EP4237484A1 - Verwendung von eugenol-derivaten als stabilisatoren, organisches material sowie eugenol-derivate - Google Patents

Verwendung von eugenol-derivaten als stabilisatoren, organisches material sowie eugenol-derivate

Info

Publication number
EP4237484A1
EP4237484A1 EP21802695.3A EP21802695A EP4237484A1 EP 4237484 A1 EP4237484 A1 EP 4237484A1 EP 21802695 A EP21802695 A EP 21802695A EP 4237484 A1 EP4237484 A1 EP 4237484A1
Authority
EP
European Patent Office
Prior art keywords
general formula
agents
styrene
weight
tert
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21802695.3A
Other languages
English (en)
French (fr)
Inventor
Jannik MAYER
Elke Metzsch-Zilligen
Rudolf Pfaendner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP4237484A1 publication Critical patent/EP4237484A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • C08F220/382Esters containing sulfur and containing oxygen, e.g. 2-sulfoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/04Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds
    • C09K15/12Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing sulfur and oxygen
    • C09K15/14Anti-oxidant compositions; Compositions inhibiting chemical change containing organic compounds containing sulfur and oxygen containing a phenol or quinone moiety
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/52Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/38Esters containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/375Thiols containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/378Thiols containing heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the present invention relates to the use of specific eugenol derivatives as stabilizers of organic materials against oxidative, thermal and/or actinic degradation.
  • the present invention relates to a stabilized organic material and specific eugenol derivatives that are suitable as stabilizers.
  • Organic materials such as plastics are subject to aging processes ultimately lead to a loss of the desired properties such as the mechanical parameters.
  • This process called autoxidation, leads to changes in the polymer chain, such as molecular weight or the formation of new chemical groups, starting from radical chain scissions through mechanochemical processes or through UV radiation in the presence of oxygen.
  • Stabilizers are therefore used to prevent or at least delay this aging.
  • Important representatives of stabilizers are antioxidants, which interfere with the free radicals formed during auto-oxidation and thus interrupt the degradation process.
  • primary antioxidants which can react directly with oxygen-containing free radicals or C-radicals
  • secondary antioxidants which react with intermediately formed hydroperoxides (see C. Kröhnke et al.
  • Antioxidants in Ullmann's encyclopedia of industrial chemistry Wiley-VCH Verlag, Weinheim 2015.
  • Typical representatives of primary antioxidants are, for example, phenolic antioxidants, amines, but also lactones.
  • Classes of secondary antioxidants are phosphorus compounds such as phosphites and phosphonites, but also organo-sulphur compounds such as thioesters, thioethers and disulfides. In practice, primary and secondary antioxidants are usually combined, which leads to a synergistic effect.
  • phenolic antioxidant group and a phosphite such as described in EP 823435 (Sumitomo Chemical Company) or the combination of a phenolic antioxidant group with sulfur compounds such as known from EP224442 (Ciba-Geigy AG), from US 3334046 (Geigy Chemical Corporation), from US 42282971 (Ciba-Geigy AG) and from WO 2019/096868 (Fraunhofer Deutschen Deutschen).
  • Plastics made from fossil raw materials such as crude oil or natural gas are increasingly being supplemented or replaced by plastics based on renewable raw materials obtained via biochemical processes.
  • the question of sustainability then also arises for the primary and secondary antioxidants used for this purpose (and for plastics made from fossil raw materials).
  • a high level of effectiveness can include such already mentioned can be achieved through the combination of primary and secondary antioxidant functions. It was therefore an object of the present invention to provide stabilizers which have primary and secondary antioxidant structures in one molecule and can be obtained at least in part from easily accessible renewable raw materials.
  • antioxidants from renewable raw materials are known, which are also occasionally used in plastics.
  • a typical example are tocopherols (vitamin E).
  • tocopherols have a sterically hindered phenol structure and can be used alone or in combination with secondary antioxidants (e.g. S. Al-Malaika, Macromol. Symp. 2001, 176, 107-117).
  • Tocopherols are isolated from natural substances such as wheat germ oil, sunflower oil or olive oil.
  • Other well-known phenolic antioxidants from natural substances that have been investigated in plastics are, for example
  • Tannin (WJ. Grigsby et al., Esterification of condensed tannins and their impact on the properties of poly (lactic acid), Polymers 5 (2013) 344-360,
  • Curcumin (D. Tatraaljai et al. Processing stabilization of PE with a natural antioxidant, curcumin, European Polymer Journal 49 (2013) 1196-1203 and
  • patent claim 1 relates to the use of a specific eugenol derivative as a stabilizer
  • patent claim 9 relates to a stabilized organic material
  • patent claim 13 relates to specific eugenol derivatives.
  • the present invention thus relates to the use of a compound according to the general formula I each being independent of one another
  • X 1 is a linear or branched alkylene radical having 2 to 18 carbon atoms
  • X 2 is a linear or branched alkylene radical having 1 to 18 carbon atoms
  • X 3 is a linear or branched alkyl radical having 1 to 18 carbon atoms
  • A is a d-valent, saturated or unsaturated group, a is 2 to 5b, b is 0 to 3, c is 0 or 1, and d is 1 to 8, or a polymeric compound containing a repeating unit according to general formula II
  • X 1 , X 2 , X 3 , a, b and c are as defined above and X 4 is hydrogen or a linear or branched alkyl radical having 1 to 18 carbon atoms, and
  • New stabilizers and stabilizer compositions based on readily available renewable raw materials and a new process for stabilizing plastics are thus proposed, which are very effective, have high thermal stability, are environmentally friendly and have a favorable cost structure.
  • Stabilizers are standard products which, depending on the combination of properties, cover various market segments for plastics, coatings and oils/fats.
  • the new stabilizers and stabilizer combinations are previously unknown substances, at least some of which are made from renewable raw materials.
  • the structures of the present stabilizers according to the invention have not hitherto been used for stabilizing plastics, and in some cases the structures have not hitherto been described in the literature.
  • the present invention provides that use according to claim 1, characterized in that
  • X 1 is a linear alkylene radical having 2 to 6, preferably 3, carbon atoms,
  • X 2 is a linear alkylene radical having 1 to 6, preferably 1 to 4, particularly preferably 1 or 2 carbon atoms,
  • X 3 is a linear or branched alkyl radical having 1 to 4 carbon atoms
  • X 4 is hydrogen or a linear or branched alkyl radical having 1 to 4 carbon atoms, in particular methyl
  • oils and fats they can be based on mineral oils, vegetable fats or animal fats or also oils, fats or waxes based on, for example, synthetic esters.
  • Vegetable oils and fats are, for example, palm oil, olive oil, rapeseed oil, linseed oil, soybean oil, sunflower oil, castor oil, animal fats are, for example, fish oils or beef tallow.
  • the compounds according to the invention can also be used as stabilizers for lubricants, hydraulic oils, engine oils, turbine oils, gear oils, metalworking fluids or as lubricating greases. These mineral or synthetic lubricants are mainly based on hydrocarbons. Chemical products are used, for example, to stabilize polyols in polyurethane production.
  • the compounds of the formula I according to the invention can also be used as stabilizers for lubricants, hydraulic oils, engine oils, turbine oils, gear oils, metalworking fluids or as lubricating greases.
  • These mineral or synthetic lubricants are mainly based on hydrocarbons.
  • the plastic is done by conventional processing methods, for example, the polymer is melted and mixed with the inventive additive composition and any other additives, preferably by mixers, kneaders or extruders.
  • Preferred processing machines are extruders such as single-screw extruders, twin-screw extruders, planetary roller extruders, ring extruders, co-kneaders, which are preferably equipped with vacuum degassing.
  • the processing can take place under air or possibly under inert gas conditions such as nitrogen.
  • the compounds of the formula I according to the invention in the form of additive compositions, such as. B. in the form of masterbatches or concentrates containing, for example, 10-90% of the additives according to the invention in a polymer, and introduced.
  • the polymeric compound containing the repeating unit according to general formula II is preferably selected from the group consisting of homopolymers formed from repeating units according to general formula II or copolymers containing the repeating unit according to general formula II and at least one other Repeating units derived from a radically polymerizable compound, in particular repeating units derived from (meth)acrylic acid esters.
  • the repeating unit according to general formula II of the polymeric compound particularly preferably has the following structure:
  • a plastic can preferably be from the group consisting of a) polymers from olefins or diolefins such as polyethylene (LDPE, LLDPE, VLDPE, ULDPE, MDPE, HDPE, UHMWPE), metallocene PE (m-PE), polypropylene, polyisobutylene, poly-4-methyl-pentene-1, polybutadiene, polyisoprene, such as natural rubber (NR), polycyclooctene, polyalkylene-carbon monoxide copolymers, and copolymers in the form of random or block structures such as polypropylene-polyethylene (EP), EPM or EPDM with eg 5-ethylidene-2-norbornene as comonomer, ethylene vinyl acetate (EVA), ethylene acrylic esters such as ethylene butyl acrylate, ethylene acrylic acid and salts thereof (Ionomers), and terpolymers such as ethylene-acrylic acid-g
  • 2,4- or 2,6-toluylene diisocyanate or methylenediphenyl diisocyanate in particular also linear polyurethanes (TPU), polyureas, j) polyamides such as, for example, polyamide-6, 6.6, 6.10, 4.6, 4.10, 6.12, 10.10, 10.12, 12.12, Polyamide 11, polyamide 12 and (partly) aromatic polyamides such as polyphthalamides, for example produced from terephthalic acid and/or isophthalic acid and aliphatic diamines such as hexamethylenediamine or m-xylylenediamine or from aliphatic dicarboxylic acids such as adipic acid or sebacic acid and aromatic diamines such as 1,4- or 1,3-diaminobenzene, blends of different polyamides such as PA-6 and PA 6.6 or blends of polyamides and polyolefins such as PA/PP, k) polyimides, polyamideimides, polyetherimi
  • polymers specified under a) to r) are copolymers, they can be present in the form of random, block or tapered structures. Furthermore, the polymers mentioned can be present in the form of linear, branched, star-shaped or hyper-branched structures.
  • polymers specified under a) to r) are stereoregular polymers, they can be present in the form of isotactic, stereotactic, but also atactic forms or as stereoblock copolymers.
  • the polymers specified under a) to r) can have both amorphous and (partially) crystalline morphologies.
  • polystyrene resins mentioned under a) can also be crosslinked, e.g. crosslinked polyethylene, which is then referred to as X-PE.
  • the present compounds can preferably be used to stabilize rubbers and elastomers.
  • This can be natural rubber (NR) or synthetic rubber materials.
  • Suitable synthetic rubber materials consist in particular of butadiene (BR), styrene-butadiene (SBR), chloroprene (CR), isoprene (IR), isobutylene-isoprene, acrylonitrile-butadiene (NBR or in hydrogenated form HNBR).
  • Other suitable rubbers and elastomers are ethylene-propylene-diene terpolymers (EPDM) and ethylene-propylene copolymers (EPM), polyester urethanes (AU, polyether urethanes (EU) and silicones (MQ).
  • EPDM ethylene-propylene-diene terpolymers
  • EPM ethylene-propylene copolymers
  • AU polyether urethanes
  • MQ silicones
  • the plastics can be recycled plastics, for example from industrial collections
  • polymers from renewable raw materials such as, for example, polylactic acid (PLA), polyhydroxybutyric acid, polyhydroxyvaleric acid, polybutylene succinate or poly(butylene succinate-co-adipate).
  • PVA polylactic acid
  • polyhydroxybutyric acid polyhydroxyvaleric acid
  • polybutylene succinate poly(butylene succinate-co-adipate)
  • the plastic contains at least one further additive selected from the group consisting of primary antioxidants, secondary antioxidants, UV absorbers, light stabilizers, metal deactivators, filler deactivators, antiozonants, nucleating agents, antinucleating agents, impact modifiers , plasticizers, lubricants, rheology modifiers, thixotropic agents, chain extenders, optical brighteners, antimicrobial agents (e.g.
  • biocides antistatic agents, slip agents, antiblocking agents, coupling agents, crosslinking agents, branching agents, anticrosslinking agents, hydrophilizing agents, hydrophobicizing agents, adhesion promoters, dispersing agents, compatibilizers, oxygen scavengers - like, acid scavengers, blowing agents, degradation additives, defoaming agents, odor scavengers, marking agents, anti-fogging agents, additives to increase electrical conductivity and/or thermal conductivity, infrared absorbers r or infrared reflectors, gloss improvers, matting agents, repellents, fillers, reinforcing materials and mixtures thereof.
  • Suitable primary antioxidants (A) are phenolic antioxidants, amines and lactones:
  • Suitable synthetic phenolic antioxidants are:
  • Alkylated monophenols such as 2,6-di-tert-butyl-4-methylphenol, 2-tert-butyl-4,6-dimethylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di -tert-butyl-4-n-butylphenol, 2,6-di-tert-butyl-4-isobutylphenol, 2,6-dicyclopentyl-4-methyl-phenol, 2-( ⁇ -methylcyclohexyl)-4,6-dimethylphenol , 2,6-dioctadecyl-4-methylphenol, 2,4,6-tricyclohexylphenol, 2,6-di-tert-butyl-4-methoxymethylphenol, linear or branched nonylphenols such as 2,6-dinonyl 4-methyl-phenol, 2,4-dimethyl-6-(1'-methylundec-1'-yl)phenol, 2,4-dimethyl-6-(1'-
  • alkylthiomethyl phenols such as 2,4-dioctylthiomethyl-6-tert-butylphenol, 2,4-dioctylthiomethyl-6-methylphenol, 2,4-dioctylthiomethyl-6-ethylphenol, 2,6-didodecylthiomethyl-4-nonylphenol;
  • Hydroquinones and alkylated hydroquinones such as 2,6-di-tert-butyl-4-methyloxyphenol, 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, 2,6-diphenyl-4 -octadecyloxyphenol, 2,6-di-tert-butylhydroquinone, 2,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl -4-hydroxyphenyl stearate, bis(3,5-di-tert-butyl-4-hydroxyphenyl) adipate;
  • Tocopherols such as ⁇ -, ⁇ -, ⁇ -, ⁇ -tocopherol and mixtures of these (vitamin E);
  • Hydroxylated thiodiphenyl ethers such as 2,2'-thiobis(6-tert-butyl-4-methyl-phenol), 2,2'-thiobis(4-octylphenol), 4,4'-thiobis(6-tert-butyl- 3-methyl- phenol), 4,4'-thiobis(6-tert-butyl-2-methylphenol), 4,4'-thiobis(3,6-di-secamylphenol), 4,4'-bis( 2,6-dimethyl-4-hydroxyphenyl) disulfide;
  • Alkylidenebisphenols such as 2,2'-methylenebis(6-tert-butyl-4-methylphenol), 2,2'-methylenebis(6-tert-butyl-4-ethylphenol), 2,2'-methylenebis[4-methyl- 6-(a-methylcyclohexyl)phenol], 2,2'-methylenebis(4-methyl-6-cyclohexylphenol), 2,2'-methylenebis(6-nonyl-4-methylphenol), 2,2'-methylenebis(4 ,6-di-tert-butylphenol), 2,2'-ethylidenebis(4,6-di-tert-butylphenol), 2,2'-ethylidenebis(6-tert-butyl-4-isobutylphenol), 2,2' -methylenebis[6-(a-methylbenzyl)-4-nonylphenol], 2,2'-methylenebis[6-( ⁇ , ⁇ -dimethylbenzyl)-4-nony
  • O-, N- and S-benzyl compounds such as 3,5,3',5'-tetra-tert-butyl-4,4'-dihydroxydibenzyl ether, octadecyl-4-hydroxy-3,5-dimethylbenzylmercaptoacetate , tridecyl 4-hydroxy-3,5-di-tert-butylbenzylmercaptoacetate, tris(3,5-di-tert-butyl-4-hydroxybenzyl)amine, bis(4-tert-butyl-3-hydroxy-2,6 -dimethyl-benzyl)dithioterephthalate, bis(3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, isooctyl-3,5-di-tert-butyl-4-hydroxybenzylmercaptoacetate;
  • Hydroxybenzylated malonates such as dioctadecyl 2,2-bis(3,5-di-tert-butyl-2-hydroxybenzyl)malonate, dioctadecyl 2-(3-tert-butyl-4-hydroxy-5-methyl-benzyl) malonate, didodecylmercaptoethyl 2,2-bis(3,5-di-tert-butyl-4-hydroxy-benzyl)malonate, bis[4-(1,1,3,3-tetramethylbutyl)phenyl]-2,2- bis(3,5-di-tert-butyl-4-hydroxybenzyl)malonate;
  • Aromatic hydroxybenzyl compounds such as 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzene, 1,4-bis(3,5-di-tert- butyl-4-hydroxy-benzyl)-2,3,5,6-tetramethylbenzene, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxy-benzyl)phenol;
  • Triazine compounds such as 2,4-bis(octylmercapto)-6-(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazine, 2-octylmercapto-4,6-bis(3 ,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxy-phenoxy) -1,3,5-triazine, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,2,3-triazine, 1,3,5-tris(3, 5-di-tert-butyl-4-hydroxybenzyl)isocyanurate, 1,3,5-tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanurate, 2,4,6-tris(
  • Benzyl phosphonates such as dimethyl 2,5-di-tert-butyl-4-hydroxybenzylphosphonate, diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl
  • acylaminophenols such as 4-hydroxylauranilide, 4-hydroxystearanilide, octyl N-(3,5-di-tert-butyl-4-hydroxyphenyl)carbamate;
  • Esters of ß-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid with monohydric or polyhydric alcohols e.g. methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)oxamide, 3-thiaundecanol , 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2
  • Esters of ß-(5-tert-butyl-4-hydroxy-3-methylphenyl)propionic acid with monohydric or polyhydric alcohols e.g. methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)oxamide, 3-thiaundecanol , 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]
  • Esters of ß-(3,5-dicyclohexyl-4-hydroxyphenyl)propionic acid with monohydric or polyhydric alcohols e.g. methanol, ethanol, octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2- Propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris-(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha- 2,6,7-trioxabicyclo[2.2.2]octane;
  • Esters of (3,5-di-tert-butyl-4-hydroxyphenyl)acetic acid with monohydric or polyhydric alcohols e.g. methanol, ethanol, octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane , 4-Hydroxymethyl-1-phospha- 2,6,7-trioxabicyclo[2.2.2]octane;
  • Amides of ß-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid such as N,N'-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hexamethylenediamide, N,N' - Bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hexamethylenediamide, N,N'-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hexamethylenediamide, N,N'-bis(3 ,5-di-tert-butyl-4-hydroxyphenylpropionyl)hydrazide, N,N'-bis[2-(3-[3,5-di-tert-butyl-4-hydroxyphenyl]propionyloxy)ethyl]oxamide ( Naugard® XL-1 sold by Uniroyal);
  • vitamin C Ascorbic acid (vitamin C).
  • Particularly preferred phenolic antioxidants are the following structures:
  • phenolic antioxidants are octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate and pentaerythritol tetrakis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate).
  • Other particularly preferred phenolic antioxidants are based on renewable raw materials such.
  • tocopherols vitamin E
  • tocotrienols tocomomonoenols
  • carotenoids hydroxytyrosol
  • flavonols such as chrysin, quercitin, hesperidin, neohesperidin, naringin, morin, kaempferol, fisetin, anthocyanins such as delphinidin and malvidin, curcumin, carnosolic acid, carnosol, rosmarinic acid and resveratrol.
  • Suitable aminic antioxidants are:
  • Preferred amine antioxidants are: N,N'-diisopropyl-p-phenylenediamine, N,N'-di-sec-butyl-p-phenylenediamine, N,N'-bis(1,4-dimethylpentyl)-p -phenylenediamine, N,N'-bis(1-ethyl-3-methylpentyl)-p-phenylenediamine, N,N'-bis(1-methylheptyl)-p-phenylenediamine, N,N'-dicyclohexyl-p- phenylenediamine, N,N'-diphenyl-p-phenylenediamine, N,N'-bis(2-naphthyl)-p-phenylenediamine, N-isopropyl-N'-phenyl-p-phenylenediamine, N-(1,3 -dimethylbutyl)-N'-phenyl-p-
  • Particularly preferred aminic antioxidants are the structures:
  • aminic antioxidants are hydroxylamines or N-oxides (nitrones), such as N,N-dialkylhydroxylamines, N,N-dibenzylhydroxylamine, N,N-dilaurylhydroxylamine, N,N-distearylhydroxylamine, N-benzyl-a-phenylnitrone , N-octadecyl-a-hexadecylnitrone, and Genox EP (Sl Group according to the formula: Suitable lactones are benzofuranones and indolinones such as 3-(4-(2-acetoxyethoxy)-phenyl]-5,7-di-tert-butyl-benzofuran-2-one, 5,7-di-tert-butyl- 3-[4-(2-stearoyloxyethoxy)phenyl]benzofuran-2-one, 3,3'-bis[5,7-di-tert-butyl-3-(4-(2-hydroxye
  • antioxidants are isoindolo[2,1-
  • A]quinazoline such as
  • Suitable secondary antioxidants are in particular phosphites or phosphonites such as e.g.
  • Triphenyl phosphite diphenylalkyl phosphites, phenyldialkyl phosphites, tri(nonylphenyl) phosphite, trilauryl phosphites, trioctadecyl phosphite, distearylpentaerythritol diphosphite, tris-(2,4-di-tert-butylphenyl) phosphite, diisodecylpentaerythritol diphosphite, bis(2,4-di-tert -butylphenyl)pentaerythritol diphosphite, bis(2,4-di-cumylphenyl)pentaerythritol diphosphite, bis(2,6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite, diisodecyloxy
  • Particularly preferred phosphites are:
  • a preferred phosphonite is:
  • the phosphite tris-(2,4-di-tert-butylphenyl) phosphite is very particularly preferably used as the secondary antioxidant.
  • Suitable secondary antioxidants are also organo-sulphur compounds such as, for example, sulfides and disulfides, for example distearyl thiodipropionate, dilauryl thiodipropionate; Ditridecyldithiopropionate, Ditetradecylthiodipropionate, 3-(dodecylthio), 1,1'-[2,2-bis[[3-(dodecylthio)1-oxopropoxy]methyl]1,3-propanediyl]propanoic acid ester.
  • organo-sulphur compounds such as, for example, sulfides and disulfides, for example distearyl thiodipropionate, dilauryl thiodipropionate; Ditridecyldithiopropionate, Ditetradecylthiodipropionate, 3-(dodecylthio), 1,1'-[2,2-bis
  • Suitable acid scavengers are salts of mono, di, tri or tetravalent metals, preferably alkali metals, alkaline earth metals, aluminum or zinc, formed in particular with fatty acids, such as calcium stearate, magnesium stearate, zinc stearate, aluminum stearate, calcium laurate, Calcium behenate, calcium lactate, calcium stearoyl-2-lactate
  • Suitable acid scavengers are hydrotalcites, in particular synthetic hydrotalcites based on aluminium, magnesium and zinc, hydrocalumites, zeolites, alkaline earth metal oxides, in particular calcium oxide and magnesium oxide as well as zinc oxide, alkaline earth metal carbonates, in particular calcium carbonate, magnesium carbonate and dolomite, and hydroxides, in particular brucite (magnesium hydroxide),
  • Suitable co-stabilizers are also polyols, in particular alditols or cyclitols.
  • polyols are pentaerythritol, dipentaerythritol, tripentaerythritol, short-chain polyetherpolyols or polyesterpolyols, and also hyperbranched polymers/oligomers or dendrimers with alcohol groups, for example
  • the at least one alditol is preferably selected from the group consisting of threitol, erythritol, galactitol, mannitol, ribitol, sorbitol, xylitol, arabitol, isomalt, Lactitol, maltitol, altritol, iditol, maltotritol and hydrogenated polyol-terminated oligo- and polysaccharides and mixtures thereof.
  • the at least one preferred alditol is particularly preferably selected from the group consisting of erythritol, mannitol, isomalt, maltitol and mixtures thereof.
  • heptitols and octitols meso-glycero-allo-heptitol, D-glycero-D-altro-heptitol, D-glycero-D-manno-heptitol, meso-glycero-gulo-heptitol, D-glycero- D-galacto-heptitol (perseitol), D-glycero-D-gluco-heptitol, L-glycero-D-gluco-heptitol, D-erythro-L-galacto-octitol, D-threo-L-galacto-octitol.
  • the at least one cyclitol may be selected from the group consisting of inositol (myo, scyllo-, D-chiro-, L-chiro-, muco-, neo-, allo-, epi- and cis-inositol), 1,2 ,3,4-tetrahydroxycyclohexane, 1,2,3,4,5-pentahydroxycyclohexane, quercitol, viscumitol, bornesitol, conduritol, ononitol, pinitol, pinpollitol, quebrachitol, ciceritol, quinic acid, shikimic acid and valienol is preferred myo-lnositol (myo-lnositol).
  • inositol myo, scyllo-, D-chiro-, L-chiro-, muco-, neo-, allo-, epi- and cis-inosito
  • Suitable light stabilizers are compounds based on 2-(2'-hydroxyphenyl)benzotriazoles, 2-hydroxybenzophenones, esters of benzoic acids, acrylates, oxamides and 2-(2-hydroxyphenyl)-1,3,5-triazines.
  • 2-(2'-hydroxyphenyl)benzotriazoles examples include 2-(2'-hydroxy-5'methylphenyl)benzotriazole, 2-(3',5'-di-tert-butyl-2'-hydroxyphenyl)benzotriazole , 2-(5'-tert-butyl-2'-hydroxyphenyl)benzotriazole, 2-(2'-hydroxy-5'-(1,1,3,3-tetramethylbutyl)phenyl)benzotriazole, 2-(3 ',5'-Di-tert-butyl-2'-hydroxyphenyl)-5-chlorobenzotriazole, 2-(3'-tert-butyl-2'-hydroxy-5'-methylphenyl-5-chlorobenzotriazole, 2-( 3'-sec-butyl-5'-tert-butyl-2'-hydroxy-phenyl)benzotriazole, 2-(2'-hydroxy-4'-octyloxyphenyl)benzotriazo
  • 2-hydroxybenzophenones 4-hydroxy, 4-methoxy, 4-octyloxy, 4-decyloxy, 4-dodecyloxy, 4-benzyloxy, 4,2',4'-trihydroxy and 2'-hydroxy -4,4'-dimethyloxy derivatives of 2-hydroxybenzophenones.
  • Suitable acrylates are ethyl ⁇ -cyano- ⁇ , ⁇ -diphenyl acrylate, isooctyl ⁇ -cyano- ⁇ , ⁇ -diphenyl acrylate, methyl ⁇ -carbomethoxycinnamate, methyl ⁇ -cyano- ⁇ -methyl-p-methoxycinnamate, butyl ⁇ -cyano- ⁇ -methyl-p-methoxycinnamate, methyl ⁇ -carbomethoxy-p-methoxycinnamate and N-( ⁇ -carbo-methoxy- ⁇ -cyanovinyl)-2-methylindoline.
  • esters of benzoic acids are 4-tert-butylphenyl salicylate, phenyl salicylate, octylphenyl salicylate, dibenzoylresorcinol, bis(4-tert-butylbenzoyl)resorcinol, benzoylresorcinol, 2,4-di-tert-butylphenyl-3,5-di-tert- butyl 4-hydroxybenzoate, hexadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, octadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, 2-methyl-4,6-di- tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate.
  • Suitable oxamides are 4,4'-dioctyloxyoxanilide, 2,2'-diethoxyoxanilide, 2,2'-dioctyloxy-5,5'-di-tert-butoxanilide, 2,2'-didodecyloxy-5,5'- di-tert-butoxanilide, 2-ethoxy-2'-ethyloxanilide, N,N'-bis(3-dimethylaminopropyl)oxamide, 2-ethoxy-5-tert-butyl-2'-ethoxanilide and its mixtures with 2- ethoxy-2'-ethyl-5,4'-di-tert-butoxanilide, mixtures of o- and p-methoxy-disubstituted oxanilides and mixtures of o- and p-ethoxy-disubstituted oxanilides.
  • 2-(2-hydroxyphenyl)-1,3,5-triazines examples include 2,4,6-tris(2-hydroxy-4-octyloxyphenyl)-1,3,5-triazine, 2-(2-hydroxy- 4-octyloxyphenyl)-4,6-bis(2,4-dimethylphenyl)-1,3,5-triazine, 2-(2,4-dihydroxyphenyl)-4,6-bis(2,4-dimethylphenyl) -1,3,5-triazine, 2,4-bis(2-hydroxy-4-propyloxyphenyl)-6-(2,4-dimethylphenyl)-1,3,5-triazine, 2-(2-hydroxy -4-octyloxyphenyl)-4,6-bis(4-methyl- phenyl-1,3,5-triazine, 2-(2-Hydroxy-4-dodecyloxyphenyl)-4,6-bis(2,4-dimethyl- phenyl)-1,
  • suitable metal deactivators are N,N'-diphenyloxamide, N-salicylal-N'-salicyloylhydrazine, N,N'-bis(salicyloyl)hydrazine, N,N'-bis(3,5-di-tert-butyl-4- hydroxyphenylpropionyl)hydrazine, 3-salicyloylamino-1,2,4-triazole, bis(benzylidene)oxalyldihydrazide, oxanilide, isophthaloyldihydrazide, sebacoylbisphenylhydrazide, N,N'-diacetyladipoyldihydrazide, N,N'-bis(salicyloyl)oxylyldihydrazide, N,N'-bis(salicyloyl)thiopropionyl dihydrazide.
  • metal deactivators are:
  • hindered amines examples include 1,1-bis(2,2,6,6-tetramethyl-4-piperidyl)succinate, bis(1,2,2,6,6-pentamethyl-4-piperidyl)sebazate, bis(1 -octyloxy-2,2,6,6-tetramethyl-4-piperidyl)sebazate, bis(1,2,2,6,6-pentamethyl-4- piperidyl)-n-butyl-3,5-di-tert-butyl-4-hydroxybenzylmalonate, the condensation product of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid, linear or cyclic condensation products of N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)hexamethylenediamine and 4-tert-octylamino-2,6-dichloro-1,3,5-triazine, Tris(2,2,6,6-
  • the structures given above also include the sterically hindered N—H, N-alkyl such as N-methyl or N-octyl, the N-alkoxy derivatives such as N-methoxy or N-octyloxy, and the cycloalkyl derivatives such as N-cyclohexyloxy and the N-(2-hydroxy-2-methylpropoxy) analogs.
  • Preferred hindered amines also have the following structures:
  • Preferred oligomeric and polymeric hindered amines have the following structures:
  • n is in each case from 3 to 100.
  • Hostanox NOW manufactured by Clariant SE
  • Clariant SE Clariant SE
  • R is -OC(O)-C 15 H 31 or -OC(O)-C 17 H 35 .
  • Suitable dispersing agents are:
  • Polyacrylates e.g. copolymers with long chain side groups, polyacrylate Block copolymers, alkylamides: eg N,N'-1,2-ethanediylbisoctadecanamide sorbitan esters, eg monostearylsorbitan esters, titanates and zirconates, reactive copolymers with functional groups eg polypropylene-co-acrylic acid, polypropylene-co-maleic anhydride, polyethylene co-glycidyl methacrylate, polystyrene-alt-maleic anhydride-polysiloxanes: eg dimethylsilanediol-ethylene oxide copolymer, polyphenylsiloxane copolymer, amphiphilic copolymers: eg polyethylene block polyethylene oxide, dendrimers, eg dendrimers containing hydroxyl groups.
  • alkylamides eg N,N'-1,2-ethanediyl
  • Suitable antinucleating agents are azine dyes such as nigrosine.
  • Suitable flame retardants are in particular
  • Inorganic flame retardants such as Al(OH)3, Mg(OH) 2 , AIO(OH), MgCO 3 , sheet silicates such as montmorillonite or sepiolite, unmodified or organically modified, double salts such as Mg-Al silicates, POSS (Polyhedral Oligomeric Silsesquioxane) compounds, huntite, hydromagnesite or halloysite as well as Sb 2 O 3 , Sb 2 O 5 , MoO 3 , zinc stannate, zinc hydroxystannate,
  • sheet silicates such as montmorillonite or sepiolite, unmodified or organically modified, double salts such as Mg-Al silicates, POSS (Polyhedral Oligomeric Silsesquioxane) compounds, huntite, hydromagnesite or halloysite as well as Sb 2 O 3 , Sb 2 O 5 , MoO 3 , zinc stannate, zinc hydroxystannate,
  • Nitrogen-containing flame retardants such as melamine, melem, melam, melon, melamine derivatives, melamine condensation products or melamine salts, benzoguanamine, polyisocyanurates, allantoin, phosphacene, in particular melamine cyanurate, melamine phosphate, dimelamin phosphate, melamine pyrophosphate, melamine polyphosphate, melamine metal phosphates such as mela Mine aluminum phosphate, melamine zinc phosphate, melamine magnesium phosphate, and the corresponding pyrophosphates and polyphosphates, poly-[2,4-(piperazin-1,4-yl)-6-(morpholin-4-yl)-1,3,5-triazine] , ammonium polyphosphate, melamine borate, melamine hydrobromide,
  • Radical formers such as alkoxyamines, hydroxylamine esters, azo compounds, sulfenamides, sulfenimides, dicumyl or polycumyl, hydroxyimides and their derivatives such as hydroxyimide esters or hydroxyimide ethers
  • Phosphorus-containing flame retardants such as red phosphorus, phosphates such as resorcinol diphosphate, bisphenol A diphosphate and their oligomers, triphe nyl phosphate, ethylene diamine diphosphate, phosphinates such as salts of hypophosphorous acid and its derivatives such as alkyl phosphinate salts such as diethyl phosphinate aluminum or diethyl phosphinate zinc or aluminum phosphinate, aluminum phosphite, aluminum phosphonate, phosphonate esters, oligomers and polymeric derivatives of methanephosphonic acid, 9,10- Dihydro-9-oxa-10-phosphorylphenanthrene-10-oxide (DOPO) and their substituted compounds,
  • DOPO 9,10- Dihydro-9-oxa-10-phosphorylphenanthrene-10-oxide
  • Halogen-containing flame retardants based on chlorine and bromine such as e.g. Bis(tribromophenoxy)ethane, hexabromocyclododecane, brominated diphenylethane, tris-(2,3-dibromopropyl)isocyanurate, ethylenebis-(tetrabromophthalimide), tetrabromobisphenol A, brominated polystyrene, brominated polybutadiene or polystyrene-brominated polybutadiene copolymers , brominated polyphenylene ether, brominated epoxy resin, polypentabromobenzyl acrylate, possibly in combination with Sb2O3 and/or Sb2O5,
  • Sulfur-containing compounds such as elemental sulphur, disulfides and polysulfides, thiuram sulfide, dithiocarbamates, mercaptobenzothiazole and sulfenamides,
  • anti-drip agents such as polytetrafluoroethylene,
  • Silicon-containing compounds such as polyphenylsiloxanes,
  • Carbon modifications such as carbon nanotubes (CNT), expandable graphite or graphene and combinations or mixtures thereof.
  • plasticizers examples include phthalic acid esters, adipic acid esters, esters of citric acid, esters of 1,2-cyclohexanedicarboxylic acid, trimellitic acid esters, isosorbide esters, phosphate esters, epoxides such as epoxidized soybean oil or aliphatic polyesters.
  • Suitable lubricants and processing aids are, for example, polyethylene waxes, polypropylene waxes, salts of fatty acids such as calcium stearate, zinc stearate or salts of montan waxes, amide waxes such as erucic acid amide or oleic acid amides, fluoropolymers, silicones or neoalkoxy titanate and zirconates.
  • Suitable pigments can be inorganic or organic in nature.
  • Inorganic pigments are, for example, titanium dioxide, zinc oxide, zinc sulfide, iron oxide, ultramarine, carbon black, organic pigments are, for example, anthraquinones, anthanthrones, benzimidazolones, quinacridones, diketopyrrolopyrroles, dioxazines, indanthrones, isoindolinones, azo compounds, perylenes, phthalates locyanines or pyranthrones.
  • Other suitable pigments are metal-based effect pigments or metal-oxide-based pearlescent pigments.
  • Suitable optical brighteners are, for example, bisbenzoxazoles, phenylcoumarins or bis(styryl)biphenyls and in particular optical brighteners of the formulas:
  • Suitable filler deactivators are, for example, polysiloxanes, polyacrylates, in particular block copolymers such as polymethacrylic acid-polyalkylene oxide or polyglycidyl (meth)acrylates and their copolymers, for example with styrene, and epoxides, for example of the following structures:
  • Suitable antistatic agents are ethoxylated alkylamines, fatty acid esters, alkylsulfonates and polymers such as polyetheramides.
  • Suitable antiozonants are the amines mentioned above, such as N,N'-diisopropyl-p-phenylenediamine, N,N'-di-sec-butyl-p-phenylenediamine, N,N'- Bis(1,4-dimethylpentyl)-p-phenylenediamine, N,N'-dicyclohexyl-p-phenylenediamine, N-isopropyl-N'-phenyl-p-phenylenediamine, N-(1,3-dimethylbutyl)-N '-phenyl-p-phenylenediamine, N-(1-methylheptyl)-N'-phenyl-p-phenylenediamine, N-cyclohexyl-N'-phenyl-p-phenylenediamine
  • Suitable rheology modifiers e.g. for the production of controlled rheology polypropylene (CR-PP) are, for example, peroxides, alkoxyamine esters or oxyimide sulfonic acid esters.
  • Suitable additives for increasing the molecular weight of polycondensation polymers are diepoxides, bis-oxazolines, bis-oxazolones, bis-oxazines, diisocyanates, dianhydrides, bis-acyllactams, bis-maleimides, dicyanates, carbodiimides and polycarbodiimides.
  • chain extenders are polymeric compounds such as e.g. B. polystyrene-polyacrylate-polyglycidyl (meth)acrylate copolymers, polystyrene-maleic anhydride copolymers and polyethylene-maleic acid anhydride copolymers.
  • hydrolysis stabilizers for polycondensation polymers such as polyesters or polyamides are epoxides, carbodiimides, polycarbodiimides or aziridines.
  • Suitable additives for increasing the electrical conductivity are, for example, the antistatic agents mentioned, soot and carbon compounds such as carbon nanotubes and graphene, metal powder such as copper powder and conductive polymers such as polypyrroles, polyanilines and polythiophenes.
  • suitable infrared-active additives are aluminum silicates, hydrotalcites or dyes such as phthalocyanines or anthraquinones.
  • crosslinking agents are peroxides such as dialkyl peroxides, alkylaryl peroxides, peroxyesters, peroxycarbonates, diacyl prooxides, peroxyketals, silanes such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltris(2-methoxyethoxy)silane, 3-methacryloyloxypropyltrimethoxysilane, vinyldimethoxymethylsilane or ethylene-vinylsilane copolymers.
  • peroxides such as dialkyl peroxides, alkylaryl peroxides, peroxyesters, peroxycarbonates, diacyl prooxides, peroxyketals
  • silanes such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltris(2-methoxyethoxy)silane, 3-methacryloyloxypropyltrimethoxy
  • Suitable additives for increasing the thermal conductivity of plastic recyclates are, for example, inorganic fillers such as boron nitride, aluminum nitride, aluminum oxide, aluminum silicate, silicon carbide and also carbon nanotubes (CNT).
  • inorganic fillers such as boron nitride, aluminum nitride, aluminum oxide, aluminum silicate, silicon carbide and also carbon nanotubes (CNT).
  • Suitable impact modifiers are usually selected for the polymer in question and are, for example, from the group of functionalized or non-functionalized polyolefins, such as ethylene copolymers such as EPDM or maleic anhydride or styrene-acrylonitrile-modified EPDM, glycidyl methacrylate-modified ethylene-acrylate copolymers or ionomers, Core-shell polymers, e.g. based on MBS (methacrylate-butadiene-styrene copolymer) or acrylic ester polymethyl methacrylate, thermoplastic elastomers (TPE) e.g.
  • TPE thermoplastic elastomers
  • styrene block copolymers styrene-butadiene (SB), styrene-butadiene -Styrene (SBS) optionally hydrogenated (SEBS) or modified by maleic anhydride (SEBS-g-MAH), thermoplastic polyurethanes, copolyesters or copolyamides.
  • Suitable slip agents are amide waxes such as erucic acid amide or oleic acid amide.
  • antiblocking agents examples include silica, talc or zeolites.
  • Suitable mold release agents are, for example, silicones, soaps and waxes such as montan waxes.
  • the at least one additive can be present in an amount of 0.01 to 9.99% by weight, preferably 0.01 to 4.98% by weight, more preferably 0.02 to 2.00% by weight %, particularly preferably 0.05 to 1.00% by weight, based on the entirety of the compound of the general formula I, the organic material and the at least one additive, may be present or added.
  • the invention proposes an organic material, in particular a plastic composition, which contains at least one compound of general formula I and/or at least one polymeric compound containing a repeating unit of general formula II or a mixture of several of the compounds according to general formula I and/or the polymeric compounds containing a repeating unit according to general formula II as defined above as a stabilizer.
  • 0.01 to 10.00% by weight preferably from 0.02 to 5.00% by weight, more preferably from 0.05 to 3.00% by weight, more preferably from 0.10 to 2, 00% by weight, particularly preferably 0.10 to 1.00% by weight, of at least one compound of general formula I, at least one polymeric compound containing a repeating unit according to general formula II or a mixture of several of the Compounds according to general formula I and/or polymeric compounds containing a repeating unit according to general formula II,
  • the organic material can, for example, contain at least one additive selected from the group consisting of secondary and/or primary antioxidants, in particular primary and/or secondary antioxidants selected from the group consisting of phosphites, phosphonites, thiols, phenolic antioxidants, sterically hindered ones Amines, hydroxylamines and mixtures or combinations thereof, UV absorbers, light stabilizers, hydroxylamine-based stabilizers, benzofuranone-based stabilizers, nucleating agents, impact modifiers, plasticizers, Lubricants, rheology modifiers, chain extenders, processing aids, pigments, dyes, optical brighteners, antimicrobial agents, antistatic agents, slip agents, antiblocking agents, coupling agents, dispersants, compatibilizers, oxygen scavengers, acid scavengers, co-stabilizers, marking agents and antifogging agents, in particular secondary - ren antioxidants.
  • primary and/or secondary antioxidants selected from the group consisting of phosphites
  • the at least one additive is selected from the group consisting of a secondary antioxidant selected from the group consisting of phosphites, phosphonites, at least one costabilizer selected from the group consisting of polyols, acid scavengers and sterically hindered amines.
  • the invention also relates to a method for stabilizing organic materials, in particular against oxidative, thermal and/or actinic degradation, in which at least one compound of general formula I, at least one polymeric compound containing a repeating unit according to general formula II or a mixture several of the compounds of the general formula I and/or polymeric compounds containing a repeating unit of the general formula II as defined above is incorporated into the organic material.
  • the following compounds are also proposed, which are suitable as stabilizers: or a polymeric compound containing a repeating unit according to general formula II wherein X 1 , X 2 , X 3 , a, b and c are as defined above.
  • X 4 is a linear or branched alkylene radical having 1 to 15 carbon atoms, preferably a linear alkylene radical having 1 to 3,
  • SG is a protective group and e is 0 or 1
  • the compound of the general formula IIIa or IIIb with, for example, 1/d equivalents of a compound of the general formula IV is converted to the compound of the general formula I and finally the product obtained in the second step is deprotected.
  • conversion with 1/d equivalent means that preferably at least 1/d equivalent of the compound of the general formula IV is present in the reaction.
  • Table 1 Overview of the thermogravimetric investigations of the synthesized 1,4-butanediol bis(thioglycolate) urushiol thioether. i.e. Synthesis of the triethylsilyl-protected pentaerythritol tetrakis(3-mercaptopropionate) urushiol thioether In a 100 mL Schlenk flask, 6.40 g (1.00 eq., 13.10 mmol) pentaerythritol tetrakis(3-mercaptopropionate) are mixed with 19.82 g (4.00 eq., 52.40 mmol) des Triethyl-protected eugenol combined.
  • the reaction mixture is degassed once using the freeze-pump-thaw method and then a small amount of IRGACURE 819 is added in a nitrogen countercurrent.
  • the reaction mixture is then irradiated with stirring at a wavelength of 366 nm under a nitrogen atmosphere.
  • the progress of the reaction is followed by means of 1 H-NMR spectroscopy by taking regular samples. After 30 minutes, a significant increase in viscosity can already be seen and after 48 hours the reaction is complete. The yield is 99.87%. e.
  • the reaction mixture is stirred overnight and, the following day, 15 mL of a saturated sodium bicarbonate solution and 40 mL of distilled water are added.
  • the reaction mixture is extracted three times with 30 mL ethyl acetate each time.
  • the combined organic extracts are washed again with 40 mL of a saturated sodium chloride solution and finally evaporated.
  • the residue is taken up in 60 mL tetrahydrofuran and passed through a frit with a thin layer of silica gel.
  • the filtrate is spun in and finally distilled again in vacuo. After cooling, 1.09 g (1.00 mmol) of a slightly yellow, viscous liquid are obtained.
  • the yield is 66.23%.
  • Table 2 Overview of the thermogravimetric investigations of the synthesized pentaerythritol tetrakis(3-mercaptopropionate) urushiol thioether. f. Synthesis of the triethylsilyl octadecanethiol urushiol thioether
  • Table 3 Overview of the thermogravimetric investigations of the synthesized octadecanethiol urushiol thioether.
  • H Synthesis of (3R,6S)-hexahydrofuro[3,2-b]furan-3,6-diylbis(3-((3-(3,4-bis((triethylsilyl)oxy)phenyl)propyl)thio)propanoate )s
  • 7.00 g (1.00 eq., 21.74 mmol) isosorbide bis-(3-mercapto)propionate are dissolved in 16.44 g (2.00 eq., 43.47 mmol) des Submitted triethyl-protected eugenol.
  • the reaction mixture is degassed once using the freeze-pump-thaw method and then a small amount of IRGACURE 819 is added in a nitrogen countercurrent. Thereafter, the reaction mixture is irradiated with stirring at a wavelength of 366 nm under a nitrogen atmosphere, during which the reaction mixture is gradually homogenized. The progress of the reaction is followed by means of 1 H-NMR spectroscopy by taking regular samples. After 24 h the reaction mixture has homogenized and after 96 h the reaction is complete. The yield is 99.26%. i.
  • the flask is immediately transferred to an ice bath and the polymer is then precipitated in 300 mL of methanol. After drying, the transparent gel is taken up in 100 mL tetrahydrofuran and treated with 3.00 mL 1 M hydrochloric acid. Finally, after 48 h, the polymer is precipitated in 400 mL of n-hexane. After drying in a high vacuum at 80 °C 3.57 g of a white-beige solid were obtained.
  • the flask is immediately transferred to an ice bath and the polymer is then precipitated in 350 mL of methanol. After drying, the transparent gel is taken up in 100 mL tetrahydrofuran, and 3.00 mL 1 M hydrochloric acid and a few drops of ethanol are added. The progress of the desilylation is checked by taking precipitation samples in n-hexane with subsequent 1 H-NMR analysis. Finally, after 360 h, the polymer is precipitated in 500 mL of n-hexane. After drying under high vacuum at 80° C., 3.08 g of a white-beige, slightly greasy solid are obtained.
  • Table 7 Overview of the results of the thermogravimetric analysis of the polystearyl methacrylate-co-poly(2-((3-(3,4-dihydroxyphenyl)propyl)thio)ethyl methacrylate) copolymer under a nitrogen atmosphere.
  • Table 8 Overview of the mean molecular weight determined by means of gel permeation chromatography and the dispersity of the synthesized random copolymer.
  • the additives according to the invention show a very good stabilizing effect, since there is less degradation of the polymer over the test period compared to an unstabilized polymer and a polymer stabilized with commercially available antioxidants.
  • compositions according to the invention show a very good stabilizing effect, since there is less degradation of the polymer over the test period than in the comparative examples.
  • OIT oxidation induction time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung von spezifischen Eugenol- Derivaten als Stabilisatoren von organischen Materialien gegenüber oxidativem, thermischem und/oder aktinischem Abbau. Zudem betrifft die vorliegende Erfindung ein stabilisiertes organisches Material sowie spezifische Eugenol-Derivate, die sich als Stabilisatoren eignen.

Description

Verwendung von Eugenol-Derivaten als Stabilisatoren, organisches Material sowie Eugenol-Derivate
Die vorliegende Erfindung betrifft die Verwendung von spezifischen Eugenol- Derivaten als Stabilisatoren von organischen Materialien gegenüber oxidati- vem, thermischem und/oder aktinischem Abbau. Zudem betrifft die vorlie- gende Erfindung ein stabilisiertes organisches Material sowie spezifische Eu- genol-Derivate, die sich als Stabilisatoren eignen.
Organische Materialien wie Kunststoffe unterliegen Alterungsvorgängen, die letztendlich zu einem Verlust der erwünschten Eigenschaften wie z.B. der me- chanischen Kennwerte führen. Dieser Autoxidation genannte Vorgang führt ausgehend von radikalischen Kettenspaltungen durch mechanochemische Pro- zesse oder durch UV-Strahlung in Gegenwart von Sauerstoff zu Veränderungen der Polymerkette, wie z.B. im Molekulargewicht oder der Bildung neuer chemi- scher Gruppen. Um diese Alterung zu verhindern oder zumindest zu verzögern werden deshalb Stabilisatoren eingesetzt. Wichtige Vertreter von Stabilisato- ren sind Antioxidantien, die mit den bei der Autooxidation gebildeten Radikalen interferieren und damit den Abbauprozess unterbrechen. Man unterscheidet im Allgemeinen zwischen primären Antioxidantien, die direkt mit sauerstoffhal- tigen freien Radikalen oder C-Radikalen reagieren können und sekundären An- tioxidantien, die mit intermediär gebildeten Hydroperoxiden reagieren (s. C. Kröhnke et al. Antioxidants in Ullmann's encyclopedia of industrial chemistry, Wiley-VCH Verlag, Weinheim 2015). Typische Vertreter von primären Antioxi- dantien sind beispielsweise phenolische Antioxidantien, Amine aber auch Lac- tone. Klassen von sekundären Antioxidantien sind Phosphorverbindungen wie z.B. Phosphite und Phosphonite, aber auch Organo-Schwefelverbindungen wie z.B. Thioester, Thioether und Disulfide. Üblicherweise werden in der Praxis häu- fig primäre und sekundäre Antioxidantien kombiniert, was zu einer synergisti- schen Wirkung führt. Es ist auch möglich und bekannt, primäre und sekundäre Antioxidansgruppen in einem Molekül zu kombinieren, z.B. eine phenolische Antioxidansgruppe und ein Phosphit wie beispielsweise in EP 823435 (Sumi- tomo Chemical Company) beschrieben oder auch die Kombination einer phe- nolischen Antioxidansgruppe mit Schwefelverbindungen wie z.B. aus EP224442 (Ciba-Geigy AG), aus US 3334046 (Geigy Chemical Corporation), aus US 42282971 (Ciba-Geigy AG) und aus WO 2019/096868 (Fraunhofer Gesellschaft) bekannt.
In zunehmendem Maße werden Kunststoffe aus fossilen Rohstoffen wie Erdöl oder Erdgas durch Kunststoffe auf der Basis von nachwachsenden Rohstoffen gewonnen über biochemische Prozesse ergänzt bzw. ersetzt. Die Frage der Nachhaltigkeit stellt sich dann auch für die dafür (und für Kunststoffe aus fossi- len Rohstoffen) eingesetzten primären und sekundären Antioxidantien. Es be- steht daher der Bedarf an Stabilisatoren basierend auf nachwachsenden und verfügbaren Rohstoffen mit hoher Wirksamkeit, niedriger Flüchtigkeit und Kompatibilität mit polymeren Substraten. Eine hohe Wirksamkeit kann u.a. wie bereits erwähnt durch die Kombination von primären und sekundären Antioxi- dans-Funktionen erreicht werden. Aufgabe der vorliegenden Erfindung war es daher Stabilisatoren zur Verfügung zu stellen, die primäre und sekundäre Anti- oxidans-Strukturen in einem Molekül aufweisen und zumindest anteilig aus leicht zugänglichen nachwachsenden Rohstoffen erhalten werden können.
Grundsätzlich sind Antioxidantien aus nachwachsenden Rohstoffen bekannt, die auch vereinzelt in Kunststoffen eingesetzt werden. Ein typisches Beispiel sind Tocopherole (Vitamin E). Tocopherole weisen wie übliche Antioxidantien eine sterisch gehinderte Phenolstruktur auf und können allein oder in Kombi- nation mit sekundären Antioxidantien eingesetzt werden (z.B. S. Al-Malaika, Macromol. Symp. 2001, 176, 107-117). Tocopherole werden aus Naturstoffen wie z.B. Weizenkeimöl, Sonnenblumenöl oder Olivenöl isoliert. Weitere be- kannte phenolische Antioxidantien aus Naturstoffen, die in Kunststoffen unter- sucht wurden, sind beispielsweise
• Quercetin (B. Kirschweng et al., Melt stabilisation of PE with natural an- tioxidants: Comparison of rutin and quercetin, Eur. Pol. J. 2018, 103, 228-237,
• Dihydromyrecetin (B. Kirschweng et al., Melt stabilization of polyeth- ylene with dihydromyrecitin, a natural antioxidant, Pol. Degr. Stab. 2016, 133, 192-200,
• Derivate der Rosmarinsäure (K. Doudin et al., New genre of antioxidants from renewable natural resources: Synthesis and characterisation of rosemary plant-derived antioxidants and their performance in polyole- fins, Pol. Degr. Stab. 2016, 130, 126-134,
• Tannin (WJ. Grigsby et al., Esterification of condensed tannins and their impact on the properties of poly (lactic acid), Polymers 5 (2013) 344- 360,
• Curcumin (D. Tatraaljai et al. Processing stabilisation of PE with a natural antioxidant, curcumin, European Polymer Journal 49 (2013) 1196-1203 und
• Silymarin (B. Kirschweng et al., Melt stabilization of polyethylene with natural antioxidants: comparison of a natural extract and its main com- ponents. Journal of Thermal Analysis and Calorimetry https://doi.org/10.1007/s10973-020-09709-5. • Catechin aus Tee- und Kaffeeextrakten (O. Olejnik, A. Masek, Bio- Based Packaging Materials Containing Substances Derived from Coffee and Tea Plants, Materials 2020, 13, 5719)
Allen diesen Stabilisatoren aus nachwachsenden Rohstoffen ist jedoch gemein- sam, dass diese in verhältnismäßig geringen Konzentrationen in den jeweiligen Ausgangsmaterialien, meist pflanzlichen Rohstoffen, vorkommen, was eine Iso- lierung, Aufreinigung oder die Herstellung von anwendbaren Folgeprodukten unverhältnismäßig aufwändig macht. Eugenol ist dagegen ein Rohstoff, der ei- nerseits in hohen Konzentrationen in manchen Pflanzen vorkommt (s. A.A. Khalil et al., Essential oil eugenol: sources, extraction techniques and nutraceutical perspectives RSC Adv., 2017, 7, 32669) aber auch aus in großen Mengen verfügbarem Lignin (z.B. CN 105669397) hergestellt werden kann. Eu- genol ist daher eine attraktive Verbindung mit potentieller Antioxidans-Wir- kung, allerdings als solches aufgrund der hohen Flüchtigkeit bei den üblichen Verarbeitungsmethoden von Kunststoffen nicht einsetzbar.
Die Reaktion von Eugenol mit Thiolen mittels Click-Reaktion ist bekannt (M. Shrestha et al., Aliphatic-Aromatic Polyols by Thiol-Ene Reactions, Journal of Polymers and the Environment (2018), 26(6), 2257-2267). In der eigenen An- meldung WO 2019/096868 wurden ebenfalls click-Reaktionen zur Herstellung schwefelhaltiger Antioxidantien beansprucht, allerdings weisen die dort be- schriebenen Verbindungen zwingend eine sterische Hinderung auf und sind so- mit strukturell von den vorliegenden erfindungsgemäßen Strukturen zu unter- scheiden. Die erfindungsgemäßen Verbindungen sind darin auch nicht umfasst. Weiterhin wurden Eugenol-Schwefel-Verbindungen als Komponenten zur Her- stellung von Beschichtungen eingesetzt (H. Watanabe et al. Biobased Coatings Based on Eugenol Derivatives, ACS Applied Bio Materials (2018), 1(3), 808-813, Y. Hu et al. Synthesis of Eugenol-Based Polyols via Thiol-Ene Click Reaction and High-Performance Thermosetting Polyurethane Therefrom, ACS Sustainable Chemistry & Engineering (2020), 8(10), 4158-4166). Weitere reaktive Kompo- nenten auf der Basis von Eugenol-Schwefelderivaten wurden als Zwischenpro- dukte z.B. für selbstheilende Polymere in der Form von Epoxiden beschrieben (C. Cheng et al. J. Pol. Res. (2018), 25, 1-13). Die Lösung der zuvor genannten Aufgabe wird in den unabhängigen Patentan- sprüchen gegeben, wobei Patentanspruch 1 die Verwendung eines spezifischen Eugenol-Derivats als Stabilisator, Patentanspruch 9 ein stabilisiertes organi- sches Material sowie Patentanspruch 13 spezifische Eugenol-Derivate betrifft, gelöst.
Die vorliegende Aufgabe wirksame Antioxidantien für Kunststoffe aus leicht verfügbaren nachwachsenden Rohstoffen herzustellen konnte dann dadurch gelöst werden, dass mit Eugenol als Rohstoff neue schwefelhaltige Stabilisato- ren vorgeschlagen werden. Überraschenderweise zeigen diese Stabilisatoren eine besonders gute Wirkung bei der Stabilisierung von Kunststoffen und eine ausgezeichnete thermische Stabilität.
Die vorliegende Erfindung betrifft somit die Verwendung einer Verbindung ge- mäß der allgemeinen Formel I wobei jeweils unabhängig voneinander
X1 ein linearer oder verzweigter Alkylenrest mit 2 bis 18 Kohlen- stoffatomen,
X2 ein linearer oder verzweigter Alkylenrest mit 1 bis 18 Kohlen- stoffatomen,
X3 ein linearer oder verzweigter Alkylrest mit 1 bis 18 Kohlenstoff- atomen,
A eine d-wertige, gesättigte oder ungesättigte Gruppierung, a 2 bis 5-b, b 0 bis 3, c 0 oder 1, und d 1 bis 8 bedeuten, oder einer polymeren Verbindung, enthaltend eine Wiederholungseinheit gemäß allgemeiner Formel II
X1, X2, X3, a, b und c wie voranstehend definiert sind und X4 Wasserstoff oder ein linearer oder verzweigter Alkylrest mit 1 bis 18 Kohlenstoffatomen, und
* eine Anbindungsstelle der Wiederholungseinheit gemäß allge- meiner Formel II bedeutet, oder einer Mischung mehrerer der Verbindungen gemäß allgemeiner
Formel I und/oder polymerer Verbindungen, enthaltend eine Wieder- holungseinheit gemäß allgemeiner Formel II, als Stabilisator von organischen Materialien, insbesondere Kunststof- fen gegen oxidativen, thermischen und/oder aktinischen Abbau.
Es werden somit neue Stabilisatoren und Stabilisatorzusammensetzungen auf der Basis leicht verfügbarer nachwachsender Rohstoffe und ein neues Verfah- ren zur Stabilisierung von Kunststoffen vorgeschlagen, die eine sehr gute Wirk- samkeit, eine hohe thermische Stabilität, Umweltfreundlichkeit und günstige Kostenstruktur aufweisen.
Stabilisatoren sind marktübliche Produkte, die in Abhängigkeit von der Eigen- schaftskombination verschiedene Marktsegmente bei Kunststoffen, Beschich- tungen und Ölen/Fetten abdecken. Bei den neuen Stabilisatoren und Stabilisa- torkombinationen handelt es sich um bisher nicht bekannte Substanzen, zu- mindest anteilig aus nachwachsenden Rohstoffen. Die Strukturen der vorliegenden erfindungsgemäßen Stabilisatoren wurden bisher nicht zur Stabilisierung von Kunststoffen eingesetzt, teilweise sind die Strukturen bisher auch nicht in der Literatur beschrieben.
In einer bevorzugten Ausführungsform sieht die vorliegende Erfindung vor, dass Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass
X1 ein linearer Alkylenrest mit 2 bis 6, bevorzugt 3 Kohlenstoffatomen,
X2 ein linearer Alkylenrest mit 1 bis 6, bevorzugt 1 bis 4, besonders bevor- zugt 1 oder 2 Kohlenstoffatomen,
X3 ein linearer oder verzweigter Alkylrest mit 1 bis 4 Kohlenstoffatomen, X4 Wasserstoff oder ein linearer oder verzweigter Alkylrest mit 1 bis 4 Kohlenstoffatomen, insbesondere Methyl,
A eine d-wertige, aliphatische oder aromatische, bevorzugt lineare oder verzweigte aliphatische Gruppierung mit 1 bis 32, bevorzugt 1 bis 24, besonders bevorzugt 1 bis 18 Kohlenstoffatomen, a 2 und b 0, bedeuten.
Insbesondere eignen sich die o. g. Verbindungen der Formel I, die polymeren Verbindungen, enthaltend eine Wiederholungseinheit gemäß allgemeiner For- mel II oder die Mischungen mehrerer der Verbindungen gemäß allgemeiner Formel I und/oder polymerer Verbindungen, enthaltend eine Wiederholungs- einheit gemäß allgemeiner Formel II als Stabilisatoren für Kunststoffe in Form von Spritzgussteilen, Folien oder Filmen, Schäumen, Fasern, Kabeln und Roh- ren, Profilen, Hohlkörper, Bändchen, Membranen, wie z.B. Geomembranen, o- der Klebstoffen, die über Extrusion, Spritzguss, Blasformen, Kalandrieren, Pressverfahren, Spinnprozesse, Rotomoulding hergestellt werden z.B. für die Elektro- und Elektronikindustrie, Bauindustrie, Transportindustrie (Auto, Flug- zeug, Schiff, Bahn), für medizinische Anwendungen, für Haushalts- und Elektro- geräte, Fahrzeugteile, Konsumartikel, Verpackungen, Möbel, Textilien. Ein wei- terer Einsatzbereich sind Lacke, Farben und Beschichtungen (Coatings), sowie Öle und Fette.
Handelt es sich bei den organischen Materialien um Öle und Fette, so können diese auf der Basis von Mineralölen, Pflanzenfetten oder Tierfetten sein oder auch Öle, Fette oder Wachse auf der Basis von z.B. synthetischen Estern. Pflanz- liche Öle und Fette sind beispielsweise Palmöl, Olivenöl, Rapsöl, Leinöl, Soja- bohnenöl, Sonnenblumenöl, Rizinusöl, Tierfette sind beispielsweise Fischöle o- der Rindertalg. Die erfindungsgemäßen Verbindungen können weiterhin als Stabilisatoren von Schmierstoffen, Hydraulikölen, Motorenölen, Turbinenölen, Getriebeölen Metallbearbeitungsflüssigkeiten oder als Schmierfette eingesetzt werden. Diese mineralischen oder synthetischen Schmierstoffe basieren vor- wiegend auf Kohlenwasserstoffen. Bei chemischen Produkten handelt es sich z.B. zur Stabilisierung von Polyolen bei der Polyurethanherstellung.
Die erfindungsgemäßen Verbindungen der Formel I können weiterhin als Sta- bilisatoren von Schmierstoffen, Hydraulikölen, Motorenölen, Turbinenölen, Getriebeölen Metallbearbeitungsflüssigkeiten oder als Schmierfette eingesetzt werden. Diese mineralischen oder synthetischen Schmierstoffe basieren vor- wiegend auf Kohlenwasserstoffen.
Die Einarbeitung der oben beschriebenen Verbindungen der Formel, der poly- meren Verbindungen, enthaltend eine Wiederholungseinheit gemäß allgemei- ner Formel II oder der Mischung mehrerer der Verbindungen gemäß allgemei- ner Formel I und/oder polymerer Verbindungen, enthaltend eine Wiederho- lungseinheit gemäß allgemeiner Formel II I und ggf. zusätzlicher Additive in das organische Material, z. B. den Kunststoff erfolgt durch übliche Verarbeitungs- methoden, wobei beispielsweise das Polymere aufgeschmolzen und mit der er- findungsgemäßen Additivzusammensetzung und den ggf. weiteren Zusätzen gemischt wird, vorzugsweise durch Mischer, Kneter oder Extruder. Als Verar- beitungsmaschinen bevorzugt sind Extruder wie z.B. Einschneckenextruder, Zweischneckenextruder, Planetwalzenextruder, Ringextruder, Co-Kneter, die vorzugsweise mit einer Vakuumentgasung ausgestattet sind. Die Verarbeitung kann dabei unter Luft oder ggf. unter Inertgasbedingungen wie z.B. unter Stick- stoff erfolgen.
Weiterhin können die erfindungsgemäßen Verbindungen der Formel I, die po- lymeren Verbindungen, enthaltend eine Wiederholungseinheit gemäß allge- meiner Formel II oder die Mischungen mehrerer der Verbindungen gemäß all- gemeiner Formel I und/oder die polymeren Verbindungen, enthaltend eine Wiederholungseinheit gemäß allgemeiner Formel II in Form von Additivzusam- mensetzungen, wie z. B. in Form von Masterbatchen oder Konzentraten, die beispielsweise 10-90 % der erfindungsgemäßen Additive in einem Polymeren enthalten, hergestellt und eingebracht werden.
Insbesondere werden die nachfolgenden Verbindungen erfindungsgemäß ver- wendet:
Die polymere Verbindung, enthaltend die Wiederholungseinheit gemäß allge- meiner Formel II ist bevorzugt ausgewählt aus der Gruppe bestehend aus Ho- mopolymeren, gebildet aus Wiederholungseinheiten gemäß allgemeiner For- mel II oder Copolymeren, enthaltend die Wiederholungseinheit gemäß allge- meiner Formel II sowie mindestens eine weitere, von einer radikalisch polyme- risierbaren Verbindung abgeleitete Wiederholungseinheit, insbesondere von (Meth)acrylsäureestern abgeleitete Wiederholungseinheiten. Besonders bevorzugt weist die Wiederholungseinheit gemäß allgemeiner For- mel II der polymeren Verbindung die nachfolgenden Struktur auf:
In einer weiter bevorzugten Ausführungsform wird die Gesamtheit der Verbin- dungen gemäß der allgemeinen Formel I, der polymeren Verbindungen, enthal- tend eine Wiederholungseinheit gemäß allgemeiner Formel II oder der Mi- schungen mehrerer der Verbindungen gemäß allgemeiner Formel I und/oder der polymeren Verbindungen, enthaltend eine Wiederholungseinheit gemäß allgemeiner Formel II zu einem Gewichtsanteil von 0,01 bis 10,00 Gew.-%, be- vorzugt von 0,02 bis 5,00 Gew.-%, weiter bevorzugt von 0,05 bis 3,00 Gew.-% besonders bevorzugt von 0,10 bis 2,00 Gew.-% im organischen Material einge- setzt.
Für den Fall, dass ein Kunststoff stabilisiert wird, kann dieser bevorzugt sein aus der Gruppe bestehend aus a) Polymeren aus Olefinen oder Diolefinen wie z.B. Polyethylen (LDPE, LLDPE, VLDPE, ULDPE, MDPE, HDPE, UHMWPE), Metal- locen-PE (m-PE), Polypropylen, Polyisobutylen, Poly-4-methyl-pen- ten-1, Polybutadien, Polyisopren, wie z.B. auch Naturkautschuk (NR), Polycycloocten, Polyalkylen-Kohlenmonoxid-Copolymere, so- wie Copolymere in Form von statistischen oder Blockstrukturen wie z.B. Polypropylen-Polyethylen (EP), EPM oder EPDM mit z.B. 5- Ethyliden-2-Norbornen als Comonomer, Ethylen-Vinylacetat (EVA), Ethylen Acrylester, wie z.B. Ethylen-Butylacrylat, Ethylen-Acryl- säure und deren Salze (lonornere), sowie Terpolymere wie z.B. Ethylen-Acrylsäure-Glycidyl(meth)acrylat, Pfropfpolymere wie z.B. Polypropylen-graft-Maleinsäureanhydrid, Polypropylen-graft -Ac- rylsäure, Polyethylen graft-Acrylsäure, Polyethylen-Polybutylac- rylat-graft-Maleinsäureanhydrid sowie Blends wie z.B. LDPE/LLDPE oder auch langkettenverzweigte Polypropylen-Copolymere die mit alphaOlefinen als Comonomere hergestellt werden wie z.B. mit 1- Buten, 1-Hexen, 1-Octen oder 1-Octadecen, b) Polystyrol, Polymethylstyrol, Poly-alpha-methylstyrol, Polyvinyl- naphthalin, Polyvinylbiphenyl, Polyvinyltoluol, Styrol-Butadien (SB), Styrol-Butadien-Styrol (SBS), Styrol Ethylen-Butylen-Styrol (SEBS), Styrol-Ethylen-Propylen-Styrol, Styrolisopren, Styrol-Isop- renStyrol (SIS), Styrol-butadien-acrylnitril (ABS), Styrol-acrylnitril (SAN), Styrol-acrylnitril-acrylat (ASA), Styrol-Ethylen, Styrol-Mal- einsäureanhydrid-Polymere einschließlich entsprechender Pfropf- copolymere wie z.B. Styrol auf Butadien, Maleinsäureanhydrid auf SBS oder SEBS, sowie Pfropfcopolymere aus Methyl methacrylat, Styrol-Butadien und ABS (MABS), sowie hydrierte Polystyrol-Deri- vate wie z.B. Polyvinylcyclohexan, c) halogenenthaltenden Polymeren wie z.B. Polyvinylchlorid (PVC), Polychloropren und Polyvinylidenchlorid (PVDC), Copolymere aus Vinylchlorid und Vinylidenchlorid oder aus Vinylchlorid und Vi- nylacetat, chloriertes Polyethylen, Polyvinylidenfluorid, Epich- lorhydrinHomo und Copolymere insbesondere mit Ethylenoxid (ECO), d) Polymeren von ungesättigten Estern wie z.B. Polyacrylate und Po- lymethacrylate wie Polymethylmethacrylat (PMMA), Polybutylac- rylat, Polylaurylacrylat; Polystearylacrylat; Polyglycidylacrylat, Po- lyglycidylmethacrylat, Polyacrylnitril, Polyacrylamide, Copolymere wie z.B. Polyacrylnitril-Polyalkylacrylat, e) Polymeren aus ungesättigten Alkoholen und Derivaten, wie z.B. Polyvinylalkohol, Polyvinylacetat, Polyvinylbutyral, Polyallylphtha- lat, Polyallylmelamin, f) Polyacetalen, wie z.B. Polyoxymethylen (POM) oder Copolymere mit z.B. Butanal, Polyphenylenoxiden und Blends mit Polystyrol o- der Polyamiden, g) Polymeren von cyclischen Ethern wie z.B. Polyethylenglycol, Polyp- ropylenglycol, Polyethylenoxid, Polypropylenoxid, Polytetrahydro- furan, h) Polyphenylenoxiden und deren Blends mit Polystyrol und/oder Po- lymiden, i) Polyurethanen, aus hydroxyterminierten Polyethern oder Polyes- tern und aromatischen oder aliphatischen Isocyanaten wie z.B.
2,4- oder 2,6 Toluyloldiisocyanat oder Methylendiphenyldiisocya- nat insbesondere auch lineare Polyurethane (TPU), Polyharnstof- fen, j) Polyamiden wie z.B. Polyamid-6, 6.6, 6.10, 4.6, 4.10, 6.12, 10.10, 10.12, 12.12, Polyamid 11, Polyamid 12 sowie (teil-)aromatische Polyamide wie z.B. Polyphthalamide, z.B. hergestellt aus Tereph- thalsäure und/oder Isophthalsäure und aliphatischen Diaminen wie z.B. Hexamethylendiamin oder m-Xylylendiamin oder aus aliphatischen Dicarbonsäuren wie z.B. Adipinsäure oder Sebazin- säure und aromatischen Diaminen wie z.B. 1,4- oder 1,3-Diamino- benzol, Blends von unterschiedlichen Polyamiden wie z.B. PA-6 und PA 6.6 bzw. Blends von Polyamiden und Polyolefinen wie z.B. PA/PP, k) Polyimiden, Polyamidimiden, Polyetherimiden, Polyesterimiden, Poly(ether)ketonen, Polysulfonen, Polyethersulfonen, Polyarylsul- fonen, Polyphenylensulfiden, Polybenzimidazolen, Polyhydantoi- nen, l) Polyestern aus aliphatischen oder aromatischen Dicarbonsäuren und Diolen oder aus Hydroxy-Carbonsäuren wie z.B. Polyethylen- terephthalat (PET), Polybutylenterephthalat (PBT), Polypropylen- terephthalat (PTI), Polyethylennaphthylat (PEN), Poly-1,4-dimethy- lolcyclohexanterephthalat, Polyhydroxybenzoat, Polyhydroxy- naphthalat, Polymilchsäure (PLA), Polyhydroxybutyrat (PHB), Po- lyhydroxyvalerat (PHV), Polyethylensuccinat, Polytetramethylen- succinat, Polycaprolacton, m) Polycarbonaten, Polyestercarbonaten, sowie Blends wie z.B. PC/ABS, PC/PBT, PC/PET/PBT, PC/PA, n) Cellulosederivaten wie z.B. Cellulosenitrat, Celluloseacetat, Cellu- losepropionat, Cellulosebutyrat, o) Epoxidharzen, bestehend aus di- oder polyfunktionellen Epoxid- verbindungen in Kombination mit z.B. Härtern auf der Basis von A- minen, Anhydriden, Dicyandiamid, Mercaptanen, Isocyanaten o- der katalytisch wirkenden Härtern, p) Phenolharzen wie z.B. Phenol-Formaldehyd-Harze, Harnstoff-For- maldehyd-Harze, Melamin-Formaldehydharze, q) ungesättigten Polyesterharzen aus ungesättigten Dicarbonsäuren und Diolen mit Vinylverbindungen z.B. Styrol, Alkydharze, r) Silikonen, z.B. auf der Basis von Dimethylsiloxanen, Methyl-Phe- nyl-siloxanen oder Diphenylsiloxanen z.B. Vinylgruppen terminiert, s) sowie Mischungen, Kombinationen oder Blends aus zwei oder mehr der zuvor genannten Polymere.
Sofern es sich bei den unter a) bis r) angegebenen Polymeren um Copolymere handelt, können diese in Form von statistischen („random"), Block- oder „tape- red" Strukturen vorliegen. Weiterhin können die genannten Polymeren in Form von linearen, verzweigten, sternförmigen oder hyperverzweigten Strukturen vorliegen.
Sofern es sich bei den unter a) bis r) angegebenen Polymeren um stereoregu- läre Polymere handelt, können diese in Form von isotaktischen, stereotakti- schen, aber auch ataktischen Formen oder als Stereoblockcopolymere vorlie- gen.
Weiterhin können die unter a) bis r) angegebenen Polymere sowohl amorphe als auch (teil-) kristalline Morphologien aufweisen.
Ggf. können die unter a) genannten Polyolefine auch vernetzt vorliegen, z.B. vernetztes Polyethylen, das dann als X-PE bezeichnet wird.
Weiterhin können die vorliegenden Verbindungen vorzugsweise zur Stabilisie- rung von Kautschuken und Elastomeren eingesetzt werden. Hier kann es sich um Naturkautschuk (NR) oder synthetische Kautschukmaterialien handeln. Ge- eignete synthetische Kautschukmaterialien bestehen insbesondere aus Buta- dien (BR), Styrol-Butadien (SBR), Chloropren (CR), Isopren (IR), Isobutylen-Isop- ren, Acrylnitril-Butadien (NBR oder in hydrierter Form HNBR). Weitere geeig- nete Kautschuke und Elastomere sind Ethylen-Propylen-Dien Terpolymere (EPDM) und Ethylen-Propylen-Copolymere (EPM), Polyesdter-Urethane (AU, Polyether-Urethane (EU) und Silikone (MQ). Außer um Neuware kann es sich bei den Kunststoffen um rezyklierte Kunst- stoffe z.b. aus Industriesammlungen wie z.B. Produktionsabfälle oder um Kunststoffe aus Haushalts- oder Wertstoffsammlungen handeln.
Weiterhin bevorzugt sind insbesondere Polymere aus nachwachsenden Roh- stoffen wie z.B. Polymilchsäure (PLA), Polyhydroxybuttersäure, Polyhydroxyva- leriansäure, Polybutylensuccinat oder Poly(butylensuccinat-co-adipat).
Zudem ist von Vorteil, wenn der Kunststoff mindestens ein weiterer Zusatz- stoff, ausgewählt aus der Gruppe bestehend aus primären Antioxidantien, se- kundären Antioxidantien, UV-Absorbern, Lichtstabilisatoren, Metalldesaktiva- toren, Füllstoffdesaktivatoren, Antiozonantien, Nukleierungsmitteln, Antinuk- leierungsmitteln, Schlagzähigkeitsverbesserern, Weichmachern, Gleitmitteln, Rheologiemodifikatoren, Thixotropiemitteln, Kettenverlängerern, optischen Aufhellern, antimikrobiellen Wirkstoffen (z.B. Biozide), Antistatika, Slipmitteln, Antiblockmitteln, Kopplungsmitteln, Vernetzungsmitteln, Verzweigungsmit- teln, Antivernetzungsmitteln, Hydrophilisierungsmitteln, Hydrophobisierungs- mitteln, Haftvermittlern, Dispergiermitteln, Kompatibilisatoren, Sauerstofffän- gern, Säurefängern, Treibmitteln, Abbau-Additiven, Entschäumungsmitteln, Geruchsfängern, Markierungsmitteln, Antifoggingmitteln, Additive zur Erhö- hung der elektrischen Leitfähigkeit und/oder Wärmeleitfähigkeit, Infrarot-Ab- sorber oder Infrarot-Reflektoren, Glanzverbesserer, Mattierungsmittel, Repel- lents, Füllstoffen, Verstärkungsstoffen und Mischungen hiervon.
Geeignete primäre Antioxidantien (A) sind phenolische Antioxidantien, Amine und Lactone:
Geeignete synthetische phenolische Antioxidantien sind beispielsweise:
Alkylierte Monophenole, wie z.B. 2,6-Di-tert-butyl-4-methylphenol, 2-tert- Butyl-4,6-dimethylphenol, 2,6-Di-tert-butyl-4-ethylphenol, 2,6-Di-tert-butyl-4- n-butylphenol, 2,6-Di-tert-butyl-4-isobutylphenol, 2,6-Dicyclopentyl-4-methyl- phenol, 2-(α-Methylcyclohexyl)-4,6-dimethylphenol, 2,6-Dioctadecyl-4-me- thylphenol, 2,4,6-Tricyclohexylphenol, 2,6-Di-tert-butyl-4-methoxymethyl- phenol, lineare oder verzweigte Nonylphenole, wie z.B. 2,6-Dinonyl-4-methyl- phenol, 2,4-Dimethyl-6-(1'-methylundec-1'-yl)phenol, 2,4-Dimethyl-6-(1'-me- thylheptadec-1'-yl)phenol, 2,4-Dimethyl-6-(1'-methyltridec-1'-yl)phenol und Mischungen hiervon;
Alkylthiomethylphenole, wie z.B. 2,4-Dioctylthiomethyl-6-tert-butylphenol, 2,4-Dioctylthiomethyl-6-methylphenol, 2,4-Dioctylthiomethyl-6-ethylphenol, 2,6-Didodecylthiomethyl-4-nonylphenol;
Hydrochinone und alkylierte Hydrochinone, wie z.B. 2,6-Di-tert-butyl-4-me- thyoxyphenol, 2,5-Di-tert-butylhydrochinon, 2,5-Di-tert-amylhydrochinon, 2,6- Diphenyl-4-octadecyloxyphenol, 2,6-Di-tert-butylhydrochinon, 2,5-Di-tert- butyl-4-hydroxyanisol, 3,5-Di-tert-butyl-4-hydroxyanisol, 3,5-Di-tert-butyl-4- hydroxyphenylstearat, Bis(3,5-di-tert-butyl-4-hydroxyphenyl)adipat;
Tocopherole, wie z.B. α-, ß-, y-, δ-Tocopherol und Mischungen aus diesen (Vi- tamin E);
Hydroxylierte Thiodiphenylether, wie z.B. 2,2'-Thiobis(6-tert-butyl-4-methyl- phenol), 2,2'-Thiobis(4-octylphenol), 4,4'-Thiobis(6-tert-butyl-3-methyl- phenol), 4,4'-Thiobis(6-tert-butyl-2-methylphenol), 4,4'-Thiobis(3,6-di-sec- amylphenol), 4,4'-Bis(2,6-dimethyl-4-hydroxyphenyl)disulfid;
Alkylidenbisphenole, wie z.B. 2,2'Methylenbis(6-tert-butyl-4-methylphenol), 2,2'-Methylenbis(6-tert-butyl-4-ethylphenol), 2,2'-Methylenbis[4-methyl-6-(a- methylcyclohexyl)phenol], 2,2'-Methylenbis(4-methyl-6-cyclhexylphenol), 2,2'- Methylenbis(6-nonyl-4-methylphenol), 2,2'-Methylenbis(4,6-di-tert- butylphenol), 2,2'-Ethylidenbis(4,6-di-tert-butylphenol), 2,2'-Ethylidenbis(6- tert-butyl-4-isobutylphenol), 2,2'-Methylenbis[6-(a-methylbenzyl)-4-nonyl- phenol], 2,2'-Methylenbis[6-(α,α-dimethylbenzyl)-4-nonylphenol], 4,4'-Methy- lenbis(2,6-di-tert-butylphenol, 4,4'-Methylenbis(6-tert-butyl-2-methylphenol), 1,1-bis(5-tert-butyl-4-hydroxy-2-methylphenyl)butan, 2,6-Bis(3-tert-butyl-5- methyl-2-hydroxybenzyl)-4-methylphenol, 1,1,3-Tris(5-tert-butyl-4-hydroxy-2- methylphenyl)butan, 1,1-bis(5-tert-butyl-4-hydroxy-2-methylphenyl)-3-n- dodecylmercaptobutan, Ethylenglycol-bis[3,3-bis(3'-tert-butyl-4'-hydroxyphe- nyl)butyrat], Bis(3-tert-butyl-4-hydroxy-5-methylphenyl)dicyclopentadien, Bis[2-(3'-tert-butyl-2'-hydroxy-5'-methylbenzyl)-6-tert-butyl-4-methylphenyl]- terephthalat, 1,1-Bis-(3,5-dimethyl-2-hydroxyphenyl)butan, 2,2-Bis(3,5-di-tert- butyl-4-hydroxyphenyl)propan, 2,2-Bis-(5-tert-butyl-4-hydroxy-2-methylphe- nyl)-4-n-dodecylmercaptobutan, 1,1,5,5-Tetra(5-tert-butyl-4-hydroxy-2-me- thylphenyl)pentan;
O-, N- und S-Benzyl-Verbindungen, wie z.B. 3,5,3',5'-Tetra-tert-butyl-4,4'- dihydroxydibenzylether, Octadecyl-4-hydroxy-3,5-dimethylbenzylmercapto- acetat, Tridecyl-4-hydroxy-3,5-di-tert-butylbenzylmercaptoacetat, Tris(3,5-di- tert-butyl-4-hydroxybenzyl)amin, Bis(4-tert-butyl-3-hydroxy-2,6-dimethyl- benzyl)dithioterephthalat, Bis(3,5-di-tert-butyl-4-hydroxybenzyl)sulfid, Iso- octyl-3,5-di-tert-butyl-4-hydroxybenzylmercaptoacetat;
Hydroxybenzylierte Malonate, wie z.B. Dioctadecyl-2,2-bis(3,5-di-tert-butyl-2- hydroxybenzyl)malonat, Dioctadecyl-2-(3-tert-butyl-4-hydroxy-5-methyl- benzyl)malonat, Didodecylmercaptoethyl-2,2-bis(3,5-di-tert-butyl-4-hydroxy- benzyl)malonat, Bis[4-(1,1,3,3-tetramethylbutyl)phenyl]-2,2-bis(3,5-di-tert- butyl-4-hydroxybenzyl)malonat;
Aromatische Hydroxybenzylverbindungen, wie z.B. 1,3,5-Tris(3,5-di-tert-butyl- 4-hydroxybenzyl)-2,4,6-trimethylbenzol, 1,4-Bis(3,5-di-tert-butyl-4-hydroxy- benzyl)-2,3,5,6-tetramethylbenzol, 2,4,6-Tris(3,5-di-tert-butyl-4-hydroxy- benzyl)phenol;
Triazinverbindungen, wie z.B. 2,4-Bis(octylmercapto)-6-(3,5-di-tert-butyl-4- hydroxyanilino)-1,3,5-triazin, 2-Octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hyd- roxyanilino)-1,3,5-triazin, 2-Octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxy- phenoxy)-1,3,5-triazin, 2,4,6-Tris(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,2,3- triazin, 1,3,5-Tris(3,5-di-tert-butyl-4-hydroxybenzyl)isocyanurat, 1,3,5-Tris(4- tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanurat, 2,4,6-Tris(3,5-di-tert- butyl-4-hydroxphenylethyl)-1,3,5-triazin, 1,3,5-Tris(3,5-di-tert-butyl-4-hydroy- phenylpropionyl)hexahydro-1,3,5-triazin, 1,3,5-Tris(3,5-dicyclohexyl-4-hydro- xybenzyl)isocyanurat;
Benzylphosphonate, wie z.B. Dimethyl-2,5-di-tert-butyl-4-hydroxybenzylphos- phonat, Dietyhl-3,5-di-tert-butyl-4-hydroxybenzylphosphonat, Dioctadecyl-
3.5-di-tert-butyl-4-hydroxybenzylphosphonat, Dioctadecyl-5-tert-butyl-4-hyd- roxy-3-methylbenzylphosphonat, das Calciumsalz des Monoethylesters der
3.5-Di-tert-butyl-4-hydroxybenzylphosphonsäure; Acylaminophenole, wie z.B. 4-Hydroxylauranilid, 4-Hydroxystearanilid, Octyl-N- (3,5-di-tert-butyl-4-hydroxyphenyl)carbamat;
Ester der ß-(3,5-Di-tert-butyl-4-hydroxyphenyl)propionsäure mit ein- oder mehrwertigen Alkoholen, z.B. Methanol, Ethanol, n-Octanol, i-Octanol, Octade- canol, 1,6-Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopen- tylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythri- tol, Tris(hydroxyethyl)isocyanurat, N,N'-Bis(hydroxyethyl)oxamid, 3-Thiaunde- canol, 3-Thiapentadecanol, Trimethylhexandiol, Trimethylolpropan, 4-Hydro- xymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octan;
Ester der ß-(5-tert-Butyl-4-hydroxy-3-methylphenyl)propionsäure mit ein- oder mehrwertigen Alkoholen, z.B. Methanol, Ethanol, n-Octanol, i-Octanol, Octade- canol, 1,6-Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopen- tylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythri- tol, Tris(hydroxyethyl)isocyanurat, N,N'-bis(hydroxyethyl)oxamid, 3-Thiaunde- canol, 3-Thiapentadecanol, Trimethylhexandiol, Trimethylolpropan, 4-Hydro- xymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octan, 3,9-Bis[2-{3-(3-tert-butyl- 4-hydroxy-5-methylphenyl)propionyloxy}-1,1-dimethylethyl]-2,4,8,10-tetrao- xaspiro[5.5]undecan;
Ester der ß-(3,5-Dicyclohexyl-4-hydroxyphenyl)propionsäure mit ein- oder mehrwertigen Alkoholen, z.B. Methanol, Ethanol, Octanol, Octadecanol, 1,6- Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythritol, Tris- (hydroxyethyl)isocyanurat, N,N'-bis(hydroxyethyl)oxamid, 3-Thiaundecanol, 3- Thiapentadecanol, Trimethylhexandiol, Trimethylolpropan, 4-Hydroxymethyl- 1-phospha-2,6,7-trioxabicyclo[2.2.2]octan;
Ester der (3,5-Di-tert-butyl-4-hydroxyphenyl)essigsäure mit ein- oder mehrwer- tigen Alkoholen, z.B. Methanol, Ethanol, Octanol, Octadecanol, 1,6-Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thiodiethylen- glycol, Diethylenglycol, Triethylenglycol, Pentaerythritol, Tris(hydroxyethyl)iso- cyanurat, N,N'-bis(hydroxyethyl)oxamid, 3-Thiaundecanol, 3-Thiapentadeca- nol, Trimethylhexandiol, Trimethylolpropan, 4-Hydroxymethyl-1-phospha- 2,6,7-trioxabicyclo[2.2.2]octan;
Amide der ß-(3,5-Di-tert-butyl-4-hydroxyphenyl)propionsäure, wie z.B. N,N'- Bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hexamethylendiamid, N,N'- Bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hexamethylendiamid, N,N'- Bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hexamethylendiamid, N,N'- Bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hydrazid, N,N'-Bis[2-(3-[3,5-di- tert-butyl-4-hydroxyphenyl]propionyloxy)ethyl]oxamid (Naugard®XL-1, ver- trieben durch Uniroyal);
Ascorbinsäure (Vitamin C).
Besonders bevorzugte phenolische Antioxidantien sind die folgenden Struktu- ren:
Ganz besonders bevorzugte phenolische Antioxidantien sind Octadecyl-3-(3,5- di-tert-butyl-4-hydroxyphenyl)propionat und Pentaerythritoltetrakis(3-(3,5-di- tert-butyl-4-hydroxyphenyl) propionat). Weitere besonders bevorzugte phenolische Antioxidantien basieren auf nach- wachsenden Rohstoffen wie z. B. Tocopherole (Vitamin E), Tocotrienole, Tocomonoenole, Carotenoide, Hydroxytyrosol, Flavonole wie z.B. Chrysin, Quercitin, Hesperidin, Neohesperidin, Naringin, Morin, Kaempferol, Fisetin, Anthocyane, wie z.B. Delphinidin und Malvidin, Curcumin, Carnosolsäure, Carnosol, Rosmarinsäure und Resveratrol.
Geeignete aminische Antioxidantien sind beispielsweise:
N,N'-Di-isopropyl-p-phenylendiamin, N,N'-Di-sec-butyl-p-phenylendiamin, N,N'-Bis(1,4-dimethylpentyl)-p-phenylendiamin, N,N'-Bis(1-ethyl-3-methyl- pentyl)-p-phenylendiamin, N,N'-Bis(1-methylheptyl)-p-phenylendiamin, N,N'- Dicyclohexyl-p-phenylendiamin, N,N'-Diphenyl-p-phenylendiamin, N,N'-Bis(2- naphthyl)-p-phenylendiamin, N-lsopropyl-N'-phenyl-p-phenylendiamin, N- (1,3-Dimethylbutyl)-N'-phenyl-p-phenylen-diamin, N-(1-Methylheptyl)-N'-phe- nyl-p-phenylendiamin, N-Cyclohexyl-N'-phenyl-p-phenylendiamin, 4-(p-Tolu- olsulfamoyl)diphenylamin, N,N'-Dimethyl-N,N'-di-sec-butyl-p-phenylendiamin, Diphenylamin, N-Allyldiphenylamin, 4-lsopropoxydiphenylamin, N-Phenyl-1- naphthylamin, N-(4-tert-Octylphenyl)-1-naphthylamin, N-Phenyl-2-naphthyla- min, octyliertes Diphenylamin, z.B. p,p'-Di-tert-octyldiphenylamin, 4-n-Butyla- minophenol, 4-Butyrylaminophenol, 4-Nonanoylaminophenol, 4-Dodecanoyla- minophenol, 4-Octadecanoylamino-phenol, Bis(4-methoxyphenyl)amin, 2,6- Di-tert-butyl-4-dimethylaminomethyl-phenol, 2,4'-Diaminodiphenylmethan, 4,4'-Diaminodiphenylmethan, N,N,N',N'-Tetra-methyl-4,4'-diaminodiphenyl- methan, 1,2-Bis[(2-methyl-phenyl)amino]ethan, 1,2-Bis(phenylamino)propan, (o-Tolyl)biguanid, Bis[4-(1',3'-dimethylbutyl)phenyl]amin, tert-octyliertes N- Phenyl-1-naphthylamin, ein Gemisch aus mono- und dialkylierten tert- Butyl/tert-Octyldiphenylaminen, ein Gemisch aus mono- und dialkylierten Nonyldiphenylaminen, ein Gemisch aus mono- und dialkylierten Dodecyldiphe- nylaminen, ein Gemisch aus mono- und dialkylierten Isopropyl/lsohexyl-diphe- nylaminen, ein Gemisch aus mono- und dialkylierten tert-Butyldiphenylaminen, 2,3-Dihydro-3,3-dimethyl-4H-1,4-benzothiazin, Phenothiazin, ein Gemisch aus mono- und dialkylierten tert-Butyl/tert-Octylphenothiazinen, ein Gemisch aus mono- und dialkylierten tert-Octylphenothiazinen, N-Allylphenothiazin, N,N,N',N'-Tetraphenyl-1,4-diaminobut-2-en sowie Mischungen oder Kombina- tionen hiervon.
Bevorzugte aminische Antioxidantien sind: N,N'-Di-isopropyl-p-phenylendia- min, N,N'-Di-sec-butyl-p-phenylendiamin, N,N'-Bis(1,4-dimethylpentyl)-p-phe- nylendiamin, N,N'-Bis(1-ethyl-3-methylpentyl)-p-phenylendiamin, N,N'-Bis(1- methylheptyl)-p-phenylendiamin, N,N'-Dicyclohexyl-p-phenylendiamin, N,N'- Diphenyl-p-phenylendiamin, N,N'-Bis(2-naphthyl)-p-phenylendiamin, N-Isop- ropyl-N'-phenyl-p-phenylendiamin, N-(1,3-Dimethylbutyl)-N'-phenyl-p-pheny- len-diamin, N-(1-Methylheptyl)-N'-phenyl-p-phenylendiamin, N-Cyclohexyl-N'- phenyl-p-phenylendiamin
Besonders bevorzugte aminische Antioxidantien sind die Strukturen:
Weitere bevorzugte aminische Antioxidantien sind Hydroxylamine bzw. N- oxide (Nitrone), wie z.B. N,N-Dialkylhydroxylamine, N,N-Dibenzylhydroxylamin, N,N-Dilaurylhydroxylamin, N,N-Distearylhydroxylamin, N-Benzyl-a-phenylnit- ron, N-Octadecyl-a-hexadecylnitron, sowie Genox EP (Sl Group gemäß der For- mel: Geeignete Lactone sind Benzofuranone und Indolinone wie z.B. 3-(4-(2-ace- toxyethoxy)-phenyl]-5,7-di-tert-butyl-benzofuran-2-on, 5,7-di-tert-butyl-3-[4- (2-stearoyloxyethoxy)phenyl]benzofuran-2-on, 3,3'-bis[5,7-di-tert-butyl-3-(4- (2-hydroxyethoxy]phenyl )benzofuran-2-on), 5,7-di-tert-butyl-3-(4-ethoxyphe- nyl)benzofuran-2-on, 3-(4-acetoxy-3,5-dimethylphenyl)-5,7-di-tert-butyl-benz- ofuran-2-on, 3-(3,5-dimethyl-4-pivaloyloxyphenyl )-5,7-di-tert-butyl-benzof- uran-2-on, 3-(3,4-dimethylphenyl)-5,7-di-tert-butyl-benzofuran-2-on, 3-(2,3- di- methylphenyl)-5,7-di-tert-butyl-benzofuran-2-on sowie Lactone, die zusätz- lich Phosphitgruppen beinhalten wie z.B.
Eine weitere geeignete Gruppe von Antioxidantien sind lsoindolo[2,1-
A]chinazoline wie z.B.
Geeignete sekundäre Antioxidantien sind insbesondere Phosphite oder Phos- phonite wie z.B.
Triphenylphosphit, Diphenylalkylphosphite, Phenyldialkylphosphite, Tri(nonyl- phenyl)phosphit, Trilaurylphosphite, Trioctadecylphosphit, Distearylpenta- erythritoldiphosphit, Tris-(2,4-di-tert-butylphenyl)phosphit, Diisodecylpenta- erythritoldiphosphit, Bis(2,4-di-tert-butylphenyl)pentaerythritoldiphosphit, Bis(2,4-di-cumylphenyl)pentaerythritoldiphosphit, Bis(2,6-di-tert-butyl-4-me- thylphenyl)pentaerythritoldiphosphit, Diisodecyloxypentaerythritoldiphosphit, Bis(2,4-di-tert-butyl-6-methylphenyl)pentaerythritoldiphosphit, Bis(2,4,6- tris(tert-butylphenyl)pentaerythritoldiphosphit, Tristearylsorbitoltriphosphit, Tetrakis(2,4-di-tert-butylphenyl)-4,4'-biphenylendiphosphonit, 6-lsooctyloxy- 2,4,8,10-tetra-tert-butyl-12H-dibenz[d,g]-1,3,2-dioxaphosphocin, Bis(2,4-di- tert-butyl-6-methylphenyl)methylphosphit, Bis(2,4-di-tert-butyl-6-methylphe- nyl)ethylphosphit, 6-Fluoro-2,4,8,10-tetra-tert-butyl-12-methyl-dibenz[d,g]-
1.3.2-dioxaphosphocin, 2,2'2"-Nitrilo[triethyltris(3,3",5,5'-tetra-tert-butyl- 1,1'-biphenyl-2,2'-diyl)phosphit], 2-Ethylhexyl(3,3',5,5'-tetra-tert-butyl-1,1'- biphenyl-2,2'-diyl))phosphit, 5-Butyl-5-ethyl-2-(2,4,6-tri-tert-butylphenoxy)-
1.3.2-dioxaphosphiran.
Besonders bevorzugte Phosphite sind:
mit n= 3-100
Ein bevorzugtes Phosphonit ist:
Ganz besonders bevorzugt wird das Phosphit Tris-(2,4-di-tert-butyIphe- nyl)phosphit als sekundäres Antioxidans verwendet.
Geeignete sekundäre Antioxidantien sind weiterhin Organo-Schwefelverbin- dungen wie z.B. Sulfide und Disulfide z.B. Distearylthiodipropionat, Dilau- rylthiodipropionat; Ditridecyldithiopropionat, Ditetradecylthiodipropionat, 3- (dodecylthio), 1,1'-[2,2-bis[[3-(dodecylthio)1-oxopropoxy]methyl]1,3-propan- diyl]propansäureester. Bevorzugt sind die folgenden Strukturen:
Geeignete Säurefänger („Antiacids") sind Salze von ein, zwei, drei oder vierwer- tigen Metallen, vorzugsweise Alkali-, Erdalkalimetalle, Aluminium oder Zink, insbesondere gebildet mit Fettsäuren, wie z.B. Calciumstearat, Magnesiumste- arat, Zinkstearat, Aluminiumstearat, Calciumlaurat, Calciumbehenat, Calcium- lactat, Calciumstearoyl-2-lactat. Weitere Klassen geeigneter Säurefänger sind Hydrotalcite, insbesondere synthetische Hydrotalcite auf Aluminium-, Magne- sium- und Zinkbasis, Hydrocalumite, Zeolithe, Erdalkalioxide, insbesondere Cal- ciumoxid und Magnesiumoxid sowie Zinkoxid, Erdalkalicarbonate, insbeson- dere Calciumcarbonat, Magnesiumcarbonat und Dolomit, und Hydroxide, ins- besondere Brucit (Magnesiumhydroxid),
Geeignete Costabilisatoren sind weiterhin Polyole insbesondere Alditole oder Cyclitole. Polyole sind z.B. Pentaerythrit, Dipentaerythrit, Tripentaerythrit, kurzkettige Polyetherpolyole oder Polyesterpolyole, sowie hyperverzweigte Polymere/Oligomere oder Dendrimere mit Alkoholgruppen z.B.
Vorzugsweise wird das mindestens eine Alditol ausgewählt aus der Gruppe be- stehend ausThreit, Erythrit, Galactit, Mannit, Ribit, Sorbit, Xylit, Arabit, Isomalt, Lactit, Maltit, Altritol, Iditol, Maltotritol und hydrierte Oligo- und Polysaccha- ride mit Polyol-Endgruppen und Mischungen hiervon. Besonders bevorzugt ist das mindestens eine bevorzugte Alditol ausgewählt aus der Gruppe bestehend aus Erythrit, Mannit, Isomalt, Maltit und Mischungen hiervon.
Beispiele für weitere geeignete Zuckeralkohole sind Heptitole und Octitole: meso-glycero-allo-Heptitol, D-glycero-D-altro-Heptitol, D-glycero-D-manno- Heptitol, meso-glycero-gulo-Heptitol, D-glycero-D-galacto-Heptitol (Perseitol), D-glycero-D-gluco-Heptitol, L-glycero-D-gluco Heptitol, D-erythro-L-galacto- Octitol, D-threo-L-galacto-Octitol.
Insbesondere kann das mindestens eine Cyclitol ausgewählt sein aus der Gruppe bestehend aus Inositol (myo, scyllo-, D-chiro-, L-chiro-, muco-, neo-, allo-, epi- und cis-lnosit), 1,2,3,4-tetrahydroxycyclohexan, 1, 2,3,4, 5-pentahyd- roxycyclohexan, Quercitol, Viscumitol, Bornesitol, Conduritol, Ononitol, Pinitol, Pinpollitol, Quebrachitol, Ciceritol, Chinasäure, Shikimisäure und Valienol, be- vorzugt ist dabei myo-lnosit (myo-lnositol).
Geeignete Lichtstabilisatoren sind beispielsweise Verbindungen auf der Basis von 2-(2'-Hydroxyphenyl)benzotriazolen, 2-Hydroxybenzophenonen, Estern von Benzoesäuren, Acrylaten, Oxamiden und 2-(2-Hydroxyphenyl)-1,3,5-Triazi- nen.
Geeignete 2-(2'-Hydroxyphenyl)benzotriazole sind beispielsweise 2-(2'-Hyd- roxy-5'methylphenyl)benzotriazol, 2-(3',5'-Di-tert-butyl-2'-hydroxyphenyl)- benzotriazol, 2-(5'-tert-Butyl-2'-hydroxy-phenyl)benzotriazol, 2-(2'-Hydroxy-5'- (1,1,3,3-tetramethylbutyl)phenyl)benzotriazol, 2-(3',5'-Di-tert-butyl-2'-hydro- xyphenyl)-5-chlorobenzotriazol, 2-(3'-tert-Butyl-2'-hydroxy-5'-methylphenyl-5- chlorobenzotriazol, 2-(3'-sec-Butyl-5'-tert-butyl-2'-hydroxy-phenyl)benzotria- zol, 2-(2'-Hydroxy-4'-octyloxyphenyl)benzotriazol, 2-(3',5'-Di-tert-amyl-2'-hyd- roxyphenyl)benzotriazol, 2-(3',5'-Bis(α,α-dimethylbenzyl)-2'-hydroxyphe- nyl)benzotriazol, 2-(3'-tert-Butyl-2'-hydroxy-5'-(2-octyloxycarbonylethyl)phe- nyl)-5-chlorobenzotriazol, 2-(3'-tert-Butyl-5'-[2-(2-ethylhexyloxy)car- bonylethyl]-2'-hydroxyphenyl)-5-chlorobenzotriazol, 2-(3'-tert-Butyl-2'-hyd- roxy-5'-(2-methoxycarbonylethyl)phenyl)-5-chlorobenzotriazol, 2-(3'-tert- Butyl-2'-hydroxy-5'-(2-methoxycarbonylethyl)phenyl)benzotriazol, 2-(3'-tert- Butyl-2'-hydroxy-5'-(2-octyloxycarbonylethyl)phenyl)benzotriazol, 2-(3'-tert- Butyl-5'-[2-(2-ethylhexyloxy)carbonylethyl]-2'-hydroxyphenyl)benzotriazol, 2- (3'-Dodecyl-2'-hydroxy-5'-methylphenyl)benzotriazol, 2-(3'-tert-Butyl-2'-hyd- roxy-5'-(2-isooctyloxycarbonylethyl)phenylbenzotriazol, 2,2'-Methylenbis[4- (1,1,3,3-tetramethylbutyl)-6-benzotriazol-2-ylphenol]; das Produkt der Umes- terung von 2-[3'-tert-Butyl-5'-(2-methoxycarbonylethyl)-2'-hydroxyphenyl]- 2H-benzotriazol mit Polyethylenglycol 300; [R— CH2CH2— COO— CH2CH2-]-2, wobei R = 3'-tert-Butyl-4'-hydroxy-5'-2H-benzotriazol-2-ylphenyl, 2-[2'-Hyd- roxy-3'-(α,α-dimethylbenzyl)-5'-(1,1,3,3-tetramethylbutyl)phenyl]benzotria- zol, 2-[2'-hydroxy-3'-(1,1,3,3-tetramethylbutyl)-5'-(α,α-dimethylbenzyl)phe- nyl]benzotriazol.
Geeignete 2-Hydroxybenzophenone sind beispielsweise 4-Hydroxy-, 4-Me- thoxy-, 4-Octyloxy-, 4-Decyloxy- 4-Dodecyloxy, 4-Benzyloxy, 4,2',4'-Trihydroxy- und 2'-Hydroxy-4,4'-dimethyoxy-Derivate der 2-Hydroxybenzophenone.
Geeignete Acrylate sind beispielsweise Ethyl-α-cyano-ß,ß-diphenylacrylat, lsooctyl-α-cyano-ß,ß-diphenylacrylat, Methyl-α-carbomethoxycinnamat, Me- thyl-α-cyano-ß-methyl-p-methoxycinnamat, Butyl-α-cyano-ß-methyl-p-me- thoxycinnamat, Methyl-α-carbomethoxy-p-methoxycinnamat und N-(ß-carbo- methoxy-ß-cyanovinyl)-2-methylindolin.
Geeignete Ester von Benzoesäuren sind beispielsweise 4-tert-Butylphenylsa- licylat, Phenylsalicylat, Octylphenylsalicylat, Dibenzoylresorcinol, Bis(4-tert- butylbenzoyl)resorcinol, Benzoylresorcinol, 2,4-Di-tert-butylphenyl-3,5-di-tert- butyl-4-hydroxybenzoat, Hexadecyl-3,5-di-tert-butyl-4-hydroxybenzoat, Octa- decyl-3,5-di-tert-butyl-4-hydroxybenzoat, 2-Methyl-4,6-di-tert-butylphenyl- 3,5-di-tert-butyl-4-hydroxybenzoat.
Geeignete Oxamide sind beispielsweise 4,4'-Dioctyloxyoxanilid, 2,2'-diethoxy- oxanilid, 2,2'-Dioctyloxy-5,5'-di-tert-butoxanilid, 2,2'-didodecyloxy-5,5'-di-tert- butoxanilid, 2-Ethoxy-2'-ethyloxanilid, N,N'-Bis(3-dimethylaminopropyl)oxa- mid, 2-Ethoxy-5-tert-butyl-2'-ethoxanilid und seine Mischungen mit 2-Ethoxy- 2'-ethyl-5,4'-di-tert-butoxanilid, Mischungen von o- und p-Methoxy-disubstitu- ierten Oxaniliden und Mischungen von o- und p-Ethoxy-disubstituierten Oxani- liden. Geeignete 2-(2-Hydroxyphenyl)-1,3,5-Triazine sind beispielsweise 2,4,6-Tris(2- hydroxy-4-octyloxyphenyl)-1,3,5-triazin, 2-(2-Hydroxy-4-octyloxyphenyl)-4,6- bis(2,4-dimethylphenyl)-1,3,5-triazin, 2-(2,4-Dihydroxyphenyl)-4,6-bis(2,4-di- methylphenyl)-1,3,5-triazin, 2,4-Bis(2-hydroxy-4-propyloxyphenyl)-6-(2,4-di- methylphenyl)-1,3,5-triazin, 2-(2-Hydroxy-4-octyloxyphenyl)-4,6-bis(4-methyl- phenyl-1,3,5-triazin, 2-(2-Hydroxy-4-dodecyloxyphenyl)-4,6-bis(2,4-dimethyl- phenyl)-1,3,5-triazin, 2-(2-Hydroxy-4-tridecyloxyphenyl)-4,6-bis(2,4-dimethyl- phenyl)-1,3,5-triazin, 2-[2-Hydroxy-4-(2-hydroxy-3-butyloxypropoxy)-phenyl]- 4,6-bis(2,4-dimethyl)-1,3,5-triazin, 2-[2-Hydroxy-4-(2-hydroxy-3-octyloxypro- pyloxy)phenyl]-4,6-bis(2,4-dimethyl)-1,3,5-triazin, 2-[4-(Dodecyloxy/Tridecy- loxy-2-hydroxypropoxy)-2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl)-1,3,5- triazin, 2-[2-Hydroxy-4-(2-hydroxy-3-dodecyloxypropoxy)phenyl]-4,6-bis(2,4- dimethylphenyl-1,3,5-triazin, 2-(2-Hydroxy-4-hexyloxy)phenyl-4,6-diphenyl-
1.3.5-triazin, 2-(2-Hydroxy-4-methoxyphenyl)-4,6-diphenyl-1,3,5-triazin, 2,4,6- Tris[2-hydroxy-4-(3-butoxy-2-hydroxypropoxy)phenyl]-1,3,5-triazin, 2-(2-Hyd- roxyphenyl)-4-(4-methoxyphenyl)-6-phenyl-1,3,5-triazin, 2-{2-Hydroxy-4-[3-(2- ethylhexyl-1-oxy)-2-hydroxypropyloxy]phenyl}-4,6-bis(2,4-dimethylphenyl-
1.3.5-triazin.
Geeignete Metalldeaktivatoren sind beispielsweise N,N'-Diphenyloxamid, N- Salicylal-N'-salicyloylhydrazin, N,N'-Bis(salicyloyl)hydrazin, N,N'-Bis(3,5-di-tert- butyl-4-hydroxyphenylpropionyl)hydrazin, 3-Salicyloylamino-1,2,4-triazol, Bis(benzyliden)oxalyldihydrazid, Oxanilid, Isophthaloyldihydrazid, Sebacoylbis- phenylhydrazid, N,N'-Diacetyladipoyldihydrazid, N,N'-Bis(salicyloyl)oxylyldi- hydrazid, N,N'-Bis(salicyloyl)thiopropionyldihydrazid.
Besonders bevorzugt als Metalldeaktivatoren sind:
Geeignete gehinderte Amine sind beispielsweise 1,1-Bis(2,2,6,6-tetramethyl-4- piperidyl)succinat, Bis(1,2,2,6,6-pentamethyl-4-piperidyl)sebazat, Bis(1-octy- loxy-2,2,6,6-tetramethyl-4-piperidyl)sebazat, Bis(1,2,2,6,6-pentamethyl-4- piperidyl)-n-butyl-3,5-di-tert-butyl-4-hydroxybenzylmalonat, das Kondensati- onsprodukt aus 1-(2-Hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidin und Succinsäure, lineare oder zyklische Kondensationsprodukte von N,N'-Bis(2 ,2,6,6-tetramethyl-4-piperidyl )hexamethylendiamin und 4-tert-Octylamino- 2,6-di-chloro-1,3,5-triazin, Tris(2 ,2,6,6-tetramethyl-4-piperidyl)nitrilotriacetat, Tetrakis(2 ,2,6,6-tetra-methyl-4-piperidyl)-1,2,3,4-butantetracarboxylat, 1,1'- (1,2-Ethandiyl)-bis(3,3,5,5-tetramethylpiperazinon), 4-Benzoyl-2,2,6,6-tetra- methylpiperidin, 4-Stearyloxy-2,2,6,6-tetramethylpiperidin, lineare oder zykli- sche Kondensationsprodukte aus N,N'-Bis(2,2,6,6-tetramethyl-4-piperidyl)he- xamethylendiamin und 4-Morpholino-2,6-dichloro-1,3,5-triazin das Reaktions- produkt von 7,7,9,9-Tetramethyl-2-cycloundecyl-1-oxa-3,8-diaza-4-oxospiro- [4,5]decan und Epichlorhydrin.
Umfasst in den oben angegebenen Strukturen sind dabei jeweils auch die ste- risch gehinderten N-H, N-alkyl wie N-methyl oder N-octyl, die N-alkoxy-Derivate wie N-methoxy oder N-octyloxy, die Cycloalkylderivate wie N-cyclohexyloxy und die N-(2-hydroxy-2-methylpropoxy) Analoga.
Bevorzugte gehinderte Amine weisen weiterhin die folgenden Strukturen auf:
Bevorzugte oligomere und polymere gehinderte Amine weisen die folgenden Strukturen auf:
Bei den zuvor genannten Verbindungen bedeutet n jeweils 3 bis 100.
Ein weiterer geeigneter Lichtstabilisator ist Hostanox NOW (Hersteller: Clari- ant SE) mit der folgenden allgemeinen Struktur: wobei R -O-C(O)-C15H31 oder -O-C(O)-C17H35 bedeutet.
Geeignete Dispergiermittel sind beispielsweise:
Polyacrylate, z.B. Copolymere mit langkettigen Seitengruppen, Polyacrylat- Blockcopolymere, Alkylamide: z.B. N,N'-1,2-Ethandiylbisoctadecanamid Sorbi- tanester, z.B. Monostearylsorbitanester, Titanate und Zirconate, reaktive Co- polymere mit funktionellen Gruppen z.B. Polypropylen-co-Acrylsäure, Polyp- ropylen-co-Maleinsäureanhydrid, Polyethylen-co-Glycidylmethacrylat, Poly- styrol-alt-Maleinsäureanhydrid-Polysiloxane: z.B. Dimethylsilandiol-Ethylen- oxid Copolymer, Polyphenylsiloxan Copolymer, Amphiphile Copolymere: z.B. Polyethylen-block-Polyethylenoxid, Dendrimere, z.B. hydroxylgruppenhaltige Dendrimere.
Geeignete Antinukleierungsmittel sind Azinfarbstoffe wie z.B. Nigrosin.
Geeignete Flammschutzmittel sind insbesondere
Anorganische Flammschutzmittel wie z.B. AI(OH)3, Mg(OH)2, AIO(OH), MgCO3, Schichtsilikate wie z.B. Montmorillonit oder Sepiolit, nicht oder organisch mo- difiziert, Doppelsalze, wie z.B. Mg-Al-Silikate, POSS-(Polyhedral Oligomeric Sil- sesquioxane) Verbindungen, Huntit, Hydromagnesit oder Halloysit sowie Sb2O3, Sb2O5, MoO3, Zinkstannat, Zinkhydroxystannat,
Stickstoffhaltige Flammschutzmittel wie z.B. Melamin, Melem, Melam, Me- lon, Melaminderivate, Melaminkondensationsprodukte oder Melaminsalze, Benzoguanamin, Polyisocyanurate, Allantoin, Phosphacene, insbesondere Melamincyanurat, Melaminphosphat, Dimelaminphosphat, Melaminpyro- phosphat, Melaminpolyphosphat, Melamin-Metall-Phosphate wie z.B. Mela- minaluminiumphosphat, Melaminzinkphosphat, Melaminmagnesiumphos- phat, sowie die entsprechenden Pyrophosphate und Polyphosphate, Poly- [2,4-(piperazin-1,4-yl)-6-(morpholin-4-yl)-1,3,5-triazin], Ammoniumpolyphos- phat, Melaminborat, Melaminhydrobromid,
Radikalbildner, wie z.B. Alkoxyamine, Hydroxylaminester, Azoverbindungen, Sulfenamide, Sulfenimide, Dicumyl oder Polycumyl, Hydroxyimide und deren Derivate wie z.B. Hydroxyimidester oder Hydroxyimidether
Phosphorhaltige Flammschutzmitteln wie z.B. roter Phosphor, Phosphate wie z.B. Resorcindiphosphat, Bisphenol-A-diphosphat und ihre Oligomere, Triphe- nylphosphat, Ethylendiamindiphosphat, Phosphinate wie z.B. Salze der hypo- phosphorigen Säure und Ihrer Derivate wie Alkylphosphinatsalzen z.B. Diet- hylphosphinataluminium oder Diethylphosphinat-Zink oder Aluminiumphos- phinat, Aluminiumphosphit, Aluminiumphosphonat, Phosphonatester, Oligo- mere und polymere Derivate der Methanphosphonsäure, 9,10-Dihydro-9- oxa-10-phosphorylphenanthren-10-oxid (DOPO) und deren substituierte Ver- bindungen,
Halogenhaltige Flammschutzmittel auf Chlor- und Brombasis wie z.B. polybro- minierte Diphenyloxide, wie z.B. Decabromdiphenyloxid, Tris(3-bromo-2, 2- bis(bromomethyl)propyl-phosphat, Tris(tribromneopentyl)phosphat, Tetra- bromphthalsäure, 1,2-Bis(tribromphenoxy)ethan, Hexabromcyclododecan, bromiertes Diphenylethan, Tris-(2,3-dibrompropyl)isocyanurat, Ethylen-bis- (tetrabromophthalimid), Tetrabromo-bisphenol A, bromiertes Polystyrol, bro- miertes Polybutadien bzw, Polystyrol-bromiertes Polybutadien-Copolymere, bromierter Polyphenylenether, bromiertes Epoxidharz, Polypentabrom- benzylacrylat, ggf. in Kombination mit Sb2O3 und/oder Sb2O5,
Borate wie z.B. Zinkborat oder Calciumborat, ggf. auf Trägermaterial wie z.B. Silica
Schwefelhaltige Verbindungen wie z.B. elementarer Schwefel, Disulfide und Polysulfide, Thiuramsulfid, Dithiocarbamate, Mercaptobenzthiazol und Sul- fenamide,
Antidrip-Mitteln wie z.B. Polytetrafluorethylen,
Siliciumhaltige Verbindungen wie z.B. Polyphenylsiloxane,
Kohlenstoffmodifikationen wie z.B. Carbon-Nanoröhren (CNT), Blähgraphit o- der Graphen sowie Kombinationen oder Mischungen hieraus.
Geeignete Weichmacher sind beispielsweise Phthalsäureester, Adipinsäu- reester, Ester der Zitronensäure, Ester der 1,2-Cyclohexandicarbonsäure, Tri- mellithsäureester, Isosorbidester, Phosphatester, Epoxide wie z.B. epoxidier- tes Sojabohnenöl oder aliphatische Polyester.
Geeignete Gleitmittel und Verarbeitungshilfsmittel sind beispielsweise Po- lyethylenwachse, Polypropylenwachse, Salze von Fettsäuren wie z.B. Calci- umstearat, Zlnkstearat oder Salze von Montanwachsen, Amidwachse wie z.B. Erucasäureamid oder Ölsäureamide, Fluorpolymere, Silikone oder Neoalkoxy- titanate- und Zirkonate.
Geeignete Pigmente können anorganischer oder organischer Natur sein. An- organische Pigmente sind beispielsweise Titandioxid, Zinkoxid, Zinksulfid, Ei- senoxid, Ultramarin, Ruß, organische Pigmente sind beispielsweise Anthrachi- none, Anthanthrone, Benzimidazolone, Chinacridone, Diketopyrrolopyrrole, Dioxazine, Indanthrone, Isoindolinone, Azo-Verbindungen, Perylene, Phtha- locyanine oder Pyranthrone. Weitere geeignete Pigmente sind Effektpig- mente auf Metallbasis oder Perlglanzpigmente auf Metalloxid-Basis.
Geeignete Optische Aufheller sind beispielsweise Bisbenzoxazole, Phe- nylcumarine oder Bis(styryl)biphenyle und insbesondere optische Aufheller der Formeln: Geeignete Füllstoffdeaktivatoren sind beispielsweise Polysiloxane, Polyac- rylate insbesondere Blockcopolymere wie Polymethacrylsäure-polyalkylen- oxid oder Polyglycidyl(meth)acrylate und deren Copolymere z.B. mit Styrol sowie Epoxide z.B. der folgenden Strukturen:
Geeignete Antistatika sind beispielsweise ethoxylierte Alkylamine, Fettsäu- reester, Alkylsulfonate und Polymere wie z.B. Polyetheramide.
Geeignete Antiozonantien sind die oben genannten Amine wie z.B. N,N'-Di- isopropyl-p-phenylendiamin, N,N'-Di-sec-butyl-p-phenylendiamin, N,N'- Bis(1,4-dimethylpentyl)-p-phenylendiamin, N,N'-Dicyclohexyl-p-phenylendia- min, N-lsopropyl-N'-phenyl-p-phenylendiamin, N-(1,3-Dimethylbutyl)-N'-phe- nyl-p-phenylen-diamin, N-(1-Methylheptyl)-N'-phenyl-p-phenylendiamin, N- Cyclohexyl-N'-phenyl-p-phenylendiamin
Geeignete Rheologiemodifikatoren z.B. für die Herstellung von Controlled rhe- ology Polypropylen (CR-PP) sind beispielsweise Peroxide, Alkoxyaminester oder Oxyimidsulfonsäureester.
Geeignete Additive zum Molekulargewichtsaufbau von Polykondensationspo- lymeren (Kettenverlängerer) sind Diepoxide, Bis-Oxazoline, Bis-Oxazolone, Bis- Oxazine, Diisocyanate, Dianhydride, Bis-Acyllactame, Bis-Maleimide, Dicya- nate, Carbodiimide und Polycarbodiimide. Weitere geeignete Kettenverlänge- rer sind polymere Verbindungen wie z. B. Polystyrol-Polyacrylat-Polygly- cidyl(meth)acrylat- Copolymere, Polystyrol-Maleinsäureanhydrid-Copolymere und Polyethylen-Malein--säure--anhydrid-Copolymere.
Geeignete Hydrolysestabilisatoren für Polykondensationspolymere wie Polyes- ter oder Polyamide sind beispielsweise Epoxide, Carbodiimide, Polycar- bodiimide oder Aziridine.
Geeignete Additive zur Erhöhung der elektrischen Leitfähigkeit sind beispiels- weise die erwähnten Antistatika, Ruß und Kohlenstoffverbindungen wie Koh- lenstoff-Nanoröhrchen und Graphen, Metallpulver wie z.B. Kupferpulver und leitfähige Polymere wie bsp. Polypyrrole, Polyaniline und Polythiophene.
Geeignete Infrarot-aktive Additive sind beispielsweise Aluminumsilikate, Hyd- rotalcite oder Farbstoffe wie Phthalocyanine oder Anthrachinone.
Geeignete Vernetzungsmittel sind beispielsweise Peroxide wie Dialkylperoxide, Alkyl-aryl-peroxide, Peroxyester, Peroxycarbonate, Diacylproxide, Peroxyke- tale, Silane wie z.B. Vinyltrimethoxysilan, Vinyltriethoxysilan, Vinyltriacetoxy- silan, Vinyltris(2-methoxyethoxy)silan, 3-Methacryloyloxypropyltrimethoxy- silan, Vinyldimethoxymethylsilan oder Ethylen-Vinylsilan-Copolymere. Geeignete Additive zur Erhöhung der Wärmeleitfähigkeit von Kunststoff-Rezyk- laten sind beispielsweise anorganische Füllstoffe wie Bornitrid, Aluminium- nitrid, Aluminiumoxid, Aluminiumsilikat, Siliziumcarbid aber uch Kohlenstoff- Nanoröhren (CNT).
Geeignete Schlagzähigkeitsverbesserer werden üblicherweise für das jeweilige Polymer ausgewählt und sind beispielsweise aus der Gruppe der funktionali- sierten oder nicht funktionalisierten Polyolefine, wie z.B. Ethylencopolymere wie EPDM oder Maleinsäureanhydrid oder Styrol-Acrylnitril-modifiziertes EPDM, Glycidylmethacrylat modifizierte Etylen-Acrylat-Copolymere oder auch lonomere, Core-Shell-Polymere z.B. auf Basis von MBS (Methacrylat-Butadien- Styrol-Copolymer) oder Acrylester-Polymethylmethacrylat, thermoplastische Elastomere (TPE) z.B. auf der Basis von Styrol-Blockcopolymeren (Styrol-Buta- dien (SB), Styrol-Butadien-Styrol (SBS) ggf. hydriert (SEBS) oder modifiziert durch Maleinsäureanhydrid (SEBS-g-MAH), thermoplastischen Polyurethanen, Copolyestern oder Copolyamiden.
Geeignete Slip-Agents sind beispielsweise Amidwachse wie Erucasäureamid o- der Ölsäureamid.
Geeignete Antiblock-Mittel sind beispielsweise Silica, Talk oder Zeolithe.
Geeignete Entformungshilfsmittel sind beispielsweise Silikone, Seifen und Wachse wie z.B. Montanwachse.
Bei der zuvor genannten bevorzugten Ausführungsform kann der mindestens eine Zusatzstoff in einer Menge von 0,01 bis 9,99 Gew.-%, bevorzugt 0,01 bis 4,98 Gew.-%, weiter bevorzugt 0,02 bis 2,00 Gew.-%, besonders bevorzugt 0,05 bis 1,00 Gew.-%, bezogen auf die Gesamtheit der Verbindung der allgemeinen Formel I, des organischen Materials und des mindestens einen Zusatzstoffs, enthalten sein oder zugesetzt werden.
Zudem wird erfindungsgemäß ein organisches Material, insbesondere eine Kunststoffzusammensetzung vorgeschlagen, das die mindestens eine Verbin- dung der allgemeinen Formel I, und/oder mindestens eine polymere Verbin- dung, enthaltend eine Wiederholungseinheit gemäß allgemeiner Formel II oder eine Mischung mehrerer der Verbindungen gemäß allgemeiner Formel I und/o- der polymerer Verbindungen, enthaltend eine Wiederholungseinheit gemäß allgemeiner Formel II wie voranstehend definiert, als Stabilisator beinhaltet.
Eine bevorzugte Ausführungsform sieht ein organisches Material mit folgender Zusammensetzung vor:
0,01 bis 10,00 Gew.-%, bevorzugt von 0,02 bis 5,00 Gew.-%, weiter bevorzugt von 0,05 bis 3,00 Gew.-%, weiter bevorzugt von 0,10 bis 2,00 Gew.-%, beson- ders bevorzugt 0,10 bis 1,00 Gew.-% mindestens einer Verbindung der allge- meinen Formel I, mindestens einer polymere Verbindung, enthaltend eine Wie- derholungseinheit gemäß allgemeiner Formel II oder einer Mischung mehrerer der Verbindungen gemäß allgemeiner Formel I und/oder polymerer Verbindun- gen, enthaltend eine Wiederholungseinheit gemäß allgemeiner Formel II,
99,99 bis 90,00 Gew.-%, bevorzugt 99,89 bis 95,00 Gew.-%, weiter bevorzugt von 99,93 bis 96,98 Gew.-%, besonders bevorzugt 99,90 bis 98,00 Gew.-% min- destens eines organischen Materials, bevorzugt ausgewählt aus der Gruppe be- stehend aus Kunststoffen, Beschichtungen, Schmiermitteln, Hydraulikölen, Motorenölen, Turbinenölen, Getriebeölen, Metallbearbeitungsflüssigkeiten, Chemikalien oder Monomeren, sowie
0 bis 9,99 Gew.-%, bevorzugt 0 bis 4,98 Gew.-%, besonders bevorzugt 0,02 bis 2,00 Gew.-% mindestens eines Zusatzstoffs, wobei sich die Bestandteile zu 100 Gew.-% addieren.
Das organische Material kann beispielsweise mindestens einen Zusatzstoff, ausgewählt aus der Gruppe bestehend aus sekundären und/oder primären An- tioxidantien, insbesondere primären und/oder sekundären Antioxidantien aus- gewählt aus der Gruppe bestehend aus Phosphiten, Phosphoniten, Thiolen, phenolischen Antioxidantien, sterisch gehinderten Aminen, Hydroxylaminen sowie Mischungen oder Kombinationen hiervon, UV-Absorbern, Lichtstabilisa- toren, Hydroxylamin basierten Stabilisatoren, Benzofuranon basierten Stabi- lisatoren, Nukleierungsmittel, Schlagzähigkeitsverbesserern, Weichmachern, Gleitmitteln, Rheologiemodifikatoren, Kettenverlängerern, Verarbeitungshilfs- mitteln, Pigmenten, Farbstoffen, optische Aufhellern, antimikrobiellen Wirk- stoffen, Antistatika, Slipmitteln, Antiblockmitteln, Kopplungsmitteln, Disper- giermitteln, Kompatibilisatoren, Sauerstofffängern, Säurefängern, Costabilisa- toren, Markierungsmitteln sowie Antifoggingmitteln, insbesondere sekundä- ren Antioxidantien.
Insbesondere ist der mindestens eine Zusatzstoff dabei ausgewählt aus der Gruppe bestehend aus einem sekundären Antioxidans ausgewählt aus der Gruppe bestehend aus Phosphiten, Phosphoniten, mindestens einem Costabi- lisator ausgewählt aus der Gruppe bestehend aus Polyolen, Säurefängern sowie sterisch gehinderten Aminen.
Die Erfindung betrifft zudem ein Verfahren zur Stabilisierung von organischen Materialien, insbesondere gegen oxidativen, thermischen und/oder actini- schen Abbau, bei dem mindestens eine Verbindung der allgemeinen Formel I, mindestens eine polymere Verbindung, enthaltend eine Wiederholungseinheit gemäß allgemeiner Formel II oder eine Mischung mehrerer der Verbindungen gemäß allgemeiner Formel I und/oder polymerer Verbindungen, enthaltend eine Wiederholungseinheit gemäß allgemeiner Formel II wie voranstehend de- finiert, in das organische Material eingearbeitet wird.
Erfindungsgemäß werden zudem die nachfolgenden Verbindungen vorgeschla- gen, die sich als Stabilisator eignen: oder eine polymere Verbindung, enthaltend eine Wiederholungseinheit ge- mäß allgemeiner Formel II wobei X1, X2, X3, a, b und c wie voranstehend definiert sind.
Zudem wird ein Verfahren zur Herstellung einer Verbindung der allgemeinen Formel I vorgeschlagen, bei dem Verfahren zur Herstellung einer Verbindung der allgemeinen Formel I nach einem der Ansprüche 1 bis 3, bei dem eine Verbindung der allgemeinen Formel II in einem ersten Schritt mit einem Schutzgruppenreagenz zu einer Verbindung der allgemeinen Formel Illa oder IIIb umgesetzt wird, wobei die Variablen X2, X3, a, b, c und d die oben angegebene Bedeutung ha- ben und
X4 ein linearer oder verzweigter Alkylenrest mit 1 bis 15 Kohlenstoffato- men, bevorzugt ein linearer Alkylenrest mit 1 bis 3,
SG eine Schutzgruppe und e 0 oder 1 ist, in einem zweiten Schritt die Verbindung der allgemeinen Formel Illa oder 111 b mit z.B. 1/d Äquivalenten einer Verbindung der allgemeinen Formeln IV zur Verbindung der allgemeinen Formel I umgesetzt wird und abschließend das im zweiten Schritt erhaltene Produkt entschützt wird.
Beim zuvor genannten Verfahren bedeutet der Umsatz mit 1/d Äquivalenten, dass bei der Reaktion bevorzugt mindestens 1/d Äquivalente der Verbindung der allgemeinen Formeln IV vorhanden sind. Es kann jedoch auch mit einem Überschuss der Verbindung der allgemeinen Formeln III oder IV bezüglich des anderen Reaktionspartners gearbeitet weren.
Die vorliegende Erfindung wird anhand der nachfolgenden Beispiele näher be- schrieben, ohne die Beispiele auf bevorzugte Ausführungsformen zu beschrän- ken.
Ausführungsbeispiele:
A) Herstellung der erfindungsgemäßen Stabilisatoren a. Synthese des Triethylsilyl-geschützten Eugenols In einem ausgeheizten 250 ml-Dreihalskolben mit Septum, Rückflusskühler und einem Stickstoff-Zugang werden im Stickstoff-Gegenstrom zunächst 125 mg (1,00 eq., 0,24 mmol) Tris(pentafluorophenyl)boran vorgelegt. In einem sepa- raten 100 mL-Schlenkkolben werden 42,00 mL (2,02 eq, 30,66 g, 263,67 mmol) Triethylsilan und 20 mL (1,00 eq, 21,40 g, 130,33 mmol) Eugenol miteinander 10 min gerührt. Anschließend wird das Triethylsilan-Eugenol-Gemisch über ein Septum langsam mit einer Stickstoff-gespülten Spritze in den Dreihalskolben gegeben, wobei es zu einer starken Gas- und Hitzeentwicklung kommt. Die Re- aktionsmischung nimmt in der Folge eine gelbe Farbe an, welche allerdings im Zuge des 4-stündigen Rührens bei Raumtemperatur wiederverschwindet. Nach Ablauf der Reaktionsdauer wird das Reaktionsgemisch in 100 mL Dichlorme- than aufgenommen und über eine neutrale Aluminiumoxid-Säule gegeben. Das Reaktionsgemisch wird einrotiert und Reste an noch vorhandenem Triethylsilan im Vakuum abdestilliert. Es werden 46,93 g einer leicht gelben Flüssigkeit er- halten. Die Ausbeute beträgt 95,20 %. b. Synthese des Triethylsilyl-geschützten 1,4-Butandiol Bis(thioglycolat)- Urushiol-Thioethers
In einem 100-mL Schlenkkolben werden 2,20 g (1,00 eq., 9,23 mmol) 1,4-Bu- tandiol Bis(thioglycolat) mit 7,00 g (2,00 eq., 18,51 mmol) des Triethyl-ge- schützten Eugenols zusammengegeben. Das Reaktionsgemisch wird mittels der Freeze-Pump-Thaw-Methode einmal entgast und anschließend mit einer gerin- gen Menge Irgacure 819 im Stickstoff-Gegenstrom versetzt. Danach wird das Reaktionsgemisch unter Rühren mit einer Wellenlänge von 366 nm unter Stick- stoff-Atmosphäre bestrahlt. Der Reaktionsfortschritt wird mittels 1H-NMR- Spektroskopie durch das Ziehen regelmäßiger Proben verfolgt. Nach 30 min ist bereits eine wesentliche Viskositätserhöhung erkennbar und nach 20 h ist die Reaktion abgeschlossen. Die Ausbeute beträgt 99,50 %. c. Entschützung des Triethylsilyl-geschützten 1,4-Butandiol Bis(thiogly- colat)-Urushiol-Thioethers
In einem 100 mL-Rundkolben werden 3,00 g (3,02 mmoi) des Triethylsilan-ge- schützten 1,4-Butandiol Bis(thioglycolat)-Urushiol-Thioethers in 30 mL Ethanol gelöst. Anschließend werden 1,20 mL einer 1 M Salzsäure zugegeben, wobei eine weiße Trübung auftritt, die in der Folge wieder verschwindet. Das Reakti- onsgemisch wird über Nacht gerührt und am folgenden Tag mit 15 mL einer gesättigten Natriumhydrogencarbonat-Lösung und 40 mL destilliertem Wasser versetzt. Das Reaktionsgemisch wird dreimal mit je 30 mL Ethylacetat extra- hiert. Die vereinigten organischen Extrakte werden nochmals mit40 mL einer gesättigten Natriumchlorid-Lösung gewaschen und schließlich einrotiert. Der Rückstand wird in 60 mL Tetrahydrofuran aufgenommen und über eine Fritte mit einer dünnen Schicht mit Kieselgel gegeben. Das Filtrat wird einrotiert und schließlich nochmals im Vakuum destilliert. Nach dem Abkühlen werden 1,31 g (2,43 mmol) eines weißen, wachsartigen Feststoffs erhalten. Die Ausbeute be- trägt 80,46 %.
Tabelle 1: Übersicht über die thermogravimetrischen Untersuchungen des syn- thetisierten 1,4-Butandiol Bis(thioglycolat)-Urushiol-Thioethers. d. Synthese des Triethylsilyl-geschützten Pentaerythritol tetrakis(3-mer- captopropionat)-Urushiol-Thioethers In einem 100-mL Schlenkkolben werden 6,40 g (1,00 eq., 13,10 mmol) Pen- taerythritol tetrakis(3-mercaptopropionat) mit 19,82 g (4,00 eq., 52,40 mmol) des Triethyl-geschützten Eugenols zusammengegeben. Das Reaktionsgemisch wird mittels der Freeze-Pump-Thaw-Methode einmal entgast und anschließend mit einer geringen Menge IRGACURE 819 im Stickstoff-Gegenstrom versetzt. Da- nach wird das Reaktionsgemisch unter Rühren mit einer Wellenlänge von 366 nm unter Stickstoff-Atmosphäre bestrahlt. Der Reaktionsfortschritt wird mittels 1H-NMR-Spektroskopie durch das Ziehen regelmäßiger Proben verfolgt. Nach 30 min ist bereits eine wesentliche Viskositätserhöhung erkennbar und nach 48 h ist die Reaktion abgeschlossen. Die Ausbeute beträgt 99,87 %. e. Entschützung des Triethylsilyl-geschützten Pentaerythritol tetrakis(3- mercaptopropionat)-Urushiol-Thioethers In einem 100 mL-Rundkolben werden 3,02 g (1,51 mmol) des Triethylsilan-ge- schützten Pentaerythritoi tetrakis(3-mercaptopropionat)-Urushiol-Thioethers in 30 mL Ethanol gegeben. Anschließend werden 1,50 mL einer 1 M Salzsäure zugegeben, wobei eine weiße Trübung auftritt, die in der Folge wieder ver- schwindet. Das Reaktionsgemisch wird über Nacht gerührt und am folgenden Tag mit 15 mL einer gesättigten Natriumhydrogencarbonat-Lösung und 40 mL destilliertem Wasser versetzt. Das Reaktionsgemisch wird dreimal mit je 30 mL Ethylacetat extrahiert. Die vereinigten organischen Extrakte werden nochmals mit 40 mL einer gesättigten Natriumchlorid-Lösung gewaschen und schließlich einrotiert. Der Rückstand wird in 60 mL Tetrahydrofuran aufgenommen und über eine Fritte mit einer dünnen Schicht mit Kieselgel gegeben. Das Filtrat wird einrotiert und schließlich nochmals im Vakuum destilliert. Nach dem Abkühlen werden 1,09 g (1,00 mmol) einer leicht gelben, viskosen Flüssigkeit erhalten. Die Ausbeute beträgt 66,23 %.
Tabelle 2: Übersicht über die thermogravimetrischen Untersuchungen des synthetisierten Pentaerythritoi tetrakis(3-mercaptopropionat)-Urushiol-Thio- ethers. f. Synthese des Triethylsilyl-Octadecanthiol-Urushiol-Thioethers
In einem 100-mL Schlenkkolben werden 5,48 g (1,00 eq., 19,12 mmol) Octade- canthiol in 7,00 g (0,97 eq., 18,51 mmol) des Triethyl-geschützten Eugenols ge- löst. Das Reaktionsgemisch wird mittels der Freeze-Pump-Thaw-Methode ein- mal entgast und anschließend mit einer geringen Menge IRGACURE 819 im Stick- stoff-Gegenstrom versetzt. Danach wird das Reaktionsgemisch unter Rühren mit einer Wellenlänge von 366 nm unter Stickstoff-Atmosphäre bestrahlt. Der Reaktionsfortschritt wird mittels 1H-NMR-Spektroskopie durch das Ziehen re- gelmäßiger Proben verfolgt. Nach 30 min ist bereits eine wesentliche Viskosi- tätserhöhung erkennbar und nach 24 h ist die Reaktion abgeschlossen. Die Aus- beute beträgt 99,27 %. g. Entschützung des Triethylsilyl-Octadecanthiol-Urushiol-Thioethers
In einem 100 mL-Rundkolben werden 5,40 g (8,13 mmol) des Triethylsilan-ge- schützten Octadecanthiol-Urushiol-Thioethers in 30 mL Ethanol gelöst. An- schließend werden 0,8 mL konzentrierte Salzsäure zugegeben, wobei eine weiße Trübung auftritt, die in der Folge wieder verschwindet. Nach 3 h werden 10 mL destilliertes Wasser zur Lösung getropft, wobei ein weißer Niederschlag ausfällt. Dieser wird abfiltriert und schließlich in Methanol umkristallisiert. Es werden 3,36 g (7,70 mmol) eines weißen Feststoffs erhalten. Die Ausbeute be- trägt 94,72 %.
Tabelle 3: Übersicht über die thermogravimetrischen Untersuchungen des syn- thetisierten Octadecanthiol-Urushiol-Thioethers. h. Synthese des (3R,6S)-Hexahydrofuro[3,2-b]furan-3,6-diyl bis(3-((3-(3,4- bis((triethylsilyl)oxy)phenyl)propyl)thio)propanoat)s In einem 100-mL Schlenkkolben werden 7,00 g (1,00 eq., 21,74 mmol) Isosorbid bis-(3-mercapto)propionat in 16,44 g (2,00 eq., 43,47 mmol) des Triethyl-ge- schützten Eugenols vorgelegt. Das Reaktionsgemisch wird mittels der Freeze- Pump-Thaw-Methode einmal entgast und anschließend mit einer geringen Menge IRGACURE 819 im Stickstoff-Gegenstrom versetzt. Danach wird das Re- aktionsgemisch unter Rühren mit einer Wellenlänge von 366 nm unter Stick- stoff-Atmosphäre bestrahlt, wobei sich das Reaktionsgemisch nach und nach homogenisiert. Der Reaktionsfortschritt wird mittels 1H-NMR-Spektroskopie durch das Ziehen regelmäßiger Proben verfolgt. Nach 24 h hat sich das Reakti- onsgemisch homogenisiert und nach 96 h ist die Reaktion abgeschlossen. Die Ausbeute beträgt 99,26 %. i. Entschützung des (3R,6S)-Hexahydrofuro[3,2-b]furan-3,6-diyl bis(3-((3-(3,4- bis((triethylsilyl)oxy)phenyl)propyl)thio)propanoat)s In einem 100-mL Rundkolben werden 7,32 g (1,00 eq., 6,79 mmol) (3R,6S)-He- xahydrofuro[3,2-b]furan-3,6-diyl bis(3-((3-(3,4-bis((triethylsilyl)oxy)phenyl)- propyl)thio)propanoat)s und 35 mL Ethanol vorgelegt. Unter Rühren werden 3,5 mL 1M Salzsäure zugegeben, wobei ein weißer, voluminöser Niederschlag entsteht, der wieder in Lösung geht. Nach 24 h wird das Reaktionsgemisch in 40 mL gesättigte Natriumhydrogencarbonat gegeben und die wässrige Lösung dreimal mit je 40 mL Ethylacetat extrahiert. Die organische Phase wird über Natriumsulfat getrocknet und das Lösungsmittel anschließend am Rotations- verdampfer entfernt. Schließlich wird der Rückstand im Hochvakuum nochmals destilliert, wobei 2,73 g (4,38 mmol) eines hochviskosen, rot-orangenen Gels zurückbleibt. Die Ausbeute beträgt 64,51 %. Tabelle 4 Übersicht über die Ergebnisse der thermogravimetrischen Untersu- chung des Hexahydrofuro[3,2-b]furan-3,6diyl bis((3-((3-(3,4-dihydroxyphenyl)- propyl)thio)propanoats unter Stickstoff-Atmosphäre. j. Thiol-en-Reaktion von Mercaptoethanol mit dem Triethylsilyl-geschützten Eu- genol
In einem 100-mL Schlenkkolben werden 3,70 mL (1,00 eq., 53,03 mmol) Mer- captoethanol und 20,02 g (1,00 eq., 52,93 mmol) des Triethyl-geschützten Eu- genols vorgelegt. Das Reaktionsgemisch wird mittels der Freeze-Pump-Thaw- Methode einmal entgast und anschließend mit einer geringen Menge Irgacure 819 im Stickstoff-Gegenstrom versetzt. Danach wird das Reaktionsgemisch un- ter Rühren mit einer Wellenlänge von 366 nm unter Stickstoff -Atmosphäre be- strahlt. Der Reaktionsfortschritt wird mittels 1H-NMR-Spektroskopie durch das Ziehen regelmäßiger Proben verfolgt. Nach 15 min ist bereits eine wesentliche Viskositätserhöhung erkennbar und nach 12 h ist die Reaktion abgeschlossen. Überschüssiges Mercaptoethanol wird durch Destillation im Vakuum entfernt. Die Ausbeute beträgt 99,87 %. k. Methacrylilierung des Hydroxy-endfunktionalisierten Triethylsilyl-ge- schützten Eugenol In einem ausgeheizten 500 mL Dreihalskolben mit Tropftrichter und Septum werden 22,03 g (1,00 eq., 48,28 mmol) des über die Thiol-en-Reaktion mit Mer- captoethanol Hydroxy-endfunktionalisierten Triethylsilyl-geschützten Eugenols in 100 mL getrocknetem Chloroform in Stickstoff-Atmosphäre gelöst. Anschlie- ßend werden 10,10 mL (1,51 eq., 72,86 mmol) Triethylamin im Stickstoff-Ge- genstrom zugegeben. Die Reaktionsmischung wird im Eisbad 30 min gekühlt. Danach wird eine Lösung aus 5,10 mL (1,1 eq., 53,03 mmol) Methacryloylchlo- rid und 60 mL trockenem Chloroform langsam zugetropft. Nach der beendeten Zugabe wird das Reaktionsgemisch über Nacht bei Raumtemperatur gerührt und am folgenden Tag 3-mal mit destilliertem Wasser gewaschen. Anschlie- ßend wird das Reaktionsgemisch über eine neutrale Aluminiumoxid-Säule ge- geben und das Lösungsmittel abrotiert. Es werden 13,54 g (25,79 mmol) einer gelben, viskosen Flüssigkeit erhalten. Die Ausbeute beträgt 53,43 %.
I. Synthese des Poly(2-((3-(3,4-dihydroxyphenyl)propyl)thio)ethylmethac- rylat)s
In einem 100 mL Schlenkkolben werden 10,00 g (1,00 eq., 19,07 mmol) des 2- ((3-(3,4-Dihydroxyphenyl)propyl)thio)ethylmethacrylats und 90 mg (0,03 eq., 0,55 mmol) in Methanol umkristallisiertes Azobis(isobutyronitril) in 40 mL Tol- uol gelöst. Die Lösung wird dreimal mittels Freeze-Pump-Thaw-Methode ent- gast und die Reaktionslösung anschließend unter Stickstoff-Atmosphäre auf 73 °C über Nacht erhitzt. Dabei ist nach 30 min eine deutliche Viskositätserhö- hung zu erkennen. Am folgenden Tag wird der Kolben sofort in ein Eisbad über- führt und das Polymer danach in 300 mL Methanol gefällt. Nach dem Trocknen wird das transparente Gel in 100 mL Tetrahydrofuran aufgenommen und mit 3,00 mL 1 M Salzsäure versetzt. Nach 48 h wird das Polymer schließlich in 400 mL n-Hexan gefällt. Nach dem Trocknen im Hochvakuum bei 80 °C werden 3,57 g eines weiß-beigen Feststoffs erhalten.
Tabelle 5 Übersicht über die Ergebnisse der thermogravimetrischen Untersu- chung des Poly(2-((3-(3,4-dihydroxyphenyl)propyl)thio)ethylmethacrylat)s un- ter Stickstoff-Atmosphäre.
Tabelle 6 Überblick über das mittels Gelpermeationschromatographie ermit- telte mittlere Molekulargewicht und die Dispersität des synthetisierten Poly(2-((3-(3,4-dihydroxyphenyl)propyl)thio)ethylmethacrylat)s. m. Synthese des Polystearylmethacrylat-co-Poly(2-((3-(3,4-dihydroxy- phenyl)propyl)thio)ethylmethacrylat)-Copolymers
In einem 100 mL Schlenkkolben werden 11,00 g (1,00 eq., 20,96 mmol) des 2- ((3-(3,4-Dihydroxyphenyl)propyl)thio)ethylmethacrylats, 3,05 g (0,43 eq., 9,01 mmol) entstabilisiertes Stearylmethacrylat und 72 mg (0,02 eq., 0,44 mmol) in Methanol umkristallisiertes Azobis(isobutyronitril) in 32 mL Tol- uol gelöst. Die Lösung wird dreimal mittels Freeze-Pump-Thaw-Methode ent- gast und die Reaktionslösung unter Stickstoff-Atmosphäre anschließend auf 73 °C über Nacht erhitzt. Dabei ist nach 30 min eine deutliche Viskositätserhöhung zu erkennen. Am folgenden Tag wird der Kolben sofort in ein Eisbad überführt und das Polymer danach in 350 mL Methanol gefällt. Nach dem Trocknen wird das transparente Gel in 100 mL Tetrahydrofuran aufgenommen und mit 3,00 mL 1 M Salzsäure sowie einigen Tropfen Ethanol versetzt. Durch das Nehmen von Fällungsproben in n-Hexan mit anschließender 1H-NMR-Analyse wird der Fortschritt der Desilylierung überprüft. Nach 360 h wird das Polymer schließlich in 500 mL n-Hexan gefällt. Nach dem Trocknen im Hochvakuum bei 80 °C wer- den 3,08 g eines weiß-beigen, leicht schmierigen Feststoffs erhalten.
Tabelle 7 Übersicht über die Ergebnisse der thermogravimetrischen Untersu- chung des Polystearylmethacrylat-co-Poly(2-((3-(3,4-dihydroxyphenyl)pro- pyl)thio)ethylmethacrylat)-Copolymers unter Stickstoff-Atmosphäre.
Tabelle 8 Überblick über das mittels Gelpermeationschromatographie ermit- telte mittlere Molekulargewicht und die Dispersität des synthetisierten statis- tischen Copolymers.
B) Anwendungsprüfung
Zur Prüfung der Wirkung der erfindungsgemäßen Stabilisatoren wurde ein han- delsübliches Polypropylen (Moplen HP 501N, Lyondell Basell Industries) in einer Pulver-Pulver Mischung mit den in der Tabelle 9 angegebenen Stabilisatoren homogenisiert und in einem Doppelschnecken-Microextruder (MC 5, Hersteller DSM) über 30 Minuten bei 200 °C und 200 Umdrehungen pro Minute im Kreis- lauf geführt und die Abnahme der Kraft aufgezeichnet. Die Kraft ist ein direktes Maß für das Molekulargewicht von Polypropylen, je geringer die Abnahme, desto höher die Stabilisierungswirkung. Tabelle 9: Stabilisierung von Polypropylen mit erfindungsgemäßen Antioxidan- tien
Die erfindungsgemäßen Zusätze zeigen eine sehr gute Stabilisierungswirkung, da über die Versuchszeit ein geringerer Abbau des Polymeren im Vergleich zu einem unstabilisierten und einem mit handelsüblichen Antioxidantien stabili- sierten Polymer stattfindet.
In weiteren Versuchen wurden erfindungsgemäße Stabilisatorzusammenset- zungen hinsichtlich Ihrer Wirkung geprüft (Tabelle 10).
Tabelle 10: Stabilisierung von Polypropylen mit erfindungsgemäßen Stabilisa- torzusammensetzungen
Die erfindungsgemäßen Zusammensetzungen zeigen eine sehr gute Stabilisie- rungswirkung, da über die Versuchszeit ein geringerer Abbau des Polymeren im Vergleich zu den Vergleichsbeispielen stattfindet.
C) Oxidationsinduktionszeitenuntersuchungen
Die Ermittlung der Oxidationsinduktionszeit (OIT) stellt eine mögliche Methode zur Beurteilung der Effektivität von Stabilisatoren dar. Diese Analysemethode basiert auf der Reaktion des zu untersuchenden Polymers mit Luftsauerstoff. Dabei wird die Probe zunächst unter Inertgasatmosphäre bis zur gewählten Messtemperatur oberhalb der Schmelztemperatur des Polymers aufgeschmol- zen und equilibriert. Anschließend erfolgt eine Spülgasumschaltung von Inert- gas auf Luft, wobei der Wärmefluss im Verlauf der Zeit detektiert wird. Bei Ver- brauch des zugesetzten Stabilisators kommt es infolge der exothermen thermo- oxidativen Schädigung des Polymers zu einem Anstieg des Wärmeflusses. Der OIT-Wert ergibt sich aus der Bestimmung der Zeit bis zum Eintreten der Oxida- tion, also dem Onset. Prinzipiell gilt, dass je höher der OIT-Wert ist, desto länger wurde die Probe durch das Antioxidans stabilisiert und desto größer ist entspre- chend die Effektivität. In Tabelle 11 sind die OIT-Werte für Compounds, in de- nen die im Patent beschriebenen Stabilisatoren zu 0,5 gew.% eingearbeitet wurden, für verschiedene Temperaturen zusammengefasst. Als Polymer wurde Polypropylen (Moplen HP 500N, Lyondell Basell Industries) verwendet.
Tabelle 11 Überblick über OIT-Werte bei 220 °C für erfindungsgemäße Stabi- lisatorzusammensetzungen.
Alle synthetisierten und beschriebenen Verbindungen führen zu einer wesent- lichen Erhöhung des OIT-Wertes und tragen damit zu einer wesentlichen Erhö- hung der thermo-oxidativen Stabilität des Polymers bei. Der OIT-Wert liegt ins- besondere für den Octadecanthiol-Urushiol-Thioether deutlich oberhalb den Werten für die Compounds mit den kommerziellen Stabilisatoren.

Claims

Patentansprüche Verwendung einer Verbindung gemäß der allgemeinen Formel I wobei jeweils unabhängig voneinander
X1 ein linearer oder verzweigter Alkylenrest mit 2 bis 18 Kohlen- stoffatomen,
X2 ein linearer oder verzweigter Alkylenrest mit 1 bis 18 Kohlen- stoffatomen,
X3 ein linearer oder verzweigter Alkylrest mit 1 bis 18 Kohlenstoff- atomen,
A eine d-wertige, gesättigte oder ungesättigte Gruppierung, a 2 bis 5-b, b 0 bis 3, c 0 oder 1, und d I bis 8 bedeuten, oder einer polymeren Verbindung, enthaltend eine Wiederholungseinheit gemäß allgemeiner Formel II wobei
X1, X2, X3, a, b und c wie voranstehend definiert sind und
X4 Wasserstoff oder ein linearer oder verzweigter Alkylrest mit 1 bis 18 Kohlenstoffatomen, und
* eine Anbindungsstelle der Wiederholungseinheit gemäß allge- meiner Formel II bedeutet, oder einer Mischung mehrerer der Verbindungen gemäß allgemeiner Formel I und/oder polymerer Verbindungen, enthaltend eine Wieder- holungseinheit gemäß allgemeiner Formel II, als Stabilisator von organischen Materialien, insbesondere Kunststof- fen gegen oxidativen, thermischen und/oder aktinischen Abbau.
2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass
X1 ein linearer Alkylenrest mit 2 bis 6, bevorzugt 3 Kohlenstoffato- men,
X2 ein linearer Alkylenrest mit 1 bis 6, bevorzugt 1 bis 4, besonders bevorzugt 1 oder 2 Kohlenstoffatomen,
X3 ein linearer oder verzweigter Alkylrest mit 1 bis 4 Kohlenstoff- atomen,
X4 Wasserstoff oder ein linearer oder verzweigter Alkylrest mit 1 bis 4 Kohlenstoffatomen, insbesondere Methyl,
A eine d-wertige, aliphatische oder aromatische, bevorzugt line- are oder verzweigte aliphatische Gruppierung mit 1 bis 32, be- vorzugt 1 bis 24, besonders bevorzugt 1 bis 18 Kohlenstoffato- men, a 2 und b 0, bedeuten. Verwendung nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass die Verbindung der allgemeinen Formel I ausge- wählt ist aus der Gruppe bestehend aus Verwendung nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass die polymere Verbindung, enthaltend die Wieder- holungseinheit gemäß allgemeiner Formel II ausgewählt ist aus der Gruppe bestehend aus Homopolymeren, gebildet aus Wiederholungs- einheiten gemäß allgemeiner Formel II oder Copolymeren, enthaltend die Wiederholungseinheit gemäß allgemeiner Formel II sowie mindes- tens eine weitere, von einer radikalisch polymerisierbaren Verbindung abgeleitete Wiederholungseinheit, insbesondere von (Meth)acrylsäu- reestern abgeleitete Wiederholungseinheiten. Verwendung nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass die Wiederholungseinheit gemäß allgemeiner For- mel II die nachfolgenden Struktur aufweist Verwendung nach einem der vorhergehenden Ansprüche, zur Stabili- sierung von Kunststoffen, Beschichtungen, Schmiermitteln, Hydraulik- ölen, Motorenölen, Turbinenölen, Getriebeölen, Metallbearbeitungs- flüssigkeiten, Chemikalien oder Monomeren. Verwendung nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass die Gesamtheit der Verbindungen gemäß der allge- meinen Formel I, der polymeren Verbindung, enthaltend eine Wieder- holungseinheit gemäß allgemeiner Formel II oder der Mischung meh- rerer der Verbindungen gemäß allgemeiner Formel I und/oder polyme- rer Verbindungen, enthaltend eine Wiederholungseinheit gemäß allge- meiner Formel II zu einem Gewichtsanteil von 0,01 bis 10,00 Gew.-%, bevorzugt von 0,02 bis 5,00 Gew.-%, weiter bevorzugt von 0,05 bis 3,00 Gew.-% besonders bevorzugt von 0,10 bis 2,00 Gew.-% im organi- schen Material enthalten ist. Verwendung nach einem der vorhergehenden Ansprüche, zur Stabili- sierung von Kunststoffen, wobei der Kunststoff ausgewählt ist aus der Gruppe bestehend aus a) Polymeren aus Olefinen oder Diolefinen wie z.B. Polyethylen
(LDPE, LLDPE, VLDPE, ULDPE, MDPE, HDPE, UHMWPE), Metal- locen-PE (m-PE), Polypropylen, Polyisobutylen, Poly-4-methyl-pen- ten-1, Polybutadien, Polyisopren, wie z.B. auch Naturkautschuk (NR), Polycycloocten, Polyalkylen-Kohlenmonoxid-Copolymere, so- wie Copolymere in Form von statistischen oder Blockstrukturen wie z.B. Polypropylen-Polyethylen (EP), EPM oder EPDM mit z.B. 5- Ethyliden-2-Norbornen als Comonomer, Ethylen-Vinylacetat (EVA), Ethylen Acrylester, wie z.B. Ethylen-Butylacrylat, Ethylen-Acryl- säure und deren Salze (lonornere), sowie Terpolymere wie z.B. Ethylen-Acrylsäure-Glycidyl(meth)acrylat, Pfropfpolymere wie z.B. Polypropylen-graft-Maleinsäureanhydrid, Polypropylen-graft -Ac- rylsäure, Polyethylen graft-Acrylsäure, Polyethylen-Polybutylac- rylat-graft-Maleinsäureanhydrid sowie Blends wie z.B. LDPE/LLDPE oder auch langkettenverzweigte Polypropylen-Copolymere die mit alphaOlefinen als Comonomere hergestellt werden wie z.B. mit 1- Buten, 1-Hexen, 1-Octen oder 1-Octadecen, b) Polystyrol, Polymethylstyrol, Poly-alpha-methylstyrol, Polyvinyl- naphthalin, Polyvinylbiphenyl, Polyvinyltoluol, Styrol-Butadien (SB), Styrol-Butadien-Styrol (SBS), Styrol Ethylen-Butylen-Styrol (SEBS), Styrol-Ethylen-Propylen-Styrol, Styrolisopren, Styrol-Isop- renStyrol (SIS), Styrol-butadien-acrylnitril (ABS), Styrol-acrylnitril (SAN), Styrol-acrylnitril-acrylat (ASA), Styrol-Ethylen, Styrol-Ma I- einsäureanhydrid-Polymere einschließlich entsprechender Pfropf- copolymere wie z.B. Styrol auf Butadien, Maleinsäureanhydrid auf SBS oder SEBS, sowie Pfropfcopolymere aus Methylmethacrylat, Styrol-Butadien und ABS (MABS), sowie hydrierte Polystyrol-Deri- vate wie z.B. Polyvinylcyclohexan, c) halogenenthaltenden Polymeren wie z.B. Polyvinylchlorid (PVC), Polychloropren und Polyvinylidenchlorid (PVDC), Copolymere aus Vinylchlorid und Vinylidenchlorid oder aus Vinylchlorid und Vi- nylacetat, chloriertes Polyethylen, Polyvinylidenfluorid, Epich- lorhydrinHomo und Copolymere insbesondere mit Ethylenoxid (ECO), d) Polymeren von ungesättigten Estern wie z.B. Polyacrylate und Po- lymethacrylate wie Polymethylmethacrylat (PMMA), Polybutylac- rylat, Polylaurylacrylat; Polystearylacrylat; Polyglycidylacrylat, Po- lyglycidylmethacrylat, Polyacrylnitril, Polyacrylamide, Copolymere wie z.B. Polyacrylnitril-Polyalkylacrylat, e) Polymeren aus ungesättigten Alkoholen und Derivaten, wie z.B. Polyvinylalkohol, Polyvinylacetat, Polyvinylbutyral, Polyallylphtha- lat, Polyallylmelamin, f) Polyacetalen, wie z.B. Polyoxymethylen (POM) oder Copolymere mit z.B. Butanal, Polyphenylenoxiden und Blends mit Polystyrol ci- der Polyamiden, g) Polymeren von cyclischen Ethern wie z.B. Polyethylenglycol, Polyp- ropylenglycol, Polyethylenoxid, Polypropylenoxid, Polytetrahydro- furan, h) Polyphenylenoxiden und deren Blends mit Polystyrol und/oder Po- lymiden, i) Polyurethanen, aus hydroxyterminierten Polyethern oder Polyes- tern und aromatischen oder aliphatischen Isocyanaten wie z.B.
2,4- oder 2,6 Toluyloldiisocyanat oder Methylendiphenyldiisocya- nat insbesondere auch lineare Polyurethane (TPU), Polyharnstof- fen, j) Polyamiden wie z.B. Polyamid-6, 6.6, 6.10, 4.6, 4.10, 6.12, 10.10, 10.12, 12.12, Polyamid 11, Polyamid 12 sowie (teil-)aromatische Polyamide wie z.B. Polyphthalamide, z.B. hergestellt aus Tereph- thalsäure und/oder Isophthalsäure und aliphatischen Diaminen wie z.B. Hexamethylendiamin oder m-Xylylendiamin oder aus aliphatischen Dicarbonsäuren wie z.B. Adipinsäure oder Sebazin- säure und aromatischen Diaminen wie z.B. 1,4- oder 1,3-Diamino- benzol, Blends von unterschiedlichen Polyamiden wie z.B. PA-6 und PA 6.6 bzw. Blends von Polyamiden und Polyolefinen wie z.B. PA/PP, k) Polyimiden, Polyamidimiden, Polyetherimiden, Polyesterimiden, Poly(ether)ketonen, Polysulfonen, Polyethersulfonen, Polyarylsul- fonen, Polyphenylensulfiden, Polybenzimidazolen, Polyhydantoi- nen, l) Polyestern aus aliphatischen oder aromatischen Dicarbonsäuren und Diolen oder aus Hydroxy-Carbonsäuren wie z.B. Polyethylen- terephthalat (PET), Polybutylenterephthalat (PBT), Polypropylen- terephthalat (PTI), Polyethylennaphthylat (PEN), Poly-1,4-dimethy- lolcyclohexanterephthalat, Polyhydroxybenzoat, Polyhydroxy- naphthalat, Polymilchsäure (PLA), Polyhydroxybutyrat (PHB), Po- ly hydroxyvale rat (PHV), Polyethylensuccinat, Polytetramethylen- succinat, Polycaprolacton, m) Polycarbonaten, Polyestercarbonaten, sowie Blends wie z.B. PC/ABS, PC/PBT, PC/PET/PBT, PC/PA, n) Cellulosederivaten wie z.B. Cellulosenitrat, Celluloseacetat, Cellu- losepropionat, Cellulosebutyrat, o) Epoxidharzen, bestehend aus di- oder polyfunktionellen Epoxid- verbindungen in Kombination mit z.B. Härtern auf der Basis von A- minen, Anhydriden, Dicyandiamid, Mercaptanen, Isocyanaten ci- der katalytisch wirkenden Härtern, p) Phenolharzen wie z.B. Phenol-Formaldehyd-Harze, Harnstoff-For- maldehyd-Harze, Melamin-Formaldehydharze, q) ungesättigten Polyesterharzen aus ungesättigten Dicarbonsäuren und Diolen mit Vinylverbindungen z.B. Styrol, Alkydharze, r) Silikonen, z.B. auf der Basis von Dimethylsiloxanen, Methyl-Phe- nyl-siloxanen oder Diphenylsiloxanen z.B. Vinylgruppen terminiert, s) sowie Mischungen, Kombinationen oder Blends aus zwei oder mehr der zuvor genannten Polymere. Verwendung nach einem der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, dass das organische Material, insbesondere der Kunst- stoff mindestens ein weiterer Zusatzstoff, ausgewählt aus der Gruppe bestehend aus primären Antioxidantien, sekundären Antioxidantien, UV-Absorbern, Lichtstabilisatoren, Metalldesaktivatoren, Füllstoffdes- aktivatoren, Antiozonantien, Nukleierungsmitteln, Antinukleierungs- mitteln, Schlagzähigkeitsverbesserern, Weichmachern, Gleitmitteln, Rheologiemodifikatoren, Thixotropiemitteln, Kettenverlängerern, opti- sehen Aufhellern, antimikrobiellen Wirkstoffen (z.B. Biozide), Antista- tika, Slipmitteln, Antiblockmitteln, Kopplungsmitteln, Vernetzungsmit- teln, Verzweigungsmitteln, Antivernetzungsmitteln, Hydrophili-sie- rungs-mitteln, Hydrophobisierungsmitteln, Haftvermittlern, Disper- giermitteln, Kompatibilisatoren, Sauerstofffängern, Säurefängern, Treibmitteln, Abbau-Additiven, Entschäumungsmitteln, Geruchsfän- gern, Markierungsmitteln, Antifoggingmitteln, Additive zur Erhöhung der elektrischen Leitfähigkeit und/oder Wärmeleitfähigkeit, Infrarot- Absorber oder Infrarot-Reflektoren, Glanzverbesserer, Mattierungs- mittel, Repellents, Füllstoffen, Verstärkungsstoffen und Mischungen hiervon enthält oder bei der Verwendung dem organischen Material, insbesondere dem Kunststoff zugesetzt wird.
10. Verwendung nach vorhergehendem Anspruch, dadurch gekennzeich- net, dass der mindestens eine Zusatzstoff in einer Menge von 0,01 bis 9,99 Gew.-%, bevorzugt 0,01 bis 4,98 Gew.-%, weiter bevorzugt 0,02 bis 2,00 Gew.-%, besonders bevorzugt 0,05 bis 1,00 Gew.-%, bezogen auf die Gesamtheit der Verbindung der allgemeinen Formel I, des orga- nischen Materials und des mindestens einen Zusatzstoffs, enthalten ist oder zugesetzt wird.
11. Organisches Material, insbesondere Kunststoffzusammensetzung, ent- haltend mindestens eine Verbindung der allgemeinen Formel I, min- destens eine polymere Verbindung, enthaltend eine Wiederholungs- einheit gemäß allgemeiner Formel II oder eine Mischung mehrerer der Verbindungen gemäß allgemeiner Formel I und/oder polymerer Ver- bindungen, enthaltend eine Wiederholungseinheit gemäß allgemeiner Formel II wie in einem der Ansprüche 1 bis 5 definiert als Stabilisator.
12. Organisches Material nach vorhergehendem Anspruch, mit folgender Zusammensetzung
0,01 bis 10,00 Gew.-%, bevorzugt von 0,02 bis 5,00 Gew.-%, weiter be- vorzugt von 0,05 bis 3,00 Gew.-%, weiter bevorzugt von 0,10 bis 2,00 Gew.-%, besonders bevorzugt 0,10 bis 1,00 Gew.-% mindestens einer Verbindung der allgemeinen Formel I, mindestens einer polymeren Verbindung, enthaltend eine Wiederholungseinheit gemäß allgemei- ner Formel II oder einer Mischung mehrerer der Verbindungen gemäß allgemeiner Formel I und/oder polymerer Verbindungen, enthaltend eine Wiederholungseinheit gemäß allgemeiner Formel II nach einem der Ansprüche 1 bis 5,
99,99 bis 90,00 Gew.-%, bevorzugt 99,89 bis 95,00 Gew.-%, weiter be- vorzugt von 99,93 bis 96,98 Gew.-%, besonders bevorzugt 99,90 bis 98,00 Gew.-% mindestens eines organischen Materials, bevorzugt aus- gewählt aus der Gruppe bestehend aus Kunststoffen, Beschichtungen, Schmiermitteln, Hydraulikölen, Motorenölen, Turbinenölen, Getriebe- ölen, Metallbearbeitungsflüssigkeiten, Chemikalien oder Monomeren, sowie
0 bis 9,99 Gew.-%, bevorzugt 0 bis 4,98 Gew.-%, besonders bevorzugt 0,02 bis 2,00 Gew.-% mindestens eines Zusatzstoffs, wobei sich die Bestandteile zu 100 Gew.-% addieren. Organisches Material nach vorhergehendem Anspruch in Form einer Kunststoffzusammensetzung, dadurch gekennzeichnet, dass der min- destens eine Zusatzstoff ausgewählt aus der Gruppe bestehend aus se- kundären und/oder primären Antioxidantien, insbesondere primären und/oder sekundären Antioxidantien ausgewählt aus der Gruppe be- stehend aus Phosphiten, Phosphoniten, Thiolen, phenolischen Antioxi- dantien, sterisch gehinderten Aminen, Hydroxylaminen sowie Mi- schungen oder Kombinationen hiervon, UV-Absorbern, Lichtstabilisa- toren, Hydroxylamin basierten Stabilisatoren, Benzofuranon basierten Stabilisatoren, Nukleierungsmittel, Schlagzähigkeitsverbesserern, Weichmachern, Gleitmitteln, Rheologiemodifikatoren, Kettenverlänge- rern, Verarbeitungshilfsmitteln, Pigmenten, Farbstoffen, optische Auf- hellern, antimikrobiellen Wirkstoffen, Antistatika, Slipmitteln, Anti- blockmitteln, Kopplungsmitteln, Dispergiermitteln, Kompatibilisatoren, Sauerstofffängern, Säurefängern, Costabilisatoren, Markierungsmitteln sowie Antifoggingmitteln, insbesondere sekundären Antioxidantien; insbesondere ausgewählt ist aus der Gruppe bestehend aus einem se- kundären Antioxidans ausgewählt aus der Gruppe bestehend aus Phos- phiten, Phosphoniten, mindestens einem Costabilisator ausgewählt aus der Gruppe bestehend aus Polyolen, Säurefängern sowie sterisch gehinderten Aminen. Verfahren zur Stabilisierung von organischen Materialien, insbeson- dere gegen oxidativen, thermischen und/oder actinischen Abbau, bei dem mindestens eine Verbindung der allgemeinen Formel I, mindes- tens eine polymere Verbindung, enthaltend eine Wiederholungsein- heit gemäß allgemeiner Formel II oder eine Mischung mehrerer der Verbindungen gemäß allgemeiner Formel I und/oder polymerer Ver- bindungen, enthaltend eine Wiederholungseinheit gemäß allgemeiner Formel II wie in einem der Ansprüche 1 bis 5 definiert, in das organi- sche Material eingearbeitet wird. Verbindung, ausgewählt aus der Gruppe bestehend aus oder eine polymere Verbindung, enthaltend eine Wiederholungsein- heit gemäß allgemeiner Formel II wobei X1, X2, X3, a, b und c wie in Anspruch 1 definiert sind.
EP21802695.3A 2020-11-02 2021-11-02 Verwendung von eugenol-derivaten als stabilisatoren, organisches material sowie eugenol-derivate Pending EP4237484A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020128803.4A DE102020128803A1 (de) 2020-11-02 2020-11-02 Verwendung von Eugenol-Derivaten als Stabilisatoren, organisches Material sowie Eugenol-Derivate
PCT/EP2021/080340 WO2022090566A1 (de) 2020-11-02 2021-11-02 Verwendung von eugenol-derivaten als stabilisatoren, organisches material sowie eugenol-derivate

Publications (1)

Publication Number Publication Date
EP4237484A1 true EP4237484A1 (de) 2023-09-06

Family

ID=78528953

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21802695.3A Pending EP4237484A1 (de) 2020-11-02 2021-11-02 Verwendung von eugenol-derivaten als stabilisatoren, organisches material sowie eugenol-derivate

Country Status (7)

Country Link
US (1) US20240043745A1 (de)
EP (1) EP4237484A1 (de)
JP (1) JP2023547614A (de)
KR (1) KR20230104218A (de)
CN (1) CN116390981A (de)
DE (1) DE102020128803A1 (de)
WO (1) WO2022090566A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023223186A1 (en) * 2022-05-16 2023-11-23 3M Innovative Properties Company Adhesion modifier composition, and curable composition and method of bonding including the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3334046A (en) 1965-07-20 1967-08-01 Geigy Chem Corp Compositions stabilized with substituted 1, 3, 5-triazines
US4282971A (en) 1979-10-05 1981-08-11 Joy Manufacturing Company Conveyor belt chain and method for its use
ES2014433B3 (es) 1985-11-13 1990-07-16 Ciba-Geigy Ag Fenoles sustituidos, como estabilizadores.
TW482765B (en) 1996-08-05 2002-04-11 Sumitomo Chemical Co Phosphites, process for producing the same and their use
CN105669397B (zh) 2016-03-29 2018-01-02 青岛科技大学 一种木质素氧化降解制备丁香酚的方法
DE102017220555A1 (de) 2017-11-17 2019-05-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verbindungen mit stabilisierender Wirkung, Verfahren zu deren Herstellung, Zusammensetzung enthaltend diese stabilisierenden Verbindungen, Verfahren zur Stabilisierung einer organischen Komponente sowie Verwendung von stabilisierenden Verbindungen
JP7031903B2 (ja) * 2018-04-13 2022-03-08 国立研究開発法人産業技術総合研究所 オイゲノール誘導体

Also Published As

Publication number Publication date
WO2022090566A1 (de) 2022-05-05
KR20230104218A (ko) 2023-07-07
DE102020128803A1 (de) 2022-05-05
JP2023547614A (ja) 2023-11-13
US20240043745A1 (en) 2024-02-08
CN116390981A (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
DE102018218120A1 (de) Verfahren zur Stabilisierung von thermoplastischer Kunststoffneuware sowie stabilisierte Kunststoffzusammensetzungen, hieraus hergestellte Formmassen und Formteile, Stabilisator-Zusammensetzungen sowie Verwendungen hiervon
DE102017217312A1 (de) Verfahren zur Stabilisierung von halogenfreien thermoplastischen Kunststoff-Rezyklaten sowie stabilisierte Kunststoffzusammensetzungen und hieraus hergestellte Formmassen und Formteile
WO2020152337A1 (de) Verfahren zur stabilisierung von halogenfreien thermoplastischen kunststoff-rezyklaten, kunststoff-zusammensetzung, stabilisator-zusammensetzung sowie verwendung der stabilisator-zusammensetzung
EP3710424B1 (de) Verbindungen mit stabilisierender wirkung, verfahren zu deren herstellung, zusammensetzung enthaltend diese stabilisierenden verbindungen, verfahren zur stabilisierung einer organischen komponente sowie verwendung von stabilisierenden verbindungen
EP4127045A1 (de) Verwendung von hydroxyzimtsäuresalzen zur stabilisierung von organischen materialien, stabilisiertes organisches material, verfahren zur stabilisierung von organischen materialien, spezifische stabilisatoren sowie stabilisatorzusammensetzungen
DE102019204160A1 (de) Verfahren zur Stabilisierung von thermoplastischen Kunststoff-Rezyklaten sowie stabilisierte Kunststoffzusammensetzungen und hieraus hergestellte Formmassen und Formteile
WO2022184596A1 (de) Verwendung einer stabilisatorzusammensetzung zur stabilisierung von halogenfreien thermoplastischen kunststoff-recyclaten, eine stabilisatorzusammensetzung, ein masterbatch oder konzentrat, eine stabilisierte kunststoffzusammensetzung, ein verfahren zur stabilisierung von halogenfreien thermoplastischen kunststoff-recyclaten sowie verwendung von zusammensetzungen
WO2021191078A1 (de) Verwendung von substituierten zimtsäureestern als stabilisatoren für organische materialien, stabilisiertes organisches material, verfahren zur stabilisierung von organischen materialien sowie spezifische zimtsäureester
WO2022090566A1 (de) Verwendung von eugenol-derivaten als stabilisatoren, organisches material sowie eugenol-derivate
WO2021005075A1 (de) Verwendung von phenolisch substituierten zuckerderivaten als stabilisatoren, kunststoffzusammensetzung, verfahren zur stabilisierung von kunststoffen sowie phenolisch substituierte zuckerderivate
WO2023156222A1 (de) Polymere stabilisatoren auf basis von methoxy-hydroxy-benzoesäuren, kunststoffzusammensetzung, verfahren zur stabiliserung einer kunststoffzusammensetzung sowie stabilisatorzusammensetzung
WO2023083884A1 (de) Stabilisatoren auf basis von syringasäure, vanillinsäure, isovanillinsäure oder 5-hydroxyveratrumsäure, kunststoffzusammensetzung, verfahren zur stabilisierung einer kunststoffzusammensetzung sowie stabilisatorzusammensetzung
EP4214275A1 (de) Verwendung von dieugenol, oligomeren und/oder polymeren von eugenol zur stabilisierung von organischen materialien, stabilisierte kunststoffzusammensetzung, stabilisatorzusammensetzung sowie verfahren zur stabilisierung von organischen materialien
EP4308638A1 (de) Verwendung einer stabilisatorzusammensetzung zur stabilisierung von polyolefin-recyclaten, stabilisatorzusammensetzung, masterbatchkonzentrat, kunststoffzusammensetzung, formmasse oder formteil, verfahren zur stabilisierung eines polyolefin-recyclats sowie verwendung einer kunststoffzusammensetzung
WO2022243354A1 (de) Verwendung mindestens einer schwefel enthaltenden aminosäure zur stabilisierung von thermoplastischen kunststoff-recyclaten, stabilisiertes thermoplastisches kunststoffrecyclat, stabilisatorzusammensetzung, masterbatch sowie formmasse bzw. formteil
DE102019213606B4 (de) Oligomer oder polymer, zusammensetzung sowie verwendung des oligomers oder polymers
DE102022206466A1 (de) Verwendung einer Stabilisatorzusammensetzung zur Stabilisierung von halogenfreier thermoplastischer Kunststoff-Neuware, Stabilisatorzusammensetzung, ein Masterbatch oder Konzentrat, eine stabilisierte Kunststoffzusammensetzung, Verfahren zur Stabilisierung von halogenfreien thermoplastischen Kunststoff-Neuware sowie Verwendung der Zusammensetzung
WO2024002610A1 (de) Stabilisator-zusammensetzung, verwendung der stabilisator-zusammensetzung, verfahren zur stabilisierung von kondensationspolymeren gegen hydrolytischen abbau sowie hydrolysestabilisierte zusammensetzung und formkörper oder formteil hieraus

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230309

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)