EP4354462A1 - Verfahren zur herstellung einer radionuklidbatteriezelle - Google Patents

Verfahren zur herstellung einer radionuklidbatteriezelle Download PDF

Info

Publication number
EP4354462A1
EP4354462A1 EP22200605.8A EP22200605A EP4354462A1 EP 4354462 A1 EP4354462 A1 EP 4354462A1 EP 22200605 A EP22200605 A EP 22200605A EP 4354462 A1 EP4354462 A1 EP 4354462A1
Authority
EP
European Patent Office
Prior art keywords
radionuclide
battery cell
cell housing
inlet opening
receiving space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP22200605.8A
Other languages
English (en)
French (fr)
Inventor
Mario J. Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emerald Horizon Ag
Original Assignee
Emerald Horizon Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emerald Horizon Ag filed Critical Emerald Horizon Ag
Priority to EP22200605.8A priority Critical patent/EP4354462A1/de
Priority to PCT/EP2023/077952 priority patent/WO2024079070A1/de
Publication of EP4354462A1 publication Critical patent/EP4354462A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21HOBTAINING ENERGY FROM RADIOACTIVE SOURCES; APPLICATIONS OF RADIATION FROM RADIOACTIVE SOURCES, NOT OTHERWISE PROVIDED FOR; UTILISING COSMIC RADIATION
    • G21H1/00Arrangements for obtaining electrical energy from radioactive sources, e.g. from radioactive isotopes, nuclear or atomic batteries
    • G21H1/12Cells using conversion of the radiation into light combined with subsequent photoelectric conversion into electric energy

Definitions

  • the invention relates to a method for producing a radionuclide battery cell for generating electrical energy from emitted radiation energy of a radionuclide.
  • Radionuclide batteries are energy sources that convert radiation energy from the spontaneous nuclear decay of a radionuclide into electrical energy. Compared to the energy density of conventional (chemical) batteries, the energy density of radionuclide batteries is up to two orders of magnitude higher, making radionuclide batteries particularly suitable for applications that require a supply over a very long period of time.
  • One area of application is, for example, applications in space.
  • Various principles for using radiation energy are known, which can be divided into thermal conversions and non-thermal conversions. For example, the heat generated can be absorbed using a thermocouple.
  • semiconductors can be used, for example, in which electron-hole pairs are generated due to the incident radiation from the radionuclide, which in turn generate an electrical current.
  • Beta-voltaic batteries which use beta radiation
  • alpha-voltaic batteries which use alpha radiation
  • Another possibility for the indirect use of radioactive radiation is to convert the radiation into photons using a luminescent material and to use the photons generated in this way to generate electrical energy.
  • the US 2018/0372891 A1 various embodiments of a nuclide battery.
  • Radiation from radioactive material can be converted directly into electrical energy using two electrodes and/or semiconductors.
  • a scintillating layer can be provided that is excited by the incident radiation and subsequently emits photons.
  • the photons are in turn used to generate electrical energy by providing structures made of semiconductors that absorb the photons.
  • radionuclide batteries are available, for example, from CN111755142A and the US5008759 known.
  • radionuclide batteries One difficulty in the manufacture of radionuclide batteries is the handling of the radioactive substances. There is always a risk of radioactive contamination and the spread of radioactive material. Therefore, strict requirements apply to the handling of these materials and, as a result, also to the manufacture of radionuclide batteries.
  • the radioactive material is arranged geometrically centrally in the radionuclide battery in order to shield the radioactive material as safely as possible from the outside world and to be able to use as much of the radiation as possible if the radionuclide is surrounded by electrodes, for example. Due to this arrangement, the radionuclide must be handled and installed during or before the assembly of the other components of the radionuclide battery.
  • radionuclide batteries are not rechargeable. Radioactive decay is an irreversible process, so no energy can be introduced into the radionuclide battery and stored. Once the radionuclide has been used up or the activity has fallen below a limit, radionuclide batteries are typically no longer usable.
  • Radioactive radiation can, for example, cause the efficiency of a semiconductor to drop. Therefore, long-term storage of a radionuclide battery before use is not advisable. It is better to manufacture the radionuclide battery as soon as possible before use. This results in high demands on production and logistics.
  • the aim of the invention is preferably to make the manufacture of the radionuclide battery safer and simpler.
  • the battery cell casing preferably forms the outer casing of the radionuclide battery cell.
  • the dimensions of the battery cell casing therefore determine the outer dimensions of the radionuclide battery cell.
  • the battery cell casing ensures the mechanical stability of the radionuclide battery cell and protects the interior of the radionuclide battery cell from external influences such as mechanical stress or air humidity.
  • the battery cell housing protects the environment of the radionuclide battery cell from radioactive radiation.
  • the battery cell housing can enclose the radionuclide in a substantially radiation-tight, in particular also substantially gas-tight manner.
  • the radionuclide can be, for example, 3 H, 10 Be, 32 Si, 40 K, 90 Sr, 137 Cs, 144 Nd, 204 Tl, 232 Th, 241 Am, 63 Ni, 90 Y. These isotopes have little gamma emission, which makes them particularly suitable for use in radionuclide battery cells.
  • the half-life of the radionuclide can be between 1 second (s) and 14 billion years, preferably the half-life is between 10 years and 300 years.
  • the radionuclide can be used in metallic form or as an oxide, either in gaseous, liquid or solid, granular form.
  • the battery cell housing can be made of a metal, preferably aluminum.
  • the battery cell housing can be made of one piece to ensure high stability.
  • the mechanical and/or electrical operating components of the radionuclide battery cell vary depending on the type of radionuclide battery cell.
  • one or more electrodes can be provided as operating component(s), which absorb released radioactive radiation, whereby an electrical voltage can be generated.
  • the electrodes can consist of a semiconducting material in which incident radioactive radiation can generate electron-hole pairs.
  • III-V semiconductors or quantum dot cells can be used, which suffer relatively little damage from incident radioactive radiation.
  • radio-luminescent material for example in the form of a layer, can be provided as the operating component.
  • the radio-luminescent material can absorb incident radiation and then release photons.
  • a photosensitive layer in particular a photodiode can be provided which can absorb the photons emitted by the radio-luminescent layer and convert them into electrical energy.
  • III-V semiconductors or quantum dot cells can be used in the photodiode.
  • the photodiode can be a Grätzel cell, for example, preferably in a bifacial transparent design.
  • the radio-luminescent material can be mixed with the radionuclide, for example, and introduced into the radionuclide receiving space.
  • the radio-luminescent material can be applied directly to a photodiode.
  • the photodiode with a layer of radio-luminescent material can be rolled up, for example, wherein spacers can be arranged on the photodiodes, by means of which a volume is defined within the rolled up photodiode. It is advantageous if radionuclide is arranged in this volume.
  • the mechanical and/or electrical operating components comprise electrical lines with which the radionuclide battery cell can be connected to a load, for example. Separating structures can be provided which separate individual operating components from one another.
  • thermocouple can be provided as the operating component, which converts the heat released by the radionuclide into an electrical voltage.
  • a motor in particular a Sterling motor, can be provided, which can be operated by the released heat and can convert the heat into electrical energy.
  • different mechanical and/or electrical operating components can be provided which are assembled within the battery cell housing.
  • the manufacture, provision and assembly of the mechanical and/or electrical operating components and the battery cell housing can take place without radiation protection measures, since up to this point none of these components comes into contact with radionuclide.
  • the battery cell housing has a radionuclide inlet opening which is connected to the radionuclide receiving space is connected.
  • the radionuclide inlet opening can be a through-bore of the battery cell housing.
  • the cross-section of the radionuclide inlet opening can be round, in particular circular, or for example rectangular, in particular square.
  • the radionuclide inlet opening can have a diameter or a diagonal in cross-section of, for example, 0.3 millimeters (mm) to 50 mm.
  • the cross-sectional area of the radionuclide inlet opening can be significantly smaller than the outer surface of the battery cell housing on which the radionuclide inlet opening is arranged.
  • the radionuclide inlet opening can, for example, have a diameter that corresponds to 1% or up to 10% of the diagonal of a circular outer surface of the battery cell housing on which the radionuclide inlet opening is arranged.
  • the radionuclide receiving space can, for example, be a tank separate from the battery cell housing.
  • the radionuclide receiving space can alternatively be delimited by the battery cell housing.
  • the mechanical and/or electrical operating components can be in direct contact with the radionuclide.
  • a photodiode with a layer of radio-luminescent material and spacers can be provided, which is rolled up or folded and assembled in the battery cell housing.
  • the spacers can be used to define a volume between the layers of the photodiodes, into which volume the radionuclide can be introduced.
  • the radionuclide receiving space is enclosed by the outer walls of the battery cell housing.
  • the photodiode is also located in the radionuclide receiving space.
  • the radionuclide receiving space of the battery cell housing is filled with the radionuclide through the radionuclide inlet opening of the battery cell housing, while the mechanical and/or electrical operating components are already in the assembled state.
  • the radionuclide can be solid or granular, liquid or gaseous.
  • the radionuclide inlet opening is closed so that the battery cell housing is ready for use.
  • the closure is preferably essentially gas-tight to ensure safe shielding of the radionuclide.
  • the The radionuclide battery cell is then placed inside a protective cover. This protective cover can absorb mechanical shocks and improve safety.
  • several radionuclide battery cells can be connected to form a radionuclide battery.
  • a single radionuclide battery cell can be used as a radionuclide battery. Since the radionuclide is only filled or introduced after the mechanical and/or electrical operating components have been assembled, it is particularly easy to finish the radionuclide battery cell shortly before use. This optimizes the service life of the radionuclide battery cell with regard to its use. Furthermore, a clear separation of the production line into an area without the risk of radioactive radiation and an area with appropriate radiation protection measures is possible.
  • the radionuclide can be removed from the radionuclide battery cell as soon as the activity of the radionuclide has fallen below a limit value and radionuclide with a higher activity can be filled in.
  • the radionuclide battery cell can be refilled.
  • the radionuclide inlet opening can be opened and the radionuclide removed through the radionuclide inlet opening.
  • radionuclide can be introduced through the radionuclide inlet opening and the radionuclide inlet opening can be closed again.
  • a closure element is attached to the inlet opening to close the inlet opening.
  • the closure element can, for example, be inserted into the inlet opening in a form-fitting manner.
  • the closure element can be a plate that covers the inlet opening.
  • the closure element and the battery cell housing can be made of the same material.
  • the closure element can be connected to the battery cell housing via a permanent connection, in particular a joint connection, for example a welded or adhesive connection.
  • a permanent connection in particular a joint connection, for example a welded or adhesive connection.
  • the interior of the radionuclide battery can be sealed by a permanent connection. in particular the radionuclide, must be particularly safely shielded from the environment.
  • the closure element can be connected to the battery cell housing via a detachable connection, in particular a screw connection or a clamp connection.
  • a detachable connection is particularly advantageous if the radionuclide is to be replaced as soon as the activity of the radionuclide in the radionuclide battery cell falls below a limit value or has reached a certain age.
  • At least one membrane is arranged at the radionuclide inlet opening before the radionuclide is filled in, then an injection element, in particular a cannula, is guided through the membrane and finally the radionuclide is introduced into the radionuclide receiving space of the battery cell housing via the injection element.
  • an injection element in particular a cannula
  • the use of a membrane is particularly advantageous if the radionuclide is in liquid form, since the membrane can prevent uncontrolled or accidental leakage of liquids. Introducing the radionuclide using a cannula allows particularly good control over the introduction or filling of the radionuclide.
  • the membrane can also be designed as a double membrane with another membrane.
  • the double membrane is arranged at the radionuclide inlet opening, with an injection element, in particular a cannula, being guided through both membranes of the double membrane.
  • an injection element in particular a cannula
  • the use of a double membrane is particularly advantageous when the radionuclide is in gaseous form, as this is a particularly safe way of preventing uncontrolled or unintentional leakage of gaseous radionuclide.
  • a further injection element such as a further cannula, can be guided through the same membrane or double membrane; air can escape from the radionuclide receiving space through the further injection element, which is displaced by the radionuclide introduced via the injection element.
  • a valve body is arranged at the radionuclide inlet opening before filling the radionuclide, then a filling element with the Valve body and the radionuclide is introduced into the radionuclide receiving space of the battery cell housing through the valve body by means of the filling element.
  • the valve body can, for example, be brought into an open valve position by the intended arrangement of the filling element in order to be able to fill radionuclide through the valve body.
  • the valve body is preferably arranged in a closed valve position after the radionuclide receiving space has been filled with the radionuclide.
  • the valve body can, for example, be automatically or automatically moved into a closed valve position when the filling element is released or removed from the valve body.
  • the valve body can only be arranged in the open valve position as long as the filling element is connected to the valve body.
  • the radionuclide is introduced through the free, i.e. unsealed, radionuclide inlet opening, wherein the radionuclide is preferably in the solid, in particular granular, state, or in the liquid state.
  • the radionuclide can be introduced into the radionuclide battery cell through the free radionuclide inlet opening using a funnel.
  • the method comprises the following further step: Filling an electrolyte receiving space of the battery cell housing with an electrolyte through an electrolyte inlet opening.
  • an electrolyte receiving space can be provided which can receive the electrolyte.
  • the electrolyte receiving space can be designed identically to the radionuclide receiving space.
  • the electrolyte receiving space can be the radionuclide receiving space, so that the electrolyte can be stored together with the radionuclide in the same Radionuclide receiving space.
  • the electrolyte inlet opening can also be the radionuclide inlet opening, so that the radionuclide and the electrolyte are introduced through the same inlet opening.
  • a valve body or a membrane can be arranged at the electrolyte inlet opening.
  • the electrolyte can be gaseous, liquid or granular.
  • a closure element is provided with which the electrolyte inlet opening is closed, preferably in a substantially gas-tight manner.
  • the closure element can be designed as described above in connection with the radionuclide inlet opening.
  • the battery cell housing can preferably have at least one first air outlet opening to simplify filling with radionuclide.
  • the air outlet opening can be separate and spaced from the radionuclide inlet opening. Air can escape from the radionuclide receiving space through the air outlet opening, which is gradually displaced by the introduced radionuclide during filling.
  • the air outlet opening and the radionuclide inlet opening can be designed identically; for example, a valve body or a membrane can be arranged on both.
  • the introduced radionuclide has a higher or lower density than the air originally present in the radionuclide receiving space, it can be advantageous to rotate the battery cell housing during filling relative to the acceleration due to gravity in such a way that the radionuclide inlet opening is located higher or lower than the air outlet opening.
  • the radionuclide has a higher density than air, it is advantageous if the air outlet opening is at the same height or higher than the radionuclide inlet opening, as the air is displaced upwards (relative to the acceleration due to gravity). If the radionuclide has a lower density than air, it is advantageous to arrange the air outlet opening lower than the radionuclide inlet opening, at the same height or as low as possible.
  • a further closure element can be provided with which the first air outlet opening, preferably in the Essentially gas-tight, closed. Like the radionuclide inlet opening, the air outlet opening must also be closed.
  • the additional closure element for closing the air outlet opening can be designed in the same way as the closure element for closing the radionuclide inlet opening.
  • the battery cell housing can preferably have an electrolyte receiving space in which an electrolyte is arranged, wherein the battery cell housing has at least one electrolyte inlet opening for filling the electrolyte receiving space of the battery cell housing with the electrolyte in the assembled state of the mechanical and/or electrical operating components. If at least one electrode is provided as an operating component, the use of an electrolyte can be advantageous in order to enable a REDOX reaction.
  • an electrolyte receiving space can be provided which can receive the electrolyte.
  • the electrolyte receiving space can be designed in the same way as the radionuclide receiving space.
  • the electrolyte receiving space can be the radionuclide receiving space, thus the electrolyte can be present together with the radionuclide in the same radionuclide receiving space.
  • the following further step is provided: Filling a receiving space for radio-luminescent material of the battery cell housing with a radio-luminescent material through an inlet opening for radio-luminescent material.
  • a receiving space for radio-luminescent material can be provided that can receive the radio-luminescent material.
  • the receiving space for radio-luminescent material can be designed in the same way as the radionuclide receiving space.
  • the receiving space for radio-luminescent material can be the radionuclide receiving space, so that the radio-luminescent material can be present together with the radionuclide in the radionuclide receiving space.
  • the inlet opening for radio-luminescent material can be designed in the same way as the radionuclide receiving space. be designed like the radionuclide inlet opening, in particular both can be designed identically, for example a valve body or a membrane can be arranged on both.
  • Fig. 1A shows a radionuclide battery cell 1 for generating electrical energy from emitted radiation energy of a radionuclide 2 (see Fig. 1D ).
  • the radionuclide battery cell 1 has a cylindrical battery cell housing 3 with two valve bodies 4, which are arranged at a radionuclide inlet opening 5 and an air outlet opening 6, respectively.
  • the radionuclide battery cell 1 also has two electrical connections 7, with which the radionuclide battery cell 1 can be electrically connected.
  • Figure 1B shows a top view of the Fig. 1A Radionuclide battery cell 1 shown.
  • Fig. 1C shows a cross section through the battery cell housing 3 before filling with the radionuclide 2.
  • the radionuclide battery cell 1 has mechanical and/or electrical operating components 27 (see Figure 3 ) within the battery cell housing 3, which according to Fig. 1C are already assembled. For the sake of clarity, the mechanical and/or electrical operating components 27 are shown in the Fig. 1A to 1D not shown.
  • a radionuclide receiving space 8 is provided in the battery cell housing 3, into which the radionuclide 2 is introduced.
  • the radionuclide receiving space 8 can be enclosed by a housing. This housing can consist of a material adapted to the type of radiation of the radionuclide 2.
  • a radiation-resistant, for example transparent, plastic container enclosing the radionuclide receiving space 8 can be provided.
  • the plastic container can be made of polyimide, for example, with wall thicknesses of, for example, 100 ⁇ m to 1 mm, preferably 300 ⁇ m to 0.7 mm.
  • the housing can be made of glass, for example borosilicate glass, with wall thicknesses of 50 ⁇ m to 4 mm, in particular 300 ⁇ m to 3 mm, preferably 500 ⁇ m to 2 mm.
  • the housing of the radionuclide receiving space 8 can consist of aluminum, for example.
  • the radionuclide receiving space 8 can be enclosed by a tank that is essentially gas-tight and essentially transparent for the type of radiation emitted, which can be attached inside the battery cell housing 3.
  • the gas diffusion properties with regard to the tightness of the material from which the tank is made should be in the order of magnitude of three times to at least once the half-life of the radionuclide. If the half-life is 12 years, for example, gaseous radionuclide should not diffuse through the tank within at least 12 to approximately 36 years.
  • beta radiation Glass or plastic can be used.
  • an alpha-emitting radionuclide 2 can be used, for example, together with a radio-luminescent material 22 (see Fig.5 ) in the radionuclide receiving chamber 8. This arrangement can also be advantageous for beta-emitting radionuclides 2.
  • the valve body 4 is arranged at the radionuclide inlet opening 5.
  • a filling element 9 is connected to the valve body 4.
  • the radionuclide 2 is introduced into the radionuclide receiving space 8 through the valve body 4 arranged in the radionuclide inlet opening 5.
  • the battery cell housing 3 has the first air outlet opening 6, at which one of the valve bodies 4 is arranged, which is connected to another filling element 9.
  • the air outlet opening 6 simplifies filling with radionuclide 2, since the air displaced by the radionuclide 2 can escape through the air outlet opening 6.
  • the air outlet opening 6 and the radionuclide inlet opening 5 are used simultaneously.
  • the filling elements 9 are separated from the valve bodies 4, whereby the valve bodies 4 are in a closed position (cf. Fig. 1D ). This closes both the radionuclide inlet opening 5 and the air outlet opening 6. Due to the arrangement of the valve bodies 4 and the closed position of the valve bodies 4, the first air outlet opening 6 and the radionuclide inlet opening 5 are essentially sealed gas-tight.
  • an electrode 15 see Figure 3
  • a photodiode see Figure 5 or 6
  • an electrode 15 can be assembled inside the battery cell housing 3 while the radionuclide 2 is being filled in.
  • Fig. 1D shows a cross section through the radionuclide battery cell 1 from Fig. 1A
  • the radionuclide 2 has already been filled into the radionuclide receiving space 8 and the filling elements 9 have been separated from the valve bodies 4.
  • a closure element 11 is arranged on each of the two valve bodies 4.
  • the closure elements 11 are connected to the valve bodies 4 via non-detachable connections, in particular via adhesive connections.
  • the closure elements 11 can be welded to the valve bodies 4.
  • detachable connections for example screw connections or clamp connections, can be provided between the closure elements 11 and the valve bodies 4.
  • the radionuclide 2 can be filled, for example, by means of a funnel through the freely available radionuclide inlet opening 5.
  • the radionuclide 2 is preferably in the solid, in particular in the granular state, or in the liquid state.
  • Fig. 2A shows a further embodiment of the radionuclide battery cell 1, in which closure elements 11 are arranged at the radionuclide inlet opening 5 and the air outlet opening 6.
  • the closure elements 11 can be connected to the battery cell housing 3 via adhesive connections.
  • Fig. 2B shows a top view of the radionuclide battery cell 1 from Fig. 2A .
  • Fig. 2C shows a cross section through the battery cell housing 3 from Figure 2A before filling with radionuclide 2.
  • the mechanical and/or electrical operating components 27 (not shown, see Figure 3 ) within the battery cell housing 3 of the radionuclide battery cell 1 are already assembled.
  • a radionuclide receiving space 8 is provided in the battery cell housing 3, into which the radionuclide 2 is introduced.
  • Two membranes 12 are arranged at the radionuclide inlet opening 5, which together form a double membrane 13 through which an injection element 14, here a cannula, is guided.
  • the Injection element 14 the radionuclide 2 is introduced through the double membrane 13 into the radionuclide receiving space 8 of the battery cell housing 3.
  • the battery cell housing 3 has a first air outlet opening 6, on which a double membrane 13 is also arranged.
  • the air outlet opening 6 simplifies filling with radionuclide 2, since the air displaced by the radionuclide 2 can escape through the air outlet opening 6.
  • a further injection element 14, here again a cannula is guided through the membrane 13.
  • the air outlet opening 6 and the radionuclide inlet opening 5 are used simultaneously.
  • the injection elements 14 are removed.
  • the radionuclide inlet opening 5 and the air outlet opening 6 are closed by means of the closure elements 11.
  • Further mechanical and/or electrical operating components 27 are in this embodiment as in the embodiment of the Fig. 1A to Fig.
  • an electrode 15 (see Fig.3 ) and/or a photodiode 23 (see Fig.5 ) be provided.
  • Fig. 2D shows a cross section of the Fig. 2A shown radionuclide battery cell 1.
  • the radionuclide 2 has already been filled into the radionuclide receiving space 8 and the closure elements 11 have been glued into the air outlet opening 6 and the radionuclide inlet opening 5 in order to seal the battery cell housing 3 essentially gas-tight.
  • the closure elements 11 are connected to the battery cell housing 3 via non-detachable connections, in particular via adhesive connections.
  • Fig.3 shows a battery cell housing 3 with assembled mechanical and/or electrical operating components 27, which can be manufactured using one of the previously described methods.
  • the battery cell housing 3 can, for example, have a side length of 10 mm to 1000 mm, in particular of 20 mm to 300 mm, preferably of 30 mm to 200 mm, particularly preferably 80 mm to 140 mm.
  • the battery cell housing can be cylindrical, spherical or designed as a polyhedron.
  • Two electrodes 15A, 15B are provided, each of which is directly attached to the Battery cell housing 3 are arranged.
  • the radionuclide receiving space 8 is delimited by the electrode 15A, a separating structure 16 and the battery cell housing 3.
  • the electrode 15A which can be the cathode, is in direct contact with the radionuclide 2 in the radionuclide battery cell 1. Effects such as diffusion and/or corrosion can be taken into account when selecting the materials in order to avoid chemical changes or damage to the electrode 15A.
  • the separating structure 16 is preferably used together with liquid and/or gaseous radionuclides 2, in which case beta emitters are primarily considered as the radionuclide 2, since the separating structure 16 blocks alpha radiation. Beta radiation, on the other hand, also works through thin layers, wherein the thickness of the separating structure 16 can be in a range from 10 nm to 1 mm, in particular 50 nm to 300 ⁇ m, preferably between 300 nm and 100 ⁇ m.
  • the radionuclide receiving space 8 can be filled with radionuclide 2 during production via the radionuclide inlet opening 5, whereby air can escape via the first air outlet opening 6.
  • an electrolyte receiving space 17 is delimited by the electrode 15B, which can be the anode, the separation structure 16 and the battery cell housing 3.
  • An electrolyte (not shown) is introduced into the electrolyte receiving space 17 via an electrolyte inlet opening 18. This step, like the filling with radionuclide 2, takes place after the mechanical and/or electrical operating components 27 of the radionuclide battery cell 1 have been assembled.
  • the electrolyte receiving space 17 is filled with the electrolyte and the electrolyte inlet opening 18 is closed before the radionuclide receiving space 8 is filled with radionuclide 2.
  • Air can escape from the electrolyte receiving space 17 via a second air outlet opening 19, which is displaced by the introduced electrolyte.
  • the radionuclide inlet opening 5, the air outlet opening 6, the electrolyte inlet opening 18 and the second air outlet opening 19 are each closed after filling with radionuclide or with the electrolyte.
  • At least the electrode 15B can have structural elements 21 which shape the surface of the electrode 15B and thus the probability of interaction with the Radionuclide 2 can increase the efficiency of radioactive radiation released by the structural elements 21.
  • the structural elements 21 can be or have nano- or micro-structure elements, for example, which can be applied using nanotechnological deposition processes, for example.
  • nanotubes can be used, which can consist of TiO 2.
  • the use of nanostructures is particularly advantageous in connection with beta emitters in order to increase the efficiency of the radionuclide battery cell 1.
  • the structural elements 21 are surrounded by the electrolyte in the radionuclide battery cell 1 or are located in the electrolyte receiving space 17 and form an intimate connection to the REDOX process of the electron conduction in the radionuclide battery cell 1.
  • the electrolyte can contain iodine or potassium iodide, for example, and can accelerate the regeneration of the electrode 15B after the incidence of radioactive radiation and thus improve the efficiency of the conversion of radiation into electrical current.
  • the radionuclide inlet opening 5, the air outlet opening 6, the electrolyte inlet opening 18 and the second air outlet opening 19 are exposed; the radionuclide 2 and the electrolyte can be introduced using a funnel, for example.
  • the height of the electrolyte inlet opening 18 can differ from the height of the second air outlet opening 19. If the electrolyte has a higher density than air, the electrolyte collects (relative to the acceleration due to gravity) below the air in the electrolyte receiving space 17.
  • the second air outlet opening 19 is arranged above the electrolyte inlet opening 18. It is particularly advantageous if the second air outlet opening 19 is arranged as close as possible to the highest point of the electrolyte receiving space 17 in order to be able to fill the electrolyte receiving space 17 as completely as possible with electrolyte.
  • the radionuclide 2 and/or the electrolyte can be used in the same way as in the embodiments of the Fig. 1A to Fig. 1D or the Fig. 2A to Fig. 2D
  • valve bodies 4 see Fig.
  • the mechanical and/or electrical operating components 27 in this embodiment comprise two electrodes 15A and 15B, the structural elements 21, and the Separating structure 16, which are assembled before filling with the electrolyte and the radionuclide 2.
  • the radionuclide 2 is freely filled into the radionuclide receiving space 8.
  • the radionuclide 2 is present in solid or granular, liquid or gaseous form.
  • Fig. 4A shows two sections of a battery cell housing 3 with a radionuclide inlet opening 5 and a first air outlet opening 6, each of which is closed by a double membrane 13.
  • An injection element 14, which is a cannula here, is passed through each of the double membranes 13.
  • Radionuclide 2 is introduced through the radionuclide inlet opening 5, while air is simultaneously removed through the first air outlet opening 6. The volume of air that is introduced with radionuclide 2 is removed in order to accelerate the filling process.
  • Fig. 4B a section of a battery cell housing 3 can be seen, with the radionuclide inlet opening 5 visible.
  • the double membrane 13, through which two injection elements 14A, 14B are passed, is arranged at the radionuclide inlet opening 5.
  • One injection element 14A is used to introduce radionuclide 2 through the double membrane 13 into the radionuclide receiving space 8.
  • the other injection element 14B is used to remove air, which is displaced by the radionuclide 2, from the radionuclide receiving space 8. As a result, no separate air outlet opening 6 is necessary.
  • Fig 4C shows a detailed view of an embodiment of the radionuclide inlet opening 5 in the nuclide battery housing 3, which was closed with the closure element 11 after the radionuclide receiving space 8 was filled.
  • Fig.5 shows an embodiment of the radionuclide battery cell 1 with the radionuclide receiving space 8, a layer of radio-luminescent material 22 and a photodiode 23.
  • the radio-luminescent material 22 is excited by the radiation of the radionuclide 2, whereupon photons are emitted.
  • the emitted photons can preferably have a wavelength in a range from 1 nm to 10 ⁇ m, in particular 200 nm to 2000 nm, preferably 200 nm to 900 nm.
  • the photodiode 23 can comprise, for example, silicon (Si), crystalline silicon (c-Si), monocrystalline silicon (m-Si), GaAs or perovskite.
  • the photodiode 23 can alternatively be an organic solar cell or a DSSC ("dye-sensitized solar cell").
  • the central emitted wavelength can coincide with a sensitivity maximum of the photodiode 23 in order to increase the efficiency of the radionuclide battery cell.
  • the photons are absorbed by the photodiode 23, causing an electric current. In this figure, no radionuclide inlet opening 5 can be seen, for details see the Figures 1 to 4 .
  • the conversion of incident radioactive radiation into photons by the radioluminescent material 22 is achieved by using rare earth oxides, such as doped ZnS.
  • the incident radioactive radiation releases energy, which leads to excited states in the radioluminescent material 22 and to a secondary emission of photons.
  • the radioluminescent material 22 is selected such that the wavelengths of the photon emissions spectrally overlap with the sensitivity of the photodiode 23 and thus as many photons as possible can be used.
  • the radioluminescent material can comprise earth oxides and phosphorus substances, such as silver-doped ZnS in admixture with green phosphorus or strontium aluminate in a mass ratio of 100:1 to 1:100, in particular 10:1 and 1:10, preferably 1:4.
  • the radioluminescent material can, for example, contain ZnS:Cu or ZnS:Cu:Ag.
  • the radioluminescent material can be tailored to the species of radionuclide 2 or the expected radiation.
  • the yield of photons due to the incident radiation can be optimized.
  • the ratio of photons/MeV ("light yield") can be optimized.
  • up to 10 ⁇ 5 photons can be generated per emitted alpha particle from the radionuclide.
  • Wavelength optimization can be achieved by using quantum dot semiconductors in conjunction with the photodiode 23, whereby the sensitivity is precisely tuned by quantum dots to the central wavelength of the emission of the radio-luminescent material 22.
  • Fig. 6A shows a photodiode 23 on which a layer of radio-luminescent material 22 is applied. Furthermore, spacers 24 are provided.
  • the spacers 24 are made of a chemically inert and electrically insulating material and are transparent to the photons emitted by the radio-luminescent material 22.
  • the spacers 24 can be designed, for example, as a honeycomb or as a grid, wherein the radionuclide 2 can be arranged in the free spaces within the spacers 24 and between the spacers 24.
  • the layer structure 25 can be wound up before it is arranged in the battery cell housing 3.
  • a volume can be defined between the layers of radio-luminescent material 22 and photodiodes 23, into which radionuclide 2 can be introduced at a later time.
  • the spacers 24 improve the mechanical and electrical stability of the radionuclide battery cell 1.
  • the spacers 24 enable the photodiode 23 to be stacked or rolled up or folded.
  • the wound layer structure 25 is arranged in the radionuclide receiving space of the battery cell housing 3. Alternatively, the layer structure 25 can also be arranged folded instead of rolled, as in Fig. 6B is shown.

Abstract

Verfahren zur Herstellung einer Radionuklidbatteriezelle (1) zur Erzeugung von elektrischer Energie aus emittierter Strahlungsenergie eines Radionuklids (2), aufweisend die Schritte:Vorsehen von mechanischen und/oder elektrischen Betriebskomponenten (27), insbesondere zumindest einer Elektrode (15, 15A, 15B) und/oder einer Photodiode (23);Assemblieren der mechanischen und/oder elektrischen Betriebskomponenten (27) innerhalb eines Batteriezellengehäuses (3) der Radionuklidbatteriezelle (1);Befüllen eines Radionuklid-Aufnahmeraums des Batteriezellengehäuses (3) im assemblierten Zustand der mechanischen und/oder elektrischen Betriebskomponenten (27) mit dem Radionuklid (2) durch zumindest eine Radionuklid-Einlassöffnung (5) des Batteriezellengehäuses (3); undVerschließen der zumindest einen Radionuklid-Einlassöffnung (5) des Batteriezellengehäuses (3), um die Radionuklidbatteriezelle (1) zu erhalten.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung einer Radionuklidbatteriezelle zur Erzeugung von elektrischer Energie aus emittierter Strahlungsenergie eines Radionuklids.
  • Radionuklidbatterien sind Energiequellen, die Strahlungsenergie des spontanen Kernzerfalls eines Radionuklids in elektrische Energie umwandeln. Im Vergleich zur Energiedichte herkömmlicher (chemischer) Batterien ist die Energiedichte von Radionuklidbatterien um bis zu zwei Größenordnungen höher, wodurch sich Radionuklidbatterien insbesondere für Anwendungen eignen, die eine Versorgung über einen sehr langen Zeitraum benötigen. Ein Einsatzgebiet sind beispielsweise Anwendungen im Weltall. Bekannt sind verschiedenste Prinzipien zur Nutzung der Strahlungsenergie, die beispielsweise in thermische Umsetzungen und nichtthermische Umsetzungen unterteilt werden können. Beispielsweise kann die anfallende Wärme mit einem Thermoelement aufgenommen werden. Alternativ können beispielsweise Halbleiter genutzt werden, in denen aufgrund der einfallenden Strahlung des Radionuklids Elektron-Loch-Paare erzeugt werden, die wiederum einen elektrischen Strom hervorrufen. Besonders verbreitet sind Beta-Voltaik-Batterien, die Beta-Strahlung nutzen, sowie Alpha-Voltaik-Batterien, die Alpha-Strahlung nutzen. Eine weitere Möglichkeit zur indirekten Nutzung der radioaktiven Strahlung besteht darin, die Strahlung mittels eines lumineszenten Materials in Photonen umzusetzen und die so generierten Photonen zur Erzeugung elektrischer Energie zu nutzen.
  • Beispielsweise zeigt die US 2018/0372891 A1 verschiedene Ausführungsformen einer Nuklidbatterie. Strahlung von radioaktivem Material kann einerseits direkt mittels zweier Elektroden und/oder Halbleitern in elektrische Energie umgewandelt werden. Alternativ oder auch parallel dazu kann eine szintillierende Schicht vorgesehen sein, die durch die einfallende Strahlung angeregt wird und in Folge Photonen emittiert. Die Photonen werden wiederum zur Erzeugung elektrischer Energie genutzt, indem Strukturen aus Halbleitern vorgesehen sind, die die Photonen absorbieren.
  • Weitere Radionuklidbatterien sind beispielsweise aus der CN111755142A und der US5008759 bekannt.
  • Eine Schwierigkeit in der Herstellung von Radionuklidbatterien besteht im Umgang mit den radioaktiven Substanzen. Es besteht grundsätzlich das Risiko einer radioaktiven Kontamination und einer Verschleppung von radioaktivem Material. Daher gelten strenge Auflagen für die Handhabung dieser Materialien und in der Folge auch für die Fertigung von Radionuklidbatterien. Typischerweise ist das radioaktive Material geometrisch zentral in der Radionuklidbatterie angeordnet, um einerseits das radioaktive Material möglichst sicher von der Außenwelt abzuschirmen und andererseits einen möglichst großen Anteil der Strahlung nutzen zu können, wenn das Radionuklid zum Beispiel von Elektroden umgeben ist. Aufgrund dieser Anordnung muss das Radionuklid während oder vor der Assemblierung der übrigen Komponenten der Radionuklidbatterie gehandhabt und eingebaut werden. Das hat zur Folge, dass nach dem Einbringen des Radionuklids weitere, mitunter komplexe Fertigungsschritte notwendig sind. Damit ist eine klare Trennung der Fertigungsstrecke in einen Bereich ohne die Gefahr von radioaktiver Strahlung und einen Bereich mit entsprechenden Strahlenschutzmaßnahmen schwer möglich. Damit geht ein höheres Gefahrenpotential einher, welches aufwendige Sicherheitsauflagen erforderlich macht und sich nachteilig auf die Fertigung auswirkt.
  • Ein weiterer Nachteil von Radionuklidbatterien im Vergleich zu herkömmlichen Batterien, wie beispielswiese Lithiumbatterien, besteht darin, dass Radionuklidbatterien nicht wiederaufladbar sind. Der radioaktive Zerfall ist ein irreversibler Prozess, so dass keine Energie in die Radionuklidbatterie eingebracht und gespeichert werden kann. Ist das Radionuklid aufgebraucht oder ist die Aktivität unter einen Grenzwert abgefallen, sind Radionuklidbatterien typischerweise nicht weiter verwendbar.
  • Eine weitere Komplikation ist die Materialermüdung der Komponenten der Radionuklidbatterie. Durch die radioaktive Strahlung kann es beispielsweise zum Abfallen des Wirkungsgrads eines Halbleiters kommen. Daher ist eine längere Lagerung einer Radionuklidbatterie vor deren Verwendung nicht ratsam. Vielmehr ist es günstig, die Radionuklidbatterie möglichst kurz vor dem Gebrauch zu fertigen. Daraus ergeben sich hohe Ansprüche an die Fertigung und die Logistik.
  • Es ist daher Aufgabe der Erfindung, zumindest einzelne Nachteile des Stands der Technik zu lindern bzw. zu beseitigen. Ziel der Erfindung ist es vorzugsweise, die Fertigung der Radionuklidbatterie sicherer und einfacher zu gestalten.
  • Gelöst wird die Aufgabe durch ein Verfahren nach Anspruch 1. Das Verfahren weist zumindest die folgenden Schritte auf:
    • Vorsehen von mechanischen und/oder elektrischen Betriebskomponenten, insbesondere zumindest einer Elektrode und/oder einer Photodiode;
    • Assemblieren der mechanischen und/oder elektrischen Betriebskomponenten innerhalb eines Batteriezellengehäuses der Radionuklidbatteriezelle;
    • Befüllen eines Radionuklid-Aufnahmeraums des Batteriezellengehäuses im assemblierten Zustand der mechanischen und/oder elektrischen Betriebskomponenten mit dem Radionuklid durch zumindest eine Einlassöffnung des Batteriezellengehäuses; und
    • Verschließen der zumindest einen Einlassöffnung des Batteriezellengehäuses, um die Radionuklidbatteriezelle zu erhalten.
  • Die Aufgabe wird ebenso von einer Radionuklidbatteriezelle nach Anspruch 10 gelöst. Die Radionuklidbatteriezelle weist zumindest auf:
    • mechanische und/oder elektrische Betriebskomponenten, insbesondere zumindest eine Elektrode und/oder eine Photodiode,
    • ein Batteriezellengehäuse, in dem die mechanischen und/oder elektrischen Betriebskomponenten assembliert sind,
    • wobei das Batteriezellengehäuse einen Radionuklid-Aufnahmeraum aufweist, in welchem das Radionuklid angeordnet ist, wobei
    • das Batteriezellengehäuse zumindest eine Radionuklid-Einlassöffnung zum Befüllen des Radionuklid-Aufnahmeraums des Batteriezellengehäuses mit dem Radionuklid im assemblierten Zustand der mechanischen und/oder elektrischen Betriebskomponenten aufweist.
  • Das Batteriezellengehäuse bildet bevorzugt die äußere Ummantelung der Radionuklidbatteriezelle. Die Abmessungen des Batteriezellengehäuses legen somit die äußeren Dimensionen der Radionuklidbatteriezelle fest. Das Batteriezellengehäuse gewährleistet die mechanische Stabilität der Radionuklidbatteriezelle und schützt das Innere der Radionuklidbatteriezelle vor äußeren Einflüssen wie beispielsweise mechanischer Belastung oder Luftfeuchtigkeit. Gleichzeitig schützt das Batteriezellengehäuse die Umgebung der Radionuklidbatteriezelle vor radioaktiver Strahlung. Zu diesem Zweck kann das Batteriezellengehäuse das Radionuklid im Wesentlichen strahlungsdicht, insbesondere zudem im Wesentlichen gasdicht, einschließen. Das Radionuklid kann beispielsweise 3H, 10Be, 32Si, 40K, 90Sr, 137Cs, 144Nd, 204Tl, 232Th, 241Am, 63Ni, 90Y sein. Diese Isotope weisen wenig Gamma-Emission auf, wodurch sie für den Einsatz in Radionuklidbatteriezellen besonders geeignet sind. Die Halbwertszeit des Radionuklids kann zwischen 1 Sekunde (s) bis 14 Milliarden Jahre liegen, bevorzugt liegt die Halbwertszeit zwischen 10 Jahren und 300 Jahren. Das Radionuklid kann metallisch bzw. als Oxid entweder gasförmig, flüssig oder im festen, granularen Zustand eingesetzt werden. Das Batteriezellengehäuse kann beispielsweise aus einem Metall, vorzugsweise aus Aluminium, gefertigt sein. Beispielsweise kann das Batteriezellengehäuse einteilig sein, um eine hohe Stabilität zu gewährleisten.
  • Die mechanischen und/oder elektrischen Betriebskomponenten der Radionuklidbatteriezelle unterscheiden sich je nach Typ der Radionuklidbatteriezelle.
  • Bei einer Ausführungsvariante können als Betriebskomponente(n) eine oder mehrere Elektroden vorgesehen sein, die freigesetzte radioaktive Strahlung absorbieren, wodurch eine elektrische Spannung erzeugt werden kann. Die Elektroden können aus einem halbleitenden Material bestehen, in dem einfallende radioaktive Strahlung Elektron-Loch-Paare erzeugen kann. Beispielsweise können III-V Halbleiter oder Quantum-Dot Zellen verwendet werden, die vergleichsweise relativ wenig Schaden durch einfallende radioaktive Strahlung nehmen.
  • Bei einer weiteren Ausführungsvariante kann als Betriebskomponente radio-lumineszentes Material, beispielsweise in Form einer Schicht, vorgesehen sein. Das radio-lumineszente Material kann einfallende Strahlung absorbieren und daraufhin Photonen freisetzen. Zusätzlich kann eine photosensitive Schicht, insbesondere eine Photodiode, vorgesehen sein, welche die von der radio-lumineszenten Schicht emittierten Photonen absorbieren und zu elektrischer Energie umwandeln kann. Beispielsweise können III-V Halbleiter oder Quantum-Dot Zellen in der Photodiode verwendet werden. Die Photodiode kann beispielsweise eine Grätzel-Zelle sein, bevorzugt in einer bifazialen transparenten Ausführung. Das radio-lumineszente Material kann beispielsweise mit dem Radionuklid vermischt vorliegen und in den Radionuklid-Aufnahmeraum eingebracht werden. Alternativ kann das radio-lumineszente Material direkt auf eine Photodiode aufgebracht sein. Die Photodiode mit einer Schicht aus radio-lumineszentem Material kann beispielsweise aufgerollt sein, wobei Distanzhalter auf den Photodioden angeordnet sein können, durch die ein Volumen innerhalb der aufgerollten Photodiode definiert wird. Es ist vorteilhaft, wenn in diesem Volumen Radionuklid angeordnet wird. Des Weiteren umfassen die mechanischen und/oder elektrischen Betriebskomponenten elektrische Leitungen, mit der die Radionuklidbatteriezelle beispielsweise mit einer Last verbunden werden kann. Es können Trennstrukturen vorgesehen sein, die einzelne Betriebskomponenten voneinander trennen.
  • Bei einer weiteren Ausführungsvariante kann als Betriebskomponente ein Thermoelement vorgesehen sein, welches die vom Radionuklid freigesetzte Wärme in eine elektrische Spannung umwandelt. Beispielsweise kann ein Motor, insbesondere ein Sterling-Motor, vorgesehen sein, der durch die freigesetzte Wärme betrieben werden kann und die Wärme in elektrische Energie umwandeln kann.
  • Je nach Ausführungsform der Radionuklidbatteriezelle können somit unterschiedliche mechanische und/oder elektrische Betriebskomponenten vorgesehen sein, die innerhalb des Batteriezellengehäuses assembliert werden. Das Fertigen, Vorsehen und Assemblieren der mechanischen und/oder elektrischen Betriebskomponenten und des Batteriezellengehäuses kann ohne Strahlenschutzmaßnahmen stattfinden, da bis zu diesem Punkt keiner dieser Bestandteile mit Radionuklid in Berührung kommt.
  • Erfindungsgemäß weist das Batteriezellengehäuse eine Radionuklid-Einlassöffnung auf, welche mit dem Radionuklid-Aufnahmeraums verbunden ist. Die Radionuklid-Einlassöffnung kann eine Durchgangsbohrung des Batteriezellengehäuses sein. Der Querschnitt der Radionuklid-Einlassöffnung kann rund, insbesondere kreisförmig, oder beispielsweise rechteckig, insbesondere quadratisch, sein. Die Radionuklid-Einlassöffnung kann einen Durchmesser oder eine Diagonale im Querschnitt von beispielsweise 0.3 Millimeter (mm) bis 50 mm aufweisen. Die Querschnittsfläche der Radionuklid-Einlassöffnung kann deutlich kleiner als die Außenfläche des Batteriezellengehäuses sein, an der die Radionuklid-Einlassöffnung angeordnet ist. Die Radionuklid-Einlassöffnung kann beispielsweise einen Durchmesser aufweisen, der 1% oder bis zu 10% der Diagonale einer kreisförmigen Außenfläche des Batteriezellengehäuses entspricht, an der die Radionuklid-Einlassöffnung angeordnet ist. Der Radionuklid-Aufnahmeraum kann beispielsweise ein vom Batteriezellengehäuse separater Tank sein. Der Radionuklid-Aufnahmeraum kann alternativ vom Batteriezellengehäuse begrenzt sein. Beispielsweise können die mechanischen und/oder elektrischen Betriebskomponenten in direkten Kontakt mit dem Radionuklid sein. So kann beispielsweise eine Photodiode mit einer Schicht aus radio-lumineszenten Material und Distanzhaltern vorgesehen sein, die aufgerollt oder gefaltet im Batteriezellengehäuse assembliert ist. Bei dieser Ausführung kann mittels der Distanzhalter ein Volumen zwischen den Schichten der Photodioden definiert sein, in welches Volumen das Radionuklid eingebracht werden kann. In diesem Fall ist der Radionuklid-Aufnahmeraum von den Außenwänden des Batteriezellengehäuses eingeschlossen. Auch die Photodiode befindet sich bei dieser Ausführung im Radionuklid-Aufnahmeraum. Um die Radionuklidbatteriezelle zu erhalten, wird im zeitlich darauffolgenden Schritt der Radionuklid-Aufnahmeraum des Batteriezellengehäuses mit dem Radionuklid durch die Radionuklid-Einlassöffnung des Batteriezellengehäuses befüllt, während die mechanischen und/oder elektrischen Betriebskomponenten bereits im assemblierten Zustand vorliegen. Das Radionuklid kann dabei fest bzw. granular, flüssig oder auch gasförmig sein. Im nächsten Schritt wird die Radionuklid-Einlassöffnung verschlossen, sodass das Batteriezellengehäuse betriebsbereit ist. Der Verschluss ist vorzugsweise im Wesentlichen gasdicht, um eine sichere Abschirmung des Radionuklids zu gewährleisten. Um eine höhere mechanische Betriebssicherheit gewährleisten zu können, vor allem beim Einsatz in mobilen Anwendungen, kann die Radionuklidbatteriezelle danach innerhalb einer Schutzhülle angeordnet werden. Diese Schutzhülle kann mechanischen Stöße absorbieren und die Sicherheit verbessern. Je nach Ausführung können mehrere Radionuklidbatteriezellen zu einer Radionuklidbatterie verschaltet werden. Alternativ kann auch eine einzelne Radionuklidbatteriezelle als Radionuklidbatterie verwendet werden. Da das Radionuklid erst nach der Assemblierung der mechanischen und/oder elektrischen Betriebskomponenten eingefüllt bzw. eingebracht wird, ist es besonders einfach möglich, die Radionuklidbatteriezelle erst kurz vor Verwendung fertigzustellen. Damit wird die Lebensdauer der Radionuklidbatteriezelle in Hinblick auf Ihren Einsatz optimiert. Des Weiteren ist eine klare Trennung der Fertigungsstrecke in einen Bereich ohne die Gefahr von radioaktiver Strahlung und einen Bereich mit entsprechenden Strahlenschutzmaßnahmen möglich.
  • Je nach Ausführung kann das Radionuklid aus der Radionuklidbatteriezelle entnommen werden, sobald die Aktivität des Radionuklids einen Grenzwert unterschritten hat, und Radionuklid mit einer höheren Aktivität einzufüllen. Bei dieser Ausführung ist die Radionuklidbatteriezelle wieder-befüllbar. Dazu kann die Radionuklid-Einlassöffnung geöffnet und das Radionuklid durch die Radionuklid-Einlassöffnung entnommen werden. Im nächsten Schritt kann Radionuklid durch die Radionuklid-Einlassöffnung eingebracht werden und die Radionuklid-Einlassöffnung kann wieder verschlossen werden.
  • Vorzugsweise wird zum Verschließen der Einlassöffnung ein Verschlusselement an der Einlassöffnung angebracht. Das Verschlusselement kann beispielsweise formschlüssig in die Einlassöffnung eingebracht werden. Das Verschlusselement kann eine Platte sein, die die Einlassöffnung verdeckt. Das Verschlusselement und das Batteriezellengehäuse können aus dem selben Material bestehen.
  • Das Verschlusselement kann bei einer bevorzugten Ausführungsvariante über eine unlösbare Verbindung, insbesondere eine Fügeverbindung, beispielsweise eine Schweiß- oder Klebeverbindung, mit dem Batteriezellengehäuse verbunden werden. Durch eine unlösbare Verbindung kann das Innere der Radionuklidbatterie, insbesondere das Radionuklid, besonders sicher von der Umgebung abgeschirmt werden.
  • Alternativ kann das Verschlusselement über eine lösbare Verbindung, insbesondere eine Schraubverbindung oder eine Klemmverbindung, mit dem Batteriezellengehäuse verbunden werden. Eine lösbare Verbindung ist besonders günstig, wenn das Radionuklid ausgetauscht werden soll, sobald die Aktivität des Radionuklids in der Radionuklidbatteriezelle einen Grenzwert unterschreitet bzw. ein bestimmtes Alter erreicht hat.
  • Bei einer bevorzugten Ausführungsform wird vor dem Einfüllen des Radionuklids zumindest eine Membran an der Radionuklid-Einlassöffnung angeordnet, danach wird ein Injektionselement, insbesondere eine Kanüle, durch die Membran geführt und schließlich wird das Radionuklid über das Injektionselement in den Radionuklid-Aufnahmeraum des Batteriezellengehäuses eingebracht. Die Verwendung einer Membran ist besonders günstig, wenn das Radionuklid in flüssiger Form vorliegt, da durch die Membran ein unkontrolliertes oder unabsichtliches Austreten von Flüssigkeiten verhindert werden kann. Das Einbringen des Radionuklids mittels einer Kanüle erlaubt eine besonders gute Kontrolle über das Einbringen bzw. Einfüllen des Radionuklids. Die Membran kann auch mit einer weiteren Membran als Doppelmembran ausgeführt sein. Die Doppelmembran ist an der Radionuklid-Einlassöffnung angeordnet, wobei durch beide Membranen der Doppelmembran ein Injektionselement, insbesondere eine Kanüle, durchgeführt wird. Die Verwendung einer Doppelmembran ist besonders günstig, wenn das Radionuklid gasförmig vorliegt, da somit ein unkontrolliertes oder unbeabsichtigtes Austreten von gasförmigem Radionuklid besonders sicher vermieden werden kann. Bei einer bevorzugten Variante kann ein weiteres Injektionselement, wie eine weitere Kanüle, durch die selbe Membran bzw. Doppelmembran geführt werden; Durch das weitere Injektionselement kann Luft aus dem Radionuklid-Aufnahmeraum entweichen, die von dem über das Injektionselement eingebrachten Radionuklid verdrängt wird.
  • Bei einer weiteren bevorzugten Ausführungsform wird vor dem Einfüllen des Radionuklids ein Ventilkörper an der Radionuklid-Einlassöffnung angeordnet, danach wird ein Einfüllelement mit dem Ventilkörper verbunden und das Radionuklid wird mittels des Einfüllelements durch den Ventilkörper in den Radionuklid-Aufnahmeraum des Batteriezellengehäuses eingebracht. Der Ventilkörper kann beispielsweise durch die bestimmungsgemäße Anordnung des Einfüllelements in eine offene Ventilstellung gebracht werden, um Radionuklid durch den Ventilkörper einfüllen zu können. Die Verwendung eines Ventilkörpers führt zu einem besonders sicheren und reproduzierbaren Befüllprozess.
  • Bevorzugt wird der Ventilkörper bei dieser Ausführungsform nach dem Befüllen des Radionuklid-Aufnahmeraums mit dem Radionuklid in einer geschlossenen Ventilstellung angeordnet. Der Ventilkörper kann beispielsweise beim Lösen bzw. Abziehen des Einfüllelements vom Ventilkörper automatisch bzw. selbsttätig in eine geschlossene Ventilstellung übergeführt werden. Bei dieser Ausführung kann der Ventilkörper nur in der offenen Ventilstellung angeordnet sein, so lange das Einfüllelement mit dem Ventilkörper verbunden ist.
  • Bei einer weiteren bevorzugten Ausführungsform wird das Radionuklid durch die frei, d.h. unverschlossen, vorliegende Radionuklid-Einlassöffnung eingefüllt, wobei das Radionuklid bevorzugt im festen, insbesondere im granularen Zustand, oder im flüssigen Zustand vorliegt. Beispielsweise kann das Radionuklid mittels eines Trichters durch die frei vorliegende Radionuklid-Einlassöffnung in die Radionuklidbatteriezelle eingebracht werden.
  • Vorzugsweise weist das Verfahren den folgenden weiteren Schritt auf:
    Befüllen eines Elektrolyt-Aufnahmeraums des Batteriezellengehäuses mit einem Elektrolyten durch eine Elektrolyt-Einlassöffnung. Die Verwendung eines Elektrolyten ist insbesondere bei Ausführungen vorteilhaft, bei denen als Betriebskomponente(n) zumindest eine Elektrode vorgesehen ist. Bei dieser Ausführungsform kann ein Elektrolyt-Aufnahmeraum vorgesehen sein, der den Elektrolyten aufnehmen kann. Der Elektrolyt-Aufnahmeraum kann i-dent zum Radionuklid-Aufnahmeraum ausgebildet sein. Der Elektrolyt-Aufnahmeraum kann der Radionuklid-Aufnahmeraum sein, so dass der Elektrolyt gemeinsam mit dem Radionuklid im selben Radionuklid-Aufnahmeraum vorliegen. Dazu kann auch die Elektrolyt-Einlassöffnung die Radionuklid-Einlassöffnung sein, sodass das Radionuklid und der Elektrolyt durch dieselbe Einlassöffnung eingebracht werden. Wie oben beschrieben kann ein Ventilkörper oder eine Membran an der Elektrolyt-Einlassöffnung angeordnet sein. Der Elektrolyt kann gasförmig, flüssig, oder granular vorliegen.
  • Bevorzugt ist ein Verschlusselement vorgesehen sein, mit welchem die Elektrolyt-Einlassöffnung, vorzugsweise im Wesentlichen gasdicht, verschlossen ist. Das Verschlusselement kann wie oben in Zusammenhang mit der Radionuklid-Einlassöffnung beschrieben ausgebildet sein.
  • Vorzugsweise kann das Batteriezellengehäuse zumindest eine erste Luft-Auslassöffnung aufweisen, um das Befüllen mit Radionuklid zu vereinfachen. Dazu kann die Luft-Auslassöffnung gesondert und beabstandet von der Radionuklid-Einlassöffnung vorliegen. Durch die Luft-Auslassöffnung kann Luft aus dem Radionuklid-Aufnahmeraum entweichen, die vom eingebrachten Radionuklid sukzessive während des Befüllens verdrängt wird. Die Luft-Auslassöffnung und die Radionuklid-Einlassöffnung können identisch ausgebildet sein, beispielsweise kann an beiden ein Ventilkörper oder eine Membran angeordnet werden. Je nachdem, ob das eingebrachte Radionuklid eine höhere oder eine niedrigere Dichte als die im Radionuklid-Aufnahmeraum ursprünglich vorhandene Luft aufweist, kann es günstig sein, das Batteriezellengehäuse während des Befüllens derart relativ zur Erdbeschleunigung zu drehen, dass die Radionuklid-Einlassöffnung höher oder niedriger als die Luft-Auslassöffnung gelegen ist. Weist das Radionuklid eine höhere Dichte als Luft auf, ist es beispielsweise günstig, wenn die Luft-Auslassöffnung gleich hoch oder höher liegt als die Radionuklid-Einlassöffnung, da die Luft nach oben (relativ zur Erdbeschleunigung) verdrängt wird. Für den Fall, dass das Radionuklid eine niedrigere Dichte als Luft aufweist, ist es günstig die Luft-Auslassöffnung niedriger als die Radionuklid-Einlassöffnung, gleich hoch oder möglichst niedrig anzuordnen.
  • Zudem kann ein weiteres Verschlusselement vorgesehen sein, mit welchem die erste Luft-Auslassöffnung, vorzugsweise im Wesentlichen gasdicht, verschlossen ist. Wie die Radionuklid-Einlassöffnung muss auch die Luft-Auslassöffnung verschlossen werden. Das weitere Verschlusselement zum Verschließen der Luft-Auslassöffnung kann gleich ausgebildet sein wie das Verschlusselement zum Verschließen der Radionuklid-Einlassöffnung.
  • Vorzugsweise kann das Batteriezellengehäuse einen Elektrolyt-Aufnahmeraum aufweisen, in welchem ein Elektrolyt angeordnet ist, wobei das Batteriezellengehäuse zumindest eine Elektrolyt-Einlassöffnung zum Befüllen des Elektrolyt-Aufnahmeraums des Batteriezellengehäuses mit dem Elektrolyten im assemblierten Zustand der mechanischen und/oder elektrischen Betriebskomponenten aufweist. Wenn als Betriebskomponente zumindest eine Elektrode vorgesehen ist, kann die Verwendung eines Elektrolyten vorteilhaft sein, um eine REDOX Reaktion zu ermöglichen. Dazu kann ein Elektrolyt-Aufnahmeraum vorgesehen sein, der den Elektrolyten aufnehmen kann. Der Elektrolyt-Aufnahmeraum kann gleich dem Radionuklid-Aufnahmeraum ausgebildet sein. Der Elektrolyt-Aufnahmeraum kann der Radionuklid-Aufnahmeraum sein, somit kann der Elektrolyt gemeinsam mit dem Radionuklid im selben Radionuklid-Aufnahmeraum vorliegen.
  • Vorzugsweise ist der folgende weitere Schritt vorgesehen:
    Befüllen eines Aufnahmeraums für radio-lumineszentes Material des Batteriezellengehäuses mit einem radio-lumineszenten Material durch eine Einlassöffnung für radio-lumineszentes Material. Wenn als Betriebskomponente zumindest eine Photodiode vorgesehen ist, kann die Verwendung von radio-lumineszentem Material vorteilhaft bzw. notwendig sein. Dazu kann ein Aufnahmeraum für radio-lumineszentes Material vorgesehen sein, der das radio-lumineszente Material aufnehmen kann. Der Aufnahmeraum für radio-lumineszentes Material kann gleich dem Radionuklid-Aufnahmeraum ausgebildet sein. Der Aufnahmeraum für radio-lumineszentes Material kann der Radionuklid-Aufnahmeraum sein, somit kann der das radio-lumineszente Material gemeinsam mit dem Radionuklid im Radionuklid-Aufnahmeraum vorliegen. Diese Anordnung ist besonders günstig, da das Radionuklid von radio-lumineszentem Material umgeben bzw. mit radio-lumineszentem Material vermischt wird. Damit kann die Ausbeute an Photonen erhöht werden. Die Einlassöffnung für radio-lumineszentes Material kann gleich ausgebildet sein wie die Radionuklid-Einlassöffnung, insbesondere können beide identisch ausgebildet sein, beispielsweise kann an beiden ein Ventilkörper oder eine Membran angeordnet werden.
  • Die vorliegende Erfindung wird anhand von in den Zeichnungen dargestellten Ausführungsbeispielen weiter erläutert, auf die sie jedoch nicht beschränkt sein soll.
    • Fig. 1A-D zeigen eine schematische Darstellung einer erfindungsgemäßen Radionuklidbatteriezelle, die mittels eines Ventilkörpers mit Radionuklid befüllbar ist.
    • Fig. 2A-D zeigen eine schematische Darstellung einer weiteren erfindungsgemäßen Radionuklidbatteriezelle, die mittels eines Injektionselements und einer Membran mit Radionuklid befüllbar ist.
    • Fig. 3 zeigt eine schematische Darstellung einer Radionuklidbatteriezelle, die mit Radionuklid und einem Elektrolyten befüllbar ist.
    • Fig. 4A-C zeigen Ausschnitte eines Batteriezellengehäuses der erfindungsgemäßen Radionuklidbatteriezelle.
    • Fig. 5 zeigt eine schematische Darstellung einer weiteren erfindungsgemäßen Radionuklidbatteriezelle mir radio-lumineszentem Material und einer Photodiode.
    • Fig. 6A zeigt schematisch eine Schichtstruktur einer Photodiode der erfindungsgemäßen Radionuklidbatteriezelle mit einer Schicht aus radio-lumineszentem Material und Distanzhaltern in einem aufgerollten Zustand.
    • Fig. 6B zeigt schematisch die Schichtstruktur aus Fig. 6A in einem gefalteten Zustand.
  • Fig. 1A zeigt eine Radionuklidbatteriezelle 1 zur Erzeugung von elektrischer Energie aus emittierter Strahlungsenergie eines Radionuklids 2 (siehe Fig. 1D). Die Radionuklidbatteriezelle 1 weist ein zylindrisches Batteriezellengehäuse 3 mit zwei Ventilkörpern 4 auf, die an einer Radionuklid-Einlassöffnung 5 bzw. an einer Luft-Auslassöffnung 6 angeordnet sind. Die Radionuklidbatteriezelle 1 weist zudem zwei elektrische Anschlüsse 7 auf, mit denen die Radionuklidbatteriezelle 1 elektrisch verbunden werden kann. Figur 1B zeigt eine Draufsicht der in Fig. 1A dargestellten Radionuklidbatteriezelle 1.
  • Fig. 1C zeigt einen Querschnitt durch das Batteriezellengehäuse 3 vor dem Befüllen mit dem Radionuklid 2. Die Radionuklidbatteriezelle 1 weist mechanische und/oder elektrische Betriebskomponenten 27 (siehe Figur 3) innerhalb des Batteriezellengehäuses 3 auf, welche gemäß Fig. 1C bereits assembliert sind. Der besseren Übersicht halber sind die mechanischen und/oder elektrischen Betriebskomponenten 27 in den Fig. 1A bis 1D nicht dargestellt. Im Batteriezellengehäuse 3 ist ein Radionuklid-Aufnahmeraum 8 vorgesehen, in den das Radionuklid 2 eingebracht wird. Der Radionuklid-Aufnahmeraum 8 kann von einem Gehäuse eingeschlossen sein. Dieses Gehäuse kann aus einem der Strahlungsart des Radionuklids 2 angepassten Material bestehen. Für Betastrahlung kann ein den Radionuklid-Aufnahmeraum 8 einschließender strahlenresistenter, beispielsweise transparenter, Kunststoffbehälter vorgesehen sein. Der Kunststoffbehälter kann beispielsweise aus Polyimid, mit Wandstärken von beispielsweise 100 µm bis 1 mm, bevorzugt von 300 µm bis 0.7 mm, gebildet sein. Alternativ kann das Gehäuse aus Glas, beispielsweise aus Borsilikatglas, mit Wandstärken von 50 µm bis zu 4 mm, insbesondere von 300 µm bis zu 3 mm, bevorzugt von 500 µm bis zu 2 mm, gebildet sein. Das Gehäuse des Radionuklid-Aufnahmeraums 8 kann beispielsweise aus Aluminium bestehen. Für gasförmige Radionuklide 2 kann der Radionuklid-Aufnahmeraum 8 von einem im Wesentlichen gasdichten, für die jeweilige emittierte Strahlungsart im Wesentlichen transparenten Tank eingeschlossen sein, welcher im Inneren des Batteriezellengehäuses 3 befestigt sein kann. Die Gas-Diffusionseigenschaften bezüglich der Dichtheit des Materials, aus dem der Tank besteht, soll in der Größenordnung von zeitlich dreimal bis zu mindestens einmal der Halbwertszeit des Radionuklids liegen. Liegt die Halbwertszeit beispielsweise bei 12 Jahren, sollte gasförmiges Radionuklid nicht innerhalb von mindestens 12 bis zu zirka 36 Jahren durch den Tank diffundieren. Für Betastrahlung kann Glas oder Kunststoff verwendet werden. Da es kein geeignetes Material gibt, das transparent für Alphastrahlung ist, kann ein Alpha-strahlendes Radionuklid 2 beispielsweise gemeinsam mit einem radio-lumineszentem Material 22 (siehe Fig. 5) im Radionuklid-Aufnahmeraum 8 angeordnet sein. Diese Anordnung kann auch für Beta-strahlende Radionuklide 2 günstig sein.
  • Bei der Ausführungsform der Fig. 1A bis 1D ist der Ventilkörper 4 an der Radionuklid-Einlassöffnung 5 angeordnet. Gemäß Fig. 1C wird ein Einfüllelement 9mit dem Ventilkörper 4 verbunden. Mittels des Einfüllelements 9 wird das Radionuklid 2 durch den in der Radionuklid-Einlassöffnung 5 angeordneten Ventilkörper 4 in den Radionuklid-Aufnahmeraum 8 eingebracht. Das Batteriezellengehäuse 3 weist die erste Luft-Auslassöffnung 6 auf, an der einer der Ventilkörper 4 angeordnet ist, der mit einem weiteren Einfüllelement 9 verbunden ist. Durch das Verbinden der Ventilkörper 4 mit den Einfüllelementen 9 werden die Ventilkörper 4 von einer geschlossenen Stellung in eine offene Stellung überführt. Entsprechend können die Ventilkörper 4 durch das Abziehen bzw. Trennen der Einfüllelemente 9 von den Ventilkörpern 4 in eine geschlossene Stellung überführt werden. Die Luft-Auslassöffnung 6 vereinfacht das Befüllen mit Radionuklid 2, da die vom Radionuklid 2 verdrängte Luft durch die Luft-Auslassöffnung 6 entweichen kann. In der gezeigten Ausführung werden die Luft-Auslassöffnung 6 und die Radionuklid-Einlassöffnung 5 gleichzeitig verwendet. Nach dem Einfüllen des Radionuklids 2 werden die Einfüllelemente 9 von den Ventilkörpern 4 getrennt, wodurch die Ventilkörper 4 in einer geschlossenen Stellung vorliegen (vgl. Fig. 1D). Damit sind sowohl die Radionuklid-Einlassöffnung 5 als auch die Luft-Auslassöffnung 6 verschlossen. Durch die Anordnung der Ventilkörper 4 und der geschlossenen Stellung der Ventilkörper 4 sind die erste Luft-Auslassöffnung 6 und die Radionuklid-Einlassöffnung 5 im Wesentlichen gasdicht verschlossen. Weitere mechanische und/oder elektrische Betriebskomponenten 27 sind in dieser Ausführungsform nicht gezeigt, da die Erfindung unabhängig vom Typ der Radionuklidbatteriezelle 1 ist und daher die Ausgestaltung variieren kann. Beispielsweise kann eine Elektrode 15 (siehe Figur 3) und/oder eine Photodiode (siehe Figur 5 oder 6) im Inneren des Batteriezellengehäuses 3 assembliert sein, während das Radionuklid 2 eingefüllt wird.
  • Fig. 1D zeigt einen Querschnitt durch die Radionuklidbatteriezelle 1 aus Fig. 1A. Zu diesem Zeitpunkt ist das Radionuklid 2 bereits in den Radionuklid-Aufnahmeraum 8 eingefüllt und die Einfüllelemente 9 wurden von den Ventilkörpern 4 getrennt. Zum sicheren Verschließen der Radionuklid-Einlassöffnung ist jeweils ein Verschlusselement 11 den beiden Ventilkörpern 4 angeordnet. Die Verschlusselemente 11 sind über unlösbare Verbindungen, insbesondere über Klebeverbindungen, mit den Ventilkörpern 4 verbunden. Alternativ können die Verschlusselemente 11 an die Ventilkörper 4 angeschweißt werden. Weiters können lösbare Verbindungen, beispielsweise Schraubverbindungen oder Klemmverbindungen, zwischen den Verschlusselementen 11 und den Ventilkörpern 4 vorgesehen sein.
  • Bei einer alternativen Ausführungsform (nicht gezeigt) kann das Radionuklid 2 beispielsweise mittels eines Trichters durch die frei vorliegende Radionuklid-Einlassöffnung 5 eingefüllt werden. Bei dieser Ausführung liegt das Radionuklid 2 bevorzugt im festen, insbesondere im granularen Zustand, oder im flüssigen Zustand vor.
  • Fig. 2A zeigt eine weitere Ausführungsform der Radionuklidbatteriezelle 1, bei welcher Verschlusselemente 11 an der Radionuklid-Einlassöffnung 5 und der Luft-Auslassöffnung 6 angeordnet sind. In der gezeigten Ausführung können die Verschlusselemente 11 über Klebeverbindungen mit dem Batteriezellengehäuse 3 verbunden sein. Fig. 2B zeigt eine Draufsicht auf die Radionuklidbatteriezelle 1 aus Fig. 2A.
  • Fig. 2C zeigt einen Querschnitt durch das Batteriezellengehäuse 3 aus Figur 2A vor dem Befüllen mit Radionuklid 2. Die mechanischen und/oder elektrischen Betriebskomponenten 27 (nicht gezeigt, siehe Figur 3) innerhalb des Batteriezellengehäuses 3 der Radionuklidbatteriezelle 1 sind bereits assembliert. Im Batteriezellengehäuse 3 ist ein Radionuklid-Aufnahmeraum 8 vorgesehen, in den das Radionuklid 2 eingebracht wird. An der Radionuklid-Einlassöffnung 5 sind zwei Membranen 12 angeordnet, die gemeinsam eine Doppelmembran 13 bilden, durch die ein Injektionselement 14, hier eine Kanüle, geführt wird. Mittels des Injektionselements 14 wird das Radionuklid 2 durch die Doppelmembran 13 in den Radionuklid-Aufnahmeraum 8 des Batteriezellengehäuses 3 eingebracht. Das Batteriezellengehäuse 3 weist eine erste Luft-Auslassöffnung 6 auf, an der ebenfalls eine Doppelmembran 13 angeordnet ist. Die Luft-Auslassöffnung 6 vereinfacht das Befüllen mit Radionuklid 2, da die vom Radionuklid 2 verdrängte Luft durch die Luft-Auslassöffnung 6 entweichen kann. Dazu ist ein weiteres Injektionselement 14, hier wiederum eine Kanüle, durch die Membran 13 geführt. Die Luft-Auslassöffnung 6 und die Radionuklid-Einlassöffnung 5 werden gleichzeitig verwendet. Nach dem Einfüllen des Radionuklids 2 werden die Injektionselemente 14 entfernt. Die Radionuklid-Einlassöffnung 5 und die Luft-Auslassöffnung 6 werden mittels der Verschlusselemente 11 verschlossen. Weitere mechanische und/oder elektrische Betriebskomponenten 27 sind in dieser Ausführungsform wie bei der Ausführungsform der Fig. 1A bis Fig. 1D nicht gezeigt, da die Erfindung unabhängig vom Typ der Radionuklidbatteriezelle ist und daher die Ausgestaltung variieren kann. Beispielsweise kann eine Elektrode 15 (siehe Fig. 3) und/oder eine Photodiode 23 (siehe Fig. 5) vorgesehen sein.
  • Fig. 2D zeigt einen Querschnitt der in Fig. 2A gezeigten Radionuklidbatteriezelle 1. Im gezeigten Zustand ist das Radionuklid 2 bereits in den Radionuklid-Aufnahmeraum 8 eingefüllt und die Verschlusselemente 11 wurden in die Luft-Auslassöffnung 6 und die Radionuklid-Einlassöffnung 5 eingeklebt, um das Batteriezellengehäuse 3 im Wesentlichen gasdicht zu verschließen. Die Verschlusselemente 11 sind über unlösbare Verbindungen, insbesondere über Klebeverbindung, mit dem Batteriezellengehäuse 3 verbunden.
  • Fig. 3 zeigt ein Batteriezellengehäuse 3 mit assemblierten mechanischen und/oder elektrischen Betriebskomponenten 27, das mit einem der zuvor geschilderten Verfahren hergestellt werden kann. Das Batteriezellengehäuse 3 kann beispielsweise eine Seitenlänge von 10 mm bis 1000 mm, insbesondere von 20 mm bis 300 mm, bevorzugt von 30 mm bis 200 mm, besonders bevorzugt 80 mm bis 140 mm, aufweisen. Alternativ kann das Batteriezellengehäuse zylindrisch, sphärisch oder als Polyeder ausgeführt sein. Es sind zwei Elektroden 15A, 15B vorgesehen, die jeweils direkt am Batteriezellengehäuse 3 angeordnet sind. Der Radionuklid-Aufnahmeraum 8 wird durch die Elektrode 15A, eine Trennstruktur 16 sowie das Batteriezellengehäuse 3 begrenzt. Somit ist die Elektrode 15A, die die Kathode sein kann, in der Radionuklidbatteriezelle 1 in direktem Kontakt mit dem Radionuklid 2. Es können Effekte wie Diffusion und/oder Korrosion bei der Auswahl der Materialien berücksichtigt werden, um chemische Veränderung bzw. eine Beschädigung der Elektrode 15A zu vermeiden. Die Trennstruktur 16 wird vorzugsweise gemeinsam mit flüssigen und/oder gasförmigen Radionukliden 2 verwendet, wobei in diesem Fall in erster Linie Beta-Strahler als Radionuklid 2 in Frage kommen, da die Trennstruktur 16 Alpha-Strahlung blockiert. Beta-Strahlung hingegen wirkt auch durch dünne Schichten hindurch, wobei die Dicke der Trennstruktur 16 in einem Bereich von 10 nm bis 1 mm, insbesondere 50 nm bis 300 µm, bevorzugt zwischen 300 nm und 100 µm liegen kann. Als Materialien für die Trennstruktur 16 können Polymere und dünne Glasschichten, aber auch metallisierte Polymerfolien und Graphenschichten zum Einsatz kommen. Über die Radionuklid-Einlassöffnung 5 kann der Radionuklid-Aufnahmeraum 8 während der Herstellung mit Radionuklid 2 befüllt werden, wobei Luft über die erste Luft-Auslassöffnung 6 entweichen kann. Zusätzlich wird von der Elektrode 15B, die die Anode sein kann, der Trennstruktur 16 und der Batteriezellengehäuse 3 ein Elektrolyt-Aufnahmeraum 17 begrenzt. Über eine Elektrolyt-Einlassöffnung 18 wird ein Elektrolyt (nicht gezeigt) in den Elektrolyt-Aufnahmeraum 17 eingebracht. Dieser Schritt findet, ebenso wie das Befüllen mit Radionuklid 2, statt, nachdem die mechanischen und/oder elektrischen Betriebskomponenten 27 der Radionuklidbatteriezelle 1 assembliert wurden. Bevorzugt wird der Elektrolyt-Aufnahmeraum 17 mit dem Elektrolyten befüllt und die Elektrolyt-Einlassöffnung 18 verschlossen, bevor der Radionuklid-Aufnahmeraum 8 mit Radionuklid 2 befüllt wird. Über eine zweite Luft-Auslassöffnung 19 kann Luft aus dem Elektrolyt-Aufnahmeraum 17 entweichen, die vom eingebrachten Elektrolyten verdrängt wird. Die Radionuklid-Einlassöffnung 5, die Luft-Auslassöffnung 6, die Elektrolyt-Einlassöffnung 18 und die zweite Luft-Auslassöffnung 19 werden jeweils nach Befüllen mit Radionuklid bzw. mit dem Elektrolyten verschlossen. Zumindest die Elektrode 15B kann Strukturelemente 21 aufweisen, die die Oberfläche der Elektrode 15B und damit die Wahrscheinlichkeit einer Interaktion mit vom Radionuklid 2 freigesetzter radioaktiver Strahlung erhöhen. Die Strukturelemente 21 können beispielsweise Nano- oder Mikrostrukturelemente sein oder aufweisen, die beispielsweise mit nanotechnischen Abscheideverfahren aufgebracht werden können. Zum Beispiel können Nanoröhren (engl. "Nanotubes") verwendet werden, die aus TiO2 bestehen können. Vor allem im Zusammenhang mit Beta-Strahlern ist die Verwendung von Nanostrukturen vorteilhaft, um die Effizienz der Radionuklidbatteriezelle 1 zu steigern. Die Strukturelemente 21 sind in der Radionuklidbatteriezelle 1 vom Elektrolyten umgeben bzw. befinden sich im Elektrolyt-Aufnahmeraum 17 und bilden einen innigen Verbund zum REDOX-Prozess der Elektronenleitung in der Radionuklidbatteriezelle 1. Der Elektrolyt kann beispielsweise Iod oder Kaliumiodid beinhalten und kann die Regeneration der Elektrode 15B nach dem Einfall von radioaktiver Strahlung beschleunigen und damit die Effizienz der Umsetzung von Strahlung in elektrischen Strom verbessern. In diesem Ausführungsbeispiel liegen die die Radionuklid-Einlassöffnung 5, die Luft-Auslassöffnung 6, die Elektrolyt-Einlassöffnung 18 und die zweite Luft-Auslassöffnung 19 frei vor; das Radionuklid 2 sowie der Elektrolyt können beispielsweise mittels eines Trichters eingebracht werden. Die Höhe der Elektrolyt-Einlassöffnung 18 kann sich von der Höhe der zweiten Luft-Auslassöffnung 19 unterscheiden. Hat der Elektrolyt eine höhere Dichte als Luft, sammelt sich der Elektrolyt (relativ zur Erdbeschleunigung) unterhalb der Luft im Elektrolyt-Aufnahmeraum 17. Es ist daher günstig, wenn die zweite Luft-Auslassöffnung 19 oberhalb der Elektrolyt-Einlassöffnung 18 angeordnet ist. Es ist besonders vorteilhaft, wenn die zweite Luft-Auslassöffnung 19 möglichst am höchsten Punkt des Elektrolyt-Aufnahmeraums 17 angeordnet ist, um den Elektrolyt-Aufnahmeraum 17 möglichst vollständig mit Elektrolyt befüllen zu können. Das Radionuklid 2 und/oder der Elektrolyt können in gleicher Weise wie bei den Ausführungsformen der Fig. 1A bis Fig. 1D bzw. der Fig. 2A bis Fig. 2D eingefüllt werden. Beispielsweise können an der Radionuklid-Einlassöffnung 5, der Luft-Auslassöffnung 6, der Elektrolyt-Einlassöffnung 18 und/oder der zweite Luft-Auslassöffnung 19 Ventilkörper 4 (siehe Fig. 1A-D) oder Membrane 12 (siehe Fig. 2A-D) angeordnet sein. Die mechanischen und/oder elektrischen Betriebskomponenten 27 umfassen bei diesem Ausführungsbeispiel zwei Elektroden 15A und 15B, die Strukturelemente 21, sowie die Trennstruktur 16, die vor dem Befüllen mit dem Elektrolyten und dem Radionuklid 2 assembliert werden. Das Radionuklid 2 wird frei in den Radionuklid-Aufnahmeraum 8 eingefüllt. Dazu liegt das Radionuklid 2 fest bzw. granular, flüssig oder gasförmig vor.
  • Fig. 4A zeigt zwei Ausschnitte eines Batteriezellengehäuses 3 mit einer Radionuklid-Einlassöffnung 5 und einer ersten Luft-Auslassöffnung 6, die jeweils von einer Doppelmembran 13 verschlossen sind. Durch jede der Doppelmembranen 13 ist ein Injektionselement 14, das hier eine Kanüle ist, durchgeführt. Durch die Radionuklid-Einlassöffnung 5 wird Radionuklid 2 eingebracht, während gleichzeitig Luft durch die erste Luft-Auslassöffnung 6 entnommen wird. Es wird jenes Volumen an Luft entnommen, das an Radionuklid 2 eingebracht wird, um den Einfüll-Prozess zu beschleunigen.
  • In Fig. 4B ist ein Ausschnitt eines Batteriezellengehäuses 3 zu sehen, wobei die Radionuklid-Einlassöffnung 5 ersichtlich ist. An der Radionuklid-Einlassöffnung 5 ist die Doppelmembran 13 angeordnet, durch die zwei Injektionselemente 14A, 14B durchgeführt sind. Das eine Injektionselement 14A wird dazu verwendet, Radionuklid 2 durch die Doppelmembran 13 in den Radionuklid-Aufnahmeraum 8 einzubringen. Das andere Injektionselement 14B wird dazu verwendet, Luft, die vom Radionuklid 2 verdrängt wird, aus dem Radionuklid-Aufnahmeraum 8 zu entnehmen. Dadurch ist keine separate Luft-Auslassöffnung 6 notwendig.
  • Fig 4C zeigt eine Detailansicht einer Ausführung der Radionuklid-Einlassöffnung 5 in dem Nuklidbatteriegehäuse 3, die nach der Befüllung des Radionuklid-Aufnahmeraums 8 mit dem Verschlusselement 11 verschlossen wurde.
  • Fig. 5 zeigt eine Ausführung der Radionuklidbatteriezelle 1 mit dem Radionuklid-Aufnahmeraum 8, einer Schicht aus radio-lumineszentem Material 22 und einer Photodiode 23. Das radio-lumineszente Material 22 wird von der Strahlung des Radionuklids 2 angeregt, woraufhin Photonen emittiert werden. Die emittierten Photonen können bevorzugt eine Wellenlänge in einem Bereich von 1 nm bis zu 10 µm, insbesondere 200 nm bis 2000 nm, bevorzugt 200 nm bis 900 nm, aufweisen. Die Photodiode 23 kann beispielsweise Silizium (Si), kristallines Silizium (c-Si), monokristallines Silizium (m-Si), GaAs oder Perowskit aufweisen. Die Photodiode 23 kann alternativ eine organische Solarzelle oder eine DSSC ("Dye-sensitized solar cell") sein. Die zentrale abgestrahlte Wellenlänge kann mit einem Sensitivitätsmaximum der Photodiode 23 zusammenfallen, um den Wirkungsgrad der Radionuklidbatteriezelle zu erhöhen. Die Photonen werden von der Photodiode 23 absorbiert, wodurch ein elektrischer Strom bewirkt wird. In dieser Abbildung ist keine Radionuklid-Einlassöffnung 5 zu sehen, Details dazu siehe die Figuren 1 bis 4.
  • Die Umwandlung von einfallender radioaktiver Strahlung in Photonen durch das radio-lumineszente Material 22 wird durch den Einsatz von seltenen Erdoxiden, wie beispielsweise ZnS mit Dotierung erzielt. Die einfallende radioaktive Strahlung gibt Energie ab, dies führt zu angeregten Zuständen im radio-lumineszenten Material 22 und zu einer Sekundäremission von Photonen. Das radio-lumineszente Material 22 ist derart gewählt, dass die Wellenlängen der Photonenemissionen mit der Sensitivität der Photodiode 23 spektral überlappen und so möglichst viele Photonen genutzt werden können. Das radio-lumineszente Material kann Erdoxide und Phosphorsubstanzen, wie beispielsweise ZnS mit Silberdotierung in Beimengung von grünem Phosphor oder Strontiumaluminat in einem Massenverhältnis von 100:1 bis 1:100, insbesondere 10:1 und 1:10, bevorzugt 1:4, aufweisen. Das radio-lumineszente Material kann beispielsweise ZnS:Cu oder ZnS:Cu:Ag aufweisen. Das radio-lumineszente Material kann in Hinblick auf die Spezies des Radionuklids 2 bzw. die zu erwartende Strahlung abgestimmt werden. Die Ausbeute an Photonen aufgrund der einfallenden Strahlung kann optimiert werden. Beispielsweise kann das Verhältnis Photonen/MeV ("light yield") optimiert werden. Pro abgestrahlten Alpha-Partikel aus dem Radionuklid können beispielsweise bis zu 10^5 Photonen entstehen.
  • Es kann eine Wellenlängenoptimierung durch den Einsatz von Quantum-Dot-Halbleitern im Zusammenhang mit der Photodiode 23 erreicht werden, wobei die Sensitivität durch Quantum-Dots exakt auf die zentrale Wellenlänge der Emission des radio-lumineszenten Materials 22 abgestimmt wird.
  • Fig. 6A zeigt eine Photodiode 23, auf der eine Schicht aus radio-lumineszentem Material 22 aufgebracht ist. Es sind des Weiteren Distanzhalter 24 vorgesehen. Die Distanzhalter 24 sind aus einem chemisch-inerten und elektrisch isolierenden Material und für die vom radio-lumineszentem Material 22 abgestrahlten Photonen transparent. Die Distanzhalter 24 können beispielsweise wabenförmig oder als Gitter ausgebildet sein, wobei das Radionuklid 2 in den Freiräumen innerhalb der Distanzhalter 24 und zwischen den Distanzhaltern 24 angeordnet sein kann. Wie in Figur 6A rechts oder links unten gezeigt ist, kann die Schichtstruktur 25 aufgewickelt werden, bevor sie in dem Batteriezellengehäuse 3 angeordnet wird. Mittels der Distanzhalter 24 kann ein Volumen zwischen den Schichten aus radio-lumineszentem Material 22 und Photodioden 23 definiert sein, in das zu einem späteren Zeitpunkt Radionuklid 2 eingebracht werden kann. Die Distanzhalter 24 verbessern die mechanische wie elektrische Stabilität der Radionuklidbatteriezelle 1. Die Distanzhalter 24 ermöglichen die Stapelbarkeit oder die Einrollbarkeit der Photodiode 23 bzw. die Faltbarkeit. Die aufgewickelte Schichtstruktur 25 ist im Radionuklid-Aufnahmeraum des Batteriezellengehäuses 3 angeordnet. Alternativ kann die Schichtstruktur 25 auch gefaltet anstatt gerollt angeordnet sein, wie in Fig. 6B gezeigt ist.

Claims (14)

  1. Verfahren zur Herstellung einer Radionuklidbatteriezelle (1) zur Erzeugung von elektrischer Energie aus emittierter Strahlungsenergie eines Radionuklids (2), aufweisend die Schritte:
    Vorsehen von mechanischen und/oder elektrischen Betriebskomponenten (27), insbesondere zumindest einer Elektrode (15, 15A, 15B) und/oder einer Photodiode (23);
    Assemblieren der mechanischen und/oder elektrischen Betriebskomponenten (27) innerhalb eines Batteriezellengehäuses (3) der Radionuklidbatteriezelle (1);
    Befüllen eines Radionuklid-Aufnahmeraums (8) des Batteriezellengehäuses (3) im assemblierten Zustand der mechanischen und/oder elektrischen Betriebskomponenten (27) mit dem Radionuklid (2) durch eine Radionuklid-Einlassöffnung (5) des Batteriezellengehäuses (3); und
    Verschließen der zumindest einen Radionuklid-Einlassöffnung (5) des Batteriezellengehäuses (3), um die Radionuklidbatteriezelle (1) zu erhalten.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zum Verschließen der Radionuklid-Einlassöffnung (5) ein Verschlusselement (11) an der Radionuklid-Einlassöffnung (5) angebracht wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Verschlusselement (11) über eine unlösbare Verbindung, insbesondere eine Fügeverbindung, beispielsweise eine Schweiß- oder Klebeverbindung, mit dem Batteriezellengehäuse (3) verbunden wird.
  4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Verschlusselement (11) über eine lösbare Verbindung, insbesondere eine Schraubverbindung oder eine Klemmverbindung, mit dem Batteriezellengehäuse (3) verbunden wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass vor dem Einfüllen des Radionuklids (2) zumindest eine Membran (12) an der Radionuklid-Einlassöffnung (5) angeordnet wird und danach ein Injektionselement (14, 14A, 14B), insbesondere eine Kanüle, durch die Membran (12) geführt und schließlich das Radionuklid (2) durch das Injektionselement (14, 14A, 14B) in den Radionuklid-Aufnahmeraum (5) des Batteriezellengehäuses (3) eingebracht wird.
  6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass vor dem Einfüllen des Radionuklids (2) ein Ventilkörper (4) an der Radionuklid-Einlassöffnung (5) angeordnet wird, danach ein Einfüllelement (9) mit dem Ventilkörper (4) verbunden wird und das Radionuklid (2) mittels des Einfüllelements (9) durch den Ventilkörper (4) in den Radionuklid-Aufnahmeraum (8) des Batteriezellengehäuses (3) eingebracht wird.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der Ventilkörper (4) nach dem Befüllen des Radionuklid-Aufnahmeraums (8) mit dem Radionuklid (2) in einer geschlossenen Ventilstellung angeordnet wird.
  8. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Radionuklid (2) durch die frei vorliegende Radionuklid-Einlassöffnung (5) eingefüllt wird, wobei das Radionuklid (2) bevorzugt im festen, insbesondere im granularen Zustand, oder im flüssigen Zustand vorliegt.
  9. Verfahren nach Anspruch 1, gekennzeichnet durch den weiteren Schritt:
    Befüllen eines Elektrolyt-Aufnahmeraums (17) des Batteriezellengehäuses (3) mit einem Elektrolyten durch eine Elektrolyt-Einlassöffnung (18).
  10. Radionuklidbatteriezelle (1) zur Erzeugung von elektrischer Energie aus emittierter Strahlungsenergie eines Radionuklids (2), aufweisend:
    mechanische und/oder elektrische Betriebskomponenten (27), insbesondere zumindest einer Elektrode (15, 15A, 15B) und/oder einer Photodiode (23),
    ein Batteriezellengehäuse (3), in dem die mechanischen und/oder elektrischen Betriebskomponenten (27) assembliert sind,
    wobei das Batteriezellengehäuse (3) einen Radionuklid-Aufnahmeraum (8) aufweist, in welchem das Radionuklid (2) angeordnet ist,
    dadurch gekennzeichnet, dass
    das Batteriezellengehäuse (3) zumindest eine Radionuklid-Einlassöffnung (5) zum Befüllen des Radionuklid-Aufnahmeraums (8) des Batteriezellengehäuses (3) mit dem Radionuklid (2) im assemblierten Zustand der mechanischen und/oder elektrischen Betriebskomponenten (27) aufweist.
  11. Radionuklidbatteriezelle (1) nach Anspruch 10, gekennzeichnet durch ein Verschlusselement (1), mit welchem die Radionuklid-Einlassöffnung (5), vorzugsweise im Wesentlichen gasdicht, verschlossen ist.
  12. Radionuklidbatteriezelle (1) nach einem der Ansprüche 10 oder 11, dadurch gekennzeichnet, dass das Batteriezellengehäuse (3) zumindest eine erste Luft-Auslassöffnung (6) aufweist, um das Befüllen mit Radionuklid (2) zu vereinfachen.
  13. Radionuklidbatteriezelle (1) nach Anspruch 12, gekennzeichnet durch ein weiteres Verschlusselement (11), mit welchem die erste Luft-Auslassöffnung (6), vorzugsweise im Wesentlichen gasdicht, verschlossen ist.
  14. Radionuklidbatteriezelle (1) nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass das Batteriezellengehäuse (3) einen Elektrolyt-Aufnahmeraum (17) aufweist, in welchem ein Elektrolyt angeordnet ist, wobei das Batteriezellengehäuse (3) zumindest eine Elektrolyt-Einlassöffnung (18) zum Befüllen des Elektrolyt-Aufnahmeraums (17) des Batteriezellengehäuses (3) mit dem Elektrolyten im assemblierten Zustand der mechanischen und/oder elektrischen Betriebskomponenten (27) aufweist.
EP22200605.8A 2022-10-10 2022-10-10 Verfahren zur herstellung einer radionuklidbatteriezelle Pending EP4354462A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22200605.8A EP4354462A1 (de) 2022-10-10 2022-10-10 Verfahren zur herstellung einer radionuklidbatteriezelle
PCT/EP2023/077952 WO2024079070A1 (de) 2022-10-10 2023-10-10 Verfahren zur herstellung einer radionuklidbatteriezelle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP22200605.8A EP4354462A1 (de) 2022-10-10 2022-10-10 Verfahren zur herstellung einer radionuklidbatteriezelle

Publications (1)

Publication Number Publication Date
EP4354462A1 true EP4354462A1 (de) 2024-04-17

Family

ID=83689611

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22200605.8A Pending EP4354462A1 (de) 2022-10-10 2022-10-10 Verfahren zur herstellung einer radionuklidbatteriezelle

Country Status (2)

Country Link
EP (1) EP4354462A1 (de)
WO (1) WO2024079070A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2900535A (en) * 1956-06-28 1959-08-18 Tracerlab Inc Radioactive battery
US3037067A (en) * 1957-10-29 1962-05-29 Associated Nucleonics Inc Case for nuclear light source material
US5008759A (en) 1987-07-22 1991-04-16 Nikon Corporation Still image recording apparatus with solid state pickup device
US20180372891A1 (en) 2017-06-19 2018-12-27 Ohio State Innovation Foundation Charge generating devices and methods of making and use thereof
CN111755142A (zh) 2020-08-11 2020-10-09 王文胜 一种核电池放射性元件及其制备方法
US20220199272A1 (en) * 2020-12-17 2022-06-23 Westinghouse Electric Company Llc Methods of manufacture for nuclear batteries

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2900535A (en) * 1956-06-28 1959-08-18 Tracerlab Inc Radioactive battery
US3037067A (en) * 1957-10-29 1962-05-29 Associated Nucleonics Inc Case for nuclear light source material
US5008759A (en) 1987-07-22 1991-04-16 Nikon Corporation Still image recording apparatus with solid state pickup device
US20180372891A1 (en) 2017-06-19 2018-12-27 Ohio State Innovation Foundation Charge generating devices and methods of making and use thereof
CN111755142A (zh) 2020-08-11 2020-10-09 王文胜 一种核电池放射性元件及其制备方法
US20220199272A1 (en) * 2020-12-17 2022-06-23 Westinghouse Electric Company Llc Methods of manufacture for nuclear batteries

Also Published As

Publication number Publication date
WO2024079070A1 (de) 2024-04-18

Similar Documents

Publication Publication Date Title
US20070133733A1 (en) Method for developing nuclear fuel and its application
DE4234471C1 (de) Vorrichtung zur Absorption infraroter Strahlung
DE2529862C2 (de) Verfahren und Vorrichtung zum Füllen von elektrischen Zellen und nach diesem Verfahren gefüllte elektrische Zellen
DE102013011499A1 (de) Betavoltenergiequellen für Transport-Anwendungen
DE4121103C2 (de) Kernreaktor-Steuerstab
DE3033438A1 (de) Elektrochemische speicherzelle
DE102012217478A1 (de) Batteriezelle mit Stromabnehmer zur Gehäusekontaktierung
DE102012211745A1 (de) Metall-Sauerstoff-Batterie
EP4354462A1 (de) Verfahren zur herstellung einer radionuklidbatteriezelle
WO2021160442A1 (de) Kabeldurchführung für radioaktive umgebungen
DE2720015C3 (de) Selbst stromerzeugender Neutronenflußdetektor mit einer Emitterelektrode aus einem prompt Elektronen emittierenden Element
EP3047488B1 (de) Energieerzeugungsvorrichtung und energieerzeugungsverfahren sowie steuerungsanordnung und reaktionsbehälter hierfür
EP1674424B1 (de) Rekombinationseinrichtung
WO2019101991A1 (de) Elimination von neutronen von kernreaktionen in einem reaktor, insbesondere saubere laser bor11 fusion ohne sekundär-verunreinigung
DE102020216452A1 (de) Pouchzelle
DE6606917U (de) Thermionischer generator insbesondere zur verwendung in kernreaktoren
DE1573145A1 (de) Schutzvorrichtung gegen tiefe Temperaturen
DE102013113785A1 (de) Behälter
DE102012224250A1 (de) Batteriezelle mit Gehäusedeckplatte mit einer durch einen Gewindebolzen verschlossenen Einfüllöffnung
DE1807945C3 (de) Radioaktive Strahlenquelle zur Warmeerzeugung
DE1489195A1 (de) Kernreaktorbrennstoff
DE102010004923A1 (de) Betavoltaische Energiequelle mit hohem Wirkungsgrad
DE112019004822T5 (de) Verfahren zur herstellung einer energiespeichereinrichtung und energiespeichereinrichtung
DE3003329A1 (de) Kernbrennstoffelement
DE4229315A1 (de) Röntgendetektorelement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR