FR3022249A1 - Procede de controle de la periode d'un film de copolymere a blocs nanostructue a base de styrene et de methacrylate de methyle, et film de copolymere a blocs nanostructure - Google Patents

Procede de controle de la periode d'un film de copolymere a blocs nanostructue a base de styrene et de methacrylate de methyle, et film de copolymere a blocs nanostructure Download PDF

Info

Publication number
FR3022249A1
FR3022249A1 FR1455294A FR1455294A FR3022249A1 FR 3022249 A1 FR3022249 A1 FR 3022249A1 FR 1455294 A FR1455294 A FR 1455294A FR 1455294 A FR1455294 A FR 1455294A FR 3022249 A1 FR3022249 A1 FR 3022249A1
Authority
FR
France
Prior art keywords
block copolymer
block
mol
styrene
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1455294A
Other languages
English (en)
Other versions
FR3022249B1 (fr
Inventor
Christophe Navarro
Celia Nicolet
Xavier Chevalier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Priority to FR1455294A priority Critical patent/FR3022249B1/fr
Priority to TW104116658A priority patent/TWI567127B/zh
Priority to KR1020177000762A priority patent/KR101922353B1/ko
Priority to CN201580042917.0A priority patent/CN106661171A/zh
Priority to US15/317,803 priority patent/US9976053B2/en
Priority to SG11201610321UA priority patent/SG11201610321UA/en
Priority to EP15732825.3A priority patent/EP3155028A1/fr
Priority to PCT/FR2015/051430 priority patent/WO2015189495A1/fr
Priority to JP2016572506A priority patent/JP6449342B2/ja
Publication of FR3022249A1 publication Critical patent/FR3022249A1/fr
Application granted granted Critical
Publication of FR3022249B1 publication Critical patent/FR3022249B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D153/00Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/026Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising acrylic acid, methacrylic acid or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Graft Or Block Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

L'invention concerne un film de copolymère à blocs nano-structuré en nano-domaines , obtenu à partir d'un copolymère à blocs de base présentant une masse moléculaire supérieure à 50kg/mol, et de préférence supérieure à 100kg/mol et inférieure à 250kg/mol, et dont au moins un bloc comprend du styrène et au moins un autre bloc comprend du méthacrylate de méthyle. Ce film est caractérisé en ce que le bloc à base de styrène est formé par un copolymère de styrène et de diphényle éthylène (DPE).

Description

PROCEDE DE CONTROLE DE LA PERIODE D'UN FILM DE COPOLYMERE A BLOCS NANOSTRUCTURE A BASE DE STYRENE, ET DE METHACRYLATE DE METHYLE, ET FILM DE COPOLYMERE A BLOCS NANOSTRUCTURE. 'Domaine de l'invention" [0001] La présente invention concerne le domaine des copolymères à blocs nanostructurés présentant des nano-domaines orientés selon une direction particulière. [0002] Plus particulièrement, l'invention se rapporte à un film de copolymère à blocs à base de styrène, et de méthacrylate de méthyle présentant une ségrégation de phase élevée et une période élevée, de préférence supérieure à 30nm et de manière encore plus préférée supérieure à 50nm et inférieure à 100nm. L'invention se rapporte en outre à un procédé de contrôle de la période d'un film de copolymère à blocs nanostructuré, à partir d'un copolymère à blocs de base comprenant du styrène et du méthacrylate de méthyle. [0003] Par période, notée Lo dans la suite de la description, on entend la distance minimale séparant deux domaines voisins de même composition chimique, séparés par un domaine de composition chimique différente. fArt antérieur' [0004] Le développement des nanotechnologies a permis de miniaturiser constamment les produits du domaine de la microélectronique et les systèmes micro-électromécaniques (MEMS) notamment. Aujourd'hui, les techniques de lithographie classiques ne permettent plus de répondre à ces besoins constants de miniaturisation, car elles ne permettent pas de réaliser des structures avec des dimensions inférieures à 60nm. [0005] II a donc fallu adapter les techniques de lithographie et créer des masques de gravure qui permettent de créer des motifs de plus en plus petits avec une grande résolution. Avec les copolymères à blocs il est possible de structurer l'arrangement des blocs constitutifs des copolymères, par ségrégation de phase entre les blocs formant ainsi des nano-domaines, à des échelles inférieures à 50nm. Du fait de cette capacité à se nano-structurer, l'utilisation des copolymères à blocs dans les domaines de l'électronique ou de l'optoélectronique est maintenant bien connue. Ref :0414-ARK50-AM3282 [0006] Parmi les masques étudiés pour réaliser la nano-lithographie, les films de copolymères à blocs, notamment à base de Polystyrène-b-Poly(méthacrylate de méthyle), noté ci-après PS-b-PMMA, apparaissent comme des solutions très prometteuses car ils permettent de créer des motifs avec une bonne résolution. Pour pouvoir utiliser un tel film de copolymère à blocs comme masque de gravure, un bloc du copolymère doit être sélectivement retiré pour créer un film poreux du bloc résiduel, dont les motifs peuvent être ultérieurement transférés par gravure à une couche sous-jacente. Concernant le film de PS-b-PMMA, le PMMA (Poly(méthacrylate de méthyle)), est usuellement retiré de manière sélective pour 10 créer un masque de PS (Polystyrène) résiduel. [0007] Pour créer de tels masques, les nano-domaines doivent être orientés perpendiculairement à la surface de la couche sous-jacente. Une telle structuration des domaines nécessite des conditions particulières telles que la préparation de la surface de la couche sous-jacente, mais aussi la composition du copolymère à blocs. 15 [0008] Un facteur important est le facteur de ségrégation de phase, encore dénommé paramètre d'interaction de Flory-Huggins et noté « x ». Ce paramètre permet en effet de contrôler la taille des nano-domaines. Plus particulièrement, il définit la tendance des blocs du copolymère à blocs à se séparer en nana-domaines. Ainsi, le produit xN, du degré de polymérisation N, et du paramètre de Flory-Huggins x, donne une 20 indication sur la compatibilité de deux blocs et s'ils peuvent se séparer. Par exemple, un copolymère dibloc de composition strictement symétrique se sépare en micro-domaines si le produit xN est supérieur à 10,49. Si ce produit xN est inférieur à 10,49, les blocs se mélangent et la séparation de phase n'est pas observée à la température d'observation. 25 [0009] Du fait des besoins constants de miniaturisation, on cherche à accroitre ce degré de séparation de phase, afin de réaliser des masques de nana-lithographie permettant d'obtenir de très grandes résolutions, typiquement inférieures à 20nm, et de préférence inférieures à lOnm, tout en conservant certaines propriétés de base du copolymère à blocs, telles que la température de transition vitreuse Tg élevée, la 30 bonne tenue en température du copolymère à blocs, ou une dépolymérisation du PMMA sous traitement UV lorsque le copolymère à blocs est un PS-b-PMMA, etc... [0010] Dans Macromolecules, 2008, 41, 9948, Y. Zhao et al ont estimé le paramètre de Flory-Huggins pour un copolymère à blocs de PS-b-PMMA. Le paramètre de Ref :0414-ARK50 / AM3282 Flory-Huggins x obéit à la relation suivante : x = a+b/T, où les valeurs a et b sont des valeurs spécifiques constantes dépendantes de la nature des blocs du copolymère et T est la température du traitement thermique appliqué au copolymère à blocs pour lui permettre de s'organiser, c'est-à-dire pour obtenir une séparation de phase des domaines, une orientation des domaines et une réduction du nombre de défauts. Plus particulièrement, les valeurs a et b représentent respectivement les contributions entropique et enthalpique. Ainsi, pour un copolymère à blocs de PS-b-PMMA, le facteur de ségrégation de phase obéit à la relation suivante : x = 0,0282 + 4,46/T. [0011]Cette faible valeur du paramètre d'interaction de Flory-Huggins limite donc 10 l'intérêt des copolymères à blocs à base de PS et PMMA, pour la réalisation de structures à très grandes résolutions. [0012] Pour contourner ce problème, M.D. Rodwogin et al, ACS Nano, 2010, 4, 725, ont démontré que l'on peut changer la nature chimique des blocs du copolymère à blocs afin d'accroitre très fortement le paramètre de Flory-Huggins x et d'obtenir une 15 morphologie souhaitée avec une très haute résolution, c'est-à-dire dont la taille des nano-domaines est inférieure à 10nm. Ces résultats ont notamment été démontré pour un copolymère triblocs de PLA-b-PDMS-b-PLA (poly(acide lactique) - b/ocpoly(diméthylsiloxane)-b/oc- poly(acide lactique). [0013] H. Takahashi et al, Macromolecules, 2012, 45, 6253, ont étudié l'influence du 20 paramètre d'interaction de Flory-Huggins x sur les cinétiques d'assemblage du copolymère et de diminution des défauts dans le copolymère. Ils ont notamment démontré que lorsque ce paramètre x devient trop important, on assiste généralement à un ralentissement important de la cinétique d'assemblage, de la cinétique de ségrégation de phases entrainant également un ralentissement de la 25 cinétique de diminution des défauts au moment de l'organisation des domaines. [0014] Les brevets US 8304493 et US 8450418 décrivent un procédé pour modifier des copolymères à blocs de base, dont le paramètre d'interaction x est élevé, ainsi que des copolymères à blocs modifiés. Ces copolymères à blocs sont modifiés pour réduire la valeur du paramètre d'interaction de Flory-Huggins x, de manière telle que 30 le copolymère à blocs puisse se structurer en nano-domaines de petites tailles avec une cinétique moins lente. Plus particulièrement, ces documents cherchent à diminuer le paramètre de Flory-Huggins x d'un copolymère à blocs de PS-b-PDMS (polystyrène -bloc- poly(diméthylsiloxane)) dont les nano-domaines sont orientés Ref :0414-ARK50/ AM3282 parallèlement à la surface sur laquelle ils sont déposés. Les cinétiques d'assemblage des copolymères à blocs décrits dans ces documents restent cependant encore très lentes puisqu'elles peuvent durer quelques heures, typiquement jusqu'à 4 heures. [0015] L'impact de la modification d'au moins un bloc d'un copolymère à blocs de 5 base de type PS-b-PMMA sur le paramètre x et sur la cinétique de structuration du copolymère à blocs en nano-domaines a été démontré. Cependant, deux autres paramètres sont également importants. Ce sont d'une part les ratios entre les blocs qui permettent de contrôler la forme des nano-domaines (arrangement sous forme de lamelles, cylindres, sphères..) et d'autre part la masse moléculaire de chaque bloc qui 10 permet de contrôler la dimension et l'espacement des blocs, c'est - à - dire la période du copolymère à blocs, notée Lo. Or, lorsque l'on souhaite contrôler la période du copolymère à blocs, pour que celle-ci soit élevée et supérieure à une valeur seuil de 30nm par exemple, de grosses chaines polymères possédant un degré de polymérisation N élevé, sont nécessaires pour former de gros blocs et donc des 15 périodes importantes. [0016] Par conséquent, lorsque l'on souhaite contrôler la période d'un film de copolymère à blocs, il faut contrôler la longueur des chaines polymères constitutives de chacun des blocs. A titre d'exemple, pour pouvoir réaliser un film de copolymère à blocs de PS-b-PMMA présentant une grande période Lo, par exemple supérieure à 20 30nm, et de manière encore plus préférée supérieure à 50nm et inférieure à 100nm les masses moléculaire de chacun des blocs doivent être supérieure à 15kg/mol. [0017]Or, un tel copolymère à blocs, dont les blocs sont formés par de gros polymères présente alors un produit xN très élevé et sa nano-structuration nécessite beaucoup d'énergie. En effet, le recuit nécessaire à l'organisation des blocs doit être 25 mené à des températures très élevées supérieures ou égales à 230°C, en général de l'ordre de 250°C pendant un temps relativement long -en général de 2 à 4 heures, qui favorise alors la dégradation du polymère et l'apparition de défauts dans le copolymère à blocs final. [0018] Par conséquent, pour contrôler la période Lo d'un copolymère à blocs nano30 structuré de sorte qu'elle soit élevée, typiquement supérieure à 30nm et de manière encore plus préférée supérieure à 50nm et inférieure à 100nm, il faut contrôler la modulation du produit xN. Il faut en effet que le paramètre de Flory-Huggins x soit Ref :0414-ARK50 / AM3282 suffisant pour permettre une ségrégation de phase optimale entre les blocs tout en ayant un degré de polymérisation N élevé pour permettre l'obtention d'une période élevée, de préférence supérieure à 30nm. [0019] Le document WO 2013/019679 décrit la possibilité de modifier au moins un 5 des blocs d'un copolymère à bloc de base. La modification de l'un au moins des blocs du copolymère à blocs influe sur les énergies de surface et interfaciales des nanodomaines et implique une modification de la morphologie et de l'orientation des nanodomaines dans le copolymère à blocs. Ce document reste silencieux quant aux cinétiques d'organisation du copolymère à bocs modifié et ne cherche pas à 10 augmenter la période du copolymère à blocs nano-structuré. [0020] Du fait que les copolymères à blocs PS-b-PMMA permettent de réaliser des masques de nano-lithographie offrant une bonne résolution, la demanderesse a cherché une solution pour modifier ce type de copolymère à blocs afin de pouvoir contrôler sa période, et notamment obtenir une période qui soit supérieure à une 15 valeur seuil de 30nm, et de manière encore plus préférée supérieure à 50nm et inférieure à 100nm, avec des cinétiques de nano-structuration rapides et une défectivité significativement réduite. [0021] Plus particulièrement, la demanderesse a cherché une solution pour modifier un tel copolymère à blocs de type PS-b-PMMA, de manière à pouvoir augmenter sa 20 période Lo, sans apparition de défauts dus à une température de nano-structuration trop élevée et/ou à une cinétique de nano-structuration trop lente. 'Problème technique.' [0022] L'invention a donc pour but de remédier à au moins un des inconvénients de l'art antérieur. L'invention vise notamment à proposer un procédé de contrôle de la 25 période de nano-structuration en nano-domaines d'un film de copolymère à blocs à partir d'un copolymère à blocs de base présentant une masse moléculaire supérieure à 50kg/mol, et de préférence supérieure à 100kg/mol et inférieure à 250kg/mol, et dont au moins un bloc contient du polystyrène, et au moins un bloc contient du méthacrylate de méthyle. 30 [0023] Pour cela, le copolymère à blocs est modifié de manière à ce que le produit xN soit supérieur ou égal à 7 et de préférence supérieur ou égal à 10 pour permettre une bonne ségrégation de phase entre les nano-domaines et l'obtention d'une période Lo Ref :0414-ARK50/ AM3282 élevée, de préférence supérieure à 30nm et de manière encore plus préférée supérieure à 50nm et inférieure à 100nm. Le procédé de nano-structuration doit en outre permettre une organisation très rapide du copolymère à blocs avec des cinétiques d'organisation de l'ordre de 1 à quelques minutes et ce, à une température dite température de recuit, inférieure à la température de dégradation du polymère. [0024] L'invention vise également à proposer un film de copolymère à blocs nanostructuré en nano-domaines, obtenu à partir d'un copolymère à bloc de base, présentant une masse moléculaire supérieure à 50kg/mol, et de préférence supérieure à 100kg/mol et inférieure à 250kg/mol,et dont au moins un bloc comprend du styrène et au moins un bloc comprend du méthacrylate de méthyle, ledit copolymère étant modifié afin de se nano-structurer avec une période élevée, avec une cinétique d'organisation des blocs rapide et/ou à une température inférieure à la température de dégradation du copolymère. Brève description de l'invention "[ [0025] De manière surprenante, il a été découvert qu'un film de copolymère à blocs nano-structuré en nano-domaines, obtenu à partir d'un copolymère à blocs de base présentant une masse moléculaire supérieure à 50kg/mol, et de préférence supérieure à 100kg/mol et inférieure à 250kg/mol, et dont au moins un bloc comprend du styrène et au moins un autre bloc comprend du méthacrylate de méthyle, ledit film de copolymère à blocs étant caractérisé en ce que le bloc à base de styrène est formé par un copolymère de styrène et de diphényle éthylène (DPE), permet d'obtenir une valeur xN dans la gamme désirée et permet l'obtention de nanodomaines avec une période Lo élevée, typiquement supérieure à 30nm, tout en permettant une organisation à une température inférieure à celle requise pour organiser les blocs du copolymère à blocs de base, c'est-à-dire non modifié de PS-bPMMA, et en conservant des cinétiques d'organisation rapides avec une défectivité réduite par rapport à celle obtenue avec ledit copolymère à blocs de base de PS-bPMMA. [0026] L'invention se rapporte en outre à un procédé de contrôle de la période de 30 nano-structuration en nano-domaines d'un film de copolymère à blocs, à partir d'un copolymère à blocs de base présentant une masse moléculaire supérieure à 50kg/mol, et de préférence supérieure à 100kg/mol et inférieure à 250kg/mol, et dont Ref :0414-ARK50 / AM3282 au moins un bloc comprend du styrène et au moins un autre bloc comprend du méthacrylate de méthyle, ledit procédé étant caractérisé en ce qu'il comprend les étapes suivantes : -synthèse dudit copolymère à blocs en incorporant, dans le bloc dudit copolymère à blocs de base contenant du styrène, un ou plusieurs co-monomère de diphényle- éthylène (DPE) , - application d'une solution dudit copolymère à blocs sous forme d'un film sur une surface, - évaporation du solvant de la solution et recuit à ladite température déterminée. [0027] L'invention se rapporte enfin à un masque de nano-lithographie obtenu à partir d'un film dudit copolymère à blocs décrit ci-dessus, déposé sur une surface à graver conformément au procédé ci-dessus, ledit film de copolymère comprenant des nanodomaines orientés perpendiculairement à la surface à graver et présentant une période Lo supérieure à 30nm, et de manière encore plus préférée supérieure à 50nm et inférieure à 100nm. [0028] D'autres particularités et avantages de l'invention apparaitront à la lecture de la description faite à titre d'exemple illustratif et non limitatif, en référence aux Figures annexées, qui représentent : - la Figure 1, un schéma d'un exemple d'installation de polymérisation pouvant être utilisée, - la Figure 2, des photos, prises au microscope électronique à balayage, de différents échantillons de copolymère à blocs nano-structurés, de composition différentes et modifiés ou non, la Figure 3, des photos, prises au microscope électronique à balayage, de plusieurs échantillons d'un même copolymère à blocs modifié présentant 2 épaisseurs différentes et ayant subi 2 traitements thermiques différents, - la Figure 4, des photos, prises au microscope électronique à balayage, de deux échantillons d'un même copolymère à blocs modifié ayant subi un traitement thermique pendant 2 durées différentes. 'Description détaillée de l'invention' [0029] Le terme « monomère » tel qu'utilisé se rapporte à une molécule qui peut subir une polymérisation. Ref :0414-ARK50/ AM3282 [0030] Le terme « polymérisation » tel qu'utilisé se rapporte au procédé de transformation d'un monomère ou d'un mélange de monomères en un polymère. [0031] On entend par « bloc copolymère » ou « bloc », un polymère regroupant plusieurs unités monomères de plusieurs types, ou d'un même type. [0032]On entend par« copolymère à blocs », un polymère comprenant au moins deux blocs tels que définit ci-dessus, les deux blocs étant différents l'un de l'autre et présentant un paramètre de ségrégation de phase tel qu'ils ne sont pas miscibles et se séparent en nano-domaines. [0033] Le terme « miscibilité » utilisé ci-dessus s'entend de la capacité de deux 10 composés à se mélanger totalement pour former une phase homogène. [0034] Dans la description, lorsque l'on parle de la masse moléculaire du copolymère à blocs, il s'agit de masse moléculaire au pic Mp, mesurée par chromatographie d'exclusion stérique (SEC). [0035] Le principe de l'invention consiste à modifier la structure chimique d'un 15 copolymère à blocs de base PS-b-PMMA, tout en gardant des motifs styrène et méthacrylate de méthyle dans chaque bloc, par introduction de diphényléthylène, aussi noté par la suite DPE, lors de la réaction de polymérisation du bloc à base de polystyrène. Cette introduction de diphényléthylène dans le bloc à base de polystyrène induit une modification de la mobilité de la structure du copolymère à 20 blocs de P(S-co-DPE)-b-PMMA obtenu. [0036] Grâce à cette incorporation de DPE dans le bloc à base de Styrène, il a été observé qu'à longueur de chaine identique et donc à degré de polymérisation N identique, le temps de recuit et la température de recuit du copolymère à blocs de P(S-co-DPE)-b-PMMA selon l'invention sont inférieurs au temps et à la température 25 de recuit du copolymère à blocs initial, non modifié, de PS-b-PMMA. [0037] Jusqu'à présent, il n'était pas possible, à longueur de chaine identique, de nano-structurer rapidement un copolymère à blocs non modifié de PS-b-PMMA présentant une période élevée, par exemple supérieure à 30nm, sans apparition de défaut, voire même sans destruction, alors que cela devient possible avec le 30 copolymère modifié par l'introduction de DPE dans le bloc PS. [0038] La longueur de chaîne du copolymère à blocs obtenu P(S-co-DPE)-b-PMMA sera choisie suivant la période Lo de nano-structuration souhaitée. L'incorporation de DPE dans le bloc PS permet de moduler graduellement la valeur du produit xN pour Ref :0414-ARK50 / AM3282 le film de copolymère à blocs nana-structuré. Pour déterminer le taux de DPE à incorporer dans le bloc PS, on pourra s'aider d'abaques permettant de connaitre la relation entre la teneur en DPE dans le copolymère à blocs et le produit xN d'une part, et entre le degré de polymérisation N et la période Lo d'autre part. [0039] Cette modification de la structure du copolymère à blocs selon l'invention permet de moduler le produit xN autour d'une valeur élevée, typiquement supérieure à 10, afin de permettre une nano-structuration du copolymère à blocs en nanodomaines, avec une période LO supérieure à 30nm et de manière encore plus préférée supérieure à 50nm et inférieure à 100nm, tout en permettant une organisation rapide des blocs (de 1 à quelques minutes) à une température de recuit réduite par rapport à un polymère non modifié de PS-b-PMMA de longueur de chaine identique. La réduction des temps et température de recuit est donc particulièrement avantageuse pour pouvoir réaliser des copolymères à blocs nana-structurés avec une période élevée et sans défauts. [0040] Le nombre n de blocs du copolymère à blocs est de préférence inférieur ou égal à 7 et, de façon encore plus préférée 2n53. Dans la présente invention, même si on ne se limite pas au nombre de blocs du copolymère à blocs, on considérera surtout la synthèse de copolymères triblocs ou di-blocs, et de préférence de copolymères di-blocs. Dans le cas d'un copolymère à blocs comportant un nombre impair de blocs, les deux blocs aux extrémités du copolymère à blocs pourront être soit le copolymère de styrène diphényle éthylène P(S-co-DPE) ou le polyméthacrylate de méthyle PMMA. [0041] Etant donné les problèmes engendrés lorsqu'un polymère présente un paramètre x trop élevé, entrainant notamment un ralentissement des cinétiques d'organisation et de réduction de défauts, le produit xN du copolymère à blocs modifié doit être suffisamment important pour obtenir une ségrégation de phase optimum, mais pas trop élevé pour ne pas entrainer des problèmes de cinétique d'organisation et de réduction de défauts. Pour obtenir une organisation rapide du copolymère à bloc et une période de nano-structuration supérieure à 30nm, le produit xN doit de préférence être compris dans la gamme de valeurs suivantes : xN 5500, et de façon encore plus préférée xN 5200. Du fait de la définition physique du paramètre d'interaction x = (a+b/T), où « a » et « b » représentent une contribution entropique et enthalpique respectivement, et T la température (en degrés Kelvin), Ref :0414-ARK50/ AM3282 cela revient à écrire que le copolymère à blocs doit de manière préférentielle satisfaire la relation 105N (a+b/T)5200. T représente la température d'organisation du copolymère à blocs, c'est-à-dire la température de recuit à laquelle on obtient une séparation de phase entre les différents blocs, une orientation des nano-domaines obtenus et une réduction du nombre de défauts. Grâce à l'introduction de DPE dans le bloc PS du copolymère à blocs, les contributions entropiques et enthalpique du copolymère à blocs sont modifiées. Cette modification des contributions influe sur la température et la cinétique de recuit permettant l'organisation des blocs. Du fait de cette modification, la température T peut alors être abaissée par rapport à la température de recuit d'un copolymère de base, c'est à -dire non modifié de PS-bPMMA. Elle est de préférence inférieure ou égale à 230°C, et de manière encore plus préférée, elle est inférieure ou égale à 210°C. Une telle température de recuit est inférieure à la température de dégradation du copolymère à blocs et évite par conséquent l'apparition d'une concentration très élevée de défauts dans le copolymère à blocs modifié, au moment de son organisation en nana-domaines, et qui peut parfois entrainer une destruction du polymère. [0042] De manière avantageuse, la modification de squelette du copolymère à blocs ne perturbe pas les propriétés liées à la chimie du copolymère à blocs de base, c'est-à-dire non modifié de PS-b-PMMA. Ainsi, le copolymère à blocs modifié conserve une Température de transition vitreuse Tg élevée, une bonne tenue en température et une dépolymérisation des blocs contenant le PMMA sous UV, etc... [0043] Le copolymère à blocs comprend donc au moins un bloc copolymère formé à partir de monomères de styrène et de co-monomères de diphényle éthylène DPE et au moins un autre bloc copolymère formé à partir de monomères de méthacrylate de méthyle MMA. Les co-monomères de styrène S et de diphényle éthylène DPE du bloc copolymère de P(S-co-DPE) peuvent présenter un arrangement de type statistique ou à gradient. [0044] La synthèse du copolymère à blocs peut être une synthèse séquentielle. Dans ce cas, que ce soit en polymérisation radicalaire, cationique ou anionique, on synthétise d'abord le premier bloc de P(S-co-DPE) avec un premier mélange de monomères de styrène et de DPE, puis dans un deuxième temps, on introduit les monomères de MMA de l'autre bloc. Dans le cas d'une polymérisation radicalaire, il Ref :0414-ARK50 / AM3282 est possible d'obtenir un copolymère à blocs en introduisant l'ensemble des monomères de façon concomitante, en batch ou en continu, à condition de respecter des rapports de réactivité suffisamment élevés entre chaque monomère. [0045] Dans le copolymère à blocs modifié l'enchainement des différents blocs copolymères peut adopter soit une structure linéaire, via une synthèse effectuée de façon séquencée par exemple, soit une structure en étoile, lorsque la synthèse est effectuée à partir d'un amorceur multi-fonctionnel par exemple. L'obtention de ce copolymère à blocs modifié peut également être envisagée par greffage des différents blocs pré-synthétisés entre-eux, par l'intermédiaire des extrémités réactives. [0046] La réaction de copolymérisation du bloc de P(S-co-DPE) et du bloc de PMMA peut être effectuée par les techniques habituelles, c'est-à-dire polymérisation radicalaire contrôlée, polymérisation anionique ou polymérisation par ouverture de cycle etc.... [0047] Lorsque le procédé de polymérisation est conduit par une voie radicalaire contrôlée, toute technique de polymérisation radicalaire contrôlée pourra être utilisée, que ce soit la NMP ("Nitroxide Mediated Polymerization"), RAFT ("Reversible Addition and Fragmentation Transfer"), ATRP ("Atom Transfer Radical Polymerization"), INIFERTER ("Initiator-Transfer-Termination"), RITP (" Reverse lodine Transfer Polymerization"), ITP ("lodine Transfer Polymerization). De préférence le procédé de polymérisation par une voie radicalaire contrôlée sera effectué par la NMP. [0048] Plus particulièrement les nitroxides issus des alcoxyamines dérivées du radical libre stable (1) sont préférées. RL 1 - C - N - 0. (1) 1 1 dans laquelle le radical RL présente une masse molaire supérieure à 15,0342 g/mole.
Le radical RL peut être un atome d'halogène tel que le chlore, le brome ou l'iode, un groupement hydrocarboné linéaire, ramifié ou cyclique, saturé ou insaturé tel qu'un radical alkyle ou phényle, ou un groupement ester -COOR ou un groupement alcoxyle Ref :0414-ARK50/ AM3282 -OR, ou un groupement phosphonate -PO(OR)2, dès lors qu'il présente une masse molaire supérieure à 15,0342. Le radical RL, monovalent, est dit en position i3 par rapport à l'atome d'azote du radical nitroxyde. Les valences restantes de l'atome de carbone et de l'atome d'azote dans la formule (1) peuvent être liées à des radicaux divers tels qu'un atome d'hydrogène, un radical hydrocarboné comme un radical alkyle, aryle ou aryle-alkyle, comprenant de 1 à 10 atomes de carbone. Il n'est pas exclu que l'atome de carbone et l'atome d'azote dans la formule (1) soient reliés entre eux par l'intermédiaire d'un radical bivalent, de façon à former un cycle. De préférence cependant, les valences restantes de l'atome de carbone et de l'atome d'azote de la formule (1) sont liées à des radicaux monovalents. De préférence, le radical RL présente une masse molaire supérieure à 30 g/mole. Le radical RL peut par exemple avoir une masse molaire comprise entre 40 et 450 g/mole. A titre d'exemple, le radical RL peut être un radical comprenant un groupement phosphoryle, ledit radical RL pouvant être représenté par la formule : R3 1 - P- R4 (2) 0 dans laquelle R3 et R4, pouvant être identiques ou différents, peuvent être choisis parmi les radicaux alkyle, cycloalkyle, alkoxyle, aryloxyle, aryle, aralkyloxyle, perfluoroalkyle, aralkyle, et peuvent comprendre de 1 à 20 atomes de carbone. R3 et/ou R4 peuvent également être un atome d'halogène comme un atome de chlore ou de brome ou de fluor ou d'iode. Le radical RL peut également comprendre au moins un cycle aromatique comme pour le radical phényle ou le radical naphtyle, ce dernier pouvant être substitué, par exemple par un radical alkyle comprenant de 1 à 4 atomes de carbone. [0049] Plus particulièrement les alcoxyamines dérivées des radicaux stables suivants sont préférées : - N-tertiobuty1-1-phény1-2 méthyl propyl nitroxyde, - N-tertiobuty1-1-(2-naphty1)-2-méthyl propyl nitroxyde, - N-tertiobuty1-1-diéthylphosphono-2,2-diméthyl propyl nitroxyde, Ref :0414-ARK50 / AM3282 - N-tertiobuty1-1-dibenzylphosphono-2,2-diméthyl propyl nitroxyde, - N-phény1-1-diéthyl phosphono-2,2-diméthyl propyl nitroxyde, - N-phény1-1-diéthyl phosphono-1-méthyl éthyl nitroxyde, - N-(1-phényl 2-méthyl propyl)-1-diéthylphosphono-1-méthyl éthyl nitroxyde, - 4-0x0-2,2,6,6-tétraméthy1-1-piperidinyloxy, - 2,4,6-tri-tert-butylphenoxy. [0050] De façon préférée, les alcoxyamines dérivées du N-tertiobutyl1d iéthylphosphono-2 ,2-diméthyl-propyl nitroxyde seront utilisées. [0051] Lors de la polymérisation radicalaire contrôlée, le temps de séjour dans le réacteur de polymérisation influe sur la valeur du paramètre de Flory-Huggins x du copolymère à blocs final. En effet, du fait des réactivités différentes des comonomères à incorporer dans le bloc copolymère de P(S-co-DPE), ils ne s'intègrent pas tous à la même vitesse dans la chaine. Par conséquent, selon le temps de séjour, les proportions relatives des différents co-monomères dans les blocs copolymères seront différentes et donc la valeur du paramètre x du copolymère à blocs final varie également. En général, en polymérisation radicalaire, on cherche à obtenir des taux de conversion de l'ordre de 50-70%. Par conséquent, on fixe un temps de séjour maximum dans le réacteur de polymérisation, correspondant à ces taux de conversion. Ainsi, pour obtenir un taux de conversion de 50 à 70%, on modifie le ratio de départ des co-monomères à polymériser. Pour cela, on peut s'aider d'abaques permettant de connaitre la relation entre le ratio de départ de comonomères à polymériser et le degré de conversion d'une part, et entre la masse moléculaire du copolymère à blocs et le xN d'autre part. [0052] Lorsque le procédé de polymérisation est conduit par une voie anionique, qui 25 est la voie préférée utilisée dans l'invention, on pourra considérer tout mécanisme de polymérisation anionique, que ce soit la polymérisation anionique ligandée ou encore la polymérisation anionique par ouverture de cycle. [0053] Dans le cadre préféré de l'invention on utilisera un procédé de polymérisation anionique dans un solvant apolaire, et de préférence le toluène, tel que décrit dans le 30 brevet EP0749987, et mettant en jeu un micro-mélangeur. [0054] Les proportions relatives, en unité monomères, de co-monomère de DPE dans le bloc copolymère à base de styrène, sont alors comprises entre 1 % à 25 %, et de Ref :0414-ARK50/ AIV13282 préférence comprises entre 1 % et 10 %, bornes comprises, par rapport au comonomère de styrène avec lequel il copolymérise. [0055] Dans la limite de ces proportions, plus le nombre d'unités de co-monomère de DPE incorporé est important dans le bloc à base de styrène, plus le xN sera modifié de façon conséquente par rapport à celui d'un PS-b-PMMA dont les blocs sont purs, et plus il sera alors possible de nano-structurer le copolymère avec une période élevée. [0056]De plus, la masse moléculaire M de chaque bloc copolymère est de préférence comprise entre 15 et 100 kg/mol, et de manière encore plus préférée entre 30 et 100kg/mol, bornes comprises, et l'indice de dispersité PDi est de préférence inférieur ou égal à 2, et de manière encore plus préférée il est compris entre 1,02 et 1,7 (bornes comprises). [0057]Un tel copolymère à blocs, dont un bloc a une structure chimique modifiée par l'incorporation de co-monomères de DPE peut être utilisé dans différents procédé applicatifs tels que la lithographie, pour réaliser des masques de lithographie notamment, ou bien la fabrication de membranes, la fonctionnalisation et le revêtement de surfaces, la fabrication d'encres et de composites, la nanostructuration de surfaces, la fabrication de transistors, diodes, ou points mémoires organiques par exemple. [0058] L'invention concerne aussi un procédé de contrôle de la période de nana-structuration d'un film de copolymère à blocs à partir d'un copolymère à blocs de base de PS-PMMA. Un tel procédé permet de contrôler la période de nanostructuration en modulant la ségrégation de phase (xN) entre les blocs de ce copolymère à blocs dont la structure chimique est modifiée. Pour cela, suite à la synthèse du copolymère à blocs modifié, celui-ci est appliqué en solution sur une surface, pour former un film. Le solvant de la solution est ensuite évaporé et le film est soumis à un traitement thermique. Ce traitement thermique, ou recuit, permet au copolymère à blocs de s'organiser correctement, c'est-à-dire d'obtenir notamment une séparation de phases entre les nano-domaines, une orientation des domaines et une réduction du nombre de défauts.. De préférence, la température T de ce traitement thermique est 5. 230°C, et de manière encore plus préférée 5 210°C. Le film de copolymère à blocs obtenu présente une structuration ordonnée pour une Ref :0414-ARK50 / AM3282 masse moléculaire supérieure à 50kg/mol, et de préférence supérieure à 100kg/mol et inférieure à 250kg/mol, alors qu'un film de PS-b-PMMA non modifié chimiquement ne peut pas être structuré de manière ordonnée pour la même masse moléculaire car une telle structuration nécessite des températures et temps de recuit tels qu'une trop grande quantité de défauts apparait et empêche la nana-structuration ordonnée du copolymère de se réaliser. [0059] De manière avantageuse, le recuit d'un tel copolymère à blocs modifié, dont la masse moléculaire est élevée et supérieure à 50Kg/mol, et de préférence supérieure à 100kg/mol et inférieure à 250kg/mol et dont la valeur de xN est supérieure à 10 permet une nano-structuration avec une cinétique d'organisation de l'ordre de 1 à quelques minutes. De préférence, la cinétique d'organisation est inférieure ou égale à 5 minutes, et de manière encore plus préférée elle est inférieure ou égale à 2 minutes, et comprise entre 1 et 2 minutes. [0060] Dans le cas de la lithographie, la structuration recherchée, par exemple la génération de nano-domaines perpendiculaires à la surface, nécessite cependant la préparation préalable de la surface sur laquelle la solution de copolymère est déposée en vue de contrôler l'énergie de surface. Parmi les possibilités connues, on dépose sur la surface un copolymère statistique, formant une couche de neutralisation, dont les monomères peuvent être identiques en tout ou partie à ceux utilisés dans le copolymère à blocs que l'on veut déposer. Dans un article pionnier Mansky et al. (Science, vol 275 pages 1458-1460, 1997) décrit bien cette technologie, maintenant bien connue de l'homme du métier. [0061] Parmi les surfaces privilégiées on peut citer les surfaces constituées de silicium, le silicium présentant une couche d'oxyde natif ou thermique, le germanium, le platine, le tungstène, l'or, les nitrures de titane, les graphènes, le BARC (bottom anti reflecting coating) ou toute autre couche anti-reflective utilisée en lithographie. [0062] Une fois la surface préparée, une solution du copolymère à blocs modifié selon l'invention est déposée puis le solvant est évaporé selon des techniques connues de l'homme de métier comme par exemple la technique dite « spin coating », « docteur Blade » « knife system », « slot die system » mais tout autre technique peut être utilisée telle qu'un dépôt à sec, c'est-à-dire sans passer par une dissolution préalable. Ref :0414-ARK50/ AM3282 [0063] On effectue par la suite le traitement thermique qui permet au copolymère à blocs de s'organiser correctement, c'est-à-dire d'obtenir notamment une séparation de phase entre les nano-domaines, une orientation des domaines tout en obtenant une défectivité significativement réduite par rapport à celle obtenue avec des copolymères à blocs non modifiés de longueurs de chaines identiques. Cette étape de recuit, permettant la nano-structuration du film de copolymère à blocs, peut être effectuée sous atmosphère de solvant, ou par voie thermique, ou par une combinaison de ces deux méthodes. [0064] Le procédé de contrôle de la période de nano-structuration de copolymères à 10 blocs selon l'invention permet donc, en particulier dans le cas de copolymères de base à fort taux de polymérisation, d'obtenir des films de copolymère nanostructurés avec une défectivité significativement réduite par rapport au copolymère non modifié. [0065] Par ailleurs, la demanderesse a en outre constaté que l'introduction de DPE dans le bloc PS, avec une teneur de préférence comprise entre 1% et 25% et de 15 préférence comprise entre 1% et 10%, permet avantageusement d'obtenir une nanostructuration sans défauts pour des épaisseurs de films plus importantes que celles obtenues en utilisant le copolymère à blocs non modifié. Ces épaisseurs peuvent être supérieures ou égale à 30 nm et même supérieures à 40 nm sans apparition de défauts. Avec un copolymère à blocs non modifié, il n'est pas possible d'arriver à de 20 telles épaisseurs sans défaut. Une épaisseur élevée permet un meilleur contrôle du procédé de lithographie, car le transfert des motifs nano-structurés dans le substrat par gravure (sèche ou humide) est fortement dépendant de l'épaisseur des films utilisés en tant que masques : des films dont l'épaisseur est inférieure à 40 nm ne permettront pas un transfert efficace dans le substrat, alors que des films plus épais 25 mèneront à des facteurs de forme plus importants. [0066] Un copolymère à blocs PS-b-PMMA de masse moléculaire élevée, typiquement supérieure à 50kg/mol, et de préférence supérieure à 100kg/mol et inférieure à 250 kg/mol, et modifié par introduction de DPE dans le bloc à base de styrène, permet donc d'obtenir un assemblage des blocs perpendiculairement à la 30 surface sur laquelle il est déposé, avec une ségrégation de phases importante et une période Lo élevée, typiquement supérieure à 30nm, et de préférence supérieure à 50nm et inférieure à 100nm, et ceci avec une température inférieure à celle Ref :0414-ARK50 / AM3282 nécessaire pour nano-structurer le copolymère à blocs de base, c'est-à-dire non modifié, et avec des cinétiques d'organisation rapides. Le copolymère à blocs modifié présente une défectivité réduite par rapport au même copolymère à blocs non modifié et ce, même à des épaisseurs très importantes. Un tel copolymère à blocs permet donc un meilleur contrôle du procédé de lithographie. [0067] L'invention concerne en outre un masque de nana-lithographie obtenu à partir du copolymère à blocs modifié, déposé sur une surface à graver conformément au procédé de nana-structuration. Le film ainsi déposé sur la surface comprend des nano-domaines orientés perpendiculairement à la surface à graver et présente une 10 période supérieure ou égale à 30 nm, et de préférence supérieure à 50nm et inférieure à 100nm. [0068] Les exemples suivants illustrent de façon non limitative la portée de l'invention : Exemple 1: synthèse d'un copolymère di-blocs de P(styrène-co-dipéhnyle 15 éthylène)-b-P(méthacrylate de méthyle) (P(S-co-DPE)-b-PMMA) [0069] L'installation de la polymérisation utilisée est représentée de façon schématique en Figure 1. Une solution du système macroamorçant est préparée dans une capacité Cl et une solution des monomères dans une capacité C2. Le flux de la capacité d2 est adressé à un échangeur E pour être amené à la température 20 initiale de polymérisation. Les deux flux sont ensuite adressés à un mélangeur M, qui dans cet exemple est un mélangeur statistique, comme décrit dans les demandes de brevet EP0749987, EP0749987 et EP0524054 puis au réacteur de polymérisation R qui est un réacteur tubulaire usuel. Le produit est réceptionné dans une capacité C3 qui est ensuite transféré dans une capacité C4 pour y être précipité. 25 [0070] Dans la capacité Cl, on prépare une solution à 27.5.% massique dans le toluène à 45 °C du bloc P(S-co-DPE) afin que celui-ci soit un système macroamorceur permettant d'amorcer par la suite le deuxième bloc PMMA. Pour cela, on ajoute sous atmosphère inerte de azote, une solution de toluène, 133 mL de s-butyllithium à 1.5M dans l'hexane auxquels sont ajoutés 4kg d'un mélange de 30 styrène/1,1-diphényléthylène à 90/10 massique. Après 2h de polymérisation à 45°C, la température de la capacité Cl est abaissée à -20°C et une solution de méthoxyéthanolate de lithium ainsi que 72.19 de 1,1-diphényléthylène dans du Ref :0414-ARK50/ AM3282 toluène sont ajoutés de façon à obtenir un rapport molaire de 1/6 entre le poly(styrylco-1,1-diphényléthyl)CH2C(Ph)2Li et le CH3OCH2CH2OLi. La solution de toluène est de 23.2% massique. On obtient alors le système macroamorçant [poly(styryl-co-1,1- diphényléthyl)CH2C(Ph)2LiKCH3OCH2CH2OLi.]6. Ces synthèses sont également décrites dans les demandes de brevet EP0749987 et EP0524054. [0071] Dans la capacité C2, on stocke à -15 °C une solution composée de MMA préalablement passée sur tamis moléculaire d'alumine, à 6.2% massique dans le toluène. [0072] Le flux de la solution du système macroamorceur est réglé à 60 kg/h. Le flux de la solution de MMA de la capacité C2 est adressé à un échangeur pour que la température y soit abaissé à -20 °C et le flux de la solution de MMA est réglé à 56 kg/h. Les deux flux sont ensuite mélangés dans le mélangeur statistique puis récupérés dans une capacité C3 où le copolymère est désactivé par l'ajout d'une solution de méthanol. [0073] La conversion déterminée par mesure du taux de solide est supérieure à 99%. [0074] Le contenu de la capacité C3 est ensuite précipité au goutte à goutte dans une capacité C4 sous agitation contenant de l'heptane. Le rapport volumique entre le contenu de la capacité C3 et celui de C4 est de 1/7. A la fin de l'addition de la solution de la capacité C3, l'agitation est arrêtée et le copolymère sédimente. Il est ensuite récupéré par élimination du surnageant et filtration. [0075] Après séchage, les caractéristiques du copolymère sont les suivantes : Mp copolymère = 55,4 kg/mol Dispersité : 1,09 Ratio massique P(S-co-DPE)/PMMA= 69.8/30.2 [0076] Différents copolymères à blocs de base, c'est - à - dire non modifiés de PS-bPMMA, ont été synthétisés selon ce procédé avec differentes compositions (c'est-à-dire avec différentes teneurs en PS et PMMA) et différents copolymères à blocs modifiés de P(S-co-DPE)-b-PMMA ont également été synthétisés selon ce procédé avec des compositions différentes afin de pouvoir réaliser des comparaisons illustrées ci-dessous dans les exemples comparatifs A à C de l'exemple 4. [0077] Les différentes compositions des différents copolymères à blocs synthétisés sont rassemblées dans le tableau I présenté ci-dessous. Ref :0414-ARK50 / AM3282 Tableau I Référence Copolymère à blocs MpPS (kg/mol) MpPMMA (kg/mol) Mpcopolymère (kg/mol) Dispersitéa Bloc PS Bloc a PSb, PMMA %m %mDPEb %mPMMAb C35 V1 38,6 17,6 56,2 1,06 68,7 0 31,3 C35 V3 38,1 15,9 54 1,06 70,6 0 29,4 C35 1DPE 40,8 21,6 62,4 1,10 64,8 0,6 34,6 C35 10DPE 38,7 18,7 55,4 1,09 65,2 4,6 30,2 C50 V2 74 29,2 103,2 1,15 71,7 0 29,3 C50 10DPE 91,2 36 127,2 1,12 67,4 4,6 28,0 a) Déterminées par chromatographie d'exclusion stérique. Les polymères sont solubilisés à 1g/1 dans du THF stabilisé au BHT. L'étalonnage est effectué grâce à des étalons de polystyrène monodisperses. La double détection par indice de réfraction et UV à 254nm permet de déterminer le pourcentage de polystyrène dans le copolymère. b) Déterminés par RMN 1H * Déterminé par calcul à partir de la masse Mp PS déterminée par chromatographie d'exclusion stérique SEC et la composition déterminée par RMN 1H.
Exemple 2: synthèse d'une couche de neutralisation de PS-stat-PMMA [0078] 1ere étape : préparation d'une alcoxyamine fonctionnalisée hydroxy à partir de l'alcoxyamine commerciale BlocBuilder® (ARKEMA) : Dans un ballon de IL purgé à l'azote, on introduit : 226,17 g de BlocBuilder® (1 équivalent) 68,9 g d'acrylate de 2-hydroxyethyle (1 équivalent) 548 g d'isopropanol Ref :0414-ARK 50/ AM3282 [0079] Le mélange réactionnel est chauffé à reflux (80°C) pendant 4h puis l'isopropanol est évaporé sous vide. On obtient 297 g d' alcoxyamine fonctionnalisée hydroxy sous la forme d'une huile jaune très visqueuse. [0080]2ème étape : Protocole expérimental de préparation de copolymère statistique 5 PS/PMMA à partir de l'alcoxyamine de l'étape 1. [0081] Dans un réacteur en acier inoxydable équipé d'un agitateur mécanique et d'une double enveloppe, sont introduits le toluène, ainsi que les monomères tels que le styrène (S), le méthacrylate de méthyle (MMA), et l'alcoxyamine fonctionnalisée de l'étape 1. Les ratios massiques entre les différents monomères styrène (S) et le 10 méthacrylate de méthyle (MMA) sont décrits dans le tableau 2 ci-dessous. La charge massique de toluène est fixée à 30% par rapport au milieu réactionnel. Le mélange réactionnel est agité et dégazé par un bullage d'azote à température ambiante pendant 30 minutes. [0082] La température du milieu réactionnel est alors portée à 115°C. Le temps t=0 15 est déclenché à température ambiante. La température est maintenue à 115°C tout le long de la polymérisation jusqu'à atteindre une conversion des monomères de l'ordre de 70%. Des prélèvements sont réalisés à intervalles réguliers afin de déterminer la cinétique de polymérisation par gravimétrie (mesure d'extrait sec). [0083] Lorsque la conversion de 70% est atteinte, le milieu réactionnel est refroidi à 20 60°C et le solvant et monomères résiduels sont évaporés sous vide. Après évaporation, la méthyléthylcétone est additionnée au milieu réactionnel en quantité telle que l'on réalise une solution de copolymère de l'ordre de 25% massique. [00841 Cette solution de copolymère est alors introduite goutte à goutte dans un bécher contenant un non-solvant (l'heptane), de manière à faire précipiter le 25 copolymère. Le ratio massique entre solvant et non-solvant (méthyléthylcétone/heptane) est de l'ordre de 1/10. Le copolymère précipité est récupéré sous la forme d'une poudre blanche après filtration et séchage. 30 Ref :0414-ARK50 / AM3282 Etat initial de réaction %PS (a) Caractéristiques Mn (a) du copolymère i p (a) Composition massique initiale des monomères Ratio mp (a) g/mole MW (a) g/mole S/MMA massique g/mole g/mole d'alcoxyamine par rapport aux monomères S, MMA 66/34 0,03 65% 15 480 11 930 15 900 1,3 Référence couche de neutralisation MGCLO4 a) Déterminées par chromatographie d'exclusion stérique. Les polymères sont solubilisés à 1g/1 dans du THF stabilisé au BHT. L'étalonnage est effectué grâce à des étalons de polystyrène monodisperses. La double détection par indice de réfraction et UV à 254nm permet de déterminer le pourcentage de polystyrène dans le copolymère. Exemple 3: procédé de nano-structuration d'un film de copolymère à blocs modifié à base de PS-b-PMMA [0085] Un substrat de silicium est découpé manuellement en morceaux de 3x3cm, puis les morceaux sont nettoyés par un traitement conventionnel (solution piranha, plasma d'oxygène...). Un copolymère statistique de PS-stat-PMMA, tel que préparé conformément à l'exemple 2, préalablement dissout dans de l'acétate d'éther monométhylique de propylène glycol (PGMEA) à hauteur de 2% massique, est alors déposé sur le substrat à fonctionnaliser par spin-coating, ou toute autre technique de dépôt connue de l'homme du métier, de manière à former un film de polymère d'environ 60 à 80nm d'épaisseur. Ce film de copolymère statistique forme alors une couche de neutralisation. Le substrat est alors chauffé à une température de l'ordre 230°C durant 2 à 5 minutes de manière à greffer les chaines de polymère sur la surface. [0086] Le substrat est par la suite rincé abondamment dans du PGMEA de façon à éliminer les chaines de polymère non greffées excédentaires, puis le substrat fonctionnalisé est séché sous flux d'azote. [0087] Le polymère à blocs de PS-b-PMMA modifié, tel que synthétisé et décrit ci-25 dessus à l'exemple 1, est dissout dans du PGMEA à hauteur de 1 à 2% massique Ref :0414-ARK50/ AM3282 suivant l'épaisseur de film visée, et est déposé sur la surface par spin-coating de manière à former un film d'épaisseur désirée. A titre d'exemple, une solution à 1,5% massique pourra donner un film de copolymère à blocs d'environ 45 à 50 nm d'épaisseur, lorsqu'elle est déposée sur la surface par la technique de spin-coating à 2000 tours/minute. Le film ainsi formé est alors recuit entre 210 et 230°C (selon les cas) durant 2 minutes pour permettre la nana-structuration des blocs en nanodomaines. [0088] On note que dans cet exemple, un substrat de silicium a été utilisé. On pourra bien évidemment transposer cette méthode sans aucune modification majeure à tout 10 autre substrat d'intérêt pour l'électronique décrit dans la demande de brevet n° FR 2974094. Exemple 4: Exemples comparatifs A) Influence de la composition du copolymère à blocs modifié sur les conditions de nano-structuration et sur la période Lo 15 [0089] Sur la Figure 2, sont représentées des photos, prises au microscope électronique à balayage, de différents échantillons de copolymères à blocs, modifiés ou non, dont les compositions sont rassemblées dans le tableau I ci-dessus en regard de l'exemple 1, et nano-structurés conformément à l'invention. Sur la Figure 2, sont également indiqués les températures et temps de recuit de chaque copolymère à 20 blocs ainsi que la période et l'épaisseur de chacun des échantillons. [0090]On constate que pour des masses molaires de copolymère comparables, c'est-à-dire à degré de polymérisation N comparable, le copolymère à blocs non modifié C35, qui est recuit à 220°C pendant une durée de 2 minutes, présente une défectivité élevée pour une période de l'ordre de 30nm et une épaisseur de 19nm, alors que les 25 copolymères modifiés C35 1DPE et C35 10DPE, qui sont recuits à des températures respectivement de 220 et 210°C pendant une durée de 2 minutes présentent une période Lo plus élevée, respectivement 36 nm et supérieure à 40 nm nm et une défectivité significativement réduite à une épaisseur comparable de 20nm et même à une épaisseur élevée de 44nm. 30 [0091] De même, pour des polymères dont le degré de polymérisation N est encore plus élevé, c'est-à-dire les copolymères C50 et C50 10DPE, dont la masse moléculaire est respectivement de 103,2 et 127,2kg/mol, on constate que Ref :0414-ARK50 / AM3282 l'incorporation de DPE permet d'abaisser la température de recuit et/ou le temps de recuit et d'obtenir des copolymères à blocs dont la période est élevée (supérieure à 50nm ), sans apparition de défauts. [0092] Il résulte donc de cette Figure 2 que l'incorporation de DPE dans le bloc styrène du copolymère à blocs PS-b-PMMA de départ présentant une masse moléculaire élevée, supérieure à 50kg/mol et de préférence supérieure à 100Kg/mol et inférieure à 250kg/mol, permet de diminuer le temps et/ou la température de recuit pour organiser les blocs du copolymère afin qu'il se nano-structure avec une période élevée, typiquement supérieure à 30nm et ce, sans défauts.
B) Influence de la température de recuit sur la défectivité en fonction de l'épaisseur [0093] La Figure 3 représente des photos A à D prises au microscope électronique à balayage du copolymère C35 10DPE, dont la composition est décrite dans le tableau 1 ci-dessus, déposé sur une couche de neutralisation dont la synthèse est décrite ci- dessus en regard de l'exemple 2, à différentes épaisseurs et après des conditions de recuit différentes. [0094] Plus particulièrement, on a fait subir à quatre échantillons du copolymère à blocs de P(S-co-DPE)-b-PMMA, contenant 4,6% de DPE dans le bloc PS, dont les épaisseurs sont respectivement de 19 et 24nm , un recuit de 5 minutes à une température de 200°C (photos C et D) et à une température de 180°C (photos A et B) [0095] Il résulte de ces comparaisons que, quelle que soit l'épaisseur de l'échantillon, un abaissement de la température de recuit permet d'obtenir une défectivité sensiblement réduite.
C) Influence du temps de recuit sur la défectivité [0096] La Figure 4 représente les photos, prises au microscope électronique à balayage, de deux échantillons E et F de copolymère C35 10DPE contenant 4,6% DPE dans le bloc PS, et dont l'épaisseur est égale à 19 nm, les échantillons ayant été recuits à 180°C pendant une durée respective de 5 et 2 minutes. Il résulte de cette comparaison, qu'une diminution du temps de recuit réduit sensiblement à défectivité du film de copolymère à blocs nano-structuré. [0097] L'ajout de DPE dans des copolymères de PS-b-PMMA initiaux, de masse moléculaire élevée, permet donc d'organiser les blocs à une température inférieure à Ref :0414-ARK50/ AM3282 celle utilisée pour organiser les blocs des copolymères initiaux et avec des cinétiques très rapides, et ce avec une défectivité significativement réduite. Un avantage supplémentaire réside dans le fait que la défectivité est réduite même pour de grandes épaisseurs, typiquement supérieures à 40nm, comme on peut le constater sur la Figure 2. Ref :0414-ARK50 / AM3282

Claims (13)

  1. REVENDICATIONS1. Film de copolymère à blocs nano-structuré en nano-domaines, obtenu à partir d'un copolymère à blocs de base présentant une masse moléculaire supérieure à 50kg/mol, et de préférence supérieure à 100kg/mol et inférieure à 250kg/mol, et dont au moins un bloc comprend du styrène et au moins un autre bloc comprend du méthacrylate de méthyle, ledit film de copolymère à blocs étant caractérisé en ce que le bloc à base de styrène est formé par un copolymère de styrène et de diphényle éthylène (DPE).
  2. 2. Film de copolymère à blocs selon la revendication 1, caractérisé en ce que les proportions relatives, en unités de monomères, de diphényle éthylène (DPE), incorporé dans le bloc à base de styrène, sont comprises entre 1 et 25%, de préférence entre 1 et 10% par rapport au co-monomère styrène avec lequel il copolymérise.
  3. 3. Film de copolymère à blocs selon l'une des revendications 1 à 2, caractérisé 15 en ce que les masses moléculaires de chaque bloc sont comprises entre 15kg/mol et 100kg/mol, de préférence entre 30kg/mol et 100kg/mol, avec un indice de dispersité inférieur ou égal à 2, et de préférence compris entre 1,02 et 1,70.
  4. 4. Film de copolymère à blocs selon l'une des revendications 1 à 3, caractérisé en ce que le nombre n de blocs est de préférence tel que r-17, et de façon encore 20 plus préférée 2r13.
  5. 5. Film de copolymère à bloc selon l'une des revendications 1 à 4, caractérisé en ce que les co-monomères du bloc copolymère à base de styrène (P(S-co-DPE)) présentent un arrangement de type statistique ou gradient.
  6. 6. Procédé de contrôle de la période de nanostructuration en nano-domaines, 25 d'un film de copolymère à blocs à partir d'un copolymère à blocs de base présentant une masse moléculaire supérieure à 50kg/mol, et de préférence supérieure à 100kg/mol et inférieure à 250kg/mol, et dont au moins un bloc comprend du styrène et au moins un autre bloc comprend du méthacrylate de méthyle, ledit procédé étant caractérisé en ce qu'il comprend les étapes suivantes : Ref :0414-ARK50 / PRO1202synthèse dudit copolymère à blocs en incorporant, dans le bloc dudit copolymère à blocs de base contenant du styrène, un ou plusieurs comonomère de diphényle éthylène (DPE), application d'une solution dudit copolymère à blocs sous- forme d'un film sur une surface, évaporation du solvant de la solution et recuit à ladite température déterminée.
  7. 7. Procédé selon la revendication 6, caractérisé en ce que la synthèse est effectuée par polymérisation radicalaire contrôlée.
  8. 8. Procédé selon la revendication 6, caractérisé en ce que la synthèse est effectuée par polymérisation anionique.
  9. 9. Procédé selon l'une des revendications 6 à 8, caractérisé en ce que l'étape de recuit permet une nano-structuration du film de copolymère à blocs déposé sur ladite surface et est effectuée à une température T inférieure à 230°C, de préférence inférieure à 210 °C.
  10. 10. Procédé selon l'une des revendications 6 à 9, caractérisé en ce que l'étape de recuit permettant la nano-structuration du film de copolymère à blocs est effectuée sous atmosphère de solvant ou par voie thermique, ou par une combinaison de ces deux méthodes.
  11. 11. Procédé selon l'une des revendications 6 à 10, caractérisé en ce qu'au 20 moment de l'étape de recuit, les blocs copolymères s'organisent en nano-domaines avec une cinétique inférieure ou égale à 5 minutes, de préférence inférieure ou égale à 2 minutes et comprise entre 1 et 2 minutes.
  12. 12. Procédé selon l'une des revendications 6 à 11, caractérisé en ce que le(s) comonomères de diphényle éthylène incorporé(s) dans le bloc copolymère à base de 25 styrène est (sont) incorporé(s) avec des proportions relatives, en unités monomères, comprises entre 1% et 25%, et de préférence comprises entre 1 % et 10 % par rapport au co-monomère de styrène avec lequel il co-polymérise pour former un bloc copolymère. Ref :0414-ARK50 / AM3282
  13. 13. Masque de nano-lithographie obtenu à partir du film de copolymère à blocs selon l'une des revendications 1 à 5, déposé sur une surface à graver conformément au procédé selon l'une des revendications 6 à 12, ledit film de copolymère comprenant des nano-domaines orientés perpendiculairement à la surface à graver et présentant une période Lo supérieure ou égale à 30nm, de préférence supérieure à 50 nm et inférieure à 100nm. Ref:0414-ARK50 / PRO1202
FR1455294A 2014-06-11 2014-06-11 Procede de controle de la periode d'un film de copolymere a blocs nanostructue a base de styrene et de methacrylate de methyle, et film de copolymere a blocs nanostructure Expired - Fee Related FR3022249B1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
FR1455294A FR3022249B1 (fr) 2014-06-11 2014-06-11 Procede de controle de la periode d'un film de copolymere a blocs nanostructue a base de styrene et de methacrylate de methyle, et film de copolymere a blocs nanostructure
TW104116658A TWI567127B (zh) 2014-06-11 2015-05-25 控制建基於苯乙烯及甲基丙烯酸甲酯之奈米結構嵌段共聚物膜週期之方法、以及奈米結構嵌段共聚物膜
CN201580042917.0A CN106661171A (zh) 2014-06-11 2015-06-01 控制由苯乙烯和甲基丙烯酸甲酯制备的纳米结构化的嵌段共聚物膜的周期的方法、和纳米结构化的嵌段共聚物膜
US15/317,803 US9976053B2 (en) 2014-06-11 2015-06-01 Process for controlling the period of a nanostructured block copolymer film based on styrene and on methyl methacrylate, and nanostructured block copolymer film
KR1020177000762A KR101922353B1 (ko) 2014-06-11 2015-06-01 스티렌 및 메틸 메타크릴레이트로 제조된 나노구조화 블록 공중합체 필름의 간격 조절 방법, 및 나노구조화 블록 공중합체 필름
SG11201610321UA SG11201610321UA (en) 2014-06-11 2015-06-01 Method for controlling the period of a nanostructured block copolymer film made of styrene and methyl methacrylate, and nanostructured block copolymer film
EP15732825.3A EP3155028A1 (fr) 2014-06-11 2015-06-01 Procédé de contrôle de la période d'un film de copolymère a blocs nanostructuré a base de styrene, et de methacrylate de methyle, et film de copolymère a blocs nanostructure
PCT/FR2015/051430 WO2015189495A1 (fr) 2014-06-11 2015-06-01 Procédé de contrôle de la période d'un film de copolymère a blocs nanostructuré a base de styrene, et de methacrylate de methyle, et film de copolymère a blocs nanostructure
JP2016572506A JP6449342B2 (ja) 2014-06-11 2015-06-01 スチレン及びメチルメタクリレートに基づくナノ構造化ブロック共重合体フィルムの周期をコントロールする方法、及びナノ構造化ブロック共重合体フィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1455294 2014-06-11
FR1455294A FR3022249B1 (fr) 2014-06-11 2014-06-11 Procede de controle de la periode d'un film de copolymere a blocs nanostructue a base de styrene et de methacrylate de methyle, et film de copolymere a blocs nanostructure

Publications (2)

Publication Number Publication Date
FR3022249A1 true FR3022249A1 (fr) 2015-12-18
FR3022249B1 FR3022249B1 (fr) 2018-01-19

Family

ID=51485681

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1455294A Expired - Fee Related FR3022249B1 (fr) 2014-06-11 2014-06-11 Procede de controle de la periode d'un film de copolymere a blocs nanostructue a base de styrene et de methacrylate de methyle, et film de copolymere a blocs nanostructure

Country Status (9)

Country Link
US (1) US9976053B2 (fr)
EP (1) EP3155028A1 (fr)
JP (1) JP6449342B2 (fr)
KR (1) KR101922353B1 (fr)
CN (1) CN106661171A (fr)
FR (1) FR3022249B1 (fr)
SG (1) SG11201610321UA (fr)
TW (1) TWI567127B (fr)
WO (1) WO2015189495A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3029921B1 (fr) * 2014-12-16 2018-06-29 Arkema France Procede de controle de la synthese d'un copolymere a blocs contenant au moins un bloc apolaire et au moins un bloc polaire et utilisation d'un tel copolymere a blocs dans des applications de nano-lithographie par auto-assemblage direct.
FR3045643A1 (fr) * 2015-12-18 2017-06-23 Arkema France Procede d'amelioration de l'uniformite de dimension critique de films ordonnes de copolymere a blocs
FR3045644A1 (fr) * 2015-12-18 2017-06-23 Arkema France Procede d'obtention de films ordonnes epais et de periodes elevees comprenant un copolymere a blocs
FR3045645B1 (fr) * 2015-12-18 2019-07-05 Arkema France Procede de reduction des defauts dans un film ordonne de copolymeres a blocs
FR3045642A1 (fr) * 2015-12-18 2017-06-23 Arkema France Procede de reduction du temps de structuration de films ordonnes de copolymere a blocs
CN112400137A (zh) * 2018-07-29 2021-02-23 耶路撒冷希伯来大学伊森姆研究发展公司 多形态的嵌段共聚物膜及其制备方法
CN109796567A (zh) * 2018-12-30 2019-05-24 复旦大学 一种含液晶单元的定向自组装嵌段共聚物及其合成与应用方法
US20240002571A1 (en) * 2020-12-17 2024-01-04 Merck Patent Gmbh Tunable high-chi diblock copolymers consisting of alternating copolymer segments for directed self-assembly and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029779A (ja) * 1999-06-07 2005-02-03 Toshiba Corp パターン形成材料、パターン形成方法、多孔質構造体の製造方法、電気化学セル、多孔質カーボン構造体の製造方法、および多孔質カーボン構造体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757788B2 (ja) * 1989-08-22 1995-06-21 旭化成工業株式会社 ブロック共重合体
FR2679237B1 (fr) 1991-07-19 1994-07-22 Atochem Systeme d'amorcage pour la polymerisation anionique de monomeres (meth) acryliques.
FR2735480B1 (fr) 1995-06-15 1997-07-18 Atochem Elf Sa Procede de polymerisation anionique en continu d'au moins un monomere (meth)acrylique pour l'obtention de polymeres a haut taux de solide
EP2382250B1 (fr) * 2008-12-23 2018-05-16 INEOS Styrolution Europe GmbH Copolymères séquencés à séparation de phase, composés de blocs durs incompatibles, et matières de moulage de grande rigidité
JP2010180353A (ja) * 2009-02-06 2010-08-19 Kyoto Univ ブロック共重合体の製造方法
US8398868B2 (en) * 2009-05-19 2013-03-19 International Business Machines Corporation Directed self-assembly of block copolymers using segmented prepatterns
US8304493B2 (en) 2010-08-20 2012-11-06 Micron Technology, Inc. Methods of forming block copolymers
FR2974094A1 (fr) 2011-04-15 2012-10-19 Arkema France Procede de preparation de surfaces
EP2736931A1 (fr) 2011-07-29 2014-06-04 Wisconsin Alumni Research Foundation Matériaux de copolymères séquencés pour assemblage dirigé de couches minces
WO2013069642A1 (fr) * 2011-11-10 2013-05-16 Jx日鉱日石エネルギー株式会社 Film à différence de phase et dispositif d'affichage à cristaux liquides comportant celui-ci
US8513356B1 (en) * 2012-02-10 2013-08-20 Dow Global Technologies Llc Diblock copolymer blend composition
US9127113B2 (en) * 2012-05-16 2015-09-08 Rohm And Haas Electronic Materials Llc Polystyrene-polyacrylate block copolymers, methods of manufacture thereof and articles comprising the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029779A (ja) * 1999-06-07 2005-02-03 Toshiba Corp パターン形成材料、パターン形成方法、多孔質構造体の製造方法、電気化学セル、多孔質カーボン構造体の製造方法、および多孔質カーボン構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUE ZHAO ET AL: "SAXS Analysis of the Order-Disorder Transition and the Interaction Parameter of Polystyrene- block -poly(methyl methacrylate)", MACROMOLECULES, vol. 41, no. 24, 23 December 2008 (2008-12-23), pages 9948 - 9951, XP055164857, ISSN: 0024-9297, DOI: 10.1021/ma8013004 *

Also Published As

Publication number Publication date
US20170145250A1 (en) 2017-05-25
JP2017524760A (ja) 2017-08-31
KR20170016482A (ko) 2017-02-13
WO2015189495A1 (fr) 2015-12-17
US9976053B2 (en) 2018-05-22
FR3022249B1 (fr) 2018-01-19
SG11201610321UA (en) 2017-01-27
JP6449342B2 (ja) 2019-01-09
TW201609936A (zh) 2016-03-16
EP3155028A1 (fr) 2017-04-19
TWI567127B (zh) 2017-01-21
KR101922353B1 (ko) 2018-11-26
CN106661171A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
FR3022249A1 (fr) Procede de controle de la periode d'un film de copolymere a blocs nanostructue a base de styrene et de methacrylate de methyle, et film de copolymere a blocs nanostructure
FR3008986A1 (fr) Procede de controle de la periode caracterisant la morphologie obtenue a partir d'un melange de copolymere a blocs et de (co) polymeres de l'un des blocs
EP3083488A1 (fr) Procédé de nanostructuration d'un film de copolymère a blocs a partir d'un copolymère a blocs non structure a base de styrène et de methacrylate de méthyle, et film de copolymère a blocs nanostructure
WO2015087005A1 (fr) Procédé permettant la création de structures nanométriques par l'auto-assemblage de copolymères a blocs
EP2788442A1 (fr) Procede de preparation de surfaces
WO2015086991A1 (fr) Procédé de réalisation d'un film de copolymère a blocs sur un substrat.
FR3010413A1 (fr) Procede de controle de la periode d'un assemblage nano-structure comprenant un melange de copolymeres a blocs
FR3010414A1 (fr) Procede d'obtention de films epais nano-structures obtenus a partir d'une composition de copolymeres a blocs
FR2974094A1 (fr) Procede de preparation de surfaces
WO2017220934A1 (fr) Film de copolymere a blocs nanostructure comprenant un bloc biodegradable de type polyester
WO2015004392A1 (fr) Procede d'orientation perpendiculaire de nanodomaines de copolymeres a blocs par l'utilisation de copolymeres statistiques ou a gradient dont les monomeres sont au moins en partie differents de ceux presents respectivement dans chacun des blocs du copolymere a blocs
EP3080217B1 (fr) Procédé permettant la création de structures nanométriques par l'auto-assemblage de copolymères a blocs
FR3010411A1 (fr) Procede de controle de la periode d'un assemblage nano-structure comprenant un melange de copolymeres a blocs
WO2017068259A1 (fr) Procede permettant la creation de structures nanometriques par l'auto-assemblage de copolymeres di-blocs
EP3105295B1 (fr) Procede de controle de l'energie de surface d'un substrat
WO2018109388A1 (fr) Film de compolymere a blocs nanostructure comprenant un bloc amorphe
FR3010412A1 (fr) Procede d'obtention de films epais nano-structures obtenus a partir de copolymeres a blocs
FR3101354A1 (fr) Sous-couche neutre pour copolymère à blocs et empilement polymérique comprenant une telle sous-couche recouverte d’un film de copolymère à blocs

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20151218

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

ST Notification of lapse

Effective date: 20200206