ES2584305T3 - Minicélulas intactas como vectores para transferencia de ADN y terapia génica in vitro e in vivo - Google Patents
Minicélulas intactas como vectores para transferencia de ADN y terapia génica in vitro e in vivo Download PDFInfo
- Publication number
- ES2584305T3 ES2584305T3 ES10176209.4T ES10176209T ES2584305T3 ES 2584305 T3 ES2584305 T3 ES 2584305T3 ES 10176209 T ES10176209 T ES 10176209T ES 2584305 T3 ES2584305 T3 ES 2584305T3
- Authority
- ES
- Spain
- Prior art keywords
- mini
- cells
- cell
- gene
- bacterial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/0008—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/52—Bacterial cells; Fungal cells; Protozoal cells
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Epidemiology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
Una composición que comprende (i) minicélulas bacterianas intactas recombinantes y (ii) un vehículo farmacéuticamente aceptable para las mismas, en la que dichas minicélulas contienen una molécula de ácido nucleico terapéutico y en la que dicha composición está libre de bullas bacterianas de 0,2 μm o menos de tamaño.
Description
5
10
15
20
25
30
35
40
45
50
55
60
tumoral tal como el gen p53, el gen de retinoblastoma y el gen que codifica factor de necrosis tumoral. Una amplia variedad de tumores sólidos -cáncer, papilomas y condilomas -deben ser tratables por este enfoque, con arreglo a la invención. Cánceres representativos a este respecto incluyen carcinoma de colon, cáncer de próstata, cáncer de mama, cáncer de pulmón, cáncer de piel, cáncer de hígado, cáncer de hueso, cáncer de ovario, cáncer de páncreas, cáncer cerebral, cáncer de cabeza y cuello y linfoma. Papilomas ilustrativos son papiloma de células escamosas, papiloma del plexo coroideo y papiloma de laringe. Ejemplos de afecciones de condiloma son condilomas genitales, condilomas plantares, epidermodisplasia verruciforme y condilomas malignos.
Una molécula terapéutica de ácido nucleico para la presente invención también puede comprender un segmento de ADN que codifica una enzima que convierte un profármaco inactivo en uno o más metabolitos citotóxicos de manera que, tras la introducción in vivo del profármaco, la célula diana es en efecto obligada, quizás también con células vecinas, a suicidarse. Las aplicaciones preclínicas y clínicas de un “gen suicida” tal que puede ser de origen no humano o de origen humano son revisadas por Spencer (2000), Shangara y col. (2000) y Yazawa y col. (2002). Genes suicidas de origen no humano ilustrativos son aquellos que codifican HSV-timidina-cinasa (tk), citosinadesaminasa (CDA) + uracil-fosforribositransferasa, xantina-guanina-fosforribosil-transferasa (GPT), nitroreductasa (NTR), purina-nucleósido-fosforilasa (PNP, DeoD), citocromo P450 (CYP4B1), carboxipeptidasa G2 (CPG2) y Daminoácido-oxidasa (DAAO), respectivamente. Genes suicidas de origen humano se ejemplifican por genes que codifican carboxipeptidasa A1 (CPA), desoxicitidina-cinasa (dCK), citocromo P450 (CYP2B1.6), LNGFR/FKBP/Fas, FKBP/caspasas y ER/p53, respectivamente. Una terapia con genes suicidas podría aplicarse al tratamiento del SIDA. Esta estrategia se ha probado con vectores suicidas que expresan un producto génico tóxico tan pronto como las células de mamífero tratadas se infectan por el VIH-1. Estos vectores usan elementos reguladores del VIH-1, Tat y/o Rev, para inducir la expresión de un gen tóxico tal como la toxina -diftérica, citosina-desaminasa o interferón-a2 después de la infección por el VIH-1 (Curiel y col., 1993; Dinges y col., 1995; Harrison y col., 1992a; Harrison y col., 1992b; Ragheb y col., 1999). Las células podrían transducirse por estos vectores usando el enfoque de minicélulas recombinantes de la presente invención, y se eliminarían más rápido que las células sin transducir después de la infección por el VIH, previniendo la replicación vírica a expensas de la muerte celular.
Una molécula de ácido nucleico que va a introducirse puede incluir un elemento indicador. Un elemento indicador confiere a su huésped recombinante un fenotipo o característica fácilmente detectable, normalmente codificando un polipéptido, no producido de otro modo por el huésped, que puede detectarse tras la expresión por análisis histológico o in situ tal como por técnicas de obtención de imágenes in vivo. Por ejemplo, un elemento indicador administrado por una minicélula intacta, según la presente invención, podría codificar una proteína que produce en la célula huésped en reabsorción un cambio colorimétrico o fluorométrico que es detectable por análisis in situ y que es una función cuantitativa o semi-cuantitativa de activación transcripcional. Ilustrativo de estas proteínas son esterasas, fosfatasas, proteasas y otras enzimas, generando la actividad un cromóforo o fluoróforo detectable.
Ejemplos preferidos son β-galactosidasa de E. coli, que produce un cambio de color por escisión de un sustrato indigogénico, indolil-β-D-galactosida y una luciferasa que oxida un aldehído de cadena larga (luciferasa bacteriana) o un ácido carboxílico heterocíclico (luciferina), con la liberación concomitante de luz. En este contexto también es útil un elemento indicador que codifica la proteína verde fluorescente (GFP) de medusa, Aequorea victoria, como se describe por Prasher y col. (1995). El campo de la tecnología relacionada con GFP se ilustra por dos solicitudes PCT publicadas, WO 095/21191 (desvela una secuencia de polinucleótidos que codifica una apoproteína de GFP de 238 aminoácidos que contiene un cromóforo formado a partir de los aminoácidos 65 a 67) y WO 095/21191 (desvela una modificación del ADNc para el apopéptido de A. victoria GFP, proporcionando un péptido que tiene propiedades fluorescentes alteradas), y por un informe de Heim y col. (1994) de una GFP mutante, caracterizada por una mejora de 4 a 6 veces en la amplitud de excitación.
Otro tipo de elemento indicador está asociado a un producto de expresión que hace que la minicélula recombinante se vuelva resistente a una toxina. Por ejemplo, el gen neo protege un huésped contra niveles tóxicos del antibiótico G418, mientras que un gen que codifica dihidrofolato-reductasa confiere resistencia a metrotrexato, y el gen cloranfenicol-acetiltransferasa (CAT) confiere resistencia a cloranfenicol.
Otros genes para su uso como elemento indicador incluyen aquellos que pueden transformar una minicélula huésped para expresar antígenos de superficie de la célula diferentes, por ejemplo, proteínas de la envuelta vírica tales como gp120 del VIH o gD del herpes, que son fácilmente detectables por inmunoensayos.
Una molécula de ácido nucleico que va a introducirse también puede tener un segmento de codificación deseado ligado operativamente a un elemento regulador tal como un promotor, un terminador, un potenciador y/o una secuencia señal. Un promotor adecuado puede ser específico de tejido, o incluso específico de tumor, como dicta el contexto terapéutico.
Un promotor es “específico de tejido” cuando se activa preferencialmente en un tejido dado y, de ahí, que sea eficaz en accionar la expresión en el tejido diana de una secuencia estructural operativamente ligada. La categoría de promotores específicos de tejido incluye, por ejemplo: el promotor específico de hepatocitos para albúmina y aantitripsina, respectivamente; la región de control del gen de elastasa I, que es activa en células acinares pancreáticas; la región de control del gen de insulina, activa en células beta pancreáticas; la región de control del virus de tumor mamario de ratón, que es activa en células testiculares, de mama, linfoides y mastocitos; la región de
5
10
15
20
25
30
35
40
45
50
55
La competencia por reabsorción de una célula huésped putativa (“diana”) puede evaluarse probando la eficacia de la liberación de ADN en cultivo. Por tanto, un tumor elegido como diana podría someterse a biopsia, y la muestra resultante de tejido se usaría, de manera convencional, para obtener células tumorales representativas en cultivo, para probar una capacidad para reabsorber minicélulas recombinantes de la presente invención que llevan, por ejemplo, un elemento indicador adecuado. Adicionalmente o alternativamente para probar un cultivo celular primario tal, puede evaluarse la capacidad para reabsorber minicélulas probando una línea celular que es representativa del tipo de tejido al que el protocolo terapéutico está adaptado, con arreglo a la presente invención. Las técnicas de cultivo celular están bien documentadas, por ejemplo, por Freshner (1992).
Pueden purificarse minicélulas recombinantes a partir de células parentales por varios medios. Un enfoque usa metodología de gradiente de sacarosa descrita, por ejemplo, por Reeve (1979) y por Clark-Curtiss y col. (1983), seguido de tratamiento con un antibiótico, tal como gentamicina (200 µg/ml, 2 horas), para destruir bacterias vivas residuales.
Con la metodología convencional, la pureza alcanzada es una célula parental contaminante por 106 a 107 minicélulas, como mucho. Para aplicaciones in vivo, según la presente invención, pueden requerirse dosis superiores a 106 y pueden ser de hasta 1010 por dosis, que, con la relación de contaminación anteriormente mencionada, se traduciría en 10.000 células parentales vivas por dosis. Un nivel de contaminación tal sería mortal, particularmente en sujetos inmunodeprimidos.
Además, la tecnología convencional emplea medios que contienen un agente de formación en gradiente tal como sacarosa, glicerol o Percoll® cuya presencia es no deseable para usos in vivo, como se ha contemplado actualmente. Por tanto, la toxicidad de Percoll® lo restringe a contextos de “sólo fines de investigación”, mientras que la sacarosa para un gradiente confiere una alta osmolaridad que puede producir cambios fisiológicos en las minicélulas.
Por tanto, para aplicaciones de terapia génica es preferible minimizar la contaminación por células parentales y usar medios que son más biológicamente compatibles. Para lograr estos objetivos, los presentes inventores han encontrado inesperadamente ventajoso combinar filtración de flujo cruzado (el flujo alimentado es paralelo a una superficie de la membrana) y filtración frontal (el flujo alimentado es perpendicular a la superficie de la membrana). Generalmente, véase Forbes (1987). Opcionalmente, esta combinación puede ir precedida de una centrifugación diferencial, a baja fuerza centrífuga para eliminar alguna porción de las células bacterianas y así enriquecer el sobrenadante en minicélulas. También opcionalmente, la combinación puede ir seguida de un tratamiento con antibiótico para destruir células parentales bacterianas residuales.
La filtración de flujo cruzado, dependiendo del tamaño de poro del filtro, puede separar minicélulas de contaminantes mayores tales como células parentales bacterianas, y de contaminantes más pequeños tales como bullas bacterianas, endotoxina libre, residuos celulares de ácidos nucleicos y líquido en exceso. Para separar minicélulas de contaminantes mayores, el tamaño de poro nominal de filtros de flujo cruzado debe permitir que las minicélulas penetren a través de los filtros, pero no células bacterianas grandes. Se prefiere un tamaño de poro de 0,45 µm para este fin debido a que las minicélulas tienen aproximadamente 0,4 µm de diámetro, mientras que las células bacterianas son mayores. Para separar minicélulas de contaminantes más pequeños, el tamaño de poro nominal de los filtros de flujo cruzado debe permitir que penetren contaminantes más pequeños a través de los filtros, pero no minicélulas. Se prefiere un tamaño de poro de 0,2 µm para este fin debido a que las bullas bacterianas oscilan en diámetro de 0,05 µm a 0,2 µm, y los otros contaminantes más pequeños son inferiores a 0,2 µm.
La aplicación eficaz de filtración de flujo cruzado en este contexto normalmente conlleva al menos una etapa que implica un mayor tamaño de poro, aproximadamente 0,45 µm, seguido de al menos una etapa con un menor tamaño de poro, aproximadamente 0,2 µm. Entre o durante las etapas de filtración de flujo cruzado en serie, la diafiltración puede realizarse para maximizar la recuperación de minicélulas.
El uso de filtración de flujo cruzado acomoda suspensiones que llevan cargas pesadas de materia particulada, tal como cultivos bacterianos, que pueden llevar cargas de 1011 a 1013 poblaciones bacterianas y de minicélulas por litro de cultivo. Para minimizar el plegamiento del filtro y la consecuente pérdida de minicélulas, el cultivo bacteriano/de minicélulas puede diluirse, preferentemente de 5 veces a 10 veces. Las diluciones también permiten el uso de presión atmosférica y velocidad de flujo apropiadamente bajas.
Para eliminar células parentales bacterianas residuales que permanecen después de la filtración de flujo cruzado se realiza filtración frontal. Para este fin se prefiere el uso de al menos una filtración frontal, empleando un tamaño de poro de aproximadamente 0,45 µm.
Generalmente, la filtración proporciona una preparación de minicélulas estéril adecuada para estudios de transferencia de genes. Para la transferencia de genes in vivo, un tratamiento con antibiótico se realiza preferentemente adicionalmente para reducir los riesgos de contaminación por células bacterianas. Por ejemplo, las minicélulas pueden resuspenderse en medio de crecimiento que contiene un antibiótico al que es sensible la cepa bacteriana parental. La cantidad apropiada de un antibiótico dado para este fin puede determinarse de antemano por técnicas convencionales.
de Shigella se diferenciaron de E. coli sembrando en placas de agar XLD (agar de xilosa-lisina-desoxicolato) para producir colonias rojas y amarillas, respectivamente. XLD se compró en Oxoid (Melbourne, Australia). Se preparó según las instrucciones del fabricante a 53 gm/l, luego se hirvió durante 2 minutos. Los antibióticos se usaron a las siguientes concentraciones en medios líquidos y sólidos: ampicilina, 100 µg/ml, cloranfenicol, 30 µg/ml, kanamicina, 30 µg/ml.
Tabla 1. Cepas bacterianas usadas
- Cepa de E. coli
- Genotipo / características relevantes Referencia
- ENIh001
- SM10□pir; F-supE44, thi-1, thr-1, leuB6, lacY1, tonA21, recA:RP4-2-Tc::Mu lambdapir, TnphoA,oriR6K, tra-mob+ Miller y Mekalanos (1988).
- ENE105
- Cepa ENIh001 que lleva el plásmido pEN060 (Fig. 3) La presente divulgación
- ENIh003
- JM109; F' traD36 proA + proB +laclq lacZDM15/recA1 endA1gyrA96 (Nalr) thi hsdR17 supE44 relA1 D(lac-proAB) mcrA Yanisch-Perron y col. (1985)
- Cepa de Salmonella
- ENIh007
- Salmonella enterica serovar Typhimurium. Cepa aislada clínica de oveja. Institute of Medical and Veterinary Services, Adelaida, SA, Australia. Cepa de referencia J98/00413
- ENSm083
- Salmonella choleraesuis subsp. choleraesuis (Smith) serotipo Weldin. Typhimurium depositada como Salmonella typhimurium ATCC 14028
- SL3261
- Salmonella typhimurium aroA- Hoiseth y col., (1981)
- SL5283
- Salmonella typhimurium hsdR-, hsdM+ Hoiseth y col., (1981)
- Cepa de Shigella
- ENSf001
- S. flexneri serotipo 2b ATCC 12022
- Cepa de Listeria
- ENLM001
- Listeria monocytogenes Gibson ATCC 7644 J. Pathol. Bacteriol. 45: 523, (1937)
Cuando se requirió, las cepas se cultivaron en medio mínimo M9 complementado con el 1 % de glucosa. Se añadieron complementos adicionales dependiendo de la cepa. Para la cepa ENIh003 de E. coli se añadió tiamina 1
10 mM. Para la cepa ENSf001 de S. flexneri, M9 se complementó con serina 0,4 mM, prolina 0,2 mM, 0,001 % de fenilalanina, 0,001 % de triptófano, 0,001 % de tirosina, 0,001 % de histidina, 0,002 mg/ml de valina, 0,0125 mg/ml de ácido nicotínico, 0,001 % de tiamina y 0,0225 mg/ml de metionina.
El ADN de plásmido se purificó usando el kit Qiaprep Spin Miniprep (Qiagen Inc., Victoria, Australia). El ADN genómico para las cepas de Salmonella, Shigella y E. coli se preparó usando el protocolo básico de Current
15 Protocols in Molecular Biology (Capítulo 2, Sección I, unidad 2.4; John Wiley & Sons, Inc.). Todas las enzimas de restricción y modificación usadas se compraron en Promega (Madison, WI, EE.UU.) o Roche (Castle Hill, NSW, Australia), excepto la ADN polimerasa Deep Vent, que se compró en New England Biolabs (Beverly, MA, EE.UU.).
El ADN genómico de L. monocytogenes (ENLM001) se purificó mediante procedimientos convencionales (Ausubel y col., Current Protocols in Molecular Biology, John Wiley and Sons Inc.) con modificaciones como se han descrito. 20 Una muestra de 1,5 ml de un cultivo durante la noche se centrifugó a 13.200 rpm durante 3 minutos y el sobrenadante se desechó. El sedimento de células bacterianas se resuspendió en 1 ml de tampón TE (Tris 10 mM a pH 8,0; EDTA 1 mM a pH 8,0) con 2,5 mg/ml de lisozima y se incubó a 37 ºC durante 1 hora. Entonces se añadió RNAsa A a una concentración final de 15 mg/ml, y la solución se incubó a temperatura ambiente durante 1 hora. Entonces se añadieron 100 µg/ml de proteinasa K y 0,5 % de SDS y la mezcla se incubó adicionalmente durante 25 una hora a 37 ºC. Posteriormente, 200 µl de NaCl 5 M se mezclaron rigurosamente en la solución, seguido de 160 µl
5
10
15
20
25
30
35
40
45
50
55
de solución de CTAB/NaCl (10 % de CTAB en NaCl 0,7 M). Entonces, esta mezcla se incubó durante 10 minutos a 65 ºC. La muestra se extrajo con un volumen igual de cloroformo/alcohol isoamílico seguido de una extracción con un volumen igual de fenol/cloroformo/alcohol isoamílico. El ADN genómico se precipitó en disolución con 0,6 volúmenes de isopropanol y 1/10 de volumen de acetato sódico 5 M. El sedimento de ADN se lavó con etanol y se secó al aire antes de la resuspensión en tampón TE.
Los cebadores de PCR se sintetizaron y se compraron en Sigma-Genosys (Castle Hill, NSW, Australia). El protocolo de PCR básico seguido fue del siguiente modo. Los componentes de reacción para todas las PCR de 50 µl incluyeron 1X tampón, dNTP 200 µM, 50 pmoles de cada cebador, 1 unidad de ADN polimerasa Deep Vent, 50 pmoles de molde de ADN genómico (25 pmoles para plásmidos), agua libre de nucleasas hasta 50 µl, con PCR realizada en tubos de 0,2 ml en un ciclador térmico rápido para PCR en gradiente de Thermo Hybaid (Ashford, Middlesex, RU). Las condiciones de PCR para obtener la agrupación de genes minCDE fueron del siguiente modo: 94 ºC durante 4 minutos; seguido de 30 ciclos a 94 ºC durante 35 segundos, 60 ºC durante 30 segundos, 72 ºC durante 2,5 minutos; seguido de un ciclo final a 94 ºC durante 35 segundos, 60 ºC durante 35 segundos, 72 ºC durante 5 minutos. Las condiciones de PCR para obtener el casete ΔminCDE fueron del siguiente modo: 94 ºC durante 4 minutos; seguido de 30 ciclos a 94 ºC durante 35 segundos, 60 ºC durante 30 segundos, 72 ºC durante 2 minutos; seguido de un ciclo final a 94 ºC durante 35 segundos, 60 ºC durante 35 segundos, 72 ºC durante 4 minutos. Las condiciones de PCR para obtener el casete ΔminCDE::Cml fueron del siguiente modo: 94 ºC durante 4 minutos; seguido de 30 ciclos a 94 ºC durante 35 segundos, 60 ºC durante 30 segundos, 72 ºC durante 3 minutos; seguido de un ciclo final a 94 ºC durante 35 segundos, 60 ºC durante 35 segundos, 72 ºC durante 6 minutos.
Los protocolos de biología molecular convencionales fueron como se describen en Sambrook y col. (1989) y en CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (John Wiley & Sons, Inc., NJ, EE.UU.).
El rendimiento de minicélulas se determinó microscópicamente usando un microscopio óptico Leica modelo DMLB con análisis de imágenes por medio de una cámara Leica DC y software de gestión de imágenes Leica IM. Las muestras se visualizaron usando microscopía de campo oscuro a 40X o inmersión en aceite a 100X aumentos. Los cubreobjetos sobre portaobjetos de vidrio se sellaron con el 1,5 % de agarosa. La pureza de cada lote de minicélulas se determinó sembrando un 10 % del volumen sobre placas de agar con tripticasa de soja e incubación durante la noche a 37 ºC. El procedimiento proporcionó rutinariamente una pureza muy alta con una célula contaminante en 109 minicélulas. Las suspensiones de minicélulas se resuspendieron en TSB con los antibióticos apropiados para los que se determinó que las bacterias parentales eran sensibles y los cultivos se incubaron con agitación a 37 ºC durante 4 horas para matar todas las bacterias parentales residuales. Por ejemplo, se determinó que la cepa minCDE de S. typhimurium era sensible a ampicilina y de ahí que la suspensión de minicélulas se incubara en TSB que contenía 50 µg/ml de ampicilina durante 4 horas para garantizar que si hubiera cualquier bacteria residual entonces serían matadas. Entonces, las minicélulas se recogieron por centrifugación a 10.000 g durante 30 minutos, se lavaron cuatro veces en 1 x tampón BSG (para eliminar el medio de crecimiento) y se resuspendieron en el volumen deseado para experimentos aguas abajo.
[A] Generación de cepas productoras de minicélulas a partir de dos cepas diferentes de Salmonella typhimurium.
Un diagrama esquemático de construcción de plásmido se muestra en la Figura 2. Las cepas bacterianas, plásmidos y cebadores de PCR usados se muestran en la Tablas 1, 2 y 3 respectivamente.
Las secuencias de genes minCDE de E. coli, véase Mori (1996), se usaron para buscar en la base de datos Genbank secuencias de ADN homólogas usando el procedimiento de análisis FASTA (Pearson y Lipman, 1988). Se encontró que secuencia de ADN del contigo de TYPN3 101 del genoma de S. typhi (CT18) era homóloga a las secuencias de minCDE de E. coli. Los cebadores de oligonucleótidos ENOL001 y ENOL002 se diseñaron basándose de estos datos y se usaron para cebar la síntesis de los genes minCDE intactos a partir de la cepa ENIh008 de S. typhimurium como un fragmento de EcoRI-minCDE-HindIII.
Este fragmento se clonó en los sitios EcoRI/HindIII de pNEB193 para crear un plásmido designado pEN001, que se propagó en la cepa JM109 de E. coli para producir la cepa ENE001. Los cebadores ENOL003 y ENOL004 se diseñaron para delecionar un total de 1081 pb de la secuencia del casete de minCDE en pEN001, a la vez que simultáneamente se insertaban 16 pares de bases (pb) que contenían los sitios de restricción KpnI, SmaI y XbaI únicos como localizaciones para la futura inserción de uno o más genes marcadores.
La secuencia delecionada incluyó 386 pares de bases a partir del extremo 3' del gen minC, la secuencia interviniente de 23 pares de bases en la dirección 5' del gen minD y 672 pares de bases a partir del extremo 5' del gen minD. Esto produjo el casete de deleción ΔminCDE (755 pares de bases) en el plásmido pEN002 alojado en la cepa ENE003. El gen de resistencia a cloranfenicol de pHSG415 (Fig. 2, Tabla 2), fragmento HaeII de 1330 pares de bases/de extremos romos, se clonó en el sitio SmaI de pEN002 para obtener el plásmido pEN003, que lleva el casete de deleción ΔminCDE::CmlR con el gen CmlR clonado en la orientación de las agujas del reloj. Ésta se designó la cepa ENE006.
Tabla 2. Plásmidos usados en este estudio.
- Plásmido
- Características relevantes Referencia
- pHSG415
- Número de copias bajo, sensible a la temperatura, movilizable Hashimotoh-Gotoh y col., (1981)
- pGP704
- Derivado de pBR322 en el que oriE1 se ha sustituido con oriR6K. El origen de replicación R6K requiere para su función una proteína llamada pi, codificada por el gen pir. En E. coli, la proteína pi puede ser suministrada en trans por un profago (□pir) que lleva una copia clonada del gen pir. El plásmido también contiene un fragmento BamHI de 1,9 kb que codifica la región mob de RP4. Por tanto, pGP704 puede movilizarse en cepas receptoras por funciones de transferencia proporcionadas por un derivado de RP4 integrado en el cromosoma de la cepa SM10 de E. coli. Sin embargo, una vez transferido, es incapaz de replicarse en receptores que carecen de la proteína pi. AmpR Miller y Mekalanos (1988)
- pNEB193
- Es un derivado de pUC19 que lleva sitios únicos para los cortadores de 8 bases únicos: Asc I, Pac I y Pme I. El poliligador lleva los sitios de restricción únicos EcoRI, SacI, KpnI, SmaI, AscI, BssHII, BamHI, PacI, XbaI, SalI, PmeI, SbfI, PstI, SphI, HindIII. El poliligador no interrumpe el marco de lectura lacZ. AmpR Comprado en New England Biolabs, Inc. Beverly, MA, EE.UU.
- pMK4 (5,6 kb)
- Vector lanzadera de E. coli, Staphylococcus aureus, Bacillus subtilis, lacZ' (de pUC9), CmlR (de pC 194) en Bacillus, AmpR en E. coli. CmlR en Bacillus Sullivan y col., (1984)
- pVA838 (9,2 kb)
- Vector lanzadera de E. coli y Streptococcus sanguis, resistente a eritromicina (EMR) en S. sanguis, CmlR en E. coli. Macrina y col., (1982)
- pRB373 (5,8 kb)
- Vector lanzadera de E. coli y B. subtilis, bla (AmpR) y E. coli ori se derivaron de pBR322. ori con resistencia a kanamicina (KmR), resistencia a bleomicina (BmR) y Gram-positivas se derivaron de pUB110. to (terminador de la transcripción) es del fago . Brückner (1992)
- pEGFP
- Lleva una variante desplazada hacia el rojo de proteína verde fluorescente (GFP) natural que se ha optimizado para fluorescencia más brillante y mayor expresión en células de mamífero (máximo de excitación = 488 nm; máximo de emisión = 507 nm). Las secuencias en la dirección 5' que flanquean EGFP se han convertido en un sitio de iniciación de la traducción consenso de Kozak para aumentar adicionalmente la eficiencia de traducción en células eucariotas. El gen EGFP se clonó entre las dos MCS del derivado de pUC 19 pPD16.43. El gen EGFP se insertó en marco con el codón de iniciación lacZ de pUC 19 de manera que una proteína de fusión de EGFP se expresara a partir del promotor lac en E. coli. El esqueleto de pUC de EGFP proporciona un origen de replicación de número de copias alto y un gen de resistencia a ampicilina para la propagación y selección en E. coli. Comprado en Clontech Laboratories, Palo Alto, CA, EE.UU.
5
10
15
20
25
30
35
(continuación)
- Plásmido
- Características relevantes Referencia
- pEGFP-C1
- EGFP es como se ha descrito para el plásmido pEGFP. Las secuencias que flanquean EGFP se han convertido en un sitio de iniciación de la traducción consenso de Kozak para aumentar adicionalmente la eficiencia de traducción en células eucariotas. El gen EGFP se expresa a partir del promotor temprano inmediato del citomegalovirus humano y de ahí que el plásmido sólo exprese EGFP en células de mamífero y no en células bacterianas. La MCS en pEGFP-C1 está entre las secuencias codificantes de EGFP y el poli A del SV40 (en la dirección 3' del gen EGFP) que dirige el procesamiento apropiado del extremo 3' del ARNm de EGFP. El esqueleto del vector también contiene un origen de SV40 para la replicación en células de mamífero que expresan el antígeno T de SV40 T. Un casete de resistencia a neomicina (neor), que consiste en el promotor temprano del SV40, el gen de resistencia a neomicina/kanamicina de Tn5 y las señales de poliadenilación del gen timidina-cinasa (TK del VHS) del herpes simple permite que células eucariotas establemente transfectadas se seleccionen usando G418. Un promotor bacteriano en la dirección 5' de este casete expresa resistencia a kanamicina en E. coli. El esqueleto de pEGFP-C1 también proporciona un origen de replicación pUC para la propagación en E. coli y un origen f1 para la producción de ADN monocatenario. Comprado en Clontech Laboratories, Palo Alto, CA, EE.UU.
El casete de deleción ΔminCDE::CmlR se amplificó a partir del plásmido pEN003 por reacción en cadena de la polimerasa (PCR) usando los cebadores ENOL001 y ENOL002, se hicieron romos los extremos y se clonaron en el sitio SmaI del plásmido suicida pGP704 (Fig. 2; Tabla 2). El plásmido, designado pEN005, se transformó en la cepa ENIh001 (SM10pir; Tabla 1) para dar el número de cepa ENE007. La cepa ENE007 se usó como cepa donante en un experimento de conjugación (acoplamiento de filtros) con las cepas ENIh007 y ENSm083 de S. typhimurium (Tabla 1) como receptor. Durante la noche, los cultivos estáticos del donante y el receptor se cultivaron en TSB a 37 ºC. Los cultivos se mezclaron en una conjugación por acoplamiento de filtros sobre membranas Hybond N+ sobre placas de TSA a una relación de donante:receptor de 1:3 y se incubaron a 37 ºC durante 8 horas. Las células se recuperaron y se lavaron dos veces en una solución salina estéril. El sedimento de células se resuspendió en solución salina y se sembró en placas de Petri de 150 mm. Las placas se incubaron durante hasta 72 horas a 37 ºC.
Los exconjugantes se seleccionaron sobre medio mínimo M9 con el 1,5 % de glucosa y 30 µg/ml de cloranfenicol. La cepa donante se contra-selecciona bajo estas condiciones, debido a requisitos auxotróficos adicionales, mientras que la cepa receptora no puede crecer debido a su sensibilidad al cloranfenicol. Por tanto, este experimento seleccionó exconjugantes de S. typhimurium que llevan la resistencia a cloranfenicol codificada por plásmido. Las colonias se cribaron para el fenotipo deseado de CmlR y Amps parcheando cepas aisladas sobre el medio mínimo M9 que contenía ampicilina (Amp) o cloranfenicol (Cml). De las 79 cepas aisladas de la conjugación ENE007 x ENIh007 que presentó CmlR, se encontró que un total de 18 cepas aisladas eran Amps. De manera similar, de las 56 cepas aisladas de la conjugación ENE007 x ENSm083, se encontró que 19 eran Amps.
Para determinar si las cepas aisladas fueron cromosómicamente delecionadas para los genes minCD, los cultivos durante la noche se visualizaron por microscopía de campo oscuro a 40X aumentos. Las minicélulas se visualizaron en el cultivo mixto para las 27 cepas aisladas. Todas las cepas aisladas mostraron la presencia de minicélulas, mientras que las cepas de control parentales estuvieron ausentes para minicélulas. Las minicélulas purificadas se probaron para aglutinación con suero aglutinante somático 4-0 Salmonella (conejo) ZC13 (Murex Diagnostics, Norcross, Georgia, EE.UU.).
La cepa bacteriana recombinante se cultivó bajo condiciones de laboratorio que son óptimas para la producción de minicélulas recombinantes. El crecimiento bacteriano se lleva a cabo usando medios bacteriológicos convencionales tales como aquellos descritos en Sambrook y col. (1989), y usando condiciones de crecimiento óptimas que pueden determinarse fácilmente por técnica convencional.
[B] Generación de cepa productora de minicélulas a partir de Shigella flexneri.
La Figura 3 representa las etapas relevantes en la construcción genética de una cepa productora de minicélulas de
S. flexneri serotipo 2b. El protocolo de clonación fue similar al seguido para la construcción de cepas de S. typhimurium productoras de minicélulas, detallado anteriormente.
Para clonar la agrupación de genes minCDE a partir de S. flexneri serotipo 2b (Tabla 1), los cebadores de clonación de PCR se diseñaron basándose en una búsqueda de base de datos del proyecto de secuenciación en progreso para la secuencia del genoma de Shigella flexneri completa, serotipo 2a. Los cebadores de PCR ENOL059 y
5
10
15
20
25
30
35
40
45
50
55
relación 2:1 (receptor:donante) a un volumen de 1 ml. Las mezclas de conjugación se lavaron dos veces en BHI antes de resuspenderse en 1 ml de BHI. Se sembraron volúmenes de 200 µl en filtros de membrana de nitrocelulosa 0,45 µM (Millipore) sobre placas BHI y se incubaron durante 18 horas a 37 ºC. Tras la incubación, las membranas de nitrocelulosa se rebanaron en tiras y se dispusieron en 3 ml de BHI. Se aplicó agitación con vórtex vigorosa para desplazar células bacterianas de las membranas de filtración. Se sembraron muestras de 300 µl de volumen en placas grandes que contenían BHI, ácido nalidíxico (Nal; 50 µg/ml), colistina (Col; polimixina E) (10 µg/ml) y tanto cloranfenicol (10 µg/ml) como eritromicina (10 µg/ml). Las placas se incubaron durante 48 horas a 37 ºC antes de recogerse las colonias.
Las colonias se parchearon sobre placas de BHI/Nal/Col que contenían kanamicina (15 µg/ml), además de sobre placas con BHI/Nal/Col y tanto cloranfenicol (10 µg/ml) como eritromicina (10 µg/ml), para la prueba de sensibilidad a antibióticos. Todos los exconjugantes demostraron un perfil antibiótico que sugirió la integración cromosómica de la deleción de minCD sin integración del plásmido. Es decir, todos los exconjugantes se cultivaron sobre placas de antibiótico que contenían el marcador interno eritromicina o cloranfenicol y no exconjugantes se cultivaron sobre placas que contenían kanamicina (KmR codificada por el gen neo sobre plásmidos de donante).
Se examinaron más de cien exconjugantes para el fenotipo de minicélulas usando microscopía de campo oscuro (40x) e inmersión en aceite (100x). Todas las cepas aisladas demostraron un número variable de estructuras de minicélulas entre la población de bacilos parentales de L. monocytogenes cuando se compararon con células parentales bajo el microscopio (ENIh001 y ENLm001). Este resultado también está de acuerdo con la integración de la deleción de minCD y la disrupción de la división pericentral normal.
Se eligieron treinta exconjugantes y se subcultivaron para probar el mantenimiento del fenotipo de minicélulas. Tras la confirmación del mantenimiento, las cepas aisladas se almacenaron como soluciones madre en glicerol para futuros experimentos.
Ejemplo 3. Purificación de minicélulas a partir de especies bacterianas
Se purificaron minicélulas por el siguiente procedimiento inventivo. Este ejemplo detalla la purificación de minicélulas derivadas de minCDE de S. typhimurium. El mismo procedimiento se usó para purificar minicélulas a partir de cepas mutantes de min adicionales que incluyen dos mutantes de S. typhimurium, y un mutante cada uno de E. coli, S. flexneri y L. monocytogenes. El procedimiento se optimizó y se repitió más de 50 veces para generar minicélulas purificadas. Fue fidedigno, y rutinariamente dio 108 a 109 minicélulas purificadas a partir de un cultivo bacteriano de10 l.
Se estableció un cultivo de minCDE-/pEGFP-C1 de S. typhimurium a partir de una solución madre de glicerol en 50 ml de TSB que contenía los antibióticos cloranfenicol y kanamicina (50 ug/ml de concentración final). El cultivo se incubó con agitación a 37 ºC durante la noche. Se usó una alícuota de 2,5 ml del cultivo durante la noche para inocular 1 l (en un matraz cónico de 2 l con deflectores) de TSB que contenía los antibióticos anteriormente mencionados, y se incubaron cinco matraces con agitación a 37 ºC durante la noche.
(A) Preparación previa (etapa I)
Una bolsa BioProcess de 100 l se llenó con agua de tipo 1 (MQ) por un manguito estéril mediante un filtro de 0,2 µm. A dos bidones de 20 litros, previamente esterilizados en autoclave, que contenían 2 l de 10X BSG, se transfirieron 18 l de agua de procedimiento estéril por bomba peristáltica. Un bidón fue para diluir la minisuspensión de células y el otro fue para su uso en diafiltración.
(B) Centrifugación diferencial y preparación previa (etapa 2)
El cultivo bacteriano se centrifugó a 2000 g durante 10 minutos (Sorvall Legend T/RT; TTH 750 rotor). El sobrenadante se decantó en un bidón de 5 l estéril que se dotó de un filtro de ventilación de 0,2 µm y un accesorio de rápida desconexión. El procedimiento de decantación se realizó en una vitrina de riesgo biológico de clase II. El bidón se cerró, un tubo estéril se conectó al bidón de 5 l, y el otro extremo del tubo se conectó al bidón de 20 l previamente llenado que contenía 20 l de 1 x BSG como se ha descrito anteriormente. La suspensión que lleva minicélulas se bombeó del bidón de 5 l al bidón de 20 l para dar una dilución de 1:5.
(C) Sistema de purificación de minicélulas continuo
Se conectaron en serie tres sistemas de flujo cruzado de Sartorius. Por duplicado, filtros modulares de rodajas Sartocon de 0,45 µm se ajustaron en los dos primeros soportes de rodajas y un módulo de filtro de rebanadas Sartocon de 0,2 µm se ajustó en el último soporte. La torsión sobre cada unidad de filtración se apretó a 20 Nm (Newton-metros) usando una llave de torsión. Cada unidad se unió a una bomba mediante un elemento sanitario. Se conectaron las líneas de alimentación, concentrado y permeado. Antes de la unión de los bidones, todo el sistema se lavó internamente con 6 l de NaOH 1 N a presión de 2 bar (0,2 MPa) durante 15 minutos. Esta etapa esterilizó internamente los diversos manguitos y filtros. El sistema se drenó de NaOH invirtiendo la dirección de la bomba de flujo de líquido y se realizó una prueba de velocidad de flujo del agua para garantizar la apropiada limpieza del filtro. La prueba se realizó según las instrucciones del fabricante (manual de Sartorius). Se garantizaron velocidades de
5
10
15
20
25
30
35
40
45
50
55
flujo aceptables de 3.000 a 3.600 ml por minuto para el concentrado y 600 a 800 ml por minuto para el permeado antes de realizarse la filtración de minicélulas. El sistema todavía llevaba un alto pH y de ahí que éste se neutralizara lavando y recirculando por cada sistema con 1 x PBS estéril (pH 7,4) hasta que el pH medido del conjunto de PBS estuviera en el intervalo de 7,0 a 8,0. Entonces se conectaron los bidones (20 l). La suspensión de minicélulas (25 l) se transportó a un primer bidón, que se conectó por un manguito al primer módulo de filtro de 0,45 µm. Para evitar la incrustación del filtro, la suspensión de minicélulas se diluyó a medida que avanzó la etapa de filtración (es decir, diafiltración). El diluyente (20 l de 1 x BSG) se transportó a un segundo bidón. Por tanto, en la primera etapa de filtración de flujo cruzado, la suspensión de minicélulas se filtró a un volumen de 45 l. La válvula de permeado se cerró inicialmente y la suspensión de minicélulas se bombeó sobre la superficie del filtro de 0,45 µm a una presión de 2 bar (0,2 MPa) durante 5 minutos. Esto acondicionó el filtro para el medio de suspensión de minicélulas. Entonces, la válvula de permeado se abrió y la suspensión de minicélulas penetró (una presión de 2 bar (0,2 MPa), 600 ml por min) a través del filtro de 0,45 µm y el permeado se recogió en un tercer bidón. A medida que disminuyó el volumen en el primer bidón, la cantidad de sólidos no filtrados aumentó, y de ahí que se cambiara a diafiltración cuando el volumen en el primer bidón descendió a 15 l. Éste diluye los sólidos en el primer bidón, previene la incrustación del filtro y maximiza la recuperación de minicélulas en el tercer bidón. Una vez el volumen de permeado en el tercer bidón alcanzó aproximadamente 12,5 l, el segundo filtro de flujo cruzado de 0,45 µm se acondicionó para la suspensión de minicélulas encontrada en el tercer bidón. Cuando el volumen en el tercer bidón alcanzó la marca de 15 l, la válvula de permeado se abrió, permitiendo la penetración de la suspensión de minicélulas en un cuarto bidón.
En esta etapa se eliminó la mayor contaminación de células parentales bacterianas en la suspensión de minicélulas. La siguiente etapa fue eliminar contaminantes menores en la suspensión tal como bullas bacterianas, endotoxina libre, ácidos nucleicos, restos celulares y líquido en exceso. Esto se llevó a cabo por filtración a través de un filtro de flujo cruzado de 0,2 µm. Las minicélulas tienen aproximadamente 0,4 µm de diámetro y de ahí que no penetren a través de un tamaño de poro de 0,2 µm. Por otra parte, las bullas bacterianas oscilan en tamaño (diámetro) de 0,05 µm a 0,2 µm y de ahí que se filtren. Otros contaminantes también son inferiores a 0,2 µm y de ahí que los únicos constituyentes retenidos en esta etapa de filtración fueran las minicélulas y cualquier célula parental bacteriana residual.
Cuando el volumen en el cuarto bidón alcanzó aproximadamente 15 l, el filtro de flujo cruzado de 0,2 µm se acondicionó para la suspensión de minicélulas presentes en el cuarto bidón. Entonces, la válvula de permeado se abrió, permitiendo que el permeado fuera a residuos en un quinto bidón mientras que las minicélulas se retuvieron y se concentraron en el cuarto bidón. Debido a la incorporación del sistema de diafiltración, las minicélulas se diluyeron continuamente y se filtraron, lo que garantizó la eliminación completa de contaminantes al final del procedimiento. Por tanto, la etapa de concentración redujo el volumen de suspensión de minicélulas a aproximadamente 4 l a partir del volumen de partida de 45 l.
(D) Intercambio de tampón para la suspensión de minicélulas
Las sales residuales, los componentes de medios y los residuos de bajo peso molecular en la suspensión de minicélulas se eliminaron por diafiltración con 1 x BSG. El aparato se ensambló y se equilibró como se ha descrito antes. La suspensión de minicélulas se dispuso en un primer bidón de 4 l, y 20 l de 1 x BSG estéril (medio de diafiltración) se dispusieron en un segundo bidón. La unidad de flujo cruzado se ensambló con dos módulos de filtro de 0,1 µm para garantizar que las minicélulas no pudieran pasar a través, pero que se eliminaran todos los contaminantes inferiores a 0,1 µm. la bomba se encendió y la velocidad se ajustó para proporcionar 0,5 bar (0,05 MPa) de presión. La válvula de permeado se abrió y la suspensión de minicélulas circuló por la línea de alimentación, sobre el filtro de 0,1 µm. Las minicélulas se devolvieron al primer bidón por la línea de concentrado. El residuo circuló por la línea de permeado y se recogió en un tercer bidón. Esto redujo el volumen de la suspensión de minicélulas y de ahí que el sistema de diafiltración se encendiera para bombear 1 x BSG al primer bidón. Esta etapa repuso continuamente el volumen de la suspensión de minicélulas para mantenerlo a 4 l. El procedimiento continuó hasta que el segundo bidón se vació, produciendo cinco cambios del tampón de suspensión de minicélulas.
(E) Esterilización por filtración de la suspensión de minicélulas
En esta etapa, la suspensión de minicélulas todavía llevaba algo de contaminación bacteriana parental debido a que los filtros de flujo cruzado de 0,45 µm no fueron filtros de esterilización. Por tanto, fue importante eliminar cualquier bacteria parental residual para obtener una suspensión de minicélulas que fuera óptima para uso in vitro e in vivo. La suspensión de minicélulas de 4 l de la etapa previa se diluyó inicialmente a 20 l en 1 x BSG estéril y se mantuvo en un primer bidón. Una unidad de filtro frontal que lleva un filtro de 0,45 µm con un gran área superficial (500 cm2) se humedeció previamente con 2 l de 1 x BSG estéril y la integridad se probó según las instrucciones del fabricante. La suspensión de minicélulas se bombeó a una velocidad de flujo de 700 ml/min (es decir, velocidad de flujo lenta para evitar forzar que las células parentales bacterianas pasaran a través del filtro de 0,45 µm) a través del filtro frontal. Las células bacterianas fueron retenidas por el filtro, mientras que las minicélulas circularon a un segundo bidón por la línea de filtrado.
5
10
15
20
25
30
35
40
veces durante 5 minutos. Los anticuerpos secundarios, concretamente anticuerpo monoclonal dirigido contra inmunoglobulina de ratón conjugada con fosfatasa alcalina (cadenas ligeras y-&; Chemicon, Temicula, CA, EE.UU.)
- o anti-LPS conjugado con AP (isotipo IgG1, Biodesign International, Saco, Maine, EE.UU.) se diluyeron en tampón de bloqueo y se añadieron 100 µl por pocillo, seguido de una incubación de 1 hora a temperatura ambiente con agitación. Los pocillos se lavaron tres veces con tampón de lavado y se añadieron 100 µl de PNPP (sustrato de fosfato de p-nitrofenilo; Zymed, San Francisco, CA, EE.UU.). La absorbancia a 405 nm se leyó después de una incubación de 30 minutos a temperatura ambiente. La reacción se terminó mediante la adición de 30 µl de NaOH 0,5
- M.
- La significancia de los datos de ELISA se determinó por la prueba de la t de Student (p).
Los resultados se muestran en la Figura 7. 14 días después de la vacunación se observó una respuesta fuerte y significativa de anticuerpos (p < 0,02 cuando se comparó con controles) para EGFP en ratones a los que se les había administrado 108 minicélulas recombinantes intraperitonealmente, y la respuesta de anticuerpos observada fue superior a la obtenida con la mayor dosis de S. typhimurium muertas. Los anticuerpos para la proteína EGFP sólo serían observados si las minicélulas recombinantes que llevan el vector de expresión de mamífero pEGFP-C1 no sólo fueran reabsorbidas por macrófagos peritoneales, sino también degradadas en vacuolas intracelulares (supuestamente fagolisosomas), y que al menos algunas copias del ADN de plásmido escaparan de los fagolisosomas y entraran en el núcleo de la célula de mamífero. A partir del núcleo se produciría ARNm de EGFP y la EGFP se expresaría en el citoplasma. La EGFP sería una proteína extraña en el macrófago y de ahí que se esperara que se procesase y que los péptidos se presentaran por MHC. Este procedimiento produciría una respuesta de anticuerpos a los péptidos de EGFP. En comparación con S. typhimurium muertas de control, la respuesta de anticuerpos anti-EGFP fue mayor con las minicélulas recombinantes.
También se midió la respuesta anti-LPS para determinar la respuesta inmunitaria al vector de administración de terapia génica, las minicélulas recombinantes. Los resultados mostraron que la respuesta de anticuerpos anti-LPS fue significativa y similar para minicélulas recombinantes (p = 0,0004) y S. typhimurium muertas (p = 0,001). Véase la Figura 8. Este resultado indicó que las minicélulas habían retenido al menos la estructura de LPS encontrada sobre la superficie de la célula bacteriana parental. En el día 23, la respuesta de anticuerpos anti-EGFP no fue diferente de los controles inmunizados (para tanto minicélulas recombinantes como S. typhimurium muertas). Esto no fue sorprendente debido a que no se habían administrado inmunizaciones de refuerzo para sostener la respuesta de anticuerpos. La respuesta anti-LPS en el día 23 fue similar a la observada en el día 14. Esto no es inesperado debido a que se sabe que LPS es un potente inmunógeno que induce títulos de anticuerpos altos y sostenidos.
Ejemplo 10. Liberación de genes mediada por minicélulas y expresión génica in vivo en ratones Balb/c con diferentes pautas de dosificación
Se prepararon minicélulas recombinantes como en el Ejemplo 3. Grupos de ocho ratones Balb/c de 6 semanas de edad se inocularon intraperitonealmente con 100 µl de minicélulas recombinantes (que contenían el plásmido pEGFP-C1; Tabla 2) según el programa mostrado en la Tabla 5. Un grupo de ocho ratones permaneció sin vacunas, como controles negativos. Los ratones se sangraron por sangrado intraocular antes de la inoculación y en el día 14 después de la vacunación primaria y el suero se recogió como en el Ejemplo 9.
Tabla 5. Asignación a tratamiento para la administración de genes in vivo con diferentes pautas de dosis de minicélulas recombinantes en ratones Balb/c
- Número de grupo
- Número de animal Tratamiento Dosis (100 ul inyección IP) de Días de dosificación Días de sangrado
- 1
- 1-8 Ninguno -control - - 1, 14
- 2
- 9-16 Minicélulas recombinantes 108 minicélulas dosis por 1,4 14
- 3
- 17-24 Minicélulas recombinantes 108 minicélulas dosis por 1,4,8 14
- 4
- 25-32 Minicélulas recombinantes 109 minicélulas dosis por 1,4 14
- 5
- 33-40 Minicélulas recombinantes 109 minicélulas dosis por 1, 4, 8 14
Se realizaron ensayos de ELISA como se ha descrito previamente para determinar si se había generado el anticuerpo contra GFP, y si dosis mayores de minicélulas recombinantes o tres en vez de dos dosis permitían que el animal organizara una mayor respuesta de anticuerpos. Los niveles de anticuerpo para lipopolisacárido (LPS) de S. typhimurium también se determinaron para todos los grupos.
Claims (1)
-
imagen1
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US32880101P | 2001-10-15 | 2001-10-15 | |
US328801P | 2001-10-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
ES2584305T3 true ES2584305T3 (es) | 2016-09-27 |
Family
ID=23282498
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES02783361T Expired - Lifetime ES2380612T3 (es) | 2001-10-15 | 2002-10-15 | Minicélulas intactas como vectores para transferencia de ADN y terapia génica in vitro e in vivo |
ES10176209.4T Expired - Lifetime ES2584305T3 (es) | 2001-10-15 | 2002-10-15 | Minicélulas intactas como vectores para transferencia de ADN y terapia génica in vitro e in vivo |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES02783361T Expired - Lifetime ES2380612T3 (es) | 2001-10-15 | 2002-10-15 | Minicélulas intactas como vectores para transferencia de ADN y terapia génica in vitro e in vivo |
Country Status (12)
Country | Link |
---|---|
US (4) | US20050222057A1 (es) |
EP (2) | EP2302063B1 (es) |
JP (1) | JP4458846B2 (es) |
CN (2) | CN102172406B (es) |
AT (1) | ATE541940T1 (es) |
AU (1) | AU2002347426B2 (es) |
CA (2) | CA2775218C (es) |
DK (1) | DK1446489T3 (es) |
ES (2) | ES2380612T3 (es) |
HK (1) | HK1156069A1 (es) |
PT (2) | PT1446489E (es) |
WO (1) | WO2003033519A2 (es) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030194798A1 (en) | 2001-05-24 | 2003-10-16 | Surber Mark W. | Minicell compositions and methods |
US7396822B2 (en) | 2001-05-24 | 2008-07-08 | Vaxiion Therapeutics, Inc. | Immunogenic minicells and methods of use |
EP2302063B1 (en) * | 2001-10-15 | 2016-05-04 | EnGeneIC Molecular Delivery Pty Ltd. | Intact minicells as vectors for DNA transfer and gene therapy in vitro and in vivo |
CA2517027A1 (en) | 2002-02-25 | 2003-09-04 | Vaxiion Therapeutics, Inc. | Minicell compositions and methods |
US7611885B2 (en) * | 2003-06-24 | 2009-11-03 | Engeneic Molecular Delivery Pty, Ltd. | Pharmaceutically compatible method for purifying intact bacterial minicells |
WO2005047504A1 (en) * | 2003-11-07 | 2005-05-26 | The Board Of Trustees Of The University Of Illinois | Induction of cellular senescence by cdk4 disruption for tumor suppression and regression |
CA2549840C (en) | 2003-12-09 | 2012-03-20 | Engeneic Molecular Delivery Pty Ltd. | Targeted gene delivery to non-phagocytic mammalian cells via bacterially derived intact minicells |
WO2005079854A1 (en) | 2004-02-02 | 2005-09-01 | Engeneic Molecular Delivery Pty Ltd. | Compositions and methods for targeted in vitro and in vivo drug delivery to mammalian cells via bacterially derived intact minicells |
US8772013B2 (en) | 2004-02-02 | 2014-07-08 | Engeneic Molecular Delivery Pty Ltd | Methods for targeted in vitro and in vivo drug delivery to mammalian cells via bacterially derived intact minicells |
GB0404209D0 (en) * | 2004-02-25 | 2004-03-31 | Uws Ventures Ltd | Materials and methods for treatment of allergic disease |
SI2386640T1 (sl) * | 2004-08-26 | 2015-06-30 | Engeneic Molecular Delivery Pty Ltd | Dostava funkcionalnih nukleinskih kislin celicam sesalcev preko bakterijsko izvirajočih, intaktnih minicelic |
US9878043B2 (en) * | 2006-06-23 | 2018-01-30 | Engeneic Molecular Delivery Pty Ltd | Targeted delivery of drugs, therapeutic nucleic acids and functional nucleic acids to mammalian cells via intact killed bacterial cells |
DK2865755T3 (en) | 2007-03-30 | 2017-05-15 | Engeneic Molecular Delivery Pty Ltd | BACTERIAL DERIVATIVE INTACT MINICELLS WITH REGULATORY RNA |
WO2008133928A2 (en) * | 2007-04-27 | 2008-11-06 | The Gi Company, Inc. | Mucin glycoproteins and their use for treatment of epithelial lesions and mucin dependent disorders |
CA2729545C (en) | 2008-06-25 | 2019-07-09 | Vaxiion Therapeutics, Inc. | Regulated genetic suicide mechanism compositions and methods |
JP2010063404A (ja) * | 2008-09-10 | 2010-03-25 | Olympus Corp | 幹細胞の分離方法 |
CN102648003B (zh) * | 2009-10-09 | 2016-01-13 | 儿童医疗中心有限公司 | 选择性裂解的全细胞疫苗 |
DK2675474T3 (en) | 2011-02-15 | 2019-04-23 | Vaxiion Therapeutics Llc | THERAPEUTIC COMPOSITIONS AND PROCEDURES FOR TARGETED ADMINISTRATION OF BIOACTIVE MOLECULES BY BACK-TERIAL MINICLES BASED ON ANTIBODY AND FC-CONTAINING TAR-GETING MOLECULES |
US9844598B2 (en) | 2011-12-13 | 2017-12-19 | Engeneic Molecular Delivery Pty Ltd | Bacterially derived, intact minicells for delivery of therapeutic agents to brain tumors |
WO2013110120A1 (en) | 2012-01-24 | 2013-08-01 | Inter-K Pty Limited | Peptide agents for cancer therapy |
KR102433719B1 (ko) | 2013-10-04 | 2022-08-17 | 엔진아이씨 몰레큘러 딜리버리 피티와이 리미티드 | 약물 로딩된, 이중특이성 리간드-표적화된 미니세포 및 인터페론 감마에 의한 복합 종양 치료 |
EP3200765A4 (en) | 2014-10-03 | 2018-05-30 | EnGeneIC Molecular Delivery Pty Ltd | Enhanced loading of intact, bacterially derived vesicles with small molecule compounds |
US11185555B2 (en) | 2016-04-11 | 2021-11-30 | Noah James Harrison | Method to kill pathogenic microbes in a patient |
CN110022905B (zh) | 2016-10-06 | 2024-02-06 | 安吉尼科分子传输公司 | 用于递送核酸佐剂的细菌小细胞和使用其的方法 |
WO2018201160A1 (en) * | 2017-04-28 | 2018-11-01 | Agrospheres, Inc. | Compositions and methods for enzyme immobilization |
CA3056801A1 (en) | 2017-04-28 | 2018-11-01 | Agrospheres, Inc. | Compositions and methods for the encapsulation and scalable delivery of agrochemicals |
WO2019060903A1 (en) | 2017-09-25 | 2019-03-28 | Agrospheres, Inc. | COMPOSITIONS AND METHODS FOR PRODUCING AND EVOLVING ADMINISTRATION OF BIOLOGICAL PRODUCTS |
EP3826654A4 (en) | 2018-07-23 | 2022-07-06 | EnGeneIC Molecular Delivery Pty Ltd | BACTERIA-DERIVED MINICELL COMPOSITIONS AND METHODS OF USE THEREOF |
CN109540890A (zh) * | 2018-11-27 | 2019-03-29 | 湖南品胜生物技术有限公司 | 一种基于细胞显微镜图像的dna定量分析方法 |
US10973908B1 (en) | 2020-05-14 | 2021-04-13 | David Gordon Bermudes | Expression of SARS-CoV-2 spike protein receptor binding domain in attenuated salmonella as a vaccine |
WO2021257788A1 (en) * | 2020-06-17 | 2021-12-23 | Flagship Pioneering Innovations Vi, Llc | Methods for manufacturing adas |
WO2022256427A1 (en) * | 2021-06-01 | 2022-12-08 | University Of Virginia Patent Foundation | Minicells from highly genome reduced escherichia coli: cytoplasmic and surface expression of recombinant proteins and incorporation in the minicells |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4497796A (en) * | 1980-03-26 | 1985-02-05 | The Regents Of The University Of California | Gene transfer in intact mammals |
GB8611832D0 (en) | 1986-05-15 | 1986-06-25 | Holland I B | Polypeptide |
US5037743A (en) | 1988-08-05 | 1991-08-06 | Zymogenetics, Inc. | BAR1 secretion signal |
US5399346A (en) | 1989-06-14 | 1995-03-21 | The United States Of America As Represented By The Department Of Health And Human Services | Gene therapy |
US5221479A (en) * | 1991-02-15 | 1993-06-22 | Fuji Photo Film Co., Ltd. | Filtration system |
WO1995021191A1 (en) | 1994-02-04 | 1995-08-10 | William Ward | Bioluminescent indicator based upon the expression of a gene for a modified green-fluorescent protein |
JP2001501834A (ja) | 1997-03-19 | 2001-02-13 | ザイモジェネティクス,インコーポレイティド | 分泌される唾液zsig32ポリペプチド |
WO2002072759A2 (en) * | 2001-03-07 | 2002-09-19 | Children's Medical Center Corporation | Method to screen peptide display libraries using minicell display |
US20030194798A1 (en) * | 2001-05-24 | 2003-10-16 | Surber Mark W. | Minicell compositions and methods |
EP2302063B1 (en) * | 2001-10-15 | 2016-05-04 | EnGeneIC Molecular Delivery Pty Ltd. | Intact minicells as vectors for DNA transfer and gene therapy in vitro and in vivo |
CA2517027A1 (en) * | 2002-02-25 | 2003-09-04 | Vaxiion Therapeutics, Inc. | Minicell compositions and methods |
US7611885B2 (en) * | 2003-06-24 | 2009-11-03 | Engeneic Molecular Delivery Pty, Ltd. | Pharmaceutically compatible method for purifying intact bacterial minicells |
CA2549840C (en) * | 2003-12-09 | 2012-03-20 | Engeneic Molecular Delivery Pty Ltd. | Targeted gene delivery to non-phagocytic mammalian cells via bacterially derived intact minicells |
US8772013B2 (en) * | 2004-02-02 | 2014-07-08 | Engeneic Molecular Delivery Pty Ltd | Methods for targeted in vitro and in vivo drug delivery to mammalian cells via bacterially derived intact minicells |
US7124679B2 (en) * | 2004-08-25 | 2006-10-24 | L&P Property Management Company | Lower guide track for down packing press apparatus and method |
SI2386640T1 (sl) * | 2004-08-26 | 2015-06-30 | Engeneic Molecular Delivery Pty Ltd | Dostava funkcionalnih nukleinskih kislin celicam sesalcev preko bakterijsko izvirajočih, intaktnih minicelic |
US9878043B2 (en) * | 2006-06-23 | 2018-01-30 | Engeneic Molecular Delivery Pty Ltd | Targeted delivery of drugs, therapeutic nucleic acids and functional nucleic acids to mammalian cells via intact killed bacterial cells |
-
2002
- 2002-10-15 EP EP10176209.4A patent/EP2302063B1/en not_active Expired - Lifetime
- 2002-10-15 PT PT02783361T patent/PT1446489E/pt unknown
- 2002-10-15 CN CN201110026403XA patent/CN102172406B/zh not_active Expired - Lifetime
- 2002-10-15 PT PT101762094T patent/PT2302063T/pt unknown
- 2002-10-15 EP EP02783361A patent/EP1446489B1/en not_active Expired - Lifetime
- 2002-10-15 US US10/492,301 patent/US20050222057A1/en not_active Abandoned
- 2002-10-15 CN CNA028243773A patent/CN1599797A/zh active Pending
- 2002-10-15 AT AT02783361T patent/ATE541940T1/de active
- 2002-10-15 DK DK02783361.5T patent/DK1446489T3/da active
- 2002-10-15 ES ES02783361T patent/ES2380612T3/es not_active Expired - Lifetime
- 2002-10-15 JP JP2003536258A patent/JP4458846B2/ja not_active Expired - Lifetime
- 2002-10-15 CA CA2775218A patent/CA2775218C/en not_active Expired - Fee Related
- 2002-10-15 WO PCT/IB2002/004632 patent/WO2003033519A2/en active IP Right Grant
- 2002-10-15 CA CA2463631A patent/CA2463631C/en not_active Expired - Fee Related
- 2002-10-15 ES ES10176209.4T patent/ES2584305T3/es not_active Expired - Lifetime
- 2002-10-15 AU AU2002347426A patent/AU2002347426B2/en not_active Expired
-
2007
- 2007-03-23 US US11/690,206 patent/US20080020441A1/en not_active Abandoned
-
2008
- 2008-01-24 US US12/019,090 patent/US20080188436A1/en not_active Abandoned
-
2011
- 2011-08-15 US US13/209,879 patent/US20120208866A1/en not_active Abandoned
- 2011-09-28 HK HK11110232.4A patent/HK1156069A1/zh not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
CA2775218C (en) | 2016-04-26 |
CA2463631A1 (en) | 2003-04-24 |
JP2005505296A (ja) | 2005-02-24 |
CA2463631C (en) | 2012-07-03 |
CN1599797A (zh) | 2005-03-23 |
AU2002347426B2 (en) | 2007-05-10 |
HK1156069A1 (zh) | 2012-06-01 |
US20120208866A1 (en) | 2012-08-16 |
DK1446489T3 (da) | 2012-05-14 |
ES2380612T3 (es) | 2012-05-16 |
CN102172406B (zh) | 2013-03-13 |
JP4458846B2 (ja) | 2010-04-28 |
EP2302063A2 (en) | 2011-03-30 |
PT2302063T (pt) | 2016-07-28 |
EP2302063B1 (en) | 2016-05-04 |
CN102172406A (zh) | 2011-09-07 |
WO2003033519A2 (en) | 2003-04-24 |
PT1446489E (pt) | 2012-04-24 |
EP1446489A2 (en) | 2004-08-18 |
WO2003033519A3 (en) | 2003-09-25 |
EP1446489B1 (en) | 2012-01-18 |
US20050222057A1 (en) | 2005-10-06 |
US20080188436A1 (en) | 2008-08-07 |
EP2302063A3 (en) | 2011-05-25 |
EP1446489A4 (en) | 2006-09-06 |
US20080020441A1 (en) | 2008-01-24 |
CA2775218A1 (en) | 2003-04-24 |
ATE541940T1 (de) | 2012-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2584305T3 (es) | Minicélulas intactas como vectores para transferencia de ADN y terapia génica in vitro e in vivo | |
US10143743B2 (en) | Non-replicating bacterial nanoparticle delivery system and methods of use | |
AU2002347426A1 (en) | Intact minicells as vectors for DNA transfer and gene therapy in vitro and in vivo | |
US20220072112A1 (en) | Process for the production of a dna vaccine for cancer immunotherapy | |
JP3976685B2 (ja) | タンパク質分泌のためのClyA溶血素の使用 | |
TW200924792A (en) | A recombinant koi herpesvirus (KHV) or Cyprinid herpesvirus 3 (CyHV-3) and a vaccine for the prevention of a disease caused by KHV/CyHV-3 in Cyorinus carpio carpio or Cyprinus carpio koi | |
TW201333201A (zh) | 重組錦鯉疱疹病毒(khv)及預防khv所引起疾病之疫苗 | |
JP6213969B2 (ja) | 免疫原性ポリペプチド表層発現ビフィズス菌 | |
ES2393979T3 (es) | Proceso para la producción de polipéptidos | |
HU227667B1 (en) | Novel expression vectors and uses thereof | |
US9051574B2 (en) | Non-hemolytic ClyA for excretion of proteins | |
WO2004096288A2 (es) | Método para la obtencion de minicírculos replicativos de adn para transferencia génica o como inmunomoduladores. | |
JP2005097229A (ja) | ワクチンおよび抗原タンパク質の製造方法 | |
CA2374070A1 (en) | Tagged epitope protein transposable element | |
MXPA04003493A (es) | Minicelulas intactas como vectores para transferencia de adn y terapia de genes in vitro e in vivo. | |
Abbas | Minicircle DNA immobilization in bacterial ghosts (BGs): investigation for the reduction of un-recombined mother plasmid and miniplasmid DNA in BGs | |
BR112018013007B1 (pt) | Método para expressar uma proteína, e composição para prevenir infecção por circovírus suíno tipo 2 (pcv2) |