an Argon/Tetrafluoroethane mixture (Ar/C2H2F4) being the plasma gas at a flow rate of 850 1/h (Ar) and 34 1/h (C2H2F4).
[0032] A tubular plasma concentrator is placed concentrically on the lens forming surface. The plasma concentrator is made from an electrically non-conductive material (e.g. Polymethylmethacrylate PMMA), and prohibits arching to a metal sleeve accommodating the female mold half. The plasma gun of the Plasma Treatment System is placed over the tubular plasma concentrator such that its plasma gas nozzle is arranged at a distance of about 16 mm from the lowermost point of the concave lens forming surface. The plasma gas nozzle has an orifice of a diameter of 3 mm. Before each plasma treatment the space inside the tubular plasma concentrator is flushed with the plasma gas for 20 seconds. The actual exposure time to the atmospheric plasma is given for each example in the table below.
[0033] As a direct indicator for the hydrophilicity achieved by the plasma treatment of the lens forming surface, the water contact angle is determined on glass slides after exposure to the same plasma for the same time period. The water contact angle (WCA) is determined using a conventional contact angle goniometer. A useful procedure for WCA measurement is for example described in WO 2010/071691 on page 25, lines 1-10, which is herein incorporated by reference.
[0034] For comparative purposes, a set of molds (cleaned and dried as described above) is coated with Aculon®, i.e. a highly hydrophobic coating commercially available from Aculon, Inc., 11839 Sorrento Valley Road, San Diego, CA 92121 (USA), which is provided to the lens forming surfaces of either the male mold half, or the female mold half or both the male and the female mold halves.
[0035] The molds with the plasma treated lens forming surfaces of the respective mold halves, as well as the set of mold halves coated with Aculon®, are used forthe production of silicon hydrogel (SiHy) contact lenses as described below.
[0036] The synthesis of the lens forming material (lens formulation) as well as the subsequent preparation of the SiHy contact lenses is generally described in example 10 on pages 54 and 55 of the International patent application with filing number WO 2012/016097, which is herein incorporated by reference.
For the present examples said lens formulation is modified in that the component "Brij 52" (at 1 % by weight) is replaced by additional 1-PrOH, i.e. the lens formulation then has the following composition: 71% by weight of prepolymer F2; 4% by weight of DMA; 1% by weight of TPO; 1% by weight of DMPC; and 23% by weight of 1-PrOH.
[0037] The lens forming material is introduced into the female mold halves and the molds are assembled using the corresponding male mold halves. UV crosslinking is then performed with a UV lamp (e.g. a Hamamatsu UV lamp manufactured by Hamamatsu K.K.) equipped with a 380 nm cut-off filter at an irradiation dose of 130 mJ/cm2, i.e. corresponding to an irradiation time of 26 seconds at an intensity of 5 mW/cm2.
[0038] The mold halves are separated by a Zwick tensile test machine at an opening speed of 50 mm/min for a determination of the Mold Separation Force (MSF). The Mold Separation Force (MSF) is the force which is needed to open the two mold halves (male and female mold halves) after formation of the contact lens. The MSF is measured by a tensile testing machine (Zwick 2.5). For that purpose, one mold-half is rigidly fixed and the other mold half is fixed in a double cardanic mounting to enable force-free alignment. The Relative Mold Separation Force is the ratio of the MSF for lenses produced with mold halves having lens forming surfaces which are exposed to a plasma treatment under atmospheric pressure (or an Aculon® coating), and the MSF needed for control lenses produced with mold halves without plasma treatment and without an Aculon® coating.
[0039] After opening the molds, the formed contact lenses are manually loosened from the mold halves, extracted, and coated with PAA (polyacrylic acid), packed with PBS (phosphate buffered saline) solution in polypropylene blister packages, sealed, autoclaved and inspected for lens defects. More specifically, the lenses are inspected for "starburst fractures", which are star shaped outbursts of the lens material, typically with a diameter of about 25 μ(η or more. The lens defect rate of "starburst fractures" is directly related to the adhesive forces of the lenses to the lens forming surfaces of the mold halves. The defects are determined by manual inspection using an Optispec instrument at a 13-fold magnification. The defect rate in % is determined as the ratio of the number of lenses having starburst fractures multiplied by 100 and divided by the total number of inspected lenses.
[0040] The results of the Examples are listed in the following table. For each Example the number of lenses prepared and tested is n > 6.
(continued)
[0041] As can be seen from the results, due to the exposure of one or both lens forming surfaces to atmospheric plasma of Argon (Ar) or a mixture of Argon and Oxygen (Ar/02) as plasma gases, the Mold Separation Forces (MSF) are drastically reduced.
For Tetrafluoroethane as the plasma gas, the MSF is reduced as well, but generally the effect is less pronounced.
[0042] At the same time, the plasma treatment in particular with an atmospheric plasma of Argon (Ar) ora mixture of Argon and Oxygen (Ar/02) as plasma gases, reduces the lens defects of the "starburst fractures" type to zero (or close to zero).
[0043] On the other hand, Aculon® coating, i.e. a highly hydrophobic coating, has no advantageous effect, neither regarding the MSF nor regarding the "starburst fractures".
[0044] Further examples (which are not represented in the table) for atmospheric plasma of Argon or a mixture of Ar/02 as plasma gases, with exposure to the plasma torch of only 10 seconds (and of only 5 seconds) also show a clear reduction in both, MSF and starburst fractures.
[0045] The invention has been explained with the aid of Fig. 1 by an exemplary plasma treatment of the convex lens forming surface of a male mold half. It is to be noted though, that the plasma treatment can alternatively be applied to the concave lens forming surface of the female mold half, as outlined in the examples. When the treatment method according to the invention is applied to the lens forming surface of the female mold half, prior to the exposure of the lens forming surface to the plasma, a tubular plasma concentrator is placed sealingly and concentrically on the lens forming surface, and a plasma gun is placed over said tubular plasma concentrator. The plasma gun has a plasma gas nozzle having an orifice which is arranged from a lowermost point of the concave lens forming surface at a distance not exceeding 30 mm but not smaller than 15 mm. Prior to the exposure of the lens forming surface on the female mold half to the plasma torch the space within the tubular plasma concentrator is flushed with a gas corresponding to the gas of the atmospheric plasma.
[0046] In a still further embodiment of the invention the plasma treatment may be applied to the lens forming surfaces on both, the male and the female mold half, respectively. By varying the treatment time the hydrophilicity of the treated lens forming surfaces can be controlled. Thus, e.g. by exposing the lens forming surface on the female mold half for a shorter time period than the plasma treatment of the lens forming surface on the male mold half or by plasma treatment of the lens forming surface on the male mold half only, it can be ascertained that after polymerization or crosslinking and after opening of the mold halves the formed ophthalmic lens remains attached to the lens forming surface on the female mold half, so that a step of transferring the lens from the male mold half to the female mold half can be omitted. From the female mold half the ophthalmic lens can be removed e.g. by water flushing or with a suitable gripper, as this is well-known in the art.
Claims 1. Method of treating of a lens forming surface (2) of at least one mold half (1) of a mold for molding an ophthalmic lens, in particular of the lens forming surface of a glass mold half for molding a contact lens, especially a soft contact lens, the method including the steps of: - providing a plasma (10) under atmospheric pressure, and - exposing the lens forming surface (2) to the plasma (10) under atmospheric pressure thereby hydrophilizing the lens forming surface (2) without depositing any material on the lens forming surface (2), wherein the plasma (10) is generated with the aid of a plasma torch comprising a plasma gun (6) and a tubular plasma concentrator (4), the plasma concentrator (4) sealingly surrounding the space between the plasma gun (6) and the lens forming surface (2) of the mold or mold half. 2. Method according to claim 1, wherein the mold comprises a male mold half and a female mold half, and wherein the lens forming surfaces of both the male mold half and the female mold half are exposed to the plasma. 3. Method according to claim 2, wherein the lens forming surfaces of the male mold half and of the female mold half are exposed to the plasma for different periods of time. 4. Method according to claim 1, wherein the mold comprises a male mold half and a female mold half, and wherein the lens forming surface of only one of the male and female mold halves is exposed to the plasma. 5. Method according to claim 4, wherein the lens forming surface of only the female mold halfis exposed to the plasma. 6. Method according to any one of the preceding claims, wherein the plasma is a plasma of a gas selected from the group consisting of argon, helium, nitrogen, oxygen, tetrafluoroethane, air, or a mixture of argon and oxygen, argon and nitrogen, argon and air, argon and tetrafluoroethane, helium and oxygen, helium and nitrogen, helium and air, helium and tetrafluoroethane, nitrogen and oxygen. 7. Method according to any one of the preceding claims, wherein the plasma is a plasma of argon or a plasma of a mixture of argon and oxygen. 8. Method according to any one of the preceding claims, wherein the lens forming surface is exposed to the plasma such that the water contact angle of the treated lens forming surface is smaller than 40°, preferably smaller than 20°, and more preferably smaller than 10°. 9. Method according to any one of the preceding claims, wherein the lens forming surface is exposed to the plasma for a time period not exceeding 20 seconds, preferably for a time period in the range of 5 to 20 seconds, and more preferably for a time period in the range of 10 to 20 seconds. 10. Method according to anyone of the preceding claims, wherein the mold half exposed to plasma is a male mold half (1) which is provided with an annular mask (3) made from metal, the annular mask (3) being arranged to surround the lens forming surface (2) of the male mold half (1), and wherein the annular mask (3) is shielded from exposure to the plasma by the plasma concentrator (4, 5). 11. Method of molding an ophthalmic lens, in particular a contact lens, especially a soft contact lens, the method comprising the steps of providing a mold comprising a male mold half and a female mold half, each of the male and female mold halves having a lens forming surface, introducing a lens forming material into the male mold half or the female mold half, assembling the male andfemale mold halves, exposing the lens forming material arranged between the lens forming surfaces of the male and female mold halves to polymerizing and/or crosslinking energy to form the ophthalmic lens, disassembling the male and female mold halves to open the mold, and removing the ophthalmic lens from the male mold half or from the female mold half, wherein the lens forming surface of either both the male and female mold halves or of only one of the male and female mold halves is treated by a method according to any one of the preceding claims prior to introducing the lens forming material into the male mold half or the female mold half. 12. Method according to claim 11, wherein the mold halves are reusable and are reused to mold a plurality of ophthalmic lenses, and wherein the lens forming surface(s) of one of the mold halves or of both mold halves is exposed to the plasma again after molding a predetermined number of ophthalmic lenses. 13. Method according to claim 11 .wherein the mold halves are reusable mold halves which are reused to mold a plurality of ophthalmic lenses, and wherein the lens forming surface(s) of one of the mold halves or of both mold halves is exposed to the plasma prior to molding of each ophthalmic lens. 14. Method according to anyone of claims 11 to 13, wherein said ophthalmic lens is a silicon hydrogel ophthalmic lens, in particular a silicon hydrogel soft contact lens.
Patentanspriiche 1. Verfahren zur Behandlung einer Linsenformungsfláche (2) wenigstens einer Formhálfte (1) einer Form zur Formung einer ophthalmischen Linse, insbesondere der Linsenformungsflache einer Glasformhalfte zur Formung einer Kon-taktlinse, speziell einer weichen Kontaktlinse, wobei das Verfahren folgende Schritte umfasst: - Bereitstellen eines Plasmas (10) unter Atmosphárendruck, und - die Linsenformungsflache (2) dem Plasma (10) unter Atmosphárendruck aussetzen, um dadurch die Linsenformungsflache (2) zu hydrophilisieren, ohne Material auf der Linsenformungsflache (2) abzulagern, wobei das Plasma (10) mit Hilfe eines Plasmabrenners erzeugtwird, dereine Plasmakanone (6) und einen röhren-förmigen Plasmakonzentrator(4) umfasst, wobei der Plasmakonzentrator (4) den Raumzwischen der Plasmakanone (6) und der Linsenbildungsfláche (2) der Form Oder Formhalfte dichtend umgibt. 2. Verfahren nach Anspruch 1, wobei die Form eine mannliche Formhalfte und eine weibliche Formhalfte umfasst, und wobei die Linsenformungsflachen sowohl der mannlichen Formhalfte als auch der weiblichen Formhalfte dem Plasma ausgesetzt werden. 3. Verfahren nach Anspruch 2, wobei die Linsenformungsflachen der mannlichen Formhalfte und derweiblichen Formhalfte dem Plasma für unterschiedliche Zeitspannen ausgesetzt werden. 4. Verfahren nach Anspruch 1, wobei die Form eine mannliche Formhalfte und eine weibliche Formhalfte umfasst, und wobei die Linsenformungsflache nur einer von der mannlichen und der weiblichen Formhalfte dem Plasma ausgesetzt wird. 5. Verfahren nach Anspruch 4, wobei die Linsenformungsflache nur derweiblichen Formhalfte dem Plasma ausgesetzt wird. 6. Verfahren nach einem der vorangehenden Anspriiche, wobei das Plasma ein Plasma eines Gases ist, das aus der Gruppé ausgewáhlt wird, die aus Argon, Helium, Stickstoff, Sauerstoff, Tetrafluorethan, Luft Oder einer Mischung von Argon und Sauerstoff, Argon und Stickstoff, Argon und Luft, Argon und Tetrafluorethan, Helium und Sauerstoff, Helium und Stickstoff, Helium und Luft, Helium und Tetrafluorethan, Stickstoff und Sauerstoff besteht. 7. Verfahren nach einem der vorangehenden Anspriiche, wobei das Plasma ein Argonplasma oder ein Plasma einer Mischung von Argon und Sauerstoff ist. 8. Verfahren nach einem der vorhergehenden Anspriiche, wobei die Linsenformungsflache dem Plasma derart ausgesetzt wird, dass der Wasserkontaktwinkel der behandelten Linsenbildungsfláche kleiner als 40°, vorzugsweise kleiner als 20°, und noch bevorzugter kleiner als 10° ist. 9. Verfahren nach einem der vorangehenden Anspriiche, wobei die Linsenformungsfláche dem Plasma fiir einer Zeit-spanne ausgesetzt wird, die 20 Sekunden nicht iiberschreitet, vorzugsweise fiir eine Zeitspanne im Bereich von 5 bis 20 Sekunden, und noch bevorzugter fiir eine Zeitspanne im Bereich von 10 bis 20 Sekunden. 10. Verfahren nach einem der vorangehenden Anspriiche, wobei die dem Plasma ausgesetzte Formhálfte eine mánn-liche Formhalfte (1) ist, die mit einer ringförmigen Maske (3) aus Metall versehen ist, wobei die ringförmige Maske (3) so angeordnet ist, dass sie die Linsenformungsfláche (2) der mánnlichen Formhálfte (1) umgibt, und wobei die ringförmige Maske (3)durchden Plasmakonzentrator(4,5)davorgeschütztwird,dem Plasma ausgesetztzu werden. 11. Verfahren zűr Formung einerophthalmischen Linse, insbesondere einer Kontaktlinse, speziell einer weichen Kon-taktlinse, wobei das Verfahren die Schritte umfasst:
Bereitstellen einer Form mit einer mánnlichen Formhálfte und einer weiblichen Formhálfte, wobei die mánnliche und die weibliche Formhálfte jeweils eine Linsenformungsfláche aufweist,
Einbringen eines Linsenbildungsmaterials in die mánnliche Formhálfte oderdie weibliche Formhálfte, Zusammensetzen dér mánnlichen und dér weiblichen Formhálfte, das Aussetzen des zwischen den Linsenformungsfláchen dér mánnlichen und dér weiblichen Formhálfte an-geordenten Linsenbildungsmaterials zu einer polymerisierenden und/oder vernetzenden Energie zum Bilden dér ophthalmischen Linse, Auseinandernehmen dér mánnlichen und dér weiblichen Formhálfte, urn die Form zu öffnen, und
Entnehmen dér ophthalmischen Linse aus dér mánnlichen Formhálfte oder dér weiblichen Formhálfte, wobei die Linsenformungsfláche entweder sowohl dér mánnlichen als auch dér weiblichen Formhálfte oder nur einer von dér mánnlichen und dér weiblichen Formhálfte durch ein Verfahren nach einem dér vorangehenden Ansprüche behandelt wird vor Einbringen des Linsenbildungsmaterials in die mánnliche Formhálfte oder die weibliche Formhálfte. 12. Verfahren nach Anspruch 11, wobei die Formhálften wieder verwendbar sind und wieder verwendet werden, um eine Vielzahl ophthalmischer Linsen zuformen, und wobei die eine oderdie mehreren Linsenformungsfláchen einer dér Formhálften oder beider Formhálften nach dér Formung einer vorgegebenen Anzahl ophthalmischer Linsen erneutdem Plasma ausgesetzt werden. 13. Verfahren nach Anspruch 11, wobei die Formhálften wieder verwendbare Formhálften sind, die wieder verwendet werden, um eine Vielzahl ophthalmischer Linsen zu formen, und wobei die eine oderdie mehreren Linsenformungsfláchen einer dér Formhálften oder beider Formhálften vor dem Formen jeder ophthalmischen Linse dem Plasma ausgesetzt werden. 14. Verfahren nach einem dér Ansprüche 11 bis 13, wobei die ophthalmische Linse eine ophthalmische Linse aus Siliziumhydrogel ist, insbesondere eine weiche Kontaktlinse aus Siliziumhydrogel.
Revendications 1. Procédé pour traiter une surface formant une lentille (2) d’au moins une moitié de moule (1) d’un moule pour le moulage d’une lentille ophtalmique, en particulier la surface formant une lentille d’une moitié de moule en verre pour mouler une lentille de contact, en particulier une lentille de contact souple, le procédé comprenant les étapes: - disposer un plasma (10) sous pression atmosphérique ; et - exposer la surface formant une lentille (2) au plasma (10) sous la pression atmosphérique, en rendant ainsi hydrophile la surface formant une lentille (2) sans déposer de quelconque matériau sur la surface formant une lentille (2), dans lequel le plasma (10) est généré á I’aide d’une torche á plasma comprenant un canon á plasma (6) et un concentrateur de plasma tubulaire (4), le concentrateur de plasma (4) entourant en le rendant étanche I’espace entre le canon á plasma (6) et la surface formant une lentille (2) du moule ou de la moitié de moule. 2. Procédé selon la revendication 1, dans lequel le moule comprend une moitié de moule male et une moitié de moule femelle, et dans lequel les surfaces formant une lentille tant de la moitié de moule male que de la moitié de moule femelle sont exposées au plasma. 3. Procédé selon la revendication 2, dans lequel les surfaces formant une lentille de la moitié de moule male et de la moitié de moule femelle sont exposées au plasma pendant des périodes de temps différentes. 4. Procédé selon la revendication 1, dans lequel le moule comprend une moitié de moule male et une moitié de moule femelle, et dans lequel la surface formant une lentille d’une seule des moitiés de moule male et femelle est exposée au plasma. 5. Procédé selon la revendication 4, dans lequel la surface formant une lentille de seulement la moitié de moule femelle est exposée au plasma. 6. Procédé selon l’une quelconque des revendications précédentes, dans lequel le plasma est un plasma d’un gaz choisi dans le groupe constitué par l’argon, l’hélium, l’azote, l’oxygéne, le tétrafluoroéthyléne, l’air, ou un mélange d’argon et d’oxygéne, d’argon et d’azote, d’argon et d’air, d’argon et de tétrafluoroéthane, d’hélium et d’oxygéne, d’hélium et d’azote, d’hélium et d’air, d’hélium etde tétrafluoroéthane, d’azote et d’oxygéne. 7. Procédé selon l’une quelconque des revendications précédentes, dans lequel le plasma est un plasma d’argon ou un plasma d’un mélange d’argon et d’oxygéne. 8. Procédé selon l’une quelconque des revendications précédentes, dans lequel la surface formant une lentille est exposée au plasma de fagon que l’angle de contact avec l’eau de la surface formant une lentille traitée sóit inférieur á 40°, de préférence inférieur á 20°, et encore de préférence inférieur á 10°. 9. Procédé selon l’une quelconque des revendications précédentes, dans lequel la surface formant une lentille est exposée au plasma pendant une période de temps ne dépassant pás 20 secondes, de préférence pendant une période de temps située dans la plage allant de 5 á 20 secondes, et encore de préférence pendant une période de temps située dans la plage allant de 10 á 20 secondes. 10. Procédé selon l’une quelconque des revendications précédentes, dans lequel la moitié de moule exposée au plasma est une moitié de moule male (1) qui estfournie d’un masque annulaire (3) fait en métái, le masque annulaire (3) étant agencé de maniére á entourer la surface formant une lentille (2) de la moitié de moule máié (1), etdans lequel le masque annulaire (3) est protégé contre une exposition au plasma par le concentrateur de plasma (4, 5). 11. Procédé pour mouler une lentille ophtalmique, en particulier une lentille de contact, tout spécialement une lentille de contact souple, le procédé comprenant les étapes disposer d’un moule comprenant une moitié de moule máié et une moitié de moule femelle, chacune des moitiés de moule male et femelle ayant une surface formant une lentille, introduire un matériau formant une lentille dans la moitié de moule male ou la moitié de moule femelle, assembler les moitiés de moule male et femelle, exposer le matériau formant une lentille agencé entre les surfaces formant une lentille des moitiés de moule male et femelle á une énergie de polymérisation et/ou de réticulation pour former la lentille ophtalmique, désassembler les moitiés de moule male et femelle pour ouvrir le moule, et enlever la lentille ophtalmique de la moitié de moule máié ou de la moitié de moule femelle, dans lequel la surface formant une lentille sóit des deux moitiés de moule máié et femelle sóit de seulement l’une des moitiés de moule máié et femelle est traitée par un procédé selon l’une quelconque des revendications précédentes avant d’introduire le matériau formant une lentille dans la moitié de moule máié ou la moitié de moule femelle. 12. Procédé selon la revendication 11, dans lequel les moitiés de moule sont réutilisables et sont réutilisées pour mouler une pluralité de lentille ophtalmiques, et dans lequel la ou les surfaces formant une lentille de l’une des moitiés de moule ou des deux moitiés de moule sont de nouveau exposées au plasma aprés avoir moulu un nombre prédé-terminé de lentilles ophtalmiques. 13. Procédé selon la revendication 11, dans lequel les moitiés de moule sont des moitiés de moule réutilisables qui sont réutilisées pour mouler une pluralité de lentilles ophtalmiques, et dans lequel la ou les surfaces formant une lentille de l’une des moitiés de moule ou des deux moitiés de moule sont exposées au plasma avant de mouler chaque lentille ophtalmique. 14. Procédé selon l’une quelconque des revendications 11 á 13, dans lequel ladite lentille ophtalmique est une lentille ophtalmique en hydrogel de silicone, en particulier une lentille de contact souple en hydrogel de silicone.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description • WO 9842497 A [0002] · EP 1407866 A1 [0006] • EP 0686469 A [0005] · US 20030163196 A1 [0006] • EP 0740997 A [0005] · WO 2010071691 A [0028] [0030] [0033] • WO 2009085902 A [0005] · WO 2012016097 A [0036]

Claims (3)

  1. -á^et^^úö'. ^ös-siysi&amp;'iö -:^^;;^κμ^ΑΜ;^ϊϊ lifejiisr^ígí-: tokmAb) t'dX.ud énük kkzfj..ísí?^: '§saém$AiMgé%^má0· Ί ,t 4tus ' vim *t' uKHOtttcvám vt *eáh' '\mn»*'> kíg&amp;hbbegssk NvV^ons»^!.) Uncvnonmuo-ft>líil«ícn«>li {lu különben kontaktlencse, speciálisa lágy koní&amp;küeocse öntésire szolgáló ilvő$ \ru mend'd iO'kácfomw' VhUevnck hnecieseuy &amp;<«. hams során m nsymm* osoruju f mmd (Ho kenuik km\ e$ >- a lenm*. vriikko ll'hUvk* ('A> *btns*ve*t inootms· plaztoanak (Kb lftv\c e tok <* tonna/» U*·· Jök-tct {2} 8 teneselonn&amp;zó fdöletre U) történd «nyagteválft&amp;fttás nőikül iüdrohúxáliük< shói n pbrm u (10* pantiesz»iv p 'deist td e* Alakú plasss^ásesec^^t· (4) snngSbktrfegfekr * >oege ·, ‘ see^eio hkv ' u v. mvmU' ti 't \* a piru vtsx.se p "M* i'' ok" : IsnesefiíisÉgő íftÍÖ lein :|:2| közölt ístüígidiütíiclfen kitől v .: Ϊ igetísg* ni N/vi* ni d más, dí"! a s/ew un apa s'srs/mmdel e? ama saers* «nnl'det UíUiima/v. üíuinü * a pi&amp;sműnA m·' 0 a síp t „-zo's/ándok sínné u anya vers/émtel tenvsdossisaeo időidet kitesszük, Ί \ ; um v posit vrom djur < Adu ara s v o- ívl os ,d o\\a ',essmmtet iuiesomomro idit-leiét a piát·inának eifeso üemmmion ál testük ki. A. Az 1, igénypont szdMndptás, ahol a */«&amp;t» apu s/eu:t/SnUétábés apya szerszámfelct issrmlmísz, r^ssámfé·I OS áAnpJp SzemKémlel leüósctódisi^ itóyptutn^l-psplíiüü ű:K egyikét tesszük ,k.i. ' \ t£vM>p >" \au«t v If* Jml'pe te ik'v'· íput n toy a sAremlel tencscioremum ««tömtél tesszük ki.
  2. 6. Az didi igénypontok'hfeselylksíszetlni ekd&amp;V ahol a pisámét egy az argon, hé kuni, nitrogén, oxigén, Mmtkuiiveián, levegő, «svábbá argon es oxigén, argon és nitrogén, argon is levegő, argóit és tetrurluor-et&amp;n, hélium és msgem héUnsit ét; nitrogén, hélium es ievegó. heteim es tetralluor-eum, va-; *' no nuíeppüs cs ·χιρθη kssouxe , komi'..sOpes Ί*»ί \niu*zkm pa/ {.skvmesahtuf k»vntk k'ne f \f ei'-.-a vxo>pooi-m Mr.\'k iU- s/eunt* eink nk alsói a planm-U .upon plasnn'paknn! sags 3ídV;'! s> oxigén keverékének piazmctiakem hoztuk létre, 8 \ -.. <ro igen porton ' re , m s ett ' d'' '> ahol a Lum tio-svaks dmu t pL* na i *κ o s " ntódon tesszük ki, hogy &amp; kezek Icsicaetbnnazi ieiüiel vidm vonulko&amp;aüui neitvesitéss |>orsniisz«.ige 4Ö';"í!,>I kisebb, elösty ősén -mii kístk'b, meg ekui>''Ss'hheü tO'-mU ksssíim 9 As ekisö igénypontok bármelyike arerűüi olj&amp;ráv, ahol &amp; ieneseiormásö felületet a plaa-mánsk lég-feljebb 20 másodpercig, előnyösen 5-20 msssodpereig, még elboyöxebK-s', pedig 10-50 másodpercig tesszük. ki. ,i \ e O'» V í\ 'v\ö liv'kNUi' i ' ',|| ek\, i'áx mnbd tfeÍM^|y®1':'«M&amp;;m«s2kkaí új ellátott apa sMtmmtsl; O keresi, λ ^u»« dakn nuagk * í ? «u *$v* x *d < Oa >>-v»3i> m&amp;v .uviv'(„'vt 5\j.'v!k de ve to' vh\ >>b e‘t m**. rátör(4, 5) s gyűrő aláirts maszké; i3} a plazmától árnyékolj»;
  3. 11. Híjánk szemészek lencse, kiHOn^ssn kenlskUesxse, speciálisan lágy kontakt lenese öntésére, a/, ellátna sooü; apa s/eí^rza'ofdei és anya s/es s/imíelea tartalmazó s/«rs^^f|:;^|fiío#l!^ks mso vet <,,i«'*'! v ' ff : * , s sx ó k x *m »> N *e\ t f gv ?e 1 ml\K «' mv szerszám félbe kneseképzö anyagot jutí&amp;nmk na apa ás anya szerszámlelet összeszereljük, a szemészeti lenese k-alakitáNáhoa aa spa is aa apya saersaátnfel közöli .djenáezett kmcseképzö anyagól pels-sneiizíd.» esvagy le> Pálosit" energiának k -\,- ok ke a e«; \an m nosohe, az ,»p.j es a a mvu sxemzáiírfbiet széíszereijtik, továbbá &amp; szemészeit .leneséi na apa szerszeíeddhoi vagy az anya szemzámféibói eltávolítják, u, >1 n knesekep'V myuipuek ,*>' epe ore» v\tm*elbc \ae> ** mpa s.x;-omnlelhe jettake-at me.mkvoe". ez aga es na. my* a szerszámfél mindegyikének, vagy az apa és az anya szerszámiéiés&amp;g&amp;k «falnék' knvso ii* /i ebde s a\ e e \p vo\ > o"NiO xtenm t v s\ ^ n > \^ e mvk t alá < s ngo<^ 'ί,ο Ί 1 a v\í<\ " v! \i "Oi'ciK,íO,iws\eiK'- ; lenesek eekavl^n^ak mlosue n i le '* ív npA k> Ί t e dm? a, egy 4 'e'n mmioi - 'go m edves szerszámiei kmesekcpao feli! letel dóié megis&amp;tár;>,!oíi szánté szemészek lenese önleséi követően a plazmának ólra kitesszük. ·, < ό nvx fi e n,i-> eV' ιλο n'k \ tebb -. > v ÍN viszi' -. -. s e se kel szemészeti lencsék sokaságának önlesére újra felhasználunk, továbbá a nos az egyik ,m-« száraid vagy mindkét szers/áínfé! ieecscképző (dőléséi minden egyen '.zeokvzen lencse endesCf nsegelnxbec: :klles«zlil: a: :plazfnábak; |g; gg 11-0. igénypomok bárrsOiylké szcrasil eprás, ábol á eiiiésgelj lenese azibeíUípdpöropk áKenkisaeü lenese, különösen az.ilfclsMS-bkirepel lágy kenlnkflenesp.
HUE12799413A 2011-11-29 2012-11-26 Eljárás szemészeti lencsék öntésére szolgáló legalább egy szerszámfél lencseformázó felületének kezelésére HUE031309T2 (hu)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201161564443P 2011-11-29 2011-11-29

Publications (1)

Publication Number Publication Date
HUE031309T2 true HUE031309T2 (hu) 2017-07-28

Family

ID=47351982

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE12799413A HUE031309T2 (hu) 2011-11-29 2012-11-26 Eljárás szemészeti lencsék öntésére szolgáló legalább egy szerszámfél lencseformázó felületének kezelésére

Country Status (7)

Country Link
US (1) US9358735B2 (hu)
EP (1) EP2785513B1 (hu)
CN (1) CN103958167B (hu)
HU (1) HUE031309T2 (hu)
MY (1) MY164738A (hu)
SG (1) SG11201402675RA (hu)
WO (1) WO2013081959A1 (hu)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7628810B2 (en) 2003-05-28 2009-12-08 Acufocus, Inc. Mask configured to maintain nutrient transport without producing visible diffraction patterns
WO2010114620A1 (en) * 2009-04-03 2010-10-07 Certusview Technologies, Llc Methods, apparatus, and systems for documenting and reporting events via geo-referenced electronic drawings
US10004593B2 (en) 2009-08-13 2018-06-26 Acufocus, Inc. Intraocular lens with elastic mask
BR112012008083A2 (pt) 2009-08-13 2016-04-19 Acufocus Inc lentes e implantes intraoculares ocultos
EP2785296B1 (en) 2011-12-02 2018-06-20 AcuFocus, Inc. Ocular mask having selective spectral transmission
US9395468B2 (en) 2012-08-27 2016-07-19 Ocular Dynamics, Llc Contact lens with a hydrophilic layer
US9427922B2 (en) * 2013-03-14 2016-08-30 Acufocus, Inc. Process for manufacturing an intraocular lens with an embedded mask
EP3570093B1 (en) 2013-11-15 2021-09-15 Tangible Science, Inc. Contact lens with a hydrophilic layer
US10525170B2 (en) 2014-12-09 2020-01-07 Tangible Science, Llc Medical device coating with a biocompatible layer
EP3108973B1 (en) * 2015-06-22 2021-10-20 Alcon Inc. Method and device for cleaning a molding surface of a reusable lens mold
US10687935B2 (en) 2015-10-05 2020-06-23 Acufocus, Inc. Methods of molding intraocular lenses
JP7055747B2 (ja) 2015-11-24 2022-04-18 アキュフォーカス・インコーポレーテッド 焦点深度の拡張を伴うトーリック小開口眼内レンズ
EP3213908B1 (en) * 2016-03-04 2018-10-24 Novartis AG Method for the determination of residual moisture on and/or within a lens forming surface
TWI602686B (zh) * 2016-05-18 2017-10-21 Sg Biomedical Co Ltd Surface treatment method of molding die and mask device
DE102017119032A1 (de) * 2017-08-21 2019-02-21 Saeta Gmbh & Co. Kg Verfahren und Vorrichtung zum Aufbringen einer Dichtungsmasse auf den Boden und die Innenseite einer ringförmigen Wand eines Deckels für Behälter
CN110228152A (zh) * 2018-03-05 2019-09-13 亨泰光学股份有限公司 应用电浆表面改质处理制备具亲水官能基的隐形眼镜的方法
US11364110B2 (en) 2018-05-09 2022-06-21 Acufocus, Inc. Intraocular implant with removable optic
EP3832386B1 (en) * 2018-07-27 2024-01-24 Kyocera Corporation Vehicle-mounted camera and mobile body
US11759980B2 (en) * 2019-10-31 2023-09-19 Alcon Inc. Method for removing lens forming material deposited on a lens forming surface

Family Cites Families (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA92121A (en) 1904-11-07 1905-03-14 William Waid Paddock Pressure filter
US2936222A (en) 1958-02-05 1960-05-10 Rollin E Stevens Covered wire triangles for heating crucibles in chemical analysis
US3070573A (en) 1958-08-18 1962-12-25 Dow Corning Method of grafting olefins onto organosilicon compounds by the use of ozone
US3008920A (en) 1959-04-27 1961-11-14 Dow Chemical Co Method of inhibiting homopolymerization in graft copolymers with copper salts
US3854982A (en) 1972-05-12 1974-12-17 Hydroplastics Inc Method for preparing hydrophilic polymer grafts including irradiation
US4032440A (en) 1975-11-18 1977-06-28 The United States Of America As Represented By The Secretary Of The Interior Semipermeable membrane
US4159292A (en) 1977-05-25 1979-06-26 Neefe Optical Lab. Inc. Method of controlling the release of a cast plastic lens from a resinous lens mold
US4137550A (en) 1977-11-18 1979-01-30 Rca Corporation Video disc with a dielectric layer formed from acetylene and nitrogen
US4312575A (en) 1979-09-18 1982-01-26 Peyman Gholam A Soft corneal contact lens with tightly cross-linked polymer coating and method of making same
US4311573A (en) 1980-10-08 1982-01-19 American Hospital Supply Corporation Process for graft copolymerization of a pre-formed substrate
US4589964A (en) 1980-10-08 1986-05-20 American Hospital Supply Corporation Process for graft copolymerization of a pre-formed substrate
US4553975A (en) 1981-08-12 1985-11-19 Ciba Geigy Corporation Tinted contact lenses and a method for their preparation
US4468229A (en) 1981-08-12 1984-08-28 Ciba-Geigy Corporation Tinted contact lenses and a method for their preparation with reactive dyes
US4559059A (en) 1981-08-12 1985-12-17 Ciba-Geigy Corporation Tinted contact lenses and a method for their preparation
US4444711A (en) 1981-12-21 1984-04-24 Husky Injection Molding Systems Ltd. Method of operating a two-shot injection-molding machine
US4460534A (en) 1982-09-07 1984-07-17 International Business Machines Corporation Two-shot injection molding
CS243055B1 (en) * 1983-05-23 1986-05-15 Otto Wichterle Contact lenses production equipment
US4692347A (en) 1983-07-07 1987-09-08 The Curators Of The University Of Missouri Method of interiorly coating tubing
CS239282B1 (en) 1983-08-17 1986-01-16 Otto Wichterle Preparation method of objects made from hydrophilic gelsnamely contact lences by polymer casting
US4503133A (en) 1983-12-22 1985-03-05 Union Carbide Corporation Leak resistant galvanic cell and process for the production thereof
US4501805A (en) 1983-12-22 1985-02-26 Union Carbide Corporation Galvanic cell having a saturated fluorocarbon plasma-treated sealing gasket
JPS60163901A (ja) 1984-02-04 1985-08-26 Japan Synthetic Rubber Co Ltd プラズマ重合処理方法
US4749457A (en) 1984-02-21 1988-06-07 The Curators Of The University Of Missouri Precipitation of colloidal materials from aqueous systems by electrochemical release of metallic flocculating agents and dynamic bimetallic cell for use therein
US4664936A (en) 1985-01-30 1987-05-12 Shin-Etsu Chemical Co., Ltd. Aromatic polyamide fiber-based composite prepreg
US4752426A (en) 1985-06-27 1988-06-21 Yoshito Ikada Process for manufacture of plastic resinous tubes
US4761436A (en) 1985-10-21 1988-08-02 Shin-Etsu Chemical Co., Ltd. Contact lens comprising triorganovinylsilane polymers
GB8601967D0 (en) 1986-01-28 1986-03-05 Coopervision Optics Manufacturing contact lenses
US5753730A (en) 1986-12-15 1998-05-19 Mitsui Toatsu Chemicals, Inc. Plastic lenses having a high-refractive index, process for the preparation thereof and casting polymerization process for preparing sulfur-containing urethane resin lens and lens prepared thereby
US5594088A (en) 1986-12-15 1997-01-14 Mitsui Toatsu Chemicals, Inc. Plastic lenses having a high-refractive index, process for the preparation thereof and casting polymerization process for preparing sulfur containing urethane resin lens and lens prepared thereby
US4929707A (en) 1988-02-16 1990-05-29 Mitsui Toatsu Chemicals, Inc. Polyurethane base lens resin, plastic lens comprising the resin and preparation method of the lens
AU618578B2 (en) 1988-02-17 1992-01-02 Mitsui Chemicals, Inc. Resin for plastic lens having high-refractive index, lens comprising the resin, and method for preparation of the lens
US4946923A (en) 1988-02-18 1990-08-07 Mitsui Toatsu Chemicals, Inc. S-alkyl thiocarbamate base resin, plastic lens comprising the resin, and process for making the lens
CA1316315C (en) 1988-02-22 1993-04-20 Nobuyuki Kajimoto Highly-refractive plastic lens and process for making the lens
US4994298A (en) 1988-06-07 1991-02-19 Biogold Inc. Method of making a biocompatible prosthesis
ES2096846T3 (es) 1988-11-02 1997-03-16 British Tech Group Moldeo y envase de lentes de contacto.
US4948485A (en) 1988-11-23 1990-08-14 Plasmacarb Inc. Cascade arc plasma torch and a process for plasma polymerization
US5176938A (en) 1988-11-23 1993-01-05 Plasmacarb Inc. Process for surface treatment of pulverulent material
US4968532A (en) 1989-01-13 1990-11-06 Ciba-Geigy Corporation Process for graft copolymerization on surfaces of preformed substrates to modify surface properties
US4980196A (en) 1990-02-14 1990-12-25 E. I. Du Pont De Nemours And Company Method of coating steel substrate using low temperature plasma processes and priming
AU633749B2 (en) 1990-08-02 1993-02-04 Novartis Ag Contact lens casting
US5158718A (en) 1990-08-02 1992-10-27 Pilkington Visioncare, Inc. Contact lens casting
US5270082A (en) 1991-04-15 1993-12-14 Lin Tyau Jeen Organic vapor deposition process for corrosion protection of metal substrates
US5267390A (en) 1991-04-15 1993-12-07 Yang Duck J Organic vapor deposition process for corrosion protection of prestamped metal substrates
US5264161A (en) 1991-09-05 1993-11-23 Bausch & Lomb Incorporated Method of using surfactants as contact lens processing aids
US5182000A (en) 1991-11-12 1993-01-26 E. I. Du Pont De Nemours And Company Method of coating metal using low temperature plasma and electrodeposition
US5805264A (en) 1992-06-09 1998-09-08 Ciba Vision Corporation Process for graft polymerization on surfaces of preformed substates to modify surface properties
US5278384A (en) 1992-12-03 1994-01-11 Plasmacarb Inc. Apparatus and process for the treatment of powder particles for modifying the surface properties of the individual particles
US5326505A (en) 1992-12-21 1994-07-05 Johnson & Johnson Vision Products, Inc. Method for treating an ophthalmic lens mold
US6800225B1 (en) 1994-07-14 2004-10-05 Novartis Ag Process and device for the manufacture of mouldings and mouldings manufactured in accordance with that process
TW272976B (hu) 1993-08-06 1996-03-21 Ciba Geigy Ag
US5894002A (en) 1993-12-13 1999-04-13 Ciba Vision Corporation Process and apparatus for the manufacture of a contact lens
CA2139019A1 (en) 1993-12-28 1995-06-29 Jonathan Patric Adams Method and apparatus for treating an ophthalmic lens mold
US5542978A (en) 1994-06-10 1996-08-06 Johnson & Johnson Vision Products, Inc. Apparatus for applying a surfactant to mold surfaces
US5837314A (en) 1994-06-10 1998-11-17 Johnson & Johnson Vision Products, Inc. Method and apparatus for applying a surfactant to mold surfaces
US5843346A (en) 1994-06-30 1998-12-01 Polymer Technology Corporation Method of cast molding contact lenses
US5690865A (en) 1995-03-31 1997-11-25 Johnson & Johnson Vision Products, Inc. Mold material with additives
US5874127A (en) 1995-08-16 1999-02-23 Ciba Vision Corporation Method and apparatus for gaseous treatment
JP3763484B2 (ja) 1995-08-31 2006-04-05 東レ・ダウコーニング株式会社 ヒドロシリル化反応用微粒子触媒およびこれを含有してなる加熱硬化性シリコーン組成物
ID29303A (id) 1997-03-25 2001-08-16 Novartis Ag Proses-proses cetakan
TW429327B (en) 1997-10-21 2001-04-11 Novartis Ag Single mould alignment
DE60001457T2 (de) 1999-06-11 2003-09-11 Bausch & Lomb Linsenformwerkzeuge mit schutzschicht zur herstellung von kontaktlinsen und intraokularlinsen
US6281468B1 (en) 2000-03-13 2001-08-28 Essilor International, Compagnie Generale D'optique Method and apparatus for producing a marking on an ophthalmic lens having a low surface energy
US6551531B1 (en) 2000-03-22 2003-04-22 Johnson & Johnson Vision Care, Inc. Molds for making ophthalmic devices
US6841008B1 (en) * 2000-07-17 2005-01-11 Cypress Semiconductor Corporation Method for cleaning plasma etch chamber structures
US6881269B2 (en) 2000-08-17 2005-04-19 Novartis Ag Lens plasma coating system
US6610350B2 (en) * 2000-10-05 2003-08-26 Menicon Co., Ltd. Method of modifying ophthalmic lens surface by plasma generated at atmospheric pressure
TWI261057B (en) 2001-03-07 2006-09-01 Novartis Ag Process for the manufacture of moldings
EP1245372B1 (en) 2001-03-26 2011-09-28 Novartis AG Mould and method for the production of ophthalmic lenses
US6858248B2 (en) 2001-05-30 2005-02-22 Novartis Ag Method for applying a coating to a medical device
JP2003011139A (ja) 2001-06-27 2003-01-15 Menicon Co Ltd コンタクトレンズ用成形型およびそれを用いたコンタクトレンズの製造方法
US7059335B2 (en) 2002-01-31 2006-06-13 Novartis Ag Process for treating moulds or mould halves for the production of ophthalmic lenses
WO2004016405A1 (en) 2002-08-16 2004-02-26 Johnson & Johnson Vision Care, Inc. Molds for producing contact lenses
US7384590B2 (en) 2002-12-17 2008-06-10 Novartis Ag System and method for curing polymeric moldings
US7387759B2 (en) 2002-12-17 2008-06-17 Novartis Ag System and method for curing polymeric moldings having a masking collar
KR101565624B1 (ko) 2007-12-20 2015-11-03 노파르티스 아게 콘택트 렌즈의 제조 방법
BRPI0923037A2 (pt) 2008-12-18 2015-12-15 Novartis Ag método para produzir lentes de contato de hidrogel de silicone
MX349540B (es) 2010-07-30 2017-08-02 Novartis Ag * Prepolímeros de polisiloxano anfifílicos y usos de los mismos.
CN103237651B (zh) 2010-12-01 2016-02-10 诺瓦提斯公司 其上具有常压等离子体涂层的镜片模具

Also Published As

Publication number Publication date
EP2785513B1 (en) 2016-12-21
SG11201402675RA (en) 2014-10-30
WO2013081959A1 (en) 2013-06-06
CN103958167A (zh) 2014-07-30
US9358735B2 (en) 2016-06-07
MY164738A (en) 2018-01-30
EP2785513A1 (en) 2014-10-08
CN103958167B (zh) 2017-03-08
US20130147072A1 (en) 2013-06-13

Similar Documents

Publication Publication Date Title
HUE031309T2 (hu) Eljárás szemészeti lencsék öntésére szolgáló legalább egy szerszámfél lencseformázó felületének kezelésére
DE69816666T2 (de) Verfahren und Vorrichtung zur Herstellung von Formteilen, insbesondere von optischen Linsen
JP5236653B2 (ja) 眼用レンズ製造の間の余分な重合体リングの除去
AU701336B2 (en) Method for transiently wetting lens molds in production of contact lens blanks to reduce lens hole defects
US7143990B2 (en) Apparatus and method for the production of ophthalmic lenses
EP0785854B1 (en) Method for treating plastic mold pieces
DE3040221A1 (de) Verfahren zur herstellung von nachgehaerteten glaesernbzw. linsen und glaeser bzw. linsen, hergestellt aus teilweise gehaerteten kunststoffen
Hassanin et al. Fabrication of hybrid nanostructured arrays using a PDMS/PDMS replication process
JP2003508251A (ja) プラスチック鋳型
US20190263070A1 (en) Lattice base structures for additive manufacturing
HUE029592T2 (hu) Szilikon-hidrogél kontaktlencsék
US8944795B2 (en) Mold release sheet
JP6163640B2 (ja) 眼用レンズの製造方法及び眼用レンズ
KR20010104297A (ko) 산소에 대한 노출이 조절된 콘택트 렌즈의 제조방법
TW201909934A (zh) 人工角膜支架、人工角膜基質及其製作方法
EP2512787B1 (en) Method and device for removing excess lens forming material from a molded contact lens
TW201534460A (zh) 用於處理隱形眼鏡模具之方法
JP2019209593A (ja) 樹脂製成形物
JP2010524015A (ja) 眼用レンズを解放および水和する方法
Budlayan et al. Natural features, wettability, and optical diffraction patterns on an elastomeric replica of a superhydrophobic leaf derived via soft lithography
Junkin et al. Adjustable nanomanufacturing using template-guided self-assembly
Jelinek et al. Probing local adhesion: A miniaturized multi-photon lithography design demonstrated on silanized vs. untreated surfaces
Elek Design and Fabrication of Hierarchical Three-Dimensional Porous Nanostructures using Template-Directed Self-Assembly of Colloidal Particles.
SU956291A1 (ru) Способ изготовлени эластичных колец и форма дл его осуществлени
JPH028034A (ja) 光重合性組成物を注型材料として用いるタイヤ接地面の型取り方法