ES2375724T3 - MICROFLUDE DEVICE FOR SEPERATION OF CELLS AND ITS USES. - Google Patents

MICROFLUDE DEVICE FOR SEPERATION OF CELLS AND ITS USES. Download PDF

Info

Publication number
ES2375724T3
ES2375724T3 ES03798803T ES03798803T ES2375724T3 ES 2375724 T3 ES2375724 T3 ES 2375724T3 ES 03798803 T ES03798803 T ES 03798803T ES 03798803 T ES03798803 T ES 03798803T ES 2375724 T3 ES2375724 T3 ES 2375724T3
Authority
ES
Spain
Prior art keywords
obstacles
cells
cell
region
microfluidic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
ES03798803T
Other languages
Spanish (es)
Inventor
Mehmet Toner
George Truskey
Ravi Kapur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Hospital Corp
Original Assignee
General Hospital Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Hospital Corp filed Critical General Hospital Corp
Application granted granted Critical
Publication of ES2375724T3 publication Critical patent/ES2375724T3/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L1/00Enclosures; Chambers
    • B01L1/52Transportable laboratories; Field kits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0081Purging biological preparations of unwanted cells
    • C12N5/0087Purging against subsets of blood cells, e.g. purging alloreactive T cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/405Concentrating samples by adsorption or absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5091Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing the pathological state of an organism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54386Analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56966Animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0668Trapping microscopic beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0883Serpentine channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • B01L9/54Supports specially adapted for pipettes and burettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1028Sorting particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70582CD71
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70589CD45
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70596Molecules with a "CD"-designation not provided for elsewhere in G01N2333/705
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49982Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24744Longitudinal or transverse tubular cavity or cell

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Dispersion Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Genetics & Genomics (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Oncology (AREA)
  • Physiology (AREA)
  • Hospice & Palliative Care (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Fluid Mechanics (AREA)

Abstract

Un dispositivo microfluídico que comprende: (a) una primera región de obstáculos fijos dispuestos en un canal microfluídico que define una vía de flujo de líquido, en el que los obstáculos de la primera región se unen preferentemente a un primer tipo de célula comparado con un segundo tipo de célula, en el que l 5 os obstáculos están colocados en al menos dos columnas y al menos dos filas, en el que las filas están colocadas perpendiculares a la vía de flujo de líquido en relación con los obstáculos de la fila anterior, formando de este modo un conjunto de obstáculos triangular equilátero; y (b) una segunda región de obstáculos fijos dispuestos en el canal microfluídico, en el que los obstáculos de la segunda región se unen preferentemente a un tercer tipo de célula comparado con un cuarto tipo de célula, en el que los obstáculos están colocados en al menos dos columnas y al menos dos filas, en el que las filas están colocadas perpendiculares a la vía de flujo de líquido y los obstáculos de cada fila sucesiva están desplazados en una dirección perpendicular a la vía de flujo de líquido en relación con los obstáculos de la fila anterior, formando de este modo un conjunto de obstáculos triangular equilátero, en el que la segunda región está situada más allá de la primera región en el canal microfluídico.A microfluidic device comprising: (a) a first region of fixed obstacles arranged in a microfluidic channel defining a liquid flow path, in which the obstacles of the first region preferably bind to a first type of cell compared to a second type of cell, in which the obstacles are placed in at least two columns and at least two rows, in which the rows are placed perpendicular to the liquid flow path in relation to the obstacles in the previous row, thus forming a set of equilateral triangular obstacles; and (b) a second region of fixed obstacles arranged in the microfluidic channel, in which the obstacles of the second region are preferably joined to a third type of cell compared to a fourth type of cell, in which the obstacles are placed in at least two columns and at least two rows, in which the rows are placed perpendicular to the liquid flow path and the obstacles of each successive row are displaced in a direction perpendicular to the liquid flow path in relation to the obstacles of the previous row, thus forming a set of triangular equilateral obstacles, in which the second region is located beyond the first region in the microfluidic channel.

Description

Dispositivo microfluídico para separación de células y sus usos Microfluidic device for cell separation and its uses

Antecedentes de la invención Background of the invention

La invención se refiere a los campos del diagnóstico médico y los microfluidos. The invention relates to the fields of medical diagnosis and microfluids.

Existen varios enfoques diseñados para separar una población de células homogéneas de la sangre. Estas técnicas de separación de células pueden agruparse en dos amplias categorías: (1) procedimientos invasivos basados en la selección de células fijadas y teñidas usando diversos marcadores específicos de célula; y (2) procedimientos no invasivos para el aislamiento de células vivas usando un parámetro biofísico específico de una población de células de interés. There are several approaches designed to separate a population of homogeneous cells from the blood. These cell separation techniques can be grouped into two broad categories: (1) invasive procedures based on the selection of fixed and stained cells using various cell-specific markers; and (2) non-invasive procedures for the isolation of living cells using a specific biophysical parameter of a population of cells of interest.

Las técnicas invasivas incluyen separación de células activadas por fluorescencia (FACS), separación de células activadas magnéticamente (MACS) y separación de coloides inmunomagnética. Normalmente, la FACS es una técnica de selección positiva que usa un marcador marcado de manera fluorescente para unirse a células que expresan un marcador de superficie celular específico. La FACS también puede usarse para permeabilizar y teñir células para marcadores intracelulares que pueden constituir la base de la separación. Es rápida, normalmente funciona a una velocidad de 1.000 a 1.500 Hz y está bien establecida en la medicina de laboratorio. Se asocian índices elevados de falsos positivos con la FACS por el bajo número de fotones obtenido durante los tiempos de permanencia extremadamente cortos a altas velocidades. Pueden usarse complicados enfoques de separación multiparamétricos para potenciar la especificidad de la FACS, pero la FACS a base de múltiples analitos puede no ser práctica para los ensayos clínicos rutinarios debido al alto coste asociado a ella. La aplicación clínica de FACS está limitada además porque requiere una pericia del operador considerable, es laboriosa, da como resultado pérdida de células debido a las múltiples manipulaciones y el coste del equipo es prohibitivo. Invasive techniques include fluorescence activated cell separation (FACS), magnetically activated cell separation (MACS) and immunomagnetic colloid separation. Normally, FACS is a positive selection technique that uses a fluorescently labeled marker to bind to cells that express a specific cell surface marker. FACS can also be used to permeabilize and stain cells for intracellular markers that can form the basis of separation. It is fast, normally works at a speed of 1,000 to 1,500 Hz and is well established in laboratory medicine. High rates of false positives are associated with the FACS due to the low number of photons obtained during extremely short residence times at high speeds. Complicated multiparameter separation approaches can be used to enhance the specificity of the FACS, but multi-analyte-based FACS may not be practical for routine clinical trials due to the high cost associated with it. The clinical application of FACS is also limited because it requires considerable operator expertise, is laborious, results in cell loss due to multiple manipulations and the cost of the equipment is prohibitive.

La MACS se usa como técnica de separación de células en la que las células que expresan un marcador de superficie específico se aíslan a partir de una muestra de células usando perlas magnéticas recubiertas con un anticuerpo contra el marcador de superficie. La MACS tiene la ventaja de ser más barata, más fácil y más rápida de realizar comparada con la FACS. Se ve afectada por pérdida de células debido a las múltiples manipulaciones y el manejo. Además, a menudo las perlas magnéticas son autofluorescentes y no se separan fácilmente de las células. Como resultado, muchas de las técnicas de inmunofluorescencia usadas para investigar las funciones y la estructura celular no son compatibles con este enfoque. MACS is used as a cell separation technique in which cells expressing a specific surface marker are isolated from a sample of cells using magnetic beads coated with an antibody against the surface marker. The MACS has the advantage of being cheaper, easier and faster to perform compared to the FACS. It is affected by cell loss due to multiple manipulations and handling. In addition, magnetic beads are often autofluorescent and do not easily separate from cells. As a result, many of the immunofluorescence techniques used to investigate functions and cell structure are not compatible with this approach.

Se ha usado un sistema de coloides magnético en el aislamiento de células de sangre. Este sistema de coloides usa nanopartículas ferromagnéticas que están recubiertas con IgG de cabra anti-ratón que puede unirse fácilmente a anticuerpos monoclonales específicos de antígeno de la superficie celular. Las células que están marcadas con nanopartículas ferromagnéticas se alinean con un campo magnético a lo largo de líneas de Ni ferromagnéticas depositadas mediante técnicas litográficas sobre una superficie ópticamente transparente. Este enfoque también requiere múltiples etapas de manejo de células que incluyen mezclar células con perlas magnéticas y separación sobre las superficies. Tampoco es posible separar las células individuales de la muestra para análisis adicional. A magnetic colloid system has been used in the isolation of blood cells. This colloid system uses ferromagnetic nanoparticles that are coated with goat anti-mouse IgG that can easily bind to cell surface antigen specific monoclonal antibodies. Cells that are labeled with ferromagnetic nanoparticles align with a magnetic field along ferromagnetic Ni lines deposited by lithographic techniques on an optically transparent surface. This approach also requires multiple stages of cell handling that include mixing cells with magnetic beads and surface separation. It is also not possible to separate the individual cells from the sample for further analysis.

Las técnicas no invasivas incluyen la separación por flujo de carga, que emplea un gradiente líquido de flujo cruzado horizontal opuesto a un campo eléctrico con el fin de separar células en función de sus densidades de carga de superficie características. A pesar de que este enfoque puede separar células basándose puramente en diferencias biofísicas, no es lo suficientemente específico. Ha habido intentos de modificar las características del dispositivo (p. ej., pantallas del separador, condiciones del flujo a contracorriente de tampón, etc.) para tratar este gran inconveniente de la técnica. Ninguna de estas modificaciones de características del dispositivo ha proporcionado una solución práctica dada la variabilidad individual esperada en muestras diferentes. Non-invasive techniques include separation by charge flow, which employs a horizontal cross-flow liquid gradient opposite to an electric field in order to separate cells based on their characteristic surface charge densities. Although this approach can separate cells based purely on biophysical differences, it is not specific enough. There have been attempts to modify the characteristics of the device (eg, separator screens, buffer flow conditions, etc.) to address this major drawback of the technique. None of these device feature modifications has provided a practical solution given the expected individual variability in different samples.

Dado que los procedimientos de la técnica anterior se ven afectados por un alto coste, bajo rendimiento y falta de especificidad, existe una necesidad de un procedimiento para retirar un tipo de célula concreto de una mezcla que supere estas limitaciones. Since prior art procedures are affected by high cost, low performance and lack of specificity, there is a need for a procedure to remove a particular cell type from a mixture that overcomes these limitations.

El documento US 5.866.345 divulga un dispositivo para detectar la presencia de un analito en una muestra líquida, comprendiendo el dispositivo: un sustrato sólido microfabricado para que defina: un puerto de entrada de muestra; un sistema de flujo en mesoescala que comprende: un canal de flujo de muestra en comunicación fluida con dicho puerto de entrada; y una región de detección de analito en comunicación fluida con dicho canal de flujo que comprende un resto de unión inmovilizado en él para unir dicho analito específicamente, teniendo dicha región de detección una dimensión en mesoescala; y una ventana de detección dispuesta en dicha región de detección para transmitir una señal que indica la unión de dicho analito a un medio de detección dispuesto adyacente a dicha ventana. US 5,866,345 discloses a device for detecting the presence of an analyte in a liquid sample, the device comprising: a microfabricated solid substrate for defining: a sample inlet port; a mesoscale flow system comprising: a sample flow channel in fluid communication with said input port; and an analyte detection region in fluid communication with said flow channel comprising a binding moiety immobilized therein to specifically bind said analyte, said detection region having a mesoscale dimension; and a detection window arranged in said detection region to transmit a signal indicating the attachment of said analyte to a detection means disposed adjacent to said window.

El documento US 2002/0115201 A1 divulga un dispositivo microfluídico que comprende: un circuito integrado monolítico de microondas (MMIC) dentro de dicho dispositivo microfluídico para aplicar radiación de microondas a una cavidad definida por dicho dispositivo microfluídico. US 2002/0115201 A1 discloses a microfluidic device comprising: a microwave monolithic integrated circuit (MMIC) within said microfluidic device for applying microwave radiation to a cavity defined by said microfluidic device.

El documento US 6.613.525 B2 divulga un dispositivo microfluídico integrado que tiene al menos un microcanal formado en un sustrato generalmente plano, comprendiendo dicho dispositivo: al menos un microcanal que comprende una porción de canal de enriquecimiento que tiene al menos una entrada y una salida; y un medio de enriquecimiento presente en dicha porción de canal de enriquecimiento y que contiene restos de unión específica que se unen a un objetivo de una muestra de forma que al menos una fracción del objetivo es retenido por dicho medio de enriquecimiento; dicha porción de canal de enriquecimiento está configurada para (i) recibir, a través de dicha entrada, la muestra que contiene el objetivo y (ii) permitir el movimiento de al menos una parte del objetivo unido a través de dicha salida. US 6,613,525 B2 discloses an integrated microfluidic device having at least one microchannel formed in a generally flat substrate, said device comprising: at least one microchannel comprising an enrichment channel portion having at least one inlet and one outlet. ; and an enrichment medium present in said enrichment channel portion and containing specific binding moieties that bind to an objective of a sample such that at least a fraction of the objective is retained by said enrichment means; said enrichment channel portion is configured to (i) receive, through said input, the sample containing the objective and (ii) allow the movement of at least a part of the objective attached through said output.

Los documentos US 6.344.326 B1 y US 6.074.827 se refieren respectivamente a un procedimiento microfluídico para purificación y procesamiento de ácidos nucleicos. Pueden usarse en el procedimiento microcanales o receptores de captura por afinidad dispuestos en una zona de enriquecimiento. US 6,344,326 B1 and US 6,074,827 respectively refer to a microfluidic process for purification and processing of nucleic acids. Microchannels or affinity capture receptors arranged in an enrichment zone can be used in the process.

Sumario de la invención Summary of the invention

De acuerdo con un aspecto, se proporciona un dispositivo microfluídico, el cual comprende: According to one aspect, a microfluidic device is provided, which comprises:

(a)(to)
una primera región de obstáculos fijos dispuestos en un canal microfluídico que define una vía de flujo de líquido, en el que los obstáculos de la primera región se unen preferentemente a un primer tipo de célula comparado con un segundo tipo de célula, en el que los obstáculos están colocados en al menos dos columnas y al menos dos filas, en el que las filas están colocadas perpendiculares a la vía de flujo de líquido en relación con los obstáculos de la fila anterior, formando de este modo un conjunto de obstáculos triangular equilátero;y  a first region of fixed obstacles arranged in a microfluidic channel defining a liquid flow path, in which the obstacles of the first region preferably bind to a first type of cell compared to a second type of cell, in which the Obstacles are placed in at least two columns and at least two rows, in which the rows are placed perpendicular to the liquid flow path in relation to the obstacles in the previous row, thereby forming a set of equilateral triangular obstacles; Y

(b)(b)
una segunda región de obstáculos fijos dispuestos en el canal microfluídico, en el que los obstáculos de la segunda región se unen preferentemente a un tercer tipo de célula comparado con un cuarto tipo de célula, en el que los obstáculos están colocados en al menos dos columnas y al menos dos filas, en el que las filas están colocadas perpendiculares a la vía de flujo de líquido y los obstáculos de cada fila sucesiva están desplazados en una dirección perpendicular a la vía de flujo de líquido en relación con los obstáculos de la fila anterior, formando de este modo un conjunto de obstáculos triangular equilátero,  a second region of fixed obstacles arranged in the microfluidic channel, in which the obstacles of the second region preferably join a third type of cell compared to a fourth type of cell, in which the obstacles are placed in at least two columns and at least two rows, in which the rows are placed perpendicular to the liquid flow path and the obstacles of each successive row are displaced in a direction perpendicular to the liquid flow path in relation to the obstacles of the previous row , thus forming a set of equilateral triangular obstacles,

en el que la segunda región está situada más allá de la primera región en el canal microfluídico. in which the second region is located beyond the first region in the microfluidic channel.

De acuerdo con otro aspecto, se proporciona un uso del dispositivo como se indica en la reivindicación independiente. Las reivindicaciones dependientes definen realizaciones. According to another aspect, a use of the device is provided as indicated in the independent claim. The dependent claims define embodiments.

El dispositivo puede usarse en procedimientos para separar células de una muestra (p. ej., separar glóbulos rojos fetales de sangre materna). The device can be used in procedures to separate cells from a sample (eg, to separate fetal red blood cells from maternal blood).

El procedimiento empieza con la introducción de una muestra que incluye células en uno o más canales microfluídicos. En una realización, el dispositivo incluye al menos dos etapas de procesamiento. Por ejemplo, se introduce una mezcla de células en un canal microfluídico que permite selectivamente el paso de un tipo de célula deseado y la población de células enriquecida en el tipo deseado se introduce después en un segundo canal microfluídico que permite el paso de la célula deseada para producir una población de células más enriquecida en el tipo deseado. La selección de células se basa en una propiedad de las células de la mezcla, por ejemplo, tamaño, forma, deformabilidad, características de superficie (p. ej., receptores o antígenos de superficie celular y permeabilidad de membrana) o propiedades intracelulares (p. ej., expresión de una enzima concreta). The procedure begins with the introduction of a sample that includes cells in one or more microfluidic channels. In one embodiment, the device includes at least two processing steps. For example, a mixture of cells is introduced into a microfluidic channel that selectively allows the passage of a desired cell type and the enriched cell population in the desired type is then introduced into a second microfluidic channel that allows the passage of the desired cell. to produce a more enriched cell population in the desired type. Cell selection is based on a property of the cells in the mixture, for example, size, shape, deformability, surface characteristics (e.g., cell surface receptors or antigens and membrane permeability) or intracellular properties (p eg expression of a specific enzyme).

En la práctica, el procedimiento puede continuar después a través de una variedad de etapas de procesamiento empleando diversos dispositivos. En una etapa, la muestra se combina en los canales microfluídicos con una solución que preferentemente lisa un tipo de célula en comparación con otro tipo. En otra etapa, las células se ponen en contacto con un dispositivo que contiene obstáculos en un canal microfluídico. Los obstáculos unen preferentemente un tipo de célula en comparación con otro tipo. Las células también pueden someterse a separaciones basadas en el tamaño, deformabilidad o forma. Los procedimientos de la invención pueden emplear sólo una de las etapas anteriores o cualquier combinación de la etapas, en cualquier orden, para separar las células. De forma deseable, los procedimientos de la invención recuperan al menos el 75 %, 80 %, 90 %, 95 %, 98 % o 99 % de las células deseadas de la muestra. In practice, the procedure can then be continued through a variety of processing steps using various devices. In one step, the sample is combined in the microfluidic channels with a solution that preferably smooths one type of cell compared to another type. At another stage, the cells are contacted with a device that contains obstacles in a microfluidic channel. Obstacles preferably link one type of cell compared to another type. Cells can also undergo separations based on size, deformability or shape. The methods of the invention can employ only one of the above steps or any combination of the steps, in any order, to separate the cells. Desirably, the methods of the invention recover at least 75%, 80%, 90%, 95%, 98% or 99% of the desired cells in the sample.

De acuerdo con una realización, se proporciona un sistema microfluídico para la separación de una célula deseada de una muestra. Este sistema puede incluir dispositivos para llevar a cabo una o cualquier combinación de las etapas de los procedimientos descritos anteriormente. Uno de estos dispositivos es un dispositivo de lisis que incluye al menos dos canales de entrada; una cámara de reacción (p. ej., un canal de serpentina); y un canal de salida. El dispositivo puede incluir adicionalmente otra entrada y una cámara de dilución (p. ej., un canal de serpentina). El dispositivo de lisis está colocado de forma que al menos dos canales de entrada están conectados con la salida a través de la cámara de reacción. Cuándo está presente una cámara de dilución, está dispuesta entre la cámara de reacción y la salida y otra entrada está dispuesta entre la cámara de reacción y la de dilución. El sistema también puede incluir un dispositivo de empobrecimiento de células que contiene obstáculos que unen preferentemente un tipo de célula en comparación con otro tipo, p. ej., están recubiertos con anticuerpos anti-CD405, anti-CD35, anti-GPA o anti-CD71. El sistema también puede incluir un dispositivo de selección que contiene un conjunto bidimensional de ubicaciones para contener células individuales. El dispositivo de selección también puede contener accionadores para la manipulación selectiva (p. ej., liberación) de células individuales del conjunto. Finalmente, el sistema puede incluir un dispositivo para la separación de las células basada en el tamaño. Este dispositivo incluye tamices que sólo permiten el paso de células por debajo de un tamaño deseado. Los tamices se ubican con un canal microfluídico a través del cual pasa una suspensión de células, como se describe en el presente documento. Cuando se usan en combinación, los dispositivos del sistema pueden estar en comunicación líquida entre sí. Alternativamente, las muestras que pasan a través de un dispositivo pueden recogerse y transferirse a otro dispositivo. According to one embodiment, a microfluidic system is provided for the separation of a desired cell from a sample. This system may include devices for carrying out one or any combination of the steps of the procedures described above. One of these devices is a lysis device that includes at least two input channels; a reaction chamber (eg, a serpentine channel); and an output channel. The device may additionally include another inlet and a dilution chamber (eg, a serpentine channel). The lysis device is positioned so that at least two input channels are connected to the output through the reaction chamber. When a dilution chamber is present, it is disposed between the reaction chamber and the outlet and another inlet is disposed between the reaction chamber and the dilution chamber. The system may also include a cell impoverishment device that contains obstacles that preferably bind one type of cell compared to another type, e.g. eg, they are coated with anti-CD405, anti-CD35, anti-GPA or anti-CD71 antibodies. The system may also include a selection device that contains a two-dimensional set of locations to contain individual cells. The selection device may also contain actuators for the selective manipulation (eg, release) of individual cells in the assembly. Finally, the system may include a device for cell separation based on size. This device includes sieves that only allow the passage of cells below a desired size. The sieves are located with a microfluidic channel through which a cell suspension passes, as described herein. When used in combination, the system devices may be in liquid communication with each other. Alternatively, samples that pass through one device can be collected and transferred to another device.

Por una "población celular empobrecida" se quiere decir una población de células que se ha procesado para reducir la población relativa de un tipo celular especificado en una mezcla de células. En consecuencia, recoger esas células retiradas de la mezcla también conduce a una muestra enriquecida en las células retiradas. By an "impoverished cell population" is meant a population of cells that has been processed to reduce the relative population of a specified cell type in a mixture of cells. Consequently, collecting those cells removed from the mixture also leads to a sample enriched in the cells removed.

Por una "población celular enriquecida" se quiere decir una población de células que se ha procesado para incrementar la población relativa de un tipo celular especificado en una mezcla de células. By a "rich cell population" is meant a population of cells that has been processed to increase the relative population of a specified cell type in a mixture of cells.

Por "tampón de lisis" se quiere decir un tampón que, cuando se pone contacto con una población de células, provocará la lisis de al menos un tipo de célula. By "lysis buffer" is meant a buffer that, when contact is made with a population of cells, will cause lysis of at least one type of cell.

Por "provocar la lisis" se quiere decir que lisa al menos el 90 % de las células de un tipo concreto. By "causing lysis" it is meant that at least 90% of cells of a specific type are lysed.

Por "no lisado" se quiere decir que se lisan menos del 10 % de células de un tipo concreto. De forma deseable, se lisan menos del 5 %, 2 % o 1 % de estas células. By "non-lysate" it is meant that less than 10% of cells of a particular type are lysed. Desirably, less than 5%, 2% or 1% of these cells are lysed.

Por "tipo" de célula se quiere decir una población de células que tienen una propiedad común, p. ej., la presencia de un antígeno de superficie concreto. Una sola célula puede pertenecer a varios tipos de células diferentes. By "type" of cell is meant a population of cells that have a common property, e.g. eg, the presence of a specific surface antigen. A single cell can belong to several different cell types.

Por "canal de serpentina" se quiere decir un canal que tiene una longitud total que es más grande que la distancia lineal entre los puntos de los extremos del canal. Un canal de serpentina puede orientarse totalmente verticalmente u horizontalmente. Alternativamente, un canal de serpentina puede estar en "3D," p. ej., partes del canal están orientadas verticalmente y partes están orientadas horizontalmente. By "serpentine channel" is meant a channel that has a total length that is larger than the linear distance between the points of the ends of the channel. A serpentine channel can be oriented completely vertically or horizontally. Alternatively, a serpentine channel may be in "3D," p. eg, parts of the channel are oriented vertically and parts are oriented horizontally.

Por "microfluídico" se quiere decir que tiene una o más dimensiones de menos de 1 mm. By "microfluidic" is meant that it has one or more dimensions of less than 1 mm.

Por "resto de unión" se quiere decir una especie química a la que se une una célula. Un resto de unión puede ser un compuesto acoplado a una superficie o el material que constituye la superficie. Los restos de unión ejemplares incluyen anticuerpos, oligo-o polipéptidos, ácidos nucleicos, otras proteínas, polímeros sintéticos y carbohidratos. By "rest of union" is meant a chemical species to which a cell binds. A binding moiety can be a compound coupled to a surface or the material that constitutes the surface. Exemplary binding moieties include antibodies, oligo-or polypeptides, nucleic acids, other proteins, synthetic polymers and carbohydrates.

Por "obstáculo" se quiere decir un impedimento para el flujo en un canal, p. ej., una protrusión de una superficie. By "obstacle" is meant an impediment to the flow in a channel, e.g. eg, a protrusion of a surface.

Por "que une específicamente" un tipo de célula se quiere decir que une células de ese tipo mediante un mecanismo especificado, p. ej., interacción anticuerpo-antígeno. La fuerza de la unión generalmente es suficiente para evitar el desprendimiento por el flujo de líquido presente cuando las células están unidas, aunque ocasionalmente pueden desprenderse células individuales bajo condiciones de funcionamiento normales. By "specifically linking" a type of cell is meant to unite cells of that type by a specified mechanism, e.g. eg, antibody-antigen interaction. The strength of the junction is generally sufficient to prevent detachment by the flow of liquid present when the cells are attached, although occasionally individual cells can detach under normal operating conditions.

Por "filas de obstáculos" se quiere decir una serie de obstáculos colocados de forma que los centros de los obstáculos están colocados de forma sustancialmente lineal. La distancia entre filas es la distancia entre las líneas de dos filas adyacentes en las que se ubican los centros. By "rows of obstacles" is meant a series of obstacles placed so that the centers of the obstacles are placed in a substantially linear manner. The distance between rows is the distance between the lines of two adjacent rows in which the centers are located.

Por "columnas de obstáculos" se quiere decir una serie de obstáculos colocados perpendiculares a una fila de forma que los centros de los obstáculos están colocados de forma sustancialmente lineal. La distancia entre columnas es la distancia entre las líneas de dos columnas adyacentes en las que se ubican los centros. By "obstacle columns" is meant a series of obstacles placed perpendicular to a row so that the centers of the obstacles are placed substantially linearly. The distance between columns is the distance between the lines of two adjacent columns in which the centers are located.

Los procedimientos son capaces de separar poblaciones de células específicas de una mezcla compleja sin fijarlas y/o teñirlas. Como resultado de obtener poblaciones de células homogéneas vivas, pueden realizarse muchos ensayos funcionales en las células. Los dispositivos microfluídicos descritos en el presente documento proporcionan un enfoque selectivo, simple, para procesar células Otras características y ventajas de la invención serán aparentes a partir de la siguiente descripción y las reivindicaciones. The procedures are capable of separating specific cell populations from a complex mixture without fixing and / or staining them. As a result of obtaining live homogenous cell populations, many functional tests can be performed on the cells. The microfluidic devices described herein provide a simple, selective approach to processing cells. Other features and advantages of the invention will be apparent from the following description and claims.

Breve descripción de los dibujos Brief description of the drawings

La Figura 1 es un diseño esquemático de un dispositivo microfluídico que permite la lisis selectiva de células. Figure 1 is a schematic design of a microfluidic device that allows selective lysis of cells.

La Figura 2 es una ilustración del diseño del canal para la introducción de tres líquidos en el dispositivo, p. ej., muestra de sangre, tampón de lisis y diluyente. Figure 2 is an illustration of the channel design for the introduction of three liquids into the device, e.g. eg, blood sample, lysis buffer and diluent.

La Figura 3 es una ilustración de una unidad de repetición de la cámara de reacción del dispositivo donde una muestra de células se mezcla de forma pasiva con un tampón de lisis. En un ejemplo, se conectan 133 unidades para formar la cámara de reacción. Figure 3 is an illustration of a repeat unit of the reaction chamber of the device where a sample of cells is passively mixed with a lysis buffer. In one example, 133 units are connected to form the reaction chamber.

La Figura 4 es una ilustración de los canales de salida del dispositivo. Figure 4 is an illustration of the output channels of the device.

La Figura 5 es una ilustración de un dispositivo para lisis celular. Figure 5 is an illustration of a device for cell lysis.

Las Figuras 6A y 6B son ilustraciones de un procedimiento para la fabricación de un dispositivo de la invención. Figures 6A and 6B are illustrations of a process for manufacturing a device of the invention.

La Figura 7 es un diagrama esquemático de un dispositivo de unión de células. Figure 7 is a schematic diagram of a cell binding device.

La Figura 8 es una vista en despiece de un dispositivo de unión de células. Figure 8 is an exploded view of a cell binding device.

La Figura 9 es un ilustración de los obstáculos de un dispositivo de unión de células. Figure 9 is an illustration of the obstacles of a cell binding device.

La Figura 10 es una ilustración de tipos de obstáculos. Figure 10 is an illustration of types of obstacles.

La Figura 11A es una representación esquemática de un conjunto cuadrado de obstáculos. El conjunto cuadrado tiene una eficacia de captura del 40 %. La Figura 11B es una representación esquemática de un conjunto triangular equilátero de obstáculos. El conjunto triangular equilátero tiene una eficacia de captura del 56 %. Figure 11A is a schematic representation of a square set of obstacles. The square set has a capture efficiency of 40%. Figure 11B is a schematic representation of an equilateral triangular set of obstacles. The equilateral triangular set has a capture efficiency of 56%.

La Figura 12A es una representación esquemática del cálculo de la eficacia hidrodinámica para un conjunto cuadrado. La Figura 12B es una representación esquemática del cálculo de la eficacia hidrodinámica para una matriz diagonal. Figure 12A is a schematic representation of the calculation of hydrodynamic efficiency for a square set. Figure 12B is a schematic representation of the calculation of hydrodynamic efficiency for a diagonal matrix.

La Figuras 13A-13B son gráficas de la eficacia hidrodinámica (13A) y global (13B) para un conjunto cuadrado y triangular para una caída de presión de 150 Pa/m. Esta caída de presión corresponde a un caudal de 0,75 ml/h en la geometría plana. Figures 13A-13B are graphs of hydrodynamic (13A) and overall (13B) efficiency for a square and triangular assembly for a pressure drop of 150 Pa / m. This pressure drop corresponds to a flow rate of 0.75 ml / h in the flat geometry.

La Figura 14A es una gráfica de la eficacia global como función de la caída de presión. La Figura 14B es una gráfica del efecto de la separación de los obstáculos en la velocidad media. Figure 14A is a graph of overall efficiency as a function of pressure drop. Figure 14B is a graph of the effect of separation of obstacles on average speed.

La Figura 15 es una representación esquemática de la colocación de obstáculos para una eficacia de captura más alta para un conjunto triangular equilátero de obstáculos en un conjunto escalonado. El radio de captura es rcap2 = 0,339/. Los obstáculos están numerados de forma que el primer número se refiere al número de triángulo y el segundo número se refiere al vértice del triángulo. El conjunto escalonado tiene una eficacia de captura del 98 %. Figure 15 is a schematic representation of the placement of obstacles for a higher capture efficiency for an equilateral triangular set of obstacles in a stepped set. The capture radius is rcap2 = 0.339 /. The obstacles are numbered so that the first number refers to the triangle number and the second number refers to the vertex of the triangle. The stepped set has a capture efficiency of 98%.

La Figura 16A es una gráfica del porcentaje de captura de células como función del caudal para una geometría de obstáculo de 100 µm de diámetro con un espaciado de 50 µm entre sus bordes. El régimen de flujo de funcionamiento se estableció a través de varios tipos celulares: células cancerosas, células de tejido conectivo normales y muestras maternas y fetales. Un régimen de flujo de trabajo óptimo es a 2,5 ml/h. La Figura 16B es una gráfica del porcentaje de captura de células como función de la relación de células objetivo y glóbulos blancos. El sistema modelo se generó añadiendo un número definido de células cancerosas, células de tejido conectivo normales o células de sangre de cordón umbilical en un número definido de células de capa leucocítica de sangre adulta La relación de las células contaminantes y células objetivo se incrementó gradualmente en 5 log con tan sólo 10 células objetivo en la mezcla. El rendimiento se calculó como la diferencia entre el número de células añadidas capturadas en puestos y el número de células añadidas a la muestra. Figure 16A is a graph of the percentage of cell capture as a function of the flow rate for an obstacle geometry of 100 µm in diameter with a spacing of 50 µm between its edges. The operating flow regime was established through several cell types: cancer cells, normal connective tissue cells and maternal and fetal samples. An optimal workflow regime is 2.5 ml / h. Figure 16B is a graph of the percentage of cell capture as a function of the ratio of target cells and white blood cells. The model system was generated by adding a defined number of cancer cells, normal connective tissue cells or umbilical cord blood cells in a defined number of leukocyte layer cells of adult blood. The ratio of contaminating cells and target cells gradually increased in 5 log with only 10 target cells in the mixture. The yield was calculated as the difference between the number of added cells captured in positions and the number of cells added to the sample.

La Figura 17 es una ilustración de diversas vistas de la entrada y las salidas de un dispositivo de unión de células. Figure 17 is an illustration of various views of the input and outputs of a cell binding device.

La Figura 18 es un ilustración de un procedimiento de fabricación de un dispositivo de unión de células. Figure 18 is an illustration of a manufacturing method of a cell binding device.

La Figura 19 es un ilustración de una mezcla de células que fluye a través de un dispositivo de unión de células. Figure 19 is an illustration of a mixture of cells flowing through a cell binding device.

La Figura 20A es una ilustración de un dispositivo de unión de células para atrapar tipos de células diferentes en serie. La Figura 20B es una ilustración de un dispositivo de unión de células para atrapar tipos de células diferentes en paralelo. Figure 20A is an illustration of a cell binding device for trapping different types of cells in series. Figure 20B is an illustration of a cell binding device for trapping different cell types in parallel.

La Figura 21 es una ilustración de un dispositivo de unión de células que permite la recuperación de células unidas. Figure 21 is an illustration of a cell binding device that allows recovery of bound cells.

La Figura 22A es una micrografía óptica de glóbulos rojos fetales adheridos a un obstáculo de la invención. La Figura 22B es una micrografía fluorescente que muestra los resultados de un análisis FISH de un glóbulo rojo fetal unido a un obstáculo de la invención. La Figura 22C es una micrografía ampliada de la Figura 22B que muestra los resultados de hibridación individuales para el glóbulo rojo fetal. Figure 22A is an optical micrograph of fetal red blood cells adhered to an obstacle of the invention. Figure 22B is a fluorescent micrograph showing the results of an FISH analysis of a fetal red blood cell attached to an obstacle of the invention. Figure 22C is an enlarged micrograph of Figure 22B showing the individual hybridization results for the fetal red blood cell.

La Figura 23 es una ilustración de un dispositivo de unión de células en el que se usan perlas atrapadas en un hidrogel para capturar células. Figure 23 is an illustration of a cell binding device in which beads trapped in a hydrogel are used to capture cells.

La Figura 24A es una ilustración de un dispositivo para separación basada en el tamaño. Figure 24A is an illustration of a device for size-based separation.

La Figura 24B es una micrografía electrónica de un dispositivo para separación basada en el tamaño. Figure 24B is an electron micrograph of a device for size-based separation.

La Figura 25 es una representación esquemática de un dispositivo de la invención para aislar y analizar glóbulos rojos fetales. Figure 25 is a schematic representation of a device of the invention for isolating and analyzing fetal red blood cells.

Las figuras no están necesariamente a escala. The figures are not necessarily to scale.

5 Descripción detallada de la invención 5 Detailed description of the invention

La invención presenta dispositivos para uso en procedimientos para separar una célula deseada de una mezcla o enriquecer la población de una célula deseada en una mezcla. Los procedimientos se basan generalmente en etapas de procesamiento secuenciales, cada una de las cuales reduce el número de células no deseadas en la mezcla, pero puede usarse una etapa de procesamiento en los procedimientos. Los dispositivos para llevar a cabo 10 diversas etapas de procesamiento pueden estar separados o integrados en un sistema microfluídico. Los dispositivos de la invención incluyen un dispositivo para unión de células. En una realización, se usan etapas de procesamiento para reducir el número de células antes de seleccionarlas. De forma deseable, los procedimientos retienen al menos el 75 %, 80 %, 90 %, 95 %, 98 % o 99 % de las células en comparación con la mezcla inicial, mientras que enriquecen potencialmente la población de células deseadas en un factor de al menos 100, 1000, The invention features devices for use in methods for separating a desired cell from a mixture or enriching the population of a desired cell in a mixture. The procedures are generally based on sequential processing steps, each of which reduces the number of unwanted cells in the mixture, but a processing step can be used in the procedures. The devices for carrying out 10 different processing steps can be separated or integrated into a microfluidic system. The devices of the invention include a device for cell binding. In one embodiment, processing steps are used to reduce the number of cells before selecting them. Desirably, the procedures retain at least 75%, 80%, 90%, 95%, 98% or 99% of the cells compared to the initial mixture, while potentially enriching the population of desired cells by a factor of at least 100, 1000,

15 10.000, 100.000 o incluso 1.000.000 con relación a uno o más tipos celulares no deseados. Los procedimientos pueden pueden usarse para separar o enriquecer células que circulan en la sangre (Tabla 1). 15 10,000, 100,000 or even 1,000,000 in relation to one or more unwanted cell types. The procedures can be used to separate or enrich cells that circulate in the blood (Table 1).

Tabla 1: Tipos, concentraciones y tamaños de células sanguíneas. Table 1: Types, concentrations and sizes of blood cells.

Tipo celular Cell type
Concentración (células/µl) Tamaño (µm) Concentration (cells / µl) Size (µm)

Glóbulos rojos (GR) Red blood cells (GR)
4,2-6,1 x 106 4-6 4.2-6.1 x 106 4-6

Neutrófilos segmentados (GB) Segmented Neutrophils (GB)
3600 > 10 3600 > 10

Neutrófilos en banda (GB) Band Neutrophils (GB)
120 > 10 120 > 10

Linfocitos (GB) Lymphocytes (GB)
1500 > 10 1500 > 10

Monocitos (GB) Monocytes (GB)
480 > 10 480 > 10

Eosinófilos (GB) Eosinophils (GB)
180 >10 180 > 10

Basófilos (GB) Basophils (GB)
120 > 10 120 > 10

Plaquetas Platelets
500 x 10-3 1-2 500 x 10-3 1-2

Glóbulos rojos nucleados fetales Fetal nucleated red blood cells
2 -50 x 10-3 8-12 2 -50 x 10-3 8-12

Dispositivos Dispositives

20 A. Lisis celular 20 A. Cellular Lysis

Se emplea un dispositivo para lisar una población de células selectivamente, p. ej., glóbulos rojos maternos, en una mezcla de células, p. ej., sangre materna. Este dispositivo permite el procesamiento de grandes cantidades de células bajo condiciones casi idénticas. De forma deseable, el dispositivo de lisis retira un gran número de células antes del procesamiento adicional. Los desechos, p. ej., membranas celulares y proteínas, pueden atraparse, p. ej., A device is used to lyse a population of cells selectively, e.g. eg, maternal red blood cells, in a mixture of cells, e.g. eg, maternal blood. This device allows the processing of large amounts of cells under almost identical conditions. Desirably, the lysis device removes a large number of cells before further processing. Waste, p. eg, cell membranes and proteins, can be trapped, e.g. eg

25 por filtración o precipitación, antes de cualquier procesamiento adicional. 25 by filtration or precipitation, before any further processing.

Dispositivo. En la Figura 1 se muestra un diseño para un dispositivo de lisis. La arquitectura ramificada global de los canales del dispositivo permite caídas de presión equivalentes a lo largo de las redes de procesamiento paralelas. El dispositivo puede estar separado funcionalmente en cuatro secciones distintas: 1) canales de entrada distribuidos que llevan líquidos, p. ej., sangre, reactivo de lisis y tampón de lavado, a las uniones 1 y 2 (Figura 2); 2) una cámara Device. A design for a lysis device is shown in Figure 1. The overall branched architecture of the channels of the device allows equivalent pressure drops along the parallel processing networks. The device can be functionally separated into four distinct sections: 1) distributed input channels that carry liquids, e.g. eg, blood, lysis reagent and wash buffer, at junctions 1 and 2 (Figure 2); 2) a camera

30 de reacción de serpentina para la reacción de lisis celular que se aloja entre las dos uniones (Figura 3); 3) una cámara de dilución más allá de la Unión 2 para la dilución del reactivo de lisis (Figura 3); y 4) canales de salida distribuidos que llevan la muestra lisada a un vial de recogida o a otro dispositivo microfluídico (Figura 4). 30 serpentine reaction for the cell lysis reaction that is housed between the two junctions (Figure 3); 3) a dilution chamber beyond Union 2 for dilution of the lysis reagent (Figure 3); and 4) distributed outflow channels that carry the lysed sample to a collection vial or other microfluidic device (Figure 4).

Canales de entrada/salida. Las redes ramificadas de entrada y salida de los canales permiten la distribución uniforme de los reactivos en todos los canales (8, como se representa en la Figura 1). Los tres puertos para conectar 35 el mundo macro con el dispositivo normalmente tienen un diámetro que varía entre 1 mm -10 mm, p. ej., 2, 5, 6 u 8 mm. Pueden formarse cierres herméticos con los puertos 1, 2 y 3, p. ej., a través de un colector externo integrado con el dispositivo (Figura 1). Los tres viales de solución, p. ej., sangre, reactivo de lisis y diluyente, pueden conectarse con un colector tal. Los canales de entrada de los puertos 1, 2 y 3 a las cámaras de reacción y mezclado, para las tres soluciones mostradas en la Figura 1, pueden estar separadas en el plano z del dispositivo (tres capas, 40 cada una con un juego de canales de distribución, véase la Figura 2) o alojarse en el colector externo. Si se alojan Input / output channels. Branched channel input and output networks allow for uniform distribution of reagents across all channels (8, as shown in Figure 1). The three ports for connecting the macro world with the device usually have a diameter that varies between 1 mm -10 mm, p. e.g., 2, 5, 6 or 8 mm. Seals can be formed with ports 1, 2 and 3, p. e.g., through an external collector integrated with the device (Figure 1). The three solution vials, p. eg, blood, lysis reagent and diluent, can be connected to such a manifold. The input channels of ports 1, 2 and 3 to the reaction and mixing chambers, for the three solutions shown in Figure 1, can be separated in the z-plane of the device (three layers, each with a set of distribution channels, see Figure 2) or stay in the external manifold. If they stay

en el colector externo, los canales de distribución están, por ejemplo, CNC (controlados numéricamente por ordenador), maquinados en acero inoxidable y pueden tener dimensiones de 500 µm de diámetro. El colector puede conectarse herméticamente con el dispositivo en puertos que están grabados en las ubicaciones 1', 2' y 3' mostradas en la Figura 1. Ubicar los canales de distribución en un colector reduce la complejidad y el coste del dispositivo. Mantener los canales de distribución en el dispositivo permitirá una mayor flexibilidad para seleccionar un tamaño de canal más pequeño, mientras que evita cualquier problema de contaminación por transferencia entre muestras. Cada canal de entrada de muestra puede tener una salida separada o, como se representa en la Figura 4, los canales de salida para cada entrada de muestra están combinados. Como alternativa a un colector, pueden unirse al dispositivo tubos para cada entrada o salida de líquido, p. ej., mediante ajuste por compresión a juntas o boquillas o usando conexiones herméticas al agua tales como un cierre luer. Los canales del dispositivo que llevan los líquidos a las uniones y cámaras de mezclado posteriores, pueden tener una anchura y una profundidad que varían desde 10 µm -500 µm, p. ej., como máximo una anchura y profundidad de 10 µm, 25 µm, 50 µm, 75 µm, 100 µm, 150 µm, 200 µm, 250 µm, 350 µm o 450 µm. De forma deseable, la arquitectura del canal es rectangular pero también puede ser circular, semicircular, con forma de V o cualquiera otra forma apropiada. En una implementación, el canal (o canales) de salida tiene un área de sección transversal igual a la suma de las áreas de sección transversal de los canales de entrada. In the external manifold, the distribution channels are, for example, CNC (numerically controlled by computer), machined in stainless steel and can have dimensions of 500 µm in diameter. The manifold can be tightly connected to the device in ports that are recorded in the 1 ', 2' and 3 'locations shown in Figure 1. Locating the distribution channels in a manifold reduces the complexity and cost of the device. Keeping the distribution channels in the device will allow greater flexibility to select a smaller channel size, while avoiding any problems of contamination by transfer between samples. Each sample input channel can have a separate output or, as shown in Figure 4, the output channels for each sample input are combined. As an alternative to a collector, tubes for each liquid inlet or outlet can be attached to the device, e.g. eg, by compression fitting to joints or nozzles or using water tight connections such as a luer seal. The channels of the device that carry the liquids to the joints and subsequent mixing chambers can have a width and depth ranging from 10 µm -500 µm, p. eg, a maximum width and depth of 10 µm, 25 µm, 50 µm, 75 µm, 100 µm, 150 µm, 200 µm, 250 µm, 350 µm or 450 µm. Desirably, the architecture of the channel is rectangular but it can also be circular, semicircular, V-shaped or any other appropriate shape. In one implementation, the output channel (or channels) has a cross-sectional area equal to the sum of the cross-sectional areas of the input channels.

Cámaras de reacción y dilución. Para la lisis y dilución, se combinan dos corrientes líquidas y se dejan pasar a través de las cámaras. Las cámaras pueden ser canales de serpentina o lineales. En el dispositivo representado en la Figura 1, la muestra y el tampón de lisis se combinan en la unión 1 y la muestra lisada y el diluyente se combinan en la unión 2. La arquitectura de serpentina de la cámara de reacción y la cámara de dilución permite un tiempo de residencia suficiente de las dos soluciones reactivas para un mezclado apropiado por difusión u otros mecanismos pasivos, mientras mantiene un tamaño global razonable para el dispositivo (Figura 3). Los canales de serpentina pueden construirse en 2D o en 3D, p. ej., para reducir la longitud total del dispositivo o para introducir advección caótica para un mezclado potenciado. Para tiempos de residencia cortos, puede desearse una cámara lineal. Los tiempos de residencia ejemplares incluyen al menos 1segundo, 5 segundos, 10 segundos, 30 segundos, 60 segundos, 90 segundos, 2 minutos, 5 minutos, 30 minutos, 1 hora o mayores de 1 hora. El caudal de los líquidos de las cámaras de reacción/dilución puede controlarse con precisión controlando la anchura, profundidad y longitud eficaz de los canales para permitir un mezclado suficiente de los dos reactivos mientras a la vez que se permite un rendimiento del procesamiento óptimo. En una implementación, las cámaras de mezclado de serpentina para lisis celular (cámara de reacción) y para dilución de la muestra lisada (cámara de dilución) tienen un volumen de líquido de 26 µl cada una. Otros ejemplos de volúmenes de la cámara de reacción/dilución varían desde 10 -200 µl, p. ej., como máximo 20, 50, 100 o 150 µl. En algunas implementaciones, la anchura y profundidad de las cámaras de reacción y dilución tienen el mismo intervalo que los canales de entrada y salida, es decir, 10 a 500 µm. Alternativamente, las cámaras pueden tener un área de sección transversal igual a la áreas combinadas de todos los canales de entrada (o de salida) con el fin de garantizar una velocidad de flujo uniforme a través del dispositivo. En un ejemplo, las cámaras son canales de 100 µm x 100 µm. La longitud total de las cámaras puede ser de al menos 1 cm, 5 cm, 10 cm, 20 cm, 30 cm, 40 cm o 50 cm. Reaction and dilution chambers. For lysis and dilution, two liquid streams are combined and allowed to pass through the chambers. The cameras can be serpentine or linear channels. In the device depicted in Figure 1, the sample and lysis buffer are combined at junction 1 and the lysed sample and diluent are combined at junction 2. The serpentine architecture of the reaction chamber and dilution chamber allows sufficient residence time of the two reactive solutions for proper mixing by diffusion or other passive mechanisms, while maintaining a reasonable overall size for the device (Figure 3). The serpentine channels can be constructed in 2D or 3D, e.g. eg, to reduce the total length of the device or to introduce chaotic advection for enhanced mixing. For short residence times, a linear camera may be desired. Exemplary residence times include at least 1 second, 5 seconds, 10 seconds, 30 seconds, 60 seconds, 90 seconds, 2 minutes, 5 minutes, 30 minutes, 1 hour or greater than 1 hour. The flow rate of the reaction / dilution chambers can be precisely controlled by controlling the effective width, depth and length of the channels to allow sufficient mixing of the two reagents while at the same time allowing optimal processing performance. In one implementation, the serpentine mixing chambers for cell lysis (reaction chamber) and for dilution of the lysed sample (dilution chamber) have a liquid volume of 26 µl each. Other examples of reaction / dilution chamber volumes range from 10-200 µl, e.g. eg, maximum 20, 50, 100 or 150 µl. In some implementations, the width and depth of the reaction and dilution chambers have the same range as the input and output channels, that is, 10 to 500 µm. Alternatively, the chambers may have a cross-sectional area equal to the combined areas of all input (or output) channels in order to ensure a uniform flow rate through the device. In one example, the cameras are 100 µm x 100 µm channels. The total length of the cameras can be at least 1 cm, 5 cm, 10 cm, 20 cm, 30 cm, 40 cm or 50 cm.

Para lisis de GR maternos, los caudales de salida del dispositivo pueden variar desde procesar 5 -16 µl de sangre por segundo dando como resultado un tiempo de procesamiento de 20 -60 minutos para muestras de 20 ml o un tiempo de procesamiento de 10 -30 min para muestras de 10 ml. Se espera que el volumen de muestra requerido para capturar un número suficiente de células fetales sea menor de 10 ml debido a la eficacia del procedimiento. Así, se espera que el rendimiento del dispositivo por muestra sea inferior a 10 minutos. Un tiempo de residencia de > 30 segundos a partir del momento de convergencia de las dos soluciones, sangre materna y reactivo de lisis, dentro del mezclador pasivo se considera suficiente para obtener una hemólisis eficaz (T. Maren, Mol. Pharmacol. 1970, 6:430). Alternativamente, la concentración de reactivo de lisis puede ajustarse para compensar el tiempo de residencia en la cámara de reacción. Los caudales y los tiempos de residencia para otros tipos celulares pueden determinarse teóricamente o por experimentación. En una implementación, los caudales en cada canal están limitados a < 20 µl/s para garantizar que el esfuerzo de cizalladura de las paredes sobre las células sea menor de 1 dina/cm2 (se sabe que un esfuerzo de cizalladura > 1 dina/cm2 afecta a las células funcionalmente, aunque no se observan efectos nocivos en la mayoría de las células hasta superar las 10 dinas/cm2). En una implementación, el caudal en cada canal es como máximo de 1, 2, 5, 10, 15 µl/s. En referencia a la Figura 1, la longitud eficaz del canal de entrada del diluyente que lleva a la unión 2 puede ser más corta que la longitud eficaz de la cámara de reacción. Esta característica permite que el diluyente fluya hacia y alimente los canales posteriores a la unión 2, antes de la llegada de la muestra lisada a la unión 2. El tampón excedente recogido previamente en el vial de salida puede actuar como un diluyente secundario de la muestra lisada cuando se recoge, por ejemplo, para procesamiento o análisis adicional. Adicionalmente, el diluyente alimenta los canales posteriores a la unión 2 para permitir un flujo más suave y la fusión de la muestra lisada con el tampón en la cámara de dilución, y esta alimentación elimina cualquier efecto de tensión superficial nocivo de canales secos en la muestra lisada. El diámetro de los canales que llevan el diluyente puede ajustarse para permitir que el diluyente alcance la unión 2 al mismo tiempo que la sangre lisada para evitar cualquier problema asociado con aire forzado desde la cámara de reacción a medida que se introducen la muestra y los tampones de lisis. For maternal GR lysis, the flow rates of the device can vary from processing 5 -16 µl of blood per second resulting in a processing time of 20 -60 minutes for 20 ml samples or a processing time of 10 -30 min for 10 ml samples. The sample volume required to capture a sufficient number of fetal cells is expected to be less than 10 ml due to the effectiveness of the procedure. Thus, the performance of the device per sample is expected to be less than 10 minutes. A residence time of> 30 seconds from the moment of convergence of the two solutions, maternal blood and lysis reagent, within the passive mixer is considered sufficient to obtain an effective hemolysis (T. Maren, Mol. Pharmacol. 1970, 6 : 430). Alternatively, the concentration of lysis reagent can be adjusted to compensate for the residence time in the reaction chamber. The flow rates and residence times for other cell types can be determined theoretically or by experimentation. In one implementation, the flows in each channel are limited to <20 µl / s to ensure that the shear stress of the walls on the cells is less than 1 dyne / cm2 (it is known that a shear stress> 1 dyne / cm2 it affects the cells functionally, although no harmful effects are observed in most cells until it exceeds 10 dynes / cm2). In one implementation, the flow rate in each channel is a maximum of 1, 2, 5, 10, 15 µl / s. Referring to Figure 1, the effective length of the diluent inlet channel leading to the junction 2 may be shorter than the effective length of the reaction chamber. This feature allows the diluent to flow to and feed the channels after junction 2, before the arrival of the lysed sample at junction 2. The excess buffer previously collected in the outlet vial can act as a secondary diluent of the sample lysed when collected, for example, for further processing or analysis. Additionally, the diluent feeds the post-junction 2 channels to allow smoother flow and fusion of the lysed sample with the buffer in the dilution chamber, and this feed eliminates any effects of harmful surface tension of dry channels in the sample lysate The diameter of the channels carrying the diluent can be adjusted to allow the diluent to reach junction 2 at the same time as the lysed blood to avoid any problems associated with forced air from the reaction chamber as the sample and buffers are introduced of lysis.

Aunque la descripción anterior se centra en un dispositivo con ocho canales de procesamiento paralelos, puede emplearse cualquier número de canales, p. ej., 1, 2, 4, 16 o 32, dependiendo del tamaño del dispositivo. El dispositivo se describe en términos de combinar dos líquidos para lisis y dilución, pero pueden combinarse tres o más líquidos para lisis o dilución. La combinación puede ser en una unión o una serie de uniones, p. ej., para controlar el ritmo de la adición secuencial de los reactivos. Pueden añadirse entradas de líquido adicionales, p. ej., para funcionalizar las células restantes, alterar el pH o provocar la precipitación de componentes no deseables. Además, la geometría y dimensiones exactas de los canales pueden alterarse (se muestran dimensiones ejemplares en la Figura 5). Los dispositivos de la invención pueden ser desechables o reutilizables. Los dispositivos desechables reducen el riesgo de contaminación entre muestras. Los dispositivos reutilizables pueden ser deseables en algunos casos y el dispositivo puede limpiarse, p. ej., con diversos detergentes y enzimas, p. ej., proteasas o nucleasas, para evitar la contaminación. Although the above description focuses on a device with eight parallel processing channels, any number of channels can be used, e.g. e.g., 1, 2, 4, 16 or 32, depending on the size of the device. The device is described in terms of combining two liquids for lysis and dilution, but three or more liquids for lysis or dilution can be combined. The combination can be in a joint or a series of joints, e.g. eg, to control the rate of sequential reagent addition. Additional liquid inlets may be added, e.g. eg, to functionalize the remaining cells, alter the pH or cause precipitation of undesirable components. In addition, the exact geometry and dimensions of the channels can be altered (exemplary dimensions are shown in Figure 5). The devices of the invention can be disposable or reusable. Disposable devices reduce the risk of contamination between samples. Reusable devices may be desirable in some cases and the device may be cleaned, e.g. eg, with various detergents and enzymes, e.g. eg, proteases or nucleases, to avoid contamination.

Bombeo. En una implementación, el dispositivo emplea bombeo de presión negativa, p. ej., usando bombas de jeringa, bombas peristálticas, aspiradores o bombas de vacío. La presión negativa permite el procesamiento del volumen total de una muestra de sangre clínica, sin dejar muestra sin procesar en los canales. También puede usarse presión positiva, p. ej., de una bomba de jeringa, bomba peristáltica, bomba de desplazamiento, columna de líquido u otra bomba de líquido, para bombear muestras a través de un dispositivo. La pérdida de muestra debida a problemas de volumen muerto relacionados con bombeo de presión positiva puede superarse expulsando la muestra residual con tampón. Las bombas están conectadas normalmente al dispositivo a través de cierres herméticos, p. ej., usando juntas de silicona. Pumping. In one implementation, the device employs negative pressure pumping, e.g. eg, using syringe pumps, peristaltic pumps, vacuum cleaners or vacuum pumps. The negative pressure allows the processing of the total volume of a clinical blood sample, without leaving an unprocessed sample in the channels. Positive pressure can also be used, e.g. eg, from a syringe pump, peristaltic pump, displacement pump, liquid column or other liquid pump, to pump samples through a device. Sample loss due to dead volume problems related to positive pressure pumping can be overcome by expelling the residual sample with buffer. The pumps are normally connected to the device through airtight seals, e.g. eg, using silicone gaskets.

Los caudales de líquidos de canales paralelos del dispositivo pueden controlarse conjuntamente o por separado. Puede lograrse el control variable y diferencial de los caudales de cada canal, por ejemplo, empleando un colector de jeringa multicanal controlable individualmente. En esta implementación, la distribución del canal de entrada se modificará para que se desacople de todas las redes paralelas. La salida puede recoger la salida de todos los canales a través de un sólo colector conectado a una succión (no se requiere un cierre hermético) que tiene salida a un vial de recogida o a otro dispositivo microfluídico. Alternativamente, la salida de cada red puede recogerse por separado para procesamiento posterior. Las entradas y salidas separadas permiten el procesamiento paralelo de múltiples muestras de uno o más individuos. The liquid flow rates of parallel channels of the device can be controlled together or separately. Variable and differential control of the flow rates of each channel can be achieved, for example, by using an individually controllable multi-channel syringe collector. In this implementation, the distribution of the input channel will be modified so that it is decoupled from all parallel networks. The outlet can collect the output of all channels through a single manifold connected to a suction (a tight seal is not required) that has an outlet to a collection vial or another microfluidic device. Alternatively, the output of each network can be collected separately for further processing. Separate inputs and outputs allow parallel processing of multiple samples from one or more individuals.

Fabricación. Puede emplearse una variedad de técnicas para fabricar un dispositivo y la técnica empleada se seleccionará basándose en parte en el material elegido. Los materiales ejemplares para fabricar los dispositivos de la invención incluyen vidrio, silicio, acero, níquel, poli(metilmetacrilato) (PMMA), policarbonato, poliestireno, polietileno, poliolefinas, siliconas (p. ej., poli(dimetilsiloxano)) y sus combinaciones. Se conocen otros materiales en la técnica. Se conocen en la técnica procedimientos para fabricar canales de estos materiales. Estos procedimientos incluyen, fotolitografía (p. ej., estereolitografía o fotolitografía de rayos x), moldeo, repujado, micromaquinado de silicio, grabado químico húmedo o seco, molienda, corte con diamante, Lithographie Galvanoformung y Abformung (LIGA) y galvanoplastia. Por ejemplo, para el vidrio, pueden emplearse las técnicas de fabricación con silicio tradicionales de fotolitografía seguidas de grabado húmedo (KOH) o seco (grabado por ion reactivo con flúor u otro gas reactivo). Pueden adoptarse técnicas como micromaquinado con láser para materiales plásticos con eficacia de absorción de fotones alta. Esta técnica es adecuada para fabricación de rendimiento más bajo debido a la naturaleza serial del procedimiento. Para dispositivos plásticos producidos en serie, son adecuados el moldeo por inyección termoplástico y el moldeo por compresión. El moldeo por inyección termoplástico convencional usado para la fabricación en serie de discos compactos (que mantiene la fidelidad de las características en submicras) también puede emplearse para fabricar los dispositivos. Por ejemplo, las características del dispositivo se duplican en un patrón de vidrio por litofotografía convencional. El patrón de vidrio se electroforma para proporcionar un molde resistente, resistente a choque térmico, termoconductor y duro. Este molde sirve como la plantilla patrón para el moldeo por inyección o el moldeo por compresión de las características en un dispositivo de plástico. Dependiendo del material plástico usado para fabricar los dispositivos y de los requisitos de calidad óptica y rendimiento de producto acabado, puede escogerse moldeo por compresión o moldeo por inyección como procedimiento de fabricación. El moldeo por compresión (también llamado repujado en caliente o impresión en relieve) tiene las ventajas de ser compatible con polímeros de peso molecular alto, que son excelentes para estructuras pequeñas, pero es difícil de usar para duplicar estructuras con alta relación de aspecto y tiene ciclos de duración más larga. El moldeo por inyección funciona bien para estructuras de alta relación de aspecto, pero es más adecuado para polímeros de bajo peso molecular. Manufacturing. A variety of techniques can be employed to manufacture a device and the technique employed will be selected based in part on the chosen material. Exemplary materials for manufacturing the devices of the invention include glass, silicon, steel, nickel, poly (methyl methacrylate) (PMMA), polycarbonate, polystyrene, polyethylene, polyolefins, silicones (e.g., poly (dimethylsiloxane)) and combinations thereof. . Other materials are known in the art. Procedures for manufacturing channels of these materials are known in the art. These procedures include, photolithography (e.g., stereolithography or x-ray photolithography), molding, embossing, silicon micromachining, wet or dry chemical etching, grinding, diamond cutting, Lithographie Galvanoformung and Abformung (LIGA) and electroplating. For example, for glass, traditional silicon photolithography manufacturing techniques followed by wet (KOH) or dry etching (fluoride reactive ion or other reactive gas) can be used. Techniques such as laser micromachining for plastic materials with high photon absorption efficiency can be adopted. This technique is suitable for lower performance manufacturing due to the serial nature of the procedure. For plastic devices produced in series, thermoplastic injection molding and compression molding are suitable. Conventional thermoplastic injection molding used for mass production of compact discs (which maintains the fidelity of the characteristics in submicras) can also be used to manufacture the devices. For example, the characteristics of the device are duplicated in a glass pattern by conventional lithophotography. The glass pattern is electroformed to provide a resistant mold, resistant to thermal shock, thermoconductive and hard. This mold serves as the template template for injection molding or compression molding of the features in a plastic device. Depending on the plastic material used to manufacture the devices and the requirements of optical quality and performance of the finished product, compression molding or injection molding can be chosen as the manufacturing process. Compression molding (also called hot embossing or embossing) has the advantages of being compatible with high molecular weight polymers, which are excellent for small structures, but it is difficult to use to duplicate structures with high aspect ratio and has longer duration cycles. Injection molding works well for high aspect ratio structures, but is more suitable for low molecular weight polymers.

Un dispositivo puede fabricarse en una o más piezas que se montan después. En una realización, las capas separadas del dispositivo contienen canales para un sólo fluido, como en la Figura 1. Las capas de un dispositivo pueden estar unidas juntas con pinzas, adhesivos, calor, unión anódica o reacciones entre grupos de superficie (p. ej., unión de obleas). Alternativamente, un dispositivo con canales en más de un -plano puede fabricarse como una sola pieza sola, p. ej., usando estereolitografía u otras técnicas de fabricación tridimensionales. A device can be manufactured in one or more pieces that are mounted later. In one embodiment, the separate layers of the device contain channels for a single fluid, as in Figure 1. The layers of a device can be joined together with tweezers, adhesives, heat, anodic bonding or reactions between surface groups (e.g. ., union of wafers). Alternatively, a device with channels in more than one -plane can be manufactured as a single piece, e.g. eg, using stereolithography or other three-dimensional manufacturing techniques.

En una implementación, el dispositivo está hecho de PMMA. Las características, por ejemplo, las que se muestran en la Figura 1, se transfieren a un molde electroformado usando fotolitografía estándar seguida de galvanoplastia. El molde se usa para repujar en caliente las características en el PMMA a una temperatura cercana a su temperatura de transición vítrea (105 ºC) bajo presión (5 a 20 toneladas) (la presión y la temperatura se ajustarán para que permitan la duplicación de alta fidelidad de la característica más profunda del dispositivo) como se muestra en la Figura 6A. Después, se enfría el molde para permitir la retirada del dispositivo de PMMA. Una segunda pieza usada para cerrar el dispositivo, compuesta de material similar o diferente, puede unirse a la primera pieza usando unión térmica asistida por vacío. El vació evita la formación de huecos de aire en las regiones de unión. La Figura 6B muestra una sección transversal del montaje de dispositivo de dos piezas en la unión del Puerto 1 (fuente para muestra de sangre) y el canal de alimentación. In one implementation, the device is made of PMMA. The characteristics, for example, those shown in Figure 1, are transferred to an electroformed mold using standard photolithography followed by electroplating. The mold is used for hot embossing the characteristics in the PMMA at a temperature close to its glass transition temperature (105 ºC) under pressure (5 to 20 tons) (the pressure and temperature will be adjusted to allow high doubling fidelity of the deepest feature of the device) as shown in Figure 6A. Then, the mold is cooled to allow removal of the PMMA device. A second piece used to close the device, composed of similar or different material, can be attached to the first piece using vacuum assisted thermal bonding. The vacuum prevents the formation of air voids in the junction regions. Figure 6B shows a cross section of the two-piece device assembly at the junction of Port 1 (source for blood sample) and the feeding channel.

Derivatización química. Para reducir la adsorción no específica de células o compuestos liberados por células lisadas sobre las paredes del canal, una o más paredes de canal pueden modificarse químicamente para que sean no adherentes o repulsivas. Las paredes pueden recubrirse con un recubrimiento de película fina (p. ej., una monocapa) de reactivos no pegajosos comerciales, tales como los usados para formar hidrogeles. Los ejemplos adicionales de especies químicas que pueden usarse para modificar las paredes del canal incluyen oligoetilenglicoles, polímeros fluorados, organosilanos, tioles, polietilenglicol, ácido hialurónico, albúmina de suero bovino, alcohol polivinílico, mucina, poli-HEMA, PEG-metacrilato y agarosa. También pueden emplearse polímeros cargados para repeler especies de carga opuesta. El tipo de especies químicas usado para la repulsión y el procedimiento de unión a la paredes del canal dependerá de la naturaleza de las especies que se repelen y la naturaleza de las paredes y las especies que se unen. Tales técnicas de modificación de la superficie son bien conocidas en la técnica. Las paredes pueden funcionalizarse antes o después del montaje del dispositivo. Chemical derivatization. To reduce the non-specific adsorption of cells or compounds released by lysed cells on the canal walls, one or more canal walls can be chemically modified to be non-adherent or repulsive. The walls can be coated with a thin film coating (eg, a monolayer) of commercial non-stick reagents, such as those used to form hydrogels. Additional examples of chemical species that can be used to modify canal walls include oligoethylene glycols, fluorinated polymers, organosilanes, thiols, polyethylene glycol, hyaluronic acid, bovine serum albumin, polyvinyl alcohol, mucin, poly-HEMA, PEG-methacrylate and agarose. Loaded polymers can also be used to repel species of opposite charge. The type of chemical species used for repulsion and the procedure for joining the canal walls will depend on the nature of the species that repel and the nature of the walls and the species that bind. Such surface modification techniques are well known in the art. The walls can be functionalized before or after mounting the device.

Las paredes del canal también pueden recubrirse con el fin de capturar materiales de la muestra, p. ej., fragmentos de membrana o proteínas. Channel walls can also be coated in order to capture sample materials, e.g. eg, membrane fragments or proteins.

Procedimientos. En la presente implementación, se introduce una muestra de células, p. ej., sangre materna, en uno o más canales microfluídicos. Después se mezcla con la muestra de sangre un tampón de lisis que contiene reactivos para la lisis selectiva de una población de células de la muestra. De forma deseable, el mezclado se produce por medios pasivos, p. ej., difusión o advección caótica, pero pueden emplearse medios activos. Se conocen mezcladores pasivos y activos adicionales en la técnica. Se deja continuar la reacción de lisis durante un periodo de tiempo deseado. Este periodo de tiempo puede controlarse, por ejemplo, mediante la longitud de los canales o mediante el caudal de los líquidos. Además, es posible controlar los volúmenes de las soluciones mezcladas en los canales alterando los caudales volumétricos relativos de las soluciones, p. ej., alterando el tamaño del canal o la velocidad de flujo. El flujo puede ralentizarse, incrementarse o detenerse durante cualquier periodo de tiempo deseado. Después de que se haya producido la lisis, puede introducirse un diluyente en el canal con el fin de reducir la concentración de reactivos de lisis y cualquier especie potencialmente dañina (p. ej., enzimas endosómicas) liberada por las células lisadas. El diluyente puede contener especies que neutralizan los reactivos de lisis que alteran el entorno del líquido de otro modo, p. ej., pH o viscosidad, o puede contener reactivos para el marcaje de superficie o intracelular de células. El diluyente también puede reducir la densidad óptica de la solución, lo cual puede ser importante para algunos esquemas de detección, p. ej., medidas de absorbancia. Procedures In the present implementation, a sample of cells is introduced, e.g. eg, maternal blood, in one or more microfluidic channels. A lysis buffer containing reagents for selective lysis of a population of sample cells is then mixed with the blood sample. Desirably, mixing occurs by passive means, e.g. eg, diffusion or chaotic advection, but active means can be employed. Additional passive and active mixers are known in the art. The lysis reaction is allowed to continue for a desired period of time. This period of time can be controlled, for example, by the length of the channels or by the flow of the liquids. In addition, it is possible to control the volumes of the mixed solutions in the channels by altering the relative volumetric flow rates of the solutions, e.g. eg, altering the channel size or flow rate. The flow can be slowed, increased or stopped for any desired period of time. After lysis has occurred, a diluent may be introduced into the channel in order to reduce the concentration of lysis reagents and any potentially harmful species (eg, endosomal enzymes) released by lysed cells. The diluent may contain species that neutralize lysis reagents that otherwise alter the liquid's environment, e.g. eg, pH or viscosity, or it may contain reagents for surface or intracellular labeling of cells. The diluent can also reduce the optical density of the solution, which may be important for some detection schemes, e.g. eg absorbance measures.

Los tipos celulares ejemplares que pueden lisarse usando los procedimientos descritos en el presente documento incluyen glóbulos rojos adultos, glóbulos blancos (tales como linfocitos T, linfocitos B y linfocitos T colaboradores), glóbulos blancos infectados, células tumorales y organismos infecciosos (p. ej., bacterias, protozoos y hongos). El tampón de lisis para estas células puede incluir moléculas de IgM específicas de células y proteínas de la cascada del complemento para iniciar la lisis mediada por complemento. Otra clase de tampón de lisis puede incluir virus que infectan un tipo celular específico y provocan la lisis como resultado de la duplicación (véase, p. ej., Pawlik y col. Cancer 2002, 95:1171-81). Se conocen otros tampones de lisis en la técnica. Exemplary cell types that can be lysed using the procedures described herein include adult red blood cells, white blood cells (such as T lymphocytes, B lymphocytes and helper T lymphocytes), infected white blood cells, tumor cells and infectious organisms (eg. , bacteria, protozoa and fungi). The lysis buffer for these cells can include cell-specific IgM molecules and complement cascade proteins to initiate complement-mediated lysis. Another class of lysis buffer may include viruses that infect a specific cell type and cause lysis as a result of duplication (see, eg, Pawlik et al. Cancer 2002, 95: 1171-81). Other lysis buffers are known in the art.

Puede usarse un dispositivo para la lisis selectiva de glóbulos rojos (GR) maternos con el fin de enriquecer una muestra de sangre en células fetales. En este ejemplo, se procesa una muestra de sangre materna, 10-20 ml, dentro de las primeras una a tres horas después la recogida de la muestra. Si el procesamiento se retrasa más allá de las tres horas, la muestra puede almacenarse a 4 ºC hasta que se procesa. El dispositivo de lisis permite mezclar el reactivo de lisis (NH4Cl (0 a 150 mM) + NaHCO3 (0,001 a 0,3 mM) + acetazolamida (0,1 a 100 µM)) con la sangre materna para permitir la lisis selectiva de los glóbulos rojos maternos por el principio subyacente de la reacción de Orskov-Jacobs-Stewart (véase, por ejemplo, Boyer y col. Blood 1976, 47:883-897). La alta permeabilidad selectiva del inhibidor de anhidrasa carbónica, acetazolamida, en células fetales permite una hemólisis selectiva de los glóbulos rojos maternos. La anhidrasa carbónica endógena de las células maternas convierte el HCO3-en dióxido de carbono, que lisa los glóbulos rojos maternos. La enzima está inhibida en los glóbulos rojos fetales y esas células no se lisan. Puede añadirse un diluyente (p. ej., solución salina tamponada con fosfato) después de un periodo de contacto entre los reactivos de lisis y la muestra de células para reducir el riesgo de que una parte de los glóbulos rojos fetales se lise tras una exposición prolongada a los reactivos. A device for the selective lysis of maternal red blood cells (GR) can be used to enrich a blood sample in fetal cells. In this example, a sample of maternal blood, 10-20 ml, is processed within the first one to three hours after sample collection. If the processing is delayed beyond three hours, the sample can be stored at 4 ° C until it is processed. The lysis device allows mixing the lysis reagent (NH4Cl (0 to 150 mM) + NaHCO3 (0.001 to 0.3 mM) + acetazolamide (0.1 to 100 µM)) with the maternal blood to allow selective lysis of the maternal red blood cells for the underlying principle of the Orskov-Jacobs-Stewart reaction (see, for example, Boyer et al. Blood 1976, 47: 883-897). The high selective permeability of the carbonic anhydrase inhibitor, acetazolamide, in fetal cells allows selective hemolysis of the maternal red blood cells. The endogenous carbonic anhydrase of the maternal cells converts HCO3-into carbon dioxide, which smooths the maternal red blood cells. The enzyme is inhibited in fetal red blood cells and those cells do not lyse. A diluent (e.g., phosphate buffered saline) may be added after a period of contact between the lysis reagents and the cell sample to reduce the risk of a portion of the fetal red blood cells licking after exposure prolonged to reagents.

B. Unión de células B. Cell junction

Otro dispositivo de la invención implica la retirada de células completas de una mezcla uniendo las células a las superficies del dispositivo. Las superficies un dispositivo tal, contienen sustancias, p. ej., anticuerpos o ligandos para receptores de superficie celular, que unen una subpoblación de células concreta. Esta etapa del procedimiento puede emplear selección positiva, es decir, las células deseadas se unen al dispositivo, o puede emplear selección negativa, es decir, las células deseadas pasan a través del dispositivo. En ambos casos, la población de células que contiene las células deseadas se recoge para análisis o procesamiento posterior. Another device of the invention involves the removal of whole cells from a mixture by joining the cells to the surfaces of the device. The surfaces of such a device contain substances, e.g. eg, antibodies or ligands for cell surface receptors, which bind a specific subpopulation of cells. This step of the procedure can employ positive selection, that is, the desired cells are attached to the device, or it can employ negative selection, that is, the desired cells pass through the device. In both cases, the population of cells containing the desired cells is collected for analysis or further processing.

Dispositivo. El dispositivo es un sistema de flujo microfluídico que contiene un conjunto de obstáculos de formas diversas que son capaces de unir una población de células, p. ej., aquellas que expresan una molécula de superficie específica, de una mezcla. Las células unidas pueden analizarse directamente en el dispositivo o retirarse del dispositivo, p. ej., para análisis o procesamiento posterior. Alternativamente, pueden recogerse las células no unidas a los obstáculos, p. ej., para análisis o procesamiento posterior. Device. The device is a microfluidic flow system that contains a set of obstacles in various ways that are capable of joining a population of cells, e.g. eg, those that express a specific surface molecule of a mixture. The bound cells can be analyzed directly in the device or removed from the device, e.g. eg, for analysis or further processing. Alternatively, cells not bound to obstacles can be collected, e.g. eg, for analysis or further processing.

Un dispositivo ejemplar es un aparato de flujo que tiene un canal de placa plana a través de cual fluyen las células; un dispositivo tal se describe en la patente de EE. UU. N.º 5.837.115. La Figura 7 muestra un sistema ejemplar que incluye una bomba de infusión para perfundir una mezcla de células, p. ej., sangre, a través del dispositivo microfluídico. Pueden emplearse otros procedimientos de bombeo, como se describen en el presente documento. El 5 dispositivo puede ser ópticamente transparente, o tener ventanas transparentes, para visualizar las células durante el flujo a través del dispositivo. El dispositivo contiene obstáculos distribuidos, en un conjunto ordenado, a lo largo de la cámara de flujo. De forma deseable, las superficies superior e inferior del dispositivo son paralelas entre sí. Este concepto se representa en la Figura 8. Los obstáculos pueden ser parte de la superficie inferior o superior y, de forma deseable, definen la altura del canal de flujo. También es posible que una parte de los obstáculos estén 10 situados en la superficie inferior y el resto en la superficie superior. Los obstáculos pueden estar en contacto con ambas superficies, superior e inferior, de la cámara o puede haber un hueco entre un obstáculo y una superficie. Los obstáculos pueden estar recubiertos con un resto de unión, p. ej., un anticuerpo, un polímero cargado, una molécula que une un receptor de superficie de la célula, un oligo-o polipéptido, una proteína vírica o bacteriana, un ácido nucleico o un carbohidrato, que se une a una población de células, p. ej., aquellas que expresan una molécula de 15 superficie específica, de una mezcla. Se conocen en la técnica otros restos de unión que son específicos para un tipo de célula concreto. En una realización alternativa, los obstáculos se fabrican de un material al que se une un tipo de célula específico. Los ejemplos de tales materiales incluyen polímeros orgánicos (cargados o no cargados) y carbohidratos. Una vez que un resto de unión se acopla a los obstáculos, también puede aplicarse un recubrimiento, como se describe en el presente documento, a cualquier superficie expuesta de los obstáculos para evitar la An exemplary device is a flow apparatus that has a flat plate channel through which cells flow; Such a device is described in US Pat. UU. No. 5,837,115. Figure 7 shows an exemplary system that includes an infusion pump to perfuse a mixture of cells, e.g. eg, blood, through the microfluidic device. Other pumping procedures may be employed, as described herein. The device may be optically transparent, or have transparent windows, to visualize the cells during the flow through the device. The device contains obstacles distributed, in an orderly set, along the flow chamber. Desirably, the upper and lower surfaces of the device are parallel to each other. This concept is represented in Figure 8. Obstacles can be part of the lower or upper surface and, desirably, define the height of the flow channel. It is also possible that a part of the obstacles are located on the lower surface and the rest on the upper surface. Obstacles may be in contact with both upper and lower surfaces of the chamber or there may be a gap between an obstacle and a surface. Obstacles may be coated with a binding residue, e.g. eg, an antibody, a charged polymer, a molecule that binds a cell surface receptor, an oligo-or polypeptide, a viral or bacterial protein, a nucleic acid or a carbohydrate, that binds to a population of cells, p. eg, those expressing a specific surface molecule of a mixture. Other binding moieties that are specific to a particular cell type are known in the art. In an alternative embodiment, the obstacles are made of a material to which a specific type of cell is attached. Examples of such materials include organic polymers (charged or unloaded) and carbohydrates. Once a binding residue is coupled to the obstacles, a coating, as described herein, can also be applied to any exposed surface of the obstacles to avoid

20 adhesión no específica de células a los obstáculos. 20 non-specific adhesion of cells to obstacles.

En la Figura 9 se muestra una geometría de obstáculos. En un ejemplo, los obstáculos están grabados en un área de superficie de 2 cm x 7 cm en un substrato con dimensiones globales de 2,5 cm x 7,5 cm. Se deja un margen de 2 mm alrededor del sustrato para unirlo a la superficie superior para crear una cámara cerrada. En una realización, el diámetro de los obstáculos es 50 µm con una altura de 100 µm. Los obstáculos pueden estar colocados en un 25 conjunto de filas bidimensional con una distancia de 100 µm entre los centros. Esta colocación proporciona aberturas de 50 µm para que las células fluyan entre los obstáculos sin que sean comprimidas mecánicamente o dañadas. De forma deseable, los obstáculos de una fila están desplazados, p. ej., 50 µm con respecto a las filas adyacentes. Este patrón alterno puede repetirse a lo largo del diseño para garantizar una frecuencia de colisión incrementada entre células y obstáculos. El diámetro, la anchura o la longitud de los obstáculos puede ser de al An obstacle geometry is shown in Figure 9. In one example, the obstacles are engraved on a surface area of 2 cm x 7 cm on a substrate with overall dimensions of 2.5 cm x 7.5 cm. A margin of 2 mm is left around the substrate to attach it to the upper surface to create a closed chamber. In one embodiment, the diameter of the obstacles is 50 µm with a height of 100 µm. The obstacles may be placed in a two-dimensional rowset with a distance of 100 µm between the centers. This placement provides 50 µm openings for cells to flow between obstacles without being mechanically compressed or damaged. Desirably, the obstacles in a row are displaced, e.g. eg, 50 µm with respect to adjacent rows. This alternate pattern can be repeated throughout the design to ensure an increased collision frequency between cells and obstacles. The diameter, width or length of the obstacles may be at

30 menos 5, 10, 25, 50, 75, 100 o 250 µm y como máximo de 500, 250, 100, 75, 50, 25 o 10 µm. El espaciado entre los obstáculos pueden ser de al menos 10, 25, 50, 75, 100, 250, 500 o 750 mm y como máximo de 1000, 750, 500, 250, 100, 75, 50 o 25 µm. La Tabla 2 enumera espaciados ejemplares basados en el diámetro de los obstáculos. 30 minus 5, 10, 25, 50, 75, 100 or 250 µm and a maximum of 500, 250, 100, 75, 50, 25 or 10 µm. The spacing between the obstacles can be at least 10, 25, 50, 75, 100, 250, 500 or 750 mm and a maximum of 1000, 750, 500, 250, 100, 75, 50 or 25 µm. Table 2 lists exemplary spacing based on the diameter of the obstacles.

Tabla 2. Espaciados ejemplares para obstáculos. Table 2. Exemplary spacing for obstacles.

Diámetro del obstáculo (µm) Obstacle diameter (µm)
Espaciado entre obstáculos (µm) Distance between obstacles (µm)

100 100
50 fifty

100 100
25 25

50 fifty
50 fifty

50 fifty
25 25

10 10
25 25

10 10
50 fifty

10 10
15 fifteen

35 Las dimensiones y la geometría de los obstáculos pueden variar significativamente. Por ejemplo, los obstáculos pueden tener secciones transversales cilíndricas o cuadradas (Figura 10). La distancia entre obstáculos también puede variar y puede ser diferente en la dirección del flujo en comparación con la dirección ortogonal al flujo. En algunas realizaciones, la distancia entre los bordes de los obstáculos es ligeramente más grande que el tamaño de la célula más grande de la mezcla. Esta colocación permite el flujo de células sin que sean comprimidas 35 The dimensions and geometry of obstacles can vary significantly. For example, obstacles may have cylindrical or square cross sections (Figure 10). The distance between obstacles may also vary and may be different in the direction of the flow compared to the direction orthogonal to the flow. In some embodiments, the distance between the edges of the obstacles is slightly larger than the size of the largest cell in the mixture. This placement allows the flow of cells without being compressed

40 mecánicamente entre los obstáculos y, por tanto, se dañen durante el proceso de flujo, y también maximiza el número de colisiones entre células y los obstáculos con el fin de aumentar la probabilidad de unión. La dirección de flujo con respecto a la orientación de los obstáculos también puede alterarse para potenciar la interacción de células con obstáculos. 40 mechanically between the obstacles and, therefore, are damaged during the flow process, and also maximizes the number of collisions between cells and the obstacles in order to increase the probability of binding. The flow direction with respect to the orientation of the obstacles can also be altered to enhance the interaction of cells with obstacles.

Las colocaciones ejemplares de obstáculos se muestran en las Figuras 11A-11B. Todas estas colocaciones tienen una eficacia de captura calculada. El cálculo de la unión celular consideró dos geometrías diferentes: un conjunto cuadrado (Figura 11A) y un conjunto triangular equilátero (Figura 11B). En general, los resultados se presentan en términos de la eficacia de adhesión. Los cálculos constan de dos partes, calcular la eficacia hidrodinámica (Exemplary obstacle placements are shown in Figures 11A-11B. All these placements have a calculated capture efficiency. The calculation of the cell junction considered two different geometries: a square set (Figure 11A) and an equilateral triangular set (Figure 11B). In general, the results are presented in terms of the effectiveness of adhesion. The calculations consist of two parts, calculate the hydrodynamic efficiency (

f) y la probabilidad de adhesión. La eficacia hidrodinámica se determinó como la relación del radio de captura y la mitad de la distancia entre los cilindros (Figuras 12A y 12B). Para el conjunto cuadrado, f = (2rcap/l)*100 %, y para otros conjuntos, f = ((rcap1+ rcap2)/ d1)*100 %, donde d1 = d2= l /N2 para un conjunto cuadrado diagonal, y d1 = lN3 /2, d2= l/2 para un conjunto triangular. La probabilidad de adhesión representa la fracción de células que puede resistir la fuerza aplicada sobre la célula suponiendo una media de 1,5 uniones por célula y 75 pN por unión. f) and the probability of adhesion. Hydrodynamic efficiency was determined as the ratio of the capture radius and half the distance between the cylinders (Figures 12A and 12B). For the square set, f = (2rcap / l) * 100%, and for other sets, f = ((rcap1 + rcap2) / d1) * 100%, where d1 = d2 = l / N2 for a diagonal square set, and d1 = lN3 / 2, d2 = l / 2 for a triangular set. The probability of adhesion represents the fraction of cells that can withstand the force applied to the cell assuming an average of 1.5 junctions per cell and 75 pN per junction.

Para el conjunto triangular, se adhirieron más células al segundo juego de obstáculos que al primer juego. La Figuras 13A-13B muestran que la eficacia se reduce a medida que se incrementa el espaciado entre obstáculos. A medida que se incrementa el espaciado hay una región más grande fuera del radio de captura y la células nunca entran en contacto con los obstáculos. Además, para los caudales analizados (0,25 -1 ml/h), la probabilidad global de adhesión es alta porque la fuerza por célula es menor que la fuerza para romper las uniones. Para un conjunto triangular y un espaciado de 150 micrómetros, la eficacia global de captura cae un 12 % cuando el caudal se incrementa desde 0,25 hasta 1 ml/h (Figuras 14A-14B). La adhesión no mejora yendo a caudales menores, ya que la captura hidrodinámica no mejora. La velocidad media se incrementa a medida que se incrementa el espaciado entre obstáculos. La razón para esto es que los cálculos usaron una caída de presión constante. Esto difiere de los experimentos en los que el caudal se mantiene fijo y la caída de presión varía. Los resultados pueden extrapolarse de un caso a otro por un experto en la técnica. For the triangular set, more cells adhered to the second set of obstacles than to the first set. Figures 13A-13B show that efficiency is reduced as the spacing between obstacles increases. As spacing increases there is a larger region outside the capture radius and the cells never come in contact with obstacles. In addition, for the analyzed flows (0.25 -1 ml / h), the overall probability of adhesion is high because the force per cell is less than the force to break the joints. For a triangular set and 150 micrometer spacing, the overall capture efficiency drops by 12% when the flow rate increases from 0.25 to 1 ml / h (Figures 14A-14B). Adhesion does not improve by going to lower flow rates, since hydrodynamic capture does not improve. The average speed increases as the spacing between obstacles increases. The reason for this is that the calculations used a constant pressure drop. This differs from experiments in which the flow rate remains fixed and the pressure drop varies. The results can be extrapolated from one case to another by one skilled in the art.

Un conjunto triangular repetitivo proporciona captura limitada de células objetivo porque la mayoría de la captura se produce en unas pocas primeras filas. La razón para esto es que el campo de flujo se establece en estas filas y se repite. El primer radio de captura no produce mucha captura mientras que la mayoría de la captura está dentro del segundo radio de captura (Figura 15). Una vez que las células dentro de los radios de captura son capturadas, la única manera en que podría producirse la captura es a través de colisiones célula-célula para desplazar células fuera de sus líneas de corriente o captura secundaria. En referencia a la figura 15, con el fin de potenciar la captura, después de establecerse el campo de flujo, las filas se desplazan una distancia en la dirección vertical (perpendicular al flujo) en una distancia igual a rrap2 = 0,339l. Las primeras cinco columnas forman dos regiones regulares de triángulos equiláteros. Esto permite que el flujo se establezca y sea compatible con la solución para un conjunto triangular equilátero. Para promover la captura de células que caen fuera de rcap2, la cuarta columna está desplazada una distancia rcap2. Todas las columnas están separadas por una distancia igual a l/2. Se muestra que una célula que cae fuera de rcap2 es capturada por el primer obstáculo del cuarto triángulo. Los triángulos 4 y 5 serían equiláteros. En el triángulo 6, el vértice 3 está desplazado hacia abajo una distancia rcap2. Esta colocación puede repetirse cada tres triángulo, es decir, la distancia de repetición es de 2,5l. La Figuras 16A y 16B ilustran la eficacia de captura como función del caudal y la población relativa de las células deseadas. A repetitive triangular set provides limited capture of target cells because most of the capture occurs in a few first rows. The reason for this is that the flow field is established in these rows and repeated. The first capture radius does not produce much capture while the majority of the capture is within the second capture radius (Figure 15). Once the cells within the capture radii are captured, the only way in which the capture could occur is through cell-cell collisions to move cells out of their current lines or secondary capture. Referring to Figure 15, in order to enhance the capture, after the flow field is established, the rows move a distance in the vertical direction (perpendicular to the flow) by a distance equal to rrap2 = 0.339l. The first five columns form two regular regions of equilateral triangles. This allows the flow to be established and compatible with the solution for an equilateral triangular assembly. To promote the capture of cells that fall outside of rcap2, the fourth column is displaced a distance rcap2. All columns are separated by a distance equal to l / 2. It is shown that a cell that falls outside of rcap2 is captured by the first obstacle of the fourth triangle. Triangles 4 and 5 would be equilateral. In triangle 6, vertex 3 is shifted down a distance rcap2. This placement can be repeated every three triangle, that is, the repetition distance is 2.5l. Figures 16A and 16B illustrate the capture efficiency as a function of the flow rate and relative population of the desired cells.

De forma deseable, la capa superior está hecha de vidrio y tiene dos hendiduras perforadas con ultrasonidos para los flujos de entrada y salida. Las dimensiones de entrada/salida de la hendidura son, por ejemplo, 2 cm de largo y 0,5 mm de ancho. La Figura 17 muestra los detalles de la geometría de entrada/salida. Puede incorporarse después un colector sobre las hendiduras de entras/salida. El colector de entrada acepta células sanguíneas de una bomba de jeringa de infusión o cualquier otro vehículo de suministro, por ejemplo, a través de un tubo flexible, biocompatible. Análogamente, el colector de salida está conectado a un depósito para recoger la solución y las células que salen el dispositivo. Desirably, the top layer is made of glass and has two ultrasonic perforated grooves for the inflow and outflow. The inlet / outlet dimensions of the slit are, for example, 2 cm long and 0.5 mm wide. Figure 17 shows the details of the input / output geometry. A collector can then be incorporated over the inlet / outlet grooves. The inlet manifold accepts blood cells from an infusion syringe pump or any other delivery vehicle, for example, through a flexible, biocompatible tube. Similarly, the outlet manifold is connected to a reservoir to collect the solution and the cells that leave the device.

La configuración y la geometría de entrada y salida pueden diseñarse de diversas formas. Por ejemplo, pueden usarse entradas y salidas circulares. Después se incorpora una región de entrada sin obstáculos al diseño para garantizar que las células sanguíneas se distribuyen uniformemente cuando alcanzan la región donde se ubican los obstáculos. Análogamente, la salida está diseñada con una región de salida sin obstáculos para recoger las células que salen uniformemente sin dañarlas. The configuration and geometry of input and output can be designed in various ways. For example, circular inputs and outputs can be used. An entry region without obstacles is then incorporated into the design to ensure that blood cells are distributed evenly when they reach the region where the obstacles are located. Similarly, the outlet is designed with an unobstructed exit region to collect cells that leave evenly without damaging them.

El tamaño global de un dispositivo ejemplar se muestra en la Figura 9 (diagrama superior). La longitud es de 10 cm y la anchura es de 5 cm. El área que está cubierta con obstáculos es de 9 cm x 4,5 cm. El diseño es lo suficientemente flexible para alojar tamaños más grandes o más pequeños para aplicaciones diferentes. The overall size of an exemplary device is shown in Figure 9 (upper diagram). The length is 10 cm and the width is 5 cm. The area that is covered with obstacles is 9 cm x 4.5 cm. The design is flexible enough to accommodate larger or smaller sizes for different applications.

El tamaño global del dispositivo puede ser más pequeña o más grande, dependiendo del rendimiento de flujo y el número de células que han de retirarse (o capturarse). Un dispositivo más grande podría incluir un número mayor de obstáculos y un área de superficie más grande para captura celular. Un dispositivo tal, puede ser necesario si la cantidad de muestra, p. ej., sangre, que se va a procesar es grande. The overall size of the device may be smaller or larger, depending on the flow performance and the number of cells to be removed (or captured). A larger device could include a greater number of obstacles and a larger surface area for cell capture. Such a device may be necessary if the quantity of sample, e.g. eg, blood, which is going to be processed is large.

Fabricación. Un procedimiento ejemplar para fabricar un dispositivo de la invención se resume en la Figura 18. En este ejemplo, se usa fotolitografía estándar para crear un patrón de obstáculos de fotorresistente sobre una oblea de silicio sobre aislante (SOI). Una oblea SOI consta de una capa de Si (100) de 100 µm de grosor encima de una capa de SiO2 de 1 µm de grosor sobre una oblea de Si(100) de 500 µm de grosor. Para optimizar la adhesión del fotorresistente, las obleas SOI pueden exponerse a vapores de hexametildisilazano a alta temperatura antes del recubrimiento de fotorresistente. La oblea se recubre por centrifugado con el fotorresistente sensible a UV, se hornea durante 30 minutos a 90 ºC, se expone a luz UV durante 300 segundos a través de una máscara de contacto de cromo, se revela durante 5 minutos en un revelador y se post-hornea durante 30 minutos a 90 ºC. Los parámetros del procedimiento pueden alterarse dependiendo de la naturaleza y el grosor del fotorresistente. El patrón de la máscara de contacto cromo se transfiere al fotorresistente y determina la geometría de los obstáculos. Manufacturing. An exemplary method for manufacturing a device of the invention is summarized in Figure 18. In this example, standard photolithography is used to create a pattern of photoresist obstacles on a silicon wafer on insulator (SOI). An SOI wafer consists of a 100 µm thick Si (100) layer on top of a 1 µm thick SiO2 layer on a 500 µm thick Si (100) wafer. To optimize the adhesion of the photoresist, the SOI wafers can be exposed to high temperature hexamethyldisilazane vapors before the photoresist coating. The wafer is coated by centrifugation with the UV-sensitive photoresist, baked for 30 minutes at 90 ° C, exposed to UV light for 300 seconds through a chrome contact mask, revealed for 5 minutes in a developer and post-bake for 30 minutes at 90 ° C. The procedure parameters can be altered depending on the nature and thickness of the photoresist. The pattern of the chrome contact mask is transferred to the photoresist and determines the geometry of the obstacles.

Tras la formación del patrón de fotorresistente que es el mismo que el de los obstáculos, se inicia el grabado. El SiO2 puede servir como tope para el procedimiento de grabado. También se puede controlar la parada del grabado a una determinada profundidad sin el uso de una capa de tope. El patrón de fotorresistente se transfiere a la capa de Si de 100 µm de grosor en un grabador de plasma. Puede utilizarse grabado profundo multiplexado para lograr obstáculos uniformes. Por ejemplo, el sustrato se expone durante 15 segundos a un SF6 que fluye en plasma rico en flúor y después el sistema se cambia a un C4F8 solo que fluye en plasma rico en fluorocarbono durante 10 segundos, que recubre todas las superficies con una película protectora. En el ciclo de grabado subsiguiente, la exposición a bombardeo de iones elimina el polímero preferentemente de superficies horizontales y el ciclo se repite varias veces hasta que, p. ej., se alcanza la capa de SiO2. After the formation of the photoresist pattern that is the same as the obstacle pattern, engraving begins. SiO2 can serve as a stop for the engraving procedure. You can also control the engraving stop at a certain depth without the use of a stopper layer. The photoresist pattern is transferred to the Si layer 100 µm thick in a plasma recorder. Deep multiplex engraving can be used to achieve uniform obstacles. For example, the substrate is exposed for 15 seconds to an SF6 that flows in fluorine-rich plasma and then the system is changed to a C4F8 only that flows in fluorocarbon-rich plasma for 10 seconds, which covers all surfaces with a protective film . In the subsequent etching cycle, exposure to ion bombardment preferably removes the polymer from horizontal surfaces and the cycle is repeated several times until, e.g. eg, the SiO2 layer is reached.

Para acoplar un resto de unión a las superficies de los obstáculos, el sustrato puede exponerse a un plasma de oxígeno antes de la modificación de superficie para crear una capa de dióxido del silicio, a la que pueden unirse los restos de unión. Después, el sustrato puede aclararse dos veces con agua desionizada, destilada y dejarse secar al aire. La inmovilización de silano sobre vidrio expuesto se realiza sumergiendo muestras durante 30 segundos en solución al 2 % v/v recién preparada de 3-[(2-aminoetil)amino] propiltrimetoxisilano en agua seguido de lavado adicional en agua desionizada, destilada. Después, el sustrato se seca en gas nitrógeno y se hornea. Luego, el sustrato se sumerge en solución al 2,5 % v/v de glutaraldehído en solución salina tamponada con fosfato durante 1 hora a temperatura ambiente. Después el sustrato se aclara otra vez y se sumerge en una solución de 0,5 mg/ml de resto de unión, p. ej., anti-CD71, anti-CD36, anti-GPA o anti-CD45, en agua desionizada, destilada durante 15 minutos a temperatura ambiente para acoplar el agente de unión a los obstáculos. Después el sustrato se aclara dos veces en agua desionizada, destilada y se empapa durante la noche en etanol al 70 % para esterilización. To couple a binding residue to the surfaces of the obstacles, the substrate can be exposed to an oxygen plasma before surface modification to create a layer of silicon dioxide, to which the binding remains can be attached. Then, the substrate can be rinsed twice with deionized, distilled water and allowed to air dry. Silane immobilization on exposed glass is performed by immersing samples for 30 seconds in freshly prepared 2% v / v solution of 3 - [(2-aminoethyl) amino] propyltrimethoxysilane in water followed by further washing in deionized, distilled water. Then, the substrate is dried in nitrogen gas and baked. Then, the substrate is immersed in 2.5% v / v solution of glutaraldehyde in phosphate buffered saline for 1 hour at room temperature. The substrate is then rinsed again and immersed in a 0.5 mg / ml solution of binding residue, e.g. eg, anti-CD71, anti-CD36, anti-GPA or anti-CD45, in deionized water, distilled for 15 minutes at room temperature to couple the binding agent to the obstacles. The substrate is then rinsed twice in deionized, distilled water and soaked overnight in 70% ethanol for sterilization.

Existen varias técnicas distintas de las del procedimiento descrito anteriormente mediante las que pueden inmovilizarse restos de unión sobre los obstáculos y las superficies del dispositivo. Una fisioabsorción simple sobre la superficie puede ser la elección por su simplicidad y su coste. Otro enfoque puede usar monocapas agrupadas entre sí (p. ej., tioles sobre oro) que están funcionalizadas con diversos restos de unión. Pueden usarse procedimientos adicionales dependiendo de los restos de unión que se estén uniendo y el material usado para fabricar el dispositivo. Se conocen en la técnica procedimientos de modificación de la superficie. Además, algunas células pueden unirse preferentemente a la superficie no alterada de un material. Por ejemplo, algunas células pueden unirse preferentemente a superficies cargadas positivamente, cargadas negativamente o superficies hidrofóbicas o a grupos químicos presentes en algunos polímeros. There are several different techniques from those of the procedure described above by means of which binding remains can be immobilized on the obstacles and the surfaces of the device. A simple physioabsorption on the surface can be the choice for its simplicity and cost. Another approach may use monolayers grouped together (eg, thiols on gold) that are functionalized with various binding moieties. Additional procedures may be used depending on the junction moieties being joined and the material used to make the device. Surface modification methods are known in the art. In addition, some cells may preferentially bind to the unaltered surface of a material. For example, some cells may preferentially bind to positively charged, negatively charged surfaces or hydrophobic surfaces or to chemical groups present in some polymers.

La siguiente etapa implica la creación de un dispositivo de flujo mediante la unión de una capa superior al silicio microfabricado que contiene los obstáculos. El sustrato superior puede ser vidrio para proporcionar observación visual de células durante y después de la captura. Puede usarse unión térmica o un epoxi curable con UV para crear la cámara de flujo. Las partes superior e inferior también pueden ajustarse por compresión usando, por ejemplo, una junta de silicona. Un ajuste por compresión tal, puede ser reversible. Se conocen otros procedimientos de unión (p. ej., unión de obleas) en la técnica. El procedimiento empleado puede depender en la naturaleza de los materiales usados. The next stage involves the creation of a flow device by joining a top layer to the microfabricated silicon that contains the obstacles. The upper substrate may be glass to provide visual observation of cells during and after capture. Thermal bonding or a UV curable epoxy can be used to create the flow chamber. The upper and lower parts can also be adjusted by compression using, for example, a silicone gasket. Such compression adjustment can be reversible. Other binding methods (eg, wafer bonding) are known in the art. The procedure used may depend on the nature of the materials used.

El dispositivo de unión de células puede estar hecho de diferentes materiales. Dependiendo de la elección del material también pueden usarse diferentes técnicas de fabricación. El dispositivo puede estar hecho de plástico, tal como poliestireno, usando una técnica de repujado en caliente. Los obstáculos y las demás estructuras necesarias se repujan en el plástico para crear la superficie inferior. Después puede unirse una capa superior a la capa inferior. El moldeo por inyección es otro enfoque que puede usarse para crear un dispositivo tal. La litografía suave también puede utilizarse para crear una cámara hecha entera de poli (dimetilsiloxano) (PDMS), o pueden crearse sólo los obstáculos en PDMS y unirse después a un sustrato de vidrio para crear la cámara cerrada. Otro enfoque más implica el uso de técnicas de colado con epoxi para crear los obstáculos a través del uso de epoxi curables con UV o temperatura sobre un patrón que tiene la réplica negativa de la estructura pretendida. El láser u otros tipos de enfoques de micromaquinado pueden utilizarse también para crear la cámara de flujo. Otros polímeros adecuados que pueden usarse en la fabricación del dispositivo son policarbonato, polietileno y poli(metil metacrilato). Además, metales como el acero y el níquel también pueden usarse para fabricar el dispositivo de la invención, p. ej., por maquinado de metal tradicional. Pueden emplearse técnicas de fabricación tridimensional (p. ej., estereolitografía) para fabricar un dispositivo en una pieza. Se conocen otros procedimientos de fabricación en la técnica. The cell binding device can be made of different materials. Depending on the choice of material, different manufacturing techniques can also be used. The device may be made of plastic, such as polystyrene, using a hot embossing technique. Obstacles and other necessary structures are embossed in the plastic to create the bottom surface. Then an upper layer can be attached to the lower layer. Injection molding is another approach that can be used to create such a device. Soft lithography can also be used to create a camera made entirely of poly (dimethylsiloxane) (PDMS), or only obstacles in PDMS can be created and then attached to a glass substrate to create the closed chamber. Another approach involves the use of epoxy casting techniques to create obstacles through the use of UV or temperature curable epoxy on a pattern that has the negative replica of the intended structure. The laser or other types of micromachining approaches can also be used to create the flow chamber. Other suitable polymers that can be used in the manufacture of the device are polycarbonate, polyethylene and poly (methyl methacrylate). In addition, metals such as steel and nickel can also be used to make the device of the invention, e.g. eg, by traditional metal machining. Three-dimensional manufacturing techniques (eg, stereolithography) can be used to make a device in one piece. Other manufacturing processes are known in the art.

Procedimientos. Los procedimientos en los que un dispositivo de la invención puede usarse implican poner en contacto una mezcla de células con las superficies de un dispositivo microfluídico. Una población de células de una mezcla compleja de células tal como la sangre se une después a las superficies del dispositivo. De forma deseable, al menos el 60 %, 70 %, 80 %, 90 %, 95 %, 98 % o 99 % de las células que son capaces de unirse a las superficies del dispositivo se retiran de la mezcla. El recubrimiento de superficie se diseña, de forma deseable, para minimizar la unión de células no específica. Por ejemplo, al menos el 99 %, 98 %, 95 %, 90 %, 80 % o 70 % de las células incapaces de unirse al resto de unión no se unen a las superficies del dispositivo. La unión selectiva en el dispositivo da como resultado la separación de una población celular viva específica de una mezcla de células. Los obstáculos están presentes en el dispositivo para incrementar el área de superficie para que las células interaccionen con ellos mientras están en la cámara que contiene los obstáculos, de modo que la probabilidad de unión se incrementa. Las condiciones de flujo son tales que las células son manejadas muy suavemente en el dispositivo sin la necesidad de deformarse mecánicamente con el fin de entrar entre los obstáculos. Puede emplearse bombeo por presión positiva Procedures Methods in which a device of the invention can be used involve contacting a mixture of cells with the surfaces of a microfluidic device. A population of cells of a complex mixture of cells such as blood is then attached to the surfaces of the device. Desirably, at least 60%, 70%, 80%, 90%, 95%, 98% or 99% of the cells that are capable of binding to the surfaces of the device are removed from the mixture. The surface coating is desirably designed to minimize non-specific cell binding. For example, at least 99%, 98%, 95%, 90%, 80% or 70% of cells unable to bind to the rest of the junction do not bind to the surfaces of the device. Selective binding in the device results in the separation of a specific living cell population from a mixture of cells. Obstacles are present in the device to increase the surface area so that the cells interact with them while they are in the chamber containing the obstacles, so that the probability of binding increases. The flow conditions are such that the cells are handled very smoothly in the device without the need to deform mechanically in order to enter between the obstacles. Positive pressure pumping can be used

o presión negativa o flujo desde una columna de líquido para transportar células hacia dentro y fuera de los dispositivos microfluídicos de la invención. En una realización alternativa, las células se separan de una materia no celular, tal como una materia no biológica (p. ej., perlas), desechos celulares no viables (p. ej., fragmentos de membrana) o moléculas (p. ej., proteínas, ácidos nucleicos o lisados celulares). or negative pressure or flow from a liquid column to transport cells into and out of the microfluidic devices of the invention. In an alternative embodiment, the cells are separated from a non-cellular matter, such as a non-biological matter (e.g., beads), non-viable cell debris (e.g., membrane fragments) or molecules (e.g. ., proteins, nucleic acids or cell lysates).

La Figura 19 muestra células que expresan un antígeno de superficie que se une a un resto de unión recubierto sobre obstáculos, mientras otras células fluyen a través del dispositivo (la flecha pequeña sobre las células representa la direccionalidad de las células que no están unidas a la superficie). Las superficies superior e inferior del aparato de flujo también pueden estar recubiertas con el mismo resto de unión, o un resto de unión diferente, para promover la unión celular. Figure 19 shows cells expressing a surface antigen that binds to a binding residue coated on obstacles, while other cells flow through the device (the small arrow on the cells represents the directionality of the cells that are not bound to the surface). The upper and lower surfaces of the flow apparatus may also be coated with the same binding residue, or a different binding residue, to promote cell binding.

Los tipos celulares ejemplares que pueden separarse usando los procedimientos descritos en el presente documento incluyen glóbulos rojos adultos, glóbulos rojos fetales, trofoblastos, fibroblastos fetales, glóbulos blancos (tales como linfocitos T, linfocitos B y linfocitos T colaboradores), glóbulos blancos infectados, células madre (p. ej., células madre hematopoyéticas positivas para CD34), células epiteliales, células tumorales y organismos infecciosos Exemplary cell types that can be separated using the procedures described herein include adult red blood cells, fetal red blood cells, trophoblasts, fetal fibroblasts, white blood cells (such as T lymphocytes, B lymphocytes and helper T cells), infected white blood cells, cells stem (eg, hematopoietic stem cells positive for CD34), epithelial cells, tumor cells and infectious organisms

(p. ej., bacterias, protozoos y hongos). (e.g., bacteria, protozoa and fungi).

Las muestras pueden fraccionarse en múltiples componentes homogéneos usando los procedimientos descritos en el presente documento. Pueden conectarse varios dispositivos similares que contienen diferentes restos de unión específicos para una población de células en serie o en paralelo. La separación serial puede emplearse cuando se busca aislar células raras. Por otro lado, la separación paralela puede emplearse cuándo se desea obtener distribución diferencial de diversas poblaciones en sangre. Las Figuras 20A y 20B muestran sistemas paralelo y serial para la separación de varias poblaciones de células de sangre. Para dispositivos paralelos, dos o más conjuntos de obstáculos que unen los diferentes tipos de células pueden ubicarse en regiones distintas o pueden ser intercalarse entre sí, p. ej., en un patrón de tipo tablero de ajedrez o en filas alternas. Además, un juego de obstáculos puede unirse a la parte superior del dispositivo y otro juego pueden unirse a la parte inferior del dispositivo. Cada juego puede derivatizarse después para unir diferente poblaciones de células. Una vez que una muestra ha pasado a través del dispositivo, la parte superior superior y la inferior pueden separarse para proporcionar muestras aisladas de dos tipos de células diferentes. Samples can be divided into multiple homogeneous components using the procedures described herein. Several similar devices containing different binding moieties specific for a series or parallel cell population can be connected. Serial separation can be used when seeking to isolate rare cells. On the other hand, parallel separation can be used when it is desired to obtain differential distribution of various populations in blood. Figures 20A and 20B show parallel and serial systems for the separation of various populations of blood cells. For parallel devices, two or more sets of obstacles that join different types of cells can be located in different regions or they can be intercalated with each other, e.g. eg, in a chessboard type pattern or in alternate rows. In addition, an obstacle game can be attached to the top of the device and another game can be attached to the bottom of the device. Each game can then be derivatized to unite different cell populations. Once a sample has passed through the device, the upper and lower upper can be separated to provide isolated samples of two different cell types.

El dispositivo de unión de células puede usarse para retirar el flujo de salida de una población de células determinada o para capturar una población específica de células que expresan una molécula de superficie concreta para análisis adicional. Las células unidas a obstáculos pueden retirarse de la cámara para análisis adicional de la población de células homogénea (Figura 21). Esta retirada puede lograrse incorporando una o más entradas y salidas ortogonales a la dirección de flujo. Las células pueden retirarse de la cámara a un caudal incrementado, que tiene un esfuerzo de cizalladura mayor, para superar la fuerza de unión entre las células y los obstáculos. Otros enfoques pueden implicar acoplar restos de unión con propiedades de unión reversibles, p. ej., que están activados por pH, temperatura o campo eléctrico. El resto de unión o la molécula unida en la superficie de las células, también puede escindirse por medios enzimáticos u otros medios químicos. The cell binding device can be used to remove the outflow of a given population of cells or to capture a specific population of cells expressing a specific surface molecule for further analysis. Obstacle-bound cells can be removed from the chamber for further analysis of the homogeneous cell population (Figure 21). This withdrawal can be achieved by incorporating one or more orthogonal inputs and outputs to the flow direction. The cells can be removed from the chamber at an increased flow rate, which has a greater shear stress, to overcome the bond strength between the cells and the obstacles. Other approaches may involve coupling junction moieties with reversible binding properties, e.g. eg, which are activated by pH, temperature or electric field. The binding moiety or the molecule bound on the surface of the cells can also be cleaved by enzymatic means or other chemical means.

En el ejemplo de aislamiento de glóbulos rojos fetales, una muestra que ha pasado a través de un dispositivo de lisis se pasa a través de un dispositivo de unión de células, cuyas superficies están recubiertas con CD45. Los glóbulos blancos que expresan CD45 presentes en la mezcla se unen a las paredes del dispositivo y las células que pasan a través del dispositivo se enriquecen en glóbulos rojos fetales. Alternativamente, las superficies de los obstáculos y el dispositivo están recubiertas con anti-CD71 con el fin de unir glóbulos rojos nucleados fetales (los cuales expresan la proteína de superficie celular CD71) de una muestra de sangre materna completa. Un uno por ciento de los glóbulos blancos adultos también expresan CD71. Una muestra de sangre materna se pasa a través del dispositivo y ambas poblaciones de células que expresan CD71 se unen al dispositivo. Esto da como resultado la retirada de glóbulos rojos fetales de la muestra de sangre. Después, las células fetales se recogen y se analizan. Por ejemplo, las células se recogen sobre un sustrato plano para hibridación in situ por fluorescencia (FISH), seguida de la fijación de las células y el diagnóstico por imagen. La Figuras 22A-22C muestran el uso de FISH en una célula unida a un obstáculo en un dispositivo de unión de la invención. La célula, de origen fetal, se tiñe para los cromosomas X e Y usando sondas fluorescentes. Estos datos muestran la viabilidad del diagnóstico por imagen óptica de células teñidas por FISH en puestos de detección y diagnóstico de anormalidades cromosómicas. In the example of isolation of fetal red blood cells, a sample that has passed through a lysis device is passed through a cell binding device, whose surfaces are coated with CD45. The white blood cells expressing CD45 present in the mixture bind to the walls of the device and the cells that pass through the device are enriched in fetal red blood cells. Alternatively, the obstacle surfaces and the device are coated with anti-CD71 in order to bind fetal nucleated red blood cells (which express the CD71 cell surface protein) of a whole maternal blood sample. One percent of adult white blood cells also express CD71. A sample of maternal blood is passed through the device and both populations of cells expressing CD71 bind to the device. This results in the removal of fetal red blood cells from the blood sample. Then, the fetal cells are collected and analyzed. For example, the cells are collected on a flat substrate for fluorescence in situ hybridization (FISH), followed by cell fixation and imaging. Figures 22A-22C show the use of FISH in a cell attached to an obstacle in a binding device of the invention. The cell, of fetal origin, is stained for X and Y chromosomes using fluorescent probes. These data show the feasibility of the optical image diagnosis of FISH stained cells in detection and diagnosis positions of chromosomal abnormalities.

Realizaciones alternativas. Otra realización del dispositivo de unión celular utiliza perlas de vidrio/plástico derivatizadas químicamente atrapadas en un hidrogel poco reticulado, tal como, pero sin limitarse a, poli(vinil alcohol), poli(hidroxil-etil metacrilato), poliacrilamida o polietilenglicol (Figura 23). Las perlas derivatizadas químicamente sirven como obstáculos en esta realización. Una mezcla de células se dirige hacia el interior del dispositivo de retirada de células a través de dos entradas diametralmente opuestas. La presión positiva (p. ej., de una bomba de infusión o columna de líquido) o presión negativa (p. ej., de una bomba de jeringa en modo de tracción, un bomba de vacío o un aspirador) conduce el líquido a través del hidrogel. La interacción de las células de la muestra con las perlas derivatizadas químicamente dispersas en el volumen tridimensional del hidrogel da como resultado la retirada de las células, p. ej., glóbulos blancos (selección negativa), o la captura de células, p. ej., glóbulos rojos fetales (selección positiva). El peso molecular, la densidad de reticulación, la densidad de perlas y la distribución y los caudales pueden optimizarse para permitir la máxima interacción y captura de células relevantes por las perlas. El alto contenido en agua del hidrogel proporciona una estructura para atrapar las perlas a la vez que permite una facilidad de flujo a través de la muestra. La muestra se recoge después a través de dos salidas diametralmente opuestas. El diseño de canal entrada/salida bifurcado garantiza la máxima homogeneidad en la distribución de la muestra a través del volumen del hidrogel. Alternative realizations Another embodiment of the cell binding device uses chemically derivatized glass / plastic beads trapped in a poorly crosslinked hydrogel, such as, but not limited to, poly (vinyl alcohol), poly (hydroxy-ethyl methacrylate), polyacrylamide or polyethylene glycol (Figure 23 ). Chemically derivatized pearls serve as obstacles in this embodiment. A mixture of cells is directed into the cell removal device through two diametrically opposite entries. The positive pressure (e.g., of an infusion pump or liquid column) or negative pressure (e.g., of a syringe pump in traction mode, a vacuum pump or a vacuum cleaner) drives the liquid to through the hydrogel. The interaction of the cells in the sample with the chemically derivatized pearls dispersed in the three-dimensional volume of the hydrogel results in the removal of the cells, e.g. eg, white blood cells (negative selection), or cell capture, e.g. eg, fetal red blood cells (positive selection). Molecular weight, crosslinking density, pearl density and distribution and flow rates can be optimized to allow maximum interaction and capture of relevant cells by the beads. The high water content of the hydrogel provides a structure to trap the beads while allowing ease of flow through the sample. The sample is then collected through two diametrically opposed outlets. The branched inlet / outlet channel design guarantees maximum homogeneity in the distribution of the sample through the hydrogel volume.

En otra realización más, las perlas son reemplazadas por derivatización química directa de las cadenas laterales del polímero del hidrogel con el resto de unión (p. ej., un ligando sintético o anticuerpo monoclonal (Acm)). Este enfoque puede proporcionar una densidad muy alta de sitios de captura moleculares y garantizar de este modo una probabilidad de captura más alta. Una ventaja añadida de este enfoque es un uso potencial del dispositivo de retirada de células a base de hidrogel como sensor para captura de células fetales en el modo de selección positiva (selecciona células fetales con Acm), por ejemplo, si la química de la estructura del polímero y la cadena lateral está diseñada para capturar las células fetales y además reticular el hidrogel en el procedimiento. Las células se unen a numerosas cadenas laterales mediante interacción antígeno-Acm y, por tanto, sirven como reticulante para las cadenas de polímero y la reducción en la salida de flujo a lo largo del tiempo debido a la densidad de reticulación del polímero incrementada puede equipararse matemáticamente al número de células fetales capturadas en la matriz 3D del polímero. Cuándo se captura el número deseado de células fetales (medido por reducción en el caudal de salida), el dispositivo puede parar de procesar adicionalmente la muestra materna y proceder al análisis de las células fetales. Las células fetales capturadas pueden liberarse para análisis mediante el uso de un agente de acoplamiento fotoactivo en la cadena lateral. El agente fotorreactivo acopla el ligando objetivo o Acm a la estructura del polímero y, al exponerse a un pulso de radiación UV o IR, los ligandos o Acm y las células asociadas se liberan. In yet another embodiment, the beads are replaced by direct chemical derivatization of the hydrogel polymer side chains with the binding moiety (e.g., a synthetic ligand or monoclonal antibody (Acm)). This approach can provide a very high density of molecular capture sites and thus ensure a higher probability of capture. An added advantage of this approach is a potential use of the hydrogel-based cell removal device as a sensor for capturing fetal cells in the positive selection mode (select fetal cells with Acm), for example, if the chemistry of the structure The polymer and side chain is designed to capture fetal cells and also cross-link the hydrogel in the procedure. The cells bind to numerous side chains by antigen-Acm interaction and, therefore, serve as a crosslinker for the polymer chains and the reduction in flow output over time due to the increased crosslink density of the polymer can be matched. Mathematically the number of fetal cells captured in the 3D matrix of the polymer. When the desired number of fetal cells is captured (measured by reduction in outflow), the device can stop further processing the maternal sample and proceed to the analysis of fetal cells. Captured fetal cells can be released for analysis by using a photoactive coupling agent in the side chain. The photoreactive agent couples the target ligand or Acm to the polymer structure and, upon exposure to a pulse of UV or IR radiation, the ligands or Acm and the associated cells are released.

C. Selección de células C. Cell selection

En este dispositivo, una mezcla de células de la que normalmente se han retirado las células no deseadas se selecciona en un dispositivo microfluídico. Un dispositivo ejemplar para esta etapa se describe en la publicación internacional N.º WO 01/35071. Las células del dispositivo se someten entonces a ensayo, p. ej., por microscopia o ensayo colorimétrico, para ubicar las células deseadas. La células deseadas pueden analizarse entonces en el conjunto, p. ej., por lisis seguida por PCR, o las células pueden recogerse del conjunto mediante una variedad de mecanismos, p. ej., pinzas ópticas. En el dispositivo ejemplar descrito en el documento WO 01/35071, las células se introducen en el dispositivo de selección y pueden depositarse de forma pasiva en agujeros realizados en el dispositivo. Alternativamente, puede emplearse presión positiva o negativa para dirigir las células a los agujeros del conjunto. Una vez las células se han depositado en los agujeros, las células seleccionadas pueden liberarse individualmente del conjunto mediante activadores, p. ej., bombas activadas por burbujas. Otros procedimientos para inmovilizar y liberar células, p. ej., atrapamiento dielectroforético, también pueden usarse en un dispositivo de selección. Una vez liberadas del conjunto, las células pueden ser recogidas y sometidas a análisis. Por ejemplo, un glóbulo rojo fetal se identifica en el conjunto y después se analiza para evaluar anormalidades genéticas. Los glóbulos rojos fetales pueden ser identificados morfológicamente o por un marcador molecular específico (p. ej., hemoglobina fetal, receptor de transferrina (CD71), receptor de trombospondina (CD36) o glicoforina A (GPA)). In this device, a mixture of cells from which unwanted cells have normally been removed is selected in a microfluidic device. An exemplary device for this stage is described in International Publication No. WO 01/35071. The cells of the device are then tested, e.g. eg, by microscopy or colorimetric assay, to locate the desired cells. The desired cells can then be analyzed in the set, e.g. eg, by lysis followed by PCR, or the cells can be collected from the set by a variety of mechanisms, e.g. eg optical tweezers. In the exemplary device described in WO 01/35071, the cells are introduced into the selection device and can be passively deposited in holes made in the device. Alternatively, positive or negative pressure can be used to direct the cells to the holes in the assembly. Once the cells have been deposited in the holes, the selected cells can be released individually from the set by activators, e.g. eg, bubble activated pumps. Other procedures to immobilize and release cells, e.g. eg, dielectrophoretic entrapment, can also be used in a selection device. Once released from the set, the cells can be collected and subjected to analysis. For example, a fetal red blood cell is identified in the set and then analyzed to assess genetic abnormalities. Fetal red blood cells can be identified morphologically or by a specific molecular marker (e.g., fetal hemoglobin, transferrin receptor (CD71), thrombospondin receptor (CD36) or glycophorin A (GPA)).

D. Separación basada en el tamaño D. Separation based on size

Otro dispositivo es un dispositivo para la separación de partículas basada en el uso de tamices que permiten el paso selectivo de partículas en función de su tamaño, forma o deformabilidad. El tamaño, forma o deformabilidad de los poros del tamiz determina los tipos de células que pueden pasar a través del tamiz. Pueden colocarse dos o más tamices en serie o en paralelo, p. ej., para retirar células de tamaño creciente sucesivamente. Another device is a device for the separation of particles based on the use of sieves that allow the selective passage of particles according to their size, shape or deformability. The size, shape or deformability of the pores of the sieve determines the types of cells that can pass through the sieve. Two or more sieves can be placed in series or in parallel, e.g. eg, to remove cells of increasing size successively.

Dispositivo. En una realización, el tamiz incluye una serie de obstáculos que están separados por un espacio. Puede usarse una variedad de tamaños de obstáculo, geometrías y colocaciones en dispositivos de la invención. Pueden usarse en un tamiz formas diferentes de obstáculos, p. ej., aquellos con secciones transversales circulares, cuadradas, rectangulares, ovaladas o triangulares. El tamaño del hueco entre los obstáculos y la forma de los obstáculos puede optimizarse para garantizar una filtración rápida y eficaz. Por ejemplo, el intervalo de tamaños de los GR está en el orden de 5-8 µm, y el intervalo de tamaños de las plaquetas está en el orden de 1-3 µm. El tamaño de todos los GB es más grande de 10 µm. Los huecos grandes entre obstáculos incrementan la velocidad a la que los GR y las plaquetas pasan a través del tamiz, pero un tamaño de hueco incrementado también incrementa el riesgo de perder WBC. Los tamaños de hueco menores garantizan una captura más eficaz de GB pero también una velocidad de paso más lenta para los GR y plaquetas. Dependiendo de el tipo de aplicación, pueden usarse diferentes geometrías. Device. In one embodiment, the screen includes a series of obstacles that are separated by a space. A variety of obstacle sizes, geometries and placements can be used in devices of the invention. Different forms of obstacles can be used in a sieve, e.g. eg, those with circular, square, rectangular, oval or triangular cross sections. The size of the gap between the obstacles and the shape of the obstacles can be optimized to ensure rapid and efficient filtration. For example, the size range of the GR is in the order of 5-8 µm, and the size range of the platelets is in the order of 1-3 µm. The size of all GB is larger than 10 µm. Large gaps between obstacles increase the speed at which GR and platelets pass through the sieve, but an increased hole size also increases the risk of losing WBC. Smaller hole sizes ensure a more effective capture of GB but also a slower pitch speed for GRs and platelets. Depending on the type of application, different geometries can be used.

Además de los obstáculos, los tamices pueden fabricarse mediante otros procedimientos. Por ejemplo, un tamiz podría formarse por moldeo, electroformado, grabado, perforación o creando agujeros de otro modo en una hoja de material, p. ej., silicio, níquel o PDMS. Alternativamente, podría emplearse una matriz de polímero o matriz inorgánica (p. ej., de zeolita o cerámica) que tenga un tamaño de poro apropiado como tamiz en los dispositivos descritos en el presente documento. In addition to obstacles, sieves can be manufactured by other procedures. For example, a sieve could be formed by molding, electroforming, etching, drilling or otherwise creating holes in a sheet of material, e.g. eg, silicon, nickel or PDMS. Alternatively, an inorganic matrix or polymer matrix (eg, zeolite or ceramic) having an appropriate pore size as a sieve could be employed in the devices described herein.

Un problema asociado con dispositivos de la invención es la obstrucción de los tamices. Este problema puede reducirse mediante formas y diseños de tamiz apropiados y también tratando los tamices con recubrimientos no adhesivos tales como albúmina de suero bovino (BSA) o polietilenglicol (PEG), como se describe en el presente documento. Un procedimiento para evitar la obstrucción es minimizar el área de contacto entre el tamiz y las partículas. A problem associated with devices of the invention is the obstruction of the sieves. This problem can be reduced by appropriate sieve shapes and designs and also by treating sieves with non-adhesive coatings such as bovine serum albumin (BSA) or polyethylene glycol (PEG), as described herein. A procedure to avoid clogging is to minimize the contact area between the screen and the particles.

El esquema de un dispositivo de filtración de bajo esfuerzo de cizalladura se muestra en la Figura 24. El dispositivo tiene un canal de entrada que conduce al interior de un difusor, el cual es una porción ensanchada del canal. Normalmente, el canal se ensancha con un patrón con forma de V. El difusor contiene dos tamices que tienen poros con una forma para filtrar, por ejemplo, GR y plaquetas más pequeños de sangre, mientras enriquece la población de GB y GR fetales. La geometría del difusor ensancha las líneas de corriente de flujo laminar haciendo que más células entren en contacto con los tamices mientras se mueven a través del dispositivo. El dispositivo contiene 3 salidas, dos salidas recogen células que han pasado a través de los tamices, p. ej., los GR y plaquetas, y una salida recoge los GB y GR fetales enriquecidos. The scheme of a low shear filtration device is shown in Figure 24. The device has an inlet channel that leads into a diffuser, which is a widened portion of the channel. Normally, the canal widens with a V-shaped pattern. The diffuser contains two sieves that have pores with a shape to filter, for example, GR and smaller blood platelets, while enriching the population of fetal GB and GR. The diffuser geometry widens the laminar flow stream lines causing more cells to come in contact with the sieves as they move through the device. The device contains 3 outputs, two outputs collect cells that have passed through the sieves, e.g. eg, GR and platelets, and an output collects the enriched fetal GB and GR.

El dispositivo difusor normalmente no garantiza la retirada del 100 % de los GR y plaquetas. No obstante, las relaciones iniciales GR:GB de 600:1 pueden mejorarse a relaciones alrededor de 1:1. Las ventajas de este dispositivo son que los caudales son lo suficientemente bajos para que el esfuerzo de cizalladura sobre las células no afecte al fenotipo o viabilidad de las células y que los filtros garantizan que todas las células grandes (es decir, aquellas que no pueden pasar a través de los tamices) quedan retenidas de forma que la pérdida de células grandes se minimiza o elimina. Esta propiedad también garantiza que la población de células que pasa a través del tamiz no contiene células grandes, aunque pueden perderse algunas células más pequeñas. En ensanchamiento del ángulo del difusor dará como resultado un factor de enriquecimiento más grande. El enriquecimiento mayor también puede obtenerse mediante la colocación en serie de más de un difusor, donde la salida de un difusor alimenta la entrada de un segundo difusor. El ensanchamiento de los huecos entre los obstáculos puede agilizar el procedimiento de retirada con el riesgo de perder células grandes a través de los poros más grandes de los tamices. Para separar glóbulos rojos maternos de glóbulos rojos nucleados fetales, un espaciado ejemplar es de 2 -4 µm. The diffuser device does not normally guarantee 100% removal of GR and platelets. However, the initial GR: GB ratios of 600: 1 can be improved at ratios around 1: 1. The advantages of this device are that the flow rates are low enough so that the shear stress on the cells does not affect the phenotype or viability of the cells and that the filters guarantee that all large cells (i.e. those that cannot pass through sieves) are retained so that the loss of large cells is minimized or eliminated. This property also guarantees that the population of cells that pass through the sieve does not contain large cells, although some smaller cells may be lost. Widening the diffuser angle will result in a larger enrichment factor. Major enrichment can also be obtained by serially placing more than one diffuser, where the output of a diffuser feeds the input of a second diffuser. The widening of the gaps between the obstacles can expedite the removal procedure with the risk of losing large cells through the larger pores of the sieves. To separate maternal red blood cells from fetal nucleated red blood cells, an exemplary spacing is 2 -4 µm.

Procedimiento. El dispositivo es un separador de células de flujo continuo, p. ej., que filtra mayores cantidades de GB y GR fetales a partir de sangre. La ubicación de los tamices en el dispositivo se escoge para garantizar que el máximo número de partículas entran en contacto con los tamices, mientras al mismo tiempo evitan la obstrucción y permiten la recuperación de las partículas tras la separación. En general, las partículas se mueven a través de sus líneas de flujo laminar que se mantienen debido a un número de Reynolds extremadamente bajo en los canales del dispositivo, los cuales tienen normalmente un tamaño de micras. Process. The device is a continuous flow cell separator, e.g. eg, that filters larger amounts of fetal GB and GR from blood. The location of the sieves in the device is chosen to ensure that the maximum number of particles come into contact with the sieves, while at the same time preventing blockage and allowing the recovery of the particles after separation. In general, the particles move through their laminar flow lines that are maintained due to an extremely low Reynolds number in the channels of the device, which are normally micron sized.

Fabricación. Pueden usarse técnicas sencillas de microfabricación como litografía suave con poli(dimetilsiloxano) (PDMS), colado de polímeros (p. ej., usando epoxis, acrílicos o uretanos), moldeo por inyección, repujado en caliente de polímeros, micromaquinado con láser, micromaquinado de superficie de película fina, grabado profundo de vidrio y silicio, electroformado y técnicas de fabricación en 3D tales como estereolitografía para la fabricación de los canales y tamices de dispositivos de la invención. La mayoría de los procedimientos enumerados anteriormente usan fotomáscaras para la duplicación de microcaracterísticas. Para características de tamaños mayores de 5 µm, pueden usarse máscaras de emulsión a base de transparencias. Las características de tamaños entre 2 y 5 µm pueden requerir fotomáscaras a base de vidrio. Para características más pequeñas, puede usarse una máscara de escritura directa por haz de electrones a base de vidrio. Después, las máscaras se usan para definir un patrón de fotorresistente para grabado en el caso de silicio o vidrio o definir réplicas negativas, p. ej., usando fotorresistente SU-8, que puede usarse después como patrón para moldeo por réplica de materiales poliméricos como PDMS, epoxis y acrílicos. Los canales fabricados pueden unirse después sobre un sustrato rígido como vidrio para completar el dispositivo. Se conocen en la técnica otros procedimientos para la fabricación. Un dispositivo de la invención puede fabricarse a partir de una sólo material o una combinación de materiales. Manufacturing. Simple microfabrication techniques such as soft lithography with poly (dimethylsiloxane) (PDMS), polymer casting (e.g., using epoxies, acrylics or urethanes), injection molding, hot embossing of polymers, laser micromachining, micromachining can be used. of thin film surface, deep etching of glass and silicon, electroforming and 3D manufacturing techniques such as stereolithography for the manufacture of the channels and sieves of devices of the invention. Most of the procedures listed above use photomasks for duplication of micro features. For characteristics larger than 5 µm, transparency based emulsion masks can be used. The characteristics of sizes between 2 and 5 µm may require glass-based photomasks. For smaller features, a direct writing mask by glass-based electron beam can be used. Then, the masks are used to define a photoresist pattern for etching in the case of silicon or glass or to define negative replicas, e.g. eg, using SU-8 photoresist, which can then be used as a pattern for replica molding of polymeric materials such as PDMS, epoxies and acrylics. The fabricated channels can then be joined on a rigid substrate such as glass to complete the device. Other manufacturing processes are known in the art. A device of the invention can be manufactured from a single material or a combination of materials.

Ejemplo. En un ejemplo, un dispositivo para separación basada en el tamaño de GR y plaquetas más pequeños de los GB más grandes se fabricó usando técnicas de litografía suave sencillas. Se fabricó una fotomáscara de cromo que tenía las características y la geometría del dispositivo y se usó para estampar una oblea de silicio con una réplica negativa del dispositivo en fotorresistente SU-8. Este patrón se usó después para fabricar estructuras de canal y tamiz en PDMS usando técnicas de moldeo de réplicas estándar. El dispositivo de PDMS se unión a una lámina de vidrio después de tratamiento con plasma con O2. La geometría de difusor se usa para ensanchar las líneas de corriente de flujo laminar para garantizar que la mayoría de las partículas o células que fluyen a través del dispositivo interaccionará con los tamices. Los GR y plaquetas más pequeños pasan a través de los tamices y los GB más grandes están confinados en el canal central. Example. In one example, a device for separation based on the size of GR and smaller platelets of the larger GBs was manufactured using simple smooth lithography techniques. A chrome photomask was made that had the characteristics and geometry of the device and was used to stamp a silicon wafer with a negative replica of the device in SU-8 photoresist. This pattern was then used to manufacture channel and sieve structures in PDMS using standard replica molding techniques. The PDMS device is attached to a glass sheet after plasma treatment with O2. Diffuser geometry is used to widen laminar flow stream lines to ensure that most of the particles or cells that flow through the device will interact with the sieves. The smaller GR and platelets pass through the sieves and the larger GBs are confined in the central channel.

Combinación de dispositivos Device combination

Los dispositivos descritos en el presente documento pueden usarse solos o en cualquier combinación. Además, las etapas de los procedimientos descritos en el presente documento pueden emplearse en cualquier orden. Una representación esquemática de un dispositivo de combinación para detectar y aislar glóbulos rojos fetales se muestra en la Figura 25. En un ejemplo, una muestra puede ser procesada utilizando la etapa de lisis celular y después las células deseadas pueden atraparse con un dispositivo de unión de células. Si las células atrapadas son lo suficientemente puras, no se requiere ninguna etapa de procesamiento adicional. Alternativamente, puede emplearse sólo una de las etapas de lisis o de unión antes de la selección. En otro ejemplo, puede someterse una mezcla de células a lisis, separación basada en el tamaño, unión y selección. The devices described herein can be used alone or in any combination. In addition, the steps of the procedures described herein can be used in any order. A schematic representation of a combination device for detecting and isolating fetal red blood cells is shown in Figure 25. In one example, a sample can be processed using the cell lysis step and then the desired cells can be trapped with a binding device. cells. If the trapped cells are pure enough, no further processing step is required. Alternatively, only one of the lysis or binding steps can be used before selection. In another example, a mixture of cells can be subjected to lysis, separation based on size, binding and selection.

Los procedimientos de la invención pueden llevarse a cabo en un dispositivo integrado que contiene regiones para lisis celular, unión de células, selección y separación basada en el tamaño. Alternativamente, los dispositivos pueden estar separados y las poblaciones de células obtenidas en cada etapa pueden recogerse y transferirse manualmente a dispositivos para etapas de procesamiento adicionales. The methods of the invention can be carried out in an integrated device containing regions for cell lysis, cell binding, selection and size-based separation. Alternatively, the devices can be separated and the cell populations obtained at each stage can be collected and transferred manually to devices for additional processing steps.

Puede usarse el bombeo por presión positiva o negativa para transportar células a través de los dispositivos microfluídicos de la invención. Positive or negative pressure pumping can be used to transport cells through the microfluidic devices of the invention.

Análisis Analysis

Después de enriquecerse por uno o más de los dispositivos descritos en el presente documento, las células pueden ser recogidas y analizadas por diversos procedimientos, p. ej., análisis de ácido nucleico. La muestra también puede procesarse adicionalmente antes del análisis. En un ejemplo, las células pueden recogerse sobre un sustrato plano para hibridación in situ por fluorescencia (FISH), seguida de la fijación de las células y el diagnóstico por imagen. Tal análisis puede usarse para detectar anormalidades fetales como síndrome de Down, síndrome de Edward, síndrome de Patau, síndrome de Klinefelter, síndrome de Turner, anemia de células falciformes, distrofia muscular de Duchenne y fibrosis quística. El análisis también puede realizarse para determinar un rasgo concreto de un feto, p. ej., el sexo. After being enriched by one or more of the devices described herein, the cells can be collected and analyzed by various procedures, e.g. eg, nucleic acid analysis. The sample can also be processed further before analysis. In one example, the cells can be collected on a flat substrate for fluorescence in situ hybridization (FISH), followed by cell fixation and imaging. Such an analysis can be used to detect fetal abnormalities such as Down syndrome, Edward syndrome, Patau syndrome, Klinefelter syndrome, Turner syndrome, sickle cell anemia, Duchenne muscular dystrophy and cystic fibrosis. The analysis can also be performed to determine a specific trait of a fetus, e.g. eg sex.

Otras realizaciones Other realizations

Por el presente documento se hace referencia a todas publicaciones de patente y solicitudes de patente mencionadas en la memoria descriptiva anterior en el contexto en el que se mencionan respectivamente. Serán patentes diversas modificaciones y variaciones del sistema descrito de la invención para aquellos expertos en la técnica sin apartarse del alcance de la invención. Aunque la invención se ha descrito en conexión con realizaciones específicas, debería entenderse que la invención como se reivindica no debería limitarse indebidamente a tales realizaciones específicas. De hecho, se pretende que diversas modificaciones de los modos descritos para llevar a cabo la invención que son obvias para aquellos expertos en la técnica estén dentro del alcance de la invención. Reference is made herein to all patent publications and patent applications mentioned in the previous specification in the context in which they are mentioned respectively. Various modifications and variations of the described system of the invention will be apparent to those skilled in the art without departing from the scope of the invention. Although the invention has been described in connection with specific embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. In fact, it is intended that various modifications of the ways described for carrying out the invention that are obvious to those skilled in the art are within the scope of the invention.

Otras realizaciones están en las reivindicaciones. Other embodiments are in the claims.

Claims (12)

REIVINDICACIONES 1. Un dispositivo microfluídico que comprende: 1. A microfluidic device comprising:
(a)(to)
una primera región de obstáculos fijos dispuestos en un canal microfluídico que define una vía de flujo de líquido, en el que los obstáculos de la primera región se unen preferentemente a un primer tipo de célula comparado con un segundo tipo de célula, en el que los obstáculos están colocados en al menos dos columnas y al menos dos filas, en el que las filas están colocadas perpendiculares a la vía de flujo de líquido en relación con los obstáculos de la fila anterior, formando de este modo un conjunto de obstáculos triangular equilátero; y  a first region of fixed obstacles arranged in a microfluidic channel defining a liquid flow path, in which the obstacles of the first region preferably bind to a first type of cell compared to a second type of cell, in which the Obstacles are placed in at least two columns and at least two rows, in which the rows are placed perpendicular to the liquid flow path in relation to the obstacles in the previous row, thereby forming a set of equilateral triangular obstacles; Y
(b)(b)
una segunda región de obstáculos fijos dispuestos en el canal microfluídico, en el que los obstáculos de la segunda región se unen preferentemente a un tercer tipo de célula comparado con un cuarto tipo de célula, en el que los obstáculos están colocados en al menos dos columnas y al menos dos filas, en el que las filas están colocadas perpendiculares a la vía de flujo de líquido y los obstáculos de cada fila sucesiva están desplazados en una dirección perpendicular a la vía de flujo de líquido en relación con los obstáculos de la fila anterior, formando de este modo un conjunto de obstáculos triangular equilátero,  a second region of fixed obstacles arranged in the microfluidic channel, in which the obstacles of the second region preferably join a third type of cell compared to a fourth type of cell, in which the obstacles are placed in at least two columns and at least two rows, in which the rows are placed perpendicular to the liquid flow path and the obstacles of each successive row are displaced in a direction perpendicular to the liquid flow path in relation to the obstacles of the previous row , thus forming a set of equilateral triangular obstacles,
en el que la segunda región está situada más allá de la primera región en el canal microfluídico. in which the second region is located beyond the first region in the microfluidic channel.
2. 2.
El dispositivo microfluídico de la reivindicación 1, en el que los obstáculos están recubiertos con un anticuerpo. The microfluidic device of claim 1, wherein the obstacles are coated with an antibody.
3. 3.
El dispositivo microfluídico de la reivindicación 1 o 2, en el que un espaciado entre obstáculos es de al menos 50 µm. The microfluidic device of claim 1 or 2, wherein an obstacle spacing is at least 50 µm.
4. Four.
El dispositivo microfluídico de cualquiera de las reivindicaciones 1 a 3, en el que un espaciado entre obstáculos es de 100 µm como máximo. The microfluidic device of any one of claims 1 to 3, wherein a spacing between obstacles is 100 µm maximum.
5. 5.
El dispositivo microfluídico de cualquiera de las reivindicaciones 1 a 4, en el que los obstáculos de la primera región, la segunda región, o ambas regiones primera y segunda, son de tamaño sustancialmente uniforme. The microfluidic device of any one of claims 1 to 4, wherein the obstacles of the first region, the second region, or both first and second regions, are substantially uniform in size.
6. 6.
El dispositivo microfluídico de cualquiera de las reivindicaciones 1 a 5, que comprende además una bomba. The microfluidic device of any one of claims 1 to 5, further comprising a pump.
7. 7.
El dispositivo microfluídico de cualquiera de las reivindicaciones 1 a 6, en el que el dispositivo es ópticamente transparente o tiene ventanas transparentes. The microfluidic device of any one of claims 1 to 6, wherein the device is optically transparent or has transparent windows.
8. 8.
El dispositivo microfluídico de cualquiera de las reivindicaciones 1 a 7, en el que los obstáculos están en contacto tanto con la parte superior como con la inferior de la cámara. The microfluidic device of any one of claims 1 to 7, wherein the obstacles are in contact with both the top and bottom of the chamber.
9. 9.
El dispositivo microfluídico de cualquiera de las reivindicaciones 1 a 8, en el que los obstáculos tienen una sección transversal cilíndrica. The microfluidic device of any one of claims 1 to 8, wherein the obstacles have a cylindrical cross section.
10. 10.
El dispositivo microfluídico de cualquiera de las reivindicaciones 1 a 9, en el que el dispositivo está fabricado a partir de un polímero. The microfluidic device of any one of claims 1 to 9, wherein the device is made from a polymer.
11. eleven.
El dispositivo microfluídico de cualquiera de las reivindicaciones 1 a 10, en el que los obstáculos están colocados para permitir el flujo de células sin que sean comprimidas mecánicamente entre los obstáculos y, por tanto, dañadas, durante el proceso del flujo. The microfluidic device of any one of claims 1 to 10, wherein the obstacles are positioned to allow the flow of cells without being mechanically compressed between the obstacles and, therefore, damaged, during the flow process.
12. 12.
El uso de un dispositivo de acuerdo con cualquiera de las reivindicaciones 1 a 11 para diagnóstico médico. The use of a device according to any of claims 1 to 11 for medical diagnosis.
ES03798803T 2002-09-27 2003-09-29 MICROFLUDE DEVICE FOR SEPERATION OF CELLS AND ITS USES. Expired - Lifetime ES2375724T3 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US41425802P 2002-09-27 2002-09-27
US41406502P 2002-09-27 2002-09-27
US41410202P 2002-09-27 2002-09-27
US414258P 2002-09-27
US414102P 2002-09-27
US414065P 2002-09-27
PCT/US2003/030965 WO2004029221A2 (en) 2002-09-27 2003-09-29 Microfluidic device for cell separation and uses thereof

Publications (1)

Publication Number Publication Date
ES2375724T3 true ES2375724T3 (en) 2012-03-05

Family

ID=32045890

Family Applications (1)

Application Number Title Priority Date Filing Date
ES03798803T Expired - Lifetime ES2375724T3 (en) 2002-09-27 2003-09-29 MICROFLUDE DEVICE FOR SEPERATION OF CELLS AND ITS USES.

Country Status (9)

Country Link
US (10) US8895298B2 (en)
EP (2) EP2359689B1 (en)
JP (2) JP2006501449A (en)
AT (1) ATE531257T1 (en)
AU (2) AU2003277153A1 (en)
CA (1) CA2500392C (en)
ES (1) ES2375724T3 (en)
HK (1) HK1079960A1 (en)
WO (1) WO2004029221A2 (en)

Families Citing this family (322)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7553453B2 (en) * 2000-06-02 2009-06-30 Honeywell International Inc. Assay implementation in a microfluidic format
US6913697B2 (en) 2001-02-14 2005-07-05 Science & Technology Corporation @ Unm Nanostructured separation and analysis devices for biological membranes
US7993908B2 (en) * 2001-07-17 2011-08-09 Parsortix, Inc. Microstructure for particle and cell separation, identification, sorting, and manipulation
US7318902B2 (en) 2002-02-04 2008-01-15 Colorado School Of Mines Laminar flow-based separations of colloidal and cellular particles
US11243494B2 (en) 2002-07-31 2022-02-08 Abs Global, Inc. Multiple laminar flow-based particle and cellular separation with laser steering
US8895298B2 (en) * 2002-09-27 2014-11-25 The General Hospital Corporation Microfluidic device for cell separation and uses thereof
WO2005047851A2 (en) * 2003-10-15 2005-05-26 The Trustees Of Columbia University In The City Of New York Device for measuring nanometer level pattern-dependent binding reactions
DE10351661B4 (en) * 2003-11-05 2010-07-08 Dritte Patentportfolio Beteiligungsgesellschaft Mbh & Co.Kg Process for producing a composite material, composite material produced thereby and its use
JP4581380B2 (en) * 2003-11-17 2010-11-17 パナソニック株式会社 Nucleic acid amplification reaction vessel and method for producing the same
DE102004009173A1 (en) * 2004-02-25 2005-09-15 Infineon Technologies Ag Method for compensating the shortening of line ends in the formation of lines on a wafer
JP2005310653A (en) * 2004-04-23 2005-11-04 Toyota Motor Corp Fuel cell system
JP2007538252A (en) * 2004-05-18 2007-12-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Magnetic rotation to improve signal-to-background ratio in biological detection
ITBO20040420A1 (en) 2004-07-07 2004-10-07 Type S R L METAL CUTTING AND FORMING MACHINE
FR2872912B1 (en) * 2004-07-09 2007-03-02 Centre Nat Rech Scient Cnrse NEW MICROFLUIDIC SYSTEM AND METHOD OF CAPTURING CELLS
KR100637069B1 (en) * 2004-07-24 2006-10-23 삼성전자주식회사 Sample processing apparatus using vacant chamber and method the same
CA2586400A1 (en) * 2004-11-11 2006-05-18 Agency For Science, Technology And Research Cell culture device
US20060252087A1 (en) * 2005-01-18 2006-11-09 Biocept, Inc. Recovery of rare cells using a microchannel apparatus with patterned posts
US8158410B2 (en) 2005-01-18 2012-04-17 Biocept, Inc. Recovery of rare cells using a microchannel apparatus with patterned posts
US20090136982A1 (en) * 2005-01-18 2009-05-28 Biocept, Inc. Cell separation using microchannel having patterned posts
KR20070116585A (en) * 2005-01-18 2007-12-10 바이오셉트 인코포레이티드 Cell separation using microchannel having patterned posts
US20070026417A1 (en) * 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070196820A1 (en) 2005-04-05 2007-08-23 Ravi Kapur Devices and methods for enrichment and alteration of cells and other particles
US20070026418A1 (en) * 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
EP2594631A1 (en) 2005-04-05 2013-05-22 Cellpoint Diagnostics Devices and method for detecting circulating tumor cells and other particles
EP1712284B1 (en) * 2005-04-15 2012-10-10 Samsung Electronics Co., Ltd. Cell separation method using hydrophobic solid supports
JP4734588B2 (en) * 2005-05-23 2011-07-27 独立行政法人産業技術総合研究所 Automatic nuclear transfer device
EP1915618A4 (en) 2005-06-02 2009-09-30 Fluidigm Corp Analysis using microfluidic partitioning devices
ITBO20050481A1 (en) 2005-07-19 2007-01-20 Silicon Biosystems S R L METHOD AND APPARATUS FOR THE HANDLING AND / OR IDENTIFICATION OF PARTICLES
US8921102B2 (en) * 2005-07-29 2014-12-30 Gpb Scientific, Llc Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US8173413B2 (en) * 2005-08-11 2012-05-08 University Of Washington Separation and concentration of biological cells and biological particles using a one-dimensional channel
EP1931800A4 (en) * 2005-09-15 2011-06-15 Artemis Health Inc Systems and methods for enrichment of analytes
US20070059716A1 (en) * 2005-09-15 2007-03-15 Ulysses Balis Methods for detecting fetal abnormality
US8822206B2 (en) * 2005-10-11 2014-09-02 The Johns Hopkins University Device for high-throughput stimulation, immunostaining, and visualization of single cells
US8043580B2 (en) 2005-10-13 2011-10-25 Nissui Pharmaceutical Co., Ltd. Testing device
ITBO20050646A1 (en) * 2005-10-26 2007-04-27 Silicon Biosystem S R L METHOD AND APPARATUS FOR CHARACTERIZATION AND COUNTING OF PARTICLES
TW200734641A (en) * 2005-12-26 2007-09-16 Inst Of Microchemical Technology Microchip for immunoassay, kit for immunoassay and immunoassay method
US9487812B2 (en) 2012-02-17 2016-11-08 Colorado School Of Mines Optical alignment deformation spectroscopy
US9878326B2 (en) 2007-09-26 2018-01-30 Colorado School Of Mines Fiber-focused diode-bar optical trapping for microfluidic manipulation
US9885644B2 (en) 2006-01-10 2018-02-06 Colorado School Of Mines Dynamic viscoelasticity as a rapid single-cell biomarker
US7695956B2 (en) * 2006-01-12 2010-04-13 Biocept, Inc. Device for cell separation and analysis and method of using
EP2002262B1 (en) * 2006-03-15 2016-06-22 The General Hospital Corporation Devices and methods for detecting cells and other analytes
ITTO20060226A1 (en) 2006-03-27 2007-09-28 Silicon Biosystem S P A METHOD AND APPARATUS FOR PROCESSING AND OR ANALYSIS AND OR SELECTION OF PARTICLES, IN PARTICULAR BIOLOGICAL PARTICLES
US20100028614A1 (en) * 2006-03-29 2010-02-04 Anne Shim Method of forming nanoscale features using soft lithography
DK2029778T3 (en) 2006-06-14 2018-08-20 Verinata Health Inc DIAGNOSIS OF Fetal ABNORMITIES
US20080050739A1 (en) 2006-06-14 2008-02-28 Roland Stoughton Diagnosis of fetal abnormalities using polymorphisms including short tandem repeats
US20080090239A1 (en) * 2006-06-14 2008-04-17 Daniel Shoemaker Rare cell analysis using sample splitting and dna tags
AU2007260676A1 (en) 2006-06-14 2007-12-21 Artemis Health, Inc. Rare cell analysis using sample splitting and DNA tags
EP3406736B1 (en) 2006-06-14 2022-09-07 Verinata Health, Inc. Methods for the diagnosis of fetal abnormalities
EP2589668A1 (en) 2006-06-14 2013-05-08 Verinata Health, Inc Rare cell analysis using sample splitting and DNA tags
US20080026390A1 (en) * 2006-06-14 2008-01-31 Roland Stoughton Diagnosis of Fetal Abnormalities by Comparative Genomic Hybridization Analysis
US8137912B2 (en) 2006-06-14 2012-03-20 The General Hospital Corporation Methods for the diagnosis of fetal abnormalities
EP2029779A4 (en) * 2006-06-14 2010-01-20 Living Microsystems Inc Use of highly parallel snp genotyping for fetal diagnosis
BRPI0713029A2 (en) * 2006-06-20 2012-07-17 Amic Ab test device
US8852256B2 (en) 2010-11-15 2014-10-07 Aquesys, Inc. Methods for intraocular shunt placement
US10085884B2 (en) 2006-06-30 2018-10-02 Aquesys, Inc. Intraocular devices
US8828070B2 (en) 2010-11-15 2014-09-09 Aquesys, Inc. Devices for deploying intraocular shunts
US8974511B2 (en) 2010-11-15 2015-03-10 Aquesys, Inc. Methods for treating closed angle glaucoma
US8852137B2 (en) 2010-11-15 2014-10-07 Aquesys, Inc. Methods for implanting a soft gel shunt in the suprachoroidal space
US8663303B2 (en) 2010-11-15 2014-03-04 Aquesys, Inc. Methods for deploying an intraocular shunt from a deployment device and into an eye
US20120123316A1 (en) 2010-11-15 2012-05-17 Aquesys, Inc. Intraocular shunts for placement in the intra-tenon's space
US8801766B2 (en) 2010-11-15 2014-08-12 Aquesys, Inc. Devices for deploying intraocular shunts
US8721702B2 (en) 2010-11-15 2014-05-13 Aquesys, Inc. Intraocular shunt deployment devices
WO2008005873A2 (en) * 2006-06-30 2008-01-10 Aquesys Inc. Methods, systems and apparatus for relieving pressure in an organ
US8308701B2 (en) 2010-11-15 2012-11-13 Aquesys, Inc. Methods for deploying intraocular shunts
US9095411B2 (en) 2010-11-15 2015-08-04 Aquesys, Inc. Devices for deploying intraocular shunts
US8758290B2 (en) 2010-11-15 2014-06-24 Aquesys, Inc. Devices and methods for implanting a shunt in the suprachoroidal space
US20080007838A1 (en) * 2006-07-07 2008-01-10 Omnitech Partners, Inc. Field-of-view indicator, and optical system and associated method employing the same
US8656949B2 (en) 2006-08-15 2014-02-25 University Of Maryland College Park Microfluidic devices and methods of fabrication
US8158411B2 (en) * 2006-08-21 2012-04-17 Samsung Electronics Co., Ltd. Method of separating microorganism using nonplanar solid substrate and device for separating microorganism using the same
JP2008048735A (en) * 2006-08-21 2008-03-06 Samsung Electronics Co Ltd Method for separating microorganism with non-planar solid support and apparatus for separating the same
WO2008031228A1 (en) * 2006-09-15 2008-03-20 The Governors Of The University Of Alberta Automated fish analysis, circulating microfluidic chip, and method for immobilizing cells to a microfluidic chip
JP5217220B2 (en) * 2007-04-12 2013-06-19 株式会社日立製作所 Cell separation device
EP2142279A2 (en) 2007-04-16 2010-01-13 The General Hospital Corporation d/b/a Massachusetts General Hospital Systems and methods for particle focusing in microchannels
ITTO20070307A1 (en) * 2007-05-04 2008-11-05 Silicon Biosystems Spa METHOD AND DEVICE FOR NON-INVASIVE PRENATAL DIAGNOSIS
US8702946B1 (en) * 2007-05-31 2014-04-22 Sandia Corporation Dielectrokinetic chromatography and devices thereof
EP2716656B1 (en) 2007-06-15 2016-10-12 Xiamen University Monoclonal antibodies binding to avian influenza virus subtype H5 haemagglutinin and uses thereof
US8841135B2 (en) * 2007-06-20 2014-09-23 University Of Washington Biochip for high-throughput screening of circulating tumor cells
US10722250B2 (en) 2007-09-04 2020-07-28 Colorado School Of Mines Magnetic-field driven colloidal microbots, methods for forming and using the same
ITTO20070771A1 (en) 2007-10-29 2009-04-30 Silicon Biosystems Spa METHOD AND APPARATUS FOR IDENTIFICATION AND HANDLING OF PARTICLES
DE102007054691A1 (en) * 2007-11-14 2009-05-20 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Use of nanostructured surfaces and methods for enriching or isolating cellular subpopulations
US8071395B2 (en) * 2007-12-12 2011-12-06 The Board Of Trustees Of The Leland Stanford Junior University Methods and apparatus for magnetic separation of cells
EP2217925A4 (en) * 2007-12-13 2011-01-19 Beckman Coulter Inc Device and methods for detecting a target cell
WO2009091048A1 (en) * 2008-01-18 2009-07-23 National University Corporation University Of Toyama REACTION JIG, REACTION METHOD AND METHOD OF SYNTHESIZING cDNA
EP2090365A1 (en) * 2008-01-23 2009-08-19 Koninklijke Philips Electronics N.V. Combined cell and protein analysis on a substrate
US8008032B2 (en) 2008-02-25 2011-08-30 Cellective Dx Corporation Tagged ligands for enrichment of rare analytes from a mixed sample
US20090233324A1 (en) * 2008-03-11 2009-09-17 Kopf-Sill Anne R Methods for Diagnosing Cancer Using Samples Collected From A Central Vein Location or an Arterial Location
AU2010246381B2 (en) * 2008-04-23 2013-08-15 Angle North America, Inc. Methods and apparatus for segregation of particles
EP2427568A4 (en) * 2008-04-23 2015-06-10 Parsortix Inc Methods and apparatus for segregation of particles
US20090269800A1 (en) * 2008-04-29 2009-10-29 Todd Covey Device and method for processing cell samples
US10429376B2 (en) 2008-05-16 2019-10-01 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Microfluidic isolation of tumor cells or other rare cells from whole blood or other liquids
JP2010004870A (en) * 2008-05-30 2010-01-14 Univ Of Tokyo Cell separation device, cell separation system and cell separation method
EP2982437B1 (en) 2008-06-25 2017-12-06 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale fet arrays
SE532644C2 (en) * 2008-07-03 2010-03-09 Aamic Ab Procedure for analyzing circulating antibodies
US9285361B2 (en) 2008-07-03 2016-03-15 Johnson & Johnson Ab Method for the analysis of circulating antibodies
US20100014741A1 (en) * 2008-07-10 2010-01-21 Banville Steven C Methods and apparatus related to gate boundaries within a data space
US20100030719A1 (en) * 2008-07-10 2010-02-04 Covey Todd M Methods and apparatus related to bioinformatics data analysis
US9427688B2 (en) * 2008-07-10 2016-08-30 Steven H. Reichenbach Method and apparatus for sorting particles using asymmetrical particle shifting
GB2474613A (en) * 2008-07-10 2011-04-20 Nodality Inc Methods and apparatus related to management of experiments
US9183237B2 (en) 2008-07-10 2015-11-10 Nodality, Inc. Methods and apparatus related to gate boundaries within a data space
US8304185B2 (en) 2009-07-17 2012-11-06 Canon U.S. Life Sciences, Inc. Methods and systems for DNA isolation on a microfluidic device
JP5795255B2 (en) 2008-07-18 2015-10-14 キヤノン ユー.エス. ライフ サイエンシズ, インコーポレイテッドCanon U.S. Life Sciences, Inc. Methods and systems for microfluidic DNA sample preparation
ES2628181T3 (en) 2008-07-24 2017-08-02 The Trustees Of Princeton University Shock matrix device that has asymmetric separation spaces for particle segregation
US20100159506A1 (en) * 2008-07-25 2010-06-24 Cellscape Corporation Methods and systems for genetic analysis of fetal nucleated red blood cells
ES2808503T3 (en) * 2008-08-11 2021-03-01 Fujimori Kogyo Co Platelet Blood Test Procedure
US20100059120A1 (en) * 2008-09-11 2010-03-11 General Electric Company Microfluidic device and methods for droplet generation and manipulation
PT2562268T (en) 2008-09-20 2017-03-29 Univ Leland Stanford Junior Noninvasive diagnosis of fetal aneuploidy by sequencing
US8092822B2 (en) 2008-09-29 2012-01-10 Abbott Cardiovascular Systems Inc. Coatings including dexamethasone derivatives and analogs and olimus drugs
US20100112081A1 (en) 2008-10-07 2010-05-06 Bioparadox, Llc Use of platelet rich plasma composition in the treatment of cardiac conduction abnormalities
US8377307B2 (en) * 2008-10-08 2013-02-19 The Regents Of The University Of California Process for sorting dispersed colloidal structures
WO2010042762A1 (en) * 2008-10-09 2010-04-15 Bioparadox, Llc Platelet rich plasma formulations for cardiac treatments
WO2010041231A2 (en) 2008-10-10 2010-04-15 Cnrs-Dae Cell sorting device
FR2937050A1 (en) * 2008-10-10 2010-04-16 Inst Curie CELL CULTURE DEVICE
US9034257B2 (en) * 2008-10-27 2015-05-19 Nodality, Inc. High throughput flow cytometry system and method
US10895575B2 (en) 2008-11-04 2021-01-19 Menarini Silicon Biosystems S.P.A. Method for identification, selection and analysis of tumour cells
IT1391619B1 (en) * 2008-11-04 2012-01-11 Silicon Biosystems Spa METHOD FOR THE IDENTIFICATION, SELECTION AND ANALYSIS OF TUMOR CELLS
US20100120047A1 (en) * 2008-11-07 2010-05-13 Ghc Technologies, Inc. Purification of target cells from complex biological fluids
KR20110113610A (en) * 2008-12-05 2011-10-17 나노아이브이디, 인크. Microfluidic-based lab-on-a-test card for a point-of-care analyzer
US8162149B1 (en) 2009-01-21 2012-04-24 Sandia Corporation Particle sorter comprising a fluid displacer in a closed-loop fluid circuit
WO2010085815A1 (en) * 2009-01-26 2010-07-29 Artemis Health, Inc. Methods and compositions for identifying a fetal cell
US9212995B2 (en) 2009-03-02 2015-12-15 Mbio Diagnostics, Inc. System and method for detecting multiple molecules in one assay
US9658222B2 (en) 2009-03-02 2017-05-23 Mbio Diagnostics, Inc. Planar waveguide based cartridges and associated methods for detecting target analyte
CN102427883B (en) 2009-03-17 2014-08-20 硅生物系统股份公司 Microfluidic device for isolation of cells
WO2010129441A2 (en) * 2009-05-04 2010-11-11 Gpb Scientific, Llc Method for separating stem cells from their more differentiated progeny using microfluidic devices
US8790916B2 (en) * 2009-05-14 2014-07-29 Genestream, Inc. Microfluidic method and system for isolating particles from biological fluid
US20120270209A1 (en) * 2009-05-15 2012-10-25 Massachusetts Institute Of Technology Systems, devices, and methods for specific capture and release of biological sample components
US20120301867A1 (en) * 2009-09-04 2012-11-29 Kanazawa Medical University Recovering nucleated red blood cells and method for concentrating and recovering nucleated red blood cells
US9459246B2 (en) 2009-09-08 2016-10-04 Nodality, Inc. Induced intercellular communication
EP2309266A1 (en) 2009-09-21 2011-04-13 F. Hoffmann-La Roche AG Method for carrying out reactions in an analytical device
US9034658B2 (en) 2009-11-23 2015-05-19 The General Hospital Corporation Microfluidic devices for the capture of biological sample components
SG181676A1 (en) 2009-12-23 2012-07-30 Cytovera Inc A system and method for particle filtration
WO2011079214A1 (en) * 2009-12-23 2011-06-30 Artery Therapeutics, Inc., Diagnosis and treatment of reverse cholesterol transport deficiency-related diseases
JP5340419B2 (en) * 2009-12-25 2013-11-13 学校法人常翔学園 Device having solid-liquid separation function, μ-TAS device, and solid-liquid separation method
US10662474B2 (en) * 2010-01-19 2020-05-26 Verinata Health, Inc. Identification of polymorphic sequences in mixtures of genomic DNA by whole genome sequencing
US20120100548A1 (en) 2010-10-26 2012-04-26 Verinata Health, Inc. Method for determining copy number variations
WO2011090556A1 (en) 2010-01-19 2011-07-28 Verinata Health, Inc. Methods for determining fraction of fetal nucleic acid in maternal samples
US10388403B2 (en) 2010-01-19 2019-08-20 Verinata Health, Inc. Analyzing copy number variation in the detection of cancer
CA2786565C (en) 2010-01-19 2017-04-25 Verinata Health, Inc. Partition defined detection methods
DK3382037T3 (en) 2010-01-19 2021-05-25 Verinata Health Inc METHODS FOR DETERMINING THE FACTION OF FETAL NUCLEIC ACIDS IN MATERIAL SAMPLES
US9260745B2 (en) 2010-01-19 2016-02-16 Verinata Health, Inc. Detecting and classifying copy number variation
US9323888B2 (en) 2010-01-19 2016-04-26 Verinata Health, Inc. Detecting and classifying copy number variation
JP5846609B2 (en) 2010-01-21 2016-01-20 バイオセップ リミテッド Magnetic separation of rare cells
US20110312503A1 (en) 2010-01-23 2011-12-22 Artemis Health, Inc. Methods of fetal abnormality detection
WO2011099569A1 (en) 2010-02-10 2011-08-18 藤森工業株式会社 Microchip for platelet examination and platelet examination device using same
US9458489B2 (en) 2010-03-04 2016-10-04 Massachusetts Institute Of Technology Microfluidics sorter for cell detection and isolation
KR101120137B1 (en) * 2010-03-10 2012-05-17 주식회사 넥스비보 Selective Particle Capture and Release Device
US8774488B2 (en) 2010-03-11 2014-07-08 Cellscape Corporation Method and device for identification of nucleated red blood cells from a maternal blood sample
US20130071304A1 (en) 2010-04-15 2013-03-21 Cytogen Co., Ltd. Microfluidic device
EP2560000B1 (en) 2010-04-15 2018-12-26 Cytogen Co. Ltd. Microfluidic device and method for isolating target
ITTO20100068U1 (en) * 2010-04-20 2011-10-21 Eltek Spa MICROFLUID AND / OR EQUIPMENT DEVICES FOR MICROFLUID DEVICES
KR101159581B1 (en) 2010-04-28 2012-06-26 한국과학기술원 Microfluidic device for particle separation using capture materials
TW201144805A (en) * 2010-06-08 2011-12-16 Academia Sinica Microfluidic device
US8979877B2 (en) * 2010-07-02 2015-03-17 Neurodynamics, LLC Catheter for use in revascularization procedures and method of using same
US9422517B2 (en) 2010-07-30 2016-08-23 The General Hospital Corporation Microscale and nanoscale structures for manipulating particles
CN103210079B (en) * 2010-08-02 2015-07-22 B·L·韦特 Pressurizable cartridge for polymerase chain reactions
MX2013001750A (en) * 2010-08-15 2013-06-05 Gpb Scientific Llc Microfluidic cell separation in the assay of blood.
WO2012037369A1 (en) 2010-09-15 2012-03-22 Mbio Diagnostics, Inc. System and method for detecting multiple molecules in one assay
US20140031250A1 (en) 2010-10-07 2014-01-30 David Tsai Ting Biomarkers of Cancer
US20130149724A1 (en) * 2010-10-08 2013-06-13 Ashok Chander Systems, devices and methods for microfluidic culturing, manipulation and analysis of tissues and cells
US11007528B2 (en) 2010-10-08 2021-05-18 Cellanyx Diagnostics, Llc Systems, methods and devices for measuring growth/oncogenic and migration/metastatic potential
US10114020B2 (en) 2010-10-11 2018-10-30 Mbio Diagnostics, Inc. System and device for analyzing a fluidic sample
US8585629B2 (en) 2010-11-15 2013-11-19 Aquesys, Inc. Systems for deploying intraocular shunts
US10842671B2 (en) 2010-11-15 2020-11-24 Aquesys, Inc. Intraocular shunt placement in the suprachoroidal space
US10908066B2 (en) 2010-11-16 2021-02-02 1087 Systems, Inc. Use of vibrational spectroscopy for microfluidic liquid measurement
KR20120063162A (en) * 2010-12-07 2012-06-15 삼성전자주식회사 Gene analysis apparatus and method of analyzing gene using the same
IT1403518B1 (en) 2010-12-22 2013-10-31 Silicon Biosystems Spa MICROFLUID DEVICE FOR PARTICLE HANDLING
US20140154703A1 (en) * 2011-01-06 2014-06-05 Alison Skelley Circulating tumor cell capture on a microfluidic chip incorporating both affinity and size
US9927334B2 (en) 2011-02-03 2018-03-27 Northeastern University Methods, compositions and devices employing alginic acid hydrogels for highly specific capture and release of biological materials
KR20150023022A (en) 2011-03-24 2015-03-04 앤팩 바이오-메디컬 사이언스 시오., 엘티디. Micro devices for disease detection
CA2832468C (en) 2011-04-12 2023-10-31 Verinata Health, Inc. Resolving genome fractions using polymorphism counts
US9411937B2 (en) 2011-04-15 2016-08-09 Verinata Health, Inc. Detecting and classifying copy number variation
US8956820B2 (en) * 2011-04-19 2015-02-17 Shamsoddin Mohajerzadeh Method for detecting cancer cells using vertically aligned carbon nanotubes
US9408565B2 (en) 2011-05-05 2016-08-09 Shanghai Xinshenpai Technology Co., Ltd. Apparatus for detecting tumor cells
CN102242055B (en) * 2011-06-03 2013-08-14 博奥生物有限公司 Method for evaluating sperm activity and screening sperms and special microfluidic chip device for same
WO2012170232A1 (en) 2011-06-09 2012-12-13 Bellbrook Labs, Llc Device for washing suspended cells or particles
US9541480B2 (en) 2011-06-29 2017-01-10 Academia Sinica Capture, purification, and release of biological substances using a surface coating
US10466160B2 (en) 2011-08-01 2019-11-05 Celsee Diagnostics, Inc. System and method for retrieving and analyzing particles
CN103998394B (en) 2011-08-01 2016-08-17 德诺弗科学公司 Cell capture system and using method
US9174216B2 (en) 2013-03-13 2015-11-03 DeNovo Science, Inc. System for capturing and analyzing cells
US9404864B2 (en) 2013-03-13 2016-08-02 Denovo Sciences, Inc. System for imaging captured cells
EP2747859A4 (en) 2011-08-22 2015-04-22 Waters Technologies Corp Microfluidic device with dried blood spots (dbs) card interface
US9957472B2 (en) * 2011-09-22 2018-05-01 Georgia Tech Research Corporation Deterministic high-density single-cell trap array
WO2013063035A1 (en) 2011-10-24 2013-05-02 The General Hospital Corporation Biomarkers of cancer
ITTO20110990A1 (en) 2011-10-28 2013-04-29 Silicon Biosystems Spa METHOD AND APPARATUS FOR OPTICAL ANALYSIS OF LOW TEMPERATURE PARTICLES
EP2780465A4 (en) * 2011-11-17 2015-06-03 Cellscape Corp Methods, devices, and kits for obtaining and analyzing cells
US9808373B2 (en) 2013-06-28 2017-11-07 Aquesys, Inc. Intraocular shunt implantation
US9610195B2 (en) 2013-02-27 2017-04-04 Aquesys, Inc. Intraocular shunt implantation methods and devices
US8852136B2 (en) 2011-12-08 2014-10-07 Aquesys, Inc. Methods for placing a shunt into the intra-scleral space
US10080682B2 (en) 2011-12-08 2018-09-25 Aquesys, Inc. Intrascleral shunt placement
US8765210B2 (en) 2011-12-08 2014-07-01 Aquesys, Inc. Systems and methods for making gelatin shunts
US20150125865A1 (en) * 2011-12-23 2015-05-07 Gigagen, Inc. Methods And Apparatuses For Droplet Mixing
ITBO20110766A1 (en) 2011-12-28 2013-06-29 Silicon Biosystems Spa DEVICES, EQUIPMENT, KITS AND METHOD FOR THE TREATMENT OF A BIOLOGICAL SAMPLE
JP5742728B2 (en) * 2012-01-06 2015-07-01 コニカミノルタ株式会社 Cell separation device and cell separation method using the same
US9370736B2 (en) 2012-01-17 2016-06-21 The Penn State Research Foundation Flexible filter device for capturing of particles or cells in a fluid
US9987632B2 (en) * 2012-02-03 2018-06-05 University Of Cincinnati Microfluidic methods for passive separation of cells and particles
EP2814773B1 (en) 2012-02-16 2017-05-31 National Research Council of Canada Centrifugal microfluidic mixing apparatus and method
WO2013134261A1 (en) 2012-03-05 2013-09-12 President And Fellows Of Harvard College Systems and methods for epigenetic sequencing
US9803239B2 (en) * 2012-03-29 2017-10-31 Complete Genomics, Inc. Flow cells for high density array chips
EP2831219A4 (en) * 2012-03-30 2016-02-24 Univ Mcgill Methods and devices for multi-dimensional separation, isolation and characterization of circulating tumour cells
EP2852682B1 (en) 2012-05-21 2017-10-04 Fluidigm Corporation Single-particle analysis of particle populations
US10379026B2 (en) 2012-08-29 2019-08-13 Inguran, Llc Cell processing using magnetic particles
EP4006550A1 (en) 2012-08-29 2022-06-01 Inguran, LLC Composition for magnetic removal or identification of damaged or compromised cells or cellular structures
AU2013318647B2 (en) 2012-09-21 2017-10-26 Massachusetts Institute Of Technology Micro-fluidic device and uses thereof
WO2014065861A1 (en) 2012-10-26 2014-05-01 The Trustees Of The University Of Pennsylvania Compositions, methods and microfluidics device for telomerase based in vitro diagnostic assays for detecting circulating tumor cells (ctc)
US9494500B2 (en) 2012-10-29 2016-11-15 Academia Sinica Collection and concentration system for biologic substance of interest and use thereof
WO2014070235A1 (en) 2012-10-29 2014-05-08 Mbio Diagnostics, Inc. Biological particle identification system, cartridge and associated methods
JP6298474B2 (en) 2012-12-17 2018-03-20 レウコドゥックス,リミテッド Systems and methods for detecting biological conditions
KR101356933B1 (en) * 2012-12-28 2014-01-29 고려대학교 산학협력단 Apparatus and method for separating micro-nano scale particles using surface acoustic wave-based microfluidic chromatography
US10040018B2 (en) 2013-01-09 2018-08-07 Imagine Tf, Llc Fluid filters and methods of use
DE102013200927A1 (en) * 2013-01-22 2014-07-24 Siemens Aktiengesellschaft Method for enriching and separating cells with concentrations over several logarithmic stages
SG10201705895TA (en) * 2013-01-24 2017-08-30 Nat Univ Singapore Microdevices for separation of non-spherical particles and applications thereof
US9752181B2 (en) 2013-01-26 2017-09-05 Denovo Sciences, Inc. System and method for capturing and analyzing cells
US10350320B2 (en) 2013-01-29 2019-07-16 Children's Medical Center Corporation Magnetic separation using nanoparticles
US9125723B2 (en) 2013-02-19 2015-09-08 Aquesys, Inc. Adjustable glaucoma implant
US10159600B2 (en) 2013-02-19 2018-12-25 Aquesys, Inc. Adjustable intraocular flow regulation
US20160008778A1 (en) 2013-03-06 2016-01-14 President And Fellows Of Harvard College Devices and methods for forming relatively monodisperse droplets
US10168341B2 (en) * 2013-03-08 2019-01-01 Emory University Devices for determining cell force properties and methods of manufacturing the devices
US9707562B2 (en) 2013-03-13 2017-07-18 Denovo Sciences, Inc. System for capturing and analyzing cells
US20150064153A1 (en) 2013-03-15 2015-03-05 The Trustees Of Princeton University High efficiency microfluidic purification of stem cells to improve transplants
CN105264127B (en) 2013-03-15 2019-04-09 Gpb科学有限责任公司 The on piece microfluidic process of particle
CN113512522A (en) 2013-03-15 2021-10-19 普林斯顿大学理事会 Method and apparatus for high throughput purification
CN111632578A (en) 2013-04-01 2020-09-08 西托索尔本茨公司 Hemocompatibility modifier for crosslinked polymeric materials
WO2014166000A1 (en) * 2013-04-11 2014-10-16 The Governing Council Of The University Of Toronto Device for capture of particles in a flow
US20140318278A1 (en) * 2013-04-24 2014-10-30 Honeywell International Inc. Particle imaging utilizing a filter
US9856535B2 (en) 2013-05-31 2018-01-02 Denovo Sciences, Inc. System for isolating cells
US10391490B2 (en) 2013-05-31 2019-08-27 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
US20140356893A1 (en) 2013-06-04 2014-12-04 Allan Mishra Compositions and methods for using platelet-rich plasma for drug discovery, cell nuclear reprogramming, proliferation or differentiation
US8961904B2 (en) 2013-07-16 2015-02-24 Premium Genetics (Uk) Ltd. Microfluidic chip
WO2015010019A1 (en) 2013-07-18 2015-01-22 The General Hospital Corporation Selective capture and release of rare mammalian cells using photodegradable hydrogels in a microfluidic platform
WO2015017733A1 (en) * 2013-07-31 2015-02-05 Massachusetts Institute Of Technology Methods and apparatus for transplantation of nucleic acid molecules
US10670583B2 (en) 2013-09-20 2020-06-02 The General Hospital Corporation Cell chemotaxis assays
WO2015058206A1 (en) 2013-10-18 2015-04-23 The General Hosptial Corporation Microfluidic sorting using high gradient magnetic fields
US11796449B2 (en) 2013-10-30 2023-10-24 Abs Global, Inc. Microfluidic system and method with focused energy apparatus
NZ719850A (en) 2013-11-14 2017-03-31 Aquesys Inc Intraocular shunt inserter
US20160279637A1 (en) * 2013-11-22 2016-09-29 The General Hospital Corporation Microfluidic methods and systems for isolating particle clusters
EP3107995B1 (en) 2014-02-18 2019-10-30 Massachusetts Institute Of Technology Biophysically sorted osteoprogenitors from culture expanded bone marrow derived mesenchymal stromal cells (mscs)
US20170074870A1 (en) 2014-03-14 2017-03-16 Northeastern University Microfluidic System and Method for Real-Time Measurement of Antibody-Antigen Binding and Analyte Detection
WO2015148512A1 (en) 2014-03-24 2015-10-01 Qt Holdings Corp Shaped articles including hydrogels and methods of manufacture and use thereof
TW201623605A (en) 2014-04-01 2016-07-01 中央研究院 Methods and systems for cancer diagnosis and prognosis
JP6308525B2 (en) * 2014-04-11 2018-04-11 国立大学法人名古屋大学 Particle separation chip, particle separation system and particle separation method using the particle separation chip
MY184699A (en) 2014-04-16 2021-04-18 Juno Therapeutics Gmbh Methods, kits and apparatus for expanding a population of cells
US20150298091A1 (en) 2014-04-21 2015-10-22 President And Fellows Of Harvard College Systems and methods for barcoding nucleic acids
JP6759187B2 (en) * 2014-04-23 2020-09-23 ジュノー セラピューティクス インコーポレイテッド Methods for Isolating, Culturing, and Gene-Manipulating Immune Cell Populations for Adoption Therapy
CN106459863A (en) 2014-05-01 2017-02-22 阿卜杜拉国王科技大学 A microfluidic device that separates cells
US9861920B1 (en) 2015-05-01 2018-01-09 Imagine Tf, Llc Three dimensional nanometer filters and methods of use
CN106461686B (en) * 2014-05-20 2018-06-12 尔利生物有限公司 Box, magnetic flow cytometer for magnetic flow cytometer and the method for analyzing sample using such box
US11046595B2 (en) 2014-05-23 2021-06-29 Hydrus Technology Pty. Ltd. Electrochemical treatment methods
US20150362420A1 (en) * 2014-06-13 2015-12-17 Wafergen, Inc. Systems for single or multiple cell counting and dispensing
US10730047B2 (en) 2014-06-24 2020-08-04 Imagine Tf, Llc Micro-channel fluid filters and methods of use
WO2016019401A1 (en) * 2014-07-30 2016-02-04 Medvisionus Llc Microfluidic device with smooth surface for enrichment of rare cells and biomarkers from a biological fluid
DK3174976T3 (en) 2014-08-01 2020-11-23 Gpb Scient Inc Particle processing methods and systems
CN106537144A (en) * 2014-08-05 2017-03-22 富士胶片株式会社 Nucleated erythrocyte sorting method
US10391491B2 (en) 2014-08-07 2019-08-27 The General Hospital Corporation Platelet-targeted microfluidic isolation of cells
EP2998026B1 (en) 2014-08-26 2024-01-17 Academia Sinica Collector architecture layout design
US10124275B2 (en) 2014-09-05 2018-11-13 Imagine Tf, Llc Microstructure separation filters
US10806845B2 (en) 2014-09-17 2020-10-20 Massachusetts Institute Of Technology System and method for inertial focusing microfiltration for intra-operative blood salvage autotransfusion
WO2016057387A1 (en) 2014-10-06 2016-04-14 The Trustees Of The University Of Pennsylvania Compositions and methods for isolation of circulating tumor cells (ctc)
WO2016057945A1 (en) * 2014-10-09 2016-04-14 Texas Tech University System Micro-device to detect infection
KR102360072B1 (en) * 2014-12-08 2022-02-08 삼성전자주식회사 Apparatus for classifying micro-particles
JP6367493B2 (en) 2015-01-07 2018-08-01 インディー.インコーポレイテッド Method of mechanical and hydrodynamic microfluidic transfection and apparatus therefor
WO2016133929A1 (en) 2015-02-18 2016-08-25 Imagine Tf, Llc Three dimensional filter devices and apparatuses
WO2016168584A1 (en) 2015-04-17 2016-10-20 President And Fellows Of Harvard College Barcoding systems and methods for gene sequencing and other applications
JP6916742B2 (en) 2015-06-03 2021-08-11 アクエシス, インコーポレイテッド Intraocular shunt placement of AB EXTERNO (from outside the eye to inside the eye)
JP6615499B2 (en) * 2015-06-05 2019-12-04 国立大学法人 東京大学 Separation and capture device for cells or liposome particles
US9422547B1 (en) 2015-06-09 2016-08-23 Gigagen, Inc. Recombinant fusion proteins and libraries from immune cell repertoires
US10118842B2 (en) 2015-07-09 2018-11-06 Imagine Tf, Llc Deionizing fluid filter devices and methods of use
US10479046B2 (en) 2015-08-19 2019-11-19 Imagine Tf, Llc Absorbent microstructure arrays and methods of use
US10976232B2 (en) 2015-08-24 2021-04-13 Gpb Scientific, Inc. Methods and devices for multi-step cell purification and concentration
KR20230164753A (en) 2015-08-26 2023-12-04 에뮬레이트, 인크. Perfusion manifold assembly
EP4252898A3 (en) * 2015-09-18 2023-11-29 Redbud Labs, Inc. Flow cells utilizing surface-attached structures, and related systems and methods
US10919036B2 (en) * 2015-09-18 2021-02-16 Redbud Labs, Inc. Flow cells utilizing surface-attached structures, and related systems and methods
CN108474002B (en) 2015-10-22 2023-05-23 朱诺治疗学有限公司 Method, reagent cartridge, reagent and device for transduction
MA45489A (en) 2015-10-22 2018-08-29 Juno Therapeutics Gmbh CELL CULTURE PROCESSES, ASSOCIATED KITS AND APPARATUS
JP6781876B2 (en) * 2015-10-27 2020-11-11 国立大学法人 熊本大学 Target cell capture device
US9795964B2 (en) 2015-11-20 2017-10-24 International Business Machines Corporation Direct bond transfer layers for manufacturable sealing of microfluidic chips
US10107726B2 (en) 2016-03-16 2018-10-23 Cellmax, Ltd. Collection of suspended cells using a transferable membrane
WO2017193126A1 (en) 2016-05-06 2017-11-09 The General Hospital Corporation Microfluidic neutrophil assays and systems for disease detection
WO2017210627A1 (en) 2016-06-02 2017-12-07 Aquesys, Inc. Intraocular drug delivery
CN111500534B (en) * 2016-07-11 2022-11-29 山东亚大药业有限公司 Kit for separating and purifying fetal nucleated red blood cells
EP3484491B1 (en) 2016-07-18 2022-09-07 President and Fellows of Harvard College Human lymphoid tissue-on-chip
GB201617723D0 (en) 2016-10-19 2016-11-30 Univ London Queen Mary Method for predicting prostate cancer metastasis
GB201617722D0 (en) 2016-10-19 2016-11-30 Univ London Queen Mary Method for determining prognosis of cancer
WO2018085453A1 (en) * 2016-11-01 2018-05-11 California Institute Of Technology Microfluidic devices and methods for purifying rare antigen-specific t cell populations
US20190247030A1 (en) * 2018-02-13 2019-08-15 Trophodiagnostics, Llc System and Method for Collecting, Enriching and Isolating Trophoblast Cells From Endocervical Canal
US10471425B2 (en) 2017-02-16 2019-11-12 International Business Machines Corporation Automated machine for sorting of biological fluids
CA3090424C (en) 2017-02-28 2024-03-19 Lmsera Inc. Microfluidic device
US20200129981A1 (en) * 2017-04-21 2020-04-30 University Of Georgia Research Foundation, Inc. Devices and methods for separating particles
AR111625A1 (en) 2017-04-27 2019-07-31 Juno Therapeutics Gmbh REAGENTS OF OLIGOMERIC PARTICLES AND METHODS OF USE OF THE SAME
AU2018313950A1 (en) 2017-08-09 2020-02-13 Juno Therapeutics, Inc. Methods for producing genetically engineered cell compositions and related compositions
US10391493B2 (en) 2017-08-29 2019-08-27 Celsee Diagnostics, Inc. System and method for isolating and analyzing cells
US10844353B2 (en) 2017-09-01 2020-11-24 Gpb Scientific, Inc. Methods for preparing therapeutically active cells using microfluidics
US11246753B2 (en) 2017-11-08 2022-02-15 Aquesys, Inc. Manually adjustable intraocular flow regulation
WO2019094633A1 (en) * 2017-11-09 2019-05-16 Newomics Inc. Methods and systems for separating biological particles
TWI804560B (en) * 2018-01-11 2023-06-11 美商奈諾卡福有限責任公司 Microfluidic cellular device and methods of use thereof
DE102018104669A1 (en) * 2018-03-01 2019-09-05 Dionex Softron Gmbh Use of an acoustic wave in a chromatography system
US11135089B2 (en) 2018-03-09 2021-10-05 Aquesys, Inc. Intraocular shunt inserter
US10952898B2 (en) 2018-03-09 2021-03-23 Aquesys, Inc. Intraocular shunt inserter
EP3768427A4 (en) * 2018-03-20 2021-12-01 The Trustees of the University of Pennsylvania Microfluidic devices and methods for monitoring blood biology under flow
WO2019207724A1 (en) * 2018-04-26 2019-10-31 株式会社ニコン Blood component separation device, blood component separation method, and blood component analysis method
BR112020023607A2 (en) 2018-05-23 2021-02-17 Abs Global, Inc. systems and methods for focusing particles on microchannels
CN108956558B (en) * 2018-05-24 2023-09-15 深圳市帝迈生物技术有限公司 Microfluidic chip and immunofluorescence analyzer
DE102018210665A1 (en) * 2018-06-29 2020-01-02 Robert Bosch Gmbh Microfluidic flow cell and method for separating cells
US11192110B2 (en) 2018-07-06 2021-12-07 Liu Lian Methods and systems for cell-based non-invasive prenatal testing
US20210395693A1 (en) 2018-10-26 2021-12-23 Guy MARTI Method and apparatus for mesenchymal stem cells isolation and purification
WO2020139211A1 (en) * 2018-12-28 2020-07-02 Mikro Biyosistemler Elektronik Sanayi Ve Ticaret A.S. A microfluidic device for selective capture of biological entities
EP3941491A4 (en) 2019-03-21 2023-03-29 Gigamune, Inc. Engineered cells expressing anti-viral t cell receptors and methods of use thereof
US11890616B2 (en) 2019-03-26 2024-02-06 The Curators Of The University Of Missouri Microfluidic device for capture of micrometer scale objects and methods of using the device
US10633693B1 (en) 2019-04-16 2020-04-28 Celsee Diagnostics, Inc. System and method for leakage control in a particle capture system
WO2020215011A1 (en) 2019-04-18 2020-10-22 Abs Global, Inc. System and process for continuous addition of cryoprotectant
US11578322B2 (en) 2019-05-07 2023-02-14 Bio-Rad Laboratories, Inc. System and method for automated single cell processing
US11273439B2 (en) 2019-05-07 2022-03-15 Bio-Rad Laboratories, Inc. System and method for target material retrieval from microwells
CN114302643B (en) 2019-06-14 2024-02-27 伯乐实验室有限公司 Systems and methods for automated single cell processing and analysis
WO2020262351A1 (en) * 2019-06-28 2020-12-30 アイ ピース, インコーポレイテッド Cell cluster divider, cell cluster divider manufacturing method, and cell cluster dividing method
JP2021013333A (en) * 2019-07-12 2021-02-12 株式会社Ihi Microorganism sorting system and microorganism sorting method
WO2021011907A1 (en) 2019-07-18 2021-01-21 Gpb Scientific, Inc. Ordered processing of blood products to produce therapeutically active cells
CN115209996A (en) 2019-12-28 2022-10-18 Gpb科学有限公司 Microfluidic cartridge for processing particles and cells
WO2021142309A1 (en) * 2020-01-08 2021-07-15 The General Hospital Corporation Microfluidic systems and methods for low-shear isolation of rare cells from large sample volumes
US11628439B2 (en) 2020-01-13 2023-04-18 Abs Global, Inc. Single-sheath microfluidic chip
US11504719B2 (en) 2020-03-12 2022-11-22 Bio-Rad Laboratories, Inc. System and method for receiving and delivering a fluid for sample processing
US11738288B2 (en) 2020-06-29 2023-08-29 Jacques Chammas Automated system and method to isolate specific cells from blood or bone marrow
CN111733138B (en) * 2020-07-30 2021-03-30 首都医科大学附属北京友谊医院 High-flux magnetic sorting method for circulating tumor cells
WO2022170231A1 (en) * 2021-02-08 2022-08-11 Nutcracker Therapeutics, Inc. Microfluidic concentration and buffer exchange apparatuses and methods
WO2022217080A1 (en) * 2021-04-09 2022-10-13 Mellicell, Inc. Cell system and methods of use

Family Cites Families (503)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US87292A (en) * 1869-02-23 Improvement in lifting-jacks
US3560754A (en) * 1965-11-17 1971-02-02 Ibm Photoelectric particle separator using time delay
US4009435A (en) 1973-10-19 1977-02-22 Coulter Electronics, Inc. Apparatus for preservation and identification of particles analyzed by flow-through apparatus
US3924947A (en) 1973-10-19 1975-12-09 Coulter Electronics Apparatus for preservation and identification of particles analyzed by flow-through apparatus
US3906929A (en) 1973-11-23 1975-09-23 Lynn Lawrence Augspurger Processes for reproduction of cellular bodies
DE2502621C3 (en) 1975-01-23 1978-09-14 Kernforschungsanlage Juelich Gmbh, 5170 Juelich Measurement of elastic and dielectric properties of the membrane of living cells
US4115534A (en) 1976-08-19 1978-09-19 Minnesota Mining And Manufacturing Company In vitro diagnostic test
US4190535A (en) * 1978-02-27 1980-02-26 Corning Glass Works Means for separating lymphocytes and monocytes from anticoagulated blood
DE3274800D1 (en) 1981-02-05 1987-02-05 Asahi Chemical Ind Apparatus for separating blood components
US4415405A (en) 1981-08-19 1983-11-15 Yale University Method for engraving a grid pattern on microscope slides and slips
US4584268A (en) * 1981-10-13 1986-04-22 Ceriani Roberto Luis Method and compositions for carcinoma diagnosis
US4434156A (en) 1981-10-26 1984-02-28 The Salk Institute For Biological Studies Monoclonal antibodies specific for the human transferrin receptor glycoprotein
IL68507A (en) 1982-05-10 1986-01-31 Univ Bar Ilan System and methods for cell selection
US5310674A (en) 1982-05-10 1994-05-10 Bar-Ilan University Apertured cell carrier
US4508625A (en) 1982-10-18 1985-04-02 Graham Marshall D Magnetic separation using chelated magnetic ions
EP0162907B1 (en) 1983-11-08 1992-01-15 Bar Ilan University System and methods for cell selection
US4675286A (en) * 1985-01-28 1987-06-23 Aspen Diagnostics, Inc. Fetal cell separation and testing
WO1986006170A1 (en) 1985-04-10 1986-10-23 Immunicon Corporation Direct homogeneous assay
US5164598A (en) * 1985-08-05 1992-11-17 Biotrack Capillary flow device
US4963498A (en) 1985-08-05 1990-10-16 Biotrack Capillary flow device
US4664796A (en) 1985-09-16 1987-05-12 Coulter Electronics, Inc. Flux diverting flow chamber for high gradient magnetic separation of particles from a liquid medium
US4790640A (en) 1985-10-11 1988-12-13 Nason Frederic L Laboratory slide
US4999283A (en) * 1986-01-10 1991-03-12 University Of Kentucky Research Foundation Method for x and y spermatozoa separation
US5721098A (en) 1986-01-16 1998-02-24 The Regents Of The University Of California Comparative genomic hybridization
US5447841A (en) 1986-01-16 1995-09-05 The Regents Of The Univ. Of California Methods for chromosome-specific staining
US4800159A (en) * 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
JPS62217973A (en) 1986-03-20 1987-09-25 東レ株式会社 Apparatus for fractionating liquid
US4906439A (en) * 1986-03-25 1990-03-06 Pb Diagnostic Systems, Inc. Biological diagnostic device and method of use
US4789628A (en) 1986-06-16 1988-12-06 Vxr, Inc. Devices for carrying out ligand/anti-ligand assays, methods of using such devices and diagnostic reagents and kits incorporating such devices
US4814098A (en) 1986-09-06 1989-03-21 Bellex Corporation Magnetic material-physiologically active substance conjugate
US4925788A (en) * 1986-10-24 1990-05-15 Immunicon Corporation Immunoassay system and procedure based on precipitin-like interaction between immune complex and Clq or other non-immunospecific factor
JP2662215B2 (en) * 1986-11-19 1997-10-08 株式会社日立製作所 Cell holding device
US4886761A (en) 1987-03-26 1989-12-12 Yellowstone Diagnostics Corporation Polysilicon binding assay support and methods
WO1988006170A1 (en) 1987-02-12 1988-08-25 General Electric Company Polyetherimide-polyamide compositions
US4971904A (en) 1987-06-26 1990-11-20 E. I. Du Pont De Nemours And Company Heterogeneous immunoassay
JP2559760B2 (en) 1987-08-31 1996-12-04 株式会社日立製作所 Cell delivery method
US4936465A (en) * 1987-12-07 1990-06-26 Zoeld Tibor Method and apparatus for fast, reliable, and environmentally safe dispensing of fluids, gases and individual particles of a suspension through pressure control at well defined parts of a closed flow-through system
US4977078A (en) 1987-12-22 1990-12-11 Olympus Optical Co., Ltd. Plate substrate immunoassay device and method for performing a multi-test immunoassay on a specimen
US5039426A (en) 1988-05-17 1991-08-13 University Of Utah Process for continuous particle and polymer separation in split-flow thin cells using flow-dependent lift forces
US5215926A (en) * 1988-06-03 1993-06-01 Cellpro, Inc. Procedure for designing efficient affinity cell separation processes
EP0440749B1 (en) 1988-08-31 1997-05-28 Aprogenex, Inc. Manual in situ hybridization assay
US5183744A (en) 1988-10-26 1993-02-02 Hitachi, Ltd. Cell handling method for cell fusion processor
US5101825A (en) 1988-10-28 1992-04-07 Blackbox, Inc. Method for noninvasive intermittent and/or continuous hemoglobin, arterial oxygen content, and hematocrit determination
ATE141957T1 (en) 1988-11-15 1996-09-15 Univ Yale IN SITU SUPPRESSION HYBRIDIZATION AND USES
US4984574A (en) 1988-11-23 1991-01-15 Seth Goldberg Noninvasive fetal oxygen monitor using NMR
ATE161960T1 (en) 1988-12-06 1998-01-15 Flinders Technologies Pty Ltd ISOLATION OF FETAL CELLS FROM MATERNAL BLOOD TO PERFORM PRENATAL DIAGNOSTICS
CA1340565C (en) 1989-06-29 1999-05-25 Thomas B. Okarma Device and process for cell capture and recovery
US5698271A (en) 1989-08-22 1997-12-16 Immunivest Corporation Methods for the manufacture of magnetically responsive particles
ATE162631T1 (en) 1989-11-13 1998-02-15 Childrens Medical Center A NON-INVASIVE METHOD FOR SEPARATION AND DETECTION OF FETAL DNA
US5641628A (en) 1989-11-13 1997-06-24 Children's Medical Center Corporation Non-invasive method for isolation and detection of fetal DNA
WO1991007661A1 (en) 1989-11-20 1991-05-30 Hill Vincent E A method of detecting drugs in living and post-mortem skin and a kit therefor
EP0502037A1 (en) 1989-11-24 1992-09-09 Isis Innovation Limited Prenatal genetic determination
GB8926781D0 (en) 1989-11-27 1990-01-17 Nat Res Dev Identification of micro-organisms
AU647741B2 (en) 1989-12-01 1994-03-31 Regents Of The University Of California, The Methods and compositions for chromosome-specific staining
GB8929057D0 (en) 1989-12-22 1990-02-28 Gen Electric Co Plc Sensor
FR2657543B1 (en) 1990-01-26 1992-12-18 Biocom Sa MODULAR DEVICE FOR COLLECTING, INCUBATING, FILTERING MULTIPLE SAMPLES.
AU7340891A (en) 1990-02-24 1991-09-18 Hatfield Polytechnic Higher Education Corporation (U.K.) Biorheological measurement
JPH03247276A (en) 1990-02-27 1991-11-05 Hitachi Ltd Arrangement of cell and apparatus therefor
US6176962B1 (en) 1990-02-28 2001-01-23 Aclara Biosciences, Inc. Methods for fabricating enclosed microchannel structures
US6054034A (en) * 1990-02-28 2000-04-25 Aclara Biosciences, Inc. Acrylic microchannels and their use in electrophoretic applications
US5750015A (en) 1990-02-28 1998-05-12 Soane Biosciences Method and device for moving molecules by the application of a plurality of electrical fields
US5770029A (en) * 1996-07-30 1998-06-23 Soane Biosciences Integrated electrophoretic microdevices
US5858188A (en) * 1990-02-28 1999-01-12 Aclara Biosciences, Inc. Acrylic microchannels and their use in electrophoretic applications
FR2659347B1 (en) 1990-03-12 1994-09-02 Agronomique Inst Nat Rech DEVICE FOR CULTURING CELLS PROVIDING THEIR IMMOBILIZATION.
US5153117A (en) 1990-03-27 1992-10-06 Genetype A.G. Fetal cell recovery method
JPH05507404A (en) 1990-04-23 1993-10-28 セルプロ インコーポレイティド Method for enrichment of fetal cells from maternal blood
US5147606A (en) 1990-08-06 1992-09-15 Miles Inc. Self-metering fluid analysis device
US6277569B1 (en) 1990-09-20 2001-08-21 Vysis, Inc. Methods for multiple direct label probe detection of multiple chromosomes or regions thereof by in situ hybridization
EP0549709B1 (en) 1990-09-20 1997-01-29 Amoco Corporation Probe compositions for chromosome identification and methods
US5622831A (en) * 1990-09-26 1997-04-22 Immunivest Corporation Methods and devices for manipulation of magnetically collected material
US5541072A (en) 1994-04-18 1996-07-30 Immunivest Corporation Method for magnetic separation featuring magnetic particles in a multi-phase system
US5135627A (en) 1990-10-15 1992-08-04 Soane Technologies, Inc. Mosaic microcolumns, slabs, and separation media for electrophoresis and chromatography
US5217627A (en) 1990-11-06 1993-06-08 Pall Corporation System and method for processing biological fluid
US5496392A (en) * 1990-12-21 1996-03-05 Enviroscience Method of recycling industrial waste
US5186827A (en) 1991-03-25 1993-02-16 Immunicon Corporation Apparatus for magnetic separation featuring external magnetic means
US5646001A (en) 1991-03-25 1997-07-08 Immunivest Corporation Affinity-binding separation and release of one or more selected subset of biological entities from a mixed population thereof
US5466574A (en) 1991-03-25 1995-11-14 Immunivest Corporation Apparatus and methods for magnetic separation featuring external magnetic means
SE468483B (en) * 1991-05-24 1993-01-25 Nordiskafilt Ab PRESS AND WAY TO MODIFY A PRESS FOR PRESSURE IN A PAPER MACHINE OR LIKE
US5173158A (en) 1991-07-22 1992-12-22 Schmukler Robert E Apparatus and methods for electroporation and electrofusion
US5240856A (en) 1991-10-23 1993-08-31 Cellpro Incorporated Apparatus for cell separation
US5672481A (en) 1991-10-23 1997-09-30 Cellpro, Incorporated Apparatus and method for particle separation in a closed field
US5846708A (en) 1991-11-19 1998-12-08 Massachusetts Institiute Of Technology Optical and electrical methods and apparatus for molecule detection
WO1993021345A1 (en) 1992-04-21 1993-10-28 The Regents Of The University Of California Multicolor in situ hybridization methods for genetic testing
CA2134478C (en) 1992-05-01 2001-12-18 Peter Wilding Microfabricated detection structures
US5296375A (en) * 1992-05-01 1994-03-22 Trustees Of The University Of Pennsylvania Mesoscale sperm handling devices
US5726026A (en) 1992-05-01 1998-03-10 Trustees Of The University Of Pennsylvania Mesoscale sample preparation device and systems for determination and processing of analytes
US5486335A (en) * 1992-05-01 1996-01-23 Trustees Of The University Of Pennsylvania Analysis based on flow restriction
US5498392A (en) * 1992-05-01 1996-03-12 Trustees Of The University Of Pennsylvania Mesoscale polynucleotide amplification device and method
US5637469A (en) 1992-05-01 1997-06-10 Trustees Of The University Of Pennsylvania Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems
US5304487A (en) 1992-05-01 1994-04-19 Trustees Of The University Of Pennsylvania Fluid handling in mesoscale analytical devices
US6156270A (en) 1992-05-21 2000-12-05 Biosite Diagnostics, Inc. Diagnostic devices and apparatus for the controlled movement of reagents without membranes
US6143576A (en) 1992-05-21 2000-11-07 Biosite Diagnostics, Inc. Non-porous diagnostic devices for the controlled movement of reagents
US5629147A (en) * 1992-07-17 1997-05-13 Aprogenex, Inc. Enriching and identifying fetal cells in maternal blood for in situ hybridization
DE4228389C2 (en) * 1992-08-26 1994-07-21 Kuebler Gmbh Dr Collection and cultivation of transformed cells
AU2593192A (en) * 1992-09-14 1994-04-12 Oystein Fodstad Detection of specific target cells in specialized or mixed cell population and solutions containing mixed cell populations
US5275933A (en) 1992-09-25 1994-01-04 The Board Of Trustees Of The Leland Stanford Junior University Triple gradient process for recovering nucleated fetal cells from maternal blood
US5489506A (en) 1992-10-26 1996-02-06 Biolife Systems, Inc. Dielectrophoretic cell stream sorter
US6953668B1 (en) 1992-11-05 2005-10-11 Sloan-Kettering Institute For Cancer Research Prostate-specific membrane antigen
US5457024A (en) 1993-01-22 1995-10-10 Aprogenex, Inc. Isolation of fetal erythrocytes
US5427663A (en) 1993-06-08 1995-06-27 British Technology Group Usa Inc. Microlithographic array for macromolecule and cell fractionation
US5714325A (en) 1993-09-24 1998-02-03 New England Medical Center Hospitals Prenatal diagnosis by isolation of fetal granulocytes from maternal blood
US5776748A (en) * 1993-10-04 1998-07-07 President And Fellows Of Harvard College Method of formation of microstamped patterns on plates for adhesion of cells and other biological materials, devices and uses therefor
US5472842A (en) 1993-10-06 1995-12-05 The Regents Of The University Of California Detection of amplified or deleted chromosomal regions
CA2174140C (en) 1993-10-28 2004-04-06 Kenneth L. Beattie Microfabricated, flowthrough porous apparatus for discrete detection of binding reactions
US6068818A (en) 1993-11-01 2000-05-30 Nanogen, Inc. Multicomponent devices for molecular biological analysis and diagnostics
US6315953B1 (en) 1993-11-01 2001-11-13 Nanogen, Inc. Devices for molecular biological analysis and diagnostics including waveguides
US6331274B1 (en) 1993-11-01 2001-12-18 Nanogen, Inc. Advanced active circuits and devices for molecular biological analysis and diagnostics
NL9401260A (en) * 1993-11-12 1995-06-01 Cornelis Johannes Maria Van Ri Membrane for microfiltration, ultrafiltration, gas separation and catalysis, method for manufacturing such a membrane, mold for manufacturing such a membrane, as well as various separation systems comprising such a membrane.
US5432054A (en) 1994-01-31 1995-07-11 Applied Imaging Method for separating rare cells from a population of cells
US5716776A (en) * 1994-03-04 1998-02-10 Mark H. Bogart Enrichment by preferential mitosis of fetal lymphocytes from a maternal blood sample
NO180658C (en) 1994-03-10 1997-05-21 Oeystein Fodstad Method and Device for Detecting Specific Target Cells in Specialized or Mixed Cell Populations and Solutions Containing Mixed Cell Populations
US5563067A (en) 1994-06-13 1996-10-08 Matsushita Electric Industrial Co., Ltd. Cell potential measurement apparatus having a plurality of microelectrodes
US6071394A (en) 1996-09-06 2000-06-06 Nanogen, Inc. Channel-less separation of bioparticles on a bioelectronic chip by dielectrophoresis
US5637458A (en) * 1994-07-20 1997-06-10 Sios, Inc. Apparatus and method for the detection and assay of organic molecules
US5648222A (en) 1994-07-27 1997-07-15 The Trustees Of Columbia University In The City Of New York Method for preserving cells, and uses of said method
US6001229A (en) 1994-08-01 1999-12-14 Lockheed Martin Energy Systems, Inc. Apparatus and method for performing microfluidic manipulations for chemical analysis
US5840502A (en) 1994-08-31 1998-11-24 Activated Cell Therapy, Inc. Methods for enriching specific cell-types by density gradient centrifugation
US5707799A (en) 1994-09-30 1998-01-13 Abbott Laboratories Devices and methods utilizing arrays of structures for analyte capture
US5662813A (en) 1994-10-21 1997-09-02 Bioseparations, Inc. Method for separation of nucleated fetal erythrocytes from maternal blood samples
CN1110369C (en) 1994-11-14 2003-06-04 宾夕法尼亚州大学信托人 Mesoscale sample preparation device and system for determination and processing of analytes
US5750339A (en) 1994-11-30 1998-05-12 Thomas Jefferson University Methods for identifying fetal cells
US5648220A (en) 1995-02-14 1997-07-15 New England Medical Center Hospitals, Inc. Methods for labeling intracytoplasmic molecules
US6207369B1 (en) 1995-03-10 2001-03-27 Meso Scale Technologies, Llc Multi-array, multi-specific electrochemiluminescence testing
FR2733055B1 (en) 1995-04-12 1997-12-19 Chemodyne Sa NEW DEVICE FOR STUDYING ORGANOTYPICAL CULTURES AND ITS APPLICATIONS IN ELECTROPHYSIOLOGY
US5709943A (en) * 1995-05-04 1998-01-20 Minnesota Mining And Manufacturing Company Biological adsorption supports
US5639669A (en) 1995-06-07 1997-06-17 Ledley; Robert Separation of fetal cells from maternal blood
US5715946A (en) 1995-06-07 1998-02-10 Reichenbach; Steven H. Method and apparatus for sorting particles suspended in a fluid
US5922210A (en) * 1995-06-16 1999-07-13 University Of Washington Tangential flow planar microfabricated fluid filter and method of using thereof
US6454945B1 (en) 1995-06-16 2002-09-24 University Of Washington Microfabricated devices and methods
US5856174A (en) 1995-06-29 1999-01-05 Affymetrix, Inc. Integrated nucleic acid diagnostic device
US6130098A (en) 1995-09-15 2000-10-10 The Regents Of The University Of Michigan Moving microdroplets
US5661028A (en) 1995-09-29 1997-08-26 Lockheed Martin Energy Systems, Inc. Large scale DNA microsequencing device
CA2237589A1 (en) 1995-11-16 1997-05-22 Michael W. Dahm Method of quantifying tumour cells in a body fluid and a suitable test kit
US20030119724A1 (en) 1995-11-22 2003-06-26 Ts`O Paul O.P. Ligands to enhance cellular uptake of biomolecules
JP2000501414A (en) 1995-11-22 2000-02-08 ザ・ジョンズ・ホプキンス・ユニバーシティー Ligand enhances cellular uptake of biomolecules
US6718053B1 (en) * 1996-11-27 2004-04-06 Chromavision Medical Systems, Inc. Method and apparatus for automated image analysis of biological specimens
US5863502A (en) 1996-01-24 1999-01-26 Sarnoff Corporation Parallel reaction cassette and associated devices
US5830679A (en) 1996-03-01 1998-11-03 New England Medical Center Hospitals, Inc. Diagnostic blood test to identify infants at risk for sepsis
US5972721A (en) 1996-03-14 1999-10-26 The United States Of America As Represented By The Secretary Of The Air Force Immunomagnetic assay system for clinical diagnosis and other purposes
US5891651A (en) 1996-03-29 1999-04-06 Mayo Foundation For Medical Education And Research Methods of recovering colorectal epithelial cells or fragments thereof from stool
AU2438497A (en) 1996-04-05 1997-10-29 Johns Hopkins University, The A method of enriching rare cells
US6399023B1 (en) 1996-04-16 2002-06-04 Caliper Technologies Corp. Analytical system and method
US6387707B1 (en) * 1996-04-25 2002-05-14 Bioarray Solutions Array Cytometry
WO1997040385A1 (en) 1996-04-25 1997-10-30 Bioarray Solutions, Llc Light-controlled electrokinetic assembly of particles near surfaces
US6958245B2 (en) 1996-04-25 2005-10-25 Bioarray Solutions Ltd. Array cytometry
US5989835A (en) * 1997-02-27 1999-11-23 Cellomics, Inc. System for cell-based screening
US6890426B2 (en) 1996-06-07 2005-05-10 Immunivest Corporation Magnetic separation apparatus and methods
WO1997046882A1 (en) 1996-06-07 1997-12-11 Immunivest Corporation Magnetic separation employing external and internal gradients
US6267858B1 (en) 1996-06-28 2001-07-31 Caliper Technologies Corp. High throughput screening assay systems in microscale fluidic devices
IT1294964B1 (en) 1996-07-12 1999-04-23 Domenico Valerio INSULATION AND CULTURE OF FETAL CELLS FROM THE MATERNAL PERIPHERAL BLOOD
US6074827A (en) * 1996-07-30 2000-06-13 Aclara Biosciences, Inc. Microfluidic method for nucleic acid purification and processing
US6280967B1 (en) 1996-08-02 2001-08-28 Axiom Biotechnologies, Inc. Cell flow apparatus and method for real-time of cellular responses
US6100029A (en) 1996-08-14 2000-08-08 Exact Laboratories, Inc. Methods for the detection of chromosomal aberrations
AU4164597A (en) 1996-08-26 1998-03-19 Princeton University Reversibly sealable microstructure sorting devices
DK0925494T3 (en) * 1996-09-04 2002-07-01 Scandinavian Micro Biodevices Microfluidic system for particle separation and analysis
GB9619093D0 (en) 1996-09-12 1996-10-23 Scient Generics Ltd Methods of analysis/separation
US6120666A (en) 1996-09-26 2000-09-19 Ut-Battelle, Llc Microfabricated device and method for multiplexed electrokinetic focusing of fluid streams and a transport cytometry method using same
US5858187A (en) 1996-09-26 1999-01-12 Lockheed Martin Energy Systems, Inc. Apparatus and method for performing electrodynamic focusing on a microchip
US6110343A (en) 1996-10-04 2000-08-29 Lockheed Martin Energy Research Corporation Material transport method and apparatus
US5731156A (en) 1996-10-21 1998-03-24 Applied Imaging, Inc. Use of anti-embryonic hemoglobin antibodies to identify fetal cells
US6008010A (en) 1996-11-01 1999-12-28 University Of Pittsburgh Method and apparatus for holding cells
WO1998022819A1 (en) 1996-11-16 1998-05-28 Nmi Naturwissenschaftliches Und Medizinisches Institut An Der Universität Tübingen In Reutlingen Stiftung Bürgerlichen Rechts Array of microelements, method of contacting cells in a liquid environment and method for the production of an array of microelements
DE19712309A1 (en) 1996-11-16 1998-05-20 Nmi Univ Tuebingen Microelement arrangement, method for contacting cells in a liquid environment and method for producing a microelement arrangement
US6083761A (en) 1996-12-02 2000-07-04 Glaxo Wellcome Inc. Method and apparatus for transferring and combining reagents
WO1998028623A1 (en) 1996-12-20 1998-07-02 Gamera Bioscience Corporation An affinity binding-based system for detecting particulates in a fluid
US6235474B1 (en) 1996-12-30 2001-05-22 The Johns Hopkins University Methods and kits for diagnosing and determination of the predisposition for diseases
US6087134A (en) 1997-01-14 2000-07-11 Applied Imaging Corporation Method for analyzing DNA from a rare cell in a cell population
US5879624A (en) 1997-01-15 1999-03-09 Boehringer Laboratories, Inc. Method and apparatus for collecting and processing blood
US6306584B1 (en) 1997-01-21 2001-10-23 President And Fellows Of Harvard College Electronic-property probing of biological molecules at surfaces
US6008007A (en) 1997-01-31 1999-12-28 Oncotech, Inc. Radiation resistance assay for predicting treatment response and clinical outcome
US6056859A (en) 1997-02-12 2000-05-02 Lockheed Martin Energy Research Corporation Method and apparatus for staining immobilized nucleic acids
GB9704444D0 (en) 1997-03-04 1997-04-23 Isis Innovation Non-invasive prenatal diagnosis
WO1998040746A1 (en) 1997-03-08 1998-09-17 The University Of Dundee Prenatal diagnostic methods
GB9704876D0 (en) 1997-03-08 1997-04-23 Univ Dundee Diagnostic methods
WO1998043067A1 (en) 1997-03-25 1998-10-01 Immunivest Corporation Apparatus and methods for capture and analysis of particulate entities
US6391622B1 (en) 1997-04-04 2002-05-21 Caliper Technologies Corp. Closed-loop biochemical analyzers
US6066449A (en) * 1997-04-15 2000-05-23 The Trustees Of Columbia University In The City Of New York Method of detecting metastatic thyroid cancer
CN1105914C (en) 1997-04-25 2003-04-16 卡钳技术有限公司 Microfluidic devices incorporating improved channel geometries
WO1998049344A1 (en) 1997-04-28 1998-11-05 Lockheed Martin Energy Research Corporation Method and apparatus for analyzing nucleic acids
US6169816B1 (en) 1997-05-14 2001-01-02 Applied Imaging, Inc. Identification of objects of interest using multiple illumination schemes and finding overlap of features in corresponding multiple images
US6632619B1 (en) * 1997-05-16 2003-10-14 The Governors Of The University Of Alberta Microfluidic system and methods of use
US6156273A (en) 1997-05-27 2000-12-05 Purdue Research Corporation Separation columns and methods for manufacturing the improved separation columns
US7160687B1 (en) * 1997-05-29 2007-01-09 Cellomics, Inc. Miniaturized cell array methods and apparatus for cell-based screening
US5869004A (en) 1997-06-09 1999-02-09 Caliper Technologies Corp. Methods and apparatus for in situ concentration and/or dilution of materials in microfluidic systems
US7560237B2 (en) 1997-06-12 2009-07-14 Osmetech Technology Inc. Electronics method for the detection of analytes
US5882465A (en) 1997-06-18 1999-03-16 Caliper Technologies Corp. Method of manufacturing microfluidic devices
SG81234A1 (en) 1997-07-04 2001-06-19 Toyko Electron Ltd Process solution supplying apparatus
US5876675A (en) 1997-08-05 1999-03-02 Caliper Technologies Corp. Microfluidic devices and systems
US6294331B1 (en) 1997-08-08 2001-09-25 The United States Of America As Represented By The Department Of Health And Human Services Methods for assessing genetic and phenotypic markers by simultaneous multicolor visualization of chromogenic dyes using brightfield microscopy and spectral imaging
US6368871B1 (en) * 1997-08-13 2002-04-09 Cepheid Non-planar microstructures for manipulation of fluid samples
US7214298B2 (en) * 1997-09-23 2007-05-08 California Institute Of Technology Microfabricated cell sorter
US6540895B1 (en) * 1997-09-23 2003-04-01 California Institute Of Technology Microfabricated cell sorter for chemical and biological materials
US5842787A (en) 1997-10-09 1998-12-01 Caliper Technologies Corporation Microfluidic systems incorporating varied channel dimensions
US6241894B1 (en) 1997-10-10 2001-06-05 Systemix High gradient magnetic device and method for cell separation or purification
US5962234A (en) 1997-10-20 1999-10-05 Applied Imaging Corporation Use of anti-embryonic epsilon hemoglobin antibodies to identify fetal cells
US5962250A (en) 1997-10-28 1999-10-05 Glaxo Group Limited Split multi-well plate and methods
US6197523B1 (en) * 1997-11-24 2001-03-06 Robert A. Levine Method for the detection, identification, enumeration and confirmation of circulating cancer and/or hematologic progenitor cells in whole blood
CA2253965C (en) 1997-11-22 2003-01-21 Robert A. Levine Method for the detection, identification, enumeration and confirmation of circulating cancer cells and/or hematologic progenitor cells in whole blood
DE59801410D1 (en) 1997-12-17 2001-10-11 Ecole Polytech POSITIONING AND ELECTROPHYSIOLOGICAL CHARACTERIZATION OF INDIVIDUAL CELLS AND RECONSTRUCTED MEMBRANE SYSTEMS ON MICROSTRUCTURED CARRIERS
US6210889B1 (en) 1998-01-28 2001-04-03 The Universite Laval Method for enrichment of fetal cells from maternal blood and use of same in determination of fetal sex and detection of chromosomal abnormalities
US6287857B1 (en) 1998-02-09 2001-09-11 Genzyme Corporation Nucleic acid delivery vehicles
US20010018192A1 (en) 1998-02-12 2001-08-30 Terstappen Leon W.M.M. Labeled cells for use as an internal functional control in rare cell detection assays
US20020172987A1 (en) 1998-02-12 2002-11-21 Terstappen Leon W.M.M. Methods and reagents for the rapid and efficient isolation of circulating cancer cells
EP1062515B1 (en) 1998-02-12 2009-11-25 Immunivest Corporation Methods and reagents for the rapid and efficient isolation of circulating cancer cells
SE521415C2 (en) * 1998-02-17 2003-10-28 Hans Goeran Evald Martin Method for producing a gas sensor-associated detector, as well as a detector made according to the method
US6537505B1 (en) * 1998-02-20 2003-03-25 Bio Dot, Inc. Reagent dispensing valve
US6036857A (en) 1998-02-20 2000-03-14 Florida State University Research Foundation, Inc. Apparatus for continuous magnetic separation of components from a mixture
US6251343B1 (en) 1998-02-24 2001-06-26 Caliper Technologies Corp. Microfluidic devices and systems incorporating cover layers
WO1999044064A1 (en) 1998-02-27 1999-09-02 Cli Oncology, Inc. Method and compositions for differential detection of primary tumor cells and metastatic cells
US6210910B1 (en) 1998-03-02 2001-04-03 Trustees Of Tufts College Optical fiber biosensor array comprising cell populations confined to microcavities
US6027623A (en) * 1998-04-22 2000-02-22 Toyo Technologies, Inc. Device and method for electrophoretic fraction
US6100033A (en) 1998-04-30 2000-08-08 The Regents Of The University Of California Diagnostic test for prenatal identification of Down's syndrome and mental retardation and gene therapy therefor
US6200765B1 (en) 1998-05-04 2001-03-13 Pacific Northwest Cancer Foundation Non-invasive methods to detect prostate cancer
AU763433B2 (en) 1998-05-22 2003-07-24 California Institute Of Technology Microfabricated cell sorter
US6306589B1 (en) 1998-05-27 2001-10-23 Vysis, Inc. Biological assays for analyte detection
US6296752B1 (en) 1998-06-05 2001-10-02 Sarnoff Corporation Apparatus for separating molecules
US6529835B1 (en) * 1998-06-25 2003-03-04 Caliper Technologies Corp. High throughput methods, systems and apparatus for performing cell based screening assays
EP1092144A1 (en) 1998-06-29 2001-04-18 Evotec BioSystems AG Method and device for manipulating particles in microsystems
US6045990A (en) 1998-07-09 2000-04-04 Baust; John M. Inclusion of apoptotic regulators in solutions for cell storage at low temperature
US6576478B1 (en) 1998-07-14 2003-06-10 Zyomyx, Inc. Microdevices for high-throughput screening of biomolecules
US6897073B2 (en) 1998-07-14 2005-05-24 Zyomyx, Inc. Non-specific binding resistant protein arrays and methods for making the same
US6682942B1 (en) * 1998-07-14 2004-01-27 Zyomyx, Inc. Microdevices for screening biomolecules
US6274339B1 (en) 1999-02-05 2001-08-14 Millennium Pharmaceuticals, Inc. Methods and compositions for the diagnosis and treatment of body weight disorders, including obesity
FR2782730B1 (en) * 1998-08-25 2002-05-17 Biocom Sa CELL SEPARATION PROCESS FOR THE ISOLATION OF PATHOGENIC CELLS, PARTICULARLY RARE CANCERES, EQUIPMENT AND REAGENT FOR IMPLEMENTING THE PROCESS AND APPLICATION OF THE PROCESS
CA2343055C (en) * 1998-09-17 2011-07-12 Advanced Bioanalytical Services, Inc. Integrated monolithic microfabricated electrospray and liquid chromatography system and method
US6245227B1 (en) 1998-09-17 2001-06-12 Kionix, Inc. Integrated monolithic microfabricated electrospray and liquid chromatography system and method
ES2172353T3 (en) * 1998-09-18 2002-09-16 Micromet Ag AMPLIFICATION OF THE DNA OF A SINGLE CELL.
US6656697B1 (en) * 1998-09-28 2003-12-02 Lifescan, Inc. Diagnostics based on tetrazolium compounds
US6637463B1 (en) 1998-10-13 2003-10-28 Biomicro Systems, Inc. Multi-channel microfluidic system design with balanced fluid flow distribution
US6591852B1 (en) 1998-10-13 2003-07-15 Biomicro Systems, Inc. Fluid circuit components based upon passive fluid dynamics
US6086740A (en) 1998-10-29 2000-07-11 Caliper Technologies Corp. Multiplexed microfluidic devices and systems
US6277489B1 (en) 1998-12-04 2001-08-21 The Regents Of The University Of California Support for high performance affinity chromatography and other uses
US6062261A (en) 1998-12-16 2000-05-16 Lockheed Martin Energy Research Corporation MicrofluIdic circuit designs for performing electrokinetic manipulations that reduce the number of voltage sources and fluid reservoirs
EP1144092A4 (en) 1998-12-23 2002-10-29 Nanogen Inc Integrated portable biological detection system
US6150119A (en) 1999-01-19 2000-11-21 Caliper Technologies Corp. Optimized high-throughput analytical system
WO2000047998A1 (en) 1999-02-10 2000-08-17 Cell Works Inc. Class characterization of circulating cancer cells isolated from body fluids and methods of use
ATE469699T1 (en) 1999-02-23 2010-06-15 Caliper Life Sciences Inc MANIPULATION OF MICROPARTICLES IN MICROFLUID SYSTEMS
JP3863373B2 (en) 1999-03-02 2006-12-27 クオリジエン・インコーポレイテツド Method of using an apparatus for separation of biological fluids
US6942978B1 (en) 1999-03-03 2005-09-13 The Board Of Trustees Of The University Of Arkansas Transmembrane serine protease overexpressed in ovarian carcinoma and uses thereof
CN1185492C (en) 1999-03-15 2005-01-19 清华大学 Single-point strobed micro electromagnetic units array chip or electromagnetic biologic chip and application thereof
TW496775B (en) 1999-03-15 2002-08-01 Aviva Bioscience Corp Individually addressable micro-electromagnetic unit array chips
CN1181337C (en) * 2000-08-08 2004-12-22 清华大学 Solid molecule operating method in microfluid system
US6858439B1 (en) 1999-03-15 2005-02-22 Aviva Biosciences Compositions and methods for separation of moieties on chips
ATE526580T1 (en) 1999-03-19 2011-10-15 Life Technologies Corp METHOD FOR VISITING MUTATED CELLS
US6368562B1 (en) * 1999-04-16 2002-04-09 Orchid Biosciences, Inc. Liquid transportation system for microfluidic device
US6942771B1 (en) * 1999-04-21 2005-09-13 Clinical Micro Sensors, Inc. Microfluidic systems in the electrochemical detection of target analytes
US6511967B1 (en) * 1999-04-23 2003-01-28 The General Hospital Corporation Use of an internalizing transferrin receptor to image transgene expression
US6174683B1 (en) 1999-04-26 2001-01-16 Biocept, Inc. Method of making biochips and the biochips resulting therefrom
EP1179087B1 (en) * 1999-05-17 2019-03-27 Caliper Life Sciences, Inc. Focusing of microparticles in microfluidic systems
US6589791B1 (en) 1999-05-20 2003-07-08 Cartesian Technologies, Inc. State-variable control system
DE10084613T1 (en) 1999-05-21 2002-09-26 Univ Leland Stanford Junior Microfluid device and method for generating pulsed microfluid jets in a liquid environment
US6635163B1 (en) 1999-06-01 2003-10-21 Cornell Research Foundation, Inc. Entropic trapping and sieving of molecules
US6664104B2 (en) 1999-06-25 2003-12-16 Cepheid Device incorporating a microfluidic chip for separating analyte from a sample
US6818395B1 (en) 1999-06-28 2004-11-16 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences
US6395232B1 (en) * 1999-07-09 2002-05-28 Orchid Biosciences, Inc. Fluid delivery system for a microfluidic device using a pressure pulse
US6294392B1 (en) 1999-07-21 2001-09-25 The Regents Of The University Of California Spatially-encoded analyte detection
US6524456B1 (en) 1999-08-12 2003-02-25 Ut-Battelle, Llc Microfluidic devices for the controlled manipulation of small volumes
US6762059B2 (en) 1999-08-13 2004-07-13 U.S. Genomics, Inc. Methods and apparatuses for characterization of single polymers
US6613581B1 (en) * 1999-08-26 2003-09-02 Caliper Technologies Corp. Microfluidic analytic detection assays, devices, and integrated systems
US6623945B1 (en) 1999-09-16 2003-09-23 Motorola, Inc. System and method for microwave cell lysing of small samples
FR2798673B1 (en) * 1999-09-16 2004-05-28 Exonhit Therapeutics Sa METHODS AND COMPOSITIONS FOR DETECTION OF PATHOLOGICAL EVENTS
US20030113528A1 (en) 1999-09-17 2003-06-19 Wilson Moya Patterned porous structures
EP1218547A4 (en) 1999-10-15 2005-04-20 Ventana Med Syst Inc Method of detecting single gene copies in-situ
WO2001037958A2 (en) 1999-11-04 2001-05-31 Princeton University Electrodeless dielectrophoresis for polarizable particles
US20060128006A1 (en) 1999-11-10 2006-06-15 Gerhardt Antimony L Hydrodynamic capture and release mechanisms for particle manipulation
US6692952B1 (en) * 1999-11-10 2004-02-17 Massachusetts Institute Of Technology Cell analysis and sorting apparatus for manipulation of cells
AU1592501A (en) 1999-11-10 2001-06-06 Massachusetts Institute Of Technology Cell analysis and sorting apparatus for manipulation of cells
US6875619B2 (en) 1999-11-12 2005-04-05 Motorola, Inc. Microfluidic devices comprising biochannels
US6361958B1 (en) * 1999-11-12 2002-03-26 Motorola, Inc. Biochannel assay for hybridization with biomaterial
AU2427301A (en) 1999-12-01 2001-06-12 Regents Of The University Of California, The Electric-field-assisted fluidic assembly of inorganic and organic materials, molecules and like small things including living cells
US6309889B1 (en) 1999-12-23 2001-10-30 Glaxo Wellcome Inc. Nano-grid micro reactor and methods
DE60038127T2 (en) 2000-01-06 2009-03-05 Caliper Life Sciences, Inc., Mountain View METHODS AND SYSTEMS FOR MONITORING INTRA-CELLULAR BINDER ACTIONS
CA2397341A1 (en) 2000-01-13 2001-07-19 Dhanesh Gohel Ferrofluid based arrays
CA2398107C (en) 2000-01-28 2013-11-19 Althea Technologies, Inc. Methods for analysis of gene expression
AU2001263793A1 (en) 2000-03-20 2001-10-03 Adnagen Ag Kit, method and microarray for determining the sex of a human foetus
ATE469242T1 (en) * 2000-03-27 2010-06-15 Univ Jefferson COMPOSITIONS AND METHODS FOR IDENTIFYING AND TARGETING CANCER CELLS FROM THE DIGESTIVE CANAL
EP1268554A2 (en) 2000-03-31 2003-01-02 IPF Pharmaceuticals GmbH Diagnostic and medicament for analysing the cell surface proteome of tumour and inflammatory cells and for treating tumorous and inflammatory diseases, preferably using a specific chemokine receptor analysis and the chemokine receptor-ligand interaction
US20030170631A1 (en) 2000-04-03 2003-09-11 Corixa Corporation Methods, compositions and kits for the detection and monitoring of breast cancer
ES2281416T3 (en) * 2000-04-03 2007-10-01 Corixa Corporation METHODS, COMPOSITIONS AND SYSTEMS FOR THE DETECTION AND MONITORING OF CANCER OF BREAST.
WO2001079529A1 (en) 2000-04-17 2001-10-25 Purdue Research Foundation Biosensor and related method
GB0009784D0 (en) 2000-04-20 2000-06-07 Simeg Limited Methods for clinical diagnosis
WO2001081621A2 (en) 2000-04-20 2001-11-01 Adnagen Ag Method, diagnostic kit and microarray for determining the rhesus factor
SE0001790D0 (en) 2000-05-12 2000-05-12 Aamic Ab Hydrophobic barrier
US7641856B2 (en) 2004-05-14 2010-01-05 Honeywell International Inc. Portable sample analyzer with removable cartridge
GB0013658D0 (en) 2000-06-05 2000-07-26 Dynal Asa Nucleic acid isolation
US6974667B2 (en) * 2000-06-14 2005-12-13 Gene Logic, Inc. Gene expression profiles in liver cancer
DE60113287D1 (en) 2000-06-14 2005-10-13 Univ Texas SYSTEMS AND METHOD FOR CELL PARTIAL POPULATION ANALYSIS
EP1311839B1 (en) 2000-06-21 2006-03-01 Bioarray Solutions Ltd Multianalyte molecular analysis using application-specific random particle arrays
US6791424B2 (en) 2000-07-17 2004-09-14 Toyo Communication Equipment Co., Ltd. Piezoelectric oscillator
DE10035433C2 (en) 2000-07-20 2002-07-18 Tuma Wolfgang Gentle high enrichment of fetal cells from peripheral blood and use of the same
US6984522B2 (en) 2000-08-03 2006-01-10 Regents Of The University Of Michigan Isolation and use of solid tumor stem cells
AU2000274922A1 (en) 2000-08-08 2002-02-18 Aviva Biosciences Corporation Methods for manipulating moieties in microfluidic systems
US20040005582A1 (en) * 2000-08-10 2004-01-08 Nanobiodynamics, Incorporated Biospecific desorption microflow systems and methods for studying biospecific interactions and their modulators
US6610499B1 (en) 2000-08-31 2003-08-26 The Regents Of The University Of California Capillary array and related methods
US6818424B2 (en) * 2000-09-01 2004-11-16 E. I. Du Pont De Nemours And Company Production of cyclic terpenoids
US20020164825A1 (en) 2000-09-09 2002-11-07 Wen-Tien Chen Cell separation matrix
EP1315829B1 (en) 2000-09-09 2010-07-28 The Research Foundation Of State University Of New York Method and compositions for isolating metastatic cancer cells, and use in measuring metastatic potential of a cancer thereof
EP2299256A3 (en) 2000-09-15 2012-10-10 California Institute Of Technology Microfabricated crossflow devices and methods
WO2002028523A2 (en) 2000-09-30 2002-04-11 Aviva Biosciences Corporation Apparatuses containing multiple force generating elements and uses thereof
US7258774B2 (en) * 2000-10-03 2007-08-21 California Institute Of Technology Microfluidic devices and methods of use
US6689615B1 (en) 2000-10-04 2004-02-10 James Murto Methods and devices for processing blood samples
WO2002031506A1 (en) 2000-10-09 2002-04-18 Aviva Biosciences Coropration Compositions and methods for separation of moieties on chips
CA2424941A1 (en) 2000-10-10 2002-04-18 Aviva Biosciences Corporation An integrated biochip system for sample preparation and analysis
US6974657B2 (en) * 2000-10-18 2005-12-13 E. I. Du Pont De Nemours And Company Compositions for microlithography
US20050100951A1 (en) 2000-10-26 2005-05-12 Biocept, Inc. 3D format biochips and method of use
US6833542B2 (en) 2000-11-13 2004-12-21 Genoptix, Inc. Method for sorting particles
US6744038B2 (en) 2000-11-13 2004-06-01 Genoptix, Inc. Methods of separating particles using an optical gradient
US20020108859A1 (en) 2000-11-13 2002-08-15 Genoptix Methods for modifying interaction between dielectric particles and surfaces
US20020115163A1 (en) 2000-11-13 2002-08-22 Genoptix Methods for sorting particles by size and elasticity
US20020123112A1 (en) 2000-11-13 2002-09-05 Genoptix Methods for increasing detection sensitivity in optical dielectric sorting systems
US20030007894A1 (en) * 2001-04-27 2003-01-09 Genoptix Methods and apparatus for use of optical forces for identification, characterization and/or sorting of particles
US6784420B2 (en) 2000-11-13 2004-08-31 Genoptix, Inc. Method of separating particles using an optical gradient
EP1368369A4 (en) 2000-11-15 2006-02-22 Hoffmann La Roche Methods and reagents for identifying rare fetal cells in the material circulation
US6521188B1 (en) * 2000-11-22 2003-02-18 Industrial Technology Research Institute Microfluidic actuator
US6495340B2 (en) 2000-11-28 2002-12-17 Medis El Ltd. Cell carrier grids
WO2002044689A2 (en) 2000-11-28 2002-06-06 The Regents Of The University Of California Storing microparticles in optical switch which is transported by micro-fluidic device
US6778724B2 (en) 2000-11-28 2004-08-17 The Regents Of The University Of California Optical switching and sorting of biological samples and microparticles transported in a micro-fluidic device, including integrated bio-chip devices
US20020064808A1 (en) 2000-11-29 2002-05-30 Mutz Mitchell W. Focused acoustic energy for ejecting cells from a fluid
US6849423B2 (en) 2000-11-29 2005-02-01 Picoliter Inc Focused acoustics for detection and sorting of fluid volumes
US6893836B2 (en) 2000-11-29 2005-05-17 Picoliter Inc. Spatially directed ejection of cells from a carrier fluid
AU2002217980A1 (en) 2000-12-01 2002-06-11 Cell Works Inc. Conjugates of glycosylated/galactosylated peptide
FR2817967B1 (en) 2000-12-08 2003-02-28 Diagast PROCESS FOR MAGNETIZING CHEMICAL OR BIOLOGICAL MARKERS
US6770434B2 (en) 2000-12-29 2004-08-03 The Provost, Fellows And Scholars Of The College Of The Holy & Undivided Trinity Of Queen Elizabeth Near Dublin Biological assay method
US6453928B1 (en) 2001-01-08 2002-09-24 Nanolab Ltd. Apparatus, and method for propelling fluids
US7205157B2 (en) 2001-01-08 2007-04-17 Becton, Dickinson And Company Method of separating cells from a sample
US20020160363A1 (en) 2001-01-31 2002-10-31 Mcdevitt John T. Magnetic-based placement and retention of sensor elements in a sensor array
US20020106715A1 (en) 2001-02-02 2002-08-08 Medisel Ltd System and method for collecting data from individual cells
US20020110835A1 (en) 2001-02-13 2002-08-15 Rajan Kumar Microfluidic devices and methods
US6913697B2 (en) 2001-02-14 2005-07-05 Science & Technology Corporation @ Unm Nanostructured separation and analysis devices for biological membranes
WO2002065515A2 (en) * 2001-02-14 2002-08-22 Science & Technology Corporation @ Unm Nanostructured devices for separation and analysis
US20030190602A1 (en) 2001-03-12 2003-10-09 Monogen, Inc. Cell-based detection and differentiation of disease states
CN1554025A (en) 2001-03-12 2004-12-08 Īŵ���ɷ����޹�˾ Cell-based detection and differentiation of disease states
US7323140B2 (en) 2001-03-28 2008-01-29 Handylab, Inc. Moving microdroplets in a microfluidic device
US6421894B1 (en) 2001-04-03 2002-07-23 Toyo Tire & Rubber Co., Ltd Apparatus for assembling an anti-vibration device
WO2002081934A2 (en) * 2001-04-03 2002-10-17 Micronics, Inc. Pneumatic valve interface for use in microfluidic structures
US20020173043A1 (en) 2001-04-04 2002-11-21 Eddine Merabet Cyanide-free reagent, and method for detecting hemoglobin
US20030036100A1 (en) 2001-04-10 2003-02-20 Imperial College Innovations Ltd. Simultaneous determination of phenotype and genotype
US7713705B2 (en) 2002-12-24 2010-05-11 Biosite, Inc. Markers for differential diagnosis and methods of use thereof
FR2824144B1 (en) * 2001-04-30 2004-09-17 Metagenex S A R L METHOD OF PRENATAL DIAGNOSIS ON FETAL CELLS ISOLATED FROM MATERNAL BLOOD
US6805841B2 (en) 2001-05-09 2004-10-19 The Provost Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Liquid pumping system
US7262030B2 (en) 2001-05-09 2007-08-28 Virginia Commonwealth University Multiple sequencible and ligatible structures for genomic analysis
US20020166760A1 (en) 2001-05-11 2002-11-14 Prentiss Mara G. Micromagentic systems and methods for microfluidics
US6743636B2 (en) 2001-05-24 2004-06-01 Industrial Technology Research Institute Microfluid driving device
DE10127079A1 (en) * 2001-06-02 2002-12-12 Ulrich Pachmann Method for the quantitative detection of vital epithelial tumor cells in a body fluid
US7419574B2 (en) 2001-06-20 2008-09-02 Cummings Eric B Dielectrophoresis device and method having non-uniform arrays for manipulating particles
CA2451753A1 (en) 2001-06-20 2003-01-03 Cytonome, Inc. Microfluidic system including a virtual wall fluid interface port for interfacing fluids with the microfluidic system
US20060019235A1 (en) 2001-07-02 2006-01-26 The Board Of Trustees Of The Leland Stanford Junior University Molecular and functional profiling using a cellular microarray
US7381535B2 (en) 2002-07-10 2008-06-03 The Board Of Trustees Of The Leland Stanford Junior Methods and compositions for detecting receptor-ligand interactions in single cells
US6783928B2 (en) 2001-07-17 2004-08-31 Georgi Hvichia Microstructures for cell proliferation assays and semen analysis
US7993908B2 (en) * 2001-07-17 2011-08-09 Parsortix, Inc. Microstructure for particle and cell separation, identification, sorting, and manipulation
CA2396408C (en) 2001-08-03 2006-03-28 Nec Corporation Fractionating apparatus having colonies of pillars arranged in migration passage at interval and process for fabricating pillars
JP3695431B2 (en) 2001-08-03 2005-09-14 日本電気株式会社 Separation apparatus and method of manufacturing separation apparatus
BR0212124A (en) 2001-08-23 2004-07-20 Immunivest Corp Compositions, methods and apparatus for preserving biological specimens and blood samples suspected of containing circulating tumor cells, and stabilized cellular composition.
US7863012B2 (en) 2004-02-17 2011-01-04 Veridex, Llc Analysis of circulating tumor cells, fragments, and debris
EP2283924B1 (en) 2001-08-28 2013-04-17 Gyros Patent Ab Inlet unit with means supporting liquid entrance into a microchannel structure
CA2458704A1 (en) 2001-09-04 2003-03-13 Iq Corporation B.V. Determination and quantification of red blood cell populations in samples
ATE309393T1 (en) 2001-09-06 2005-11-15 Adnagen Ag METHOD FOR THE QUALITATIVE AND/OR QUANTITATIVE DETECTION OF CELLS
DE10143776A1 (en) * 2001-09-06 2003-04-03 Adnagen Ag Selection and determination of specific cells, useful particularly for diagnosis and monitoring of tumors, by antibody-mediated selection then detecting specific mRNA
US7202045B2 (en) * 2001-09-19 2007-04-10 Regents Of The University Of Michigan Detection and treatment of cancers of the lung
US20030087292A1 (en) * 2001-10-04 2003-05-08 Shiping Chen Methods and systems for promoting interactions between probes and target molecules in fluid in microarrays
US8980568B2 (en) 2001-10-11 2015-03-17 Aviva Biosciences Corporation Methods and compositions for detecting non-hematopoietic cells from a blood sample
US20030072682A1 (en) 2001-10-11 2003-04-17 Dan Kikinis Method and apparatus for performing biochemical testing in a microenvironment
DK1439897T3 (en) 2001-10-11 2011-01-03 Aviva Biosciences Corp Methods for separating rare cells from fluid samples
US7166443B2 (en) 2001-10-11 2007-01-23 Aviva Biosciences Corporation Methods, compositions, and automated systems for separating rare cells from fluid samples
US6783647B2 (en) 2001-10-19 2004-08-31 Ut-Battelle, Llc Microfluidic systems and methods of transport and lysis of cells and analysis of cell lysate
WO2003035228A1 (en) 2001-10-19 2003-05-01 Trustees Of Princeton University Method and apparatus for generating electric fields and flow distributions for rapidly separating molecules
JP2005507997A (en) 2001-10-26 2005-03-24 イムニベスト・コーポレイション Multi-parameter analysis of comprehensive nucleic acid and morphological features for the same sample
US20030082148A1 (en) 2001-10-31 2003-05-01 Florian Ludwig Methods and device compositions for the recruitment of cells to blood contacting surfaces in vivo
US20050069886A1 (en) * 2001-11-07 2005-03-31 Zairen Sun Prostate cancer genes
WO2003046508A2 (en) * 2001-11-09 2003-06-05 Biomicroarrays, Inc. High surface area substrates for microarrays and methods to make same
US20030232350A1 (en) 2001-11-13 2003-12-18 Eos Biotechnology, Inc. Methods of diagnosis of cancer, compositions and methods of screening for modulators of cancer
US20050244843A1 (en) 2001-11-16 2005-11-03 Wen-Tien Chen Blood test prototypes and methods for the detection of circulating tumor and endothelial cells
EP1448792A1 (en) 2001-11-22 2004-08-25 Adnagen AG Diagnosis kit, dna chip, and methods for diagnosing or supervising the treatment of testicular cancer
IL161856A0 (en) 2001-11-30 2005-11-20 Pfizer Prod Inc Methods for detecting cells with numerical chromosomal abnormalities
CA2469878C (en) 2001-12-11 2011-06-28 Netech Inc. Blood cell separating system
WO2003058201A2 (en) 2001-12-31 2003-07-17 Quark Biotech, Inc. Methods for identifying marker genes for cancer
WO2003060486A1 (en) 2002-01-10 2003-07-24 Board Of Regents, The University Of Texas System Flow sorting system and methods regarding same
US7383134B2 (en) 2002-01-15 2008-06-03 Piper James R Method and/or system for analyzing biological samples using a computer system
US20030178641A1 (en) 2002-01-23 2003-09-25 Blair Steven M. Microfluidic platforms for use with specific binding assays, specific binding assays that employ microfluidics, and methods
US7318902B2 (en) 2002-02-04 2008-01-15 Colorado School Of Mines Laminar flow-based separations of colloidal and cellular particles
CA2759764C (en) 2002-02-14 2017-06-13 Veridex, Llc Methods and algorithms for cell enumeration in a low-cost cytometer
FR2836072B1 (en) 2002-02-21 2004-11-12 Commissariat Energie Atomique COMPONENT USING COMPOSITE MATERIAL FOR MICROSYSTEM FOR BIOLOGICAL OR BIOCHEMICAL ANALYSIS
FR2836071B1 (en) 2002-02-21 2005-02-04 Commissariat Energie Atomique COMPONENT FOR MICROSYSTEM FOR BIOLOGICAL OR BIOCHEMICAL ANALYSIS
US6958119B2 (en) 2002-02-26 2005-10-25 Agilent Technologies, Inc. Mobile phase gradient generation microfluidic device
US7223371B2 (en) 2002-03-14 2007-05-29 Micronics, Inc. Microfluidic channel network device
AU2003220321A1 (en) 2002-03-15 2003-09-29 University Of Utah Methods for quantitative analysis by tandem mass spectrometry
AU2003285849A1 (en) 2002-03-20 2004-03-29 Advanced Sensor Technologies, Inc. Personal monitor to detect exposure to toxic agents
SE0200860D0 (en) 2002-03-20 2002-03-20 Monica Almqvist Microfluidic cell and method for sample handling
US7312085B2 (en) 2002-04-01 2007-12-25 Fluidigm Corporation Microfluidic particle-analysis systems
US20040241707A1 (en) 2002-04-01 2004-12-02 Gao Chun L. Enhanced diagnostic potential of prostate-specific antigen expressing cells
WO2003085379A2 (en) 2002-04-01 2003-10-16 Fluidigm Corporation Microfluidic particle-analysis systems
US6976590B2 (en) 2002-06-24 2005-12-20 Cytonome, Inc. Method and apparatus for sorting particles
US7141369B2 (en) * 2002-04-25 2006-11-28 Semibio Technology, Inc. Measuring cellular metabolism of immobilized cells
WO2003093795A2 (en) 2002-05-03 2003-11-13 Immunivest Corporation Device and method for analytical cell imaging
US7727720B2 (en) 2002-05-08 2010-06-01 Ravgen, Inc. Methods for detection of genetic disorders
AU2003299522B2 (en) * 2002-05-22 2008-03-06 Platypus Technologies, Llc Substrates, devices, and methods for cellular assays
CA2526950C (en) 2002-05-27 2012-06-26 Leif Hakansson Method for determining immune system affecting compounds
SE0201738D0 (en) * 2002-06-07 2002-06-07 Aamic Ab Micro-fluid structures
US20040005247A1 (en) 2002-07-03 2004-01-08 Nanostream, Inc. Microfluidic closed-end metering systems and methods
US20040101444A1 (en) * 2002-07-15 2004-05-27 Xeotron Corporation Apparatus and method for fluid delivery to a hybridization station
US20040018611A1 (en) * 2002-07-23 2004-01-29 Ward Michael Dennis Microfluidic devices for high gradient magnetic separation
US7214348B2 (en) 2002-07-26 2007-05-08 Applera Corporation Microfluidic size-exclusion devices, systems, and methods
US20040019300A1 (en) * 2002-07-26 2004-01-29 Leonard Leslie Anne Microfluidic blood sample separations
US9435799B2 (en) 2002-07-31 2016-09-06 Janssen Diagnostics, Inc. Methods and reagents for improved selection of biological materials
EP1529211A1 (en) 2002-08-08 2005-05-11 Nanostream, Inc. Systems and methods for high-throughput microfluidic sample analysis
US20060008807A1 (en) 2002-08-23 2006-01-12 O'hara Shawn M Multiparameter analysis of comprehensive nucleic acids and morphological features on the same sample
US20040043506A1 (en) * 2002-08-30 2004-03-04 Horst Haussecker Cascaded hydrodynamic focusing in microfluidic channels
US7094345B2 (en) 2002-09-09 2006-08-22 Cytonome, Inc. Implementation of microfluidic components, including molecular fractionation devices, in a microfluidic system
US6878271B2 (en) 2002-09-09 2005-04-12 Cytonome, Inc. Implementation of microfluidic components in a microfluidic system
US7455770B2 (en) 2002-09-09 2008-11-25 Cytonome, Inc. Implementation of microfluidic components in a microfluidic system
US6806543B2 (en) 2002-09-12 2004-10-19 Intel Corporation Microfluidic apparatus with integrated porous-substrate/sensor for real-time (bio)chemical molecule detection
US8895298B2 (en) 2002-09-27 2014-11-25 The General Hospital Corporation Microfluidic device for cell separation and uses thereof
JP2006500074A (en) 2002-09-27 2006-01-05 オリディス・ビオメド・フォルシュングス−ウント・エントヴィックルングス・ゲーエムベーハー Polypeptides and nucleic acids encoding them and their use for prevention, diagnosis or treatment of liver damage and epithelial cancer
WO2004037374A2 (en) 2002-10-23 2004-05-06 The Trustees Of Princeton University Method for continuous particle separation using obstacle arrays asymmetrically aligned to fields
US6811385B2 (en) 2002-10-31 2004-11-02 Hewlett-Packard Development Company, L.P. Acoustic micro-pump
US7122384B2 (en) 2002-11-06 2006-10-17 E. I. Du Pont De Nemours And Company Resonant light scattering microparticle methods
AU2002952696A0 (en) 2002-11-14 2002-11-28 Genomics Research Partners Pty Ltd Status determination
CN1720438A (en) * 2002-11-29 2006-01-11 日本电气株式会社 Separation equipment and separation method
DE10259703A1 (en) 2002-12-19 2004-07-08 Ivonex Gmbh separation process
JP4519124B2 (en) 2003-01-30 2010-08-04 ユィロス・パテント・アクチボラグ Wall inside the microfluidic device
US6746503B1 (en) 2003-01-30 2004-06-08 The Regents Of The University Of California Precision gap particle separator
JP4593557B2 (en) 2003-02-27 2010-12-08 ベリデックス・リミテッド・ライアビリティ・カンパニー Circulating tumor cells (CTC): early assessment of time to progression, survival and response to therapy in patients with metastatic cancer
DE10313201A1 (en) 2003-03-21 2004-10-07 Steag Microparts Gmbh Microstructured separator and microfluidic process for separating liquid components from a liquid containing particles
US20040197832A1 (en) * 2003-04-03 2004-10-07 Mor Research Applications Ltd. Non-invasive prenatal genetic diagnosis using transcervical cells
JP2004351309A (en) 2003-05-28 2004-12-16 Kyocera Corp Microchemical chip and its production method
WO2004101762A2 (en) 2003-05-12 2004-11-25 The Regents Of The University Of Michigan Detection and treatment of cancers of the colon
US6962658B2 (en) 2003-05-20 2005-11-08 Eksigent Technologies, Llc Variable flow rate injector
KR101203402B1 (en) 2003-06-06 2012-11-23 마이크로닉스 인코포레이티드. System and method for heating, cooling and heat cycling on microfluidic device
WO2004113877A1 (en) 2003-06-13 2004-12-29 The General Hospital Corporation Microfluidic systems for size based removal of red blood cells and platelets from blood
WO2005014792A2 (en) * 2003-08-08 2005-02-17 The General Hospital Corporation D/B/A Massachusetts General Hospital Preservation of biomaterials with transported preservation agents
CA2536360C (en) 2003-08-28 2013-08-06 Celula, Inc. Methods and apparatus for sorting cells using an optical switch in a microfluidic channel network
AU2004286201B2 (en) 2003-09-10 2010-09-09 Altheadx, Inc. Expression profiling using microarrays
WO2005028663A2 (en) 2003-09-18 2005-03-31 Immunivest Corporation Operator independent programmable sample preparation and analysis system
WO2005042713A2 (en) 2003-10-28 2005-05-12 The Johns Hopkins University Quantitative multiplex methylation-specific pcr
MXPA06004810A (en) 2003-10-29 2007-03-15 Mec Dynamics Corp Micro mechanical methods and systems for performing assays.
AU2004286307A1 (en) 2003-10-31 2005-05-12 Vitatex, Inc. Blood test prototypes and methods for the detection of circulating tumor and endothelial cells
WO2005049168A2 (en) 2003-11-17 2005-06-02 Immunivest Corporation Method and apparatus for pre-enrichment and recovery of cells from densified whole blood
US7329391B2 (en) 2003-12-08 2008-02-12 Applera Corporation Microfluidic device and material manipulating method using same
JP5060134B2 (en) 2003-12-12 2012-10-31 ガバメント オブ ザ ユナイテッド ステイツ オブ アメリカ・アズ リプレゼンテッド バイ ザ セクレタリー・デパートメント オブ ヘルス アンド ヒューマン サービシーズ Epitope of human cytotoxic T lymphocytes and its non-variable number of non-VNTR (non-variable number of nucleotide repeat sequences) of MUC-1
US7939249B2 (en) 2003-12-24 2011-05-10 3M Innovative Properties Company Methods for nucleic acid isolation and kits using a microfluidic device and concentration step
US20050147977A1 (en) 2003-12-29 2005-07-07 Tae-Woong Koo Methods and compositions for nucleic acid detection and sequence analysis
KR101352853B1 (en) 2004-01-07 2014-02-04 조마 테크놀로지 리미티드 M-csf-specific monoclonal antibody and uses thereof
EP1561507A1 (en) 2004-01-27 2005-08-10 Future Diagnostics B.V. System for characterising a fluid, microfluidic device for characterising or analysing concentration components, a method of characterising or analysing such concentrations and a measurement device
WO2005072399A2 (en) 2004-01-29 2005-08-11 Massachusetts Institute Of Technology Microscale sorting cytometer
US20050181353A1 (en) 2004-02-17 2005-08-18 Rao Galla C. Stabilization of cells and biological specimens for analysis
US20050191636A1 (en) 2004-03-01 2005-09-01 Biocept, Inc. Detection of STRP, such as fragile X syndrome
WO2005085861A2 (en) 2004-03-03 2005-09-15 Oridis Biomed Forschungs- Und Entwicklungs Gmbh Nucleic acids and encoded polypeptides for use in liver disorders and epithelial cancer
US20050282293A1 (en) 2004-03-03 2005-12-22 Cosman Maury D System for delivering a diluted solution
CA2557819A1 (en) 2004-03-03 2005-09-15 The General Hospital Corporation Magnetic device for isolation of cells and biomolecules in a microfluidic environment
US20060121624A1 (en) 2004-03-03 2006-06-08 Huang Lotien R Methods and systems for fluid delivery
AU2005222931A1 (en) 2004-03-12 2005-09-29 The Regents Of The University Of California Methods and apparatus for integrated cell handling and measurements
US7390388B2 (en) 2004-03-25 2008-06-24 Hewlett-Packard Development Company, L.P. Method of sorting cells on a biodevice
WO2005098046A2 (en) 2004-04-01 2005-10-20 Immunivest Corporation Methods for the determination of cell specific biomarkers
US20050241257A1 (en) 2004-04-30 2005-11-03 Price Raymond R Asymmetric retaining wall block
US20050282196A1 (en) 2004-04-30 2005-12-22 Jose Costa Methods and compositions for cancer diagnosis
US20080195326A1 (en) 2004-05-03 2008-08-14 Martin Munzer Method And System For Comprehensive Knowledge-Based Anonymous Testing And Reporting, And Providing Selective Access To Test Results And Report
US7468249B2 (en) 2004-05-05 2008-12-23 Biocept, Inc. Detection of chromosomal disorders
US20080213821A1 (en) 2004-05-06 2008-09-04 Nanyang Technological University Microfluidic Cell Sorter System
US7858040B2 (en) 2004-05-07 2010-12-28 Saryna Biotechnologies Llc Direct mixing and injection for high throughput fluidic systems
US20050252840A1 (en) 2004-05-13 2005-11-17 Eksigent Technologies, Llc Micromixer
US7622281B2 (en) 2004-05-20 2009-11-24 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for clonal amplification of nucleic acid
WO2005116264A2 (en) 2004-05-24 2005-12-08 Immunivest Corporation A blood test to monitor the genetic changes of progressive cancer using immunomagnetic enrichment and fluorescence in situ hybridization (fish)
EP1607485A1 (en) 2004-06-14 2005-12-21 Institut National De La Sante Et De La Recherche Medicale (Inserm) Method for quantifying VEGF121 isoform in a biological sample
US7436020B2 (en) 2004-06-30 2008-10-14 Micron Technology, Inc. Flash memory with metal-insulator-metal tunneling program and erase
DE102004036669A1 (en) 2004-07-28 2006-03-23 Otto Bock Healthcare Gmbh Pump with a closed with at least one flexible wall fluid volume
US20060051265A1 (en) * 2004-09-08 2006-03-09 Health Research, Inc. Apparatus and method for sorting microstructures in a fluid medium
US20080106853A1 (en) 2004-09-30 2008-05-08 Wataru Suenaga Process for Producing Porous Sintered Metal
DE102004047953A1 (en) 2004-10-01 2006-04-20 Rudolf Rigler Selection of particle possessing predetermined property from population encompassing multiplicity of different particles, comprises providing population of different particles, and labeling particles which possess predetermined property
US20060246575A1 (en) 2005-01-13 2006-11-02 Micronics, Inc. Microfluidic rare cell detection device
US8158410B2 (en) 2005-01-18 2012-04-17 Biocept, Inc. Recovery of rare cells using a microchannel apparatus with patterned posts
US20060252087A1 (en) 2005-01-18 2006-11-09 Biocept, Inc. Recovery of rare cells using a microchannel apparatus with patterned posts
KR20070116585A (en) 2005-01-18 2007-12-10 바이오셉트 인코포레이티드 Cell separation using microchannel having patterned posts
US7981696B2 (en) 2005-02-18 2011-07-19 The United States of America, as represented by the Secretary of Commerce, The National Institute of Standards and Technology Microfluidic platform of arrayed switchable spin-valve elements for high-throughput sorting and manipulation of magnetic particles and biomolecules
US20070196820A1 (en) 2005-04-05 2007-08-23 Ravi Kapur Devices and methods for enrichment and alteration of cells and other particles
US20070026413A1 (en) 2005-07-29 2007-02-01 Mehmet Toner Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070026415A1 (en) * 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070026417A1 (en) 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
EP2594631A1 (en) * 2005-04-05 2013-05-22 Cellpoint Diagnostics Devices and method for detecting circulating tumor cells and other particles
US20060223178A1 (en) 2005-04-05 2006-10-05 Tom Barber Devices and methods for magnetic enrichment of cells and other particles
US20070026414A1 (en) 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070026418A1 (en) 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
SE0501418L (en) 2005-06-20 2006-09-26 Aamic Ab Method and means for effecting liquid transport
US20070059680A1 (en) 2005-09-15 2007-03-15 Ravi Kapur System for cell enrichment
US8921102B2 (en) 2005-07-29 2014-12-30 Gpb Scientific, Llc Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070026419A1 (en) 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070026416A1 (en) 2005-07-29 2007-02-01 Martin Fuchs Devices and methods for enrichment and alteration of circulating tumor cells and other particles
US20070059716A1 (en) 2005-09-15 2007-03-15 Ulysses Balis Methods for detecting fetal abnormality
US20070059718A1 (en) 2005-09-15 2007-03-15 Mehmet Toner Systems and methods for enrichment of analytes
US20070059719A1 (en) 2005-09-15 2007-03-15 Michael Grisham Business methods for prenatal Diagnosis
US20070059781A1 (en) 2005-09-15 2007-03-15 Ravi Kapur System for size based separation and analysis
US20070059683A1 (en) 2005-09-15 2007-03-15 Tom Barber Veterinary diagnostic system
US20070059774A1 (en) 2005-09-15 2007-03-15 Michael Grisham Kits for Prenatal Testing
CA2623445A1 (en) * 2005-09-21 2007-03-29 Ccc Diagnostics, Llc Comprehensive diagnostic testing procedures for personalized anticancer chemotherapy (pac)
US7695956B2 (en) * 2006-01-12 2010-04-13 Biocept, Inc. Device for cell separation and analysis and method of using
EP2040843B1 (en) 2006-06-01 2020-02-26 The Trustees of Princeton University Apparatus for continuous particle separation
US8137912B2 (en) 2006-06-14 2012-03-20 The General Hospital Corporation Methods for the diagnosis of fetal abnormalities
US20080090239A1 (en) * 2006-06-14 2008-04-17 Daniel Shoemaker Rare cell analysis using sample splitting and dna tags
WO2008014516A2 (en) * 2006-07-28 2008-01-31 Living Microsystems, Inc. Selection of cells using biomarkers
WO2008131035A2 (en) 2007-04-16 2008-10-30 Cellpoint Diagnotics, Inc. Methods for diagnosing, prognosing, or theranosing a condition using rare cells
WO2009009769A2 (en) 2007-07-11 2009-01-15 Artemis Health, Inc. Diagnosis of fetal abnormalities using nucleated red blood cells
WO2010129441A2 (en) 2009-05-04 2010-11-11 Gpb Scientific, Llc Method for separating stem cells from their more differentiated progeny using microfluidic devices
US8635163B2 (en) 2010-01-13 2014-01-21 Green Man Gaming Limited System and method for facilitating a video game exchange
TW201225801A (en) 2010-12-06 2012-06-16 Hon Hai Prec Ind Co Ltd Electronic device

Also Published As

Publication number Publication date
US20190022653A1 (en) 2019-01-24
US20150260711A1 (en) 2015-09-17
US20070231851A1 (en) 2007-10-04
US20170197214A1 (en) 2017-07-13
ATE531257T1 (en) 2011-11-15
US20070259424A1 (en) 2007-11-08
US20120006760A1 (en) 2012-01-12
EP1569510B1 (en) 2011-11-02
US20070264675A1 (en) 2007-11-15
US10081014B2 (en) 2018-09-25
EP1569510A4 (en) 2006-08-30
US20070172903A1 (en) 2007-07-26
US8372579B2 (en) 2013-02-12
WO2004029221A2 (en) 2004-04-08
EP1569510A2 (en) 2005-09-07
JP2006501449A (en) 2006-01-12
US20210370298A1 (en) 2021-12-02
AU2010212376B2 (en) 2011-10-13
WO2004029221A3 (en) 2004-05-13
CA2500392C (en) 2012-11-27
HK1079960A1 (en) 2006-04-21
JP2010075191A (en) 2010-04-08
EP2359689B1 (en) 2015-08-26
US20060134599A1 (en) 2006-06-22
US8304230B2 (en) 2012-11-06
US8986966B2 (en) 2015-03-24
CA2500392A1 (en) 2004-04-08
US8895298B2 (en) 2014-11-25
AU2010212376A1 (en) 2010-09-09
US11052392B2 (en) 2021-07-06
EP2359689A1 (en) 2011-08-24
AU2003277153A1 (en) 2004-04-19

Similar Documents

Publication Publication Date Title
ES2375724T3 (en) MICROFLUDE DEVICE FOR SEPERATION OF CELLS AND ITS USES.
JP5824387B2 (en) Cell separation using microchannels with patterned posts
ES2798099T3 (en) Unitary biochip that provides processing from inserting samples to obtaining results and manufacturing methods
CA2658336C (en) Detection or isolation of target molecules using a microchannel apparatus
US8173413B2 (en) Separation and concentration of biological cells and biological particles using a one-dimensional channel
US8921122B2 (en) System and method for quantitative assessment of biological migration behavior
US8771933B2 (en) Continuous-flow deformability-based cell separation
TW201518498A (en) Methods and compositions for separating or enriching cells
JP5311356B2 (en) Nucleated red blood cell concentration recovery chip and nucleated red blood cell concentration recovery method
JP2012152230A (en) Detection, separation or isolation of target molecule, using microchannel apparatus