ES2862400T3 - Péptidos y combinaciones de péptidos para su uso en inmunoterapia contra el cáncer de próstata y otros cánceres - Google Patents

Péptidos y combinaciones de péptidos para su uso en inmunoterapia contra el cáncer de próstata y otros cánceres Download PDF

Info

Publication number
ES2862400T3
ES2862400T3 ES16750766T ES16750766T ES2862400T3 ES 2862400 T3 ES2862400 T3 ES 2862400T3 ES 16750766 T ES16750766 T ES 16750766T ES 16750766 T ES16750766 T ES 16750766T ES 2862400 T3 ES2862400 T3 ES 2862400T3
Authority
ES
Spain
Prior art keywords
peptide
cancer
cell
peptides
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES16750766T
Other languages
English (en)
Inventor
Andrea Mahr
Toni Weinschenk
Oliver Schoor
Jens Fritsche
Harpreet Singh
Phillip Müller
Julia Leibold
Valentina Goldfinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Immatics Biotechnologies GmbH
Original Assignee
Immatics Biotechnologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Immatics Biotechnologies GmbH filed Critical Immatics Biotechnologies GmbH
Application granted granted Critical
Publication of ES2862400T3 publication Critical patent/ES2862400T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4748Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0639Dendritic cells, e.g. Langherhans cells in the epidermis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6424Serine endopeptidases (3.4.21)
    • C12N9/6445Kallikreins (3.4.21.34; 3.4.21.35)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/5748Immunoassay; Biospecific binding assay; Materials therefor for cancer involving oncogenic proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5158Antigen-pulsed cells, e.g. T-cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/16Primer sets for multiplex assays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2570/00Omics, e.g. proteomics, glycomics or lipidomics; Methods of analysis focusing on the entire complement of classes of biological molecules or subsets thereof, i.e. focusing on proteomes, glycomes or lipidomes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Oncology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Urology & Nephrology (AREA)
  • Mycology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Hospice & Palliative Care (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Plant Pathology (AREA)

Abstract

Péptido consistente en la secuencia de aminoácidos acorde con la SEQ ID N.º 4 o una sal farmacéuticamente aceptable del mismo.

Description

DESCRIPCIÓN
Péptidos y combinaciones de péptidos para su uso en inmunoterapia contra el cáncer de próstata y otros cánceres La presente invención se refiere a péptidos, proteínas, ácidos nucleicos y células destinados a la utilización en métodos inmunoterapéuticos. En particular, la presente invención se refiere a la inmunoterapia contra el cáncer. La presente invención se refiere asimismo a epítopos peptídicos para linfocitos T asociados a tumores, solos o en combinación con otros péptidos asociados a tumores que, por ejemplo, pueden servir como principios activos farmacéuticos en composiciones vacunales destinadas a estimular respuestas inmunitarias antitumorales, o a estimular ex vivo linfocitos T que después serán transferidos a los pacientes. Los péptidos unidos a moléculas del complejo mayor de histocompatibilidad (MHC), o los péptidos como tales, también pueden ser dianas de anticuerpos, de receptores de linfocitos T solubles, y de otras moléculas de unión.
La presente invención se refiere a un péptido derivado de moléculas HLA de clase I de células tumorales humanas que puede ser utilizado en composiciones vacunales para desencadenar respuestas inmunitarias antitumorales o como diana para el desarrollo de compuestos y células farmacéutica o inmunológicamente activos.
Antecedentes de la invención
El cáncer de próstata es el segundo tipo de cáncer diagnosticado con más frecuencia en el mundo y la quinta causa de muerte por cáncer en la población masculina, con unos cálculos en 2012 de 1,1 millones de nuevos casos (15% de todos los cánceres en varones) y 0,3 millones de fallecimientos (7% del total de muertes por cáncer en varones). En el mismo período fue el tipo de cáncer más frecuente en la población masculina de 84 países, mayoritariamente en países con niveles altos o muy altos de desarrollo, pero también en varios países de África central y meridional. La American Cáncer Society calculaba que solo en EE.UU durante 2015 habría 220.800 nuevos casos de cáncer de próstata y 27.540 fallecimientos a causa del mismo. Los factores de riesgo del cáncer de próstata son la edad, los antecedentes familiares y la raza (World Cancer Report, 2014; SEER Stat facts, 2014; American Cancer Society, 2015).
Casi todos los casos de cáncer de próstata son adenocarcinomas, que aparecen en las células glandulares del órgano. Otras formas minoritarias de cáncer de próstata son los sarcomas, los carcinomas microcíticos, los tumores neuroendocrinos (aparte de los carcinomas microcíticos) o los carcinomas de células transicionales (American Cancer Society, 2015).
La estrategia terapéutica contra el cáncer de próstata depende básicamente del estadio tumoral. En el cáncer de próstata local sin metástasis, las opciones terapéuticas incluyen la vigilancia activa (aguardar y ver), la extirpación completa de la próstata y la radioterapia local con dosis altas con o sin braquiterapia. En los pacientes con alto riesgo, otras posibilidades son la ablación hormonal y la radioterapia local postoperatoria. Los tratamientos estándar para el cáncer de próstata metastásico comprenden asimismo la extirpación completa de la próstata, la radioterapia local con altas dosis y la ablación hormonal. Los tumores que no responden a la privación hormonal se denominan cáncer de próstata resistente a la castración (CRPC). Los pacientes con CRPC reciben docetaxel, abiraterona y la vacuna de células dendríticas sipuleucel-T. Las metástasis óseas se tratan con radio-223 solo o con una combinación de radio-223, docetaxel o abiterona con bisfosfonatos o denosumab (S3-Leitlinie Prostatakarzinom, 2014).
La vacuna de células dendríticas sipuleucel-T fue la primera vacuna antitumoral aprobada por la FDA. Debido a su efecto positivo sobre la supervivencia en los pacientes con CRPC, se ha hecho un gran esfuerzo por desarrollar nuevas inmunoterapias. En cuanto a las estrategias de vacunación, la vacuna peptídica TRICOM de antígeno específico de la próstata (PSA), la vacuna peptídica personalizada PPV, la vacuna de ADN pTVG-HP y la vacuna GVAX a base de células enteras que expresan el GM-CSF han mostrado resultados prometedores en diversos ensayos clínicos. Además, se ha demostrado que otras vacunas de células dendríticas aparte del sipuleucel-T, en concreto BPX-101 y DCVAC/Pa, desencadenan respuestas clínicas en pacientes con cáncer de próstata. Los inhibidores de los puntos de control inmunitarios como ipilimumab y nivolumab están siendo evaluados en estudios clínicos como monoterapia y en combinación con otros tratamientos, como el tratamiento de privación de andrógenos, la radioterapia local, PSA-TRICOM y GVAX. El inmunomodulador tasquinimod, que frenó significativamente la progresión y mejoró la supervivencia sin progresión en un estudio de fase II, sigue siendo investigado en un estudio de fase III. La lenalidomida, otro inmunomodulador, propició efectos prometedores en estudios clínicos de fase inicial, pero no mejoró la supervivencia en un estudio de fase III. A pesar de esos resultados negativos hay en marcha otros ensayos con la lenalidomida (Quinn et al., 2015).
A la vista de los graves efectos secundarios y del coste que comporta el tratamiento del cáncer, existe la necesidad de descubrir factores que puedan ser usados para el tratamiento del cáncer en general y, en particular, del cáncer de próstata. Existe asimismo la necesidad de descubrir factores que puedan servir como biomarcadores del cáncer en general y del cáncer de próstata en particular, con vistas a mejorar el diagnóstico, la valoración del pronóstico y la predicción del éxito terapéutico.
La inmunoterapia antitumoral representa una opción de tratamiento dirigido contra la células cancerosas que reduce los efectos secundarios. La inmunoterapia antitumoral aprovecha la existencia de los antígenos asociados a tumores. La clasificación actual de los antígenos asociados a tumores (TAA) comprende los siguientes grupos principales:
a) Antígenos cáncer-testículo: Los primeros TAA descubiertos que pueden ser reconocidos por linfocitos T pertenecen a esta clase, que inicialmente se denominó antígenos cáncer-testículo (CT) porque sus miembros se expresan en tumores humanos histológicamente diferentes y en los tejidos normales solo se encuentran en los espermatocitos/espermatogonias del testículo y ocasionalmente en la placenta. Como las células del testículo no expresan moléculas HLA de clase I y II, estos antígenos no pueden ser reconocidos por los linfocitos T de los tejidos normales y, por tanto, se consideran como específicos de tumor desde el punto de vista inmunológico. Ejemplos conocidos de antígenos CT son los miembros de la familia MAGE y el NY-ESO-1.
b) Antígenos de diferenciación: Estos TAA son compartidos por los tumores y por el tejido normal del que deriva el tumor. La mayoría de los antígenos de diferenciación conocidos se halla en los melanomas y en los melanocitos normales. Muchas de esas proteínas relacionadas con el linaje melanocítico participan en la biosíntesis de la melanina y no son específicas de tumor, lo que no impide que sean muy utilizadas en la inmunoterapia contra el cáncer. Algunos ejemplos son la tirosinasa y Melan-A/MART-1 en el melanoma y el PSA en el cáncer de próstata.
c) TAA sobreexpresados: Se han detectado genes que codifican TAA de amplia expresión en tumores histológicamente distintos y en numerosos tejidos normales, en general con niveles de expresión más bajos. Es posible que muchos de los epítopos procesados y posiblemente presentados por los tejidos normales lo sean por debajo del límite necesario para ser reconocidos por los linfocitos T, pero que la sobreexpresión por parte de las células tumorales rompa la tolerancia vigente hasta ese momento y desencadene la respuesta antitumoral. Ejemplos destacados de esta clase de TAA son Her-2/neu, survivina, telomerasa o WT1.
d) Antígenos específicos de tumor: Estos TAA únicos son fruto de mutaciones de genes normales (como pcatenina, CDK4, etc.) Algunos de esos cambios moleculares están relacionados con la transformación neoplásica y/o su progresión. Los antígenos específicos de tumor generalmente son capaces de inducir potentes respuestas inmunitarias sin riesgo de reacciones autoinmunitarias contra los tejidos normales. Por otro lado, casi siempre estos TAA solo son relevantes para el mismo tumor exacto en el que fueron identificados y normalmente no se encuentran en muchos otros tumores de su tipo. La especificidad (o asociación) tumoral de un péptido también puede surgir si el péptido procede de un exón del (asociado con) tumor en el caso de proteínas con isoformas específicas de tumor (asociadas con el mismo).
e) TAA resultantes de modificaciones postraduccionales anormales: Estos TAA pueden surgir a partir de proteínas que no son específicas ni se sobreexpresan en los tumores, pese a lo cual aparecen asociados a tumores por procesos postraduccionales que se activan principalmente en los tumores. Ejemplos de este tipo surgen a raíz de patrones de glucosilación alterados que generan epítopos nuevos en tumores, tal y como sucede con MUC1, o de fenómenos como el ayuste de proteínas durante la degradación, que en algunos casos pueden ser específicos de tumor.
f) Proteínas de oncovirus: Estos TAA son proteínas virales que podrían desempeñar un papel crítico en el proceso oncogénico y que, como extrañas a causa de su origen no humano, pueden desencadenar una respuesta de los linfocitos T. Ejemplos de tales proteínas son las proteínas E6 y E7 del virus del papiloma humano de tipo 16, que se expresan en el carcinoma de cuello uterino.
La inmunoterapia basada en los linfocitos T tiene como diana los epítopos peptídicos procedentes de proteínas específicas del tumor o asociadas al mismo, que son presentados por moléculas del complejo mayor de histocompatibilidad (MHC). Los antígenos que son reconocidos por los linfocitos T específicos del tumor, esto es, los epítopos, pueden ser moléculas derivadas de todo tipo de proteínas, tales como enzimas, receptores, factores de transcripción, etc., que son expresadas y que, en comparación con células inalteradas del mismo origen, están reguladas al alza en las células del tumor correspondiente.
Como todas las entidades tumorales que aparecen en órganos o tejidos que no son vitales, los antígenos específicos de la próstata pueden ser una buena opción para la inmunoterapia antitumoral porque tales antígenos representan dianas tumorales específicas en el paciente prostatectomizado. En el paciente no prostatectomizado, dichos antígenos también pueden ser interesantes porque la próstata no se considera un órgano vital, y el caso del melanoma se ha adoptado un enfoque similar con los antígenos de diferenciación melanocítica. Existen varios ejemplos que demuestran que los antígenos específicos de la próstata o los relacionados estrechamente con ella son dianas seguras, p. ej. sipuleucel-T (Provenge) de Dendreon, que comprende la fosfatasa ácida prostática como antígeno tumoral (Westdorp et al., 2014). Este antígeno no se expresa exclusivamente en la próstata pero aparece sobreexpresado en 1 o 2 órdenes de magnitud en dicho órgano con respecto a otros tejidos (Graddis et al., 2011).
Existen dos tipos de moléculas MHC: Las MHC de clase I y las MHC de clase II. Las moléculas MHC de clase I están compuestas por una cadena pesada alfa y una beta-2-microglobulina, y las moléculas de clase II por una cadena alfa y otra beta. Su conformación tridimensional da como resultado una hendidura de unión que interviene en la interacción no covalente con los péptidos.
Las moléculas MHC de clase I se encuentran en la mayoría de las células nucleadas. Presentan péptidos procedentes de la proteólisis mayoritariamente de proteínas endógenas, productos ribosómicos defectuosos (DRIP) y péptidos grandes. No obstante, los péptidos derivados de compartimentos endosómicos o de fuentes exógenas también se encuentran con frecuencia ligados a moléculas MHC de clase I. Esta vía no clásica de presentación por la clase I se denomina presentación cruzada en la bibliografía (Brossart and Bevan, 1997; Rock et al., 1990). Las moléculas MHC de clase II, que se encuentran mayoritariamente en las células presentadoras de antígeno (APC) especializadas, presentan principalmente péptidos de proteínas exógenas o transmembrana que son captadas por las APC mediante endocitosis y después procesadas por las mismas.
Los complejos constituidos por péptidos y moléculas MHC de clase I son reconocidos por los linfocitos T CD8-positivos portadores del receptor de linfocito T (TCR) adecuado, mientras que los complejos formados por péptidos y moléculas MHC de clase II son reconocidos por los linfocitos T cooperadores CD4-positivos portadores del TCR apropiado. Es bien sabido que el TCR, el péptido y el MHC están presentes en una relación estequiométrica de 1:1:1.
Los linfocitos T cooperadores CD4-positivos desempeñan un papel importante en la inducción y en el mantenimiento de respuestas eficaces por parte de los linfocitos T citotóxicos CD8-positivos. La identificación de los epítopos reconocidos por los linfocitos T CD4-positivos derivados de los antígenos asociados a tumor (TAA) reviste gran importancia para el desarrollo de productos farmacéuticos que desencadenen respuestas inmunitarias antitumorales (Gnjatic et al., 2003). Los linfocitos T cooperadores generan en el seno del tumor un entorno de citocinas que es propicio para los linfocitos T citotóxicos (CTL) (Mortara et al., 2006) que atrae a las células efectoras, como por ejemplo los propios CTL, células NK, macrófagos o granulocitos.
En ausencia de inflamación, la expresión de las moléculas MHC de clase II se circunscribe principalmente a las células del sistema inmunitario, en concreto a las células presentadoras de antígeno (APC) especializadas, como por ejemplo monocitos, células derivadas de monocitos, macrófagos y células dendríticas. En pacientes con cáncer se ha descubierto que las células del tumor expresan moléculas MHC de clase II (Dengjel y cols., 2006).
Los péptidos alargados (más largos) de la invención pueden actuar como epítopos activos para las MHC de clase II.Los linfocitos T cooperadores, activados por epítopos de MHC de clase II, desempeñan un papel importante en la coordinación de la función efectora de los CTL en la inmunidad antitumoral. Los epítopos reconocidos por los linfocitos T cooperadores que desencadenan una respuesta de los linfocitos T cooperadores del tipo TH1 apoyan las funciones efectoras de los linfocitos T citotóxicos CD8-positivos, que incluyen funciones citotóxicas dirigidas contra las células tumorales que muestran en su superficie complejos de MHC/péptido asociado a tumor. De esta forma, los epítopos de los péptidos asociados a tumores que son reconocidos por los linfocitos T cooperadores, solos o en combinación con otros péptidos asociados a tumores, pueden servir como principios activos farmacéuticos en composiciones vacunales destinadas a estimular respuestas inmunitarias antitumorales.
En modelos de mamífero como el ratón se ha demostrado que los linfocitos T CD4-positivos pueden inhibir la manifestación de los tumores aun sin el concurso de los linfocitos T CD8-positivos a través de la inhibición de la angiogenia mediante la secreción de interferón gamma (IFN-y). Existen indicios de que los linfocitos T CD4 actúan directamente como agentes efectores antitumorales (Braumuller et al., 2013; Tran et al., 2014).
Dado que la expresión constitutiva de las moléculas HLA de clase II suele ser exclusiva de las células inmunitarias, la posibilidad de aislar péptidos de clase II directamente de tumores primarios no se consideraba factible. Pero Dengjel y cols. descubrieron varios epítopos de MHC de clase II directamente en tumores (WO 2007/028574, EP 1 760088 B1).
Dado que ambos tipos de respuesta, la dependiente de CD8 y la de CD4, contribuyen conjunta y sinérgicamente al efecto antitumoral, la identificación y caracterización de los antígenos asociados a tumor reconocidos por los linfocitos T CD8+ (ligando: moléculas de MHC de clase I epítopo peptídico) o por los linfocitos T colaboradores CD4+ (ligando: moléculas de MHC de clase II epítopo peptídico) es importante para el desarrollo de vacunas antitumorales.
Para desencadenar la respuesta inmunitaria celular el péptido de MHC de clase I ha de unirse a una molécula de MHC. Este proceso depende del alelo de la molécula m Hc y de los polimorfismos específicos de la secuencia de aminoácidos del péptido. Los péptidos que se unen a las MHC de clase I suelen tener una longitud de 8 a 12 residuos de aminoácidos y suelen contener dos residuos conservados (“anclaje”) en su secuencia que interactúan con la hendidura de unión correspondiente de la molécula de MHC. De este modo cada alelo MHC posee un “motivo de unión” que determina qué péptidos se pueden unir específicamente a la hendidura de unión.
En la reacción inmunitaria dependiente de las MHC de clase I, los péptidos no solo tienen que ser capaces de unirse a ciertas moléculas MHC de clase I expresadas por las células tumorales, también tienen que ser reconocidos por linfocitos T portadores de receptores TCR específicos.
Para que las proteínas sean reconocidas por los linfocitos T como antígenos específicos o asociados a tumor y puedan ser empleadas como tratamiento, deben cumplir ciertos prerrequisitos. El antígeno debe ser expresado principalmente por células tumorales y no por tejidos sanos normales o, de hacerlo, debe serlo en cantidades comparativamente pequeñas. En una forma de realización preferida, el péptido debe ser presentado en exceso por las células tumorales con respecto a los tejidos sanos normales. Y no sólo es conveniente que el antígeno de interés esté presente únicamente en un tipo de tumor, sino que lo esté también en altas concentraciones (número de copias del péptido por célula). Los antígenos específicos de tumor y asociados a tumor proceden a menudo de proteínas que intervienen directamente en la transformación de una célula normal en una tumoral a causa de su función, por ejemplo porque intervienen en el control del ciclo celular o en la supresión de la apoptosis. Además, también las dianas ulteriores de las proteínas que son las causantes directas de la transformación pueden estar reguladas al alza y, por tanto, estar asociadas indirectamente al tumor. Tales antígenos asociados indirectamente a los tumores también pueden ser las dianas para una estrategia de vacunación (Singh-Jasuja et al., 2004). En ambos casos es esencial que la secuencia de aminoácidos del antígeno contenga epítopos, puesto que el péptido (“péptido inmunogénico”) derivado de un antígeno asociado a tumor debe desencadenar una respuesta de los linfocitos T en condiciones in vitro o in vivo.
Básicamente, cualquier péptido capaz de unirse a una molécula de MHC puede actuar como un epítopo de linfocito T. Un prerrequisito para la inducción de una respuesta de linfocitos T in vitro o in vivo es la presencia de un linfocito T dotado del correspondiente TCR y la ausencia de tolerancia inmunitaria hacia ese epítopo en particular.
Por consiguiente, los TAA son un punto de partida para el desarrollo de una terapia basada en linfocitos T incluidas, entre otras, las vacunas antitumorales. Los métodos para identificar y caracterizar los TAA están basados en el uso de linfocitos T que pueden aislarse de pacientes o de individuos sanos, o están basados en la generación de perfiles de transcripción diferenciales o patrones de expresión peptídica diferenciales entre los tumores y los tejidos normales. No obstante, la identificación de genes sobreexpresados o expresados selectivamente en tejidos tumorales o en estirpes de células tumorales humanas no aporta información precisa acerca del uso de los antígenos transcritos de esos genes en la inmunoterapia. Ello se explica porque solo una subpoblación individual de epítopos de esos antígenos resulta adecuada para aplicaciones de ese tipo, puesto que ha de haber un linfocito T con el TCR correspondiente y la inmunotolerancia hacia ese epítopo concreto ha de ser mínima o nula. Por tanto, en una forma de realización muy preferida de la invención es importante seleccionar únicamente aquellos péptidos que sean presentados en exceso o de forma selectiva contra los cuales se encuentre un linfocito T funcional y/o proliferativo. Un linfocito T funcional se define como un linfocito T que tras la estimulación con un antígeno específico puede sufrir una expansión clonal y ser capaz de ejecutar funciones efectoras (“linfocito T efector”).
En el caso de dirigir la acción contra complejos péptido-MHC a través de TCR específicos (p. ej., TCR solubles) y de los anticuerpos u otras moléculas de unión (soportes) conformes a la invención, la inmunogenicidad de los péptidos subyacentes es secundaria. En tales casos, la presentación es el factor determinante.
Resumen de la invención
En un primer aspecto de la presente invención, la presente invención concierne a un péptido que consta de la secuencia de aminoácidos acorde con la SEQ ID N.° 4, o una sal farmacéuticamente aceptable de la misma.
WO 2004/016643 da a conocer péptidos antigénicos asociados a tumores que son capaces de unirse con eficacia a una molécula del MHC de clase I para desencadenar una respuesta de CTL.
Tsavaler et al. (Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res. 2001 May 1;61(9):3760-9) dan a conocer que la proteína TRPM8 se expresa en diversos tipos de cáncer.
Las tablas siguientes muestran los péptidos dados a conocer, sus respectivas SEQ ID N.°, y los probables genes originarios (subyacentes) de tales péptidos. Todos los péptidos de la Tabla 1, la Tabla 3 y la Tabla 5 se unen a los alelos HLA-A*02. Todos los péptidos de la Tabla 2, la Tabla 4 y la Tabla 6 se unen a los alelos HLA-A*24. Los péptidos de la Tabla 3 y la Tabla 4 han sido dados a conocer con anterioridad en grandes listados resultantes del cribado genético ultrarrápido con elevadas tasas de error o son el resultado del cálculo con algoritmos, pero no habían sido vinculados en absoluto con el cáncer hasta ahora. Los péptidos de la Tabla 5 y la Tabla 6 son péptidos adicionales que podrían ser útiles si se combinan con los demás péptidos dados a conocer. Los péptidos de la Tabla 7 y la Tabla 8 son además útiles para el diagnóstico y/o el tratamiento de otros tipos de neoplasias malignas en las que interviene una sobreexpresión o una presentación en exceso del respectivo polipéptido originario.
T l 1: P i HLA-A* 2 n r. L E ID N.° 4 nf rm l r n inv n i n.
Figure imgf000005_0001
continuación
Figure imgf000006_0004
Tabla 2: Pétidos HLA-A*24 dados a conocer.
Figure imgf000006_0005
Tal : P i HLA-A*2 ii nl n r in rvi rl in n i n l n r. = f f rina
Figure imgf000006_0002
- *
Figure imgf000006_0003
T l : P i HLA-A*2 il r r ml r mi n r nliz nr l n r.
Figure imgf000006_0001
- *
Figure imgf000007_0001
Tabla 7: Péptidos dados a conocer y usos específicos de los mismos en otras enfermedades proliferativas, especialmente en enfermedades cancerosas. La tabla expone los péptidos seleccionados que se han hallado en otros tipos de tumores adicionales bien sobrepresentados en más del 5% de las muestras tumorales analizadas, bien presentados en más del 5% de las muestras tumorales analizadas con un cociente entre las medias geométricas del tejido tumoral y del tejido normal superior a tres. La sobrepresentación se define como una presentación más elevada en la muestra tumoral en comparación con la muestra normal que muestra la presentación más elevada. Los tejidos normales (no cancerosos) con los que se comparó la sobrepresentación se seleccionaron entre los siguientes: tejido adiposo, glándula suprarrenal, arteria, médula ósea, cerebro, nervio central, colon, duodeno, esófago, ojo, vesícula biliar, corazón, riñón, hígado, pulmón, ganglio linfático, leucocito mononuclear, páncreas, glándula paratiroidea, nervio periférico, peritoneo, hipófisis, pleura, recto, glándula salival, músculo esquelético, piel, intestino delgado, bazo, estómago, glándula tiroides, tráquea, uréter, vejiga urinaria y venas.
Figure imgf000007_0002
continuación
Figure imgf000008_0001
La presente invención, además, se refiere en general al péptido conforme a la presente invención para el uso en el tratamiento de enfermedades proliferativas, como por ejemplo, el cáncer de pulmón, el cáncer de pulmón microcítico, melanoma, cáncer de hígado, cáncer de mama, cáncer de útero, carcinoma de células de Merkel, cáncer de páncreas, cáncer de vesícula biliar, cáncer de las vías biliares, carcinoma colorrectal, cáncer de la vejiga urinaria, cáncer de pulmón amicrocítico, cáncer de riñón, leucemia (p. ej. LMA o LLC), cáncer de ovario, cáncer de esófago, cáncer de cerebro y cáncer gástrico (estómago).
Se dan a conocer los péptidos -solos o en combinación- seleccionados del grupo consistente en las SEQ ID N.° a SEQ ID N.° 48. Se prefieren ante todo los péptidos -solos o en combinación- seleccionados del grupo consistente en las SEQ ID N.° 1 a SEQ ID N.° 6 (véase la Tabla 1) y las SEQ ID N.° 24 a SEQ ID N.° 28 (véase la Tabla 2) o las SEQ ID N.° 1, 4, 5, 6, 49 y 52 o las SEQ ID N.° 2, 3 y 54, y sus usos en la inmunoterapia del cáncer de pulmón, cáncer de pulmón microcítico, melanoma, cáncer de hígado, cáncer de mama, cáncer de útero, carcinoma de células de Merkel, cáncer de páncreas, cáncer de vesícula biliar, cáncer de las vías biliares, carcinoma colorrectal, cáncer de la vejiga urinaria, cáncer de pulmón amicrocítico, cáncer de riñón, leucemia (p. ej. LMA o LLC), cáncer de ovario, cáncer de esófago, cáncer de cerebro y cáncer gástrico (estómago), pero más preferentemente el cáncer de próstata. Tal y como se ha mostrado antes en la Tabla 7, muchos de los péptidos dados a conocer también se encuentran en otros tipos de tumor y, por tanto, también pueden ser usados en la inmunoterapia para otras indicaciones. Véanse también la Figura 1 y el Ejemplo 1.
Se da a conocer el uso de los péptidos dados a conocer para el tratamiento -preferentemente en combinación- de una enfermedad proliferativa seleccionada entre el grupo consistente en melanoma, cáncer hepático, cáncer de mama, cáncer de útero, carcinoma de células de Merkel, cáncer pancreático, cáncer de vesícula biliar, cáncer de vías biliares, cáncer colorrectal, cáncer de vejiga urinaria, cáncer de pulmón amicrocítico, cáncer renal, leucemia (p. ej. LMA o LLC), cáncer de ovario, cáncer de esófago, cáncer de cerebro y cáncer gástrico (de estómago), y más preferentemente del cáncer de próstata.
El péptido acorde con la presente invención tienen la capacidad de unirse a una molécula del complejo mayor de histocompatibilidad humana (MHC) de clase I.
La presente invención se refiere, además, al péptido conforme a la presente invención, en que dicho péptido incluye enlaces no peptídicos.
La presente invención se refiere, además, a los péptidos conformes a la presente invención, en que dicho péptido es parte de una proteína de fusión, en particular fusionado con los aminoácidos N-terminales de la cadena invariable asociada al antígeno HLA-DR (Ii), o fusionado con (o integrado en la secuencia de) un anticuerpo, como por ejemplo, un anticuerpo que es específico de células dendríticas.
Otra forma de realización de la presente invención se refiere a un péptido no presente en la naturaleza en la que dicho péptido consiste en una secuencia de aminoácidos conforme a la SEQ ID N.° 4 y ha sido producido sintéticamente (p. ej. sintetizado) en forma de una sal aceptable desde el punto de vista farmacéutico. Los métodos para la síntesis de péptidos son bien conocidos en la materia. Las sales de los péptidos conformes a la presente invención difieren sustancialmente de los péptidos en su estado o estados in vivo, puesto que los péptidos no se hallan en forma de sal en las condiciones in vivo. De la forma artificial de sal del péptido depende su solubilidad, en particular en el contexto de composiciones farmacéuticas que comprenden péptidos, como, por ejemplo, las vacunas peptídicas que se dan a conocer en la presente memoria. Para que los péptidos se puedan suministrar de modo eficaz al sujeto a tratar, es preciso que el péptido o péptidos tengan la suficiente solubilidad, por lo menos sustancial.
Preferiblemente, las sales de los péptidos deben ser sales farmacéuticamente aceptables. Estas sales conformes a la invención incluyen sales alcalinas y alcalinotérreas como las sales de la serie de Hofmeister que comprenden aniones como PO43-, SO42-, CH3COO-, Cl-, Br-, NO3-, CO4-, I-, SCN- y cationes como NH4+, Rb+, K+, Na+, Cs+, Li+, Zn2+, Mg2+, Ca2+, Mn2+, Cu2+ y Ba2+. En concreto, las sales se seleccionan entre las siguientes: (NH4)3PO4, (NH4)2HPO4, (NH4)H2PO4, (NH4)2SO4, NH4CH3COO, NH4C NH4Br, NH4NO3, NH4CIO4, NH4I, NH4SCN, Rb3PO4, Rb2HPO4, RbH2PO4, Rb2SO4, Rb4CH3COO, Rb4Cl, Rb4Br, Rb4NO3, Rb4CIO4, Rb4I, Rb4SCN, K3PO4, K2HPO4, KH2PO4, K2SO4, KCH3COO, KCl, KBr, KNO3, KClO4, KI, KSCN, Na3PO4, Na2HPO4, NaH2PO4, Na2SO4, NaCH3COO, NaCl, NaBr, NaNO3, NaCIO4, NaI, NaSCN, ZnCI2 Cs3PO4, Cs2HPO4, CsH2PO4, Cs2SO4, CsCH3COO, CsCl, CsBr, CsNO3, CsCIO4, CsI, CsSCN, Li3PO4, Li2HPO4, LiH2PO4, Li2SO4, LiCH3COO, LiCl, LiBr, LiNO3, LiClO4, LiI, LiSCN, Cu2SO4, Mg3(PO4)2, Mg2HPO4, Mg(H2PO4)2, Mg2SO4, Mg(CH3COO)2, MgCl2, MgBr2, Mg(NO3)2, Mg(ClO4)2, MgI2, Mg(SCN)2, MnCl2, Ca3(PO4),, Ca2HPO4, Ca(H2PO4)2, CaSO4, Ca(CH3COO)2, CaCl2, CaBr2, Ca(NO3)2, Ca(ClO4)2, CaI2, Ca(SCN)2, Ba3(PO4)2, Ba2HPO4, Ba(H2PO4)2, BaSO4, Ba(CH3COO)2, BaCh, BaBr2, Ba(NO3)2, Ba(C Ba(SCN)2. En particular se prefieren el n H acetato, MgCl2, KH2PO4, Na2SO4, KCl, NaCl y CaCh, como, por ejemplo, las sales de cloruro o acetato (trifluoroacetato).
En general, los péptidos (al menos aquellos que contienen enlaces peptídicos entre los residuos de aminoácidos) pueden ser sintetizados utilizando la síntesis de péptidos en fase sólida por el método de Fmoc-poliamida, como muestra Lukas et al. ((Lukas et al., 1981) y las referencias que aparecen en el mismo. La protección temporal del grupo N-amino se consigue con el grupo 9-fluorenilmetiloxicarbonilo (Fmoc). La escisión repetida de este grupo protector muy sensible al pH básico se lleva a cabo con piperidina al 20% en N,N-dimetilformamida. Los grupos funcionales de las cadenas laterales se podrían proteger si se transformaran en éteres de butilo (en el caso de la serina, treonina y tirosina), ésteres de butilo (en el caso del ácido glutámico y aspártico), derivados butiloxicarbonílicos (en el caso de la lisina y la histidina), derivados tritilados (en el de la cisteína) y derivados 4-metoxi-2,3,6-trimetilbenzenosulfonílicos (en el de la arginina). Cuando los residuos C-terminales son glutamina o asparragina se utiliza el grupo 4,4'-dimetoxibenzhidrilo para proteger los grupos funcionales amido de la cadena lateral. El soporte en fase sólida se basa en un polímero de polidimetil-acrilamida constituido por los tres monómeros siguientes: dimetilacrilamida (monómero estructural), bisacriloiletilendiamina (entrelazante) y acriloilsarcosina metiléster (funcionalizador). El agente escindible que mantiene unido el péptido a la resina es un derivado del ácido
4-hidroximetilfenoxiacético, sensible a pH ácido. Todos los derivados de aminoácidos se añaden en forma de derivados anhídridos simétricos preformados salvo la asparragina y la glutamina, que se añaden utilizando un procedimiento de acoplamiento inverso con N,N-diciclohexil-carbodiimida/1-hidroxibenzotriazol. Todas las reacciones de acoplamiento y desprotección se controlan con procedimientos de ensayo con ninhidrina, ácido trinitrobencenosulfónico o isotina. Una vez completada la síntesis, los péptidos se separan del soporte de resina y al mismo tiempo se eliminan los grupos protectores de las cadenas laterales mediante el tratamiento con ácido trifluoroacético al 95% con una mezcla de capturadores (scavengers) al 50%. Los capturadores utilizados normalmente son etanditiol, fenol, anisol y agua, dependiendo de la elección exacta de los aminoácidos constituyentes del péptido que se está sintetizando. La síntesis de péptidos también es posible combinando metodologías de fase sólida y de fase en solución (véase, por ejemplo, (Bruckdorfer et al., 2004) y las referencias citadas en el mismo).
El ácido trifluoroacético se elimina por evaporación en vacío y se procede a la trituración con dietiléter para obtener el péptido bruto. Todos los capturadores (scavengers) se eliminan con un procedimiento de extracción simple que con la liofilización de la fase acuosa proporciona el péptido bruto exento de ellos. Los reactivos para la síntesis de péptidos se pueden conseguir en general por ejemplo de Calbiochem-Novabiochem (Nottingham, Reino Unido).
La purificación puede llevarse a cabo mediante cualquier técnica o combinación de técnicas como la recristalización, cromatografía por exclusión de tamaño, cromatografía de intercambio iónico, cromatografía por interacción hidrofóbica, y (normalmente) cromatografía de líquidos de alto rendimiento con fase inversa utilizando p. ej., la separación con gradiente de acetonitrilo/agua.
La presente invención se refiere, además, a un ácido nucleico, que codifica el péptido acorde con la presente invención. La presente invención se refiere, además, al ácido nucleico acorde con la presente invención que es ADN, ADNc, APN, ARN o combinaciones de los anteriores.
La presente invención se refiere, además, a un vector de expresión que expresa un ácido nucleico conforme a la presente invención.
La presente invención se refiere, además, a un péptido acorde con la presente invención, un ácido nucleico acorde con la presente invención o un vector de expresión acorde con la presente invención para el uso en el tratamiento de enfermedades y en medicina, en concreto para el tratamiento del cáncer.
La presente invención concierne, además, a anticuerpos específicamente dirigidos contra el péptido acorde con la presente invención o contra complejos formados por dicho péptido con el MHC, así como métodos para fabricarlos.
La presente invención concierne, además, a receptores de linfocitos T (TCR), en concreto de TCR solubles (sTCR) y TCR clonados y sintetizados en linfocitos T autólogos o alogénicos, y a métodos para fabricarlos, así como con linfocitos citolíticos naturales (o células NK) u otro tipo de células que sean portadoras de dichos TCR o reaccionen de forma cruzada con dichos TCR.
Los anticuerpos y los TCR constituyen formas de realización adicionales del uso inmunoterapéutico del péptido acorde con la presente invención.
La presente invención se refiere, además, a una célula hospedadora que contiene un ácido nucleico acorde con la presente invención o un vector de expresión tal y como se ha descrito antes. La presente invención se refiere, además, a una célula hospedadora acorde con la presente invención que es una célula presentadora de antígeno, y preferiblemente es una célula dendrítica.
La presente invención se refiere, además, a un método para producir un péptido acorde con la presente invención, el cual comprende el cultivo de la célula hospedadora acorde con la presente invención y el aislamiento del péptido de dicha célula hospedadora o de su medio de cultivo.
La presente invención se refiere, además, al método acorde con la presente invención en que el antígeno es cargado en moléculas de MHC de clase I o II expresadas en la superficie de una célula presentadora de antígeno adecuada o de una célula presentadora de antígeno artificial mediante la puesta en contacto de una cantidad suficiente de antígeno con la célula presentadora de antígeno.
La presente invención se refiere, además, al método acorde con la presente invención, en que la célula presentadora de antígeno comprende un vector de expresión que posibilita la expresión de dicho péptido portador de la SEQ ID N.° 4.
La presente invención se refiere, además, a linfocitos T activados, producidos con el método acorde con la presente invención, que reconocen selectivamente una célula que expresa un polipéptido que comprende una secuencia de aminoácidos conforme a la presente invención.
Se da a conocer un método para destruir células diana en un paciente cuyas células diana expresan de forma aberrante un polipéptido que comprende cualquiera de las secuencias de aminoácidos conformes a la presente invención, comprendiendo el método la administración al paciente de un número eficaz de linfocitos T producidos conforme a la presente invención.
La presente invención se refiere, además, al uso como medicamento o en la fabricación de un medicamento del péptido descrito, del ácido nucleico conforme a la presente invención, del vector de expresión conforme a la presente invención, de la célula conforme a la presente invención, del linfocito T activado, del receptor de linfocitos T o del anticuerpo acordes con la presente invención para el uso como un medicamento o en la fabricación de un medicamento. Preferiblemente, dicho medicamento es activo contra el cáncer.
Preferiblemente, dicho medicamento servirá como terapia celular, como vacuna o como proteína basada en un TCR soluble o un anticuerpo.
La presente invención se refiere, además, a un uso acorde con la presente invención, en que dichas células cancerosas son células de cáncer de pulmón, cáncer de pulmón microcítico, melanoma, cáncer hepático, cáncer de mama, cáncer de útero, carcinoma de células de Merkel, cáncer de páncreas, cáncer de vesícula biliar, cáncer de vías biliares, cáncer colorrectal, cáncer de vejiga urinaria, cáncer de pulmón amicrocítico, cáncer renal, leucemia (p. ej. LMA o LLC), cáncer de ovario, cáncer de esófago, cáncer de cerebro y cáncer gástrico (de estómago), pero preferentemente células de cáncer de próstata.
Opcionalmente el anticuerpo puede estar dotado de otra función efectora, como es un dominio inmunoestimulante o una toxina.
En la siguiente descripción detallada de las proteínas originarias (polipéptidos) de los péptidos conforme a la invención se dan a conocer diversas aplicaciones contra otros tipos de cáncer, tanto terapéuticas como diagnósticas. Canal receptor de cationes de elevación transitoria del potencial, subfamilia M, miembro 8 (TRPM8) - El TRPM8 es un canal de sodio y calcio que se activa como respuesta a estímulos de frío. El TRPM8 se expresa principalmente en las células epiteliales de la próstata, así como en ciertas neuronas sensoriales (Prevarskaya et al., 2007). Se ha descrito su sobreexpresión en el cáncer de próstata y en otros tipos de cáncer, tales como el de mama, colon, pulmón y piel (Tsavaler et al., 2001).
Descripción detallada de la invención
La estimulación de una respuesta inmunitaria depende de la presencia de antígenos que sean reconocidos como extraños por el sistema inmunitario del hospedador. El descubrimiento de la existencia de antígenos asociados a tumores ha suscitado la posibilidad de utilizar el sistema inmunitario del hospedador para intervenir sobre el crecimiento de los tumores. Actualmente se están explorando diversos mecanismos para aprovechar las defensas humorales y celulares del sistema inmunitario en la inmunoterapia contra el cáncer.
Ciertos elementos de la respuesta inmunitaria celular son capaces de reconocer específicamente y de destruir las células tumorales. El aislamiento de linfocitos T entre las células infiltradas en los tumores o en la sangre periférica hace pensar en que tales células desempeñan un papel importante en las defensas inmunitarias naturales contra el cáncer. Los linfocitos T CD8-positivos en particular, que reconocen las moléculas de clase I del complejo mayor de histocompatibilidad (MHC) portadoras de péptidos que suelen tener de 8 a 10 residuos de aminoácidos derivados de proteínas o de productos ribosómicos defectuosos (DRIPS) localizados en el citosol, desempeñan un importante papel en esta respuesta. Las moléculas MHC del ser humano también se denominan antígenos leucocitarios humanos (HLA).
En la presente memoria, salvo que se indique otra cosa, todos los términos corresponden a las definiciones ofrecidas a continuación.
El término “respuesta de linfocitos T” define la proliferación y la activación específicas de las funciones efectoras inducidas por un péptido in vitro o in vivo. En el caso de los linfocitos T citotóxicos restringidos a MHC de clase I, las funciones efectoras pueden consistir en la lisis de células diana presentadoras naturales de péptido o bien sensibilizadas de manera repetida con un péptido o con un precursor del mismo; la secreción de citocinas, preferiblemente de interferón gamma, TNF-alfa o IL-2 inducida por péptido; la secreción de moléculas efectoras, preferiblemente granzimas o perforinas inducidas por péptido; o la desgranulación.
El término “péptido” designa aquí una serie de residuos de aminoácidos conectados entre sí típicamente mediante enlaces peptídicos entre los grupos amino-alfa y carbonilo de los aminoácidos adyacentes. Los péptidos tienen preferiblemente 9 aminoácidos de longitud, pero pueden tener solo 8 aminoácidos de longitud, pero también hasta 10, 11, 12 o 13 o más aminoácidos, y en el caso de los péptidos de MHC de clase II (variantes alargadas de los péptidos dados a conocer) pueden tener hasta 14, 15, 16, 17, 18, 19 o 20 o más aminoácidos de longitud.
Además, el término “péptido” incluye sales de una serie de residuos de aminoácidos conectados entre sí típicamente por enlaces peptídicos entre los grupos amino-alfa y carbonilo de los aminoácidos adyacentes. Preferentemente las sales son sales farmacéuticamente aceptables de los péptidos, como por ejemplo, sales de cloruro o acetato (trifluoroacetato). Se ha de destacar que las sales de los péptidos conformes a la presente invención difieren sustancialmente de los péptidos en su estado o estados in vivo, puesto que los péptidos no se hallan en forma de sal en tales condiciones in vivo.
El término “péptido” incluye también “oligopéptido”. El término “oligopéptido” designa aquí una serie de residuos de aminoácidos conectados entre sí típicamente mediante enlaces peptídicos entre los grupos amino-alfa y carbonilo de los aminoácidos adyacentes. La longitud del oligopéptido no es crucial, siempre que se mantenga el epítopo o epítopos adecuados. Los oligopéptidos suelen tener una longitud inferior a unos 30 aminoácidos y mayor de 15, aproximadamente.
El término “polipéptido” designa una serie de residuos de aminoácidos conectados entre sí típicamente por enlaces peptídicos entre los grupos amino-alfa y carbonilo de los aminoácidos adyacentes. La longitud del polipéptido no es crucial en la invención, siempre que se mantengan los epítopos adecuados. En contraste con los términos “péptido” y “oligopéptido”, el término “polipéptido” se refiere a las moléculas de más de unos 30 residuos de aminoácidos de longitud.
Un péptido, oligopéptido, proteína o polinucleótido que codifica dicha molécula es “inmunogénico” (y, por lo tanto, un “inmunógeno” en la presente invención), si es capaz de inducir una respuesta inmunitaria. En el caso de la presente invención, la inmunogenicidad se define más específicamente como la capacidad para desatar una respuesta por parte de los linfocitos T. Por lo tanto, un “inmunógeno” sería una molécula que es capaz de inducir una respuesta inmunitaria y, en el caso de la presente invención, una molécula capaz de inducir una respuesta de los linfocitos T. En otro aspecto, el inmunógeno puede ser el péptido, el complejo del péptido con m Hc , el oligopéptido y/o la proteína que es utilizado para generar anticuerpos o TCR específicos contra él.
Un “epítopo” de clase I de un linfocito T requiere un péptido corto que esté unido a un receptor MHC de clase I, formando un complejo ternario (cadena alfa de MHC de clase I, beta-2-microglobulina y péptido) que puede ser reconocido por un linfocito T que lleve un receptor de linfocito T que coincida y que se una al complejo MHC/péptido con la afinidad adecuada. Los péptidos que se unen a moléculas MHC de clase I suelen tener una longitud de entre 8 y 14 aminoácidos, y más habitualmente de 9 aminoácidos.
En el ser humano hay tres locus genéticos diferentes que codifican las moléculas MHC de clase I (las moléculas MHC del ser humano también se denominan antígenos leucocitarios humanos [HLA]): HLA-A, HLA-B y HLA-C. HLA-A, HLA-B y HLA-C. HLA-A*01, HLA-A*02 y HLA-B*07 son ejemplos de distintos alelos MHC de clase I que se pueden expresar a partir de estos locus.
Tabla 8: Frecuencias de expresión F de HLA-A*02 y HLA-A*24 y los serotipos más frecuentes de1HLA-DR. Las frecuencias se infieren de las frecuencias haplotípicas Gf en la población norteamericana adaptadas de Mori y cols. (Mori et al., 1997) empleando la fórmula de Hardy-Weinberg F=1-(1-Gf)2 Las combinaciones de A*02 o A*24 con determinados alelos HLA-DR podrían ser más o menos abundantes de lo esperado a partir de sus frecuencias il i l ili ri li min . Pr m ll v h n k l. h n k l. 2 4.
Figure imgf000012_0001
continuación
Figure imgf000013_0001
Los péptidos dados a conocer, preferiblemente cuando figuren incluidos en una vacuna tal y como se describe en la presente memoria se unirán a HLA-A*02 o HLA-A*24. Una vacuna también podría incluir péptidos que se unan a cualquier MHC de clase II. Por consiguiente, la vacuna puede ser usada para tratar el cáncer en pacientes que sean A*02 positivos, mientras que la no selección para los alotipos de MHC de clase II es necesaria debido a la naturaleza panunionista de esos péptidos.
Combinar péptidos A*02 dados a conocer con péptidos que se unen a otro alelo, por ejemplo el A*24, tiene la ventaja de que se puede tratar a un porcentaje mayor de cualquier población de pacientes que si ésta solo se dirigiera contra un único alelo MHC de la clase I. Mientras que en la mayoría de poblaciones solo se podría tratar a menos del 50% si se optara por uno solo de los alelos, una vacuna que comprenda epítopos HLA-A*24 y HLA-A*02 de la invención permite tratar como mínimo al 60% de los pacientes de cualquier población relevante. En concreto, los porcentajes de pacientes positivos para al menos uno de tales alelos en diversas regiones son los siguientes: EE. UU. 61%, Europa occidental 62%, China 75%, Corea del Sur 77%, Japón 86% (calculados a partir de www.allelefrequencies.net).
En una forma de realización preferida, el término “secuencia nucleotídica” hace referencia a un heteropolímero de desoxirribonucleótidos.
La secuencia nucleotídica que codifica un péptido, oligopéptido o polipéptido en particular puede ser natural o estar construida de forma sintética. Generalmente, los segmentos de a Dn que codifican los péptidos, polipéptidos y proteínas de la presente invención se ensamblan a partir de fragmentos de ADNc y de oligonucleótidos cortos de enlace, o a partir de una serie de oligonucleótidos, con el fin de proporcionar un gen sintético capaz de ser expresado en una unidad transcripcional recombinante que comprenda elementos reguladores derivados de un operón microbiano o vírico.
Tal y como se utiliza en la presente memoria el término “un nucleótido que codifica un péptido” se refiere a una secuencia de nucleótidos que codifica el péptido y que incluye codones artificiales (sintetizados por el hombre) de inicio y terminación compatibles con el sistema biológico en el que la secuencia va a ser expresada por, por ejemplo, una célula dendrítica u otro sistema celular útil para la producción de TCR.
En la presente memoria, la referencia a una secuencia de ácido nucleico incluye tanto el ácido nucleico monocatenario como bicatenario. Por lo tanto, en lo que concierne por ejemplo al ADN, la secuencia específica, a menos que el contexto indique otra cosa, se refiere al ADN monocatenario de dicha secuencia, a la doble cadena formada por dicha secuencia con su complementaria (ADN bicatenario) y a la cadena complementaria de dicha secuencia.
El término “región codificante” hace referencia a la porción de un gen que, o bien de forma natural o normal, codifica el producto de expresión de dicho gen en su ambiente genómico natural, por ejemplo, la región que codifica in vivo el producto de expresión natural del gen.
La región codificante puede derivar de un gen no mutado (“normal”), mutado o alterado, o incluso puede provenir de una secuencia de a Dn , o gen, sintetizada íntegramente en el laboratorio con métodos bien conocidos para los expertos en la síntesis de ADN.
El término “producto de expresión” define al polipéptido o a la proteína que es el producto natural de la traducción del gen y cualquier secuencia de ácidos nucleicos que codifiquen los equivalentes resultantes de la degeneración del código genético y, por tanto, que codifican el mismo aminoácido o aminoácidos.
El término “fragmento”, cuando se refiere a una secuencia de codificación, define una porción de ADN que no comprende la región codificante entera, cuyo producto de expresión conserva esencialmente la misma actividad o función biológica que el producto de expresión de la región codificante entera.
El término “segmento de ADN” hace referencia a un polímero de ADN, en forma de un fragmento separado o como componente de un constructo de ADN mayor, que deriva de ADN aislado por lo menos una vez en una forma sustancialmente pura, es decir, exento de materiales endógenos contaminantes y en una cantidad o concentración que permite la identificación, la manipulación y la recuperación del segmento y de sus secuencias nucleotídicas constituyentes mediante métodos bioquímicos estándar como, por ejemplo, mediante un vector de clonación. Dichos segmentos se suministran en forma de un marco de lectura abierto sin interrupciones por secuencias internas no traducidas, o intrones, que suelen estar presentes en los genes eucariotas. Las secuencias de ADN no traducidas pueden estar presentes corriente abajo (downstream) desde el marco de lectura abierto, donde no interfieren con la manipulación o la expresión de las regiones codificantes.
El término “cebador” define una secuencia corta de ácidos nucleicos que puede aparearse con una cadena de ADN y que proporciona un extremo 3'-OH libre en el que una polimerasa de ADN puede comenzar la síntesis de una cadena de desoxirribonucleótidos.
El término “promotor” define una región de ADN implicada en la unión de la polimerasa de ARN para iniciar la transcripción.
El término “aislado” define el material que se extrae de su entorno original (por ejemplo, el entorno natural, si ocurre de forma natural). Por ejemplo, un polinucleótido o un polipéptido natural presente en un animal vivo no está aislado, pero ese mismo polinucleótido o polipéptido lo estará si es separado de parte o de todos los materiales coexistentes en el sistema natural. Tales polinucleótidos podrán formar parte de un vector y/o tales polinucleótidos o polipéptidos podrán formar parte de una composición, y seguir estando aislados en dicho vector o composición puesto que estos no forman parte de su entorno natural.
Los polinucleótidos, y los polipéptidos recombinantes o inmunógenos, descritos de acuerdo con la presente invención también pueden presentarse en forma “purificada”. El término “purificado” no implica pureza absoluta; más bien, se utiliza como definición relativa y puede incluir preparaciones altamente purificadas o preparaciones tan sólo parcialmente purificadas, tal y como los expertos en la materia entienden dichos términos. Por ejemplo, los clones individuales aislados de una genoteca de ADNc se han purificado de manera convencional hasta obtener una homogeneidad electroforética. Se contempla expresamente la purificación del material de inicio o del material natural hasta, al menos, un orden de magnitud; preferiblemente, dos o tres órdenes de magnitud; y, con mayor preferencia, cuatro o cinco órdenes de magnitud. Además, se contempla expresamente el polipéptido reivindicado que tiene una pureza de, preferiblemente, el 99,999%, o, al menos, del 99,99% o el 99,9%; y, más convenientemente, del 99% por peso o mayor.
Los productos de expresión de los polipéptidos y los ácidos nucleicos descritos conforme a la presente invención, así como los vectores de expresión que contienen dichos ácidos nucleicos y/o dichos polipéptidos, pueden utilizarse en “forma enriquecida”. Tal y como se usa aquí, el término “enriquecido” significa que la concentración del material es, al menos, unas 2, 5, 10, 100 o 1000 veces su concentración natural (por ejemplo), más ventajosamente 0,01% por peso, y, preferiblemente, aproximadamente de 0,1% al menos, por peso. También se contemplan preparaciones enriquecidas de alrededor del 0,5%, 1%, 5%, 10% y 20% por peso. Las secuencias, constructos, vectores, clones y otros materiales que comprenden la presente invención pueden utilizarse, según convenga, en su forma enriquecida o aislada. El término “fragmento activo” define un fragmento, normalmente un péptido, polipéptido o secuencia de ácidos nucleicos, que genera una respuesta inmunitaria (es decir, que posee actividad inmunógena) cuando se administra -solo u, opcionalmente, con un adyuvante adecuado o en un vector- a un animal, que puede ser un mamífero como, por ejemplo, un conejo o un ratón, sin excluir a un ser humano; dicha respuesta inmunitaria adopta la forma de estimulación de una respuesta de linfocitos T en el animal receptor como, por ejemplo, el ser humano. De forma alternativa, el “fragmento activo” también se puede usar para inducir una respuesta de linfocitos T in vitro. Tal y como se usan en la presente memoria, los términos “porción”, “segmento” y “fragmento”, cuando se utilizan en relación a los polipéptidos, hacen referencia a una secuencia continua de residuos, como residuos de aminoácidos, secuencia que es un subconjunto de una secuencia mayor. Por ejemplo, si un polipéptido se somete a un tratamiento con cualquiera de las endopeptidasas habituales, como la tripsina o la quimiotripsina, los oligopéptidos resultantes de dicho tratamiento representarán porciones, segmentos o fragmentos del polipéptido inicial. Utilizados en relación con los polinucleótidos, estos términos se refieren a los productos producidos por el tratamiento de dichos polinucleótidos con cualquiera de las endonucleasas.
Conforme a la presente invención, el término “identidad porcentual” o “porcentaje de identidad”, al referirse a una secuencia, significa que una secuencia se compara con una secuencia reivindicada o descrita después de alinear la secuencia que se va a comparar (la “secuencia comparada”) con la secuencia descrita o reivindicada (la “secuencia de referencia”). La identidad porcentual se determina entonces con la siguiente fórmula:
Identidad porcentual = 100 [1 -(C/R)]
donde C es el número de diferencias entre la secuencia de referencia y la secuencia comparada a lo largo de la alineación entre la secuencia de referencia y la secuencia comparada, donde
(i) cada base o aminoácido de la secuencia de referencia que no tiene una base o aminoácido alineados en la secuencia comparada y
(ii) cada hueco (gap) de la secuencia de referencia y
(iii) cada base o aminoácido alineado de la secuencia de referencia que difiere de una base o aminoácido alineado de la secuencia comparada, constituye una diferencia; y
(iiii) la alineación tiene que comenzar en la posición 1 de las secuencias alineadas;
y R es el número de bases o aminoácidos de la secuencia de referencia a lo largo de la alineación con la secuencia comparada con cualquier hueco creado en la secuencia de referencia, también contabilizado como una base o un aminoácido.
Si existe una alineación entre la secuencia comparada y la secuencia de referencia para la que la identidad porcentual, calculada como se ha especificado arriba, es aproximadamente igual o mayor que una identidad porcentual mínima especificada, entonces la secuencia comparada guarda la identidad porcentual mínima especificada con la secuencia de referencia, aunque puedan existir alineaciones en las que la identidad porcentual calculada arriba resulte menor que la identidad porcentual especificada.
Como se ha mencionado antes, la presente invención proporciona pues un péptido consistente en la secuencia de aminoácidos conforme a la SEQ ID N.° 4, o una sal farmacéuticamente aceptable del mismo. El péptido de la invención tiene la capacidad de unirse a una molécula del complejo mayor de histocompatibilidad humana (MHC) de clase II.
En la presente invención el término “homólogo” se refiere al grado de identidad (véase antes Identidad porcentual) entre las secuencias de dos secuencias de aminoácidos, es decir secuencias peptídicas o polipeptídicas. La susodicha “homología” se determina comparando las dos secuencias alineadas en condiciones óptimas con las secuencias a comparar. La homología de secuencia se puede calcular creando una alineación con el algoritmo ClustalW, por ejemplo. Habitualmente las bases de datos públicas proporcionan software para el análisis de secuencias, en concreto, Vector NTI, GENETYX u otras herramientas.
Una persona versada en la materia será capaz de valorar si los linfocitos T inducidos por una variante del péptido específico serán capaces de reaccionar con el propio péptido (Appay et al., 2006; Colombetti et al., 2006; Fong et al., 2001; Zaremba et al., 1997).
Los linfocitos T pueden después reaccionar con células y matar las que expresen un polipéptido que contenga la secuencia de aminoácidos natural del péptido afín definido en los aspectos de la invención. Como se puede deducir de la bibliografía y de las bases de datos científicas (Rammensee et al., 1999; Godkin et al., 1997), ciertas posiciones de los péptidos de unión a HLA son normalmente residuos de anclaje que forman una secuencia central que encaja en el motivo de unión del receptor HLA, que está definida por las propiedades polares, electrofísicas, hidrofóbicas y espaciales de las cadenas polipeptídicas que constituyen la hendidura de unión.
Por supuesto, el péptido conforme a la presente invención tendrá la capacidad para unirse a una molécula del complejo mayor de histocompatibilidad humano (MHC) de clase I e-4. La unión de un péptido a un complejo MHC se puede analizar con métodos conocidos en la técnica.
Preferiblemente, cuando los linfocitos T específicos para un péptido acorde con la presente invención se prueben contra los péptidos sustituidos, la concentración de péptido a la cual los péptidos sustituidos consiguen la mitad del aumento máximo de la lisis respecto al valor de fondo es como máximo de alrededor de 1 mM, preferiblemente como máximo de alrededor de 1 pM, más preferiblemente como máximo de alrededor de 1 nM, y aún más preferentemente como máximo de alrededor de 100 pM, y más preferentemente como máximo de alrededor de 10 pM. También se prefiere que el péptido sustituido sea reconocido por los linfocitos T de más de un individuo, de al menos dos, y más preferiblemente de tres individuos.
El péptido consiste en una secuencia de aminoácidos conforme a la SEQ ID N.° 4.
“Consiste esencialmente en” significa que un péptido conforme a la presente invención, además de la secuencia conforme a cualquiera de las SEQ ID N.° 1 a SEQ ID N.° 48 o una variante de las mismas contiene segmentos adicionales de aminoácidos localizados en los extremos N- y/o C-terminal que no forman parte necesariamente del péptido que funciona como un epítopo para el epítopo de moléculas MHC.
En una forma de realización de la presente invención, el péptido es una parte de una proteína de fusión que comprende, por ejemplo, los 80 aminoácidos N-terminales de la cadena invariable asociada al antígeno HLA-DR (p33, en lo sucesivo “Ii”) tal y como aparece en el NCBI, número de acceso de GenBank X00497.En otras fusiones, los péptidos de la presente invención se pueden fusionar con un anticuerpo tal y como se describe en la presente memoria, o con una parte funcional del mismo, en particular integrándolo en la secuencia del anticuerpo, para que vayan dirigidos específicamente por dicho anticuerpo, o por ejemplo, con un anticuerpo que es específico para las células dendríticas tal y como se describe en la presente memoria.
Además, el péptido puede ser modificado aún más para mejorar la estabilidad y/o la unión a las moléculas de MHC con el fin de desencadenar una respuesta inmunitaria más potente. Los métodos para conseguir esa optimización de una secuencia peptídica son bien conocidos en la técnica e incluyen, por ejemplo, la introducción de enlaces no peptídicos.
¡Error! Marcador no definido.¡Error! Marcador no definido.
Enlaces no peptídicos son, por ejemplo: -CH2-NH, -CH2S-, -CH2CH2-, -CH=CH-, -COCH2-, -CH(OH)CH2- y -CH2SO-. La patente de EE. UU. 4.897.445 proporciona un método para la síntesis en fase sólida de enlaces no peptídicos (-CH2-NH) en cadenas polipeptídicas que implica la obtención de polipéptidos con procedimientos estándar y la síntesis del enlace no peptídico mediante la reacción de un aminoaldehído y un aminoácido en presencia de NaCNBH3.
Péptidos que comprenden las secuencias descritas arriba pueden ser sintetizados con otros grupos químicos añadidos en los extremos amino y/o carboxi, con el fin de mejorar la estabilidad, la biodisponibilidad y/o la afinidad de los péptidos. Por ejemplo, grupos hidrofóbicos como los grupos carbobenzoxilo, dansilo, o t-butiloxicarbonilo pueden añadirse a los extremos amino de los péptidos. De manera similar, se puede colocar un grupo acetilo o un grupo 9-fluorenilmetoxi-carbonilo en los extremos amino de los péptidos. Asimismo, p. ej., el grupo hidrofóbico tbutiloxicarbonilo, o un grupo amido pueden ser añadidos en los extremos carboxi de los péptidos.
Un péptido que incluye enlaces no peptídicos es una forma de realización preferida de la invención. En general, los péptidos (al menos aquellos que contiene enlaces peptídicos entre los residuos de aminoácidos) pueden ser sintetizados p. ej., utilizando la síntesis de péptidos en fase sólida por el método de Fmoc-poliamida, como muestra Lukas y cols. (Lukas et al., 1981) y las referencias que aparecen en el mismo. La protección provisional del grupo N-amino se consigue con el grupo 9-fluorenilmetiloxicarbonilo (Fmoc). La escisión repetida de este grupo protector muy sensible al pH básico se lleva a cabo con piperidina al 20% en N,N-dimetilformamida. Los grupos funcionales de las cadenas laterales se podrían proteger si se transformaran en éteres de butilo (en el caso de la serina, treonina y tirosina), ésteres de butilo (en el caso del ácido glutámico y aspártico), derivados butiloxicarbonílicos (en el caso de la lisina y la histidina), derivados tritilados (en el de la cisteína) y derivados 4-metoxi-2,3,6-trimetilbencenosulfonílicos (en el de la arginina). Cuando los residuos C-terminales son glutamina o asparragina se utiliza el grupo 4,4'-dimetoxibenzhidrilo para proteger los grupos funcionales amido de la cadena lateral. El soporte en fase sólida se basa en un polímero de polidimetil-acrilamida constituido por los tres monómeros dimetilacrilamida (monómero estructural), bisacriloiletilendiamina (entrelazante) y acriloilsarcosina metiléster (funcionalizador). El agente escindible que mantiene unido el péptido a la resina es un derivado del ácido 4-hidroximetilfenoxiacético, sensible a pH ácido. Todos los derivados de aminoácidos se añaden en forma de derivados anhídridos simétricos preformados salvo la asparragina y la glutamina, que se añaden utilizando un procedimiento de acoplamiento inverso con N,N-diciclohexilcarbodiimida/1-hidroxibenzotriazol. Todas las reacciones de acoplamiento y desprotección se controlan con procedimientos de ensayo con ninhidrina, ácido trinitrobencenosulfónico o isotina. Una vez completada la síntesis, los péptidos se separan del soporte de resina y al mismo tiempo se eliminan los grupos protectores de las cadenas laterales mediante el tratamiento con ácido trifluoroacético al 95% con una mezcla de capturadores (scavengers) al 50%. Los capturadores (scavengers) utilizados normalmente son etanditiol, fenol, anisol y agua, dependiendo de la elección exacta de los aminoácidos constituyentes del péptido que se está sintetizando. La síntesis de péptidos también es posible combinando metodologías de fase sólida y de fase en solución (véase por ejemplo (Bruckdorfer et al., 2004) y las referencias citadas en la misma).
El ácido trifluoroacético se elimina por evaporación en vacío y se procede a la trituración con dietiléter para obtener el péptido bruto. Todos los capturadores (scavengers) se eliminan con un procedimiento de extracción simple que con la liofilización de la fase acuosa proporciona el péptido bruto exento de ellos. Los reactivos para la síntesis de péptidos se pueden conseguir en general por ejemplo de Calbiochem-Novabiochem (Nottingham, Reino Unido). La purificación puede llevarse a cabo mediante cualquier técnica o combinación de técnicas como la recristalización, cromatografía por exclusión de tamaño, cromatografía de intercambio iónico, cromatografía por interacción hidrofóbica, y (normalmente) cromatografía de líquidos de alto rendimiento con fase inversa utilizando p. ej., la separación con gradiente de acetonitrilo/agua.
El análisis de los péptidos puede efectuarse utilizando cromatografía de capa fina, electroforesis, en particular electroforesis capilar, extracción en fase sólida (CSPE), cromatografía de líquidos de alto rendimiento con fase inversa, análisis de aminoácidos tras hidrólisis ácida y análisis con espectrometría de masas por bombardeo con átomos rápidos (FAB), así como análisis con espectrometría de masas MALDI y ESI-Q-TOF.
Para seleccionar los péptidos sobrepresentados se calcula un perfil de presentación que muestra la presentación mediana de la muestra así como la variación de los duplicados. El perfil yuxtapone muestras de la entidad tumoral de interés con muestras de tejido normal de referencia. Cada uno de esos perfiles se puede después consolidar en una puntuación de sobrepresentación calculando el valor p de un modelo lineal de efectos mixtos (Pinheiro et al., 2015) ajustando para el análisis múltiple con la Tasa de descubrimiento falso (False Discovery Rate) (Benjamini and Hochberg, 1995) (Véase el ejemplo 1 ).
Para la identificación y la cuantificación relativa de los ligandos HLA mediante espectrometría de masas se purificaron moléculas HLA de muestras de tejido criogenizadas y se aislaron los péptidos asociados a HLA. Puesto que los péptidos derivados de antígenos específicos de la próstata se pueden detectar en cualquier tejido prostático, ya sea benigno o maligno, además de especímenes de tejido canceroso prostático también se analizaron muestras de hiperplasia benigna de próstata con el fin de averiguar qué péptidos son codificados por antígenos específicos de la próstata. Los péptidos aislados se separaron y se identificaron sus secuencias mediante cromatografía de líquidos-espectrometría de masas con ionización por nano-electronebulización (nanoESI) en línea. Las secuencias peptídicas resultantes se verificaron comparando el patrón de fragmentación de los TUMAP naturales registrados a partir de muestras de cáncer de próstata (N= 34 muestras positivas para A*02 y N= 37 muestras positivas para A*24) así como muestras de hiperplasia benigna de próstata (N= 10 muestras positivas para A*02 y N= 3 muestras positivas para A*24) con los patrones de fragmentación de péptidos sintéticos de referencia de secuencia idéntica. Dado que los péptidos se identificaron directamente como ligandos de moléculas HLA de tejido tumoral, estos resultados proporcionan pruebas directas del procesamiento y de la presentación de los péptidos identificados en tejido tumoral obtenido de 70 pacientes con un tumor de próstata.
La plataforma para el descubrimiento de fármacos patentada XPRESIDENT® v2.1 (véase por ejemplo US 2013­ 0096016) permite la identificación y la selección de candidatos a vacuna peptídica que están sobrepresentados en función de la cuantificación relativa de los niveles de péptidos restringidos a HLA en tejidos cancerosos respecto a diversos tejidos y órganos normales. Ello se consiguió mediante el desarrollo de la cuantificación diferencial sin marcador con los datos adquiridos de CL-EM procesados con una plataforma de análisis de datos patentada que combina algoritmos para la identificación de secuencias, agrupamiento de espectros, recuento iónico, alineamiento del tiempo de retención, deconvolución del estado de carga y normalización.
Se calcularon los niveles de presentación incluyendo estimaciones de error para cada péptido y cada muestra. Se identificaron los péptidos presentados exclusivamente en tejido tumoral y los péptidos sobrepresentados en tejido tumoral respecto a los tejidos y órganos no cancerosos.
Los complejos HLA-péptido de muestras de tejido de cáncer de próstata se purificaron y los péptidos asociados al HLA se aislaron y se analizaron con cromatografía de líquidos y espectrometría de masas en tándem (CL-EM) (véanse los ejemplos). Todos los TUMAP contenidos en la presente solicitud se identificaron con esta estrategia en muestras de tumor de próstata, que confirman su presentación en tumores de próstata.
Los TUMAP identificados en múltiples tejidos de cáncer de próstata, hiperplasia prostática y normales se cuantificaron con recuento iónico de los datos de CL-EM sin marcador. El método supone que las áreas de señal de CL-EM de un péptido están correlacionadas con su abundancia en la muestra. Todas las señales cuantitativas producidas por cada péptido en varios experimentos de CL-EM se normalizaron con medidas de tendencia central, se promediaron por muestra y se combinaron en un diagrama de barras, llamado perfil de presentación. El perfil de presentación combina diversos métodos de análisis como la búsqueda en bases de datos de proteínas, agrupación de espectros, deconvolución del estado de carga (descarga) y alineamiento del tiempo de retención y normalización. Además, la plataforma para el descubrimiento de fármacos patentada XPRESIDENT® v2.x permite la cuantificación absoluta directa de las concentraciones de complejos MHC-péptido, preferentemente restringidos por HLA, en tejidos cancerosos o en otros tejidos infectados. En suma, a partir del contenido total de ADN de la muestra de tejido analizada se calcula el número total de células. La cantidad total de péptido correspondiente a un TUMAP que estaba presente en una muestra de tejido se midió mediante nano LC-MS/MS en forma del cociente del TUMAP natural con respecto a una cantidad conocida de una versión radiomarcada del TUMAP, el llamado patrón interno. La eficiencia del proceso de aislamiento del TUMAP se determinó introduciendo deliberadamente complejos de péptido:MHC de todos los TUMAP seleccionados en el lisado de tejido lo antes posible durante el procedimiento de aislamiento del TUMAP y procediendo a su detección por nanoCL-EM/EM una vez concluido el procedimiento de aislamiento del péptido. El recuento total de células y la cantidad de péptido total se calcularon a partir de mediciones por triplicado de cada muestra de tejido. Las eficiencias del aislamiento de cada péptido concreto se calcularon en forma de promedio de 10 experimentos de enriquecimiento, cada uno con mediciones por triplicado (véase el Ejemplo 6).
La presente invención proporciona un péptido que es útil para el tratamiento de cánceres/tumores, preferentemente del cáncer de próstata, que sobrepresentan o presentan exclusivamente el péptido de la invención. La espectrometría de masas ha revelado que ese péptido es presentado de forma natural por moléculas HLA en muestras humanas de tumor de próstata.
Se ha demostrado que el gen o genes/proteína o proteínas originarios (también denominadas “proteínas enteras” o “proteínas subyacentes”) del cual derivan los péptidos aparecen notablemente sobreexpresados en los tumores con respecto a los tejidos normales -en la presente invención “tejidos normales” significa que son células de otros tejidos normales no prostáticos- lo cual demuestra el alto grado de relación con el tumor de los genes originarios (véase el Ejemplo 2). Asimismo, los propios péptidos aparecen sobrepresentados intensamente en el tejido tumoral - “tejido tumoral” significa en relación con la presente invención una muestra procedente de un paciente aquejado un tumor de próstata, pero no de tejidos normales (véase el Ejemplo 1).
Los péptidos de unión a HLA pueden ser reconocidos por el sistema inmunitario, específicamente por los linfocitos T. Los linfocitos T pueden destruir las células que presentan el complejo HLA/péptido reconocido, por ejemplo células de tumor de próstata que presenten los péptidos derivados.
Los péptidos dados a conocer han demostrado su capacidad para estimular las respuestas de los linfocitos T y/o están sobrepresentados y, por tanto, pueden ser utilizados para la producción de anticuerpos y/o TCR, en concreto TCR solubles, conforme a la presente invención (véanse el Ejemplo 3 y el Ejemplo 4). Asimismo, cuando los péptidos están formando un complejo con el MHC correspondiente pueden ser utilizados también para la producción de anticuerposy/o TCR, en concreto TCR solubles, conforme a la presente invención. Los métodos pertinentes son conocidos por los expertos y también se pueden hallar en la bibliografía pertinente. Así pues, los péptidos dados a conocer son útiles para generar en un paciente una respuesta inmunitaria con la que destruir células tumorales. La respuesta inmunitaria se puede inducir en el paciente con la administración directa de los péptidos descritos o de sustancias precursoras adecuadas (p. ej., péptidos alargados, proteínas o ácidos nucleicos que codifiquen dichos péptidos), idealmente en combinación con un agente que potencie la inmunogenicidad (un adyuvante). Cabe esperar que la respuesta inmunitaria generada por esa vacunación terapéutica sea muy específica contra las células tumorales porque los tejidos normales no prostáticos no contienen los péptidos diana de la presente invención en un número comparable de copias, lo cual evita el riesgo de reacciones autoinmunitarias perjudiciales contra las células normales del paciente. Los antígenos específicos de la próstata pueden ser una buena opción para la inmunoterapia antitumoral contra el cáncer de próstata porque tales antígenos representan dianas tumorales específicas en el paciente prostatectomizado. En el paciente con cáncer de próstata que no ha sido sometido a prostatectomía, tales antígenos también pueden ser interesantes porque la próstata no se considera un órgano vital.
La presente descripción se refiere también a receptores de linfocitos T (TCR) que comprenden una cadena alfa y una cadena beta (“TCR alfa/beta”). Asimismo, proporciona péptidos de la invención capaces de unirse a TCR y anticuerpos cuando son presentados por una molécula del MHC. La presente descripción también se refiere a ácidos nucleicos, vectores y células hospedadoras para expresar los TCR y los péptidos de la presente descripción, así como métodos para el uso de los mismos.
El término “receptor de linfocito T” (abreviado TCR) se refiere a una molécula heterodimérica que comprende una cadena polipeptídica alfa (cadena alfa) y una cadena polipeptídica beta (cadena beta), en que el receptor heterodimérico es capaz de unirse a un antígeno peptídico presentado por una molécula HLA. El término también incluye a los llamados TCR gamma y delta.
En una forma de realización la descripción proporciona un método para producir un TCR como el descrito en la presente memoria, comprendiendo dicho método el cultivo de una célula hospedadora capaz de expresar el TCR en las condiciones idóneas para promover la expresión de dicho receptor.
La descripción en otro aspecto concierne a métodos acordes con la descripción, en que el antígeno se carga en moléculas MHC de clase I o II que se expresan en la superficie de una célula presentadora de antígeno adecuada o en una célula presentadora de antígeno artificial mediante la puesta en contacto de una cantidad suficiente de antígeno con una célula presentadora de antígeno o bien el antígeno se carga en tetrámetros MHC de clase I o II mediante la tetramerización de los monómeros del complejo MHC de clase I o II/antígeno.
Las cadenas alfa y beta de los TCR alfa/beta, y las cadenas gamma y delta de los TCR gamma/delta, se consideran en general dotadas de dos “dominios”, esto es, dominios variable y constante. El dominio variable consiste en la concatenación de la región variable (V) con la región de unión (J). El dominio variable también puede incluir una región líder (L). Las cadenas beta y delta también pueden incluir una región de diversidad (D). Los dominios constantes alfa y beta también pueden incluir dominios transmembrana (TM) C-terminales que anclan las cadenas alfa y beta a la membrana celular.
Con respecto a los TCR gamma/delta, el término “dominio variable de cadena gamma de TCR” tal y como se emplea en la presente memoria se refiere a la concatenación de la región V de la cadena gamma del TCR sin región líder (L) (TRGV) con la región J de la cadena gamma del TCR (TRGJ), y el término “dominio constante de cadena gamma de TCR” se refiere a la región extracelular TRGC, o a una secuencia TRGC truncada en su extremo C-terminal. De modo similar, el término “dominio variable de cadena delta de TCR” se refiere a la concatenación de la región V de la cadena delta del TCR (TRDV) sin la región líder (L) con la región D/J de la cadena delta del TCR (TRDD/TRDJ), y el término “dominio constante de cadena delta de TCR” se refiere a la región extracelular TRDC, o a una secuencia TRDC truncada en su extremo C-terminal.
Los TCR de la presente descripción se unen preferentemente a un complejo de péptido-molécula de HLA con una afinidad de unión (KD) de aproximadamente l0o pM o menos, aproximadamente 5o pM o menos, aproximadamente 25 pM o menos, o aproximadamente 10 pM o menos. Se prefieren más los TCR con alta afinidad dotados de una afinidad de unión de aproximadamente 1 pM o menos, aproximadamente 100 nM o menos, aproximadamente 50 nM o menos, aproximadamente 25 nM o menos. Algunos ejemplos sin ánimo de limitación de intervalos de afinidad de unión preferidos para los TCR de la presente invención son: aproximadamente 1 nM a aproximadamente 10 nM; aproximadamente 10 nM a aproximadamente 20 nM; aproximadamente 20 nM a aproximadamente 30 nM; aproximadamente 30 nM a aproximadamente 40 nM; aproximadamente 40 nM a aproximadamente 50 nM; aproximadamente 50 nM a aproximadamente 60 nM; aproximadamente 60 nM a aproximadamente 70 nM; aproximadamente 70 nM a aproximadamente 80 nM; aproximadamente 80 nM a aproximadamente 90 nM; y aproximadamente 90 nM a aproximadamente 100 nM.
Tal y como se usa en relación con los TCR de la presente descripción, “unión específica” y las variantes gramaticales de dicho término se emplean para designar un TCR dotado de una afinidad de unión (KD) hacia un complejo formado por un péptido de la invención y una molécula HLA igual o inferior a 100 pM.
Los TCR heterodiméricos alfa/beta de la presente descripción pueden incorporar un enlace disulfuro introducido entre sus dominios constantes. Los TCR preferidos de este tipo incluyen aquellos dotados con una secuencia de dominio constante TRAC y con una secuencia de dominio constante TRBC1 o TRBC2, excepto porque la Thr 48 de TRAC y la Ser 57 de TRBC1 o TRBC2 son sustituidas por residuos de cisteína, y dichas cisteínas forman un enlace disulfuro entre la secuencia de dominio constante TRAC y la secuencia de dominio constante TRBC1 o TRBC2 del TCR.
Con o sin el susodicho enlace intercatenario introducido, los TCR heterodiméricos alfa/beta de la presente descripción pueden tener una secuencia de dominio constante TRAC y una secuencia de dominio constante TRBC1 o TRBC2, y la secuencia de dominio constante TRAC y la secuencia de dominio constante TRBC1 o TRBC2 del TCR pueden estar enlazadas mediante el enlace disulfuro nativo establecido entre la Cys4 del exón 2 de TRAC y la Cys2 del exón 2 de TRBC1 o TRBC2.
Los TCR de la presente descripción pueden comprender un marcador detectable seleccionado del grupo consistente en un radionúclido, un fluoróforo o biotina. Los TCR de la presente descripción pueden estar conjugados con un principio terapéuticamente activo, como un radionúclido, un agente quimioterápico o una toxina.
En una forma de realización, un TCR de la presente descripción portador de al menos una mutación de la cadena alfa y/o de al menos una mutación de la cadena beta presenta una modificación por glucosilación en comparación con el TCR no mutado.
En una forma de realización, un TCR que comprende al menos una mutación en su cadena alfa y/o en su cadena beta posee una afinidad de unión y/o una semivida de unión con un complejo de péptido-molécula HLA, que al menos duplica la de un TCR cuya cadena alfa y/o beta no está(n) mutada(s). La potenciación de la afinidad de los TCR específicos de tumor, y su aprovechamiento, depende de la existencia de una franja de afinidades óptimas de tales receptores. La existencia de tal franja se basa en las observaciones de que los TCR específicos para patógenos restringidos a HLA-A2 presentan valores KD que en general son unas 10 veces menores que los TCR específicos para los autoantígenos asociados a tumor restringidos a HLA-A2. Ahora sabemos que a pesar de que los antígenos tumorales tienen el potencial de ser inmunogénicos, puesto que los tumores se originan a partir de las propias células del individuo, solo las proteínas mutadas o las proteínas con un procesamiento traduccional alterado serán detectadas como extrañas por el sistema inmunitario. Los antígenos que están regulados al alza o sobreexpresados (llamados autoantígenos) no inducen necesariamente una respuesta inmunitaria funcional contra el tumor: Los linfocitos T que expresen TCR que sean altamente reactivos contra dichos antígenos serán seleccionados negativamente en el timo en un proceso conocido como tolerancia central, lo que significa que solo pervivirán los linfocitos T cuyos TCR presenten una baja afinidad hacia los autoantígenos. Así pues, la afinidad de los TCR o de las variantes de la presente descripción hacia los péptidos de la invención puede ser potenciada mediante métodos bien conocidos en la técnica.
La presente descripción se refiere, además, a un método para identificar y aislar un TCR acorde con la presente descripción, el cual comprende: La incubación de PBMC procedentes de donantes sanos negativos para HLA-A*02 con monómeros de A2/péptido de la invención; la incubación de los PBMC con tetrámeros marcados con ficoeritrina (PE); y el aislamiento de los linfocitos T dotados de gran afinidad mediante el análisis de selección de células activado por fluorescencia (FACS)-Calibur.
La presente descripción se refiere, además, a un método para identificar y aislar un TCR conforme a la presente descripción, el cual comprende: La obtención de un ratón transgénico con los locus enteros del gen TCRap humano (1,1 y 0,7 Mb), cuyos linfocitos T expresen un repertorio diverso de TCR humanos que compense la deficiencia de TCR murinos; la inmunización del ratón con el HAVCR1-001; la incubación de las PBMC obtenidas de los ratones transgénicos con tetrámeros marcados con ficoeritrina (PE); y el aislamiento de los linfocitos T con gran afinidad mediante el análisis de selección de células activado por fluorescencia (FACS)-Calibur.
En un aspecto, con el fin de obtener los linfocitos que expresan los TCR de la presente descripción, los ácidos nucleicos que codifican las cadenas TCR-alfa y/o TCR-beta de la presente descripción se clonan en vectores de expresión, como retrovirus gamma o lentivirus. Se crean los virus recombinantes y se analiza su funcionalidad, como la especificidad antigénica y la afinidad funcional. A continuación se toma una alícuota del producto final para transducir a la población destinataria de linfocitos T (generalmente purificada a partir de los PBMC del paciente), que se expande antes de administrarla vía infusión al paciente.
En otro aspecto, para obtener linfocitos T que expresen TCR de la presente descripción, los ARN del TCR se sintetizan con técnicas conocidas en la técnica, como, por ejemplo, sistemas de transcripción in vitro. A continuación, los ARN del TCR sintetizados in vitro se introducen mediante electroporación en linfocitos T D8+ primarios procedentes de donantes sanos para reexpresar las cadenas TCR-alfa y/o TCR-beta específicas del tumor.
Con el fin de potenciar la expresión, los ácidos nucleicos que codifican los TCR de la presente descripción pueden enlazarse funcionalmente con promotores potentes, como repeticiones terminales largas de retrovirus (LTR), citomegalovirus (CMV), virus de citoblastos murino (MSCV) U3, fosfoglicerato cinasa (PGK), p-actina, ubiquitina y un promotor compuesto de virus simiesco 40 (SV40)/CD43, el factor de elongación (EF)-1a y el promotor del virus formador de focos en el bazo (SFFV). En una forma de realización preferida, el promotor es heterólogo con respecto al ácido nucleico que se expresa.
Además de promotores potentes, los casetes de expresión del TCR de la presente descripción pueden contener otros elementos adicionales para potenciar la expresión del transgén, como un tracto central polipurínico (cPPT), el cual promueve la traslocación nuclear de los contructos lentivíricos (Follenzi et al., 2000), o el elemento regulador postrancripcional del virus de la marmota (wPRE), que aumenta el nivel de expresión del transgén al reforzar la estabilidad del ARN (Zufferey et al., 1999).
Las cadenas alfa y beta de un TCR de la presente invención pueden ser codificadas por ácidos nucleicos localizados en vectores separados, o pueden serlo por polinucleótidos localizados en un mismo vector.
Alcanzar un alto nivel de expresión del TCR en la superficie celular exige que tanto las cadenas TCR-alfa como TCR-beta del TCR introducido se transcriban en abundancia. Con ese fin, las cadenas TCR-alfa y TCR-beta de la presente descripción se pueden clonar en constructos bicistrónicos en un mismo vector, los cuales han demostrado ser capaces de superar ese obstáculo. La inserción de un sitio de entrada intrarribosómico del virus (IRES) entre las cadenas TCR-alfa y TCR-beta da pie a la expresión coordinada de ambas cadenas, porque ambas son generadas a partir de un único transcrito que se escinde en dos proteínas durante la traducción, asegurando así la producción equimolar de ambas cadenas (Schmitt et al. 2009).
Los codones de los ácidos nucleicos que codifican los TCR de la presente descripción pueden ser optimizados para potenciar la expresión en la célula hospedadora. La redundancia del código genético permite que algunos aminoácidos sean codificados por más de un codón, pero ciertos codones son menos “idóneos” que otros por la disponibilidad relativa de los ARNt correspondientes, entre otros factores (Gustafsson et al., 2004). Se ha demostrado que la modificación de las secuencias génicas de la TCR-alfa y la TCR-beta de modo tal que cada aminoácido sea codificado por el codón más idóneo para la expresión génica en mamíferos, así como la supresión de los motivos que provocan inestabilidad en el ARNm o de los sitios de escisión ocultos mejora notablemente la expresión génica de ambas cadenas (Scholten et al., 2006).
Además, el emparejamiento erróneo entre las cadenas de TCR introducidas y las endógenas puede derivar en la adquisición de especificidades que supongan un riesgo significativo para la autoinmunidad. Por ejemplo, la formación de dímeros mixtos de las cadenas del TCR puede reducir el número de moléculas disponibles para formar complejos TCR correctamente aparejados, y por tanto reducir notablemente la avidez funcional de las células que expresan el TCR introducido (Kuball et al., 2007).
A fin de reducir el emparejamiento erróneo se puede modificar el dominio C-terminal de las cadenas del TCR introducidas que forman parte de la presente descripción para promover la afinidad entre las cadenas, al tiempo que reducir las posibilidades de que esas cadenas introducidas se emparejen con los TCR endógenos. Tales estrategias pueden consistir en: La sustitución de los dominios C-terminales de las cadenas TCR-alfa y TCR-beta humanas con sus contrapartidas murinos (dominio C-terminal murinizado); la creación de un segundo enlace disulfuro entre las cadenas en el dominio C-terminal mediante la introducción de un segundo residuo de cisteína tanto en las cadenas TCR-alfa como TCR-beta del TCR introducido (modificación con cisteína); cambiar los residuos que interactúan de los dominios C-terminales de las cadenas TCR-alfa y TCR-beta (“knob-in-hole"); y la fusión directa de los dominios variables de ambas cadenas con el CD3Z (fusión con CD3Z). (Schmitt et al. 2009).
En una forma de realización, se modifica con técnicas de ingeniería genética una célula hospedadora para que exprese un TCR de la presente descripción. En formas de realización preferidas, la célula hospedadora es un linfocito T humano o una célula progenitora de linfocito T humana. En algunas formas de realización el linfocito T o la célula progenitora de linfocito T se obtienen de un paciente con cáncer. En otras formas de realización el linfocito T o la célula progenitora de linfocito T se obtienen de un donante sano. Las células hospedadoras de la presente descripción pueden ser alogénicas o autólogas con respecto al paciente que va a ser tratado. En una forma de realización, la hospedadora es un linfocito T gamma/delta transformado para expresar un TCR alfa/beta.
Una “composición farmacéutica” es una composición apta para la administración a un ser humano en un contexto médico. Preferiblemente, dicha composición farmacéutica es estéril y se fabrica conforme a las directrices de Buenas Prácticas de Fabricación (BPF).
Las composiciones farmacéuticas pueden comprender los péptidos en forma libre o en forma de una sal farmacéuticamente aceptable (véase también más arriba). Tal y como se utiliza en la presente memoria, “sal farmacéuticamente aceptable” se refiere a un derivado de los péptidos descritos en el que el péptido es modificado para obtener sales ácidas o básicas del agente. Por ejemplo, las sales ácidas se preparan a partir de la base libre (normalmente la forma neutra del fármaco posee un grupo -NH2 neutro) haciéndola reaccionar con un ácido adecuado. Ácidos adecuados para la preparación de sales ácidas incluyen tanto ácidos orgánicos, p. ej., ácido acético, ácido propiónico, ácido glicólico, ácido pirúvico, ácido oxálico, ácido málico, ácido malónico, ácido succínico, ácido maleico, ácido fumárico, ácido tartárico, ácido cítrico, ácido benzoico, ácido cinnámico, ácido mandélico, ácido metanosulfónico, ácido etanosulfónico, ácido p-toluensulfónico, ácido salicílico y similares, como ácidos inorgánicos, como por ejemplo ácido clorhídrico, ácido bromhídrico, ácido sulfúrico, ácido nítrico, ácido fosfórico y similares. A la inversa, la preparación de sales básicas a partir de grupos ácidos que pueden estar presentes en un péptido se preparan empleando una base farmacéuticamente aceptable como hidróxido de sodio, hidróxido de potasio, hidróxido de amonio, hidróxido de calcio, trimetilamina o similares.
En una forma de realización especialmente preferida, las composiciones farmacéuticas comprenden los péptidos en forma de sales de ácido acético (acetatos), trifluoroacetatos o ácido clorhídrico (cloruros).
Preferiblemente, el medicamento de la presente invención es un agente inmunoterapéutico como una vacuna. La vacuna puede administrarse directamente al paciente, en el órgano afectado o por vía sistémica de forma i.d., i.m, s.c., i.p. e i.v., o aplicarse ex vivo a células derivadas del paciente o a una línea celular humana que después se administra al paciente, o utilizarse in vitro para seleccionar una subpoblación de células inmunitarias derivadas del paciente que después se le vuelven a administrar. Si el ácido nucleico se administra a células in vitro, puede ser útil que estas células sean transfectadas para que expresen simultáneamente citocinas inmunoestimuladoras, como la interleucina-2. El péptido puede ser sustancialmente puro, o combinarse con un adyuvante inmunoestimulador (véase abajo) o utilizarse en combinación con citocinas inmunoestimuladoras, o bien administrarse mediante otro sistema de liberación adecuado, como por ejemplo liposomas. El péptido también se puede conjugar con un transportador adecuado como la hemocianina de lapa californiana (KLH) o el manano (véase WO 95/18145 y (Longenecker et al., 1993)).El péptido también puede estar marcado, o ser una proteína de fusión, o ser una molécula híbrida. Se espera que los péptidos cuya secuencia se ofrece en la presente invención estimulen a los linfocitos T CD4 o CD8. No obstante, la estimulación de los linfocitos T CD8 es más eficiente si cuentan con la ayuda de los linfocitos T cooperadores CD4. Así pues, en el caso de los epítopos de MHC de clase I que estimulan a los linfocitos T CD8 la pareja de fusión o las secciones de una molécula híbrida adecuada proporcionan epítopos que estimulan a los linfocitos T CD4-positivos. Los epítopos estimuladores de los CD4 y los CD8 son bien conocidos en la técnica e incluyen los identificados en la presente invención.
En un aspecto, la vacuna comprende al menos un péptido dotado de la secuencia de aminoácidos expuesta en la SEQ ID N.° 4, y al menos otro péptido adicional, preferiblemente dos a 50, más preferiblemente dos a 25, incluso más preferiblemente dos a 20 y más preferiblemente aún dos, tres, cuatro, cinco, seis, siete, ocho, nueve, diez, once, doce, trece, catorce, quince, dieciséis, diecisiete o dieciocho péptidos. Los péptidos pueden derivar de uno o más TAA específicos y se pueden unir a moléculas MHC de clase I.
Otro aspecto de la invención proporciona un ácido nucleico (por ejemplo un polinucleótido) que codifica un péptido de la invención. El polinucleótido puede ser, por ejemplo, ADN, ADNc, APN, ARN o combinaciones de los mismos, monocatenarios y/o bicatenarios, o formas nativas o estabilizadas de polinucleótidos, como por ejemplo, polinucleótidos con un esqueleto de fosforotioato y que pueden contener intrones siempre que codifique el péptido. Por supuesto, sólo los péptidos que contengan residuos de aminoácidos naturales unidos por enlaces peptídicos naturales pueden ser codificados por un polinucleótido. Otro aspecto más de la invención proporciona un vector de expresión que hace expresar un polipéptido conforme a la invención.
Se han desarrollado diversos métodos para unir polinucleótidos, especialmente ADN, a vectores, por ejemplo a través de extremos cohesivos complementarios. Por ejemplo, al segmento de ADN se le pueden añadir prolongaciones de homopolímeros complementarios para insertarlo en el vector de ADN. El vector y el segmento de ADN se unen a continuación por medio de puentes de hidrógeno entre las colas homopoliméricas complementarias para formar moléculas de ADN recombinante.
Otro método alternativo para unir el segmento de ADN a los vectores son los ligadores sintéticos que contienen uno o más sitios de restricción. Existen ligadores sintéticos comerciales que contienen diversas dianas para las endonucleasas de restricción que facilitan varios proveedores como International Biotechnologies Inc. New Haven, CN, EE.UU.
Un método deseable para modificar el ADN que codifica el polipéptido de la invención emplea la reacción en cadena de la polimerasa tal y como exponen Saiki RK y cols. (Saiki et al., 1988).Este método puede ser utilizado para introducir el ADN en un vector adecuado, por ejemplo diseñando las dianas de restricción adecuadas, o puede ser empleado para modificar el ADN de otros modos útiles conocidos en la técnica. Si se opta por vectores virales, son preferibles los vectores poxvíricos o adenovíricos.
El ADN (o ARN en el caso de los vectores retrovíricos) se puede expresar en un hospedador adecuado para producir un polipéptido que comprenda el péptido o variante de la invención. Así pues, el ADN que codifica el péptido o variante de la invención puede ser utilizado conforme a técnicas conocidas, modificado adecuadamente siguiendo las enseñanzas contenidas en la presente memoria para construir un vector de expresión que se emplee para transformar una célula hospedadora a fin de que exprese y produzca el polipéptido de la invención. Tales técnicas incluyen las dadas a conocer en las patentes de Ee .UU. N.° 4.440.859, 4.530.901, 4.582.800, 4.677.063, 4.678.751, 4.704.362, 4.710.463, 4.757.006, 4.766.075 y 4.810.648.
El ADN (o ARN en el caso de los vectores retrovíricos) que codifica el polipéptido que constituye el compuesto de la invención se puede unir con una amplia variedad de secuencias de ADN distintas para introducirlo en un hospedador adecuado. El ADN acompañante dependerá de la naturaleza del hospedador, el modo de introducir el ADN en su interior y de si se pretende que se integre o que se mantenga como un episoma.
En general, el ADN se inserta en un vector de expresión, como un plásmido, con la orientación apropiada y el marco de lectura correcto para asegurar la expresión. Si es necesario, el ADN se puede enlazar con secuencias nucleotídicas de control que regulan la transcripción o la traducción y que son reconocidas por el hospedador deseado, aunque en general tales controles ya suelen estar incluidos en el propio vector de expresión. A continuación, el vector se introduce en el hospedador mediante técnicas estándar. En general, el vector no consigue transformar todos los hospedadores, lo que hará necesario seleccionar las células hospedadoras que hayan quedado transformadas. Una técnica de selección consiste en incorporar en el vector de expresión una secuencia de ADN con los elementos de control necesarios que codifique un rasgo seleccionable en la célula transformada, como por ejemplo de resistencia a antibióticos.
Otra alternativa consiste en incorporar el gen de ese rasgo seleccionable en otro vector con el que se cotransforma la célula hospedadora.
Las células hospedadoras que hayan sido transformadas con el ADN recombinante de la invención se cultivarán durante el tiempo suficiente y en las condiciones apropiadas que las personas versadas en la técnica conocen a la vista de las enseñanzas descritas en la presente memoria para que el polipéptido pueda expresarse y, finalmente, ser recuperado.
Son muchos los sistemas de expresión conocidos, como bacterias (E. coli, Bacillus subtilis, etc.), levaduras (Saccharomyces cerevisiae, etc.), hongos filamentosos (género Aspergillus, etc.), células vegetales, animales o de insectos. Preferiblemente el sistema consistirá en células de mamífero, como las células CHO disponibles de la ATCC Cell Biology Collection.
Un típico vector plasmídico de expresión constitutiva para células de mamífero comprende el promotor del CMV o el del SV40 con una cola poli-A adecuada y un marcador de resistencia como la neomicina. Un ejemplo es el pSVL que ofrece Pharmacia, Piscataway, NJ, EE.Uu . Un ejemplo de vector de expresión inducible para mamífero es el pMSG, también suministrado por Pharmacia. Otros vectores plasmídicos de levadura son pRS403-406 y pRS413-416, en general proveídos por Stratagene Cloning Systems, La Jolla, CA 92037, EE.UU. Los plásmidos pRS403, pRS404, pRS405 y pRS406 son plásmidos integrativos de levadura (YIp) que incorporan los marcadores seleccionables de levadura HIS3, TRP1, LEU2 y URA3. Los plásmidos pRS413-416 son plásmidos centroméricos de levadura (Ycp). Los vectores dotados del promotor del CMV (por ejemplo de Sigma-Aldrich) proporcionan una expresión transitoria o estable, expresión en el citoplasma o secreción, y marcador de los extremos N-terminal o C-terminal en varias combinaciones de FLAG, 3xFLAG, c-myc o MAT. Estas proteínas de fusión permiten la detección, la purificación y el análisis de la proteína recombinante. Las fusiones con doble etiqueta aportan flexibilidad a la detección.
La potente región reguladora promotora del citomegalovirus (CMV) humano ofrece niveles de expresión constitutiva de la proteína muy elevados, de hasta 1 mg/l en células COS. En estirpes celulares menos potentes los niveles de proteínas suelen rondar ~0,1 mg/l. La presencia del origen de replicación del SV40 genera niveles elevados de replicación del ADN en células COS que toleran la replicación del SV40. Los vectores de CMV, por ejemplo, pueden contener el origen pMB1 (derivado del pBR322) para la replicación en células bacterianas, el gen de la b-lactamasa para la selección por resistencia a la ampicilina, hGH poliA, y el origen f1. Los vectores que contienen la secuencia líder de la preprotripsina (PPT) pueden canalizar la secreción de las proteínas de fusión FLAG hacia el medio de cultivo, donde se pueden purificar por medio de anticuerpos anti-FLAG, resinas y placas. En la técnica se conocen otros vectores y sistemas de expresión aptos para el uso con una variedad de células hospedadoras.
En otra forma de realización dos o más péptidos dados a conocer se codifican y se expresan en orden sucesivo (similar a constructos de “collar de cuentas”). Al hacerlo, los péptidos o los variantes peptídicas se pueden enlazar o fusionar juntas mediante segmentos de aminoácidos enlazantes, como por ejemplo LLLLLL, o se pueden unir sin ningún otro péptido adicional entre ellos. Estos constructos también pueden ser utilizados para la terapia contra el cáncer, y podrían inducir respuestas inmunitarias en las que intervengan tanto el MHC I como el MHC II.
La presente invención también se refiere a una célula hospedadora transformada con un vector polinucleotídico de la presente invención. La célula hospedadora puede ser procariota o eucariota. Las células bacterianas pueden ser las células hospedadoras procariotas más adecuadas en determinadas circunstancias; normalmente son cepas de E. coli, como por ejemplo las cepas DH5 disponibles de Bethesda Research Laboratories Inc., Bethesda, MD, EE.UU., y RR1 disponibles de la American Type Culture Collection (ATCC) de Rockville, MD, EE.UU. (N.° ATCC 31343).Las células hospedadoras eucariotas preferidas son células de levadura, de insecto y de mamífero, preferiblemente células de vertebrado como estirpes celulares de colon y de fibroblastos de ratón, rata, mono o ser humano. Las células hospedadoras de levadura incluyen YPH499, YPH500 y YPH501, que en general pueden obtenerse de Stratagene Cloning Systems, La Jolla, CA 92037, EE.UU. Las células hospedadoras de mamífero preferidas incluyen las células de ovario de hámster chino (CHO) disponibles de la ATCC como CCL61, las células embrionarias de ratón suizo NIH/3T3 disponibles de la ATCC como CRL 1658, las células COS-1 de riñón de mono disponibles de la ATCC como CRL 1650 y las células 293 que son células renales embrionarias humanas. Las células de insecto preferidas son las células Sf9 que se pueden transfectar con vectores de expresión baculovíricos. Se puede encontrar una revisión general referente a la elección de las células hospedadoras más adecuadas por ejemplo en el manual de Paulina Balbás y Argelia Lorence “Methods in Molecular Biology Recombinant Gene Expression, Reviews and Protocols,” Part One, Second Edition, ISBN 978-1-58829-262-9, y otra bibliografía conocida por las personas versadas.
La transformación de las células hospedadoras adecuadas con el constructo de ADN de la presente invención se consuma con métodos consabidos que normalmente dependen del tipo de vector utilizado. En lo referente a la transformación de células hospedaroras procariotas, véanse por ejemplo Cohen et al. (Cohen et al., 1972) y (Green and Sambrook, 2012). La transformación de células de levadura se describe en Sherman et al. (Sherman et al., 1986). El método de Beggs (Beggs, 1978) también resulta útil. En lo que concierne a los reactivos adecuados para transfectar las células de vertebrados, por ejemplo, el fosfato de calcio y el DEAE-dextrano o las formulaciones con liposomas, se pueden adquirir de Stratagene Cloning Systems, o Life Technologies Inc., Gaithersburg, Maryland 20877, EE.UU. La electroporación también es útil para la transformación y/o la transfección de las células y es perfectamente conocida su aplicación en la transformación de células de levadura, bacteria, insecto y vertebrado. Las células transformadas con éxito, es decir, las que contengan un constructo de ADN de la presente invención, se pueden identificar con técnicas bien conocidas como la PCR. Otra alternativa consiste en detectar la presencia de la proteína en el sobrenadante por medio de anticuerpos.
Se apreciará que ciertas células hospedadoras de la invención son útiles para la preparación de péptidos de la invención, por ejemplo las células bacterianas, de levadura e insecto. Con todo, para ciertos métodos terapéuticos pueden ser útiles otras células hospedadoras. Por ejemplo, se pueden utilizar células presentadoras de antígeno como las células dendríticas para expresar los péptidos de la invención de tal forma que puedan ser cargados en las moléculas MHC oportunas. Así pues, la presente invención proporciona una célula hospedadora que comprende un ácido nucleico o un vector de expresión conforme a la invención.
En una forma de realización preferida la célula hospedadora es una célula presentadora de antígeno, en particular una célula dendrítica o célula presentadora de antígeno. Las APC cargadas con una proteína de fusión recombinante que contiene fosfatasa ácida prostática (PAP) fueron aprobadas por la Administración de Alimentos y Fármacos de los EE.UU. (FDA) el 29 de abril de 2010 para tratar el cáncer de próstata hormonorrefractario metastásico asintomático o mínimamente sintomático (Sipuleucel-T) (Rini et al., 2006; Small et al., 2006).
Otro aspecto de la invención proporciona un método para la producción de un péptido, comprendiendo dicho método el cultivo de una célula hospedadora y el aislamiento del péptido a partir de dicha célula o de su medio de cultivo. En otra forma de realización el péptido, el ácido nucleico o el vector de expresión de la invención se emplean en medicina. Por ejemplo, el péptido o su variante pueden ser preparados para la inyección por vía intravenosa (i.v.), subcutánea (s.c.), intradérmica (i.d.), intraperitoneal (i.p.) o intramuscular (i.m.). Los métodos preferidos para la inyección del péptido incluyen s.c., i.d., i.p., i.m. e i.v. Los métodos preferidos para la inyección del ADN incluyen i.d., i.m., s.c., i.p. e i.v. Según el péptido o ADN de que se trate se pueden administrar dosis de, por ejemplo, entre 50 |jg y 1,5 mg, preferiblemente de 125 jg a 500 jg de péptido o ADN. Dosis en esos intervalos se han empleado con éxito en varios ensayos (Walter et al., 2012).
El polinucleótido usado para la vacunación activa puede ser sustancialmente puro, o estar contenido en un vector o en un sistema de liberación adecuado. El ácido nucleico puede ser ADN, ADNc, APN, ARN o una combinación de los mismos. Los métodos para diseñar e introducir ese ácido nucleico son bien conocidos por los expertos en la materia. Una perspectiva general se puede consultar por ejemplo en Teufel y cols.(Teufel et al., 2005).Las vacunas polinucleotídicas son fáciles de preparar, pero el mecanismo por el cual tales vectores inducen la respuesta inmunitaria no se conoce con exactitud. Los vectores y sistemas de liberación adecuados incluyen los de ADN y/o ARN viral, como los sistemas basados en adenovirus, virus vacunal, retrovirus, herpesvirus, virus adeno-asociados o híbridos que contienen elementos de varios virus. Los sistemas de liberación no virales incluyen lípidos catiónicos y polímeros catiónicos que son bien conocidos como técnicas para la introducción de ADN. Los métodos de introducción físicos, como la “pistola génica”, también pueden utilizarse. El péptido o péptidos codificados por el ácido nucleico pueden ser una proteína de fusión, por ejemplo con un epítopo que estimule los linfocitos T para el respectivo CDR opuesto tal y como se ha indicado antes.
El medicamento de la invención también puede incluir uno o varios adyuvantes. Los adyuvantes son sustancias que potencian o estimulan de forma inespecífica la respuesta inmunitaria (p. ej., respuestas inmunitarias mediadas por linfocitos T CD8-positivos y linfocitos T cooperadores (TH) contra un antígeno, por lo que podrían ser considerados útiles en el medicamento de la presente invención. Entre los adyuvantes adecuados se incluyen, entre otros: 1018 ISS, sales de aluminio, AMPLIVAX®, AS15, BCG, CP-870.893, CpG7909, CyaA, dSLIM, ligandos de flagelina o TLR5 derivados de flagelina, ligando de FLT3, GM-CSF, IC30, Ic 31, imiquimod (ALDARA®), resiquimod, ImuFact IMP321, interleucinas como IL-2, IL-13, IL-21, interferón alfa o beta o derivados pegilados de los mismos, IS Patch, ISS, ISCOMATRIX, ISCOMs, JuvImmune®, LipoVac, MALP2, MF59, lípido monofosforilo A, Montanide IMS 1312, Montanide ISA 206, Montanide ISA 50V, Montanide ISA-51, emulsiones de agua en aceite y de aceite en agua, OK-432, OM-174, OM-197-MP-EC, ONTAK, OspA, sistema de vectores PepTel®, micropartículas de dextrano y poli(láctido co-glicólido) [PLG], talactoferrina SRL172, virosomas y otras partículas similares a virus, YF-17D, VEGF trap, R848, beta-glucano, Pam3Cys, estimulón QS21 de Aquila, que deriva de la saponina, extractos de micobacterias y miméticos sintéticos de la pared bacteriana, y otros adyuvantes patentados como Detox de Ribi, Quil o Superfos. Se prefieren los adyuvantes como el adyuvante de Freund o el GM-CSF. Con anterioridad se han descrito varios adyuvantes inmunológicos (p. ej., m F59) específicos para las células dendríticas, así como la preparación de los mismos (Allison and Krummel, 1995).También pueden utilizarse citocinas. A varias citocinas se les ha atribuido una influencia directa en la migración de las células dendríticas hacia los tejidos linfoides (p. ej., el TNF-), como parte de un proceso que acelera su maduración hasta convertirlas en células presentadoras antígeno de los linfocitos T (p. ej., GM-CSF, IL-1 e IL-4) (Patente de EE.UU. N.° 5.849.589) y en el que actúan como inmunoadyuvantes (p. ej., la IL-12, IL-15, IL-23, IL-7, IFN-alfa, IFN-beta) (Gabrilovich et al., 1996).
También se ha descrito que los oligonucleótidos de CpG inmunoestimuladores potencian los efectos de los adyuvantes en las vacunas. Sin limitarse a la teoría, los oligonucleótidos de CpG actúan activando el sistema inmunitario innato (no adaptativo) a través de los receptores de tipo Toll (TLR), principalmente el TLR9. La activación del TLR9 desencadenada por los CpG potencia las respuestas humorales y celulares específicas de antígeno contra una amplia gama de antígenos, incluidos antígenos peptídicos o proteicos, virus vivos o muertos, vacunas de células dendríticas, vacunas de células autólogas y conjugados de polisacáridos, tanto en vacunas profilácticas como terapéuticas. Más importante aún, potencian la maduración y la diferenciación de las células dendríticas, lo cual resulta en una mayor activación de los linfocitos TH1 y una generación más potente de linfocitos T citotóxicos (CTL), incluso sin la ayuda de los linfocitos T CD4. La tendencia hacia la respuesta TH1 provocada por la estimulación del TLR9 se mantiene incluso en presencia de adyuvantes vacunales como el aluminio o el adyuvante de Freund incompleto (IFA) que normalmente promueven un sesgo hacia la respuesta TH2. Los oligonucleótidos de CpG muestran incluso una mayor actividad adyuvante cuando se formulan o administran conjuntamente con otros adyuvantes o en formulaciones como micropartículas, nanopartículas, emulsiones de lípidos o formulaciones similares, que son especialmente necesarias para inducir una respuesta potente cuando el antígeno es relativamente débil. También aceleran la respuesta inmunitaria y permiten reducir las dosis de antígeno aproximadamente en dos órdenes de magnitud, y se han obtenido en algunos experimentos respuestas de anticuerpos comparables a las conseguidas con la dosis completa de vacuna sin CpG (Krieg, 2006). La patente de EE. UU. N.° 6.406.705 B1 describe el uso combinado de oligonucleótidos de CpG, adyuvantes sin ácidos nucleicos y un antígeno para inducir una respuesta inmunitaria específica de antígeno. Un componente preferido de la composición farmacéutica de la presente invención es un antagonista CpG del TLR9 conocido como dSLIM (inmunomodulador en horquilla doble), fabricado por Mologen (Berlín, Alemania). También se pueden utilizar otras moléculas que se unen a los TLR como ARN que se unen a TLR 7, TLR 8 y/o TLR 9.
Entre los ejemplos de adyuvantes útiles también se incluyen CpG modificados químicamente (p. ej., CpR, Idera), análogos de ARNdc como poli(I:C) y derivados de los mismos (p. ej., AmpliGen®, Hiltonol®, poli-(ICLC), poli(IC-R), poli(I:C12U), ARN o ADN bacteriano sin CpG, así como anticuerpos y moléculas pequeñas inmunoactivas como ciclofosfamida, sunitinib, Bevacizumab®, celebrex, NCX-4016, sildenafilo, tadalafilo, vardenafilo, sorafenib, temozolomida, temsirolimús, XL-999, CP-547632, pazopanib, VEGF Trap, ZD2171, AZD2171, anti-CTLA4, otros anticuerpos que reconocen estructuras clave del sistema inmunitario (p. ej., anti-CD40, anti-TGF-beta, anti-receptor TNF-alfa) y SC58175, que pueden actuar de forma terapéutica y/o como adyuvantes. Las cantidades y concentraciones de adyuvantes y de aditivos útiles en el contexto de la presente invención pueden ser determinadas fácilmente por las personas versadas en la técnica sin demasiada experimentación.
Los adyuvantes preferidos son anti-CD40, imiquimod, resiquimod, GM-CSF, ciclofosfamida, sunitinib, bevacizumab, interferón-alfa, oligonucleótidos CpG y derivados, poli-(I:C) y derivados, ARN, sildenafilo, y formulaciones de partículas con PLG o virosomas.
En una forma de realización preferida de la composición farmacéutica conforme a la invención el adyuvante es seleccionado del grupo consistente en factores estimuladores de colonias, como el factor estimulador de las colonias de granulocitos-macrófagos (GM-CSF, sargramostim), ciclofosfamida, imiquimod, resimiquimod e interferón-alfa.
En una forma de realización preferida la composición farmacéutica conforme a la invención el adyuvante es seleccionado del grupo consistente en factores estimuladores de colonias, como el factor estimulador de las colonias de granulocitos-macrófagos (GM-CSF, sargramostim), ciclofosfamida, imiquimod y resiquimod. En otra forma de realización preferida de la composición farmacéutica conforme a la invención, el adyuvante es ciclofosfamida, imiquimod o resiquimod. Los adyuvantes más preferidos son: Montanide IMS 1312, Montanide ISA 206, Montanide ISA 50V, Montanide ISA-51, poli-ICLC (Hiltonol®) y AcM anti-CD40 o combinaciones de los anteriores.
Esta composición está destinada a la administración parenteral, como por vía subcutánea, intradérmica o intramuscular, o bien para la administración oral. Para ello, los péptidos y opcionalmente otras moléculas se disuelven o se suspenden en un vehículo farmacéuticamente aceptable, preferiblemente acuoso. Además, la composición puede contener excipientes, tales como tampones, aglutinantes, disgregantes, diluyentes, sabores, lubricantes, etc. Los péptidos también se pueden administrar junto con sustancias inmunoestimuladoras, como citocinas. En una composición tal se puede usar una amplia lista de excipientes, como por ejemplo, los tomados de A. Kibbe, Handbook of Pharmaceutical Excipients, (Kibbe, 2000). La composición se puede utilizar para la prevención, profilaxis y/o tratamiento de enfermedades adenomatosas o cancerosas. Las formulaciones preferidas se pueden encontrar en EP2112253, por ejemplo.
Es importante tener presente que la respuesta inmunitaria desencadenada por la vacuna conforme a la invención ataca el cáncer en diferentes estadios celulares y en diferentes estadios de desarrollo. Además, se atacan diferentes vías de señalización relacionadas con el cáncer. Esto supone una ventaja con respecto a las vacunas que solo van dirigidas contra una o pocas dianas, que pueden permitir que el tumor se adapte con facilidad al ataque (evasión tumoral). Además, no todos los tumores expresan el mismo patrón de antígenos, por lo que la combinación de varios péptidos asociados a tumor asegura que el tumor en cuestión contenga al menos alguna de las dianas. La composición ha sido diseñada de modo tal que se espera que exprese varios de los antígenos y abarque varias vías independientes necesarias para el crecimiento y el mantenimiento del tumor. Así pues, la vacuna puede ser utilizada con facilidad en la forma ya preparada (off-the-shelf) para una población de pacientes más amplia. Esto significa que no será preciso ninguna otra evaluación de biomarcadores de la expresión de los antígenos aparte del tipado del HLA para seleccionar a los pacientes que acabarán siendo tratados con la vacuna, pero que, aun así, está asegurado que la respuesta inmunitaria estimulada atacará simultáneamente a varias dianas, lo que es importante para la eficacia (Banchereau et al., 2001; Walter et al., 2012).
Los péptidos de la presente invención pueden usarse para generar y desarrollar anticuerpos específicos contra complejos MHC/péptido. Estos pueden ser utilizados como terapia, dirigiendo toxinas o sustancias radiactivas contra el tejido enfermo. Otra aplicación de estos anticuerpos consistiría en dirigir radionúclidos contra el tejido enfermo en aplicaciones de diagnóstico por la imagen como la TEP. Este uso puede ayudar a detectar metástasis pequeñas o determinar el tamaño y la ubicación precisa de los tejidos enfermos.
Por tanto, existe otro aspecto de la invención que proporciona un método para producir un anticuerpo recombinante que se une específicamente a un complejo mayor de histocompatibilidad humano (MHC) de clase I o-H que forma un complejo con un antígeno restringido a HLA, comprendiendo dicho método: inmunizar un mamífero no humano genéticamente modificado que comprenda células que expresen dicho complejo mayor de histocompatibilidad humano (MHC) de clase I o-H-con una forma soluble de una molécula MHC de clase I o II unida a dicho antígeno restringido a HLA; aislamiento de moléculas de ARNm a partir de células productoras de anticuerpos de dicho mamífero no humano; producción de una fagoteca que contenga moléculas proteicas codificadas por dichas moléculas de ARNm; y aislamiento de al menos un fago de dicha fagoteca, en que al menos ese fago contenga dicho anticuerpo que se une específicamente al citado complejo mayor de histocompatibilidad humano (MHC) de clase I o-W unido con dicho antígeno restringido a HLA.
Existe otro aspecto más de la invención que proporciona un anticuerpo que se une específicamente a un complejo mayor de histocompatibilidad humano (MHC) de clase I o ji que forma un complejo con un antígeno restringido a HLA, en el que el anticuerpo es preferentemente un anticuerpo policlonal, anticuerpo monoclonal, anticuerpo biespecífico y/o un anticuerpo quimérico.
En WO 03/068201, WO 2004/084798, WO 01/72768, WO 03/070752, y en publicaciones (Cohen et al., 2003a; Cohen et al., 2003b; Denkberg et al., 2003) se dan a conocer métodos para producir tales anticuerpos y complejos mayores de histocompatibilidad de clase I monocatenarios, así como otras herramientas para la producción de tales anticuerpos, que a efectos de la presente invención se incorporan todos de forma explícita en su integridad.
Preferiblemente el anticuerpo se une al complejo con una afinidad de unión inferior a 20 nanomolar, preferentemente inferior a 10 nanomolar, lo cual se considera “específico” en el contexto de la presente invención.
La presente invención se refiere a un péptido que comprende una secuencia seleccionada del grupo consistente en las SEQ ID N.° 4.
La presente invención se refiere, además, al péptido acorde con la presente invención que tiene la capacidad de unirse a una molécula del complejo mayor de histocompatibilidad humana (MHC) de clase I.
La presente invención se refiere, además, al péptido acorde con la presente invención, en que el péptido incluye enlaces no peptídicos.
La presente invención se refiere, además, al péptido conforme a la presente invención, en que dicho péptido es parte de una proteína de fusión, en particular comprende aminoácidos N-terminales de la cadena invariable asociada al antígeno HLA-DR (Ii), o en que el péptido está fusionado con (o en la secuencia de) un anticuerpo, como por ejemplo, un anticuerpo que es específico de células dendríticas.
La presente invención se refiere, además, a un ácido nucleico, que codifica el péptido acorde con la presente invención.
La presente invención se refiere, además, al ácido nucleico acorde con la presente invención que es ADN, ADNc, APN, ARN o combinaciones de los anteriores.
La presente invención se refiere, además, a un vector de expresión que hace expresar un ácido nucleico conforme a la presente invención.
La presente invención se refiere, además, a un péptido acorde con la presente invención, un ácido nucleico acorde con la presente invención o un vector de expresión acorde con la presente invención para el uso en medicina, en concreto para el tratamiento del cáncer de próstata.
La presente invención se refiere, además, a una célula hospedadora que comprende un ácido nucleico acorde con la presente invención o un vector de expresión acorde con la invención.
La presente invención se refiere, además, a una célula hospedadora acorde con la presente invención que es una célula presentadora de antígeno, y preferiblemente una célula dendrítica.
La presente invención se refiere, además, a un método para producir un péptido acorde con la presente invención, que comprende el cultivo de la célula hospedadora acorde con la presente invención y el aislamiento del péptido de la célula hospedadora o de su medio de cultivo.
La presente invención se refiere, además, al método acorde con la presente invención en que el antígeno es cargado en moléculas de MHC de clase I expresadas en la superficie de una célula presentadora de antígeno mediante la puesta en contacto de una cantidad de antígeno suficiente con una célula presentadora de antígeno. La presente invención se refiere, además, al método acorde con la invención, en que la célula presentadora de antígeno comprende un vector de expresión capaz de expresar dicho péptido que contiene la SEQ ID N.° 4.
La presente invención se refiere, además, a linfocitos T activados, producidos con el método acorde con la presente invención, que reconocen selectivamente una célula que expresa un polipéptido que comprende una secuencia de aminoácidos conforme a la presente invención.
Se da a conocer un método para destruir células diana en un paciente cuyas células diana expresan de forma aberrante un polipéptido que comprende cualquiera de las secuencias de aminoácidos conformes a la presente invención, comprendiendo el método la administración al paciente de un número eficaz de linfocitos T conforme a la presente invención.
La presente invención se refiere, además, al uso como medicamento o en el proceso de fabricación de un medicamento del péptido descrito, de un ácido nucleico conforme a la presente invención, de un vector de expresión conforme a la presente invención, de una célula conforme a la presente invención, o de un linfocito T citotóxico activado conforme a la presente invención para el uso como un medicamento o en la fabricación de un medicamento. La presente invención se refiere, además, a un uso conforme a la presente invención en el que el medicamento es activo contra el cáncer.
La presente invención se refiere, además, a un uso conforme a la presente invención en el que dicho medicamento es una vacuna. La presente invención se refiere, además, a un uso conforme a la invención en el que el medicamento es activo contra el cáncer.
La presente invención concierne además al uso acorde con la presente invención, en que dichas células tumorales son preferentemente células de cáncer de próstata o células de otro tumor sólido o hematológico como el cáncer de pulmón, cáncer de pulmón microcítico, melanoma, cáncer de hígado, cáncer de mama, cáncer de útero, carcinoma de células de Merkel, cáncer de páncreas, cáncer de vesícula biliar, cáncer de vías biliares, cáncer colorrectal, cáncer de vejiga urinaria, cáncer de pulmón amicrocítico, cáncer de riñón, leucemia (p. ej. LMA o LLC), cáncer de ovario, cáncer de esófago, cáncer de cerebro, cáncer gástrico (estómago), más preferiblemente células de cáncer de próstata. Además, la presente invención se refiere al uso de estas nuevas dianas para el tratamiento del cáncer. El término “anticuerpo” o “anticuerpos” se utiliza en la presente memoria en sentido amplio e incluye tanto anticuerpos policlonales como monoclonales. Además de las moléculas de inmunoglobulina intactas o “enteras”, el término “anticuerpos” también incluye los fragmentos (p. ej., fragmentos CDRs, Fv, Fab y Fc) o polímeros de esas moléculas de inmunoglobulina y versiones humanizadas de las mismas, siempre que exhiban alguna de las propiedades deseadas (p. ej., unión específica de un polipéptido marcador del cáncer de próstata que exprese un gen marcador del cáncer con un nivel elevado, y/o que inhiba la actividad de un polipéptido marcador del cáncer de próstata conforme a la invención.
Si es posible los anticuerpos de la invención se podrán adquirir de fuentes comerciales. Los anticuerpos de la invención también se pueden fabricar con métodos consabidos. La persona versada en la técnica entiende que para fabricar los anticuerpos de la invención se pueden emplear tanto polipéptidos marcadores enteros de cáncer de próstata, como fragmentos de los mismos. El polipéptido necesario para generar un anticuerpo de la invención se puede purificar parcial o completamente de una fuente natural o se puede producir con técnicas de ADN recombinante.
Por ejemplo, un ADNc que codifique un péptido acorde con la presente invención, como un péptido acorde con la SEQ ID N.° 4, o un fragmento del mismo, se puede expresar en células procariotas (p. ej., bacterias) o eucariotas (p. ej., células de levadura, insecto o mamífero), a partir de las cuales se purificará la proteína recombinante con la que se generará una preparación de anticuerpo monoclonal o policlonal que se una específicamente al polipéptido marcador del cáncer de próstata utilizado para generar el anticuerpo conforme a la invención.
Una persona versada en la técnica sabrá que la generación de dos o más conjuntos diferentes de anticuerpos monoclonales o policlonales maximiza la probabilidad de obtener un anticuerpo dotado de la especificidad y la afinidad necesarias para el uso previsto (p. ej., ELISA, inmunohistoquímica, técnicas de imagen in vivo, tratamiento con inmunotoxinas). Los anticuerpos son analizados para buscar la actividad deseada con métodos conocidos, de acuerdo con el fin previsto para los anticuerpos (p. ej., ELISA, inmunohistoquímica, inmunoterapia, etc.; para más detalles sobre la generación y el análisis de anticuerpos, véase por ejemplo, Greenfield, 2014 (Greenfield, 2014). Por ejemplo, los anticuerpos pueden ser analizados con pruebas ELISA, inmunotransferencia (Western blot), tinción inmunohistoquímica de cortes de tejido de cáncer congelados o fijados en formol. Después de la caracterización inicial in vitro, los anticuerpos destinados a uso terapéutico o diagnóstico in vivo se analizan con métodos de ensayo clínicos conocidos.
El término “anticuerpo monoclonal” tal y como se utiliza en la presente memoria se refiere a un anticuerpo obtenido a partir de una población notablemente homogénea de anticuerpos, es decir, los anticuerpos individuales que comprenden la población son idénticos excepto por mutaciones posiblemente naturales que pueden estar presentes en pequeño número. Los anticuerpos monoclonales de la presente memoria incluyen específicamente anticuerpos “quiméricos” en los que una parte de la cadena pesada y/o ligera es idéntica u homóloga a secuencias correspondientes en anticuerpos derivados de una especie concreta o pertenecientes a una clase o subclase concreta de anticuerpos, mientras que el resto de la cadena o cadenas es idéntica u homóloga a secuencias correspondientes en anticuerpos derivados de otras especies o pertenecientes a otra clase o subclase de anticuerpos, así como a fragmentos de tales anticuerpos, en tanto que exhiban la actividad antagonista deseada (N.° pat. de EE.UU. 4.816.567).
Los anticuerpos monoclonales de la invención se pueden preparar con métodos basados en hibridomas. En el método del hibridoma, un ratón u otro animal hospedador adecuado es vacunado con un agente inmunizante que estimula a los linfocitos para que produzcan o sean capaces de producir anticuerpos que se unan específicamente al agente inmunizante. Otra alternativa consiste en inmunizar los linfocitos in vitro.
Los anticuerpos monoclonales también se pueden fabricar con métodos de ADN recombinante, como los descritos en la Pat. de EE.UU. N.° 4.816.567. El ADN que codifica los anticuerpos monoclonales de la invención puede ser fácilmente aislado y secuenciado con procedimientos convencionales (p. ej., con sondas oligonucleotídicas capaces de unirse específicamente a los genes que codifican las cadenas pesadas y ligeras de anticuerpos de ratón).
Los métodos in vitro también son adecuados para la preparación de anticuerpos monovalentes. La digestión de anticuerpos para producir fragmentos de los mismos, en particular fragmentos Fab, se puede llevar a cabo con técnicas ordinarias conocidas por los expertos en la materia. Por ejemplo, la digestión se puede realizar con papaína. Ejemplos de la digestión con papaína aparecen descritos en WO 94/29348 y en la Pat. de EE. UU. N.° 4.342.566. La digestión de anticuerpos con papaína normalmente produce dos fragmentos de unión a antígeno idénticos llamados fragmentos Fab, cada uno dotado de un sitio de unión al antígeno, así como un fragmento residual Fc. El tratamiento con pepsina da como resultado un fragmento F(ab')2 y un fragmento pFc'.
Los fragmentos de anticuerpo, estén unidos a otras secuencias o no, también pueden incluir inserciones, deleciones, sustituciones y otras modificaciones seleccionadas de regiones particulares o de residuos de aminoácidos específicos, siempre que la actividad de los fragmentos no se vea significativamente alterada o afectada respecto al anticuerpo o el fragmento de anticuerpo intactos. Estas modificaciones pueden ofrecer alguna propiedad adicional, como eliminar o añadir aminoácidos capaces de establecer puentes de sulfuro para aumentar la biolongevidad, alterar las características de secreción, etc. En cualquier caso el fragmento de anticuerpo debe poseer una propiedad bioactiva, como actividad de unión, regulación de unión al dominio de unión, etc. Las regiones activas o funcionales del anticuerpo pueden ser identificadas por mutagenia de una región específica de la proteína, seguida por la expresión y el análisis del polipéptido expresado. Tales métodos son obvios para toda persona versada en la técnica y pueden incluir la mutagenia dirigida del ácido nucleico que codifica el fragmento de anticuerpo.
Los anticuerpos de la invención también pueden comprender anticuerpos humanizados o anticuerpos humanos. Las formas humanizadas de anticuerpos no humanos (p. ej., de ratón) son formas quiméricas de inmunoglobulinas, de cadenas de inmunoglobulina o de fragmentos de las mismas (como Fv, Fab, Fab' u otras secuencias de unión a antígeno de los anticuerpos) que contienen una pequeña secuencia derivada de inmunoglobulinas no humanas. Los anticuerpos humanizados incluyen inmunoglobulinas humanas (anticuerpo receptor) en las que los residuos de una región determinante de complementariedad (CDR) del receptor son sustituidos por residuos de una CDR de una especie no humana (anticuerpo donante) como ratón, rata o conejo que está dotada de la especificidad, la afinidad y la capacidad deseadas. En algunos casos, los residuos estructurales (FR) del fragmento Fv de la inmunoglobulina humana son sustituidos por residuos no humanos correspondientes. Los anticuerpos humanizados también pueden comprender residuos que no están presentes ni en el anticuerpo receptor ni en el CDR importado o en las secuencias estructurales. En general, el anticuerpo humanizado comprenderá prácticamente la totalidad de al menos uno, y normalmente de dos dominios variables, en los que todas o casi todas las regiones CDR corresponderán a las de la inmunoglobulina no humana y todas o casi todas las regiones FR serán las de una secuencia consenso de la inmunoglobulina humana. El anticuerpo humanizado idealmente también comprenderá al menos una porción de una región constante de la inmunoglobulina (Fc), normalmente de una inmunoglobulina humana.
Los métodos para humanizar anticuerpos no humanos son bien conocidos en la técnica. En general, un anticuerpo humanizado tiene uno o varios residuos de aminoácidos de origen no humano. Estos residuos de aminoácidos no humanos con frecuencia son denominados residuos “importados”, que normalmente se extraen del dominio variable “importado”. La humanización se puede llevar a cabo básicamente sustituyendo las CDR o las secuencias de CDR de roedor por las secuencias correspondientes de un anticuerpo humano. Por tanto, tales anticuerpos “humanizados” son anticuerpos quiméricos (Pat. de EE.UU. N.° 4.816.567), en los que una parte notablemente más pequeña que un dominio variable humano intacto ha sido sustituida por la secuencia correspondiente de una especie no humana. En la práctica, los anticuerpos humanizados normalmente son anticuerpos humanos en los que se han sustituido algunos residuos de CDR y posiblemente algunos residuos de FR por residuos de sitios análogos de anticuerpos de roedor.
Se pueden emplear animales transgénicos (p. ej., ratones) que tras la inmunización sean capaces de producir un repertorio completo de anticuerpos humanos sin producir inmunoglobulinas endógenas. Por ejemplo, se ha descrito que la deleción homocigota del gen de la región de unión de la cadena pesada del anticuerpo en ratones quiméricos y mutantes germinales provoca la inhibición completa de la producción endógena de anticuerpos. La transferencia de la matriz génica de la inmunoglobulina de la línea germinal humana a dichos ratones mutantes de la línea germinal dará como resultado la producción de anticuerpos humanos tras la exposición al antígeno. También se pueden producir anticuerpos humanos en fagotecas.
Los anticuerpos de la invención se administran preferiblemente a un sujeto incorporándolos en un vehículo farmacéuticamente aceptable. Normalmente a la formulación se le añade una cantidad apropiada de una sal farmacéuticamente aceptable para que sea isotónica. Ejemplos de vehículos farmacéuticamente aceptables son solución salina, solución de Ringer y solución de dextrosa. Es preferible que el pH de la solución está situado aproximadamente entre 5 y 8, y más preferiblemente entre 7 y 7,5 aproximadamente. Otros vehículos incluyen preparaciones de liberación prolongada como matrices semipermeables de polímeros hidrofóbicos sólidos que contengan el anticuerpo, en matrices con forma modelada, p. ej., películas, liposomas o micropartículas. Para las personas versadas en la técnica será evidente que son preferibles ciertos vehículos dependiendo, por ejemplo, de la vía de administración y de la concentración del anticuerpo que se va a administrar.
Los anticuerpos se pueden administrar al sujeto, al paciente o a las células mediante inyección (intravenosa, intraperitoneal, subcutánea, intramuscular, etc.), o con otros métodos como la infusión que aseguren su liberación efectiva en el torrente sanguíneo. Los anticuerpos también se pueden administrar por vía intratumoral o peritumoral para ejercer un efecto terapéutico a la par sistémico y local. Se prefiere la inyección local o intravenosa.
Las dosis y pautas de administración más adecuadas se pueden determinar empíricamente; la toma de decisiones a este respecto forma parte de los conocimientos de la materia. Las personas versadas en la materia saben que la dosis de anticuerpos a administrar depende, por ejemplo, del sujeto que va a recibir al anticuerpo, la vía de administración, el tipo concreto de anticuerpo y de otros medicamentos que se le estén administrando. La dosis diaria típica de anticuerpo cuando se utiliza solo puede oscilar entre 1 pg/kg y 100 mg/kg de peso corporal o más por día, dependiendo de los susodichos factores. Tras la administración del anticuerpo, preferiblemente para tratar el cáncer de próstata, la eficacia del anticuerpo terapéutico se puede evaluar de varios modos bien conocidos por el médico especialista. Por ejemplo se puede controlar el tamaño, el número y/o la distribución del cáncer en el sujeto receptor del tratamiento utilizando técnicas de imagen oncológicas estándar. Todo anticuerpo administrado con fines terapéuticos que detenga el crecimiento del tumor, reduzca su extensión y/o impida la aparición de nuevos tumores en contraste con la evolución de la enfermedad si no se produjera la administración del anticuerpo, es un anticuerpo eficaz para el tratamiento del cáncer de próstata.
Otro aspecto de la invención proporciona un método para producir un receptor de linfocito T soluble (sTCR) que reconoce un complejo de péptido-MHC específico. Dichos receptores de linfocitos T solubles se pueden generar a partir de clones de linfocitos T específicos, cuya afinidad se puede incrementar por mutagenia dirigida a las regiones determinantes de complementariedad. Para la selección del receptor de linfocito T se puede utilizar una fagoteca (US 2010/0113300, (Liddy et al., 2012)). A fin de estabilizar los receptores de linfocito T en la fagoteca y en caso de uso práctico como fármaco, las cadenas alfa y beta se pueden enlazar por ejemplo mediante enlaces disulfuro no nativos, otros enlaces covalentes (receptor de linfocito T monocatenario), o mediante dominios de dimerización (Boulter et al., 2003; Card et al., 2004; Willcox et al., 1999). El receptor de linfocito T se puede enlazar con toxinas, fármacos, citocinas (véase, por ejemplo, US 2013/0115191), y con dominios que recluten células efectoras como un dominio anti-CD3, etc., con el fin de ejecutar funciones particulares en células diana. Asimismo, se puede expresar en linfocitos T destinados a la transferencia a un receptor. Se puede encontrar más información en WO 2004/033685A1 y WO 2004/074322A1.En WO 2012/056407A1 se describe una combinación de sTCR. Otros métodos de producción se revelan en WO 2013/057586A1.
Además, los péptidos y/o los TCR o anticuerpos u otras moléculas de unión de la presente invención se pueden utilizar para verificar el diagnóstico histopatológico de cáncer basado en una muestra de biopsia.
Los anticuerpos o TCR también se pueden utilizar para ensayos diagnósticos in vivo. En general, el anticuerpo se marca con un radionúclido (como 111In, 99Tc, 14C, 131I, 3H, 32P o 35S) de modo que el tumor puede ser localizado con inmunogammagrafía. En una forma de realización, anticuerpos o fragmentos de los mismos se unen a los dominios extracelulares de dos o más dianas de una proteína seleccionada del grupo consistente en las susodichas proteínas, y el valor de afinidad (Kd) es inferior a 1 x 10 pM.
Los anticuerpos para uso diagnóstico pueden ser marcados con sondas adecuadas para posibilitar la detección con diferentes métodos ópticos. Los métodos para la detección de sondas incluyen, entre otros, microscopía de fluorescencia, óptica, confocal y electrónica; resonancia magnética y espectroscopía; radioscopia, tomografía computadorizada y tomografía por emisión de positrones. Las sondas adecuadas incluyen, entre otras, fluoresceína, rodamina, eosina y otros fluoróforos, radioisótopos, oro, gadolinio y otros lantánidos, hierro paramagnético, flúor-18 y otros radionúclidos emisores de positrones. Además, las sondas pueden ser bi o multifuncionales y ser detectables por más de uno de los métodos enumerados. Los anticuerpos pueden marcarse directa o indirectamente con dichas sondas. La fijación de sondas a los anticuerpos incluye la unión covalente de la sonda, la incorporación de la sonda en el anticuerpo, y la unión covalente de un compuesto quelante para unir la sonda, entre otros métodos consabidos en la técnica. Para las técnicas de inmunohistoquímica, la muestra de tejido patológico puede ser fresca o congelada o puede estar incluida en parafina y fijada con un conservante como formol. El corte fijado o incluido que contiene la muestra se pone en contacto con un anticuerpo primario marcado y un anticuerpo secundario, de modo que el anticuerpo se emplea para detectar la expresión in situ de las proteínas.
Otro aspecto de la presente invención incluye un método in vitro para producir linfocitos T activados, comprendiendo dicho método la puesta en contacto en condiciones in vitro de linfocitos T con moléculas MHC humanas cargadas con antígeno expresadas en la superficie de una célula presentadora de antígeno adecuada por tiempo suficiente para activar los linfocitos T de una manera específica de antígeno, siendo el antígeno un péptido conforme a la invención. Preferentemente se emplea una cantidad suficiente del antígeno con una célula presentadora de antígeno.
Preferiblemente, la célula de mamífero carece del transportador de péptidos TAP o bien este se presenta en un nivel reducido o funciona defectuosamente. Las células adecuadas que carecen del transportador de péptidos TAP incluyen las células T2, RMA-S y de Drosophila. TAP es el transportador relacionado con el procesamiento de los antígenos.
La estirpe celular humana deficiente en carga de péptidos T2 está disponible en la American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852, EE.UU. con el N.° de catálogo CRL 1992; la estirpe de células de Drosophila Schneider line 2 está disponible en la ATCC con el N.° de catálogo CRL 19863; la estirpe de células de ratón RMA-S está descrita en Ljunggren y cols. (Ljunggren and Karre, 1985).
Preferentemente, la célula hospedadora no expresa sustancialmente moléculas MHC de clase I antes de la transfección. También es preferible que la célula estimuladora exprese una molécula importante que proporcione una señal coestimuladora para los linfocitos T, como B7.1, B7.2, ICAM-1 y LFA 3.Las secuencias de ácidos nucleicos de numerosas moléculas MHC de clase I y de las moléculas co-estimuladoras están disponibles públicamente en las bases de datos GenBank y EMBL.
Si se utiliza como antígeno un epítopo de MHC de clase I, los linfocitos T serán linfocitos T CD8-positivos.
Si una célula presentadora de antígeno es transfectada para expresar un epítopo de ese tipo, la célula comprenderá preferentemente un vector de expresión que haga expresar un péptido que contenga la SEQ ID N.° 4.
Existen otros métodos para generar linfocitos T in vitro. Por ejemplo, emplear linfocitos autólogos infiltrados en el tumor para generar los CTL. Plebanski et al. (Plebanski et al., 1995) utilizan linfocitos de sangre periférica autóloga (PLB) para la preparación de los linfocitos T.
Asimismo, es posible la producción de linfocitos T autólogos estimulando células dendríticas con el péptido o el polipéptido, o a través de la infección con virus recombinantes. También se pueden usar linfocitos B para la producción de linfocitos T autólogos. Asimismo, para la preparación de linfocitos T autólogos se pueden usar macrófagos estimulados con péptido o polipéptido o infectados con virus recombinantes. S. Walter y cols. (Walter et al., 2003) describen la estimulación in vitro de linfocitos T con células presentadoras de antígeno (aAPC), que también es una forma adecuada de generar linfocitos T contra el péptido de elección. En la presente invención, las aAPC se generaron adhiriendo complejos MHC:péptido preformados a la superficie de partículas de poliestireno (microperlas) con biotina:estreptavidina. Este sistema permite controlar con exactitud la densidad de MHC en las aAPC, lo que permite desencadenar respuestas de linfocitos T específicas de antígeno con una avidez alta o baja a partir de muestras de sangre, de una forma selectiva y altamente eficaz. Además de los complejos MHC:péptido, las aAPC deben incorporar acopladas en su superficie otras proteínas con actividad co-estimuladora como anticuerpos anti-CD28. Tales sistemas de aAPC también precisan a menudo el concurso de factores solubles adecuados, por ejemplo citocinas, como la interleucina-12.
Para la preparación de linfocitos T también se pueden utilizar células alogénicas; en WO 97/26328 se describe detalladamente un método. Por ejemplo, además de células de Drosophila y de células T2, para presentar antígenos se pueden usar otras células tales como células CHO, células de insecto infectadas con baculovirus, bacterias, levaduras y células diana infectadas con virus vacunal. Asimismo se pueden usar virus vegetales (véase, por ejemplo, Porta y cols. (Porta et al., 1994) que describen el desarrollo del virus del mosaico del chícharo como una sistema de alto rendimiento para la presentación de péptidos foráneos.
Los linfocitos T activados que están dirigidos contra los péptidos de la invención son útiles como tratamiento. Así pues, otro aspecto de la invención proporciona linfocitos T activados obtenibles por los susodichos métodos de la invención.
Los linfocitos T activados producidos con el susodicho método reconocerán selectivamente una célula que expresa de forma aberrante un polipéptido que comprende una secuencia de aminoácidos de la SEQ ID N.° 4.
Preferiblemente el linfocito T reconoce la célula interaccionando a través de su TCR con el complejo HLA/péptido, por ejemplo uniéndosele. Los linfocitos T son útiles en un método para destruir células diana en un paciente cuyas células diana expresen de forma aberrante un polipéptido que comprenda una secuencia de aminoácidos de la invención y al cual se le administre un número eficaz de linfocitos T activados. Los linfocitos T que se le administren pueden proceder del mismo paciente y ser activados del modo antes descrito, es decir, ser linfocitos T autólogos. Otra alternativa consiste en que los linfocitos T no sean del paciente y procedan de otro individuo. Por supuesto, es preferible que dicho individuo esté sano. Por “individuo sano” los inventores entienden un individuo que goce de buen estado de salud general, preferentemente con un sistema inmunitario competente y, más preferentemente, no sufra ninguna enfermedad que pueda detectarse mediante análisis.
En condiciones in vivo, las células diana de los linfocitos T CD8-positivos conformes a la presente invención pueden ser células del tumor (que a veces expresan MHC de clase II) y/o células estromales circundantes al tumor (células tumorales) (que en ocasiones también expresan MHC de clase II; (Dengjel et al., 2006)).
Los linfocitos T de la presente invención se pueden usar como principios activos de una composición terapéutica. Por tanto, la invención también proporciona un método para destruir células diana de un paciente que expresan de forma aberrante un polipéptido que comprende una secuencia de aminoácidos de la invención, comprendiendo dicho método la administración al paciente de un número eficaz de linfocitos T como los definidos arriba.
Por “expresado de forma aberrante” los inventores también quieren decir que el polipéptido está sobreexpresado en comparación con los niveles de expresión en tejidos normales o que el gen está reprimido en los tejidos de los cuales deriva el tumor pero están expresados en el tumor. Por “sobreexpresado” los inventores quieren decir que el nivel del polipéptido es como mínimo 1,2 veces mayor que el nivel en el tejido normal; preferiblemente como mínimo 2 veces mayor, y más preferiblemente como mínimo 5 o 10 veces mayor que el del tejido normal.
Los linfocitos T se pueden obtener por métodos conocidos en la materia, como, por ejemplo, los antes descritos. Los protocolos para la llamada transferencia de linfocitos T a un receptor son perfectamente conocidos. Se pueden encontrar revisiones en: Gattioni y cols. y Morgan y cols. (Gattinoni et al., 2006; Morgan et al., 2006).
Otro aspecto de la presente invención incluye el uso de los péptidos formando un complejo con MHC para generar un receptor de linfocito T cuyo ácido nucleico se clona y se introduce en una célula hospedadora, preferiblemente un linfocito T. Ese linfocito T modificado se puede entonces transferir a un paciente como tratamiento contra el cáncer. Cualquier molécula de la invención, ya sea péptido, ácido nucleico, anticuerpo, vector de expresión, célula, linfocito T activado, receptor de linfocito T o el ácido nucleico que lo codifique es útil para el tratamiento de trastornos caracterizados por células que eluden la respuesta inmunitaria. Por consiguiente, cualquier molécula de la presente invención puede ser utilizada como medicamento o en la fabricación de un medicamento. La molécula puede ser utilizada sola o combinada con otra molécula o moléculas de la invención o con cualquier o cualesquier moléculas conocidas.
La presente invención también contempla un equipo que comprende:
(a) un envase con una composición farmacéutica como la descrita más arriba, en forma de solución o liofilizada; (b) opcionalmente, un segundo envase que contiene un diluyente o solución de reconstitución para la formulación liofilizada; y
(c) opcionalmente, (I) instrucciones de uso de la solución o (II) de la reconstitución y/o uso de la formulación liofilizada.
El equipo puede comprender, además, uno o más de los siguientes componentes: (III) un tampón, (IV) un diluyente, (V) un filtro, (VI) una aguja, o (V) una jeringa. El envase es preferiblemente un frasco, un vial, una jeringa o un tubo de ensayo; puede ser un envase multiusos. Se prefiere que la composición farmacéutica esté liofilizada.
Los equipos de la presente invención comprenden, preferiblemente, una formulación liofilizada de la presente invención en un envase adecuado e instrucciones para su reconstitución y/o uso. Los envases adecuados incluyen, por ejemplo, frascos, viales (p. ej., viales con doble cámara), jeringas (como jeringas con doble cámara) y tubos de ensayo. El envase puede estar formado por materiales diversos como vidrio o plástico. Preferiblemente el kit y/o envase contienen o van acompañados de instrucciones de reconstitución y/o uso. Por ejemplo, el prospecto puede indicar que la formulación liofilizada debe reconstituirse para obtener ciertas concentraciones de péptidos como las descritas en páginas precedentes. La etiqueta puede indicar, además, que la formulación puede administrarse o está destinada a la administración subcutánea.
El envase que contiene la formulación puede ser un vial multiuso que permita varias administraciones (p. ej., de 2 a 6 administraciones) de la formulación reconstituida. El equipo puede comprender, además, un segundo envase que contenga un diluyente adecuado (p. ej., una solución de bicarbonato sódico).
Después de mezclar el diluyente y la formulación liofilizada, la concentración final del péptido en la formulación reconstituida es preferiblemente como mínimo de 0,15 mg/ml/péptido (=75 |jg) y preferiblemente como máximo de 3 mg/ml/péptido (=1500 jg). El equipo puede incluir además otros materiales deseables desde el punto de vista comercial y del usuario, tales como otros tampones, diluyentes, filtros, agujas, jeringas y prospectos con instrucciones de uso.
Los equipos de la presente invención pueden tener un solo envase que contenga la formulación de las composiciones farmacéuticas acordes con la presente invención, acompañado o no de otros componentes (p. ej., otros compuestos o composiciones farmacéuticas de estos otros compuestos) o pueden contar con un envase distinto para cada componente.
Preferiblemente, los equipos de la invención incluyen una formulación de la invención acondicionada para ser utilizada y administrada conjuntamente con un segundo compuesto (como adyuvantes (p. ej., GM-CSF), un agente de quimioterapia, un producto natural, una hormona o un antagonista, un inhibidor o agente anti-angiogenia, un inductor de la apoptosis o un quelante) o una composición farmacéutica de los mismos. Los componentes del equipo pueden estar preagrupados o cada componente puede estar en un envase separado antes de la administración al paciente. Los componentes del equipo pueden proporcionarse en una o varias soluciones líquidas, preferiblemente en una solución acuosa y, con mayor preferencia, en una solución acuosa estéril. Los componentes del equipo también pueden facilitarse en forma de sólidos, y pueden convertirse en líquidos añadiendo los disolventes adecuados, que preferiblemente se proporcionan en otro envase distinto.
El envase de un equipo terapéutico puede ser un vial, tubo de ensayo, matraz, frasco, jeringa, o cualquier otro medio para contener un sólido o líquido. Si hay más de un componente, normalmente el equipo contendrá un segundo vial u otro envase para permitir la dosificación por separado. El equipo también puede contener otro envase para un líquido farmacéuticamente aceptable. Preferiblemente el equipo terapéutico contendrá un aparato (p. ej., una o varias agujas, jeringas, cuentagotas, pipeta, etc.) para permitir la administración de los agentes de la invención que son componentes del presente equipo.
La presente formulación puede ser toda aquella que sea adecuada para la administración de los péptidos a través de cualquier vía aceptable como la oral (enteral), nasal, oftálmica, subcutánea, intradérmica, intramuscular, intravenosa o transdérmica. Se prefiere la administración subcutánea y, con mayor preferencia, la intradérmica tal vez a través de una bomba de infusión.
Puesto que los péptidos de la invención se aislaron de tumores de próstata, el medicamento de la invención se usa preferentemente para tratar ese tipo de tumores.
Preferentemente, los péptidos incluidos en la vacuna se identificarán con el método consistente en: (a) identificación de los péptidos asociados a tumor (TUMAP) presentes en una muestra tumoral del paciente en cuestión; (b) comparación de los péptidos identificados con (a) un archivo (base de datos) de péptidos como el descrito antes; y (c) selección de al menos un péptido de la base de datos que presente correlación con un péptido asociado a tumor identificado en el paciente. Por ejemplo, los TUMAP presentados por la muestra del tumor se identifican mediante: (a1) comparación de los datos de expresión de la muestra tumoral con los datos de expresión de una muestra de tejido normal del mismo tipo de tejido de la muestra tumoral para identificar proteínas que se sobreexpresen o se expresen de modo aberrante en la muestra tumoral; y (a2) correlación de los datos de expresión con secuencias de ligandos MHC unidos a moléculas MHC de clase I y/o clase II en la muestra tumoral para identificar ligandos MHC derivados de proteínas que son sobreexpresadas o expresadas de modo aberrante por el tumor. Preferentemente, las secuencias de los ligandos MHC se identifican eluyendo los péptidos unidos de las moléculas MHC aisladas de la muestra tumoral y secuenciando los ligandos eluidos. Preferentemente, la muestra tumoral y el tejido normal se obtienen del mismo paciente.
Los TUMAP se pueden identificar en el paciente de novo e incluirse después en la vacuna. A modo de ejemplo, los TUMAP candidatos se pueden identificar en el paciente mediante (a) comparación de los datos de expresión de la muestra tumoral con los datos de expresión de una muestra de tejido normal que corresponde al tipo de tejido de la muestra del tumor para identificar proteínas que se sobreexpresan o se expresan de modo aberrante en la muestra tumoral; y (a2) correlación de los datos de expresión con secuencias de ligandos MHC unidos a moléculas MHC de clase I y/o clase II en la muestra tumoral para identificar ligandos MHC derivados de proteínas que son sobreexpresadas o expresadas de modo aberrante por el tumor. Como otro ejemplo, se pueden identificar proteínas portadoras de mutaciones que sean exclusivas de la muestra tumoral en comparación con el correspondiente tejido normal del paciente, así como encontrar TUMAP que permitan reconocer específicamente la mutación. Por ejemplo, el genoma del tumor y el del tejido normal correspondiente se pueden secuenciar mediante secuenciación hologenómica: Para descubrir mutaciones que no sean sinónimas en las regiones codificadoras de las proteínas de los genes, se extraen el ADN y el ARN genómicos de tejidos tumorales y el ADN genómico germinal normal y no mutado de células mononucleares de sangre periférica (PBMC). La estrategia de secuenciación de nueva generación (NGS) aplicada queda limitada a la re-secuenciación de las regiones codificantes de proteínas (resecuenciación del exoma). Con este objeto, se captura el ADN exónico de muestras humanas con equipos de enriquecimiento dirigido suministrados por el proveedor y se procede a la secuenciación con p. ej., un secuenciador HiSeq2000 (Illumina). Además, se secuencia el ARNm del tumor para determinar la cuantificación directa de la expresión génica y la validación de que los genes mutados se expresan en los tumores del paciente. Los millones de lecturas de secuencia resultantes se procesan con algoritmos informáticos. La lista de resultados contiene mutaciones y la expresión génica. Las mutaciones somáticas específicas del tumor se determinan comparándolas con las variaciones germinales derivadas de las PBMC y se priorizan. Los péptidos identificados de novo pueden ser analizados para determinar su inmunogenicidad según lo descrito antes con el archivo, y los TUMAP candidatos que posean la inmunogenicidad adecuada se escogen para la inclusión en la vacuna.
En una forma de realización indicada a título de ejemplo, los péptidos incluidos en la vacuna se identifican mediante: (a) identificación de los péptidos asociados a tumor (TUMAP) presentes en una muestra tumoral del paciente en cuestión mediante el método antes descrito; (b) comparación de los péptidos identificados en a) el archivo (base de datos) de péptidos que han sido preseleccionados por su inmunogenicidad y su sobrepresentación en tumores respecto al correspondiente tejido normal; (c) selección de al menos un péptido de la base de datos que presente correlación con un péptido asociado a tumor identificado en el paciente; y (d) opcionalmente, selección de al menos un péptido identificado de novo en el paso (a) para confirmar su inmunogenicidad.
En una forma de realización indicada a título de ejemplo, los péptidos incluidos en la vacuna se identifican mediante: (a) identificación de los péptidos asociados a tumor (TUMAP) presentes en una muestra tumoral del paciente en cuestión; y (b) opcionalmente, selección de al menos un péptido identificado de novo en el paso (a) para confirmar su inmunogenicidad.
Una vez escogidos los péptidos para la vacuna basada en péptidos personalizados, se fabrica la vacuna. La vacuna preferiblemente es una formulación líquida consistente en los péptidos individuales disueltos en DMSO entre el 20% y el 40%, preferiblemente DMSO entre el 30% y el 35%, como aproximadamente DMSO al 33%.
Cada péptido se disuelve en DMSO antes de formar parte del producto. La concentración de cada solución de péptido se escoge dependiendo del número de péptidos que formarán parte del producto. Cada solución de péptido y DMSO se mezcla en partes iguales para obtener una solución que contenga todos los péptidos del producto con una concentración de ~2,5 mg/ml por péptido. La solución mezclada se diluye a 1:3 con agua para inyectables hasta alcanzar una concentración de 0,826 mg/ml por péptido en DMSO al 33%. La solución diluida se filtra con un filtro estéril de 0,22 pm. Se obtiene la solución final a granel.
La solución final a granel se envasa en viales y se conserva a -20°C hasta su uso. Un vial contiene 700 pl de solución que contiene 0,578 mg de cada péptido. De los cuales 500 j l (aprox. 400 |jg por péptido) se aplicarán con la inyección intradérmica.
Además de ser útiles para el tratamiento del cáncer, los péptidos de la presente invención también son útiles para el diagnóstico. Dado que los péptidos son generados a partir de muestras de tumor de próstata y se ha determinado que tales péptidos no están presentes o lo están en niveles bajos en los tejidos normales, pueden ser utilizados para diagnosticar la presencia de un tumor.
La presencia de los péptidos reivindicados en las biopsias de tejido puede ayudar al histopatólogo a diagnosticar un cáncer. La detección de ciertos péptidos por medio de anticuerpos, espectrometría de masas u otros métodos conocidos en la técnica puede advertir al histopatólogo de que la muestra es maligna o está inflamada o enferma en general, o puede ser utilizada como un biomarcador del cáncer de próstata. La presencia de grupos de péptidos puede permitir la clasificación o subclasificación de los tejidos enfermos.
La detección de los péptidos en una muestra de tejido enfermo puede ayudar a decidir si los tratamientos que implican al sistema inmunitario pueden ser beneficiosos, sobre todo si se sabe o se prevé que los linfocitos T estén implicados en el mecanismo de acción. La pérdida de expresión de MHC es un mecanismo conocido con el que las células infectadas o cancerosas logran eludir la vigilancia del sistema inmunitario. Así pues, la presencia de los péptidos indica que dicho mecanismo no es utilizado por las células analizadas.
Los péptidos de la presente invención pueden ser utilizados para analizar las respuestas de los linfocitos contra ellos, como son las respuestas de los linfocitos T o las respuestas de anticuerpos contra el péptido o el péptido unido a moléculas de MHC. Estas respuestas de los linfocitos pueden ser utilizadas como marcadores pronósticos para decidir los pasos posteriores del tratamiento. Dichas respuestas también pueden ser utilizadas como marcadores indirectos en las estrategias de inmunoterapia destinadas a estimular respuestas linfocitarias a través de diferentes medios, como por ejemplo la vacunación con proteínas, ácidos nucleicos, materiales autólogos, o la transferencia de linfocitos de donantes. En el ámbito de la terapia génica, las respuestas de los linfocitos contra los péptidos pueden tenerse en cuenta para la evaluación de efectos secundarios. El control regular de las respuestas de los linfocitos también puede ser una herramienta valiosa para el seguimiento en trasplantes, por ejemplo con el fin de detectar enfermedades del injerto contra el hospedador y del hospedador contra el injerto.
A continuación se describirá la presente invención con los ejemplos siguientes con alusión a las figuras adjuntas que describen las formas de realización preferidas de los mismos, sin que con ello se pretenda limitar la invención.
FIGURAS
Las Figuras 1 A-C muestran la sobrepresentación de varios péptidos en tejidos normales (barras blancas) y tejidos de cáncer de próstata y de hiperplasia benigna de próstata (barras negras). Las Figuras 1 D-E presentan todas las estirpes celulares, los tejidos normales y tejidos cancerosos en que se han detectado los péptidos mostrados a título de ejemplo (SLLSHQVLL (A*02) (SEQ ID N.° 20) y SLLSHQVLL (A*24) (SEQ ID N.° 20)). Figura 1A) Gen: OR51E2; Péptido: VTAQIGIVAV (A*02; SEQ ID N.° 1); Tejidos de izquierda a derecha: 1 tejido adiposo, 3 glándulas suprarrenales, 6 arterias, 5 médulas óseas, 7 cerebros, 3 mamas, 1 nervio central, 13 colones, 1 duodeno, 8 esófagos, 2 vesículas biliares, 5 corazones, 16 riñones, 21 hígados, 46 pulmones, 4 ganglios linfáticos, 4 muestras de leucocitos, 4 ovarios, 7 páncreas, 4 nervios periféricos, 1 peritoneo, 3 hipófisis, 4 placentas, 3 pleuras, 6 rectos, 7 glándulas salivales, 4 músculos esqueléticos, 6 pieles, 2 intestinos delgados, 4 bazos, 7 estómagos, 4 testículos, 3 timos, 4 glándulas tiroides, 10 tráqueas, 3 uréteres, 6 vejigas urinarias, 2 úteros, 2 venas, 3 próstatas, 44 próstatas cancerosas. El péptido ha sido detectado además en el cáncer de pulmón microcítico (no mostrado).
Figura 1B) Gen: mAn SC1, Péptido: KMDEASAQLL (A*02; SEQ ID N.° 14) -Tejidos de izquierda a derecha: 1 tejido adiposo, 3 glándulas suprarrenales, 6 arterias, 5 médulas óseas, 7 cerebros, 3 mamas, 1 nervio central, 13 colones, 1 duodeno, 8 esófagos, 2 vesículas biliares, 5 corazones, 16 riñones, 21 hígados, 46 pulmones, 4 ganglios linfáticos, 4 muestras de leucocitos, 4 ovarios, 7 páncreas, 4 nervios periféricos, 1 peritoneo, 3 hipófisis, 4 placentas, 3 pleuras, 6 rectos, 7 glándulas salivales, 4 músculos esqueléticos, 6 pieles, 2 intestinos delgados, 4 bazos, 7 estómagos, 4 testículos, 3 timos, 4 glándulas tiroides, 10 tráqueas, 3 uréteres, 6 vejigas urinarias, 2 úteros, 2 venas, 3 próstatas, 44 próstatas cancerosas.
Figura 1C) Gen: TRPM8, Péptido: SYNDALLTF (A*24; SEQ ID N.° 24); Tejidos de izquierda a derecha: 2 glándulas suprarrenales, 1 arteria, 4cerebros, 1 mama, 5 colones, 1 corazón, 13 riñones, 9 hígados, 9 pulmones, 3 páncreas, 1 hipófisis, 2 rectos, 3 pieles, 1 bazo, 12 estómagos, 1 timo, 2 úteros, 40 próstatas cancerosas. El péptido también se ha hallado en el cáncer de pulmón amicrocítico (no mostrado).
Figura 1D) Gen: KIAA1244, Péptido: SLLSHQVLL (A*02; SEQ ID N.° 20); Tejidos de izquierda a derecha: 1 estirpe de células de páncreas, 20 tejidos cancerosos (1 cáncer de cerebro, 1 cáncer de mama, 2 cánceres de colon, 1 cáncer de esófago, cáncer de riñón, 1 cáncer de hígado, 3 cánceres de pulmón, 8 cánceres de próstata, 1 cáncer de estómago, 1 cáncer de vejiga urinaria). El conjunto de tejidos normales era el mismo que en A-B, pero el péptido no se detectó en ningún tejido normal.
Figura 1E) Gen: KIAA1244, Péptido: QYGKDFLTL (A*24; SEQ ID N.° 33) - Tejidos de izquierda a derecha: 3 tejidos de hiperplasia benigna de próstata, 3 tejidos normales (1 hígado, 1 pulmón, 1 recto), 31 tejidos cancerosos (5 cánceres de cerebro, 4 cánceres de hígado, 15 cánceres de pulmón, 7 cánceres de próstata). El conjunto de tejidos normales era el mismo que en C, pero no se muestran los tejidos en que no hubo detección. Las Figuras 1F-K muestran la sobrepresentación de varios péptidos en tejidos normales (barras blancas) y de tejidos de cáncer de próstata y de hiperplasia benigna de próstata (barras negras). Las Figuras 1L-S también muestran todas las líneas celulares, tejidos normales y tejidos cancerosos en que se han detectado diversos péptidos. Figura 1F) Gen: NEFH, Péptido: HLLEDIAHV (A*02; SEQ ID N.° 3) -Tejidos de izquierda a derecha: 1 tejido adiposo, 3 glándulas suprarrenales, 6 arterias, 5 médulas óseas, 7 cerebros, 3 mamas, 1 nervio central, 13 colones, 1 duodeno, 8 esófagos, 2 vesículas biliares, 5 corazones, 16 riñones, 4 muestras de leucocitos, 21 hígados, 46 pulmones, 4 ganglios linfáticos, 3 ovarios, 7 páncreas, 4 nervios periféricos, 1 peritoneo, 3 hipófisis, 2 placentas, 3 pleuras, 6 rectos, 7 glándulas salivales, 4 músculos esqueléticos, 5 pieles, 2 intestinos delgados, 4 bazos, 7 estómagos, 4 testículos, 3 timos, 4 glándulas tiroides, 9 tráqueas, 3 uréteres, 6 vejigas urinarias, 2 úteros, 2 venas, 3 próstatas, 33 tejidos de cáncer de próstata y 10 tejidos de hiperplasia benigna de próstata. Figura 1G) Gen: p De 11A, Péptido: ALLESRVNL (A*02; SEQ ID N.° 6 ) - Tejidos de izquierda a derecha: 1 tejido adiposo, 3 glándulas suprarrenales, 6 arterias, 5 médulas óseas, 7 cerebros, 3 mamas, 1 nervio central, 13 colones, 1 duodeno, 8 esófagos, 2 vesículas biliares, 5 corazones, 16 riñones, 4 muestras de leucocitos, 21 hígados, 46 pulmones, 4 ganglios linfáticos, 3 ovarios, 7 páncreas, 4 nervios periféricos, 1 peritoneo, 3 hipófisis, 2 placentas, 3 pleuras, 6 rectos, 7 glándulas salivales, 4 músculos esqueléticos, 5 pieles, 2 intestinos delgados, 4 bazos, 7 estómagos, 4 testículos, 3 timos, 4 glándulas tiroides, 9 tráqueas, 3 uréteres, 6 vejigas urinarias, 2 úteros, 2 venas, 3 próstatas, 33 tejidos de cáncer de próstata y 10 tejidos de hiperplasia benigna de próstata. Figura 1H) Gen: KLK4, Péptido: GYLQGLVSF (A*24; SEQ ID N.° 27) - Tejidos de izquierda a derecha: 2 glándulas suprarrenales, 1 arteria, 4 cerebros, 1 mama, 5 colones, 1 corazón, 13 riñones, 9 hígados, 9 pulmones, 3 páncreas, 1 hipófisis, 2 rectos, 3 pieles, 1 bazo, 12 estómagos, 1 timo, 2 úteros, 37 tejidos de cáncer de próstata y 3 tejidos de hiperplasia benigna de próstata. Figura 1I) Gen: TGFB3, Péptido: YYa Ke IHKF (A*24; SEQ ID N.° 28) - Tejidos de izquierda a derecha: 2 glándulas suprarrenales, 1 arteria, 4 cerebros, 1 mama, 5 colones, 1 corazón, 13 riñones, 9 hígados, 9 pulmones, 3 páncreas, 1 hipófisis, 2 rectos, 3 pieles, 1 bazo, 12 estómagos, 1 timo, 2 úteros, 37 tejidos de cáncer de próstata y 3 tejidos de hiperplasia benigna de próstata. Figura 1J) Gen: KLK3, Péptido: SLFHPEDTGQV (A*02; SeQ ID N.° 49) - Tejidos de izquierda a derecha: 1 tejido adiposo, 3 glándulas suprarrenales, 6 arterias, 5 médulas óseas, 7 cerebros, 3 mamas, 1 nervio central, 13 colones, 1 duodeno, 8 esófagos, 2 vesículas biliares, 5 corazones, 16 riñones, 4 muestras de leucocitos, 21 hígados, 46 pulmones, 4 ganglios linfáticos, 3 ovarios, 7 páncreas, 4 nervios periféricos, 1 peritoneo, 3 hipófisis, 2 placentas, 3 pleuras, 6 rectos, 7 glándulas salivales, 4 músculos esqueléticos, 5 pieles, 2 intestinos delgados, 4 bazos, 7 estómagos, 4 testículos, 3 timos, 4 glándulas tiroides, 9 tráqueas, 3 uréteres, 6 vejigas urinarias, 2 úteros, 2 venas, 3 próstatas, 33 tejidos de cáncer de próstata y 10 tejidos de hiperplasia benigna de próstata. Figura 1K) Gen: KlK2, Péptido: a Ys EKVTEF (A*24; SEQ ID N.° 54) - Tejidos de izquierda a derecha: 2 glándulas suprarrenales, 1 arteria, 4 cerebros, 1 mama, 5 colones, 1 corazón, 13 riñones, 9 hígados, 9 pulmones, 3 páncreas, 1 hipófisis, 2 rectos, 3 pieles, 1 bazo, 12 estómagos, 1 timo, 2 úteros, 37 tejidos de cáncer de próstata y 3 tejidos de hiperplasia benigna de próstata. Figura 1L) Gen: GREB1, Péptido: SMLGEEIQL (A*02; SEQ ID N.° 2 ) - Tejidos de izquierda a derecha: 1 tejido de hiperplasia benigna de próstata (HBP), 3 estirpes celulares (3 pieles), 1 tejido normal (1 útero), 26 tejidos cancerosos (2 cánceres de mama, 2 cánceres de hígado, 1 cáncer de pulmón, 1 cáncer de ovario, 13 cánceres de próstata, 6 cánceres de piel y 1 cáncer de útero. Figura 1M) Gen: TRPM8, Péptido: ALLTFVWKL (A*02; SEQ iD N.° 4) - Tejidos de izquierda a derecha: 3 tejidos de hiperplasia benigna de próstata (HBP), 13 tejidos cancerosos (1 cáncer de cerebro y 12 cánceres de próstata). Figura 1N) Gen: TRPm 8, Péptido: KIFSRLIYI (A*02; SEQ ID N.° 5) - Tejidos de izquierda a derecha: 4 tejidos de hiperplasia benigna de próstata (HBP), 10 tejidos cancerosos (1 cáncer de cerebro, 8 cánceres de próstata y 1 cáncer de piel). Figura 1O) Gen: Ma Ns C1, Péptido: KMDEAsAq L (A*02; SEQ ID N.° 16) - Tejidos de izquierda a derecha: 21 tejidos cancerosos (20 cánceres de próstata y 1 cáncer de vejiga urinaria). Figura 1P) Gen: C6orf132, Péptido: RYGSPINTF (A*24; SEQ ID N.° 29) - Tejidos de izquierda a derecha: 4 tejidos de hiperplasia benigna de próstata (HBP), 54 tejidos cancerosos (1 cáncer de hígado, 24 cánceres de pulmón, 26 cánceres de próstata y 3 cánceres de estómago). Figura 1Q) Gen: ITGA7, Péptido: AFSPDSHYLLF (A*24; SEQ ID N.° 34) - Tejidos de izquierda a derecha: 5 tejidos de hiperplasia benigna de próstata (HBP), 44 tejidos cancerosos (10 cánceres de cerebro, 4 cánceres de hígado, 18 cánceres de pulmón y 11 cánceres de próstata). Figura 1R) Gen: TPSB2, TPSAB1, Péptido: IYTRVTYYL (A*24; SEQ ID N.° 35) - Tejidos de izquierda a derecha: 3 tejidos de hiperplasia benigna de próstata (HBP), 59 tejidos cancerosos (36 cánceres de pulmón, 14 cánceres de próstata y 9 cánceres de estómago). Figura 1S) Gen: SLC30A4, Péptido: ALGDLVQSV (A*02; SEQ ID N.° 52) - Tejidos de izquierda a derecha: 1 tejido de hiperplasia benigna de próstata (HBP), 11 tejidos cancerosos (1 cáncer de ganglio linfático, 9 cánceres de próstata y 1 cáncer de piel).
Las Figuras 2A a E muestran muestra perfiles de expresión a modo de ejemplo (expresión relativa comparada con el riñón normal) de genes originarios dados a conocer que están fuertemente sobreexpresados o que se expresan exclusivamente en el cáncer de próstata en comparación con un grupo de tejidos normales y en 20 muestras de cáncer de próstata. Tejidos de izquierda a derecha: glándula suprarrenal, arteria, médula ósea, cerebro (entero), mama, colon, esófago, corazón, riñón (triplicado), leucocitos, hígado, pulmón, ganglio linfático, ovario, páncreas, placenta, próstata, glándula salival, músculo esquelético, piel, intestino delgado, bazo, estómago, testículo, timo, glándula tiroides, vejiga urinaria, cuello de útero, útero, vena, 20 muestras de cáncer de próstata.
Figura 2A) NEFH; Figura 2B) ABCC4; Figura 2C) RAB3B; Figura 2D) OR51E2; y Figura 2E) KLK2.
La Figura 3 muestra datos de inmunogenicidad a título de ejemplo: resultados de la citometría de flujo tras la tinción con multímeros específicos de péptido. A) TYIGQGYII (FKBP10; SEQ ID N.° 42); B) IYTRVTYYL (TPSB2, TPSAB1; SEQ ID N.° 35).
Las Figuras 4A a C muestran resultados a título de ejemplo respuestas de linfocitos T CD8+ específicos de péptido procedentes de un donante sano HLA-A*02+ en condiciones in vitro. Los linfocitos T CD8+ fueron estimulados con APC artificiales cubiertas con AcM anti-CD28 y HLA-A*02 formando un complejo con el péptido de SEQ ID N.° 1 (A, recuadro izquierdo), el péptido de SEQ ID N.° 3 (B, recuadro izquierdo) o el péptido de SEQ ID. N.° 5 (C, recuadro izquierdo), respectivamente. Al cabo de tres ciclos de estimulación, las células que reaccionaron al péptido se detectaron mediante la tinción 2D con multímeros con A*02/Seq ID N.° 1 (A), A*02/Seq ID N.° 3 (B) o A*02/Seq ID N.° 5 (C). Los recuadros de la derecha (A, B y C) muestran la tinción de control de células estimuladas con complejos A*02/péptido irrelevantes. Los linfocitos CD8+ se seleccionaron entre las células en singlete viables. La aplicación de operadores booleanos ayudó a excluir los falsos positivos detectados con los multímeros específicos para diferentes péptidos. Se indican las frecuencias de células multímero+ específicas entre los linfocitos CD8+.
Las Figuras 5A a B muestran resultados a título de ejemplo de respuestas de linfocitos T CD8+ específicos de péptido procedentes de un donante sano HLA-A*24+ en condiciones in vitro. Los linfocitos T CD8+ fueron estimulados con APC artificiales cubiertas con AcM anti-CD28 y HLA-A*24 formando un complejo con el péptido de SEQ ID N.° 24 (A, recuadro izquierdo) o el péptido de SEQ ID N.° 27 (B, recuadro izquierdo), respectivamente. Al cabo de tres ciclos de estimulación, las células que reaccionaron al péptido se detectaron mediante la tinción 2D de los multímeros con A*24/SEQ ID N.° 24 (A) o A*24/SEQ ID N.° 27 (B). Los recuadros de la derecha (A y B) muestran la tinción de control de células estimuladas con complejos A*24/péptido irrelevantes. Los linfocitos CD8+ se seleccionaron entre las células en singlete viables. La aplicación de operadores booleanos ayudó a excluir los falsos positivos detectados con los multímeros específicos para diferentes péptidos. Se indican las frecuencias de células multímero+ específicas entre los linfocitos CD8+. EJEMPLOS EJEMPLO 1
Identificación y cuantificación de los péptidos asociados a tumor presentados en la superficie celular
Muestras de tejido
Los tejidos tumorales de próstata de los pacientes procedían de Asterand (Detroit, EE. UU. y Royston, Herts, Reino Unido); BioServe (Beltsville, Maryland, EE. UU.); Geneticist Inc. (Glendale, California, EE. UU.); Indivumed GmbH (Hamburgo, Alemania); Saint Savas Hospital, Atenas, Grecia, Hospital Universitario de Tubinga, Alemania. Los tejidos normales se obtuvieron de Asterand (Detroit, EE.UU. y Royston, Herts, Reino Unido); Bio-Options Inc., California, EE.UU.; BioServe, Beltsville, Maryland, EE.UU.; Capital BioScience Inc., Rockville, Maryland, EE.UU.; Geneticist Inc., Glendale, California, EE.UU.; Hospital Universitario de Ginebra; Hospital Universitario de Heidelberg; Universidad de Medicina de la Prefectura de Kioto (KPUM); Universidad de la Ciudad de Osaka (OCU); Hospital Universitario de Múnich; ProteoGenex Inc., Culver City, California, EE.UU.; Hospital Universitario de Tubinga, Alemania; Tissue Solutions Ltd., Glasgow, Reino Unido; Hospital Universitario de Tubinga. Los pacientes otorgaron su consentimiento informado por escrito antes de la intervención quirúrgica o la autopsia. Los tejidos se criogenizaron en nitrógeno líquido inmediatamente después de la extirpación y permanecieron a -70°C hasta el aislamiento de los TUMAP.
Aislamiento de los péptidos HLA de las muestras de tejido
Las mezclas de péptidos HLA de las muestras de tejido congeladas instantáneamente se obtuvieron por inmunoprecipitación de tejidos sólidos siguiendo un protocolo ligeramente modificado (Falk et al., Nature 351 (1991): 290-296; Seeger et al., Immunogenetics 49 (1999): 571-576) con el anticuerpo específico de HLA-A*02 BB7.2, el anticuerpo específico de HLA-A, B y C W6/32, sefarosa activada con CNBr, tratamiento con ácido y ultrafiltración. Análisis por espectrometría de masas
Las mezclas de péptidos HLA se separaron en función de su hidrofobicidad con cromatografía en fase inversa (sistema nanoAcquity UPLC, Waters) y los péptidos eluidos se analizaron con un espectrómetro de masas híbrido LTQ-Orbitrap (ThermoElectron) equipado con una fuente de ESI. Las mezclas de péptidos se cargaron directamente en una columna microcapilar de sílice fundido (75 pm de d.i. x 250 mm) rellena con material de fase inversa C18 de 1,7 pm (Waters) aplicando un caudal de 400 nl por minuto. Posteriormente los péptidos se separaron con un gradiente binario de 180 minutos en dos fases con 10% al 33% de B con un caudal de 300 nl por minuto. El gradiente estaba compuesto por solvente A (ácido fórmico al 0,1% en agua) y solvente B (ácido fórmico al 0,1% en acetonitrilo). Para la introducción en la fuente nano-ESI se empleó un capilar de vidrio recubierto de oro (PicoTip, New Objective). Los espectrómetros de masas LTQ-Orbitrap se hicieron funcionar en el modo dependiente de datos con el método TOP5. En resumen, se inició un ciclo de barrido con un barrido completo de alta precisión de masa en el orbitrap (R = 30 000), al que siguieron barridos EM/EM también en el orbitrap (R = 7500) con los 5 iones precursores más abundantes y exclusión dinámica de los iones preseleccionados. Los espectros de masas en tándem se interpretaron con SEQUEST y control manual adicional. La secuencia peptídica identificada se confirmó comparando el patrón de fragmentación generado por el péptido natural con el patrón de fragmentación de un péptido de referencia sintético de idéntica secuencia.
La cuantificación relativa de la CL-EM sin marcador se efectuó por recuento iónico, es decir por extracción y análisis de las características de CL-EM ( (Mueller et al., 2007). El método supone que las áreas de señal de CL-Em de un péptido están correlacionadas con su abundancia en la muestra. Las características extraídas se procesaron además con deconvolución del estado de carga y alineamiento del tiempo de retención (Mueller et al., 2008; Sturm et al., 2008). Por último, todas las características CL-EM se cotejaron con los resultados de la identificación de secuencias para combinar los datos cuantitativos de muestras y tejidos diferentes con los perfiles de presentación de péptidos. Los datos cuantitativos se normalizaron en proporción dos tercios de acuerdo con la tendencia central para tener en cuenta la variación entre los duplicados técnicos y biológicos. De ese modo, cada péptido identificado se puede asociar con datos cuantitativos que permiten la cuantificación relativa entre muestras y tejidos. Asimismo, todos los datos cuantitativos adquiridos de los candidatos peptídicos se revisaron manualmente para comprobar la coherencia de los datos y verificar la exactitud del análisis automático. Se calculó un perfil de presentación de cada péptido que mostraba la presentación media de la muestra así como las variaciones de los duplicados. Los perfiles superponen muestras de cáncer de próstata y muestras de hiperplasia benigna de próstata con muestras de tejido normal de referencia.
La Figura 1 muestra perfiles de presentación de péptidos sobrepresentados y mostrados aquí a título de ejemplo. Las puntuaciones de presentación de péptidos mostrados a título de ejemplo se exponen en la Tabla 12 y la Tabla 13.
Tabla 12: Puntuaciones de presentación. La tabla enumera péptidos HLA-A*02 sobrepresentados muchísimo más en los tumores que en el grupo de tejidos normales (+++), sobrepresentados mucho más en los tumores que en el grupo de tejidos norm l + r r n m n l m r n l r jidos normales (+).
Figure imgf000036_0001
Tabla 13: Puntuaciones de presentación. La tabla enumera péptidos HLA-A*24 sobrepresentados muchísimo más en los tumores que en el grupo de tejidos normales (+++), sobrepresentados mucho más en los tumores que en el grupo de tejidos norm l + r r n m n m r n l r tejidos normales (+).
Figure imgf000036_0002
continuación
Figure imgf000037_0002
EJEMPLO 2
Perfiles de expresión de genes que codifican los péptidos dados a conocer
La sobrepresentación o la presentación específica de un péptido en las células tumorales con respecto a las células normales es suficiente para que sea de utilidad en la inmunoterapia, y algunos péptidos son específicos de tumor aunque la proteína de la que proceden esté presente también en los tejidos normales. Además, la obtención de los perfiles de expresión del ARNm añade otro nivel de seguridad a la selección de las dianas peptídicas para la inmunoterapia. Concretamente para las opciones terapéuticas sujetas a un alto riesgo de seguridad, como los TCR madurados por afinidad, el péptido diana ideal será todo aquel derivado de una proteína que sea exclusiva del tumor y no se halle en los tejidos normales.
Fuentes de ARN y preparación
Las muestras de tejido extirpado fueron facilitadas por diversas instituciones (véase el Ejemplo 1); todos los pacientes otorgaron su consentimiento informado por escrito. Las muestras de tejido tumoral se congelaron rápidamente en nitrógeno líquido inmediatamente después de la operación y se homogeneizaron a mano en un mortero con nitrógeno líquido. El ARN total se preparó a partir de estas muestras con TRI Reagent (Ambion, Darmstadt, Alemania) y después se purificó con RNeasy (QIAGEN, Hilden, Alemania); ambos métodos se efectuaron siguiendo las instrucciones del fabricante.
El ARN total procedente de tejidos humanos sanos se obtuvo por canales comerciales (Ambion, Huntingdon, Reino Unido; Clontech, Heidelberg, Alemania; Stratagene, Ámsterdam, Holanda; BioChain, Hayward, California, EE.UU.). El ARN de varios individuos (de 2 a 123 individuos) se mezcló de tal modo que el ARN de cada uno de ellos estuviera representado en la misma proporción.
La calidad y la cantidad de las muestras de ARN se valoró con Agilent 2100 Bioanalyzer (Agilent, Waldbronn, Alemania) y el RNA 6000 Pico LabChip Kit (Agilent).
Experimentos de micromatrices
El análisis de la expresión génica de todas las muestras de ARN de tejido tumoral y normal se efectuó con micromatrices oligonucleotídicas Affymetrix Human Genome (HG) U133A o HG-U133 Plus 2.0 (Affymetrix, Santa Clara, California, EE.UU.). Todos los pasos se llevaron a cabo siguiendo el manual de Affymetrix. En resumen, a partir de 5-8 |jg de ARN total se sintetizó ADNc bicatenario con SuperScript RTII (Invitrogen) y el cebador oligo-dT-T7 (MWG Biotech, Ebersberg, Alemania) siguiendo las indicaciones del manual. La transcripción in vitro se llevó a cabo con el BioArray High Yield RNA Transcript Labelling Kit (ENZO Diagnostics, Inc., Farmingdale, Nueva York, EE. UU.) en el caso de las matrices U133A y con el GeneChip IVT Labelling Kit (Affymetrix) en el de las matrices U133 Plus 2.0, y después se procedió a la fragmentación del ARNc, a su hibridación y tinción con estreptavidinaficoeritrina y un anticuerpo anti-estreptavidina biotinilado (Molecular Probes, Leiden, Holanda). Las imágenes se analizaron con el Agilent 2500A GeneArray Scanner (U133a ) o con el Affymetrix Gene-Chip Scanner 3000 (U133 Plus 2.0), y los datos se analizaron con el software GCOS (Affymetrix), aplicando los ajustes por defecto en todos los parámetros. Para la normalización se utilizaron 100 genes constitutivos (housekeeping) suministrados por Affymetrix. Los valores de expresión relativa se calcularon a partir de los ratios logarítmicos de señal dados por el software y la muestra normal de riñón se ajustó de forma arbitraria en 1,0. En las Figuras 2A a E se exponen ejemplos de perfiles de expresión de genes originarios dados a conocer que aparecen muy sobreexpresados o que se expresan exclusivamente en el cáncer de próstata. La Tabla 14 muestra las puntuaciones de expresión de otros genes mostrados a título de ejemplo.
Tabla 14: Puntuaciones de expresión. La tabla enumera péptidos derivados de genes que se sobreexpresan muchísimo más en los tumores que en el grupo de tejidos normales (+++), se sobreexpresan mucho más en los tumores que en el grupo de tejidos normales (++), y se sobreexpresan más en los tumores que en el grupo de teidos normales .
Figure imgf000037_0001
continuación
Figure imgf000038_0001
EJEMPLO 3
Inmunogenicidad in vitro de los péptidos presentados por MHC de clase I
A fin de recabar información sobre la inmunogenicidad de los TUMAP dados a conocer, los inventores llevaron a cabo estudios con un ensayo de sensibilización in vitro de linfocitos T basado en estimulaciones reiteradas de linfocitos T CD8+ con células presentadoras de antígeno artificiales (aAPC) cargadas con complejos péptido/MHC y anticuerpo anti-CD28. De este modo los inventores han podido demostrar la inmunogenicidad de algunos TUMAP seleccionados restringidos para HLA-A*0201 y HLA-A*24 dados a conocer, lo cual demuestra que estos péptidos son epítopos de linfocitos T contra los cuales existen linfocitos T precursores CD8+ en humanos (Tabla 15A+B). Sensibilización in vitro de linfocitos T CD8+
Para realizar las estimulaciones in vitro con células presentadoras de antígenos artificiales cargadas con el complejo péptido-MHC (pMHC) y el anticuerpo anti-CD28, los inventores aislaron primero los linfocitos T CD8+ de productos de leucoféresis frescos HLA-A*02 mediante la selección positiva con microperlas con CD8 (Miltenyi Biotec, Bergisch-Gladbach, Alemania) procedentes de donantes sanos obtenidas de la Clínica Universitaria de Mannheim, Alemania, tras obtener el consentimiento informado.
Los linfocitos CD8+ o PBMC aislados se incubaron hasta su utilización en medio para linfocitos T (TCM) consistente en RPMI-Glutamax (Invitrogen, Karlsruhe, Alemania) complementado con suero AB humano termoinactivado al 10% (PAN-Biotech, Aidenbach, Alemania), penicilina 100 U/ml / estreptomicina 100 pg/ml (Cambrex, Colonia, Alemania), piruvato sódico 1 mM (CC Pro, Oberdorla, Alemania), gentamicina 20 pg/ml (Cambrex). En este paso al medio TCM también se le añadieron IL-7 2,5 ng/ml (PromoCell, Heidelberg, Alemania) e IL-2 10 U/ml (Novartis Pharma, Núremberg, Alemania).
La fabricación de las microperlas tapizadas con pMHC/anti-CD28, la estimulaciones de los linfocitos T y la lectura se llevaron a cabo en un sistema in vitro muy definido con cuatro moléculas pMHC distintas en cada condición de estimulación y 8 moléculas pMHC distintas en cada condición de lectura.
El anticuerpo coestimulador purificado Ab 9.3, una IgG2a de ratón anti-CD28 humano (Jung et al., 1987) se biotiniló químicamente con sulfo-N-hidroxisuccinimidobiotina siguiendo las recomendaciones del fabricante (Perbio, Bonn, Alemania). Las microperlas utilizadas consistían en partículas de poliestireno de 5,6 pm de diámetro recubiertas de estreptavidina (Bangs Laboratories, Illinois, EE.UU.).
Los pMHC usados en las estimulaciones de control positivo y negativo fueron A*0201/MLA-001 (péptido ELAGIGILTV (SEQ ID N.° 60) de Melan-A modificado/MART-1) y A*0201/DDX5-001 (YLLPAIVHI de DDX5, SEQ ID N.° 61), respectivamente.
Placas de 96 pocillos se tapizaron con 800.000 microperlas / 200 pl en presencia de 4 x 12,5 ng de diferentes pMHC biotinilados, se lavaron y después se les añadió 600 ng de anti-CD28 biotinilado en un volumen de 200 pl. Las estimulaciones se iniciaron en placas de 96 pocillos en las que se incubaron simultáneamente 1x106 linfocitos T CD8+ con 2x105 microperlas recubiertas y lavadas en 200 pl de TCM suplementado con IL-125 ng/ml (PromoCell) durante 3 días a 37 °C. La mitad del medio se renovó con TCM fresco suplementado con IL-2 80 U/ml y la incubación continuó otros 4 días a 37 °C. Este ciclo de estimulación se efectuó en total tres veces. Para la lectura de los multímeros pMHC con 8 moléculas pMHC distintas por condición se empleó una estrategia de codificación combinatoria bidimensional según lo descrito en otro lugar(Andersen et al., 2012), con pequeñas modificaciones que comprenden el acoplamiento con 5 fluorocromos distintos. Por último, los análisis de los multímeros se llevaron a cabo tiñendo las células con el colorante vital Live/dead® del IR cercano (Invitrogen, Karlsruhe, Alemania), con anticuerpo anti-CD8-FITC clon SK1 (BD, Heidelberg, Alemania) y multímeros pMHC fluorescentes. Para el análisis se equipó un citómetro BD LSRII SORP con los filtros y láseres adecuados. Las células específicas de péptido se calcularon en forma de porcentaje respecto al total de linfocitos T CD8+. La evaluación del análisis multimérico se efectuó con el software FlowJo (Tree Star, Oregón, EE. UU.). La sensibilización in vitro de los linfocitos CD8+ multímero+ específicos se detectó comparando los resultados con las estimulaciones del control negativo. La inmunogenicidad para un antígeno dado quedaba confirmada si al menos un pocillo estimulado in vitro y evaluable de un donante sano contenía una línea de linfocitos T CD8+ específica después de la estimulación in vitro (esto es, el pocillo contenía al menos un 1% de multímero+ específico entre los linfocitos T CD8+ y el porcentaje de células multímero+ específicas era al menos 10x de la mediana de las estimulaciones del control negativo).
Inmunogenicidad in vitro de péptidos del cáncer de próstata
En el caso de los péptidos de HLA de clase I analizados, la inmunogenicidad in vitro se puede demostrar con la generación de líneas de linfocitos T específicos de ese péptido. En la Figura 3 se muestran a título de ejemplo los resultados de la citometría de flujo de 2 péptidos dados a conocer tras la tinción de multímeros específicos de TUMAP junto con la de los controles negativos correspondientes. Los resultados de 5 péptidos dados a conocer se resumen en la Tabla 15A. En la Tabla 15B se muestran resumidos más resultados correspondientes a 6 péptidos. Tabla 15A: Inmunogenicidad in vitro de péptidos HLA de clase I dados a conocer.Resultados a título de ejemplo de los experimentos de inmunogenicidad in vitro llevados a cabo por el solicitante de los péptidos dados a conocer.
<20 % = 20 % - 49 % = + 50 % - 69 %= ++ >= 70 % = +++
Figure imgf000039_0001
Tabla 15B: Inmunogenicidad in vitro de péptidos HLA de clase I dados a conocer. Resultados a título de ejemplo de los experimentos de inmunogenicidad in vitro llevados a cabo por el solicitante de los péptidos dados a conocer la invención. <20 % = 20 % - 49 % = + 50 % - 69 %= ++ >= 70 % = +++
Figure imgf000039_0002
EJEMPLO 4
Síntesis de péptidos
Todos los péptidos se sintetizaron mediante síntesis en fase sólida estándar con el contrastado método de Fmoc. La identidad y la pureza de cada péptido se determinaron con espectrometría de masas y RP-HPLC analítica. Se obtuvieron los péptidos en forma de liofilizados blancos o blancuzcos (sal de trifluoroacetato) con una pureza superior al 50%. Todos los TUMAP se administraron preferiblemente como sales de trifluoroacetato o de acetato, aunque también es factible con otros tipos de sales.
EJEMPLO 5
Ensayo de unión a MHC
Los péptidos candidatos para los tratamientos a base de linfocitos T dados a conocer fueron sometidos a ensayos para determinar su capacidad de unión a las moléculas del MHC (afinidad). Se produjeron complejos individuales de péptidos-MHC por medio del intercambio de ligandos facilitado por UV, técnica en la cual un péptido sensible a los rayos UV es escindido por la irradiación con tales rayos y se intercambia por el péptido de interés que es analizado. Solo aquellos péptidos candidatos que se unen y estabilizan de forma efectiva las moléculas del MHC a las que se acoplan impiden la disociación de tales complejos MHC. Para determinar el rendimiento de la reacción de intercambio se efectuó un ELISA basado en la detección de la cadena ligera (p2m) de los complejos MHC estabilizados. El ensayo se llevó a cabo siguiendo la descripción general de Rodenko et al. (Rodenko et al., 2006). Placas MAXISorp de 96 pocillos (NUNC) se incubaron toda la noche con estreptavidina 2 pg/ml en PBS a temperatura ambiente, se lavaron 4 veces y se bloquearon durante 1 hora a 37°C con un tampón de bloqueo que contenía BSA al 2%. Los monómeros replegados de HLA-A*02:01/MLA-001 sirvieron como patrones, abarcando el intervalo de 15 a 500 ng/ml. Los monómeros de péptido-MHC resultantes de la reacción de intercambio por UV se diluyeron a 1:100 con tampón de bloqueo. Las muestras se incubaron durante 1 h a 37 °C, se lavaron cuatro veces, se incubaron con una solución de anti-p2m conjugado con HRP 2 |jg/ml durante 1 h a 37 °C, se lavaron de nuevo y se procedió a su detección con una solución de TMB cuya reacción se detuvo añadiendo NH2SO4. La absorción se midió a 450 nm. Por norma general, para la creación y producción de anticuerpos o de fragmentos de los mismos, o de receptores de linfocitos T o fragmentos de los mismos se prefieren los péptidos candidato que muestran un alto porcentaje de intercambio (preferentemente superior al 50%, aún más preferentemente superior al 75%), puesto que presentan una afinidad suficiente hacia las moléculas del MHC que evita la disociación de los complejos MHC.
Tabla 16A: Niveles de unión a MHC de clase I Según el porcentaje del intercambio de péptidos, la unión de los péptidos restringidos a HLA de clase I al HLA-A*24 varió entre: >10% = >20% = + >50 = ++; > 75% = +++
Figure imgf000040_0001
Tabla 16B: Niveles de unión a MHC de clase I Según el porcentaje del intercambio de péptidos, la unión de los péptidos restringidos a HLA de clase I al HLA-A*02 varió entre: >10% = >20% = + >50 = ++; > 75% = +++
Figure imgf000040_0002
EJEMPLO 6
Cuantificación absoluta de los péptidos asociados a tumor presentados en la superficie celular
La generación de ligandos, como son anticuerpos y/o TCR, es un proceso laborioso, que solo es factible para cierto número de dianas escogidas. En el caso de los péptidos específicos de tumores o asociados a ellos, los criterios de selección incluyen, entre otros, la exclusividad de la presentación y la densidad que alcanza el péptido cuando se presenta en la superficie celular. Además del aislamiento y de la cuantificación relativa de los péptidos que se describen en la presente memoria, los inventores analizaron el número absoluto de copias del péptido por célula tal y como se ha descrito. La cuantificación de las copias de TUMAP por célula en muestras de tumores sólidos requiere la cuantificación absoluta del TUMAP aislado, la eficiencia del proceso de aislamiento del TUMAP y el recuento de células en la muestra de tejido analizada.
Cuantificación del péptido mediante nanoCL-EM/EM
Para una cuantificación precisa de los péptidos mediante la espectrometría de masas se trazó una curva de calibración para cada péptido con el método del patrón interno. El patrón interno es una variante de cada péptido marcada por partida doble con isótopos, es decir, que en la síntesis del TUMAP se incorporan dos aminoácidos marcados con isótopos. Solo difiere del péptido asociado a tumor en la masa, sin ninguna diferencia en cuanto a otras propiedades fisicoquímicas (Anderson et al., 2012).El patrón interno fue introducido deliberadamente en cada muestra de EM y todas las señales de EM se normalizaron con respecto a la señal de EM de este patrón interno para compensar las posibles variaciones técnicas en los diversos análisis espectrométricos.
Las curvas de calibración se prepararon como mínimo en tres matrices distintas, a saber, eluatos de péptidos de HLA procedentes de muestras naturales similares a las muestras de EM ordinarias, y cada preparación se sometió a análisis de EM por duplicado. Para la evaluación, las señales de EM se normalizaron respecto a la señal del patrón interno y la curva de calibración se calculó con una regresión logística.
Para la cuantificación de los péptidos asociados a tumor en las muestras de tejido, las muestras pertinentes se enriquecieron con el patrón interno; las señales de EM se normalizaron respecto al patrón interno y se cuantificaron utilizando la curva de calibración del péptido.
Eficiencia del aislamiento de los complejos de péptido-MHC
Como en todo proceso de purificación de proteínas, el aislamiento de las proteínas a partir de las muestras de tejido conlleva cierta pérdida de la proteína de interés. Para determinar la eficiencia en el aislamiento de los TUMAP, se crearon complejos de péptido-MHC de todos los TUMAP que habían sido seleccionados para su cuantificación absoluta. A fin de poder distinguir entre los complejos aportados por la inoculación deliberada y los complejos naturales de péptido-MHC se usaron versiones de los TUMAP marcadas con un solo isótopo, es decir, durante la síntesis de estos TUMAP se introdujo un aminoácido marcado con un solo isótopo. Estos complejos se vertieron en lisados tisulares recién preparados (enriquecimiento), es decir, en cuanto fue posible a lo largo del procedimiento de aislamiento de los TUMAP, y después se capturaron del mismo modo que los complejos naturales de péptido-MHC con el subsiguiente proceso de purificación por afinidad. Así pues, medir la recuperación de los TUMAP provistos de un solo marcador permite extraer conclusiones acerca de la eficiencia del aislamiento de los diferentes TUMAP naturales.
La eficiencia del aislamiento se analizó en un pequeño conjunto de muestras y resultó comparable entre esas muestras de tejido. En cambio, la eficiencia del aislamiento difiere entre los diversos péptidos. Este hecho sugiere que la eficiencia del aislamiento, si bien ha sido determinada con un pequeño número de muestras de tejido, se puede extrapolar a cualquier otra preparación de tejido. Con todo, es necesario analizar individualmente cada TUMAP puesto que la eficiencia de aislamiento podría no ser extrapolable de un péptido a otros.
Determinación del recuento de células en tejido sólido congelado
Con el fin de determinar el número de células contenidas en las muestras de tejido que eran objeto de la cuantificación absoluta del péptido, los inventores recurrieron al análisis del contenido de ADN. Este método es aplicable a una amplia gama de muestras de diverso origen y, lo que es más relevante, a muestras congeladas (Alcoser et al., 2011; Forsey and Chaudhuri, 2009; Silva et al., 2013). Durante el protocolo de aislamiento del péptido, la muestra de tejido se procesa para convertirla en un lisado homogéneo, del cual se toma una pequeña alícuota de lisado. La alícuota se divide en tres partes, de las cuales se aisla el ADN (QiaAmp DNA Mini Kit, Qiagen, Hilden, Alemania). El contenido total de ADN de cada aislamiento de ADN se cuantifica usando un ensayo de cuantificación del ADN por fluorescencia (Qubit dsDNA HS Assay Kit, Life Technologies, Darmstadt, Alemania) que se efectúa como mínimo por duplicado.
Con el fin de calcular el número de células, se ha generado una curva patrón de ADN a partir de alícuotas de células sanguíneas sanas aisladas, con un intervalo de distintos recuentos de células definidos. La curva patrón sirve para calcular el contenido total de células a partir del contenido total de ADN resultante de cada aislamiento de ADN. A continuación, se extrapola el número total medio de células de la muestra de tejido usada para el aislamiento del péptido teniendo en cuenta el volumen conocido de las alícuotas de lisado y el volumen total del lisado.
Copias del péptido por célula
Con los datos de los susodichos experimentos, los inventores calcularon el número de copias de TUMAP por célula dividiendo el número total de péptidos por el número total de células de la muestra, y dividiéndolo a continuación por la eficiencia del aislamiento. El número de copias por célula de cada péptido seleccionado se muestra en la Tabla 17.
Tabla 17: número absoluto de copias. La tabla enumera los resultados de la cuantificación absoluta de péptidos en las muestras tumorales. De cada péptido se indica la mediana del número de copias por célula: <100 = ; >=100 = +; >=1,000 ++; >=10,000 = +++. Se indica el número de muestras en que se dispuso de datos de EM de calidad ue fueron evaluables.
Figure imgf000042_0001
Referencias bibliográficas
Adachi, H. et al., Oncogene 23 (2004): 3495-3500
Allison, J. P. et al., Science 270 (1995): 932-933
American Cancer Society, (2015), www.cancer.org
Ammendola, M. et al., Biomed.Res.Int. 2014 (2014): 154702
Andersen, R. S. et al., Nat.Protoc. 7 (2012): 891-902
Andres, S. A. et al., BMC.Cancer 13 (2013): 326
Appay, V. et al., Eur.J Immunol. 36 (2006): 1805-1814
Arentz, G. et al., Clin Proteomics. 8 (2011): 16
Banchereau, J. et al., Cell 106 (2001): 271-274
Bausch, D. et al., Clin Cancer Res. 17 (2011 ): 302-309
Beatty, G. et al., J Immunol 166 (2001): 2276-2282
Beggs, J. D., Nature 275 (1978): 104-109
Benjamini, Y. et al., Journal of the Royal Statistical Society.Series B (Methodological), Vol.57 (1995): 289-300
Bhosle, R. C. et al., Biochem.Biophys.Res.Commun. 346 (2006): 768-777
Bouameur, J. E. et al., J Invest Dermatol. 134 (2014): 885-894
Boulter, J. M. et al., Protein Eng 16 (2003): 707-711
Braumuller, H. et al., Nature (2013)
Bresnick, E. H. et al., Nucleic Acids Res. 40 (2012): 5819-5831
Brossart, P. et al., Blood 90 (1997): 1594-1599
Bruckdorfer, T. et al., Curr.Pharm.Biotechnol. 5 (2004): 29-43
Card, K. F. et al., Cancer Immunol.Immunother. 53 (2004): 345-357
Chanock, S. J. et al., Hum.Immunol. 65 (2004): 1211-1223
Chen, L. et al., Med.Oncol 30 (2013): 498
Chong, I. W. et al., Oncol Rep. 16 (2006): 981-988
Clemen, C. S. et al., Acta Neuropathol. 129 (2015): 297-315
Cohen, C. J. et al., J Mol.Recognit. 16 (2003a): 324-332
Cohen, C. J. et al., J Immunol. 170 (2003b): 4349-4361
Cohen, S. N. et al., Proc.Natl.Acad.Sci.U.S.A 69 (1972): 2110-2114 Coligan, J. E. et al., Current Protocols in Protein Science (1995) Colombetti, S. et al., J Immunol. 176 (2006): 2730-2738
Davidson, B. et al., Hum.Pathol. 45 (2014): 691-700
Deng, M. et al., Oncogene 32 (2013): 4273-4283
Dengjel, J. et al., Clin Cancer Res 12 (2006): 4163-4170
Denkberg, G. et al., J Immunol. 171 (2003): 2197-2207
Dubrowinskaja, N. et al., Cancer Med. (2014)
Falk, K. et al., Nature 351 (1991): 290-296
Faucz, F. R. et al., J Clin Endocrinol.Metab 96 (2011): E135-E140 Fawcett, L. et al., Proc.Natl.Acad.Sci.U.S.A 97 (2000): 3702-3707 Fong, L. et al., Proc.Natl.Acad.Sci.U.S.A 98 (2001): 8809-8814
Forti, S. et al., Breast Cancer Res Treat. 73 (2002): 245-256
Frattini, V. et al., Nat Genet. 45 (2013): 1141-1149
Fu, C. A. et al., J Biol.Chem. 274 (1999): 30729-30737
Gabrilovich, D. I. et al., Nat.Med 2 (1996): 1096-1103
Gattinoni, L. et al., Nat.Rev.Immunol. 6 (2006): 383-393
Gnjatic, S. et al., Proc Natl.Acad.Sci.U.S.A 100 (2003): 8862-8867 Godkin, A. et al., Int.Immunol 9 (1997): 905-911
Graddis, T. J. et al., Int.J Clin Exp.Pathol. 4 (2011): 295-306
Green, M. R. et al., Molecular Cloning, A Laboratory Manual 4th (2012) Greene, M. H. et al., Endocr.Relat Cancer 17 (2010): R109-R121 Greenfield, E. A., Antibodies: A Laboratory Manual 2nd (2014) Grunewald, T. G. et al., Biol.Cell 104 (2012): 641-657
Gutman, G. A. et al., Pharmacol.Rev. 57 (2005): 473-508
Haferlach, C. et al., Haematologica 96 (2011): 829-836
Hale, L. P. et al., Clinical Cancer Research 7 (2001): 846-853
Hallen, A. et al., J Neurochem. 118 (2011): 379-387
Halpain, S. et al., Genome Biol. 7 (2006): 224
Hanahan, D. et al., Cell 100 (2000): 57-70
Hassan, M. I. et al., Mol Cancer Res 6 (2008): 892-906
Higgins, G. et al., Proc.Natl.Acad.Sci.U.S.A 109 (2012): E3128-E3135 Ho, L. L. et al., Prostate 68 (2008): 1421-1429
Horvath, A. et al., Curr.Opin.Endocrinol.Diabetes Obes. 15 (2008): 227-233 Hu, J. C. et al., Gene 251 (2000): 1-8
Hwang, M. L. et al., J Immunol. 179 (2007): 5829-5838
Hyodo, T. et al., J Biol.Chem. 287 (2012): 25019-25029
Ito, S. et al., Head Neck 32 (2010a): 96-103
Ito, Y. et al., Proc.Natl.Acad.Sci.U.S.A 107 (2010b): 10538-10542
Jiao, X. et al., BMC.Genomics 14 (2013): 165
Jin, Y. et al., Proc.Natl.Acad.Sci.U.S.A 110 (2013): E2572-E2581
Jung, G. et al., Proc Natl Acad Sci U S A 84 (1987): 4611-4615
Kai, F. et al., Oncotarget. 6 (2015): 11162-11174
Kandimalla, R. et al., Eur.Urol. 61 (2012): 1245-1256
Katada, K. et al., J Proteomics. 75 (2012): 1803-1815
Katoh, Y. et al., Cancer Biol.Ther. 4 (2005): 1050-1054
Kibbe, A. H., Handbook of Pharmaceutical Excipients rd (2000)
Kibel, A. S. et al., Int.J Cancer 109 (2004): 668-672
Kinameri, E. et al., PLoS.ONE. 3 (2008): e3859
Klejnot, M. et al., Acta Crystallogr.D.Biol.Crystallogr. 68 (2012): 154-159 Krieg, A. M., Nat.Rev.Drug Discov. 5 (2006): 471-484
Lapointe, J. et al., Proc.Natl.Acad.Sci.U.S.A 101 (2004): 811-816 Laviolette, L. A. et al., Int.J Cancer 135 (2014): 1072-1084
Lee, K. Y. et al., J Med. 35 (2004): 141-149
Li, Y. W. et al., PLoS.ONE. 9 (2014): e87505
Li, Z. J. et al., Development 139 (2012): 4152-4161
Liddy, N. et al., Nat.Med. 18 (2012): 980-987
Liu, P. et al., Science 261 (1993): 1041-1044
Liu, Y. H. et al., Biochem.Biophys.Res Commun. 404 (2011): 488-493 Ljunggren, H. G. et al., J Exp.Med 162 (1985): 1745-1759 Longenecker, B. M. et al., Ann N.Y.Acad.Sci. 690 (1993): 276-291
Lue, H. W. et al., PLoS.ONE. 6 (2011): e27720
Lukas, T. J. et al., Proc.Natl.Acad.Sci.U.S.A 78 (1981): 2791-2795 Lundblad, R. L., Chemical Reagents for Protein Modification 3rd (2004) Ma, Y. et al., Mol Cell Proteomics. 8 (2009): 1878-1890
Malinowska, K. et al., Prostate 69 (2009): 1109-1118
Matsumoto, F. et al., Hum.Pathol. 37 (2006): 1592-1600
Matsuoka, R. et al., Am.J Med.Genet. 46 (1993): 61-67
Meziere, C. et al., J Immunol 159 (1997): 3230-3237
Midorikawa, Y. et al., Jpn.J Cancer Res. 93 (2002): 636-643
Montani, M. et al., Virchows Arch. 462 (2013): 437-443
Morgan, R. A. et al., Science 314 (2006): 126-129
Mori, M. et al., Transplantation 64 (1997): 1017-1027
Mortara, L. et al., Clin Cancer Res. 12 (2006): 3435-3443
Mueller, L. N. et al., J Proteome.Res. 7 (2008): 51-61
Mueller, L. N. et al., Proteomics. 7 (2007): 3470-3480
Mumberg, D. et al., Proc.Natl.Acad.Sci.U.S.A 96 (1999): 8633-8638
Nicke, B. et al., Mol.Cell 20 (2005): 673-685
Nishibe, R. et al., FEBS Lett. 587 (2013): 1529-1535
Nishidate, T. et al., Int.J Oncol 25 (2004): 797-819
Noetzel, E. et al., Oncogene 29 (2010): 4814-4825
Olesen, S. H. et al., Mol Cell Proteomics. 4 (2005): 534-544
Peters, I. et al., Target Oncol (2014)
Petrella, B. L. et al., Cancer Lett. 325 (2012): 220-226
Pinheiro, J. et al., nlme: Linear and Nonlinear Mixed Effects Models (http://CRAN.R-proiect.org/packe=nlme) (2015)
Plebanski, M. et al., Eur.J Immunol 25 (1995): 1783-1787
Porta, C. et al., Virology 202 (1994): 949-955
Prevarskaya, N. et al., Biochim.Biophys.Acta 1772 (2007): 937-946
Quinn, D. I. et al., Urol.Oncol 33 (2015): 245-260
Quinn, M. C. et al., Int.J Oncol 42 (2013): 912-920
Rae, J. M. et al., Prostate 66 (2006): 886-894
Rammensee, H. G. et al., Immunogenetics 50 (1999): 213-219
RefSeq, The NCBI handbook [Internet], Chapter 18, (2002), http://www.ncbi.nlm.nih.gov/books/NBK21091/ Rini, B. I. et al., Cancer 107 (2006): 67-74
Rizzardi, A. E. et al., BMC.Cancer 14 (2014): 244
Rock, K. L. et al., Science 249 (1990): 918-921
Rotondo, F. et al., Appl.Immunohistochem.Mol.Morphol. 17 (2009): 185-188
Russel, F. G. et al., Trends Pharmacol.Sci. 29 (2008): 200-207
S3-Leitlinie Prostatakarzinom, 043/022OL, (2014)
Saiki, R. K. et al., Science 239 (1988): 487-491
Sakai, T. et al., J Pharmacol.Sci. 98 (2005): 41-48
Schmitt, M. et al., Radiol.Oncol. 47 (2013): 319-329
Seeger, F. H. et al., Immunogenetics 49 (1999): 571-576
SEER Stat facts, (2014), http://seer.cancer.gov/
Severi, G. et al., Cancer Med. 3 (2014): 1266-1274
Shaheduzzaman, S. et al., Cancer Biol.Ther 6 (2007): 1088-1095
Sherman, F. et al., Laboratory Course Manual for Methods in Yeast Genetics (1986)
Shkoda, A. et al., PLoS.Biol. 10 (2012): e1001376
Singh-Jasuja, H. et al., Cancer Immunol.Immunother. 53 (2004): 187-195
Small, E. J. et al., J Clin Oncol. 24 (2006): 3089-3094
Sturm, M. et al., BMC.Bioinformatics. 9 (2008): 163
Sudhof, T. C., Neuron 75 (2012): 11-25
Sun, Z. et al., J Proteome.Res 13 (2014): 1593-1601
Tan, L. Z. et al., Am.J Pathol. 183 (2013): 831-840
Tan, P. Y. et al., Mol.Cell Biol. 32 (2012): 399-414
Teufel, R. et al., Cell Mol.Life Sci. 62 (2005): 1755-1762
Tran, E. et al., Science 344 (2014): 641-645
Tsavaler, L. et al., Cancer Research 61 (2001): 3760-3769
UniProt, (2015), http://www.uniprot.org/
Walter, S. et al., J.Immunol. 171 (2003): 4974-4978
Walter, S. et al., Nat Med. 18 (2012): 1254-1261
Wang, J. et al., Arch.Pharm.Res 34 (2011): 987-995
Wang, L. et al., Cancer Research 70 (2010): 5818-5828
Wang, R. J. et al., Asian Pac.J Cancer Prev. 15 (2014): 7223-7228
Wang, Y. et al., Hum.Mol.Genet. 21 (2012): 569-576
Wang, Z. et al., Med.Oncol 32 (2015): 87
Ward, P. P. et al., Cell Mol Life Sci. 62 (2005): 2540-2548
Weng, J. et al., Int.J Cancer 113 (2005): 811-818
Westdorp, H. et al., Front Immunol. 5 (2014): 191
Whiteland, H. et al., Clin Exp.Metastasis 31 (2014): 909-920
Willcox, B. E. et al., Protein Sci. 8 (1999): 2418-2423

Claims (14)

REIVINDICACIONES
1. Péptido consistente en la secuencia de aminoácidos acorde con la SEQ ID N.° 4 o una sal farmacéuticamente aceptable del mismo.
2. El péptido acorde con la reivindicación 1, en el que dicho péptido incluye enlaces no peptídicos.
3. Proteína de fusión que comprende un péptido de la reivindicación 1 o 2 y los aminoácidos N-terminales de la cadena invariable asociada al antígeno HLA-Dr (Ii).
4. Receptor de linfocito T, preferentemente un receptor de linfocito T recombinante, soluble o unido a membrana, que es reactivo con un ligando HLA, y dicho ligando tiene una identidad de al menos el 88% con una secuencia de aminoácidos acorde con la SEQ ID N.° 4, y preferiblemente consiste en la secuencia de aminoácidos de la SEQ ID N.° 4, formando opcionalmente dicho ligando parte de un complejo de péptido-MHC.
5. Anticuerpo, en particular un anticuerpo soluble o unido a membrana, que reconoce específicamente el péptido acorde con cualquiera de las reivindicaciones 1 o 2, o la proteína de fusión acorde con la reivindicación 3, preferiblemente el péptido acorde con la reivindicación 1 cuando está unido a una molécula del MHC.
6. Ácido nucleico, que codifica un péptido acorde con la reivindicación 1 o TCR acorde con la reivindicación 4, o un anticuerpo acorde con la reivindicación 5, opcionalmente enlazado a una secuencia promotora heteróloga, o un vector de expresión que exprese dicho ácido nucleico.
7. Célula hospedadora que comprende el péptido acorde con la reivindicación 1 o una proteína de fusión acorde con la reivindicación 3, o el ácido nucleico o el vector de expresión acorde con la reivindicación 6 , en que dicha célula hospedadora preferiblemente es una célula presentadora de antígeno como una célula dendrítica que expresa el péptido o proteína de fusión, o en que dicha célula hospedadora es preferiblemente un linfocito T o una célula NK que expresa el receptor de linfocito T o el anticuerpo.
8. Método para producir el péptido acorde con la reivindicación 1 o un proteína de fusión acorde con la reivindicación 3, o para producir el receptor de linfocitos T acorde con la reivindicación 4, o un anticuerpo acorde con la reivindicación 5, método que comprende el cultivo de una célula hospedadora acorde con la reivindicación 7 que presenta el péptido acorde con la reivindicación 1 o una proteína de fusión acorde con la reivindicación 3, o expresa el ácido nucleico o el vector de expresión acorde con la reivindicación 6 , y el aislamiento del péptido o de la proteína de fusión, o del TCR o del anticuerpo de la célula hospedadora o de su medio de cultivo.
9. Método in vitro para producir linfocitos T activados, método que comprende la puesta en contacto de linfocitos T in vitro con antígeno cargado en moléculas MHC de clase I humanas que se expresan en la superficie de una célula presentadora de antígeno adecuada o en un constructo artificial que emula a una célula presentadora de antígeno durante un período de tiempo suficiente para activar dichos linfocitos T de un modo específico de antígeno, siendo dicho antígeno un péptido acorde con la reivindicación 1.
10. Linfocito T activado, producido con el método acorde con la reivindicación 9, que reconoce selectivamente una célula que presenta un polipéptido que comprende una secuencia de aminoácidos dada en la reivindicación 1.
11. Composición farmacéutica que comprende al menos un ingrediente activo seleccionado del grupo consistente en el péptido acorde con cualquiera de las reivindicaciones 1 o 2 , o una proteína de fusión acorde con la reivindicación 3, el ácido nucleico o el vector de expresión acordes con la reivindicación 6 , la célula acorde con la reivindicación 7, el linfocito T activado acorde con la reivindicación 10 o el anticuerpo acorde con la reivindicación 5 o el receptor de linfocito T acorde con la reivindicación 4, y un vehículo farmacéuticamente aceptable, y opcionalmente, excipientes y/o estabilizantes farmacéuticamente aceptables.
12. El péptido acorde con cualquiera de las reivindicaciones 1 o 2, o una proteína de fusión acorde con la reivindicación 3, el ácido nucleico o el vector de expresión acordes con la reivindicación 6 , la célula acorde con la reivindicación 7, el linfocito T activado acorde con la reivindicación 10 o el anticuerpo acorde con la reivindicación 5 o el receptor de linfocito T acorde con la reivindicación 4 para el uso en medicina, preferiblemente para el uso en el diagnóstico y/o el tratamiento del cáncer, o para el uso en la fabricación de un medicamento contra el cáncer.
13. El péptido acorde con cualquiera de las reivindicaciones 1 o 2, o una proteína de fusión acorde con la reivindicación 3, el ácido nucleico o el vector de expresión acordes con la reivindicación 6 , la célula acorde con la reivindicación 7, el linfocito T activado acorde con la reivindicación 10 o el anticuerpo acorde con la reivindicación 5 o el receptor de linfocito T acorde con la reivindicación 4 para el uso en el diagnóstico y/o el tratamiento del cáncer, o para el uso en la fabricación de un medicamento contra el cáncer acorde con la reivindicación 12 , en que dicho cáncer es seleccionado del grupo consistente en cáncer de ovario, cáncer de pulmón amicrocítico, cáncer de pulmón microcítico, cáncer renal, cáncer de cerebro, cáncer de colon o recto, cáncer de estómago, cáncer hepático, cáncer pancreático, cáncer de próstata, leucemia, cáncer de mama, carcinoma de células de Merkel, melanoma, cáncer de esófago, cáncer de vejiga urinaria, cáncer de útero, cáncer de vesícula biliar, cáncer de vías biliaresy otros tumores que muestra una sobreexpresión de una proteína de la cual deriva un péptido acorde con la SEQ ID N.° 4, en particular el cáncer de ovario.
14. Un equipo que comprende:
a) Un envase que comprende una composición farmacéutica que contiene el péptido acorde con cualquiera de las reivindicaciones 1 o 2, o una proteína de fusión acorde con la reivindicación 3, el ácido nucleico o el vector de expresión acorde con la reivindicación 6, la célula acorde con la reivindicación 7, el linfocito T activado acorde con la reivindicación 10 o el anticuerpo acorde con la reivindicación 5 o el receptor de linfocito T acorde con la reivindicación 4, en solución o en forma liofilizada;
b) opcionalmente, un segundo envase que contiene un diluyente o solución de reconstitución para la formulación liofilizada;
c) opcionalmente, al menos un péptido más seleccionado del grupo consistente en las SEQ ID N.° 1 a 3, y 5 a 48, y
d) opcionalmente, instrucciones de (I) uso de la solución o (II) de la reconstitución y/o uso de la formulación liofilizada, y
e) opcionalmente puede comprender, además, uno o más de los siguientes componentes: (III) un tampón, (IV) un diluyente, (V) un filtro, (VI) una aguja, o (V) una jeringa.
ES16750766T 2015-08-05 2016-08-05 Péptidos y combinaciones de péptidos para su uso en inmunoterapia contra el cáncer de próstata y otros cánceres Active ES2862400T3 (es)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562201289P 2015-08-05 2015-08-05
GBGB1513921.5A GB201513921D0 (en) 2015-08-05 2015-08-06 Novel peptides and combination of peptides for use in immunotherapy against prostate cancer and other cancers
PCT/EP2016/068727 WO2017021527A2 (en) 2015-08-05 2016-08-05 Novel peptides and combination of peptides for use in immunotherapy against prostate cancer and other cancers

Publications (1)

Publication Number Publication Date
ES2862400T3 true ES2862400T3 (es) 2021-10-07

Family

ID=54200350

Family Applications (1)

Application Number Title Priority Date Filing Date
ES16750766T Active ES2862400T3 (es) 2015-08-05 2016-08-05 Péptidos y combinaciones de péptidos para su uso en inmunoterapia contra el cáncer de próstata y otros cánceres

Country Status (35)

Country Link
US (24) US9908920B2 (es)
EP (4) EP3331900B1 (es)
JP (3) JP6884752B2 (es)
KR (1) KR20180035845A (es)
CN (2) CN107849107A (es)
AR (1) AR105817A1 (es)
AU (8) AU2016303021B2 (es)
BR (1) BR112018001687A2 (es)
CA (3) CA2994771C (es)
CL (7) CL2018000324A1 (es)
CO (1) CO2018002202A2 (es)
CR (6) CR20200432A (es)
CY (1) CY1123854T1 (es)
DK (1) DK3331900T3 (es)
EA (1) EA201890440A1 (es)
ES (1) ES2862400T3 (es)
GB (1) GB201513921D0 (es)
HR (1) HRP20210709T8 (es)
HU (1) HUE053657T2 (es)
IL (2) IL310078A (es)
LT (1) LT3331900T (es)
MA (4) MA53680A (es)
MD (1) MD3331900T2 (es)
MX (2) MX2018001421A (es)
PE (1) PE20180695A1 (es)
PH (1) PH12018500189A1 (es)
PL (1) PL3331900T3 (es)
PT (1) PT3331900T (es)
RS (1) RS61713B1 (es)
SG (1) SG10202001660YA (es)
SI (1) SI3331900T1 (es)
TW (3) TWI829618B (es)
UA (1) UA125816C2 (es)
WO (1) WO2017021527A2 (es)
ZA (1) ZA201800513B (es)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2508923A (en) * 2012-12-17 2014-06-18 Bombardier Transp Gmbh Inductive power transfer system having inductive sensing array
CN110041403B (zh) * 2013-08-05 2023-03-10 伊玛提克斯生物技术有限公司 针对多种肿瘤例如包括nsclc在内的肺癌的新型免疫疗法
ES2907629T3 (es) 2015-08-05 2022-04-25 Eisai R&D Man Co Ltd Un método para preparar un oligómero de fosforodiamidato sustancialmente puro diastereoisoméricamente, un oligómero de fosforodiamidato preparado mediante dicho método y una composición farmacéutica que comprende dicho oligómero de fosforodiamidato
GB201513921D0 (en) * 2015-08-05 2015-09-23 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against prostate cancer and other cancers
CN108601731A (zh) 2015-12-16 2018-09-28 磨石肿瘤生物技术公司 新抗原的鉴别、制造及使用
JP7075125B2 (ja) 2016-05-25 2022-05-25 イマティクス バイオテクノロジーズ ゲーエムベーハー 標的としてのおよび胆嚢がんおよび胆管がんおよびその他のがんに対する免疫療法で使用するための新規ペプチド、ペプチド組み合わせ
GB201609193D0 (en) 2016-05-25 2016-07-06 Immatics Biotechnologies Gmbh Novel peptides, combination of peptides as targets for use in immunotherapy against gallbladder cancer and cholangiocarcinoma and other cancers
DE102016123893A1 (de) 2016-12-08 2018-06-14 Immatics Biotechnologies Gmbh T-Zellrezeptoren mit verbesserter Bindung
KR102639592B1 (ko) 2016-12-08 2024-02-21 이매틱스 바이오테크놀로지스 게엠베하 짝짓기가 향상된 t 세포 수용체
CA3063905A1 (en) * 2017-05-16 2018-11-22 The Johns Hopkins University Manabodies and methods of using
US20190016804A1 (en) 2017-07-14 2019-01-17 Immatics Biotechnologies Gmbh Dual specificity polypeptide molecule
DE102017115966A1 (de) 2017-07-14 2019-01-17 Immatics Biotechnologies Gmbh Polypeptidmolekül mit verbesserter zweifacher Spezifität
CA3078744A1 (en) 2017-10-10 2019-04-18 Gritstone Oncology, Inc. Neoantigen identification using hotspots
CA3083097A1 (en) 2017-11-22 2019-05-31 Gritstone Oncology, Inc. Reducing junction epitope presentation for neoantigens
DE102017127984B4 (de) 2017-11-27 2019-12-05 Immatics US, Inc. Verfahren für die Vermehrung und Aktivierung von γδ-T-Zellen
JP7470640B2 (ja) 2018-02-09 2024-04-18 イマティクス ユーエス,アイエヌシー. T細胞を製造する方法
JP2021526375A (ja) * 2018-06-01 2021-10-07 ジェネオスコピー インコーポレイテッド 検出方法
US10925947B2 (en) 2018-06-29 2021-02-23 Immatics Biotechnologies Gmbh A*03 restricted peptides for use in immunotherapy against cancers and related methods
TW202019955A (zh) * 2018-07-31 2020-06-01 德商英麥提克生物技術股份有限公司 B*07 限制肽和肽組合的抗癌免疫治療和相關方法
US11945850B2 (en) * 2018-09-17 2024-04-02 Immatics Biotechnologies Gmbh B*44 restricted peptides for use in immunotherapy against cancers and related methods
TW202024121A (zh) 2018-09-18 2020-07-01 德商英麥提克生物技術股份有限公司 A*01 限制肽和肽組合物在抗癌免疫治療中的用途和相關方法
WO2020167894A1 (en) * 2019-02-12 2020-08-20 Vanderbilt University Polypeptides for restoring endothelial function and methods of use thereof
US20200297768A1 (en) 2019-03-19 2020-09-24 Immatics US, Inc. Cd28 t cell cultures, compositions, and methods of using thereof
KR20220029584A (ko) 2019-05-27 2022-03-08 이매틱스 유에스 인코포레이티드 바이러스 벡터 및 입양 세포 요법에서 그 사용
WO2020245326A1 (en) 2019-06-06 2020-12-10 Immatics Biotechnologies Gmbh Sorting with counter selection using sequence similar peptides
US20210032370A1 (en) 2019-08-02 2021-02-04 Immatics Biotechnologies Gmbh Recruiting agent further binding an mhc molecule
CA3168729A1 (en) 2020-02-24 2021-09-02 Melinda MATA Methods for expanding t cells for the treatment of cancer and related malignancies
DE102020111571A1 (de) 2020-03-11 2021-09-16 Immatics US, Inc. Wpre-mutantenkonstrukte, zusammensetzungen und zugehörige verfahren
DE102020106710A1 (de) 2020-03-11 2021-09-16 Immatics US, Inc. Wpre-mutantenkonstrukte, zusammensetzungen und zugehörige verfahren
KR20220167288A (ko) * 2020-04-14 2022-12-20 유니버시떼 드 몬트리얼 급성 골수성 백혈병(aml)에 대한 신규한 종양-특이적 항원 및 이의 용도
TW202227616A (zh) 2020-08-21 2022-07-16 美商英麥提克斯股份有限公司 分離cd8+選擇t細胞的方法
US20240229143A1 (en) * 2020-12-07 2024-07-11 Iogenetics, Llc Formulation of peptide immunotherapies
CA3203118A1 (en) 2020-12-31 2022-07-07 Gagan BAJWA Cd8 polypeptides, compositions, and methods of using thereof
BR112023022975A2 (pt) 2021-05-05 2024-01-23 Immatics Biotechnologies Gmbh Polipeptídeos de ligação ao antígeno bma031 melhorados
US20230024554A1 (en) 2021-06-28 2023-01-26 Immatics Biotechnologies Gmbh Method of characterizing the binding characteristics between a peptide of interest and mhc molecules
EP4113120A1 (en) 2021-06-28 2023-01-04 Immatics Biotechnologies GmbH Method of characterizing the binding characteristics between a peptide of interest and mhc molecules
CN113527435B (zh) * 2021-07-14 2022-06-07 呈诺再生医学科技(珠海横琴新区)有限公司 对前列腺癌细胞特异性识别的新型多肽及其衍生物与应用
EP4392441A1 (en) 2021-08-24 2024-07-03 Immatics US, Inc. Selection of immune cells using peptide mhc complexes generated by conditional ligand exchange
TW202332765A (zh) 2021-09-20 2023-08-16 美商英麥提克斯股份有限公司 用於t細胞療法之t細胞群體的單核球耗盡
EP4448108A1 (en) 2021-11-08 2024-10-23 Immatics Biotechnologies GmbH Adoptive cell therapy combination treatment and compositions thereof
US20230348548A1 (en) 2022-04-28 2023-11-02 Immatics US, Inc. Membrane-bound il-15, cd8 polypeptides, cells, compositions, and methods of using thereof
US20240066127A1 (en) 2022-04-28 2024-02-29 Immatics US, Inc. Il-12 polypeptides, il-15 polypeptides, il-18 polypeptides, cd8 polypeptides, compositions, and methods of using thereof
US20230348561A1 (en) 2022-04-28 2023-11-02 Immatics US, Inc. Dominant negative tgfbeta receptor polypeptides, cd8 polypeptides, cells, compositions, and methods of using thereof
WO2023215825A1 (en) 2022-05-05 2023-11-09 Immatics US, Inc. Methods for improving t cell efficacy

Family Cites Families (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1037656A (en) 1911-11-28 1912-09-03 Thomas F Loughran Prorating-weir.
US1178658A (en) 1914-06-11 1916-04-11 United Shoe Machinery Ab Gripper mechanism for pulling-over machines.
US4440859A (en) 1977-05-27 1984-04-03 The Regents Of The University Of California Method for producing recombinant bacterial plasmids containing the coding sequences of higher organisms
US4704362A (en) 1977-11-08 1987-11-03 Genentech, Inc. Recombinant cloning vehicle microbial polypeptide expression
ES487106A0 (es) 1978-12-22 1981-05-16 Biogen Nv Un metodo para producir al menos un polipeptido que muestra antigenicidad de hbv
US4530901A (en) 1980-01-08 1985-07-23 Biogen N.V. Recombinant DNA molecules and their use in producing human interferon-like polypeptides
US4342566A (en) 1980-02-22 1982-08-03 Scripps Clinic & Research Foundation Solid phase anti-C3 assay for detection of immune complexes
US4678751A (en) 1981-09-25 1987-07-07 Genentech, Inc. Hybrid human leukocyte interferons
US4766075A (en) 1982-07-14 1988-08-23 Genentech, Inc. Human tissue plasminogen activator
US4582800A (en) 1982-07-12 1986-04-15 Hoffmann-La Roche Inc. Novel vectors and method for controlling interferon expression
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4757006A (en) 1983-10-28 1988-07-12 Genetics Institute, Inc. Human factor VIII:C gene and recombinant methods for production
US4677063A (en) 1985-05-02 1987-06-30 Cetus Corporation Human tumor necrosis factor
US4810648A (en) 1986-01-08 1989-03-07 Rhone Poulenc Agrochimie Haloarylnitrile degrading gene, its use, and cells containing the gene
US4897445A (en) 1986-06-27 1990-01-30 The Administrators Of The Tulane Educational Fund Method for synthesizing a peptide containing a non-peptide bond
US6037135A (en) 1992-08-07 2000-03-14 Epimmune Inc. Methods for making HLA binding peptides and their uses
US9340577B2 (en) * 1992-08-07 2016-05-17 Epimmune Inc. HLA binding motifs and peptides and their uses
NZ263050A (en) * 1993-03-05 1997-11-24 Cytel Corp Compositions of immunogenic peptides with hla-a2.1 binding motifs
ES2108460T3 (es) 1993-06-03 1997-12-16 Therapeutic Antibodies Inc Fragmentos de anticuerpos en terapeutica.
US20040157780A1 (en) * 1993-11-29 2004-08-12 Epimmune Inc. CTL inducing peptides from c-erb2 (HER-2/neu)
AUPM322393A0 (en) 1993-12-24 1994-01-27 Austin Research Institute, The Mucin carbohydrate compounds and their use in immunotherapy
US6824993B2 (en) * 1995-06-06 2004-11-30 Human Genome Sciences, Inc. Antibodies that bind human prostate specific G-protein receptor HPRAJ70
PT879282E (pt) 1996-01-17 2003-11-28 Imp College Innovations Ltd Imunoterapia utilizando linfocitos t citotoxicos (ctl)
US5849589A (en) 1996-03-11 1998-12-15 Duke University Culturing monocytes with IL-4, TNF-α and GM-CSF TO induce differentiation to dendric cells
DE19623825C1 (de) 1996-06-14 1998-01-08 Rottefella As Langlauf- oder Tourenskibindung
WO1998010292A1 (en) * 1996-09-06 1998-03-12 Centocor, Inc. Monoclonal antibodies specific for prostate specific antigen and methods of detecting prostate specific antigen
US7008772B1 (en) * 1997-02-25 2006-03-07 Corixa Corporation Compounds for immunodiagnosis of prostate cancer and methods for their use
US6406705B1 (en) 1997-03-10 2002-06-18 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US20070020327A1 (en) * 1998-11-10 2007-01-25 John Fikes Inducing cellular immune responses to prostate cancer antigens using peptide and nucleic acid compositions
WO2001025272A2 (en) 1999-10-04 2001-04-12 Corixa Corporation Compositions and methods for therapy and diagnosis of prostate cancer
US7361338B2 (en) * 1999-10-05 2008-04-22 Agensys, Inc. Methods to inhibit growth of prostate cancer cells
EP1220931A1 (en) * 1999-10-07 2002-07-10 Schering Aktiengesellschaft Dna encoding prost 07 polypeptide
EP1230364A2 (en) * 1999-11-12 2002-08-14 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
HUP0203968A3 (en) * 2000-01-14 2004-09-28 Corixa Corp Seattle Compositions and methods for the therapy and diagnosis of prostate cancer
GB2373500B (en) * 2000-02-04 2004-12-15 Aeomica Inc Methods and apparatus for predicting, confirming, and displaying functional information derived from genomic sequence
US20030219806A1 (en) * 2000-02-22 2003-11-27 Millennium Pharmaceuticals, Inc. Novel 18607, 15603, 69318, 12303, 48000, 52920, 5433, 38554, 57301, 58324, 55063, 52991, 59914, 59921 and 33751 molecules and uses therefor
US20040191260A1 (en) 2003-03-26 2004-09-30 Technion Research & Development Foundation Ltd. Compositions capable of specifically binding particular human antigen presenting molecule/pathogen-derived antigen complexes and uses thereof
AU785493B2 (en) 2000-03-27 2008-01-03 Technion Research & Development Foundation Ltd. Single chain class I major histo-compatibility complexes, constructs encoding same and methods of generating same
AU2001249549A1 (en) * 2000-03-27 2001-10-08 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
JP2003534779A (ja) * 2000-03-31 2003-11-25 キュラジェン コーポレイション Gタンパク質結合レセプターおよびこのgタンパク質結合レセプターをコードする核酸
US7834146B2 (en) * 2000-05-08 2010-11-16 Monsanto Technology Llc Recombinant polypeptides associated with plants
CN101712721A (zh) 2000-06-05 2010-05-26 阿尔托生物科学有限公司 T细胞受体融合物及共轭物以及其使用方法
GB0015722D0 (en) * 2000-06-27 2000-08-16 Smithkline Beecham Sa Vaccine
AU2001287384B2 (en) * 2000-08-11 2007-03-29 Mount Sinai Hospital Kallikrein gene
EP1455816A4 (en) * 2000-10-19 2007-03-28 Epimmune Inc HLA CLASS I AND II BINDING PEPTIDES AND THEIR USE
US7048931B1 (en) * 2000-11-09 2006-05-23 Corixa Corporation Compositions and methods for the therapy and diagnosis of prostate cancer
US7919467B2 (en) 2000-12-04 2011-04-05 Immunotope, Inc. Cytotoxic T-lymphocyte-inducing immunogens for prevention, treatment, and diagnosis of cancer
AU2002246708A1 (en) * 2000-12-15 2002-08-12 Agensys, Inc. Nucleic acid and encoded zinc transporter protein entitled 108p5h8 useful in treatment and detection of cancer
WO2002050276A2 (en) * 2000-12-18 2002-06-27 Curagen Corporation Proteins and nucleic acids encoding same
AUPR402201A0 (en) * 2001-03-27 2001-04-26 Queensland University Of Technology Polynucleotides and polypeptides linked to cancer and/or benign tumours
JP2005508157A (ja) 2001-08-31 2005-03-31 アジェンシス,インコーポレイテッド 癌の処置および検出において有用な205p1b5との名称の核酸および対応するタンパク質
US20040142325A1 (en) * 2001-09-14 2004-07-22 Liat Mintz Methods and systems for annotating biomolecular sequences
US6992176B2 (en) 2002-02-13 2006-01-31 Technion Research & Development Foundation Ltd. Antibody having a T-cell receptor-like specificity, yet higher affinity, and the use of same in the detection and treatment of cancer, viral infection and autoimmune disease
CA2476625A1 (en) 2002-02-20 2003-08-28 Dyax Corp. Mhc-peptide complex binding ligands
DE10215321A1 (de) * 2002-04-02 2003-10-23 Metagen Pharmaceuticals Gmbh Trp-p8 Splice Varianten und regulatorische RNA
EP1543039B1 (en) * 2002-08-12 2011-07-13 The Council Of The Queensland Institute Of Medical Research Novel immunogenic lipopeptides comprising t-helper and b-cell epitopes
AU2003256912A1 (en) 2002-08-16 2004-03-03 Yeda Research And Development Co. Ltd. Tumor associated antigen, peptides thereof, and use of same as anti-tumor vaccines
CA2500715A1 (en) 2002-10-03 2004-04-15 Epimmune, Inc. Hla binding peptides and their uses
JP4436319B2 (ja) 2002-10-09 2010-03-24 メディジーン リミテッド 単鎖組換えt細胞レセプター
EP2048159B1 (en) 2002-11-09 2014-01-01 Immunocore Ltd. T cell receptor display
GB0304068D0 (en) 2003-02-22 2003-03-26 Avidex Ltd Substances
GB0318096D0 (en) * 2003-08-01 2003-09-03 Queen Mary & Westfield College Vaccine
US20050053988A1 (en) 2003-08-08 2005-03-10 The Gov. Of The Usa As Represented By The Secretary Of The Dept. Of Health & Human Services Gene expressed in breast cancer and methods of use
CA2598593A1 (en) * 2005-02-28 2006-09-08 Nycomed Gmbh Method for identifying pde11 modulators
EP1862804B1 (en) * 2005-03-14 2010-05-05 Link Genomics, Inc. Method for diagnosis of prostate cancer
DK1806359T3 (da) 2005-09-05 2010-06-14 Immatics Biotechnologies Gmbh Tumorassocierede peptider, der bindes promiskuøst til Humant Leukocyt-Antigen (HLA) klasse II molekyler
WO2007053570A2 (en) * 2005-10-31 2007-05-10 Janssen Pharmaceutica N.V. A polypeptide complex of trpm8 and calmodulin and its uses thereof
US20130332133A1 (en) * 2006-05-11 2013-12-12 Ramot At Tel Aviv University Ltd. Classification of Protein Sequences and Uses of Classified Proteins
US20090263574A1 (en) 2008-04-21 2009-10-22 Quinn Daniel E Method of restoring an article
US8455615B2 (en) 2008-05-01 2013-06-04 Beth Israel Deaconess Medical Center Methods and compositions for prostate cancer immunotherapy
NO2119726T3 (es) 2008-05-14 2015-05-23
EP2172211B1 (en) 2008-10-01 2014-12-03 Immatics Biotechnologies GmbH Composition of tumor-associated peptides and related anti-cancer vaccine for the treatment of glioblastoma (GBM) and other cancers
EP2337795A2 (en) * 2008-10-01 2011-06-29 Dako Denmark A/S Mhc multimers in cancer vaccines and immune monitoring
WO2010102157A1 (en) 2009-03-04 2010-09-10 The Regents Of The University Of California Molecular predictors of biological response to a cenpe inhibitor in cancer
WO2013040142A2 (en) * 2011-09-16 2013-03-21 Iogenetics, Llc Bioinformatic processes for determination of peptide binding
EP2550529B1 (en) * 2010-03-23 2021-11-17 Iogenetics, LLC. Bioinformatic processes for determination of peptide binding
GB201006360D0 (en) 2010-04-16 2010-06-02 Immatics Biotechnologies Gmbh Method for differentially quantifying naturally processed HLA-restricted peptides for cancer, autoimmune and infectious diseases immunotherapy development
MY165267A (en) * 2010-07-15 2018-03-15 Oleg Lliich Epshtein Combination pharmaceutical composition and methods of treating genitourinary system disorders
US20120121592A1 (en) * 2010-10-13 2012-05-17 Baylor Research Institute Targeting Antigens to Human Dendritic Cells Via DC-Asialoglycoprotein Receptor to Produce IL-10 Regulatory T-Cells
CA2816225A1 (en) 2010-10-26 2012-05-03 Technion Research & Development Foundation Ltd. Antibodies which bind soluble t-cell receptor ligands
NZ609916A (en) * 2010-12-14 2015-03-27 Immatics Biotechnologies Gmbh Hla-binding peptides derived from prostate-associated antigenic molecules and methods of use thereof
WO2013057586A1 (en) 2011-10-19 2013-04-25 Oslo Universitetssykehus Hf Compositions and methods for producing soluble t - cell receptors
WO2013151664A1 (en) 2012-04-02 2013-10-10 modeRNA Therapeutics Modified polynucleotides for the production of proteins
WO2014047085A2 (en) 2012-09-20 2014-03-27 Rongfu Wang Prostate-specific tumor antigen and uses thereof
WO2014071978A1 (en) 2012-11-08 2014-05-15 Roche Diagnostics Gmbh Nucleic acids encoding chimeric polypeptides for library screening
EP2808392A1 (en) 2013-05-28 2014-12-03 Rheinische Friedrich-Wilhelms-Universität Bonn Aptamers and use of the aptamers in the diagnosis and treatment of cancer
TWI819228B (zh) 2013-08-05 2023-10-21 德商伊瑪提克斯生物科技有限公司 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(八)
GB201319446D0 (en) 2013-11-04 2013-12-18 Immatics Biotechnologies Gmbh Personalized immunotherapy against several neuronal and brain tumors
GB201423361D0 (en) * 2014-12-30 2015-02-11 Immatics Biotechnologies Gmbh Method for the absolute Quantification of naturally processed HLA-Restricted cancer peptides
WO2016138362A1 (en) * 2015-02-26 2016-09-01 The Board Of Trustees Of The University Of Arkansas Treatment vaccine for prostate cancer
CA3172682A1 (en) * 2015-04-23 2016-10-27 Nantomics, Llc Cancer neoepitopes
GB201513921D0 (en) 2015-08-05 2015-09-23 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against prostate cancer and other cancers
GB201520566D0 (en) 2015-11-23 2016-01-06 Immunocore Ltd & Adaptimmune Ltd Peptides
RU2020103379A (ru) * 2017-07-04 2021-08-04 Куревак Аг Новые молекулы нуклеиновых кислот
CN117083081A (zh) 2020-12-14 2023-11-17 百欧恩泰美国公司 用于癌症免疫疗法的组织特异性抗原

Also Published As

Publication number Publication date
HUE053657T2 (hu) 2021-07-28
US10449238B2 (en) 2019-10-22
LT3331900T (lt) 2021-03-25
AU2016303021B2 (en) 2021-02-25
EP3331900A2 (en) 2018-06-13
US10532091B1 (en) 2020-01-14
JP2021040639A (ja) 2021-03-18
AU2016303021A1 (en) 2018-03-22
AR105817A1 (es) 2017-11-15
CL2021001543A1 (es) 2022-01-21
JP2022191218A (ja) 2022-12-27
KR20180035845A (ko) 2018-04-06
US10155032B2 (en) 2018-12-18
IL310078A (en) 2024-03-01
AU2021202056B2 (en) 2023-04-06
SI3331900T1 (sl) 2021-08-31
US20220143162A1 (en) 2022-05-12
US20190240305A1 (en) 2019-08-08
US20220125902A1 (en) 2022-04-28
US11065315B2 (en) 2021-07-20
US20220143164A1 (en) 2022-05-12
WO2017021527A2 (en) 2017-02-09
US11826409B2 (en) 2023-11-28
EP4324472A2 (en) 2024-02-21
US12076381B2 (en) 2024-09-03
JP7142957B2 (ja) 2022-09-28
DK3331900T3 (da) 2021-03-29
EA201890440A1 (ru) 2018-08-31
US20200000900A1 (en) 2020-01-02
CR20200433A (es) 2020-10-19
US11058754B2 (en) 2021-07-13
US20180344827A1 (en) 2018-12-06
US9993539B2 (en) 2018-06-12
MA53452A (fr) 2021-06-30
HRP20210709T1 (hr) 2021-11-26
US10238727B2 (en) 2019-03-26
US20240016908A1 (en) 2024-01-18
US10799569B2 (en) 2020-10-13
CY1123854T1 (el) 2022-05-27
MA41879A1 (fr) 2019-05-31
US20190374626A1 (en) 2019-12-12
PT3331900T (pt) 2021-03-18
US10500259B2 (en) 2019-12-10
TW201713682A (zh) 2017-04-16
US10383930B2 (en) 2019-08-20
CL2021001544A1 (es) 2022-01-21
AU2021202058A1 (en) 2021-04-29
TWI829618B (zh) 2024-01-21
US20190091311A1 (en) 2019-03-28
US20170037089A1 (en) 2017-02-09
AU2021202056A1 (en) 2021-04-29
JP6884752B2 (ja) 2021-06-09
US20170326215A1 (en) 2017-11-16
US20210275654A1 (en) 2021-09-09
CA3110640A1 (en) 2017-02-09
MA53680A (fr) 2021-09-29
AU2021202057B2 (en) 2023-04-13
JP2018529320A (ja) 2018-10-11
US20200323969A1 (en) 2020-10-15
CN114395013A (zh) 2022-04-26
AU2023233214A1 (en) 2023-10-12
US20170305982A1 (en) 2017-10-26
MA46022B1 (fr) 2021-03-31
CA2994771C (en) 2021-04-20
CN107849107A (zh) 2018-03-27
MX2021015933A (es) 2022-02-03
PL3331900T3 (pl) 2021-08-09
CL2021001542A1 (es) 2022-01-21
US10478480B2 (en) 2019-11-19
US20180009858A9 (en) 2018-01-11
CR20200434A (es) 2020-10-19
MA46022A (fr) 2019-07-03
CR20200435A (es) 2020-10-14
ZA201800513B (en) 2018-12-19
US20190054160A1 (en) 2019-02-21
US20220133870A1 (en) 2022-05-05
EP3854801A3 (en) 2021-09-29
AU2023204661A1 (en) 2023-08-10
EP3854801A2 (en) 2021-07-28
AU2021202058B2 (en) 2023-04-13
MX2018001421A (es) 2018-03-15
CR20200431A (es) 2020-10-14
EP3331900B1 (en) 2021-02-17
US12102670B2 (en) 2024-10-01
CO2018002202A2 (es) 2018-11-22
CL2021001744A1 (es) 2022-02-11
GB201513921D0 (en) 2015-09-23
WO2017021527A3 (en) 2017-04-27
CA3110633A1 (en) 2017-02-09
SG10202001660YA (en) 2020-04-29
US20220143163A1 (en) 2022-05-12
US20180127473A1 (en) 2018-05-10
US20220152171A1 (en) 2022-05-19
AU2021202060A1 (en) 2021-04-29
EP3842446A1 (en) 2021-06-30
EP4324472A3 (en) 2024-08-28
US20220152175A1 (en) 2022-05-19
AU2021202059B2 (en) 2023-04-13
IL257331A (en) 2018-03-29
US10376568B2 (en) 2019-08-13
TW202106702A (zh) 2021-02-16
US20190275131A1 (en) 2019-09-12
MD3331900T2 (ro) 2021-05-31
US20210283230A1 (en) 2021-09-16
US11786584B2 (en) 2023-10-17
CR20200432A (es) 2020-10-19
US9908920B2 (en) 2018-03-06
PE20180695A1 (es) 2018-04-23
CL2021001545A1 (es) 2022-01-21
HRP20210709T8 (hr) 2022-03-18
PH12018500189A1 (en) 2018-07-30
BR112018001687A2 (pt) 2018-09-18
TW202415673A (zh) 2024-04-16
CL2018000324A1 (es) 2018-05-18
US20210275653A1 (en) 2021-09-09
CR20180074A (es) 2018-07-23
CL2022003264A1 (es) 2023-02-24
CA2994771A1 (en) 2017-02-09
AU2021202059A1 (en) 2021-04-29
AU2021202060B2 (en) 2023-06-15
US20200397878A1 (en) 2020-12-24
AU2021202057A1 (en) 2021-04-29
US12097249B2 (en) 2024-09-24
RS61713B1 (sr) 2021-05-31
UA125816C2 (uk) 2022-06-15

Similar Documents

Publication Publication Date Title
ES2862400T3 (es) Péptidos y combinaciones de péptidos para su uso en inmunoterapia contra el cáncer de próstata y otros cánceres
ES2867880T3 (es) Péptidos y combinaciones de péptidos para el uso en la inmunoterapia contra el cáncer de mama y otros tipos de cáncer
ES2807832T3 (es) Nuevos péptidos y nuevas combinaciones de péptidos para el uso en la inmunoterapia contra el cáncer epitelial de ovario y otros tipos de cáncer
JP7201740B2 (ja) 膀胱がんおよびその他のがんに対する免疫療法で使用するためのペプチド、ペプチド組み合わせ、および細胞ベースの薬剤
ES2860798T3 (es) Nuevos péptidos y nuevas combinaciones de péptidos y de soportes para el uso en la inmunoterapia contra el carcinoma colorrectal y otros tipos de cáncer
US11542303B2 (en) Peptides and combination thereof for use in the immunotherapy against cancers
ES2802155T3 (es) Inmunoterapia novedosa contra varios tumores de la sangre, en particular contra la leucemia linfoide crónica (LLC)
JP2023093483A (ja) 子宮がん治療法
ES2841507T3 (es) Nuevos péptidos y nuevas combinaciones de péptidos para el uso en la inmunoterapia contra el cáncer de esófago y otros tipos de cáncer
US11560405B2 (en) Peptides and combination thereof for use in the immunotherapy against cancers
ES2970246T3 (es) Péptidos novedosos y combinación de péptidos para usarse en inmunoterapia contra diferentes tumores
JP7476165B2 (ja) がんに対するb*07拘束性ペプチドおよびペプチド組み合わせによる免疫療法
JP7564183B2 (ja) 膀胱がんおよびその他のがんに対する免疫療法で使用するためのペプチド、ペプチド組み合わせ、および細胞ベースの薬剤
JP2024001045A (ja) Nsclc、sclc、およびその他のがんをはじめとする肺がんに対する免疫療法で使用するための新規ペプチドおよびペプチド併用
JP2024102112A (ja) がんに対するa*01拘束性ペプチドおよびペプチド組み合わせによる免疫療法
JP2023030082A (ja) Amlおよびその他のがんに対する免疫療法において使用するための新規ペプチドおよびペプチドの組み合わせ
ES2887107T3 (es) Nuevos péptidos y nueva combinación de péptidos para el uso en la inmunoterapia contra el carcinoma hepatocelular (CHC) y otros tipos de cáncer