ES2330229T3 - Generador con capacidad de tolerancia a errores de red. - Google Patents

Generador con capacidad de tolerancia a errores de red. Download PDF

Info

Publication number
ES2330229T3
ES2330229T3 ES05000275T ES05000275T ES2330229T3 ES 2330229 T3 ES2330229 T3 ES 2330229T3 ES 05000275 T ES05000275 T ES 05000275T ES 05000275 T ES05000275 T ES 05000275T ES 2330229 T3 ES2330229 T3 ES 2330229T3
Authority
ES
Spain
Prior art keywords
phase
output
network
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES05000275T
Other languages
English (en)
Inventor
William Erdman
Kevin L. Cousineau
Amir S. Mikhail
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clipper Windpower Technology Inc
Original Assignee
Clipper Windpower Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34679397&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=ES2330229(T3) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US10/981,364 external-priority patent/US7233129B2/en
Application filed by Clipper Windpower Technology Inc filed Critical Clipper Windpower Technology Inc
Application granted granted Critical
Publication of ES2330229T3 publication Critical patent/ES2330229T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • H02P5/747Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors mechanically coupled by gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0272Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor by measures acting on the electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0276Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling rotor speed, e.g. variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/048Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • F03D9/257Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor the wind motor being part of a wind farm
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • H02J3/0012Contingency detection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/02Details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/102Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for limiting effects of transients
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/105Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for increasing the stability
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/107Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for limiting effects of overloads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/16Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/1016Purpose of the control system in variable speed operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/103Purpose of the control system to affect the output of the engine
    • F05B2270/1032Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/337Electrical grid status parameters, e.g. voltage, frequency or power demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/10Special adaptation of control arrangements for generators for water-driven turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Abstract

Un procedimiento para controlar un generador de potencia, en particular una turbina eólica o de corriente de agua, conectada a un circuito eléctrico que tiene múltiples fases, que comprende la etapas de: A. medir una frecuencia de voltaje y un ángulo de fase en una fase de dicho circuito eléctrico; B. sintetizar plantillas de forma de onda de corriente para las fases de dicho circuito eléctrico en base a una medida de voltaje de dicha una fase; y C. utilizar dichas plantillas de forma de onda de corriente para suministrar corriente eléctrica a dichas fases de dicho circuito eléctrico durante una condición de fallo.

Description

Generador con capacidad de tolerancia a errores de red.
Antecedentes de la invención
La invención se refiere a generadores con inversores regulados por carga, incluyendo turbinas eólicas y de corriente de agua, y más en particular a turbinas eólicas de velocidad variable que emplean generadores multifase que utilizan sistemas de conversión de plena potencia con capacidad de tolerancia a errores de red.
La aplicación de sistemas de generación eólicos en el pasado se ha realizado a pequeña escala en comparación con la capacidad de generación total de la red eléctrica. Un término utilizado frecuentemente para describir la cantidad relativa de potencia eólica generada es el de "penetración". La penetración es la tasa de potencia eólica generada respecto al total de potencia generada disponible. Incluso en aquellos estados en los que la potencia eólica generada es máxima, los niveles de penetración son de alrededor del 1% o inferiores. Aunque esto es una cantidad relativamente pequeña de potencia, y las reglas que gobiernan el funcionamiento de las turbinas reflejan esta pequeña penetración, está claro que las reglas de funcionamiento están cambiando. Esto es un anticipo de futuros niveles substancialmente más altos de penetración. Un principio operativo que está siendo sometido a revisión es cómo reacciona una turbina eólica a un fallo en el sistema de red de transmisión (o subtransmisión) al que se encuentra interconectada la turbina eólica. Un fallo se define como una perturbación de la red que da como resultado una caída significativa de voltaje en el sistema de transmisión de red durante un periodo corto (típicamente inferior a 500 ms). Los fallos pueden estar ocasionados por la conexión inadvertida a tierra de al menos un conductor de fase (un fallo a tierra), o la conexión inadvertida, o el cortocircuito, de conductores de múltiples fases. Estos tipos de fallos tienen lugar durante tormentas eléctricas y de viento, o cuando una línea de transmisión se ve involucrada en un accidente de un vehículo, por ejemplo. Una reducción significativa de voltaje puede ocurrir asimismo cuando tiene lugar un gran cambio en la carga eléctrica o en la generación eléctrica en la proximidad del sistema de transmisión de red. Ejemplos de este tipo de eventos podrían incluir la brusca desconexión de una gran planta de potencia, o la súbita conexión de una gran carga, tal como una planta de laminación de acero. Este tipo de eventos de reducción de voltaje no se denominan típicamente como fallos en la terminología de red, aunque para el propósito de esta descripción, el término "fallo" pretende cubrir tales eventos de reducción de voltaje. El término "fallo" como se utiliza aquí pretende cubrir cualquier evento en el sistema de red que cree una reducción o aumento momentáneo en el voltaje de una o más fases. En el pasado, bajo estos fallos inadvertidos y grandes circunstancias de perturbación de potencia, ha sido aceptable y deseable la desconexión de una turbina eólica en el momento en que tuviera lugar la reducción de voltaje. Obrar de este modo no tiene un efecto perjudicial real en el suministro de electricidad cuando la penetración es baja. Sin embargo, esta regla de operación se encuentra bajo revisión, y ahora es deseable que una turbina eólica permanezca en línea y tolere tal condición de bajo voltaje. Este nuevo modo de funcionamiento es similar a los requerimientos aplicados a fuentes de generación tradicionales, tales como plantas de generación síncronas alimentadas por combustible fósil. La razón para este requerimiento es sencilla; si la potencia eólica generada tiene una alto nivel de penetración, y tiene lugar un fallo momentáneo, la caída de una cantidad significativa de potencia eólica generada (como se requería bajo las reglas de funcionamiento antiguas) podría provocar problemas de estabilidad mucho más serios, tales como oscilaciones de frecuencia, o grandes inestabilidades a lo ancho del sistema en los sistemas de generación. Éstas son condiciones de fallo muy extensivas y pueden conducir a la perturbación de la potencia en grandes regiones, afectando a grandes cantidades de clientes de la red. El uso de turbinas eólicas de velocidad variable para generar potencia eléctrica presenta muchas ventajas, que incluyen una eficiencia de pala mayor que para las turbinas eólicas de velocidad constante, control de la potencia reactiva-VARs y del factor de potencia, y mitigación de las cargas mecánicas sobre la transmisión de la turbina. Los requerimientos de suministro ininterrumpido de bajo voltaje descritos anteriormente, denominados a menudo como tolerancia a fallos de red, se abordan más fácilmente asimismo utilizando cierta tecnología de turbina eólica de velocidad variable, como se divulgará aquí. Al considerar turbinas eólicas de velocidad variable, es importante examinar dos clases de convertidores de potencia que se utilizan y que podrían ser utilizados por la función de tolerancia a fallos de red.
Una turbina eólica de velocidad variable del estado de la técnica anterior utiliza un sistema de conversión total para rectificar completamente la totalidad de la potencia entregada por la turbina eólica. Esto es, la turbina eólica, funcionando a una frecuencia y voltaje variables, convierte esta potencia en una frecuencia y voltaje fijos que corresponden a los de la red. Un ejemplo de este tipo de sistemas se divulga en el documento de patente US 5.083.039 (incorporado a la presente memoria por referencia), que comprende un rotor de turbina que acciona una pareja de generadores AC de inducción de jaula de ardilla con dos convertidores de potencia respectivos, que convierten la salida del generador a un nivel de voltaje DC fijo. El bus DC de este sistema se acopla a continuación al inversor de red y la potencia se invierte a una frecuencia fija, y se suministra de nuevo a la red. El sistema de control del generador en la patente 5.083.039 utiliza principios de orientación de campo para controlar el par y utiliza procedimiento de control por potencia reactiva para controlar el inversor de red. Aunque la generación en esta turbina requiere sólo un flujo de potencia unidireccional, se requiere inherentemente un convertidor bidireccional, ya que los generadores de inducción necesitan ser excitados desde el bus DC. El bus DC en este sistema se controla desde la porción de inversor de red del sistema de conversión, y el control del bus DC es difícil cuando el voltaje de red cae sustancialmente.
Un segundo ejemplo de un sistema de conversión total se divulga en la solicitud de patente norteamericana US 10/773.851, y la solicitud de patente europea correspondiente de 5 de enero de 2005. Este sistema utiliza generadores síncronos junto con un rectificador pasivo y un inversor de red activo para convertir una frecuencia y voltaje de generador variables a una frecuencia y voltaje compatibles con la red. Este sistema es inherentemente unidireccional en su capacidad para trasladar potencia del generador a la red. Una ventaja de este sistema es que el bus DC se controla desde el lado del generador del sistema de conversión de potencia, y el control del bus es sencillo durante los periodos de bajos voltajes de red. El funcionamiento paralelo de generadores síncronos que alimentan un bus DC se describe en el documento JP 2003 259 693.
Los documentos de patente US 6.137.187 y US 6.420.795 (ambos incorporados a la presente memoria por referencia) describen un sistema de conversión parcial y velocidad variable para su uso con turbinas eólicas. El sistema comprende un generador de inducción de rotor bobinado, un controlador de par y un controlador de ángulo de paso proporcional integral derivativo (PID). El controlador de par controla el par del generador utilizando control orientado a campo y el controlador PID realiza la regulación del ángulo de paso en base a la velocidad del rotor del generador. Al igual que la patente 5.083.39, el flujo de potencia es bidireccional en el rotor del generador y se utiliza un rectificador activo para el proceso de conversión. El convertidor utilizado en este sistema está limitado a sólo una porción del régimen total de la turbina, dependiendo la limitación del deslizamiento del generador deseado máximo en el diseño de la turbina. El convertidor controla la corriente y frecuencia en el circuito del rotor sólo con una conexión eléctrica directa entre el estator del generador y la red. Además de controlar el par, el convertidor es capaz de controlar la potencia reactiva del sistema o factor de potencia. Esto se consigue infraexcitando o sobreexcitando el circuito del rotor del generador junto a su eje de magnetización. El convertidor se conecta en paralelo a la conexión del estator/red, y sólo maneja la entrada y salida de potencia del rotor. Este sistema es difícil de controlar en el caso de una caída brusca en el voltaje de red. Esto es debido a que el bus DC del convertidor del rotor se controla desde el convertidor del lado de la red, justo como en la patente 5.083.039, y a que el estator del generador se conecta directamente a la red. La conexión directa del estator provoca problemas porque no hay ningún convertidor entre el estator y la red, y se generan pares y corrientes transitorias que no están sometidas a control por un controlador intermedio.
La solicitud de patente norteamericana US 10/733.687 (incorporada a la presente memoria por referencia) describe sistema para regular una turbina eólica conectada al nivel de distribución de la red en base al voltaje del sistema. La solicitud 10/733.687 está en contradicción con el hecho de que la mayoría de la generación eólica en los Estados Unidos está conectada a nivel de subtransmisión. Además, el procedimiento descrito no abordan las caídas súbitas y profundas del voltaje de red. En el documento EP 1.426.616 se considera el funcionamiento en carga débil.
Es deseable proporcionar una turbina de corriente de agua o eólica de velocidad variable, que tenga la capacidad de continuar el control del inversor durante un fallo de red, tal como una caída profunda, súbita del voltaje de red.
Es deseable, asimismo, proporcionar capacidad de tolerancia a fallos de red para un sistema de turbina de corriente de agua o eólica, en el cual el generador esté completamente desacoplado de una red de distribución y de sus perturbaciones.
Resumen de la invención
Brevemente, la invención es un aparato de acuerdo con la reivindicación 8 y un procedimiento de acuerdo con la reivindicación 1 para controlar un generador, en el cual se realiza una medida de frecuencia de voltaje y de ángulo de fase sobre una fase, se realiza una síntesis de plantillas de forma de onda de corriente para todas las fases en base a la medida de voltaje de la una fase, y en base de la forma de onda de corriente, se suministra corriente eléctrica a una red de distribución durante una condición de fallo a un nivel que es sustancialmente el mismo que en las condiciones previas al fallo.
La invención tiene la ventaja de que presenta la capacidad de continuar el control de inversor en un sistema de turbina eólica de velocidad variable durante un fallo de la red.
La invención presenta la ventaja de que proporciona un procedimiento para sintetizar plantillas de forma de onda de referencia de corriente trifásica balanceada bajo condiciones en las que la red es completamente funcional, pero asimismo cuando se presentan uno o más fallos en el sistema de transmisión y recogida de la red.
Le invención tiene la ventaja de que descansa en que esté operativa sólo una fase del sistema trifásico, y esta fase necesita estar operativa tan sólo a un 5% del voltaje nominal.
La presente invención presenta la ventaja de que el sistema requiere sólo de un pequeño nivel de voltaje para la sincronización, aproximadamente un 5% del voltaje, sobre la fase individual detectada del sistema trifásico, las referencias de corriente y, por lo tanto, las corrientes de inversor no se ven afectadas por un amplio intervalo de fallos. Condiciones de fallo a tierra, o fallos fase a fase sobre las dos fases no detectadas afectan poco o nada a las corrientes de referencia y de red. Fallos a tierra sobre la fase individual detectada, a nivel del sistema de recogida o de transmisión, producirán típicamente más de un voltaje del 5%, dadas las impedancias típicas de un sistema de granja
eólica.
La presente invención presenta la ventaja de que el generador está completamente desacoplado de la red (y de sus perturbaciones) por el convertidor total. El sistema de convertidor parcial, por el contrario, no está completamente desacoplado, ya que el estator está conectado directamente a la red de distribución, y las perturbaciones de red provocan transitorios grandes que no pueden ser amortiguados o desacoplados por el convertidor.
La presente invención presenta la ventaja de que proporciona al sistema capacidad de tolerancia frente a perturbaciones y fallos de la red por medio de una función de síntesis de referencia de corriente robusta y una aproximación simplificada de comando del par de generador.
La presente invención presenta la ventaja de que proporciona al sistema síntesis de las referencias de corriente trifásica a partir de la detección de una fase individual.
La presente invención presenta la ventaja de que proporciona al sistema el funcionamiento de la función de síntesis trifásica hasta un voltaje muy bajo, de aproximadamente un voltaje de línea del 5%, durante una condición de fallo de la fase detectada.
La presente invención presenta la ventaja de que proporciona al sistema plantillas de corriente libres de distorsión por medio del uso de tablas de referencia equilibradas, trifásicas, sinusoidales o funciones trigonométricas seno computadas.
La invención presenta la ventaja adicional de que, con el fin de que el sistema funcione, sólo se necesita que haya una señal de frecuencia detectable en la línea de potencia a la salida del inversor. Como se detecta frecuencia incluso durante una condición de fallo de red, el inversor continúa inyectando corriente en la línea de un modo trifásico balanceado con una forma casi puramente sinusoidal a la frecuencia detectada, con el ángulo de fase apropiado para las tres fases.
Breve descripción de las figuras
La figura 1 muestra un esquema eléctrico de un montaje de turbinas eólicas que emplea inversores modulados en ancho de pulso (PWM) regulados en corriente, conectados a un sistema de recogida de granja eólica y a un sistema de subtransmisión de red en el que se materializa la presente invención;
la figura 2 muestra un esquema eléctrico de un inversor individual PWM regulado en corriente y una turbina eólica de velocidad variable de acuerdo con una realización de la presente invención;
la figura 3 muestra una serie temporal de voltaje fase a tierra y fase a fase en las tres fases del sistema de red antes, durante, y tras un fallo de red;
la figura 4 muestra una serie temporal expandida de corriente inyectada en el sistema de red durante el período de tiempo en el que se inicia un fallo instantáneo;
la figura 5 muestra una serie temporal de corriente inyectada en el sistema de red durante el periodo de tiempo en el que un fallo desaparece instantáneamente; y
la figura 6 muestra una realización de un circuito de control del inversor de acuerdo con la presente invención que utiliza un bucle de enganche de fase.
Descripción detallada de la invención
En referencia a la figura 1, que muestra un conjunto de generadores con sistemas de inversor regulados en corriente en la forma de una granja energética de corriente de agua o eólica 1. Turbinas eólicas 3 individuales se conectan a un sistema de recogida 5 de una granja eólica. El sistema de recogida 5 de la granja energética puede interaccionar con sistema 7 de distribución, subtransmisión o transmisión de red por medio de una subestación transformadora 9. El sistema de recogida 5 de la granja energética puede aislar grupos 11 de turbinas eólicas utilizando dispositivos de sectorización 13. Los dispositivos de sectorización, a menudo disyuntores o fusibles, aíslan un grupo de turbinas 11 en el caso de un fallo eléctrico dentro del grupo de turbinas 11, permitiendo así que el resto de la granja eólica 1 continúe funcionando. Grupos de turbinas (tales como el 11) están conectados en común al sistema de recogida 5 de la granja energética para interaccionar con la red eléctrica 7.
La granja energética 1 se compone de turbinas de flujo de fluido 3, mostradas en detalle en la figura 2. Cada turbina de flujo de fluido tiene un rotor 15. Una salida del rotor es potencia rotacional. Un generador 17 se conecta a la salida del rotor, siendo una salida del generador potencia eléctrica. Un inversor 23 se conecta a la salida del generador 17, siendo condicionada al menos una porción de la salida de potencia eléctrica por el inversor, lo que resulta en un voltaje y una corriente de salida del inversor a una frecuencia y ángulo de fase adecuados para su transmisión a la red 7. Cada turbina de flujo de fluido tiene un sistema de control 24 que tiene una entrada y una salida del sistema de control conectadas al inversor. La granja energética tiene un sistema de recogida 5 conectado a la red. Un grupo de turbinas de flujo de fluido 11 tienen sus salidas de inversor conectadas al sistema de recogida 5. Un sensor 8 de ángulo de fase y frecuencia se conecta a la red en un punto adecuado para funcionar durante un fallo en la red. Cada turbina tiene su entrada del sistema de control conectada al sensor. Cada sistema de control produce una salida que es una señal de comando de corriente que permite que el inversor al que está conectado saque una forma de onda de corriente que es de la misma fase y frecuencia que la detectada por el sensor 8. En lugar del sensor común mostrado en la figura 1, cada turbina puede tener su propio sensor, como se muestra en la figura 2.
Además de los dispositivos de sectorización 13, la granja energética incluye asimismo típicamente dispositivos adicionales de protección y aislamiento en la subestación 9, y asimismo en el controlador de cada turbina eólica 3 individual. Tales dispositivos de protección adicionales incluirían típicamente mecanismos de disparo por sobre e infra voltaje y sobre e infra frecuencia. Estos mecanismos de disparo están coordinados entre sí y con la subestación para proporcionar un esquema de protección deseado.
En referencia a la figura 2, en la que se muestran esquemáticamente componentes de una turbina eólica 3 individual de la figura 1. Un rotor 15 convierte energía de un flujo de fluido, tal como viento o una corriente de agua, en energía cinética rotacional. Un generador 17 convierte la energía cinética rotacional en potencia eléctrica AC de frecuencia variable. Un rectificador 19 convierte la potencia AC en DC. Un enlace DC 21 tiene alguna capacidad de almacenamiento de energía DC para estabilizar transitorios pequeños. Un inversor 23 regulado en corriente convierte la potencia DC a potencia AC a la frecuencia de red. Un circuito de control del inversor 24 incorpora muchas funciones de control de turbina. Se proporciona un dispositivo de protección 25, tal como un disyuntor de circuito y/o un fusible para aislar la turbina 3 en caso de fallo. Un transformador tipo pedestal 27 cambia el voltaje de la potencia producida al voltaje del sistema de recogida 5 de la granja energética. La turbina eólica produce habitualmente potencia a bajo voltaje, tal como 575 VAC o 690 VAC, y el sistema de recogida es típicamente de mayor voltaje, tal como 34,5 kV. La turbina eólica 3 y el sistema de recogida 5 se muestran funcionando con potencia trifásica. La presente invención podría incluir el uso de potencia de una única fase o potencia con cualquier número de fases. El diseño del rotor 15 entra dentro de las habilidades del experto de la técnica y podrían realizarse utilizando las técnicas descritas en Wind Energy Handbook, escrito por Burton, Sharpe, Jenkins y Bossanyi, y publicado por John Wiley & Sons en 2001, Wind Power Plants: Fundamentals, Design, Construction and Operation, escrito por Gasch y Twele, y publicado por James & James en 2002, Wind Turbine Engineering Design, escrito por Eggleston y Stoddard y publicado por Van Nostrand Reinhold en 1987, Windturbines, escrito por Hau y publicado por Springer en 2000, Wind Turbine Technology, editado por Spera y publicado por ASME Press en 1994, y Wind Energy Conversion Systems, escrito por Freris y publicado por Prentice Hall en 1990, todos los cuales se incorporan aquí por referencia. Información sobre diseño de transformadores, puesta a tierra, potencia, calidad, y otros aspectos de la integración de granjas energética con la red se puede encontrar en Grid Integration of Wind Energy Conversion Systems, escrito por Heier y publicado por John Wiley & Sons, Inc, 2002, ISBN: 0-471-97143-X, que se incorporan a la presente memoria por referencia.
El circuito de control del inversor 24 puede ser relativamente sencillo o muy complejo, incorporando muchas funciones de control de turbina. El circuito de control de inversor puede ser un circuito independiente simplemente para las funciones relativas a la técnica de la presente invención, o puede ser simplemente una parte del inversor o algún otro componente del sistema de turbina eólica, o aspectos del circuito de control 24 se distribuyen entre componentes. El circuito de control del inversor mostrado en la figura 2 es menos un componente físico separado de la turbina eólica, sino más bien se muestra para ilustrar la técnica de la presente invención. El circuito de control del inversor 24 contiene aquellos elementos utilizados normalmente en la regulación de corrientes de línea AC, como se describe, por ejemplo, en Ned Mohan, Tore M. Underland, William P. Robbins Power Electronics: Converters, Applications, and Design, publicado por John Wiley & Sons; 3ª edición (Octubre 2002) ISBN: 0471226939, y W. Leonhard, Control of Electrical Drives, Springer-Verlag, 1985, ambos incorporados a la presente memoria por referencia.
El circuito de control del inversor 24 detecta una señal de voltaje 30 de una fase individual del lado de bajo voltaje de transformador tipo pedestal 27. La técnica de la presente invención trabajará detectando voltaje de una fase solamente, pero se concibe que el circuito de control del inversor 24 pudiera detectar las tres fases y, en el caso de una condición de fallo, elegir rastrear la más fuerte de las tres o rastrear las tres independientemente. El circuito de control del inversor 24 puede utilizar sólo información de frecuencia y fase de la señal recibida 30. La amplitud de la señal de voltaje es relativamente poco importante. La frecuencia y fase se pueden detectar incluso si el voltaje es cero en el punto de fallo en una localización distante en el sistema de transmisión, subtransmisión, distribución o recogida, la impedancia entre el generador y el fallo creará aun así una forma de onda de voltaje en tanto en cuanto se suministre corriente.
La figura 3 muestra las formas de onda de voltaje de fase a tierra y fase a fase en la localización de conexión de la turbina eólica antes 18, durante 20 y después 22 de un fallo de fase individual a tierra simulado (el tipo de fallo más común). Se puede observar que incluso la fase que falla presenta todavía una fase y frecuencia detectables. Otros tipos de fallos de transmisión, incluyendo un fallo fase a fase y un fallo simétrico trifásico mostrarían formas de onda similares, todas las cuales tendrían fase y frecuencia detectables si se suministra corriente del generador. Una vez que se ha determinado la frecuencia y la fase de una forma de onda de voltaje, el circuito de control del inversor 24 genera entonces una señal 32 de comando de corriente (en la línea quebrada) que da instrucciones al inversor 23 para sacar una plantilla de forma de onda de corriente al dispositivo de protección 25, plantilla que es de la misma fase y frecuencia. En un sistema trifásico balanceado, esto consistiría en una fase a 0º, una fase desplazada 120º y una tercera fase desplazada 240º. La forma de onda de corriente es, a diferencia de la forma de onda de voltaje detectada 30, de forma casi perfectamente sinusoidal (a la que podría no conducir el voltaje y durante una condición de fallo), y su magnitud no depende de la magnitud del voltaje de línea. El dispositivo de protección 25 está conectado al transformador tipo pedestal 27, que cambia el voltaje de la potencia producida al voltaje del sistema de recogida 5 de la granja energética.
Las señales de comando de corriente 32 pueden generarse digitalmente utilizando tablas de referencia o utilizando circuitería analógica, o pueden ser una rutina de software que ejecuta una función trigonométrico seno. Para el caso de una turbina eólica que se discute aquí, la estrategia es dejar el nivel del comando de corriente AC 32 constante durante el fallo. Esto se hace ya que los fallos discutidos aquí son de corta duración y el impacto en el sistema de turbina eólica es mínimo. Asimismo, cuando la red retorna a valores normales, el sistema de turbina eólica vuelve justo a donde quedó antes del fallo, de un modo libre de irregularidades. Antes 18, durante 20, y después 22 (de un fallo), el inversor regulado en corriente aplica el mismo suministro de corriente al sistema de red con tan sólo perturbaciones menores en la corriente.
Las figuras 4 y 5 muestran formas de onda de corriente simuladas del generador al inicio y al término de una condición de fallo fase a tierra individual, respectivamente. De este modo, un generador con un inversor regulado en corriente puede ser forzado a "tolerar" una breve condición de fallo sin desconectarse de la red o añadir una perturbación sustancial al sistema de recogida y de subtransmisión al término del fallo. Una técnica para conseguir la función anterior del controlador de circuito del inversor 24 es utilizar un bucle de enganche de fase, una técnica familiar a aquellos expertos en la técnica y descrita en F.M. Gardner, Phase-lock Techniques (2ª edición), Wiley (1979) o en Roland E. Best, Phase-locked Loops, McGraw-Hill (1993), ambas incorporadas aquí por referencia. Son posibles ciertamente otras técnicas aparte de la de bucle de enganche de fase para alcanzar el efecto deseado y se entienden dentro del ámbito de la presente invención. El circuito de control del inversor 24 se puede realizar como un componente hardware físico o se puede implementar en software utilizando un microprocesador.
La figura 6 muestra elementos de un circuito de control del inversor 24 utilizado en un bucle de enganche de fase. Mostrar un circuito de control del inversor 24 de este modo no limita en modo alguno la técnica de la presente invención a esta topología específica, sino que antes bien ilustra un modo en el cual la técnica de la presente invención puede ser implementada. El voltaje de línea 30 detectado se multiplica 33 por una señal correctiva 34 de un bucle de enganche de fase. Como la señal correctiva 34 está idealmente a 90º fuera de fase con la señal de entrada 30, y ambas señales son de 60 Hz, la señal resultante 36 es una señal sinusoidal de 120 Hz con un desfase DC relativo a la diferencia de fase entre la señal de entrada 30 y la señal correctiva 34. Una diferencia de fase de exactamente 90º produce un desfase DC cero. La señal resultante 36 pasa entonces a un filtro 38 de paso bajo, que retira la componente de 120 Hz de la señal resultante, dejando tan sólo una señal DC 40. Esta señal DC 40 se pasa a través de un regulador proporcional integral (P-I) 42, que se ajusta para controlar la dinámica de la respuesta del circuito de control del inversor 24. La salida 44 del P-I es una señal DC que se añade a una salida 46 de un generador de ondas triangulares 48. El generador de ondas triangulares 48 produce una onda triangular continua de 60 Hz. La señal de salida 44 del P-I y la señal de onda triangular se suman en 50. La señal suma 52 pasa a continuación a través de una función coseno 54 que es la señal correctiva 34. La señal de salida 44 del P-I se escala de modo que, al añadirla a la onda triangular 46, la señal correctiva 34 se desplaza en fase para acercarse a un desfase de 90º con la señal de entrada 30. La señal suma 52 se conecta a un conjunto de circuitos de desplazamiento de fase paralelos 61, 63, 65, en los que la señal suma se somete a una función de desplazamiento de fase de -240º 61, una función de desplazamiento de fase de -120º 63, y una función desplazamiento de fase de -0º 65 de modo paralelo. Un conjunto de circuitos de función trigonométrica seno 56 se conecta a un conjunto de circuitos de desplazamiento de fase paralelos que producen una onda sinusoidal de referencia de amplitud fija 58 de 60 Hz (u otra frecuencia apropiada a la frecuencia de red), sustancialmente en fase con la red. De este modo, se genera un conjunto de señales de referencia de corriente trifásica balanceada de amplitud unidad 58. El conjunto de forma de onda sinusoidal de referencia 58 se escala a continuación por un conjunto de circuitos multiplicadores de escala 59 multiplicando un valor DC 60 que corresponde al nivel de corriente de salida AC deseado, produciendo una señal sinusoidal escalada que es la señal de comando de corriente 32. Este valor DC se establece por un controlador de turbina para establecer el nivel de corriente AC. Este nivel de corriente es aproximadamente proporcional al nivel del par del generador y se basa en un conjunto de entradas. La señal de comando de corriente 32 ajustará la corriente de salida del inversor sustancialmente en fase con el voltaje de las tres fases de la red. La magnitud de la señal escalada 60 no se determina directamente por la señal de voltaje de entrada 30, y así pues la cantidad de corriente comandada del inversor 23 no varía sustancialmente con cambios en la señal de voltaje de entrada 30. El inversor 23 inyectará corriente en la línea de red de magnitud, frecuencia y fase correspondientes a la señal de comando de corriente, independientemente del voltaje en la línea de red. Las técnicas para producir un inversor capaz de tal inserción de corriente son bien conocidas por aquellos expertos en la técnica y pueden ser encontradas en Ned Mohan, Tore M. Undeland, William P. Robbins Power Electronics: Converters, Applications, and Design, editado por John Wiley & Sons; 3ª edición (Octubre 2002) ISBN: 0471226939, y W. Leonhard, Control of Electrical Drives, Springer-Verlag, 1985.
Para ilustrar la presente invención, su funcionamiento se describe como si funcionara en una turbina eólica 3 similar a la divulgada en la solicitud de patente norteamericana US 10/773.851. En el caso de un fallo, el circuito de control del inversor 24 comanda sustancialmente la misma corriente durante la duración de la condición de fallo que la que existía inmediatamente antes del fallo. La técnica de control utilizada en la turbina eólica 3 anteriormente mencionada controla la salida de corriente en base al par deseado del rotor 15. El control del par deseado tiene una constante de tiempo del orden de segundos en comparación con los milisegundos de la duración del fallo. Durante un fallo, mostrado con una duración temporal 20, el voltaje es menor que el normal en al menos en una de las fases (véase la figura 3). Así pues, con la misma corriente fluyendo que en el periodo de tiempo previo al fallo (designado como condición 18) hay menos potencia transmitida a la red durante el periodo de fallo 20. En el caso de la turbina 3 anteriormente mencionada, esto provoca que el voltaje en el enlace DC 21 suba ligeramente, lo que disminuirá el par que el generador 17 aplica al rotor 15, causando que rotor 15 se acelere ligeramente. La cantidad de energía que necesita ser absorbida durante 150 ms o incluso durante 500 ms es lo suficientemente pequeña para que esté bien dentro del intervalo de velocidades permitidas del rotor 15. Una vez que el fallo ha pasado 22, la turbina eólica 3 se regula asimismo normalmente, disipando la energía extra a la red a través del cabeceo de las palas del rotor. De hecho, la cantidad de energía que debe ser absorbida con el fin de permitir que un generador funcione a través de un fallo transitorio es lo suficientemente pequeña para que la energía que se pudiera almacenar simplemente a medida que sube el voltaje en el enlace DC 21 (o el equivalente en otros tipos de generadores). La energía almacenada de esta magnitud (decenas a cientos de vatios-hora para un generador de 1,5 MW, dependiendo del tipo y duración del fallo) está fácilmente disponible, siendo ejemplos de tales dispositivos de almacenamiento de energía supercapacitores y baterías de amperaje instantáneo. El ejemplo anterior tiene tan sólo el propósito de ilustrar la técnica de la presente invención en una aplicación específica, pero en modo alguno limita el ámbito de la invención.
La capacidad de tolerar tales fallos es imperativa para que tales tipos de generación logren suponer un porcentaje significativo de la generación en un sistema de distribución. La mayoría de cargas en el sistema de distribución esperan la misma disponibilidad de potencia tras un fallo 22 que antes 18, de modo que si una gran porción de la generación en un sistema de distribución se desconecta o suministra una baja calidad de potencia debido a tal fallo, entonces la fiabilidad del sistema de red se ve comprometida. Actualmente esto es significativo para la industria de generación eólica, que hasta ahora ha sido una pequeña parte del suministro eléctrico nacional. El rápido crecimiento de la generación de potencia eólica ha provocado que se convierta en una fuente significativa de potencia en algunas regiones, y se proyecta que alcance un porcentaje significativo del suministro eléctrico nacional en el futuro próximo. Así pues, dotar a los generadores eólicos con la capacidad de tolerar una condición de fallo de red (este es un requerimiento que se exige a la mayoría de otras fuentes principales de generación) es una necesidad apremiante. La misma necesidad se aplicará a otras formas de generación de fuentes de corriente, a medida que esas tecnologías alcancen niveles de penetración significativos.
La presente invención se muestra y describe en un conjunto de diferentes realizaciones. Existen otras realizaciones de esta invención más allá de aquéllas descritas específicamente. Estas otras realizaciones, aunque no se describan aquí específicamente, están implícitas de las realizaciones descritas, o se entenderán de las mismas por el experto en la técnica.
La presente invención involucra un generador con un sistema de inversor regulado en corriente interconectado con un sistema de conducción eléctrica. En esta descripción, el generador con un inversor regulado en corriente se describe como un sistema de turbina eólica de conversión total consistente con la patente US 5.983.039. Este sistema de generación rectifica toda la salida del generador eólico para producir electricidad DC, que a continuación se convierte de nuevo en AC a la frecuencia y fase de la red mediante un inversor modulado en anchura de pulso (PWM) regulado en corriente. Aquellos expertos en la técnica entenderán que otros generadores con un inversor regulado en corriente podrán emplear la técnica de la presente invención, incluyendo otras topologías de turbinas eólicas, turbinas de corriente de agua, sistemas de célula de combustible, sistemas fotovoltaicos, generadores diésel, y otras fuentes de generación de potencia. Además, la presente invención se puede utilizar asimismo con una turbina de velocidad variable que utilice conversión parcial de la salida del generador, como se describe en las patentes US 6.137.187 y US 6.420.795. La invención se puede utilizar con una turbina eólica que incluya bien un generador síncrono o un generador de inducción.
En la presente memoria, el sistema de conducción eléctrica se describe como una red de distribución eléctrica con el generador y el inversor regulado en corriente conectados a un sistema de recogida, y además colectivamente al nivel de subtransmisión con generadores similares a través de un transformador de subestación. Estas especificidades son sólo para propósitos ilustrativos, ya que este es un modo típico de que la energía de turbinas eólicas se interconecte con el sistema de red. La técnica de la presente invención funciona para un generador individual así como para un grupo colectivo. La presente invención se puede usar asimismo en conexión con el nivel de distribución de la red, así como con el nivel de transmisión de muy alto voltaje de un sistema de red de distribución. Además, esta técnica se puede emplear en aplicaciones aisladas o en pequeños sistemas de potencia de poblaciones aisladas.
Los ejemplos anteriores de generadores de fuente de corriente alterna y de sistemas de conducción eléctrica pretenden demostrar la naturaleza no exclusiva de la técnica de la presente invención, y no son limitativos en modo alguno. Los expertos en la técnica se darán cuenta de que, aunque la invención se describe como un sistema de conversión total, se puede aplicar igualmente a la porción del convertidor de rotor de sistemas de conversión parcial. En este último caso, la capacidad de tolerar una perturbación de red está aun obstaculizada por la conexión directa del estator a la red, que no puede ser amortiguado por el sistema de convertidor. Más en general, la invención descrita aquí se refiere a una técnica para tolerar fallos de una red para cualquier generador con un sistema de inversor regulado en corriente.
Los expertos en la técnica se darán cuenta igualmente de que mirando solamente a una fase del sistema trifásico para determinar frecuencia y ángulo eléctrico, se construye una plantilla de corriente trifásica balanceada y se utiliza para el propósito de controlar la corriente de inversor de una turbina eólica. Mirando solamente a una fase del sistema trifásico, las otras dos fases se sintetizan a -120 y -240 grados eléctricos para formar un sistema trifásico balanceado de corrientes de referencia. El inversor utilizado es típicamente un inversor modulado en anchura de pulso, regulado en corriente, denominado a menudo como inversor de tipo CRPWM. Este sistema de inversor tiene la capacidad de regular instantáneamente corrientes de red siguiendo un conjunto de corrientes de referencia como las generadas por la invención descrita aquí. Los expertos en la técnica entenderán que se podrían utilizar otros tipos de inversores regulados en corriente, tales como inversores de fuente de corriente PWM actuales e inversores
multinivel.
Debe hacerse notar que debido a las impedancias entre el sistema de convertidor de turbina eólica y el sistema de subtransmisión (transformadores tipo pedestal, transformadores de subestación, longitud de conductores, etc.) habrá algún voltaje en el generador, incluso si el voltaje en el fallo del sistema de transmisión o recogida es cero. Como las corrientes de inversor siguen estas curvas de referencia, las corrientes de red permanecen casi balanceadas incluso si los voltajes no están balanceados entre fases, e incluso si la forma de onda en la fase detectada está significativamente distorsionada. De este modo, se inyecta corriente en el sistema de red a sustancialmente el mismo nivel durante un fallo que en una condición previa al fallo. Como la corriente permanece igual, pero el voltaje es significativamente inferior en al menos una fase, se transmite menos potencia a la red de distribución. Aquellos expertos en la técnica comprenderán que cuando este sistema está funcionando en una turbina eólica de velocidad variable, el exceso de energía se absorbe simplemente como una pequeña aceleración del rotor. Además, como el periodo de fallo para estas perturbaciones transitorias no excede generalmente los 500 ms, la energía total que se necesita absorber como energía cinética en el rotor de la turbina eólica no provoca que se desarrolle una velocidad excesiva en el rotor de la turbina.

Claims (24)

1. Un procedimiento para controlar un generador de potencia, en particular una turbina eólica o de corriente de agua, conectada a un circuito eléctrico que tiene múltiples fases, que comprende la etapas de:
A.
medir una frecuencia de voltaje y un ángulo de fase en una fase de dicho circuito eléctrico;
B.
sintetizar plantillas de forma de onda de corriente para las fases de dicho circuito eléctrico en base a una medida de voltaje de dicha una fase; y
C.
utilizar dichas plantillas de forma de onda de corriente para suministrar corriente eléctrica a dichas fases de dicho circuito eléctrico durante una condición de fallo.
2. El procedimiento de acuerdo con la reivindicación 1 que comprende una etapa de evaluar la forma de onda de voltaje en varias fases de dicho circuito eléctrico para determinar dicha una fase en la que medir frecuencia de voltaje y ángulo de fase.
3. El procedimiento de acuerdo con la reivindicaciones 1 o 2, en el que dicha etapa de sintetizar plantillas de forma de onda de corriente se realiza mediante un circuito analógico, mediante un bucle de enganche de fase y/o mediante un software en un microprocesador.
4. El procedimiento de acuerdo con cualquiera de las reivindicaciones 1 a 3, con un sistema de inversor regulado en corriente y en el que el circuito eléctrico es un sistema eléctrico de múltiples fases, aplicándose el procedimiento de control durante un fallo de red.
5. El procedimiento de acuerdo con la reivindicación 4, en el que la magnitud de las corrientes transmitidas a dicho sistema eléctrico durante dicho fallo de red se establece para que sea la misma que la magnitud de las corrientes transmitidas a dicho sistema eléctrico inmediatamente antes de dicho fallo de red.
6. El procedimiento de acuerdo a las reivindicaciones 4 o 5, que comprende además una etapa de evaluar la forma de onda de voltaje en todas las fases de dicho sistema eléctrico y determinar la fase en la que detectar dicha frecuencia de voltaje y dicho ángulo de fase.
7. El procedimiento de acuerdo con cualquiera de las reivindicaciones 4-6, en el que dicha etapa de sintetizar plantillas de forma de onda de corriente se realiza mediante un circuito analógico, un bucle de enganche de fase y/o un software en un microprocesador.
8. Una turbina de flujo de fluido (3), en particular una turbina eólica o de corriente de agua , con capacidad de tolerancia a fallos de red a bajo voltaje, que comprende:
un rotor (15) que tiene al menos una pala, siendo una salida de dicho rotor potencia rotacional;
un generador (17) conectado a dicha salida de dicho rotor (15), siendo una salida de dicho generador potencia eléctrica;
un inversor (23) conectado a dicha salida de dicho generador (17), siendo condicionada al menos una porción de dicha salida de potencia eléctrica por dicho inversor (23), dando como resultado un voltaje de salida del inversor y una corriente a una frecuencia y ángulo de fase adecuados para su transmisión a una red de distribución multifásica (7);
un sensor (8) de frecuencia y ángulo de fase conectado a dicha red de distribución (7), operativo durante un fallo de dicha red (7) para detectar voltaje y ángulo de fase en una fase; y
un sistema de control (24) que tiene una entrada del sistema de control conectada a dicho sensor (8) y una salida del sistema de control conectada a dicho inversor;
estado adaptado dicho sistema de control (24) para sintetizar plantillas de forma de onda de corriente para todas las fases en base a un voltaje detectado en una fase y para transmitir corriente a todas las fases del sistema eléctrico en base a plantillas de forma de onda de corriente sintetizadas;
siendo la salida de dicho sistema de control una señal de comando de corriente que le permite a dicho inversor (23) sacar una forma de onda de corriente que es de la misma fase y frecuencia que la detectada por dicho sensor (8).
9. La turbina de flujo de fluido de acuerdo con la reivindicación 8, en la que dicho generador es un generador síncrono y que comprende además un rectificador para convertir potencia AC de dicho generador en potencia DC.
10. La turbina de flujo de fluido de acuerdo con cualquiera de las reivindicaciones 8 o 9, en la que dicha red de distribución es un sistema trifásico, y en la que dicho sensor detecta la frecuencia y ángulo de fase del voltaje en una fase de dicha red de distribución trifásica durante un fallo en dicha red de distribución.
11. La turbina de flujo de fluido de acuerdo con cualquiera de las reivindicaciones 8-10, en la que dicho sensor monitoriza todas las fases de dicha red de distribución multifásica y selecciona una fase sobre la cual detectar la frecuencia y ángulo de fase del voltaje.
12. La turbina de flujo de fluido de acuerdo con la reivindicación 8, en la que dicho sistema de control controla dicho inversor para proporcionar corriente a dicha red a sustancialmente la misma magnitud a la que se proporcionaba inmediatamente antes de dicho fallo.
13. La turbina de flujo de fluido de acuerdo con la reivindicación 8, en la que dicho sistema de control se implementa en hardware como un circuito analógico o un bucle de enganche de fase o se implementa mediante software en un microprocesador.
14. La turbina de flujo de fluido de acuerdo con la reivindicación 8, en la que dicha turbina se conecta a dicha red de distribución a un voltaje de nivel de distribución.
15. La turbina de flujo de fluido de acuerdo con la reivindicación 8, en la que dicha turbina es una de una pluralidad de turbinas de flujo de fluido conectadas a dicha red de distribución a través de una subestación común, en la que dicha pluralidad de turbinas se conectan a dicha red de distribución a un voltaje de nivel de subtransmisión o a un voltaje de nivel de transmisión.
16. La turbina de flujo de fluido de acuerdo con la reivindicación 8, en la que dicho sistema de control comprende:
una señal correctiva (34) de un bucle de enganche de fase;
un multiplicador (33) conectado a dicha entrada del sistema de control y a dicha señal correctiva, siendo una señal de salida (36) de dicho multiplicador dicho voltaje de línea de entrada (30) multiplicado por dicha señal correctiva (34), siendo además dicha señal de salida (36) una componente de señal sinusoidal con un desfase DC relativo a una diferencia de fase entre dicha señal de entrada y dicha señal correctiva;
un filtro de paso bajo (38) conectado a dicha señal de salida (36) de dicho multiplicador (33), siendo una salida de dicho filtro de paso bajo (38) una señal DC ausente en dicha componente de señal sinusoidal;
un regulador proporcional integral (P-I) (42) conectado a dicha salida de dicho filtro de paso bajo, teniendo dicho regulador proporcional integral (42) una salida de regulador PI;
un circuito de suma (50) conectado a dicha salida del regulador P-I;
un generador de ondas triangulares (48) conectado a una entrada de dicho circuito de suma, siendo una salida de dicho generador de ondas triangulares de dicho generador de ondas triangulares una onda triangular AC continua, siendo una salida del circuito de suma una suma de dicha salida del regulador P-I y dicha salida del generador de ondas triangulares; y
un circuito de función coseno (54) conectado a dicha salida del circuito de suma, siendo una salida de dicho circuito de función coseno una señal correctiva (34).
17. La turbina de flujo de fluido de acuerdo con la reivindicación 16, que comprende además:
un número de circuitos de desplazamiento de fase paralelos conectados a dicha salida de dicho circuito de suma, uno de tales circuitos de desplazamiento de fase para cada fase de dicha red de distribución multifásica;
un número de circuitos de función trigonométrica seno, conectados a dicho número de circuitos de desplazamiento de fase paralelos, siendo la salida de cada circuito de función trigonométrica seno una onda sinusoidal de referencia de amplitud fija a una frecuencia adecuada a la frecuencia de la red de distribución y sustancialmente en fase con dicha red de distribución;
un circuito de valor DC que tiene una salida DC que corresponde a un nivel de corriente de salida AC deseado; y
un número de circuitos multiplicadores de escalado conectados a dicho número de circuitos de función trigonométrica seno y a dicha salida de valor DC, siendo las salidas de dichos circuitos de escalado señales sinusoidales escaladas para cada fase.
\newpage
18. La turbina de flujo de fluido de acuerdo con la reivindicación 16, en la que dicho regulador P-I se ajusta para controlar la dinámica de la respuesta del circuito de control del inversor.
19. La turbina de flujo de fluido de acuerdo con la reivindicación 17, en la que dicho circuito de valor DC se ajusta mediante un controlador de turbina a dicho nivel de corriente AC proporcional a un nivel de par de generador.
20. La turbina de flujo de fluido de acuerdo con la reivindicación 18 en la que dicha señal de salida P-I se escala de tal modo que añadiéndola a dicha salida de onda triangular dicha señal correctiva está desplazada en fase para acercarla q un desfase de 90º con dicha entrada del sistema de control.
21. Una granja energética (1) configurada para interaccionar con una red de distribución (7), estando compuesta dicha granja energética de turbinas de flujo de fluido de acuerdo con la reivindicación 8, teniendo cada turbina de flujo de fluido (3) un rotor (15), siendo una salida de dicho rotor una potencia rotacional; un generador (17) conectado a dicha salida de dicho rotor, siendo una salida de dicho generador una potencia eléctrica; un inversor (23) conectado a dicha salida de dicho generador (17), estando condicionada al menos una porción de dicha salida de potencia eléctrica por dicho inversor, dando como resultado un voltaje de salida del inversor y una corriente a una frecuencia y ángulo de fase adecuados para su transmisión a dicha red de distribución; y un sistema de control (24) que tiene una entrada y una salida del sistema de control conectadas a dicho inversor, comprendiendo además dicha granja energética:
un sistema de recogida (5) conectado a dicha red de distribución;
teniendo un grupo de dichas turbinas de flujo de fluido (11) salidas del inversor conectadas a dicho sistema de recogida; y
un sensor (8) de frecuencia y ángulo de fase conectado a dicha red de distribución (7) operativo durante un fallo en dicha red;
teniendo cada uno de dichos sistemas de control una entrada del sistema de control conectada a dicho sensor (8);
siendo cada una de dichas salidas del sistema de control una señal de comando de corriente que permite que cada inversor (23) saque una forma de onda de corriente que es de la misma fase y frecuencia que las detectadas por dicho sensor (8).
22. La granja energética de acuerdo con la reivindicación 21, en la que dicho grupo de turbinas de flujo de fluido se conectan a dicha red de distribución a un voltaje de nivel de distribución.
23. La granja energética de acuerdo con la reivindicación 21, en la que dicho grupo de turbinas de flujo de fluido se conectan a dicha red de distribución a través de una subestación común.
24. La granja energética de acuerdo con la reivindicación 21, en la que dicho grupo de turbinas de flujo de fluido se conectan a dicha red de distribución a un voltaje de nivel de subtransmisión o a un voltaje de nivel de transmisión.
ES05000275T 2004-02-04 2005-01-07 Generador con capacidad de tolerancia a errores de red. Active ES2330229T3 (es)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US773851 2004-02-04
US10/773,851 US7042110B2 (en) 2003-05-07 2004-02-04 Variable speed distributed drive train wind turbine system
US10/981,364 US7233129B2 (en) 2003-05-07 2004-11-03 Generator with utility fault ride-through capability
US981364 2004-11-03

Publications (1)

Publication Number Publication Date
ES2330229T3 true ES2330229T3 (es) 2009-12-07

Family

ID=34679397

Family Applications (2)

Application Number Title Priority Date Filing Date
ES09164192T Active ES2361901T3 (es) 2004-02-04 2005-01-07 Sistema de potencia con capacidad de puentear de fallos de equipo.
ES05000275T Active ES2330229T3 (es) 2004-02-04 2005-01-07 Generador con capacidad de tolerancia a errores de red.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
ES09164192T Active ES2361901T3 (es) 2004-02-04 2005-01-07 Sistema de potencia con capacidad de puentear de fallos de equipo.

Country Status (7)

Country Link
US (1) US7042110B2 (es)
EP (3) EP1561945A3 (es)
AT (2) ATE440404T1 (es)
DE (2) DE602005016031D1 (es)
DK (1) DK1561946T3 (es)
ES (2) ES2361901T3 (es)
PT (1) PT1561946E (es)

Families Citing this family (210)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7773614B1 (en) * 2001-12-05 2010-08-10 Adaptix, Inc. Wireless communication subsystem with a digital interface
JP4168252B2 (ja) * 2002-12-27 2008-10-22 株式会社安川電機 発電システムおよびその制御方法
EP1467094B2 (en) * 2003-04-08 2017-03-01 GE Energy Power Conversion GmbH A wind turbine for producing electrical power and a method of operating the same
US7233129B2 (en) * 2003-05-07 2007-06-19 Clipper Windpower Technology, Inc. Generator with utility fault ride-through capability
JP4269941B2 (ja) 2004-01-08 2009-05-27 株式会社日立製作所 風力発電装置およびその制御方法
US7581926B1 (en) * 2004-03-22 2009-09-01 Clipper Windpower Technology, Inc. Servo-controlled extender mechanism for extendable rotor blades for power generating wind and ocean current turbines
ITMI20040778A1 (it) * 2004-04-21 2004-07-21 Trimmer S A Generatore eolico a doppia utenza
US7095129B2 (en) * 2004-06-30 2006-08-22 General Electric Company Methods and apparatus for rotor load control in wind turbines
AT504818A1 (de) * 2004-07-30 2008-08-15 Windtec Consulting Gmbh Triebstrang einer windkraftanlage
JP3918837B2 (ja) 2004-08-06 2007-05-23 株式会社日立製作所 風力発電装置
FI118027B (fi) * 2004-08-11 2007-05-31 Abb Oy Menetelmä tuulivoimalan yhteydessä
AU2004326158B2 (en) * 2004-12-30 2009-10-08 Vestas Wind Systems A/S Wind turbine comprising a multiplied redundancy control system and method of controlling a wind turbine
JP4495001B2 (ja) * 2005-02-17 2010-06-30 三菱重工業株式会社 発電システム
US7126236B2 (en) * 2005-03-15 2006-10-24 General Electric Company Methods and apparatus for pitch control power conversion
EP1876700A4 (en) * 2005-04-15 2011-10-26 Hitachi Ltd AC MOTOR CONTROL
WO2006121425A2 (en) * 2005-05-05 2006-11-16 Atlas Marine Systems, Lp System and method for electrical power conversion
US8649911B2 (en) * 2005-06-03 2014-02-11 General Electric Company System and method for operating a wind farm under high wind speed conditions
MX2007016176A (es) * 2005-07-01 2008-04-15 Vestas Wind Sys As Turbina eolica de velocidad de rotor variable, plataforma eolica, metodo para transmitir energia electrica y metodo para dar servicio o inspeccionar una turbina eolica de velocidad de rotor variable.
NZ565921A (en) * 2005-07-15 2011-05-27 Southwest Windpower Inc Wind turbine and method of manufacture
US7476985B2 (en) * 2005-07-22 2009-01-13 Gamesa Innovation & Technology, S.L. Method of operating a wind turbine
JP4575272B2 (ja) * 2005-10-27 2010-11-04 株式会社日立製作所 分散型電源システム及び系統安定化方法
US7511385B2 (en) * 2005-11-11 2009-03-31 Converteam Ltd Power converters
US7319307B2 (en) * 2005-12-16 2008-01-15 General Electric Company Power balancing of multiple synchronized generators
US7378820B2 (en) * 2005-12-19 2008-05-27 General Electric Company Electrical power generation system and method for generating electrical power
US7456695B2 (en) * 2006-01-10 2008-11-25 General Electric Company Apparatus, method and computer program product for tracking information in an electric grid
AU2007209631B2 (en) * 2006-01-25 2010-03-18 Vestas Wind Systems A/S A wind turbine comprising at least one gearbox and an epicyclic gearbox
JP4814644B2 (ja) * 2006-02-01 2011-11-16 富士重工業株式会社 風力発電装置
DE102006007919B4 (de) * 2006-02-21 2008-01-24 Nordex Energy Gmbh Verfahren zum Betreiben einer Windenergieanlage
US7352075B2 (en) * 2006-03-06 2008-04-01 General Electric Company Methods and apparatus for controlling rotational speed of a rotor
US7508089B2 (en) * 2006-03-16 2009-03-24 International Components Corporation Over speed control circuit for a wind turbine generator which maximizes the power exported from the generator over time
US7816801B2 (en) 2006-03-16 2010-10-19 International Components Corporation, Inc. Speed sensing circuit for a wind turbine generator
US7425771B2 (en) * 2006-03-17 2008-09-16 Ingeteam S.A. Variable speed wind turbine having an exciter machine and a power converter not connected to the grid
CN101401294B (zh) * 2006-03-17 2013-04-17 英捷电力技术有限公司 具有激励器设备和不连接至电网的功率变换器的变速风机
US7505833B2 (en) * 2006-03-29 2009-03-17 General Electric Company System, method, and article of manufacture for controlling operation of an electrical power generation system
EP2035899A1 (en) * 2006-04-26 2009-03-18 Alliance for Sustainable Energy, LLC Adaptive pitch control for variable speed wind turbines
ES2288121B1 (es) * 2006-05-31 2008-10-16 GAMESA INNOVATION & TECHNOLOGY, S.L. Metodo de operacion de un aerogenerador.
WO2008031433A1 (en) 2006-09-14 2008-03-20 Vestas Wind Systems A/S Methods for controlling a wind turbine connected to the utility grid, wind turbine and wind park
US7617741B1 (en) 2006-09-19 2009-11-17 Robert Vanderhye Wind turbine testing
US7394166B2 (en) * 2006-10-04 2008-07-01 General Electric Company Method, apparatus and computer program product for wind turbine start-up and operation without grid power
DE102006050077A1 (de) * 2006-10-24 2008-05-08 Repower Systems Ag Umrichter mit steuerbarem Phasenwinkel
FI119086B (fi) * 2006-11-06 2008-07-15 Abb Oy Menetelmä ja järjestely tuulivoimalan yhteydessä
US7598623B2 (en) * 2006-12-29 2009-10-06 Cummins Power Generation Ip, Inc. Distinguishing between different transient conditions for an electric power generation system
US20080137383A1 (en) * 2006-11-21 2008-06-12 University Of New Brunsick Two-phase power converter apparatus and method
US7569943B2 (en) * 2006-11-21 2009-08-04 Parker-Hannifin Corporation Variable speed wind turbine drive and control system
US7576443B2 (en) * 2006-12-15 2009-08-18 General Electric Company Method and apparatus for generating electric power
US7983799B2 (en) * 2006-12-15 2011-07-19 General Electric Company System and method for controlling microgrid
US7622815B2 (en) * 2006-12-29 2009-11-24 Ingeteam Energy, S.A. Low voltage ride through system for a variable speed wind turbine having an exciter machine and a power converter not connected to the grid
EP2115298B1 (en) * 2007-01-17 2020-11-18 New World Generation Inc. Multiple generator wind turbine and method of operation
FI119898B (fi) 2007-02-14 2009-04-30 Konecranes Oyj Generaattorikokoonpano
US7684900B2 (en) * 2007-02-20 2010-03-23 Abb Research Ltd. Adaptive provision of protection function settings of electrical machines
CN101711454A (zh) * 2007-02-26 2010-05-19 纽卡斯尔创新有限公司 集成风力涡轮机的控制器和逆变器
US7715950B2 (en) * 2007-03-01 2010-05-11 Wisconsin Alumni Research Foundation Non-inverter based distributed energy resource for use in a dynamic distribution system
US7787272B2 (en) * 2007-03-01 2010-08-31 Wisconsin Alumni Research Foundation Inverter based storage in dynamic distribution systems including distributed energy resources
US7920942B2 (en) * 2007-03-01 2011-04-05 Wisconsin Alumni Research Foundation Control of combined storage and generation in distributed energy resources
ATE483910T1 (de) * 2007-04-30 2010-10-15 Vestas Wind Sys As Verfahren zum betrieb einer windturbine mit anstellwinkelsteuerung
US8577508B2 (en) * 2007-05-04 2013-11-05 University Of Alabama Converter control of variable-speed wind turbines
DE102007022511B4 (de) * 2007-05-14 2009-07-30 Repower Systems Ag Windenergieanlage mit einer Verstelleinrichtung für die Rotorblätter
US8035240B2 (en) * 2007-05-30 2011-10-11 Acciona Windpower, S.A. Systems and methods for synchronous speed avoidance in doubly-fed induction generators
US7525211B2 (en) * 2007-06-19 2009-04-28 Marvin Russell H Control system for twin turbine wind power generating system
US7675189B2 (en) * 2007-07-17 2010-03-09 Baseload Energy, Inc. Power generation system including multiple motors/generators
US20090051222A1 (en) * 2007-08-20 2009-02-26 General Electric Company Method And System For Providing Electrical Power To A Wind Turbine System
NO326193B1 (no) * 2007-10-22 2008-10-13 In Motion As Regulering av tyngre maskiner
EP2232063B1 (en) * 2007-11-30 2017-09-27 Vestas Wind Systems A/S A wind turbine, a method for controlling a wind turbine and use thereof
US8362632B2 (en) * 2007-11-30 2013-01-29 Vestas Wind Systems A/S Wind turbine, a method for controlling a wind turbine and use thereof
US8310101B2 (en) 2007-12-20 2012-11-13 Enecsys Limited Grid synchronisation
US8805595B2 (en) * 2008-01-17 2014-08-12 General Electric Company Wind turbine arranged for independent operation of its components and related method and computer program
US7994658B2 (en) * 2008-02-28 2011-08-09 General Electric Company Windfarm collector system loss optimization
US20090295231A1 (en) * 2008-05-30 2009-12-03 Gaffney Shawn J Intelligent Power Collection Network
US20090322085A1 (en) * 2008-06-18 2009-12-31 Renaud Regis P Method and apparatus for enhanced wind turbine design
GB2461711A (en) * 2008-07-08 2010-01-13 Cypress Wind Turbines Oy Vertical axis wind turbine with direct-drive coupling between shaft and generator
ES2374666T3 (es) * 2008-07-16 2012-02-20 Siemens Aktiengesellschaft Método y disposición para amortiguar oscilaciones de torre.
WO2010009434A2 (en) 2008-07-18 2010-01-21 Baseload Energy, Inc. Tether handling for airborne electricity generators
EP2321888A4 (en) 2008-08-22 2017-03-15 DRS Power & Control Technologies, Inc. Multiple voltage generator and voltage regulation methodology for power dense integrated power systems
EP2159422A1 (en) * 2008-08-28 2010-03-03 Dutch Rainmaker B.V. Turbine driven compressor
EP2164159B1 (en) * 2008-09-12 2019-02-20 Vestas Wind Systems A/S Low-voltage harmonic filter for full-scale converter systems
JP4698718B2 (ja) * 2008-09-30 2011-06-08 株式会社日立製作所 風力発電装置群の制御装置及び制御方法
US7608937B1 (en) * 2008-09-30 2009-10-27 General Electric Company Power generation system and method for storing electrical energy
CN102017392B (zh) * 2008-10-16 2014-06-25 三菱重工业株式会社 风力发电系统及其控制方法
DE102008053732B8 (de) * 2008-10-29 2013-10-02 Voith Patent Gmbh Verfahren und Vorrichtung für die Leistungsregelung eines Unterwasserkraftwerks
US8235861B2 (en) * 2008-10-30 2012-08-07 General Electric Company Split torque compound planetary drivetrain for wind turbine applications
WO2010059983A2 (en) 2008-11-21 2010-05-27 Preus Robert W Wind turbine
NO332673B1 (no) * 2008-11-24 2012-12-03 Aker Engineering & Technology Frekvensomformer
EP2192681A1 (en) * 2008-11-26 2010-06-02 Siemens Aktiengesellschaft Power distribution system and method thereof
ES2382010T3 (es) * 2008-12-08 2012-06-04 Siemens Aktiengesellschaft Control de la velocidad de giro de una turbina eólica que no puede exportar energía eléctrica a una red eléctrica
US8352091B2 (en) * 2009-01-02 2013-01-08 International Business Machines Corporation Distributed grid-interactive photovoltaic-based power dispatching
US9065329B2 (en) * 2009-01-12 2015-06-23 Vestas Wind Systems A/S Reconfigurable power converter module
TWM357517U (en) * 2009-01-14 2009-05-21 Sunyen Co Ltd Wind-powered electric generator
AU2010204925A1 (en) 2009-01-16 2011-07-21 Boulder Wind Power, Inc. Segmented stator for an axial field device
WO2010086688A1 (en) 2009-01-28 2010-08-05 Clipper Windpower, Inc. Load peak mitigation method and control system for a wind turbine
ES2528595T3 (es) * 2009-01-30 2015-02-10 Siemens Aktiengesellschaft Inercia frecuencial de sistema de potencia para sistema de generación eléctrica
WO2010095248A1 (ja) * 2009-02-20 2010-08-26 三菱重工業株式会社 風力発電装置及びその制御方法
US8659178B2 (en) * 2009-02-27 2014-02-25 Acciona Windpower, S.A. Wind turbine control method, control unit and wind turbine
US7936078B2 (en) * 2009-03-11 2011-05-03 Pavlak Alexander J Variable speed wind turbine having a constant speed generator
US8380357B2 (en) * 2009-03-23 2013-02-19 Acciona Windpower, S.A. Wind turbine control
SE0950190A1 (sv) 2009-03-25 2010-09-26 Ge Wind Energy Norway As Mångfald kabinett
ES2535265T3 (es) * 2009-04-30 2015-05-07 Vestas Wind Systems A/S Red en turbina eólica
EP2432987A4 (en) * 2009-05-22 2013-05-15 Atlantis Resources Corp Pte IMPROVEMENTS ON THE CONTROL OF A UNDERWATER TURBINE
NZ597642A (en) * 2009-06-22 2013-10-25 Kean W Stimm Wind turbine
US9004864B2 (en) * 2009-06-22 2015-04-14 Kean W. Stimm Wind turbine
DK2270342T3 (da) * 2009-06-22 2013-05-13 Siemens Ag System til detektering af lækage i en vindmølle
US8344705B2 (en) * 2009-09-09 2013-01-01 Honeywell International Inc. Method and apparatus for lead-unity-lag electric power generation system
JP5469969B2 (ja) * 2009-09-16 2014-04-16 ゼファー株式会社 風力発電装置
US8227929B2 (en) * 2009-09-25 2012-07-24 General Electric Company Multi-use energy storage for renewable sources
US8207637B2 (en) * 2009-10-09 2012-06-26 Solarbridge Technologies, Inc. System and apparatus for interconnecting an array of power generating assemblies
US7942631B2 (en) * 2009-10-26 2011-05-17 General Electric Company Method and apparatus for powering a pitch control system
US8415914B2 (en) * 2010-01-13 2013-04-09 Hamilton Sundstrand Corporation Motor drive load damping
US9806445B2 (en) 2010-01-25 2017-10-31 Enphase Energy, Inc. Method and apparatus for interconnecting distributed power sources
US8257106B2 (en) 2010-01-25 2012-09-04 Enphase Energy, Inc. Method and apparatus for interconnecting distributed power sources
US8203227B2 (en) * 2010-03-31 2012-06-19 AMSC Austria GmbH Retro-fitting a wind energy converter
US8405251B2 (en) * 2010-04-20 2013-03-26 General Electric Company Method and apparatus for reduction of harmonics in a power supply
US8421266B2 (en) * 2010-05-06 2013-04-16 General Electric Company Power distribution systems for powered rail vehicles
US8461730B2 (en) 2010-05-12 2013-06-11 Science Applications International Corporation Radial flux permanent magnet alternator with dielectric stator block
US9154024B2 (en) 2010-06-02 2015-10-06 Boulder Wind Power, Inc. Systems and methods for improved direct drive generators
EP2397688A1 (en) 2010-06-16 2011-12-21 Siemens Aktiengesellschaft Electric power control system and electric power facility comprising the electric power control system
US8698335B2 (en) * 2010-06-21 2014-04-15 Rockwell Automation Technologies, Inc. Low cost current source converters for power generation application
US8013461B2 (en) * 2010-06-22 2011-09-06 General Electric Company Power conversion system and method for a rotary power generation system
CN101892953B (zh) * 2010-06-28 2012-10-24 三一电气有限责任公司 一种风力发电机组电动变桨系统
WO2012000510A1 (en) * 2010-06-29 2012-01-05 Vestas Wind Systems A/S Method and system for monitoring structural health of a filter in a wind turbine, and a wind turbine
CN101915209B (zh) * 2010-07-26 2012-05-30 三一重工股份有限公司 风力发电机组及其变桨距控制系统
US9391554B2 (en) 2010-08-25 2016-07-12 University Of Alabama Control of a permanent magnet synchronous generator wind turbine
US8536726B2 (en) 2010-09-17 2013-09-17 Vestas Wind Systems A/S Electrical machines, wind turbines, and methods for operating an electrical machine
USD666974S1 (en) 2010-09-24 2012-09-11 Solarbridge Technologies, Inc. Y-junction interconnect module
AU2011313939B2 (en) 2010-10-12 2015-04-09 American Superconductor Corporation Centralized power conditioning
US20120104753A1 (en) * 2010-10-29 2012-05-03 Mitsubishi Heavy Industries, Ltd. Control system of wind power generator, wind farm, and method for controlling wind power generator
US9118213B2 (en) 2010-11-24 2015-08-25 Kohler Co. Portal for harvesting energy from distributed electrical power sources
US8704390B2 (en) * 2010-12-07 2014-04-22 Vestas Wind Systems A/S Dynamic adjustment of power plant output based on electrical grid characteristics
US8568099B2 (en) 2010-12-17 2013-10-29 Vestas Wind Systems A/S Apparatus for harvesting energy from a gearbox to power an electrical device and related methods
GB2483315B (en) * 2010-12-23 2012-07-25 Tidal Generation Ltd Control of water current turbines
US8855952B2 (en) * 2011-01-05 2014-10-07 Hamilton Sundstrand Corporation Ram air turbine with flux regulated permanent magnet generator and testing method
EP2477301A1 (de) 2011-01-12 2012-07-18 VENPOWER GmbH Anordnung zur Einspeisung elektrischer Energie in ein Energieversorgungsnetz
CN102162428B (zh) * 2011-02-23 2013-12-04 深圳市华为安捷信电气有限公司 控制器、控制能源的方法和侦测控制信号板
US9051918B1 (en) 2011-02-25 2015-06-09 Leidos, Inc. Vertical axis wind turbine with tensile support structure having rigid or collapsible vanes
US20120253609A1 (en) * 2011-03-31 2012-10-04 Caterpillar Inc. Proportional control using state space based scheduling
US8866340B2 (en) * 2011-05-04 2014-10-21 King Fahd University Of Petroleum And Minerals Supercapacitor-based grid fault ride-through system
US9133815B1 (en) 2011-05-11 2015-09-15 Leidos, Inc. Propeller-type double helix turbine apparatus and method
CN103038504A (zh) 2011-05-30 2013-04-10 三菱重工业株式会社 可再生能源型的发电设备及其操作方法
DE102011105854B4 (de) * 2011-06-03 2013-04-11 Nordex Energy Gmbh Verfahren zum Betreiben einer Windenergieanlage bei Auftreten eines Netzfehlers sowie eine solche Windenergieanlage
US8866328B1 (en) 2011-06-07 2014-10-21 Leidos, Inc. System and method for generated power from wave action
GB201110719D0 (en) * 2011-06-24 2011-08-10 Rolls Royce Plc Electrical system architecture and electrical power generation system
US8723358B2 (en) * 2011-06-30 2014-05-13 Vycon, Inc. Line interactive power quality system
JP2013025359A (ja) * 2011-07-15 2013-02-04 Sony Corp 電力制御装置、電力管理装置、電力制御方法および電力管理システム
US9077204B2 (en) 2011-07-20 2015-07-07 Inventus Holdings, Llc Dispatchable renewable energy generation, control and storage facility
GB2493711B (en) 2011-08-12 2018-04-25 Openhydro Ip Ltd Method and system for controlling hydroelectric turbines
JP5777211B2 (ja) * 2011-09-05 2015-09-09 国立大学法人東京工業大学 ウィンドファーム
CN103858301B (zh) * 2011-09-30 2016-09-07 维斯塔斯风力系统集团公司 用于抑制电网振荡的控制设备
CN103208812B (zh) * 2012-01-17 2015-04-29 台达电子企业管理(上海)有限公司 风电变流器结构及包含其的风力发电系统
US9331535B1 (en) 2012-03-08 2016-05-03 Leidos, Inc. Radial flux alternator
CN102646993B (zh) * 2012-04-25 2014-07-30 东方电气新能源设备(杭州)有限公司 一种风电机组低电压穿越系统及其方法
DK2841766T3 (da) * 2012-04-27 2021-08-30 Siemens Gamesa Renewable Energy Service Gmbh Vindmøllepark med fast lokal reaktiv effektstyring
USD708143S1 (en) 2012-06-07 2014-07-01 Enphase Energy, Inc. Drop cable connector
USD707632S1 (en) 2012-06-07 2014-06-24 Enphase Energy, Inc. Trunk connector
US8339019B1 (en) 2012-07-30 2012-12-25 Boulder Wind Power, Inc. Structure for an electromagnetic machine having compression and tension members
US8716913B2 (en) 2012-08-07 2014-05-06 Boulder Wind Power, Inc. Devices and methods for magnetic pole and back iron retention in electromagnetic machines
US8704393B2 (en) * 2012-08-09 2014-04-22 General Electric Company System and method for controlling speed and torque of a wind turbine during post-rated wind speed conditions
TWI487239B (zh) * 2012-08-15 2015-06-01 Atomic Energy Council 應用於太陽發電系統並具有最大功率追蹤之市電並聯換流器
CN102981121B (zh) * 2012-08-24 2015-09-23 西北电网有限公司 风电机组移动式低电压穿越试验装置安全链及实现方法
US9115694B2 (en) 2012-08-27 2015-08-25 General Electric Company Wind turbine pitch control system
CN103687414B (zh) * 2012-08-30 2016-12-21 台达电子工业股份有限公司 大功率机柜散热系统及静止无功补偿系统
US8829701B2 (en) * 2012-10-11 2014-09-09 Pratt & Whitney Canada Corp. Resonant mode damping system and method
US9382847B2 (en) 2012-11-02 2016-07-05 Pratt & Whitney Canada Corp. Rotor resonance disturbance rejection controller
US20140156099A1 (en) * 2012-12-05 2014-06-05 Cummins Power Generation, Inc. Generator power systems with active and passive rectifiers
WO2014094271A1 (en) * 2012-12-20 2014-06-26 Abb Technology Ltd. Coordinated control method of generator and svc for improving power plant active power throughput and controller thereof
DK177684B1 (en) * 2012-12-21 2014-03-03 Envision Energy Denmark Aps Wind turbine having a HTS generator with a plurality of phases
EP2754886B1 (en) * 2013-01-14 2016-01-06 ALSTOM Renewable Technologies Method of operating a wind turbine rotational system and wind turbine rotational system
US10158314B2 (en) * 2013-01-16 2018-12-18 Rockwell Automation Technologies, Inc. Feedforward control of motor drives with output sinewave filter
US8901760B2 (en) * 2013-01-28 2014-12-02 Caterpillar Inc. Dual generator single DC link configuration for electric drive propulsion system
US8872366B2 (en) 2013-01-31 2014-10-28 APR Energy, LLC Scalable portable modular power plant
US8736133B1 (en) 2013-03-14 2014-05-27 Boulder Wind Power, Inc. Methods and apparatus for overlapping windings
US8772954B1 (en) * 2013-04-15 2014-07-08 Caterpillar Inc. Power balancing for a dual generator single DC link configuration for electric drive propulsion system
US8847559B1 (en) 2013-07-24 2014-09-30 Robert Ryan Jameson Horne Generator system and method of operation
US8912681B1 (en) 2013-08-23 2014-12-16 Steven J. Filkins Staged cluster winder generator system
US9148022B2 (en) * 2013-09-17 2015-09-29 King Fahd University Of Petroleum And Minerals Wind turbine permanent magnet synchronous generator (WT-PMSG) system
CN103615356B (zh) * 2013-12-12 2016-02-10 北京金风科创风电设备有限公司 一种风电机组满发工况恒功率控制方法、装置及风电机组
US9755458B2 (en) 2013-12-19 2017-09-05 Kohler, Co. Bus recovery after overload
ES2545674B1 (es) * 2014-03-11 2016-06-29 Gamesa Innovation & Technology, S.L. Sistema de control de inercia para aerogenerador
US10177620B2 (en) 2014-05-05 2019-01-08 Boulder Wind Power, Inc. Methods and apparatus for segmenting a machine
US20150330366A1 (en) * 2014-05-17 2015-11-19 Young Suk WOO Medium/Large Electricity Generator Equipped with Automatically Winding and Un-winding Kite Cable Mechanism for minimum energy loss
US9534583B2 (en) 2014-06-17 2017-01-03 General Electric Company Methods and systems to operate a wind turbine
US10250042B2 (en) * 2014-10-27 2019-04-02 Vestas Wind Systems A/S Wind-turbine converter control for modular string converters
US9614461B2 (en) * 2014-12-02 2017-04-04 Princeton Power Systems, Inc. Bidirectional high frequency variable speed drive for CHP (combined heating and power) and flywheel applications
CN104533725B (zh) * 2015-01-19 2017-09-15 台达电子工业股份有限公司 风力发电系统
US10298140B2 (en) * 2015-04-16 2019-05-21 Vestas Wind Systems A/S Wind turbine converter control
WO2016206696A1 (en) * 2015-06-25 2016-12-29 Vestas Wind Systems A/S Improvements relating to control of a wind power plant
US10447169B2 (en) * 2016-01-20 2019-10-15 General Electric Company Independent power factor and frequency control of electrical power generator
US9985565B2 (en) 2016-04-18 2018-05-29 Rockwell Automation Technologies, Inc. Sensorless motor drive vector control with feedback compensation for filter capacitor current
WO2017198268A1 (en) 2016-05-20 2017-11-23 Vestas Wind Systems A/S Electrical recombination
US10418817B2 (en) 2016-07-29 2019-09-17 Cummins Power Generation Ip, Inc. Synchronization of parallel gensets with source arbitration
US10338119B2 (en) * 2016-08-16 2019-07-02 Kohler Co. Generator waveform measurement
US10654578B2 (en) 2016-11-02 2020-05-19 Rolls-Royce North American Technologies, Inc. Combined AC and DC turboelectric distributed propulsion system
US10020766B2 (en) 2016-11-15 2018-07-10 Rockwell Automation Technologies, Inc. Current control of motor drives with output sinewave filter
CN106870283B (zh) * 2017-03-31 2023-04-28 南京信息工程大学 教学用小型风力发电机变速率变桨控制方法及控制系统
US9991763B1 (en) * 2017-05-04 2018-06-05 Florida Turbine Technologies, Inc. Gas turbine engine with multiple electric generators
DE102017112958A1 (de) * 2017-06-13 2018-12-13 Wobben Properties Gmbh Windenergieanlage mit getriebelosem Generator und Generatorfilter
US10640225B2 (en) * 2017-07-10 2020-05-05 Rolls-Royce North American Technologies, Inc. Selectively regulating current in distributed propulsion systems
FR3071620B1 (fr) * 2017-09-26 2020-10-02 Ge Energy Power Conversion Technology Ltd Dispositif et procede de test de modules de puissance
CN107658774B (zh) * 2017-11-15 2024-02-09 河南省水利勘测设计研究有限公司 大型抽水蓄能电站发电电动机机压设备布置结构
DE102017011235A1 (de) * 2017-12-06 2019-06-06 Senvion Gmbh Windpark mit autarker Phasenwinkelregelung
CN108054778B (zh) * 2017-12-30 2021-06-25 国网山东省电力公司临沂供电公司 一种风力发电系统供电控制装置
EP3514910A1 (de) * 2018-01-19 2019-07-24 Nordex Energy GmbH Verfahren zum betrieb einer windenergieanlage
US11215164B2 (en) 2018-08-25 2022-01-04 Samuel Messinger Wind turbine propeller regulator to produce uninterrupted electricity and longer bearing life
US10975842B2 (en) 2018-08-25 2021-04-13 Samuel Messinger Wind turbine propeller regulator to produce uninterrupted electricity and longer bearing life
DE102019105296A1 (de) * 2019-03-01 2020-09-03 Wobben Properties Gmbh Verfahren zum Betreiben einer Windenergieanlage, Reglerstruktur, Windenergieanlage und Windpark
CN110571841A (zh) * 2019-07-10 2019-12-13 台州宏达电力建设有限公司台州经济开发区运检分公司 变频输电系统
US11128231B2 (en) * 2019-08-01 2021-09-21 General Electric Company System and method for exciting low-impedance machines using a current source converter
CN110460098B (zh) * 2019-08-28 2020-11-06 华北电力大学(保定) 基于虚拟质量块的风力机双质块轴系稳定控制方法
EP3905472A1 (en) * 2020-04-27 2021-11-03 Siemens Gamesa Renewable Energy Innovation & Technology, S.L. Wind turbine electrical power generating system
CN113708360A (zh) * 2020-05-22 2021-11-26 新疆金风科技股份有限公司 直流风力发电机组以及永磁半直驱直流发电系统
CN111594384B (zh) * 2020-07-22 2020-11-24 中国电力科学研究院有限公司 一种对电压源型风电机组的控制方法及主控系统
TR202013862A2 (tr) * 2020-09-02 2021-03-22 Taner Koeymen Yüksek veri̇me sahi̇p otomati̇k şanzimanli rüzgar türbi̇ni̇
EP4102056A1 (en) * 2021-06-11 2022-12-14 Wobben Properties GmbH Method of operating a wind turbine, corresponding wind turbine and wind farm

Family Cites Families (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1214646A (en) * 1967-10-13 1970-12-02 Plessey Co Ltd Improvements in or relating to standby power supply systems
US3753069A (en) * 1971-11-18 1973-08-14 Borg Warner Start-up system for inverter driven motor including inverter bypass circuitry
US4427897A (en) * 1982-01-18 1984-01-24 John Midyette, III Fixed pitch wind turbine system utilizing aerodynamic stall
JPS61211553A (ja) * 1985-03-15 1986-09-19 Daikin Ind Ltd 回転圧縮機の振動低減装置
JPS62104403A (ja) * 1985-10-29 1987-05-14 Isuzu Motors Ltd 車両駆動装置
DE3632178A1 (de) * 1986-09-22 1988-03-31 Siemens Ag Verfahren und vorrichtung zur schnellen erfassung von netzfehlern
US4973896A (en) * 1987-10-21 1990-11-27 Toyo Densan Company, Ltd. Automobile generator apparatus
CA2005093A1 (en) * 1988-12-29 1990-06-29 David A. Fox Circuit and method for voltage regulation of electric power sources
US4952774A (en) * 1989-03-14 1990-08-28 Chicago Bridge & Iron Technical Service Company Mobil power source for producing welding current for automatic, semi-automatic and manual welding
US4992920A (en) * 1989-09-13 1991-02-12 Davis Donald E Regulated AC power system energized by variable speed prime mover
US5083039B1 (en) * 1991-02-01 1999-11-16 Zond Energy Systems Inc Variable speed wind turbine
US5198971A (en) * 1991-08-15 1993-03-30 Recker Bradley J Separation control for multiphase plural inverter system
JPH05111109A (ja) * 1991-10-08 1993-04-30 Mitsubishi Heavy Ind Ltd 内燃機関駆動電気式車両の制御方法
US5418707A (en) * 1992-04-13 1995-05-23 The United States Of America As Represented By The United States Department Of Energy High voltage dc-dc converter with dynamic voltage regulation and decoupling during load-generated arcs
US5339235A (en) * 1993-05-11 1994-08-16 Alliedsignal Inc. Fault compensating multi-step wave inverter
JP3019682B2 (ja) * 1993-09-17 2000-03-13 トヨタ自動車株式会社 ハイブリッド車における発電制御方法
JP3094745B2 (ja) * 1993-09-24 2000-10-03 トヨタ自動車株式会社 ハイブリッド車の発電制御装置
JP2973796B2 (ja) * 1993-10-07 1999-11-08 トヨタ自動車株式会社 ハイブリッド電気自動車の空調制御方法
US5532525A (en) * 1994-06-02 1996-07-02 Albar, Inc. Congeneration power system
US5546742A (en) * 1994-07-29 1996-08-20 Alliedsignal Inc. Aircraft engine electric start system without a separate exciter field inverter
JPH08205422A (ja) * 1995-01-18 1996-08-09 Fujitsu Ltd 停電バックアップ手段を備えた電源装置
US5652485A (en) * 1995-02-06 1997-07-29 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Fuzzy logic integrated electrical control to improve variable speed wind turbine efficiency and performance
US5646458A (en) * 1996-02-22 1997-07-08 Atlas Energy Systems, Inc. Uninterruptible power system with a flywheel-driven source of standby power
US5745356A (en) * 1996-06-25 1998-04-28 Exide Electronics Corporation Independent load sharing of AC power systems connected in parallel
US5767591A (en) * 1996-09-09 1998-06-16 Active Power, Inc. Method and apparatus for providing startup power to a genset-backed uninterruptible power supply
US5994794A (en) * 1997-05-09 1999-11-30 Active Power, Inc. Methods and apparatus for providing protection to batteries in an uninterruptible power supply
US5968385A (en) * 1997-05-19 1999-10-19 Illinois Tool Works Inc. Engine driven inverter welding power supply
US5939798A (en) * 1997-06-17 1999-08-17 General Electric Company Hybrid energy storage system
US5929537A (en) * 1997-06-30 1999-07-27 Sundstrand Corporation PMG main engine starter/generator system
US6600240B2 (en) * 1997-08-08 2003-07-29 General Electric Company Variable speed wind turbine generator
US6137187A (en) * 1997-08-08 2000-10-24 Zond Energy Systems, Inc. Variable speed wind turbine generator
US6420795B1 (en) * 1998-08-08 2002-07-16 Zond Energy Systems, Inc. Variable speed wind turbine generator
US6784565B2 (en) * 1997-09-08 2004-08-31 Capstone Turbine Corporation Turbogenerator with electrical brake
US6487096B1 (en) * 1997-09-08 2002-11-26 Capstone Turbine Corporation Power controller
DE19756777B4 (de) * 1997-12-19 2005-07-21 Wobben, Aloys, Dipl.-Ing. Verfahren zum Betreiben einer Windenergieanlage sowie Windenergieanlage
US6870279B2 (en) * 1998-01-05 2005-03-22 Capstone Turbine Corporation Method and system for control of turbogenerator power and temperature
EP0989667A4 (en) * 1998-04-09 2002-03-20 Mitsubishi Electric Corp Device for exciting a generator
NL1009543C2 (nl) * 1998-07-02 2000-01-07 Lagerwey Windturbine B V Inrichting voor het omzetten van windenergie in elektrische energie.
DE19845903A1 (de) * 1998-10-05 2000-04-06 Aloys Wobben Elektrische Energieübertragungsanlage
NL1010800C2 (nl) * 1998-12-14 2000-06-19 Lagerwey Windturbine B V Werkwijze en inrichting voor het omzetten van een fluïdumstroom met wisselende sterkte in elektrische energie.
US6694438B1 (en) * 1999-07-02 2004-02-17 Advanced Energy Industries, Inc. System for controlling the delivery of power to DC computer components
US6184593B1 (en) * 1999-07-29 2001-02-06 Abb Power T&D Company Inc. Uninterruptible power supply
DE19948196A1 (de) * 1999-10-06 2001-05-17 Aloys Wobben Verfahren zum Betrieb eines Windparks
JP3749645B2 (ja) * 1999-12-27 2006-03-01 株式会社ケーヒン 携帯用発電機
JP3547355B2 (ja) * 1999-12-28 2004-07-28 株式会社日立製作所 電力変換システム
WO2001091279A1 (en) * 2000-05-23 2001-11-29 Vestas Wind Systems A/S Variable speed wind turbine having a matrix converter
US20020024828A1 (en) * 2000-08-31 2002-02-28 Hidetake Hayashi Inverter suitable for use with portable AC power supply unit
US6603672B1 (en) * 2000-11-10 2003-08-05 Ballard Power Systems Corporation Power converter system
US6583995B2 (en) * 2000-12-21 2003-06-24 Honeywell International Inc. Permanent magnet generator and generator control
US20020084655A1 (en) * 2000-12-29 2002-07-04 Abb Research Ltd. System, method and computer program product for enhancing commercial value of electrical power produced from a renewable energy power production facility
US6787933B2 (en) * 2001-01-10 2004-09-07 Capstone Turbine Corporation Power generation system having transient ride-through/load-leveling capabilities
DE10136974A1 (de) * 2001-04-24 2002-11-21 Aloys Wobben Verfahren zum Betreiben einer Windenergieanlage
US6577097B2 (en) * 2001-08-13 2003-06-10 Delphi Technologies, Inc. Method and system for controlling a synchronous machine using a changeable cycle-conduction angle
WO2003030341A2 (en) * 2001-10-01 2003-04-10 Colley Bruce H Induction generator power supply
US6737762B2 (en) * 2001-10-26 2004-05-18 Onan Corporation Generator with DC boost for uninterruptible power supply system or for enhanced load pickup
US6788029B1 (en) * 2001-11-02 2004-09-07 Christopher W. Gabrys Flywheel with switched coupling regulator
DE10156694B4 (de) * 2001-11-17 2005-10-13 Semikron Elektronik Gmbh & Co. Kg Schaltungsanordnung
US6586914B2 (en) * 2001-11-19 2003-07-01 General Electric Company Wound field synchronous machine control system and method
US7015595B2 (en) * 2002-02-11 2006-03-21 Vestas Wind Systems A/S Variable speed wind turbine having a passive grid side rectifier with scalar power control and dependent pitch control
JP2003259693A (ja) * 2002-02-27 2003-09-12 Toyo Electric Mfg Co Ltd 並列風力発電の電力変換装置
US6749399B2 (en) * 2002-03-07 2004-06-15 Ocean Wind Energy Systems Vertical array wind turbine
US6975925B1 (en) * 2002-03-19 2005-12-13 Windlynx Systems, B.V. Forecasting an energy output of a wind farm
JP3973085B2 (ja) * 2002-03-29 2007-09-05 ヤマハモーターパワープロダクツ株式会社 エンジンのデコンプ装置
US6919650B2 (en) * 2002-05-31 2005-07-19 Ballard Power Systems Corporation Hybrid synchronization phase angle generation method
US6879053B1 (en) * 2002-10-22 2005-04-12 Youtility, Inc. Transformerless, load adaptive speed controller
US6858953B2 (en) * 2002-12-20 2005-02-22 Hawaiian Electric Company, Inc. Power control interface between a wind farm and a power transmission system
US6921985B2 (en) * 2003-01-24 2005-07-26 General Electric Company Low voltage ride through for wind turbine generators
EP1467094B2 (en) * 2003-04-08 2017-03-01 GE Energy Power Conversion GmbH A wind turbine for producing electrical power and a method of operating the same
US6969926B2 (en) * 2003-06-04 2005-11-29 Conlon Thomas R Mechanism for converting mechanical energy for wind powered energy systems

Also Published As

Publication number Publication date
EP2114007B1 (en) 2011-04-13
ATE505844T1 (de) 2011-04-15
US20050012339A1 (en) 2005-01-20
EP1561945A2 (en) 2005-08-10
EP2273107A1 (en) 2011-01-12
US7042110B2 (en) 2006-05-09
EP1561945A3 (en) 2007-08-22
DE602005016031D1 (de) 2009-10-01
ATE440404T1 (de) 2009-09-15
EP2273107B1 (en) 2013-03-06
DK1561946T3 (da) 2009-11-23
ES2361901T3 (es) 2011-06-24
PT1561946E (pt) 2009-10-23
EP2114007A1 (en) 2009-11-04
DE602005027505D1 (de) 2011-05-26

Similar Documents

Publication Publication Date Title
ES2330229T3 (es) Generador con capacidad de tolerancia a errores de red.
US7432686B2 (en) Wind turbine generator apparatus with utility fault ride-through capability
Geng et al. Synchronization and reactive current support of PMSG-based wind farm during severe grid fault
Xiang et al. Coordinated control of an HVDC link and doubly fed induction generators in a large offshore wind farm
ES2438994T3 (es) Aerogenerador de velocidad variable que tiene una máquina excitatriz y un convertidor de energía no conectado a la red
KR102607778B1 (ko) 블랙 스타트 복원
CN108599256A (zh) 一种基于转速调节的直驱式风电机组低电压穿越控制方法
ES2581427T3 (es) Método y aparato de control
Okedu et al. Improvement of fault ride through capability of wind farms using DFIG considering SDBR
Okedu et al. Stabilization of wind farms by DFIG-based variable speed wind generators
Masaud et al. Study of the implementation of STATCOM on DFIG-based wind farm connected to a power system
Trilla et al. Control of SCIG wind farm using a single VSC
Rosyadi et al. Low voltage ride-through capability improvement of wind farms using variable speed permanent magnet wind generator
Jiao et al. Multi-terminal DC (MTDC) system for wind farms powered by doubly-fed induction generators (DFIGs)
EP3276771A1 (en) Method and system for controlling voltage and frequency in an isolated network
Suul Variable speed pumped storage hydropower plants for integration of wind power in isolated power systems
La Seta et al. Comparison of stabilizing methods for doubly-fed induction generators for wind turbines
Arunkumar et al. Low voltage ride through capability improvement in a grid connected wind energy conversion system using STATCOM
Yin et al. Modeling and control of DFIG-based large offshore wind farm with HVDC-link integration
Soomro et al. PWM Based VSC for Power Quality Assessment of Grid Integrated DFIG-WECS
Masaud Modeling, analysis, control and design application guidelines of doubly fed induction generator (DFIG) for wind power applications
Riachy et al. Optimal power coefficient for load balancing and reactive power compensation In DFIG-WTS
Kawady et al. Investigation of grid-support capabilities of doubly fed induction generators during grid faults
Nasrollahi Study on the variable frequency transformer's operation and frequency range
Mittal et al. Ride-through capability of grid interfaced variable speed pmsg based wecs