WO2023156222A1 - Polymere stabilisatoren auf basis von methoxy-hydroxy-benzoesäuren, kunststoffzusammensetzung, verfahren zur stabiliserung einer kunststoffzusammensetzung sowie stabilisatorzusammensetzung - Google Patents

Polymere stabilisatoren auf basis von methoxy-hydroxy-benzoesäuren, kunststoffzusammensetzung, verfahren zur stabiliserung einer kunststoffzusammensetzung sowie stabilisatorzusammensetzung Download PDF

Info

Publication number
WO2023156222A1
WO2023156222A1 PCT/EP2023/052682 EP2023052682W WO2023156222A1 WO 2023156222 A1 WO2023156222 A1 WO 2023156222A1 EP 2023052682 W EP2023052682 W EP 2023052682W WO 2023156222 A1 WO2023156222 A1 WO 2023156222A1
Authority
WO
WIPO (PCT)
Prior art keywords
agents
weight
acid
styrene
tert
Prior art date
Application number
PCT/EP2023/052682
Other languages
English (en)
French (fr)
Inventor
Rudolf Pfaendner
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO2023156222A1 publication Critical patent/WO2023156222A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/10Vinyl esters of monocarboxylic acids containing three or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F118/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F118/02Esters of monocarboxylic acids
    • C08F118/04Vinyl esters
    • C08F118/10Vinyl esters of monocarboxylic acids containing three or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the present invention relates to polymeric stabilizers based on renewable raw materials, such as syringic acid, vanillic acid, isovanillic acid or 5-hydroxyveratric acid, a plastic composition, a method for stabilizing a plastic composition and a stabilizer composition with a high stabilizing effect.
  • renewable raw materials such as syringic acid, vanillic acid, isovanillic acid or 5-hydroxyveratric acid
  • Organic materials such as plastics are subject to aging processes, which ultimately lead to a loss of desired properties such as mechanical properties.
  • This process called autoxidation, leads to starting from radical chain scissions by mechanochemical processes or by UV radiation in the presence of oxygen to changes in the polymer chain, such as molecular weight and / or the formation of new chemical groups.
  • Stabilizers are therefore used to prevent or at least delay this aging.
  • Important representatives of stabilizers are antioxidants, which interfere with the free radicals formed during autoxidation and thus interrupt the degradation process.
  • primary antioxidants which can react directly with oxygen-containing free radicals or C-radicals
  • secondary antioxidants which react with intermediately formed hydroperoxides (see C. Kröhnke et al.
  • Antioxidants in Ullmann's encyclopedia of industrial chemistry Wiley-VCH Verlag, Weinheim 2015.
  • Typical representatives of primary antioxidants are, for example, phenolic antioxidants, amines, but also lactones.
  • Classes of secondary antioxidants are phosphorus compounds such as phosphites and phosphonites, but also organo-sulphur compounds such as thioesters, thioethers and disulfides.
  • primary and secondary antioxidants are often combined, resulting in a synergistic effect.
  • Plastics made from fossil raw materials such as crude oil or natural gas are increasingly being supplemented or replaced by plastics based on renewable raw materials via biotechnological processes.
  • the question of sustainability then also arises for the primary and secondary antioxidants used for this (and for plastics made from fossil raw materials).
  • stabilizers based on renewable and available raw materials that are highly effective, have low volatility and are compatible with polymeric substrates.
  • the antioxidants also have photo-oxidation protection to protect the polymers in outdoor applications.
  • Tannin (WJ. Grigsby et al., Esterification of condensed tannins and their impact on the properties of poly (lactic acid), Polymers 5 (2013) 344-360),
  • WO 98/18830 discloses polymeric stabilizers which also act as compatibilizers and describe, by polymer-analogous reaction, inter alia, sterically hindered phenols, sterically hindered amines, lactones, phosphites with polymers, inter alia, with acrylic acid, glycidyl methacrylate, maleic anhydride and vinyl alcohol.
  • M.Rostagno et al. describe in "Sustainable polyvinyl acetals from bioaromatic aldehydes", Polym. Chem. 2017, 8, 5049-5059, Polyacetals Obtained from Aldehydes.
  • the structures are complex to synthesize, the compounds obtained are sensitive to hydrolysis, and use as stabilizers is not described.
  • CN 110183912 describes a floor coating that contains, among other things, 3,5-dimethoxy-4-hydroxycinnamic acid as a reaction component and, among other things, polyvinyl alcohol.
  • the phenol group reacts and is therefore no longer available for antioxidant properties. There are no indications of antioxidant properties.
  • polyesters e.g. made from ferulic acid with (poly)ethylene glycol, which are used in a hydrogel that can contain polyvinyl alcohol, among other things.
  • the object of the present invention is therefore to provide effective antioxidants for plastics from renewable raw materials which at the same time have very low volatility and/or a low tendency to migrate
  • the present invention relates to a plastic composition that contains the specified polymers as stabilizers.
  • the present invention further relates to a method for stabilizing a plastic composition using the polymers according to the invention.
  • the present invention relates to a stabilizer composition consisting of the polymers according to the invention and at least one additive.
  • R 1 , R 2 and R 3 are each independently selected from the group consisting of hydroxy, linear or branched alkoxyl groups having 1 to 6 carbon atoms and hydrogen, with the proviso that at least one of the radicals R 1 , R 2 and R 3 is a hydroxy radical and at least one of the radicals R 1 , R 2 and R 3 is a linear or branched alkoxy group having 1 to 6 carbon atoms, where R 1 , R 2 and R 3 are the same or different on each occurrence,
  • the polymer can contain the repeating unit (A) according to the formula I ten. This means that, in addition to the repeating unit (A) of the formula I, other repeating units that differ from the repeating unit (A) of the formula I can also be present.
  • the polymer according to the invention is a copolymer.
  • the repeating unit (A) of the formula I represents the only repeating unit
  • the polymer according to the invention is a homopolymer.
  • the copolymers can be in the form of random, gradient, alternating or block copolymers.
  • the polymers according to the invention not only have an excellent stabilizing effect on plastic materials, but also that the polymers according to the invention have very low volatility and can be produced primarily on the basis of renewable raw materials.
  • ester derivatives of polyvinyl alcohol polymers or polyvinyl alcohol copolymers which contain alpha-methoxy-substituted phenols as active components were thus achieved in particular by using ester derivatives of polyvinyl alcohol polymers or polyvinyl alcohol copolymers which contain alpha-methoxy-substituted phenols as active components.
  • R 1 is hydrogen, hydroxy or a linear or branched alkoxyl group having 1 to 6 carbon atoms, in particular methoxy,
  • R 2 is hydroxy
  • R 3 is a linear or branched alkoxyl group having 1 to 6 carbon atoms, especially methoxy.
  • ester residues of the repeating unit of the general formula I are derived in particular from naturally occurring compounds such as b) vanillic acid c) isovanillic acid omovanillic acid) e) homosyringic acid f) 3,4-dihydroxy-5-methoxy-benzeneacetic acid g) dihydroferulic acid j) 3,4-dihydroxy-5-methoxy-benzenepropionic acid, m) protocatechuic acid n) gallic acid o) 3,4,5-trihydroxycinnamic acid p) caffeic acid q) dihydrocaffeic acid
  • the polymers according to the invention are distinguished by a high stabilizing potential in the stabilization of plastics, in particular against oxidative, thermal and/or actinic degradation, and can be produced in a manner known per se from the prior art.
  • acids or acid derivatives used as starting materials are commercially available or accessible by known methods, e.g. by base- or acid-catalyzed esterification with alcohols.
  • esters of vinyl alcohol can be prepared, for example, by reaction with the acids in the form of a polymer-analogous reaction with acidic catalysis, for example in the presence of sulfuric acid or p-toluenesulfonic acid in a suitable solvent or suspending agent, such as toluene, with the water formed being removed, for example by distillation.
  • Another possibility is a process in which a short-chain ester such as the methyl ester or the ethyl ester of the respective acid is first prepared and in a second stage a transesterification reaction with the polyvinyl alcohol in the presence of a suitable catalyst such as dibutyltin butoxide, dioctyltin diacetate, dioctyltin ketonate or tetrabutyl titanate , tetra isobutyl titanate, tetrapropyl orthotitanate.
  • a suitable catalyst such as dibutyltin butoxide, dioctyltin diacetate, dioctyltin ketonate or tetrabutyl titanate , tetra isobutyl titanate, tetrapropyl orthotitanate.
  • the esterification and/or transesterification reaction can also take place enzymatically, for example in K. Vosrmann et al.
  • phenol group can also be provided with a protective function in a first synthesis step, which is removed again after the esterification.
  • a possible protective group is, for example, the triethylsilyl group, which can be introduced using triethylsilane.
  • the polymer according to the invention can, for example, be built up exclusively from the same repeating units (A). It is also possible for the polymer to be built up exclusively from repeating units (A), but in this case at least two different repeating units (A) that can be subsumed under formula I (e.g. due to a different substitution pattern of the radicals R 1 to R 3 ) are present.
  • the at least one further repeating unit (B) is selected from the following repeating units: where
  • R 4 is selected from the group consisting of hydrogen and linear or branched alkyl radicals having 1 to 36 carbon atoms,
  • R 5 is selected from the group consisting of linear or branched alkyl radicals having 1 to 36 carbon atoms, and
  • Z is O or NH.
  • the molar ratio of the repeating unit (A) to the total of all repeating units is preferably 0.01 to ⁇ 1.0, preferably 0.25 to 0.95, particularly preferably 0.40 to 0.90.
  • the polymer according to the invention preferably has a weight-average molecular weight of 10 3 to 10 6 g/mol, preferably 5 ⁇ 10 3 to 5 ⁇ 10 5 g/mol, particularly preferably 7.5 ⁇ 10 3 to 10 5 g/mol.
  • the polymer according to the invention very particularly preferably contains the repeating unit (A) of the general formula I and the following repeating units (B1) and (B2):
  • the molar ratio of the repeating unit (A) to the total of all is preferably
  • Copolyvinyl esters with polyvinyl acetate, polyvinyl alcohol and with polyethylene are preferred.
  • the polyvinyl alcohol copolymers required for the production of the polymers according to the invention are commercially available.
  • the polyvinyl alcohol content can be adjusted by proportionate saponification of polyvinyl acetate. In the case of commercial products, the content of polyvinyl alcohol or polyvinyl acetate is part of the specifications.
  • the present invention relates to the use of a polymer or a mixture of several polymers containing a repeating unit (A) of the general formula I
  • R 1 , R 2 and R 3 are each independently selected from the group consisting of hydroxy, linear or branched alkoxyl groups having 1 to 6 carbon atoms and hydrogen, with the proviso that at least one of the radicals R 1 , R 2 and R 3 is a hydroxy radical, where R 1 , R 2 and R 3 are the same or different on each occurrence,
  • At least one of the radicals R 1 , R 2 and R 3 is a linear or branched alkoxy group having 1 to 6 carbon atoms.
  • the polymer or the mixture of several polymers has a weight fraction of 0.01 to 10.00% by weight, preferably from 0.02 to 5.00% by weight, particularly preferably from 0.05 to 2.00% by weight is contained in the plastic.
  • the plastics to be stabilized are, for example, thermoplastic, duromer or elastomeric polymers.
  • the polymers of general formula I are suitable for stabilizing plastics, the plastic being selected from the group consisting of a) polymers made from olefins or diolefins such as polyethylene (LDPE, LLDPE, VLDPE, ULDPE, MDPE, HDPE, UHMWPE), Metallocene PE (m-PE), polypropylene, polyisobutylene, poly-4-methyl-pentene-1, polybutadiene, polyisoprene, such as natural rubber (NR), polycyclooctene, polyalkylene-carbon monoxide copolymers, and copolymers in the form of random or Block structures such as polypropylene-polyethylene (EP), EPM or EPDM with, for example, 5-ethylidene-2-norbornene as a comonomer, ethylene vinyl acetate (EVA), ethylene acrylic esters such as ethylene butyl acrylate, ethylene acrylic acid and salts thereof (ionomers ), and
  • polymers specified under a) to r) are copolymers, they can be present in the form of random, block or tapered structures. Furthermore, the polymers mentioned can be present in the form of linear, branched, star-shaped or hyper-branched structures.
  • polystyrene resins mentioned under a) can also be crosslinked, e.g. crosslinked polyethylene, which is then referred to as X-PE.
  • the present compounds can be used to stabilize rubbers and elastomers.
  • This can be natural rubber (NR) or synthetic rubber materials.
  • Suitable synthetic rubber materials consist in particular of butadiene (BR), styrene-butadiene (SBR), chloroprene (CR), isoprene (IR), isobutylene isoren, acrylonitrile-butadiene (NBR or in hydrogenated form HNBR).
  • Suitable rubbers and elastomers are ethylene propylene diene terpolymers (EPDM) and ethylene propylene copolymers (EPM), polyester urethanes (AU), polyether urethanes (EU) and silicones (MQ).
  • the plastics can be recycled plastics, e.g. from industrial collections such as production waste or plastics from household or recyclables collections.
  • Particularly preferred polymers are thermoplastic halogen-free polymers, in particular polyolefins based on the polyethylenes or polypropylenes mentioned.
  • polymers from renewable raw materials in particular aliphatic polyesters from renewable raw materials such as polylactic acid (PLA), polyhydroxybutyric acid (PHB), polyhydroxyvaleric acid (PHV), polybutylene succinate (PBS), polybutylene succinate-co-adipate (PBSA) , polyethylene succinate, polypropylene succinate.
  • PVA polylactic acid
  • PBB polyhydroxybutyric acid
  • PVS polyhydroxyvaleric acid
  • PBS polybutylene succinate
  • PBSA polybutylene succinate-co-adipate
  • polyethylene succinate polypropylene succinate.
  • the polymers specified under a) to r) can have both amorphous and (partially) crystalline morphologies.
  • a further preferred embodiment provides that at least one further additive selected from the group consisting of primary antioxidants, secondary antioxidants, UV absorbers, light stabilizers, in particular hindered amines as light (HALS) and long-term heat stabilizers (HAS), metal deactivators , filler deactivators, antiozonants, nucleating agents, antinucleating agents, transparency improvers (clarifiers), impact modifiers, plasticizers, lubricants, rheology or viscosity modifiers, thixotropic agents, chain extenders, processing aids, mold release agents, flame retardants, pigments, dyes, optical brighteners, antimicrobial agents, antistatic agents, slip agents , antiblocking agents, coupling agents, crosslinking agents, anticrosslinking agents, hydrophilizing agents, hydrophobing agents, surface modifiers, hydrolysis stabilizers, adhesion promoters, dispersing agents, compatibilizers, oxygen scavengers, acid scavengers, acetaldehyde and formalde
  • compositions preferably contain or are used secondary antioxidants, in particular phosphites/phosphonites, sulphites, acid scavengers, co-stabilizers based on polyols and/or light stabilizers from the group of hindered amines (HALS).
  • secondary antioxidants in particular phosphites/phosphonites, sulphites, acid scavengers, co-stabilizers based on polyols and/or light stabilizers from the group of hindered amines (HALS).
  • HALS hindered amines
  • Primary antioxidants act as H donors and as free radical scavengers, thus interrupting the free radical auto-oxidation process in polymers.
  • Suitable primary antioxidants are phenolic antioxidants, (partly) aromatic amines, hydroxylamines and lactones.
  • Suitable synthetic phenolic antioxidants are:
  • Alkylated monophenols such as 2,6-di-tert-butyl-4-methylphenol, 2-tert- butyl-4,6-dimethylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4-n-butylphenol, 2,6-di-tert-butyl-4- isobutylphenol, 2,6-dicyclopentyl-4-methyl- phenol, 2-(a-methylcyclohexyl)-4,6-dimethylphenol, 2,6-dioctadecyl-4-methylphenol, 2,4,6-tricyclohexylphenol, 2, 6-di-tert-butyl-4-methoxymethylphenol, linear or branched nonylphenols such as 2,6-dinonyl-4-methylphenol, 2,4-dimethyl-6-(1'-methylundec-1'- yl)phenol, 2,4-dimethyl-6-(1'-methyl
  • alkylthiomethyl phenols such as 2,4-dioctylthiomethyl-6-tert-butylphenol, 2,4-dioctylthiomethyl-6-methylphenol, 2,4-dioctylthiomethyl-6-ethylphenol, 2,6-didodecylthiomethyl-4-nonylphenol;
  • Hydroquinones and alkylated hydroquinones such as 2,6-di-tert-butyl-4-methyloxyphenol, 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amylhydroquinone, 2,6-diphenyl-4 -octadecyloxyphenol, 2,6-di-tert-butylhydroquinone, 2,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-butyl -4-hydroxyphenyl stearate, bis(3,5-di-tert-butyl-4-hydroxylphenyl)adipate;
  • Tocopherols such as ⁇ -, ⁇ -, ⁇ -, ⁇ -tocopherol and mixtures of these (vitamin E);
  • Hydroxylated thiodiphenyl ethers such as 2,2'-thiobis(6-tert-butyl-4-methyl-phenol), 2,2'-thiobis(4-octylphenol), 4,4'-thiobis(6-tert-butyl- 3-methyl- phenol), 4,4'-thiobis(6-tert-butyl-2-methylphenol), 4,4'-thiobis(3,6-di-secamylphenol), 4,4'-bis( 2,6-dimethyl-4-hydroxyphenyl) disulfide;
  • Alkylidenebisphenols such as 2,2'-methylenebis(6-tert-butyl-4-methylphenol), 2,2'-methylenebis(6-tert-butyl-4-ethylphenol), 2,2'-methylenebis[4-methyl- 6-(a-methylcyclohexyl)phenol], 2,2'-methylenebis(4-methyl-6-cyclohexylphenol), 2,2'-methylenebis(6-nonyl-4-methylphenol), 2,2'-methylenebis(4 ,6-di-tert-butylphenol), 2,2'-ethylidenebis(4,6-di-tert-butylphenol), 2,2'-ethylidenebis(6-tert-butyl-4-isobutylphenol), 2,2'-methylenebis[6-(a-methylbenzyl)-4-nonylphenol], 2,2'-methylenebis[6-(a,a-dimethylbenzyl)-4-nonyl
  • O-, N- and S-benzyl compounds such as 3,5,3',5'-tetra-tert-butyl-4,4'-dihydroxydibenzyl ether, octadecyl-4-hydroxy-3,5-dimethylbenzyl mercaptoacetate , tridecyl 4-hydroxy-3,5-di-tert-butylbenzyl mercaptoacetate, tris(3,5-di-tert-butyl-4-hydroxybenzyl)amine, bis(4-tert-butyl-3-hydroxy-2 ,6-dimethylbenzyl)-dithioterephthalate, bis(3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, isooctyl-3,5-di-tert-butyl-4-hydroxybenzylmercaptoacetate;
  • Hydroxybenzylated malonates such as dioctadecyl-2,2-bis(3,5-di-tert-butyl-2-hydroxybenzyl)-malonate, dioctadecyl-2-(3-tert-butyl-4-hydroxy-5-methyl-benzyl).
  • )malonate didodecylmercaptoethyl 2,2-bis(3,5-di-tert-butyl-4-hydroxy-benzyl)malonate, bis[4-(1,1,3,3-tetramethylbutyl)phenyl]-2,2 -bis(3,5-di-tert-butyl-4-hydroxybenzyl)malonate;
  • Aromatic hydroxybenzyl compounds such as 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzene, 1,4-bis(3,5-di-tert- butyl-4-hydroxy-benzyl)-2,3,5,6-tetramethylbenzene, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxy-benzyl)phenol;
  • Triazine compounds such as 2,4-bis(octylmercapto)-6-(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazine, 2-octylmercapto-4,6-bis(3 ,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxy-phenoxy) -1,3,5-triazine, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,2,3-triazine, 1,3,5-tris( 3,5-di-tert-butyl-4-hydroxybenzyl)isocyanurate, 1,3,5-tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanurate, 2,4,6-tris(
  • Esters of ß-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid with monohydric or polyhydric alcohols e.g. methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3 -thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-l-phospha-2,6,7-trioxabicyclo[
  • Esters of ß-(5-tert-butyl-4-hydroxy-3-methylphenyl)propionic acid with monohydric or polyhydric alcohols e.g. methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3 -thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-l-phospha-2,6,7-trioxabicyclo[2.
  • Esters of ß-(3,5-dicyclohexyl-4-hydroxyphenyl)propionic acid with monohydric or polyhydric alcohols for example methanol, ethanol, octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2- Propanediol, Neopentyl Glycol, Thiodiethylene Glycol, Diethylene Glycol, Triethylene Glycol, Pentaerythritol, Tris-(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl- l-phospha-2,6,7-trioxabicyclo[2.2.2]octane;
  • Esters of (3,5-di-tert-butyl-4-hydroxyphenyl)acetic acid with monohydric or polyhydric alcohols e.g. methanol, ethanol, octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1, 2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4 -hydroxymethyl-l-phospha-2,6,7-trioxabicyclo[2.2.2]octane;
  • Amides of ß-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid such as N,N'-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hexamethylenediamide, N,N' - Bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hexamethylenediamide, N,N'-Bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hexamethylenediamide, N,N'-bis- (3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hydrazide, N,N'-bis[2-(3-[3,5-di-tert-butyl-4-hydroxyphenyl]propionyloxy)ethyl] oxamide (Naugard® XL-I sold by Uniroyal);
  • Particularly preferred phenolic antioxidants are: Other particularly preferred phenolic antioxidants are based on renewable raw materials such.
  • Suitable aminic antioxidants are:
  • p,p'-di-tert-octyldiphenylamine 4-n-butylaminophenol, 4-butyrylaminophenol, 4-nonanoylaminophenol, 4-dodecanoylaminophenol, 4-octadecanoylamino-phenol, bis(4-methoxyphenyl)amine, 2,6-di-tert-butyl-4-dimethylaminomethyl-phenol, 2,4'-diaminodiphenylmethane, 4,4 '-Diaminodiphenylmethane, N,N,N',N'-Tetra-methyl-4,4'-diaminodiphenylmethane, 1,2-Bis[(2-methyl-phenyl)amino]ethane, 1,2-bis( phenylamino)propane, (o-tolyl)biguanide, bis[4-(l',3'-dimethylbutyl)phenyl]amine,
  • Preferred amine antioxidants are: N,N'-diisopropyl-p-phenylenediamine, N,N'-di-secbutyl-p-phenylenediamine, N,N'-bis(1,4-dimethylpentyl)-p-phe - nylenediamine, N,N'-bis(l-ethyl-3-methylpentyl)-p-phenylenediamine, N,N'-bis(l-methylheptyl)-p-phenylenediamine, N,N'-dicyclohexyl-p-phenylenediamine, N,N'-Diphenyl-p-phenylenediamine, N,N'-Bis(2-naphthyl)-p-phenylenediamine, N-Isopropyl-N'-phenyl-p-phenylenediamine, N-( 1,3- dimethylbutyl)-N'-phenyl
  • Particularly preferred aminic antioxidants are the structures:
  • Suitable lactones are benzofuranones and indolinones are, for example, 3-(4-(2-acetoxyethoxy)phenyl]-5,7-di-tert-butyl-benzofuran-2-one, 5,7-di-tert-butyl-3 -[4-(2-stearoyloxyethoxy)phenyl]benzofuran-2-one, 3,3'-bis[5,7-di-tert-butyl-3-(4-(2-hydroxyethoxy]phenyl)benzofuran-2- on), 5,7-di-tert-butyl-3-(4-ethoxy-phenyl)benzofuran-2-one, 3-(4-acetoxy-3,5-dimethylphenyl)-5,7- di-tert-butyl-benzofuran-2-one, 3-(3,5-dimethyl-4-pivaloyloxyphenyl)-5,7-di-tert-butyl-benzo
  • antioxidants are isoindolo [2, lA] quinazolines such as
  • Secondary antioxidants act primarily as hydroperoxide decomposers in the stabilization of plastics.
  • a preferred phosphonite is
  • Suitable secondary antioxidants are also sulfur compounds such as distearyl thiodipropionate, dilauryl thiodipropionate; Ditridecyldithiopropionate, Ditetradecylthiodipropionate, 3-(dodecylthio)-1,1'-[2,2-bis[[3-(dodecylthio)-1-oxopropoxy]methyl]-1,3-propanediyl]propanoic acid ester.
  • the following structures are preferred:
  • Suitable fillers and reinforcing materials are, for example, synthetic or natural materials such as calcium carbonate, silicates, glass fibers, glass beads (solid or hollow), talc, mica, kaolin, barium sulfate, metal oxides and metal hydroxides, carbon black, graphite, carbon nanotubes, graphene, wood flour or fibers from natural products such as cellulose or synthetic fibers.
  • Other suitable fillers are hydrotalcites or zeolites or phyllosilicates such as montmorillonite, bentonite, beidelite, mica, hectorite, saponite, vermiculite, ledikite, magadite, illite, kaolinite, wollastonite, attapulgite.
  • Suitable acid scavengers are salts of mono, di, tri or tetravalent metals, preferably alkali metals, alkaline earth metals, aluminum or zinc, formed in particular with fatty acids, such as calcium stearate, magnesium stearate; zinc stearate, aluminum stearate, calcium laurate, calcium behenate, Calcium lactate, calcium stearoyl-2-lactate
  • Suitable acid scavengers are hydrotalcites, in particular synthetic hydrotalcites based on aluminium, magnesium and zinc, hydrocalumites, zeolites, alkaline earth metal oxides, in particular calcium oxide and magnesium oxide and also zinc oxide, alkaline earth metal carbonates, in particular calcium carbonate, magnesium carbonate and dolomite and hydroxides, especially brucite (magnesium hydroxide).
  • Suitable co-stabilizers are also polyols, in particular alditols or cyclitols.
  • polyols are pentaerythritol, dipentaerythritol, tripentaerythritol, short-chain polyetherpolyols or polyesterpolyols, and hyperbranched ones Polymers / oligomers or dendrimers with alcohol groups, for example
  • the at least one alditol is preferably selected from the group consisting of threitol, erythritol, galactitol, mannitol, ribitol, sorbitol, xylitol, arabitol, isomalt, lactitol, maltitol, altritol, iditol, maltotritol and hydrogenated oligo- and polysaccharides with polyol end groups and mixtures thereof.
  • the at least one preferred alditol is particularly preferably selected from the group consisting of erythritol, mannitol, isomalt, maltitol and mixtures thereof.
  • heptitols and octitols meso-glycero-allo-heptitol, D-glycero-D-altro-heptitol, D-glycero-D-manno-heptitol, meso-glycero-gulo-heptitol, D-glycero- Dgalacto-heptitol (perseitol), D-glycero-D-gluco-heptitol, L-glycero-D-gluco-eptitol, D-erythro-L-galacto-octitol, D-threo-L-galacto-octitol.
  • the at least one cyclitol can be selected from the group consisting of inositol (myo, scyllo-, D-chiro-, L-chiro-, muco-, neo-, allo-, epi- and cis-inositol), 1,2 ,3,4-tetrahydroxycyclohexane, 1,2,3,4,5-pentahydroxycyclohexane, Quercitol, Viscumitol, Bornesitol, Condudtol, Ononitol, Pinitol, Pinpollitol, quebrachitol, ciceritol, quinic acid, shikimic acid and valienol, preference being given to myo-inositol (myo-inositol).
  • inositol myo, scyllo-, D-chiro-, L-chiro-, muco-, neo-, allo-, epi- and cis-i
  • Suitable co-stabilizers are ester and ether derivatives of the alditols or cyclitols mentioned, such as the following compounds:
  • 2-hydroxybenzophenones are 4-hydroxy, 4-methoxy, 4-octyloxy, 4-decyloxy-4-dodecyloxy, 4-benzyloxy, 4,2',4'-trihydroxy and 2'-Hydroxy-4,4'-dimethyloxy derivatives of 2-hydroxybenzophenones.
  • Suitable acrylates are ethyl ⁇ -cyano- ⁇ , ⁇ -diphenyl acrylate, isooctyl ⁇ -cyano- ⁇ , ⁇ -diphenyl acrylate, methyl ⁇ -carbomethoxycinnamate, methyl ⁇ -cyano- ⁇ -methyl-p-methoxycinnamate, butyl ⁇ -cyano- ⁇ -methyl-p-methoxycinnamate, methyl ⁇ -carbomethoxy-p-methoxycinnamate and N-( ⁇ -carbo-methoxy- ⁇ -cyanovinyl)-2-methylindoline.
  • esters of benzoic acids are 4-tert-butylphenyl salicylate, phenyl salicylate, octylphenyl salicylate, dibenzoylresorcinol, bis(4-tert-butylbenzoyl)resorcinol, benzoylresorcinol, 2,4-di-tert-butylphenyl-3,5-di-tert- butyl 4-hydroxybenzoate, hexadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, octadecyl-3,5-di-tert-butyl-4-hydroxybenzoate, 2-methyl-4,6-di-tert -butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate.
  • Suitable oxamides are 4,4'-dioctyloxyoxanilide, 2,2'-diethoxyoxanilide, 2,2'-dioctyloxy-5,5'-di-tert-butoxanilide, 2,2'-didodecyloxy-5,5'- di-tert-butoxanilide, 2-ethoxy-2'-ethyloxanilide, N,N'-bis(3-dimethylaminopropyl)oxamide, 2-ethoxy-5-tert-butyl-2'-ethoxanilide and its mixtures with 2- ethoxy-2'-ethyl-5,4'-di-tert-butoxanilide, mixtures of o- and p-methoxy-disubstituted oxanilides and mixtures of o- and p-ethoxy-disubstituted oxanilides.
  • suitable metal de(s) activators are N,N'-diphenyloxamide, N-salicyla l-N'-salicyloylhydrazine, N,N'-bis(salicyloyl)hydrazine, N,N'-bis(3,5-di-tert - butyl-4-hydroxyphenylpropionyl)hydrazine, 3-salicyloylamino-1,2,4-triazole, bis-(benzylidene)oxalyldihydrazide, oxanilide, isophthaloyldihydrazide, sebacoylbisphenylhydrazide, N,N'-diacetyladipoyldihydrazide, N,N'-bis( salicyloyl)oxyl-yldihydrazide, N,N'-bis(salicyloyl)thiopropionyldihydrazide, tris[
  • metal deactivators are:
  • the structures given above also include the sterically hindered N—H, N-alkyl such as N-methyl or N-octyl, the N-alkoxy derivatives such as N-methoxy or N-octyloxy, and the cycloalkyl derivatives such as N-cyclohexy - loxy and the N-(2-hydroxy-2-methylpropoxy) analogues.
  • Particularly preferred hindered amines are the following:
  • Preferred oligomeric and polymeric hindered amines have the following structures:
  • n 3 to 200, preferably 5 to 100
  • n 1 to 100, preferably 2 to 10, or
  • Compatibilizers or compatibilizers are used, for example, in thermodynamically immiscible blends or in recyclate mixtures and contain structural elements of the respective blend components that are mixed.
  • suitable compatibilizers for polyolefin mixtures are olefin block copolymers consisting of ethylene, propylene and alpha-olefins such as 1-octene.
  • compatibilizers in particular for compatibilizing polar polymers such as PET or polyamides and non-polar polymers such as PP or PE, often contain reactive groups derived, for example, from maleic anhydride, acrylic acid, glycidyl acrylate or glycidyl methacrylate and are, for example, polypropylene-g-maleic anhydride, polyethylene-g- maleic anhydride, polypropylene-g-acrylic acid, polyethylene-g-acrylic acid, poly(ethylene-co-maleic anhydride), SBS-g-maleic anhydride, SEBS-g-maleic anhydride, polyethylene-polyacrylate-polyglycidyl methacrylate.
  • Suitable dispersing agents are:
  • Polyacrylates e.g., copolymers with pendant long chain groups, polyacrylate block copolymers, alkylamides: e.g. B. N,N'-1,2-ethanediylbisoctadecanamide sorbitan esters, e.g. monostearyl sorbitan esters, titanates and zirconates, reactive copolymers with functional groups e.g. e.g. polypropylene-co-acrylic acid, polypropylene-co-maleic anhydride, polyethylene-co-glycidyl methacrylate, polystyrene-alt-maleic anhydride-polysiloxanes: e.g.
  • dimethylsilanediol-ethylene oxide copolymer polyphenylsiloxane copolymer, amphiphilic copolymers: e.g. ethylene block polyethylene oxide, dendrimers, e.g. dendrimers containing hydroxyl groups.
  • Suitable flame retardants are in particular a) Inorganic flame retardants such as Al(OH) 3 , Mg(OH) 2 , AlO(OH), MgCCh phyllosilicates such as e.g. B. montmorillonite or sepiolite, unmodified or organically modified, double salts, such as Mg-Al silicates, POSS (polyhedral oligomeric silsesquioxane) compounds, huntite, hydromagnesite or halloysite and Sb2Ü3, Sb20s, MoOs, zinc stannate, zinc hydroxystannate, b) Nitrogen-containing flame retardants such as melamine, Meiern, melam, melon, melamine derivatives, melamine condensation products or melamine salts, benzoguanamine, polyisocyanurates, allantoin, phosphacene, in particular melamine cyanurate, melamine phosphate, dimelamin phosphate
  • Phosphorus-containing flame retardants such as red phosphorus, phosphates
  • polybrominated diphenyl oxides such as decabromodiphenyl oxide, tris (3-bromo-2,2-bis (bromomethyl) propyl phosphate, tris (tribromoneopentyl) - phosphate, tetrabromophthalic acid, 1,2-bis (tribromophenoxy) ethane, hexa- romcyclododecane, brominated diphenylethane, tris-(2,3-dibromopropyl) isocyanurate, ethylene bis-(tetrabromophthalimide), tetrabromobisphenol A, brominated polystyrene, brominated polybutadiene or polystyrene-brominated polybutadiene copolymers, brominated polyphenylene ether, brominated epoxy resin , Polypentabromobenzyl acrylate, optionally in combination with Sb 2 O 3 and/or Sb 2 Os, f
  • Particularly suitable flame retardants are:
  • Suitable azo compounds is, for example, in M. Aubert et. al. Macromol. Be. Closely. 2007, 292, 707-714 or in WO 2008/101845, the preparation of hydrazones and azines in M. Aubert et al., Pol. Adv. Technol. 2011, 22, 1529-1538, the preparation of triazenes in W. Pawelec et al., Pol. degr. Rod. 2012, 97, 948-954.
  • the synthesis of iminoxytriazines is described in WO 2014/064064.
  • Free-radical formers to be used in particular are selected from the group consisting of a) N-alkoxyamines according to the structural formula shown below where
  • R 3 is hydrogen or an optionally substituted alkyl, cycloalkyl, aryl, heteroaryl or acyl radical, in particular a C1 to C4 alkyl radical,
  • R 4 is an alkoxy, aryloxy, cycloalkoxy, aralkoxy or acyloxy radical
  • Z is hydrogen or an optionally substituted alkyl, cycloalkyl, aryl, heteroaryl or acyl radical, it being possible for the two radicals Z to also form a closed ring, which may be substituted by ester, ether, amine, amide , carboxy or urethane groups may be substituted,
  • E stands for an alkoxy, aryloxy, cycloalkyloxy, aralkoxy or acyloxy radical, b) azo compounds according to the structural formulas shown below where
  • R 5 is an alkyl, cycloalkyl or aryl radical
  • R 6 is the same or different on each occurrence and is a linear or branched alkyl radical
  • R 7 is the same or different on each occurrence and is hydrogen or a linear or branched alkyl radical
  • R 8 is the same or different on each occurrence and is an alkyl, alkoxy, aryloxy, cycloalkyloxy, aralkoxy or acyloxy radical, c) dicumyl according to the structural formula shown below where R 7 is as defined above, preferably methyl, d) and/or polycumyl according to the structural formula shown below where R 7 has the meaning given above, preferably methyl, and 2 ⁇ n ⁇ 100.
  • RI and R2 are identical or different and are selected from linear or branched C1-C6-alkyl and/or aryl;
  • M is selected from the group consisting of Mg, Ca, Al, Sb, Sn, Ge, Ti, Fe, Zr, Ce, Bi, Sr, Mn, Li, Na, K, Zn and/or a protonated nitrogen base, preferably calcium ions, magnesium ions, aluminum ions and/or zinc ions; and
  • m 1-4, preferably 2 or 3;
  • n 1-4, preferably 1 or 3;
  • x 1-4, preferably 1 or 2.
  • Ri alkyl
  • R2 Al ky I
  • M Al or Zn.
  • phosphorus-containing flame retardants are metal salts of hypophosphorous acid having a structure according to the formula
  • Met n+ where Met is a metal selected from Groups I, II, III and IV of the Periodic Table of Elements and n is a number from 1 to 4 corresponding to the charge of the corresponding metal ion Met.
  • Met n+ is, for example, Na + , Ca 2+ , Mg 2+ , Zn 2+ , Ti 4+ or Al 3+ , Ca 2+ , Zn 2+ and Al 3+ being particularly preferred.
  • Corresponding structures can also be present in the form of phosphonate oligomers, polymers and copolymers.
  • Linear or branched phosphonate oligomers and polymers are known from the prior art.
  • For branched phosphonate oligomers and polymers see U.S. Patents US 2,716,101, US 3,326,852, US 4,328,174, US 4,331,614, US 4,374,971, US 4,415,719, US
  • phosphonates are available under the trade name Nofia (RTM) from FRX Polymers.
  • Products based on oxophosphorine oxide are commercially available, for example, under the trade name Ukanol (RTM) from Schill and Seilacher GmbH. Further compounds can be prepared, for example, according to the patent specifications WO 2013020696, WO 2010135398, WO 03070736, WO 2006084488, WO 2006084489, WO 2011000019, WO 2013068437, WO 2013072295.
  • Suitable phosphorus-containing flame retardants are cyclic phosphonates with a structure according to one of the following formulas: wherein A 1 and A 2 independently represent a substituted or unsubstituted, straight or branched chain alkyl group having 1 to 4 carbon atoms, substituted or unsubstituted benzyl, substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, and wherein A 3 and A 4 independently of each other are methyl or ethyl and A 5 is a straight or branched chain alkyl group having 1 to 4 carbon atoms or a phenyl or benzyl group each of which may have up to 3 methyl groups.
  • Cyclic phosphonates are commercially available, for example, from Thor GmbH under the trade name Aflammit (RTM) or can be produced according to EP 2450401.
  • phosphacenes especially polymeric phosphacenes.
  • SPB-100 from Otsuka Chemicals.
  • Preferred nitrogen-containing flame retardants are melamine polyphosphate, melamine cyanurate, melamine metal phosphates, poly[2,4-(piperazin-1,4-yl)-6-(morpholin-4-yl)-1,3,5-triazine] and ammonium polyphosphate. These compounds are commercial products and available under the trade names Melapur (RTM) from BASF SE, Budit (RTM) from Budenheim Chemische Fabrik, Exolit (RTM) from Clariant, Safire (RTM) from Huber Chemicals or MCA PPM Triazine from MCA Technologies GmbH.
  • Preferred sulfur-containing flame retardants are, for example, the following compounds
  • Very particularly preferred flame retardants are halogen-free and are the following compounds:
  • Suitable lubricants and processing aids are, for example, polyethylene waxes, polypropylene waxes, salts of fatty acids such as calcium stearate, zinc stearate or salts of montan waxes, amide waxes such as. B. erucic acid amide or oleic acid amides, fluoropolymers, silicones or neoalkoxy titanates and zirconates.
  • Suitable heat stabilizers are, for example, metal soaps of divalent metals such as Ba, Zn, Ca, for example zinc stearate, calcium stearate, organotin compounds, for example methyl and octyltin compounds, for example dioctyltin bisisooctyl thioglycolate or dioctyltin maleate, aminouracils, aminocrotonic acid esters, perchlorate salts, and phosphites as co-stabilizers, epoxides, polyols, diketones, dihydropyridines, hydrotalcites, zeolites.
  • metal soaps of divalent metals such as Ba, Zn, Ca
  • organotin compounds for example methyl and octyltin compounds, for example dioctyltin bisisooctyl thioglycolate or dioctyltin maleate
  • Suitable pigments can be inorganic or organic in nature.
  • Inorganic pigments are, for example, titanium dioxide, zinc oxide, zinc sulfide, iron oxide, ultramarine, carbon black, organic pigments are, for example, anthraquinones, anthanthrones, benzimidazolones, quinacridones, diketopyrrolopyrroles, dioxazines, indanthrones, isoindolinones, azo compounds, perylenes, phthalocyanines or pyranthrones.
  • Other suitable pigments are metal-based effect pigments or metal-oxide-based pearlescent pigments.
  • Other suitable pigments are C.I.
  • Pigments such as Black 12, Black 26, Black 28, Black 30, Blue 15, Blue 28, Blue 36, Blue 60, Blue 385, Brown 24, Brown 25, Brown 29, Brown 33, Green 7, Green 17, Green 26 , Green 36, Green 47, Green 50, Violet 1, Violet 3, Violet 14, Violet 16, Violet 19, Violet 23, Violet 27, Yellow 1, Yellow 3, Yellow
  • Suitable optical brighteners are, for example, bisbenzoxazoles, phenylcoumarins or bis(styryl)biphenyls and in particular optical brighteners of the formulas:
  • Suitable filler deactivators are, for example, polysiloxanes, polyacrylates, in particular block copolymers such as polymethacrylic acid polyalkylene oxide or polyglycidyl (meth)acrylates and their copolymers, for example with styrene, and epoxides, for example.
  • polysiloxanes polyacrylates
  • block copolymers such as polymethacrylic acid polyalkylene oxide or polyglycidyl (meth)acrylates and their copolymers, for example with styrene, and epoxides, for example.
  • Suitable antiozonants are the amines mentioned above, such as N,N'-diisopropyl-p-phenylenediamine, N,N'-di-sec-butyl-p-phenylenediamine, N,N'-bis-(1,4-dimethylpentyl )-p-phenylenediamine, N,N'-dicyclohexyl-p-phenylenediamine, N-isopropyl-N'-phenyl-p-phenylenediamine, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine , N-(1-methylheptyl)-N'-phenyl-p-phenylenediamine, N-cyclohexyl-N'-phenyl-p-phenylenediamine.
  • Suitable rheology modifiers for example for the production of controlled rheology polypropylene (CR-PP), are, for example, peroxides, alkoxyamine esters, oxyimide sulfonic acid esters and in particular the following structures:
  • Suitable additives for increasing the molecular weight of polycondensation polymers are diepoxides, bis-oxazolines, bis-oxazolones, bis-oxazines, diisocyanates, dianhydrides, bis-acyllactams, bis-maleimides, dicyanates, carbodiimides and polycarbodiimides.
  • Other suitable chain extenders are polymeric compounds such as.
  • Suitable additives for increasing the electrical conductivity are, for example, the antistatic agents mentioned, soot and carbon compounds such as carbon nanotubes and graphene, metal powder such as copper powder and conductive polymers such as polypyrroles, polyanilines and polythiophenes.
  • suitable infrared-active additives are aluminum silicates, hydrotalcites or dyes such as phthalocyanines or anthraquinones.
  • crosslinking agents examples include peroxides such as dialkyl peroxides, alkylaryl peroxides, peroxyesters, peroxycarbonates, diacyl proxides, peroxyketals, silanes such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltris(2-methoxyethoxy)silane, 3-methacryloyloxypropyltrimethoxysilane, vinyldimethoxymethylsilane or ethylene - Vinylsilane copolymers.
  • peroxides such as dialkyl peroxides, alkylaryl peroxides, peroxyesters, peroxycarbonates, diacyl proxides, peroxyketals
  • silanes such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltris(2-methoxyethoxy)silane, 3-methacryloyloxypropyltrimethoxysi
  • Suitable prodegradants are additives that specifically accelerate or control the degradation of a polymer in the environment.
  • Examples are transition metal fatty acid esters, e.g. of manganese or iron, which accelerate oxidative and/or photo-oxidative degradation, e.g. of polyolefins, or enzymes, which induce hydrolytic degradation of e.g. aliphatic polyesters.
  • Suitable chemical blowing agents are azo compounds such as azodicarboxylic acid diamide, sulfonylsemicarbazides such as p-toluenesulfonylsemicarbazide, tetrazoles such as 5-phenyltetrazole, hydrazides such as p-toluenesulfonylhydrazide, 4,4'-oxibis(benzenesulfonyl)hydrazide, N-nitroso compounds such as N,N' -Dinitrosopentamethylenetetramine or carbonates such as sodium bicarbonate or zinc carbonate.
  • suitable slip agents are amide waxes such as erucic acid amide or oleic acid amide.
  • Suitable antifogging additives are ethoxylated sorbitan esters, ethoxylated fatty acid alcohols or ethoxylated alkylamine esters.
  • Suitable aldehyde scavengers are amines, hydroxylamines, polyvinyl alcohol, zeolites or cyclodextrins
  • suitable formaldehyde scavengers are melamine derivatives such as benzoguanamine or urea derivatives such as allantoin.
  • Suitable markers are, for example, fluorescent dyes or rare earths.
  • Suitable nucleating agents are talc, alkali metal or alkaline earth metal salts of mono- and polyfunctional carboxylic acids such as.
  • Suitable transparency improvers are in particular sorbitol derivatives such as
  • Suitable antinucleating agents are azine dyes such as e.g. B. nigrosine or ionic liquids,
  • styrene block copolymers styrene-butadiene (SB), styrene-butadiene-styrene (SBS) optionally hydrogenated (SEBS) or modified by maleic anhydride (SEBS-g-MAH), thermoplastic polyurethanes, copolyesters or copolyamides.
  • Suitable mold release agents are, for example, silicones, soaps and waxes such as montan waxes.
  • the additive according to the invention which can be present as a powder, liquid, oil, compacted, on a carrier material, as granules, solution or flakes, is preferably mixed with the polymer to be stabilized, the polymer matrix is melted and then cooled. As an alternative to this, it is also possible to introduce the additive into a polymer melt in a molten state.
  • compositions contain secondary antioxidants, in particular phosphites/phosphonites, sulphites, acid scavengers, co-stabilizers based on polyols and/or light stabilizers from the group of hindered amines (HALS).
  • secondary antioxidants in particular phosphites/phosphonites, sulphites, acid scavengers, co-stabilizers based on polyols and/or light stabilizers from the group of hindered amines (HALS).
  • HALS hindered amines
  • 0.01 to 10.00% by weight preferably 0.01 to 7.50% by weight, more preferably from 0.02 to 5.00% by weight, particularly preferably from 0.05 to 3.00% % by weight of a polymer according to general formula I,
  • the at least one additive is preferably selected from the group consisting of primary antioxidants, secondary antioxidants, UV absorbers, light stabilizers, in particular hindered amine light stabilizers (HALS) and long-term heat stabilizers (HAS), metal deactivators, filler deactivators, Antiozonants, nucleating agents, antinucleating agents, transparency improvers (clarifiers), impact strength improvers, plasticizers, lubricants, rheology or viscosity modifiers, thixotropic agents, chain extenders, processing aids, mold release agents, flame retardants, pigments, dyes, optical brighteners, antimicrobial active ingredients, antistatic agents, slip agents, antiblocking agents , coupling agents, crosslinking agents, anticrosslinking agents, hydrophilizing agents, hydrophobing agents, surface modifiers, hydrolysis stabilizers, adhesion promoters, dispersants, compatibilizers, oxygen scavengers, acid scavengers, acetaldehyde and formaldeh
  • Particularly preferred plastic compositions consist of
  • plastic composition can be added separately, in the form of liquids, powders, granules or compacted products or together with the additive composition according to the invention (i.e. the at least one polymer according to general formula I and optionally additives) are added to the polymers as described above.
  • additive composition according to the invention i.e. the at least one polymer according to general formula I and optionally additives
  • the additive composition described above and any additional additives are incorporated into the plastic using customary processing methods, preferably using mixers, kneaders or extruders.
  • Extruders such as single-screw extruders, twin-screw extruders, planetary roller extruders, ring extruders, co-kneaders, which are preferably equipped with vacuum degassing, are preferred as processing machines.
  • the processing can take place under air or optionally under inert gas conditions.
  • plastics compositions containing the additive composition described can be processed by conventional plastics processing methods in continuous and discontinuous processes, such as by extrusion, calendering, blow molding, pultrusion, injection molding, pressing, transfer molding, casting, blow molding, rotational molding, deep drawing, sintering, foaming or also by additive manufacturing processes for the production of granules, molded parts, semi-finished products, fibers and foils.
  • Suitable extruders are ram extruders and screw extruders, single-screw extruders, twin-screw extruders, multi-screw extruders, planetary roller extruders, especially for the production of plastic granules, pipes, rods, hoses, profiles, casings, plates, films, V-belts, toothed belts, seals, foam boards (XPS), fibers and filaments for additive manufacturing processes.
  • XPS foam boards
  • Suitable injection molding machines can be hydraulic or electromechanical and include multi-component injection molding and in-mold processes.
  • Molded parts produced by injection molding are, for example, bottles, containers, screw-top cans, boxes, barrels, buckets, pallets, technical parts for cars and transport such as bumpers, trim parts, handles, headlight covers, fittings and functional parts, electrical and electronic applications such as housing parts and accessories TVs, computers, mobile phones, washing machines, dishwashers, coffee machines, drills, connectors, storage media, household, leisure and sporting items such as flower pots, coat hangers, toy figures, model building, components for furniture such as brackets and clips,
  • Parts manufactured by rotational molding are in particular tanks such as heating oil and rainwater tanks, housings for machines, transport containers, leisure and water sports items such as kayaks.
  • films such as decorative films, wallpaper and floor coverings are produced by calendering.
  • Additive manufacturing processes include, for example, binder jetting (BJ), laser Sintering (LS), Selective Laser Melting (SLM), Electron Beam Melting (EBM), Fused Deposition Modeling (FDM), Fused Filament Fabrication (FFF), Multi-Jet Modeling (MJM), Poly-Jet Modeling (PJM), Layers Laminated Manufacturing (LLM), Thermal Transfer Sintering (TIS), Digital Light Processing (DLP), Photopolymer Jetting (PJ) and Stereolithography (SL).
  • Exemplary molded parts that can be produced from the composition according to the invention are foils or films, foams, fibers, cables and pipes, profiles, hollow bodies, ribbons, membranes, such as geomembranes, or adhesives, via extrusion, injection molding, blow molding, calendering, pressing processes , spinning processes, rotomoulding, e.g. for packaging e.g. for food, detergents, cosmetics, adhesives in the form of foils, bottles, bags, screw-top cans, storage and transport containers such as e.g. B.
  • Hygiene items such as diapers, furniture and textile applications such as curtains and upholstery, worktops, household, leisure and sports items such as balls, tennis rackets, skis, flower pots, rain barrels, hangers, agricultural applications such as mulch, tunnel or perforated films , plant pots, pharmaceutical and crop protection applications such as e.g. for the encapsulation of active ingredients and biologically active substances, in medical technology for the production of sutures, bandages, orthoses and prostheses.
  • the invention also relates to a method for stabilizing a plastic composition, in particular against oxidative, thermal and/or actinic degradation, in which at least one polymer of general formula I as defined above is incorporated into at least one plastic or a blend of at least two plastics.
  • component A and component B are present in a weight ratio of 100:1 to 1:100, preferably 10:1 to 1:10, particularly preferably 5:1 to 1:5.

Abstract

Die vorliegende Erfindung betrifft polymere Stabilisatoren auf Basis von nachwachsenden Rohstoffen aus der Gruppe der Methoxy-Hydroxy-Benzoesäuren, wie z.B. Syringasäure, Vanillinsäure, Isovanillinsäure oder 5-Hydroxyveratrumsäure, eine Kunststoffzusammensetzung, ein Verfahren zur Stabiliserung einer Kunststoffzusammensetzung sowie eine Stabilisatorzusammensetzung mit hoher stabilisierender Wirkung.

Description

POLYMERE STABILISATOREN AUF BASIS VON
METHOXY-HYDROXY-BENZOESÄUREN, KUNSTSTOFFZUSAMMENSETZUNG, VERFAHREN ZUR STABILISERUNG EINER KUNSTSTOFFZUSAMMENSETZUNG SOWIE STABILISATORZUSAMMENSETZUNG
Die vorliegende Erfindung betrifft polymere Stabilisatoren auf Basis von nachwachsenden Rohstoffen, wie z.B. Syringasäure, Vanillinsäure, Isovanillinsäure oder 5-Hydroxyveratrumsäure, eine Kunststoffzusammensetzung, ein Verfahren zur Stabilisierung einer Kunststoffzusammensetzung sowie eine Stabilisatorzusammensetzung mit hoher stabilisierender Wirkung.
Organische Materialien wie Kunststoffe unterliegen Alterungsvorgängen, die letztendlich zu einem Verlust der erwünschten Eigenschaften wie z.B. der mechanischen Kennwerte führen. Dieser Autoxidation genannte Vorgang führt ausgehend von radikalischen Kettenspaltungen durch mechanochemische Prozesse oder durch UV-Strahlung in Gegenwart von Sauerstoff zu Veränderungen der Polymerkette, wie z.B. im Molekulargewicht und/oder zur Bildung neuer chemischer Gruppen. Um diese Alterung zu verhindern oder zumindest zu verzögern werden deshalb Stabilisatoren eingesetzt. Wichtige Vertreter von Stabilisatoren sind Antioxidantien, die mit den bei der Autoxidation gebildeten Radikalen interferieren und damit den Abbauprozess unterbrechen. Man unterscheidet im Allgemeinen zwischen primären Antioxidantien, die direkt mit sauerstoffhaltigen freien Radikalen oder C-Radikalen reagieren können und sekundären Antioxidantien, die mit intermediär gebildeten Hydroperoxiden reagieren (s. C. Kröhnke et al. Antioxidants in Ullmann's encyclopedia of industrial chemistry, Wiley-VCH Verlag, Weinheim 2015). Typische Vertreter von primären Antioxidantien sind beispielsweise phenolische Antioxidantien, Amine aber auch Lactone. Klassen von sekundären Antioxidantien sind Phosphorverbindungen wie z.B. Phosphite und Phosphonite, aber auch Organa-Schwefel- verbindungen wie z.B. Thioester, Thioether und Disulfide. Üblicherweise werden in der Praxis häufig primäre und sekundäre Antioxidantien kombiniert, was zu einer synergistischen Wirkung führt.
In zunehmendem Maße werden Kunststoffe aus fossilen Rohstoffen wie Erdöl oder Erdgas durch Kunststoffe auf der Basis von nachwachsenden Rohstoffen über biotechnologische Prozesse ergänzt bzw. ersetzt. Die Frage der Nachhaltigkeit stellt sich dann auch für die dafür (und für Kunststoffe aus fossilen Rohstoffen) eingesetzten primären und sekundären Antioxidantien. Es besteht daher der Bedarf an Stabilisatoren basierend auf nachwachsenden und verfügbaren Rohstoffen mit hoher Wirksamkeit, niedriger Flüchtigkeit und Kompatibilität mit polymeren Substraten. Idealerweise verfügen die Antioxidantien auch über eine Schutzwirkung gegenüber der Photooxidation zum Schutz der Polymeren in Außenanwendungen.
Stand der Technik
Grundsätzlich sind Antioxidantien aus nachwachsenden Rohstoffen bekannt, die auch vereinzelt in Kunststoffen eingesetzt werden. Ein typisches Beispiel sind Tocopherole (Vitamin E). Tocopherole weisen wie übliche Antioxidantien eine sterisch gehinderte Phenolstruktur auf und können allein oder in Kombination mit sekundären Antioxidantien eingesetzt werden (z.B. S. Al-Malaika, Macromol. Symp. 2001, 176, 107). Tocopherole werden aus Naturstoffen wie z.B. Weizenkeimöl, Sonnenblumenöl oder Olivenöl isoliert. Weitere bekannte phenolische Antioxidantien aus Naturstoffen, die in Kunststoffen untersucht wurden, sind beispielsweise in den folgenden Literaturstellen beschrieben:
• Quercetin (B. Kirschweng et al., Melt stabilisation of PE with natural antioxidants: Comparison of rutin and quercetin, Eur. Pol. J. 2018, 103, 228-237), Dihydromyricetin (B. Kirschweng et al., Melt stabilization of polyethylene with dihydromyricetin, a natural antioxidant, Pol. Degr. Stab. 2016, 133, 192-200),
• Derivate der Rosmarinsäure (K. Doudin et al., New genre of antioxidants from renewable natural resources: Synthesis and characterisation of rosemary plant-derived antioxidants and their performance in polyolefins, Pol. Degr. Stab. .2016, 130, 126-134),
• Tannin (WJ. Grigsby et al., Esterification of condensed tannins and their impact on the properties of poly (lactic acid), Polymers 5 (2013) 344- 360),
• Curcumin (D. Tatraaljai et al. Processing stabilisation of PE with a natural antioxidant, curcumin, European Polymer Journal 49 (2013) 1196- 1203),
• Silymarin und Sylibin (B. Kirschweng et al., Melt stabilization of polyethylene with natural antioxidants: comparison of a natural extract and its main components, Journal of Thermal Analysis and Calorimetry https://doi.org/10.1007/sl0973-020-09709-5),
• Catechin von Tee-und Kaffeeextrakten (0. Olejnik, A. Masek, Bio-Based Packaging Materials Containing Substances Derived from Coffee and Tea Plants, Materials 2020, 13, 5719).
Weiterhin sind die eigenen Anmeldungen zur Stabilisierung von Kunststoffen mit langkettigen Estern der Ferulasäure (WO 2021/191078 Al) und Ferulasäu- resalzen (WO 2021/191364 Al) zu nennen.
WO 98/18830 offenbart polymere Stabilisatoren, die gleichzeitig als Kompati- bilisatoren wirken und durch polymeranaloge Umsetzung u.a. sterisch gehinderte Phenole, sterisch gehinderte Amine, Lactone, Phosphite mit Polymeren u.a. mit Acrylsäure, Glycidylmethacrylat, Maleinsäureanhydrid und Vinylalkohol beschreiben. M. Rostagno et al. beschreiben in "Sustainable polyvinyl acetals from bioaromatic aldehydes", Polym. Chem. 2017, 8, 5049-5059, Polyacetale, die aus Aldehyden erthalten werden. Die Strukturen sind aufwändig zu synthetisieren, die erhaltenen Verbindungen sind hydrolyseempfindlich, eine Verwendung als Stabilisatoren ist nicht beschrieben.
In CN 110183912 wird ein Fußbodenanstrich beschrieben, der u.a. 3,5-Dime- thoxy-4-hydroxyzimtsäure als Reaktionskomponente und u.a. Polyvinylalkohol enthält. Die Phenolgruppe reagiert dabei und steht damit nicht mehr für antioxidative Eigenschaften zur Verfügung, Hinweise auf antioxidative-Eigenschaften sind nicht zu entnehmen.
In WO 2014/194055 sind Polyester z.B. aus Ferulasäure mit (Poly)ethylenglycol beschrieben, die in einem Hydrogel eingesetzt werden, das u.a. Polyvinylalkohol enthalten kann.
In G. Jialanella, I. Piirma, "Synthesis of (polyvinyl alcohol-co-vinyl gallate) by the chemical modification of poly(vinyl alcohol)" ist die Synthese des Titel- polymerenbeschrieben. Als Verwendung wird eine wässrige Lösung und die Komplexbildung beschrieben, ein Einsatz in Polymeren zu deren Stabilisierung ist der Publikation nicht zu entnehmen.
Den meisten der genannten Stabilisatoren aus nachwachsenden Rohstoffen ist jedoch gemeinsam, dass diese eine vergleichsweise hohe Flüchtigkeit oder Mig- rationstendenz aufweisen. Beispielhaft wurde gezeigt, dass selbst vergleichsweise hochmolekulare natürliche Antioxidantien ein hohes Migrationspotential aufweisen (A. Masek, M. LatosBrozio, The Effect of Substances of Plant Origin on the Thermal and Thermo-Oxidative Ageing of Aliphatic Polyesters (PLA, PHA), Polymers 2018, 10, 1252).
Die vorliegende Erfindung stellt sich daher die Aufgabe, wirksame Antioxidantien für Kunststoffe aus nachwachsenden Rohstoffen zur Verfügung zu stellen, die gleichzeitig eine sehr niedrige Flüchtigkeit und/oder niedrige Migrationstendenz aufweisen
Darstellung der Erfindung
Diese Aufgabe wird durch Polymere gemäß Anspruch 1, die Verwendung von Polymeren zur Stabilisierung von Kunststoffen gemäß Patentanspruch 9, insbesondere gegen oxidativen, thermischen und/oder actinischen Abbau gelöst. Zudem betrifft die vorliegende Erfindung eine Kunststoffzusammensetzung, die die bezeichneten Polymeren als Stabilisatoren beinhaltet. Die vorliegende Erfindung betrifft des Weiteren ein Verfahren zur Stabilisierung einer Kunststoffzusammensetzung unter Verwendung der erfindungsgemäßen Polymeren. Zuletzt betrifft die vorliegende Erfindung eine Stabilisatorzusammensetzung, die aus den erfindungsgemäßen Polymeren und mindestens einem Zusatzstoff besteht.
Gemäß einem ersten Aspekt betrifft die vorliegende Erfindung ein Polymer, das eine Wiederholungseinheit (A) der allgemeinen Formel I
Figure imgf000006_0001
enthält wobei
R1, R2 und R3 jeweils unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus Hydroxy, linearen oder verzweigten Alkoxyl- gruppen mit 1 bis 6 Kohlenstoffatomen und Wasserstoff, mit der Maßgabe, dass mindestens einer der Reste R1, R2 und R3 ein Hydroxyrest und mindestens einer der Reste R1, R2 und R3 eine lineare oder verzweigte Alkoxygruppe mit 1 bis 6 Kohlenstoffatomen ist, wobei R1, R2 und R3 bei jedem Auftreten gleich oder verschieden sind,
X ausgewählt ist aus der Gruppe bestehend aus - (CH 2)y— , wobei y eine ganze Zahl von 1 bis 12 ist, — (CH=CH)— und -(CH=CMe)-, x 0 oder l ist.
Das Polymer kann die Wiederholungseinheit (A) gemäß der Formel I beinhal- ten. Dies bedeutet, dass neben der Wiederholungseinheit (A) gemäß der Formel I noch weitere, sich von der Wiederholungseinheit (A) gemäß der Formel I unterscheidende Wiederholungseinheiten vorhanden sein können. In diesem Fall handelt es sich beim erfindungsgemäßen Polymeren um ein Copolymer. Für den Fall, dass das die Wiederholungseinheit (A) gemäß der Formel I die einzige Wiederholungseinheit darstellt, ist das erfindungsgemäße Polymer ein Homopolymer. Die Copolymere können dabei als statistische, Gradienten-, alternierende oder Blockcopolymere vorliegen.
Überraschenderweise konnte festgestellt werden, dass mit den erfindungsgemäßen Polymeren nicht nur eine hervorragende stabilisierende Wirkung bei Kunststoffmaterialien einhergeht, sondern auch, dass die erfindungsgemäßen Polymere eine sehr geringe Flüchtigkeit aufweisen und vornehmlich auf Basis nachwachsender Rohstoffe hergestellt werden können.
Die der Erfindung zugrundeliegende Aufgabe wurde somit insbesondere dadurch gelöst, dass Esterderivate von Polyvinylalkohol-Polymeren oder Polyvi- nylalkohol-Copolymeren eingesetzt werden, die alpha-methoxy-substituierte Phenole als aktive Komponenten beinhalten. Grundsätzlich ist es damit möglich, vollständig auf nachwachsenden Rohstoffen basierende Stabilisatoren herzustellen, da nicht nur die alpha-methoxy-substituierten Phenole auf nachwachsender Basis zugänglich sind, sondern auch Polyvinylacetate und Polyvinylalkohol wie z.B. in M. Amann, O. Minge, Biodegradability of Poly(vinyl acetate) and Related Polymers, Adv. Polym. Sei. (2012) 245: 137-172 beschrieben.
Gemäß einer bevorzugten Ausführungsform ist
R1 Wasserstoff, Hydroxy oder eine lineare oder verzweigte Alkoxylgruppe mit 1 bis 6 Kohlenstoffatomen, insbesondere Methoxy,
R2 Hydroxy und
R3 eine lineare oder verzweigte Alkoxylgruppe mit 1 bis 6 Kohlenstoffatomen, insbesondere Methoxy.
Die Esterreste der Wiederholungseinheit der allgemeinen Formel I leiten sich insbesondere ab von natürlich vorkommenden Verbindungen wie
Figure imgf000008_0001
b) Vanillinsäure
Figure imgf000008_0002
c) Isovanillinsäure
Figure imgf000008_0003
omovanillinsäure)
Figure imgf000008_0004
e) Homosyringasäure
Figure imgf000009_0001
f) 3,4-Dihydroxy-5-methoxy-benzolessigsäure
Figure imgf000009_0002
g) Dihydroferulasäure
Figure imgf000009_0003
j) 3,4-Dihydroxy-5-methoxy-benzolpropionsäure,
Figure imgf000010_0002
Figure imgf000010_0001
m) Protocatechusäure
Figure imgf000011_0001
n) Gallussäure
Figure imgf000011_0002
o) 3,4,5-Trihydroxyzimtsäure
Figure imgf000011_0003
p) Kaffeesäure
Figure imgf000011_0004
q) Dihydrokaffeesäure
Figure imgf000012_0001
Die erfindungsgemäßen Polymere zeichnen sich überraschenderwiese durch ein hohes stabilisierendes Potential bei der Stabilisierung von Kunststoffen, insbesondere gegen oxidativen, thermischen und/oder actinischen Abbau aus und können auf an und für sich aus dem Stand der Technik bekannte Weise hergestellt werden.
Die voranstehend als Ausgangsprodukte verwendeten Säuren, wie z.B. Syring- asäure, Vanillinsäure, Isovanillinsäure oder 5-Hydroxyveratrumsäure sind im Handel erhältlich.
Die als Ausgangsprodukte verwendeten Säuren bzw. Säurederivate wie die Methylester sind im Handel erhältlich bzw. über bekannte Methoden, z.B. über basisch oder sauer katalysierte Veresterung mit Alkoholen zugänglich.
Die Herstellung der Ester des Vinylalkohols kann z.B. durch Reaktion mit den Säuren in Form einer polymeranalogen Umsetzung unter saurer Katalyse z.B. in Gegenwart von Schwefelsäure oder p-Toluolsulfonsäure in einem geeigneten Lösungs- oder Suspensionsmittel wie z.B. Toluol unter Entfernung des entstehenden Wassers z.B. durch Destillation erfolgen.
Eine weitere Möglichkeit ist ein Prozess indem zunächst ein kurzkettiger Ester, wie z.B. der Methylester oder der Ethylester der jeweiligen Säure hergestellt wird und in einer zweiten Stufe eine Umesterungsreaktion mit dem Polyvinylalkohol in Gegenwart eines geeigneten Katalysators wie z.B. Dibutylzinn- butoxid, Dioctylzinndiacetat, Dioctylzinnketonat oder Tetrabutyltitanat,Tetra- isobutyltitanat,Tetrapropylorthotitanat erfolgt. Alternativ kann die Vereste- rungs- und/oder Umesterungsreaktion auch enzymatisch erfolgen wie z.B. in K. Vosrmann et al. Appl. Microbiol. Biotechnol. (2008) 80:29-36 beschrieben. Eine weitere Möglichkeit ist die Umesterung von Polyvinylacetat mittels der jeweiligen Säure unter Entfernung von Essigsäure. Gegebenenfalls kann in einem ersten Syntheseschritt auch die Phenol-Gruppe mit einer Schutzfunktion versehen werden, die nach der Veresterung wieder entfernt wird. Eine mögliche Schutzgruppe ist beispielsweise die Triethylsilylgruppe, die mittels Triethylsilan eingeführt werden kann.
Das erfindungsgemäße Polymer kann beispielsweise ausschließlich aus gleichen Wiederholungseinheiten (A) aufgebaut sein. Ebenso ist es möglich, dass das Polymer ausschließlich aus Wiederholungseinheiten (A) aufgebaut ist, hierbei jedoch mindestens zwei voneinander verschiedene Wiederholungseinheiten (A), die unter Formel I subsumierbar sind (z.B. aufgrund eines unterschiedlichen Substitutionsmusters der Reste R1 bis R3) vorliegen.
Eine weitere bevorzugte Ausführungsform sieht vor, dass das Polymer als Copolymer ausgebildet ist und somit mindestens eine weitere Wiederholungseinheit (B), enthält, die ausgewählt ist aus Wiederholungseinheiten, die von radikalisch, kontrolliert radikalisch oder koordinativ polymerisierbaren Monomeren abgeleitet sind. Die mindestens eine weitere Wiederholungseinheit (B) unterscheidet sich somit von den Wiederholungseinheiten (A) gemäß Formel I.
Beispielsweise kann es sein, dass die mindestens eine weitere Wiederholungseinheit (B) ausgewählt ist aus den nachfolgenden Wiederholungseinheiten:
Figure imgf000013_0001
wobei
R4 ausgewählt ist aus der Gruppe bestehend aus Wasserstoff sowie linearen oder verzweigen Alkylresten mit 1 bis 36 Kohlenstoffatomen,
R5 ausgewählt ist aus der Gruppe bestehend aus linearen oder verzweigen Alkylresten mit 1 bis 36 Kohlenstoffatomen, und
Z O oder NH ist.
Vorzugsweise beträgt im vorgenannten Fall das molare Verhältnis der Wiederholungseinheit (A) zur Gesamtheit sämtlicher Wiederholungseinheiten 0,01 bis <1,0, bevorzugt 0,25 bis 0,95, besonders bevorzugt 0,40 bis 0,90.
Das erfindungsgemäße Polymer weist bevorzugt ein gewichtsgemitteltes Molekulargewicht von 103 bis 106 g/mol, bevorzugt 5 103 bis 5 105 g/mol, besonders bevorzugt von 7,5 103 bis 105 g/mol auf.
Ganz besonders bevorzugt enthält das erfindungsgemäße Polymer die Wiederholungseinheit (A) gemäß allgemeiner Formel I sowie die nachfolgenden Wiederholungseinheiten (Bl) und (B2):
Figure imgf000014_0001
(Bl) (B2) wobei Z und R5 die voranstehende Bedeutung aufweisen, insbesondere Z Sauerstoff und R5 Ethyl sind, oder hieraus bestehen.
Bevorzugt beträgt beim erfindungsgemäßen Polymer das molare Verhältnis der Wiederholungseinheit (A) zur Gesamtheit sämtlicher
Wiederholungseinheiten 0,25 bis 0,95, besonders bevorzugt 0,40 bis 0,90, das molare Verhältnis der Wiederholungseinheit (Bl) zur Gesamtheit sämtlicher Wiederholungseinheiten 0,05 bis 0,50, bevorzugt 0,20 bis 0,32, das molare Verhältnis der Wiederholungseinheit (B2) zur Gesamtheit sämtlicher Wiederholungseinheiten 0,05 bis 0,25, bevorzugt 0,08 bis 0,20.
Die Synthese von Copolyestern mit Ga Hat ist in G. Jialanella, I. Piirma, Synthesis of (polyvinyl alcohol-co-vinyl gallate) by the chemical modification of poly(vi nyl alcohol) beschrieben. Die Synthese von Ethylen-Vinylester-Copolymeren kann beispielsweise analog K. Henning et al., Polymeranaloge Umsetzungen an Ethy- len-Vinylalkohol-Copolymeren, Acta Polymerica, 1990, 41, 285-289 erfolgen.
Besonders bevorzugt sind z.B. die nachfolgenden Copolymere: Polyvinylester-co-Polyvinylacetat Polyvinylester-co-Polyvinylacetat-co-Polyvinylalkohol Polyvinylester-co-Polyethylen Polyvinylester-co-Polyethylen-co-Polyvinylalkohol Polyvinylester-co-Polydodecylen Polyvinylester-co-Polydodecylen-co-Polyvinylalkohol Polyvinylester-co-Polyoctadecylen Polyvinylester-co-Polyoctadecylen-co-Polyvinylalkohol Polyvinylester-co-l-Ethylenoxydodecan Polyvinylester-co-l-Ethylenoxydodecan-co-POlyvinylalkohol Polyvinylester-co-(IVIeth)acrylate, wie z.B. Polyvinylester-co-n-Butylacrylat, Pol- yvinylester-co-Polylaurylacrylat
Polyvinylester-co-Polymethylmethacrylat
Polyvinylester-co-Polyethylen-co-Polyvinylchlorid
Polyvinylester-co-Polyethylen-co-Polyvinylachlorid-co-Polyvinylalkohol Polyvinylester-co-Polystyrol
Polyvinylester-co-Polystyrol-co-Polyvinylalkohol Polyvinylester-co-Polystyrol-co-Polyethylen Polyvinylester-co-Polyvinylpyrrolidon
Polyvinylester-co-Fluorethylen
Polyvinylester-co-Polyacrylamid
Bevorzugt sind Copolyvinylester mit Polyvinylacetat, Polyvinylalkohol und mit Polyethylen. Die für die Herstellung der erfindungsgemäßen Polymeren notwendigen Polyvinylalkoholcopolymere sind kommerziell erhältlich. Der Gehalt an Polyvinylalkohol kann durch anteilige Verseifung von Polyvinylacetat eingestellt werden. Bei handelsüblichen Produkten ist der Gehalt an Polyvinylalkohol bzw. Polyvinylacetat jeweils ein Teil der Spezifikationen.
Zudem betrifft die vorliegende Erfindung Verwendung eines Polymers oder einer Mischung mehrerer Polymere, enthaltend eine Wiederholungseinheit (A) der allgemeinen Formel I
Figure imgf000016_0001
Formel I wobei
R1, R2 und R3 jeweils unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus Hydroxy, linearen oder verzweigten Alkoxylgrup- pen mit 1 bis 6 Kohlenstoffatomen und Wasserstoff, mit der Maßgabe, dass mindestens einer der Reste R1, R2 und R3 ein Hydroxyrest, wobei R1, R2 und R3 bei jedem Auftreten gleich oder verschieden sind,
X ausgewählt ist aus der Gruppe bestehend aus — (CH2)y— , wobei y eine ganze Zahl von 1 bis 12 ist, — (CH=CH)— und -(CH=CMe)-, x 0 oder 1 ist, zur Stabilisierung von Kunststoffen, insbesondere gegen oxidativen, thermischen und/oder actinischen Abbau.
Bevorzugt ist hierbei, dass mindestens einer der Reste R1, R2 und R3 eine lineare oder verzweigte Alkoxygruppe mit 1 bis 6 Kohlenstoffatomen ist. Somit werden die voranstehend beschriebenen Polymere erfindungsgemäß verwendet. Sämtliche weiteren bevorzugten Ausführungsformen zu den erfindungsgemäßen Polymeren gelten uneingeschränkt auch für die erfindungsgemäße Verwendung.
Bevorzugt ist hierbei, wenn das Polymer oder die Mischung der mehreren Polymere zu einem Gewichtsanteil von 0,01 bis 10,00 Gew.-%, bevorzugt von 0,02 bis 5,00 Gew.-%, besonders bevorzugt von 0,05 bis 2,00 Gew.-% im Kunststoff enthalten ist.
Bei den zu stabilisierenden Kunststoffen handelt es sich z.B. um thermoplastische, duromere oder elastomere Polymere.
Insbesondere eignen sich die Polymeren gemäß allgemeiner Formel I zur Stabilisierung von Kunststoffen, wobei der Kunststoff ausgewählt ist aus der Gruppe bestehend aus a) Polymeren aus Olefinen oder Diolefinen wie z.B. Polyethylen (LDPE, LLDPE, VLDPE, ULDPE, MDPE, HDPE, UHMWPE), Metallocen-PE (m- PE), Polypropylen, Polyisobutylen, Poly-4-methyl- penten-1, Polybutadien, Polyisopren, wie z.B. auch Naturkautschuk (NR), Polycycloocten, Polyalkylen-Kohlenmonoxid-Copolymere, sowie Copolymere in Form von statistischen oder Blockstrukturen wie z.B. Polypropylen-Polyethylen (EP), EPM oder EPDM mit z.B. 5-Ethyliden-2-Norbornen als Comonomer, Ethylen-Vinylacetat (EVA), Ethylen-Acrylester, wie z.B. Ethylen- Butylacrylat, Ethylen-Acrylsäure und deren Salze (lonomere), sowie Terpolymere wie z.B. Ethylen-Acrylsäure-Glycidyl(meth)acrylat, Pfropfpolymere wie z.B. Polypropylen-graft-Maleinsäureanhydrid, Po- lypropylen-graft -Acrylsäure, Polyethylen-graft -Acrylsäure, Polyethy- len-Polybutylacrylat-graft-Maleinsäureanhydrid sowie Blends wie z.B. LDPE/LLDPE oder auch langkettenverzweigte Polypropylen-Copolymere die mit alpha-Olefinen als Comonomere hergesellt werden wie z.B. mit 1-Buten, 1-Hexen, 1-Octen oder 1-Octadecen, b) Polystyrol, Polymethylstyrol, Poly-alpha-methylstyrol, Polyvinylnaphthalin, Polyvinylbiphenyl, Polyvinyltoluol, Styrol-Butadien (SB), Styrol- Butadien-Styrol (SBS), Styrol-Ethylen-Butylen- Styrol (SEBS), Styrol- Ethylen-Propylen-Styrol, Styrol-Isopren, Styrol-Isopren-Styrol (SIS), Styrol-Butadien-Acrylnitril (ABS), Styrol-Acrylnitril (SAN), Styrol-Acryl- nitril-Acrylat (ASA), Methacrylat-Butadien-Styrol (MBS), Styrol- Ethylen, Styrol-Maleinsäureanhydrid-Polymere einschl. entsprechender Pfropfcopolymere wie z.B. Styrol auf Butadien, Maleinsäureanhydrid auf SBS oder SEBS, sowie Pfropfcopolymere aus Methylmethacrylat, Styrol-Butadien und ABS (MABS), sowie hydrierte Polystyrol-Derivate wie z.B. Polyvinylcyclohexan, c) halogenenthaltenden Polymeren wie z.B. Polyvinylchlorid (PVC), Poly- chloropren und Polyvinylidenchlorid (PVDC), Copolymere aus Vinylchlorid und Vinylidenchlorid oder aus Vinylchlorid und Vinylacetat, chloriertes Polyethylen, Polyvinylidenfluorid, Epichlorhydrin- Homo und Copolymere insbes. mit Ethylenoxid (ECO), d) Polymeren von ungesättigten Estern wie z.B. Polyacrylate und Polyme- thacrylate wie Polymethylmethacrylat (PMMA), Polybutylacrylat, Po- lylaurylacrylat, Polystearylacrylat, Polyglycidylacrylat, Polyglycidylme- thacrylat, Polyacrylnitril, Polyacrylamide, Copolymere wie z.B. Polyac- rylnitril-Polyalkylacrylat, e) Polymeren aus ungesättigten Alkoholen und Derivaten, wie z.B. Polyvinylalkohol, Polyvinylacetat, Polyvinylbutyral, Polyallylphthalat, Polyallylmelamin, f) Polyacetalen, wie z.B. Polyoxymethylen (POM) oder Copolymere mit z.B. Butanal, g) Polyphenylenoxiden und Blends mit Polystyrol oder Polyamiden, h) Polymeren von cyclischen Ethern wie z.B. Polyethylenglycol, Polypro- pylenglycol, Polyethylenoxid, Polypropylenoxid, Polytetrahydrofuran, i) Polyurethanen, aus hydroxyterminierten Polyethern oder Polyestern und aromatischen oder aliphatischen Isocyanaten wie z.B. 2,4-oder 2,6 Toluylendiisocyanat oder Methylendiphenyldiisocyanat insbesondere auch lineare Polyurethane (TPU), Polyharnstoffen, j) Polyamiden wie z.B. Polyamid-6, 6.6, 6.10, 4.6, 4.10, 6.12, 10.10, 10.12, 12.12, Polyamid 11, Polyamid 12 sowie (teil-)aromatische Polyamide wie z.B. Polyphthalamide, z.B. hergestellt aus Terephthalsäure und/o- der Isophthalsäure und aliphatischen Diaminen wie z.B. Hexamethylendiamin oder m-Xylylendiamin oder aus aliphatischen Dicarbonsäuren wie z.B. Adipinsäure oder Sebazinsäure und aromatischen Diaminen wie z.B. 1,4-oder 1,3-Diaminobenzol, Blends von unterschiedlichen Polyamiden wie z.B. PA-6 und PA 6.6 bzw. Blends von Polyamiden und Polyolefinen wie z.B. PA/PP, k) Polyimiden, Polyamidimiden, Polyetherimiden, Polyesterimiden, Poly(ether)ketonen, Polysulfonen, Polyethersulfonen, Polya rylsulfo- nen, Polyphenylensulfiden, Polybenzimidazolen, Polyhydantoinen, l) Polyestern aus aliphatischen oder aromatischen Dicarbonsäuren und Diolen oder aus Hydroxy-Carbonsäuren wie z.B. Polyethylentereph- thalat (PET), Polybutylenterephthalat (PBT), Polypropylenterephthalat (PTI), Polyethylennaphthylat (PEN), Poly-l,4-dimethylolcyclohexan- terephthalat, Polyhydroxybenzoat, Polyhydroxynaphthalat, Polymilchsäure (PLA), Polyhydroxybutyrat (PHB), Polyhydroxyvalerat (PHV), Po- lyethylensuccinat, Polytetramethylensuccinat, Polycaprolacton, m) Polycarbonaten, Polyestercarbonaten, sowie Blends wie z.B. PC/ABS, PC/PBT, PC/PET/PBT, PC/PA, n) Cellulosederivaten wie z.B. Cellulosenitrat, Celluloseacetat, Cellulosepropionat, Cellulosebutyrat, o) Epoxidharzen, bestehend aus di-oder polyfunktionellen Epoxidverbindungen in Kombination mit z.B. Härtern auf der Basis von Aminen, Anhydriden, Dicyandiamid, Mercaptanen, Isocyanaten oder katalytisch wirkenden Härtern, p) Phenolharzen wie z.B. Phenol-Formaldehyd-Harze, Harnstoff-Formal- dehyd-Harze, Melamin- Formaldehydharze, q) ungesättigten Polyesterharzen aus ungesättigten Dicarbonsäuren und Diolen mit Vinylverbindungen z.B. Styrol, Alkydharze, r) Silikonen, z.B. auf der Basis von Dimethylsiloxanen, Methyl-Phenyl-si- loxanen oder Diphenylsiloxanen z.B. Vinylgruppen terminiert, s) sowie Mischungen, Kombinationen oder Blends aus zwei oder mehr der zuvor genannten Polymeren. Sofern es sich bei den unter a) bis r) angegebenen Polymeren um Copolymere handelt, können diese in Form von statistischen („random"), Block-oder „tape- red" Strukturen vorliegen. Weiterhin können die genannten Polymeren in Form von linearen, verzweigten, sternförmigen oder hyperverzweigten Strukturen vorliegen.
Sofern es sich bei den unter a) bis r) angegebenen Polymeren um stereoreguläre Polymere handelt, können diese in Form von isotaktischen, stereotaktischen, aber auch ataktischen Formen oder als Stereoblockcopolymere vorliegen.
Ggf. können die unter a) genannten Polyolefine auch vernetzt vorliegen, z.B. vernetztes Polyethylen, das dann als X-PE bezeichnet wird.
Weiterhin können die vorliegenden Verbindungen zur Stabilisierung von Kautschuken und Elastomeren eingesetzt werden. Hier kann es sich um Naturkautschuk (NR) oder synthetische Kautschukmaterialien handeln.
Geeignete synthetische Kautschukmaterialien bestehen insbesondere aus Butadien (BR), Styrol-Butadien (SBR), Chloropren (CR), Isopren (IR), Isobutylen- Isoren, Acrylnitril-Butadien (NBR oder in hydrierter Form HNBR). Weitere geeignete Kautschuke und Elastomere sind Ethylen-Propylen-Dien Terpolymere (EPDM) und Ethylen-Propylen-Copolymere (EPM), Polyester-Urethane (AU), Polyether-Urethane (EU) und Silikone (MQ).
Außer um Neuware kann es sich bei den Kunststoffen um rezyklierte Kunststoffe z.B. aus Industriesammlungen wie z.B. Produktionsabfälle oder um Kunststoffe aus Haushalts-oder Wertstoffsammlungen handeln.
Besonders bevorzugte Polymere sind thermoplastische halogenfreie Polymere, insbesondere Polyolefine auf der Basis der genannten Polyethylene oder Polypropylene.
Weiterhin bevorzugt sind insbesondere Polymere aus nachwachsenden Rohstoffen, insbesondere aliphatische Polyester aus nachwachsenden Rohstoffen wie z.B. Polymilchsäure (PLA), Polyhydroxybuttersäure (PHB), Po ly hydro xyvale- riansäure (PHV), Polybutylensuccinat (PBS), Polybutylensuccinat-co-adipat (PBSA), Polyethylensuccinat, Polypropylensuccinat. Weiterhin können die unter a) bis r) angegebenen Polymere sowohl amorphe als auch (teil-)krista I line Morphologien aufweisen.
Eine weitere bevorzugte Ausführungsform sieht vor, dass mindestens ein weiterer Zusatzstoff, ausgewählt aus der Gruppe bestehend aus primären Antioxidantien, sekundären Antioxidantien, UV-Absorbern, der Lichtstabilisatoren, insbesondere der gehinderten Amine als Licht- (HALS) und Langzeitwärmestabilisatoren (HAS), der Metalldesaktivatoren, der Füllstoffdesaktivatoren, der Antiozonantien, Nukleierungsmittel, Antinukleierungsmittel, Transparenzverbesserer (Clarifier), Schlagzähigkeitsverbesserer, Weichmacher, Gleitmittel, Rheologie- oder Viskositätsmodifikatoren, Thixotropiemittel, Kettenverlängerer, Verarbeitungshilfsmittel, Entformungshilfsmittel, Flammschutzmittel, Pigmente, Farbstoffe, optische Aufheller, antimikrobielle Wirkstoffe, Antistatika, Slipmittel, Antiblockmittel, Kopplungsmittel, Vernetzungs-mittel, Antivernetzungsmittel, Hydrophilisierungsmittel Hydrophobierungsmittel, Oberflächenmodifikatoren, Hydrolysestabilisatoren, Haftvermittler, Dispergiermittel, Kom- patibilisatoren, Sauerstofffänger, Säurefänger, Acetaldehyd- und Formaldehydfänger, Treibmittel, Abbau-Additive (Prodegradantien), Entschäumungshilfsmittel, Geruchsfänger und geruchsverbessernde Substanzen, PVC-Wärme- stabilisatoren, Markierungsmittel, Antifoggingmittel, Glanzverbesserer, Mattierungsmittel, Additive zur Erhöhung der elektrischen und/oder Wärme-Ieitfä- higkeit, Repellants, Füllstoffe und Verstärkungsstoffe und Mischungen hiervon enthalten ist oder zugesetzt wird.
Bevorzugt enthalten die Zusammensetzungen sekundäre Antioxidantien insbesondere Phosphite/Phosphonite, Sulfite, Säurefänger, Costabilisatoren auf der Basis von Polyolen und/oder Lichtstabilisatoren aus der Gruppe der gehinderten Amine (HALS) bzw. werden verwendet.
Primäre Antioxidantien wirken als H-Donoren und als Radikalfänger und unterbrechen damit den radikalischen Autooxidationsprozess bei Polymeren. Geeignete primäre Antioxidantien sind phenolische Antioxidantien, (teil-)aromati- sche Amine, Hydroxylamine und Lactone.
Geeignete synthetische phenolische Antioxidantien sind beispielsweise:
Alkylierte Monophenole, wie z.B. 2,6-Di-tert-butyl-4-methylphenol, 2-tert- Butyl-4,6-dimethylphenol, 2,6-Di-tert-butyl-4-ethylphenol, 2,6-Di-tert-butyl-4- n-butylphenol, 2,6-Di-tert-butyl-4-isobutylphenol, 2,6-Dicyclopentyl-4-methyl- phenol, 2-(a-Methylcyclohexyl)-4,6-dimethylphenol, 2,6-Dioctadecyl-4-me- thylphenol, 2,4,6-Tricyclohexylphenol, 2,6-Di-tert-butyl-4-methoxymethyl- phenol, lineare oder verzweigte Nonylphenole, wie z.B. 2,6-Dinonyl-4-methyl- phenol, 2,4-Dimethyl-6-(l'-methylundec-l'-yl)phenol, 2,4-Dimethyl-6-(l'-me- thylheptadec-l'-yl)phenol, 2,4-Dimethyl-6-(l'-methyltridec-l'-yl)phenol und Mischungen hiervon;
Alkylthiomethylphenole, wie z.B. 2,4-Dioctylthiomethyl-6-tert-butylphenol, 2,4-Dioctylthiomethyl-6-methylphenol, 2,4-Dioctylthiomethyl-6-ethylphenol, 2,6-Didodecylthiomethyl-4-nonylphenol;
Hydrochinone und alkylierte Hydrochinone, wie z.B. 2,6-Di-tert-butyl-4-me- thyoxyphenol, 2,5-Di-tert-butylhydrochinon, 2,5-Di-tert-amylhydrochinon, 2,6- Diphenyl-4-octadecyloxyphenol, 2,6-Di-tert-butylhydrochinon, 2,5-Di-tert- butyl-4-hydroxyanisol, 3,5-Di-tert-butyl-4-hydroxyanisol, 3,5-Di-tert-butyl-4- hydroxyphenylstearat, Bis(3,5-di-tert-butyl-4-hydroxylphenyl)adipat;
Tocopherole, wie z.B. a-, ß-, y-, ö-Tocopherol und Mischungen aus diesen (Vitamin E);
Hydroxylierte Thiodiphenylether, wie z.B. 2,2'-Thiobis(6-tert-butyl-4-methyl- phenol), 2,2'-Thiobis(4-octylphenol), 4,4'-Thiobis(6-tert-butyl-3-methyl- phenol), 4,4'-Thiobis(6-tert-butyl-2-methylphenol), 4,4'-Thiobis(3,6-di-sec- amylphenol), 4,4'-Bis(2,6-dimethyl-4-hydroxyphenyl)disulfid;
Alkylidenbisphenole, wie z.B. 2,2'Methylenbis(6-tert-butyl-4-methylphenol), 2,2'-Methylenbis(6-tert-butyl-4-ethylphenol), 2,2'-Methylenbis[4-methyl-6-(a- methylcyclohexyl)phenol], 2,2'-Methylenbis(4-methyl-6-cyclhexylphenol), 2,2' - Methylenbis(6-nonyl-4-methylphenol), 2,2'-Methylenbis(4,6-di-tert-butylphe- nol), 2,2'-Ethylidenbis(4,6-di-tert-butylphenol), 2,2'-Ethylidenbis(6-tert-butyl- 4-isobutylphe-nol), 2,2'-Methylenbis[6-(a-methylbenzyl)-4-nonylphenol], 2,2' - Methylenbis[6-(a,a-dimethylbenzyl)-4-nonylphenol], 4,4'-Methylenbis(2,6-di- tert-butylphenol, 4,4'-Methylenbis(6-tert-butyl-2-methyl-phenol), l,l-bis(5- tert-butyl-4-hydroxy-2-methylphenyl)butan, 2,6-Bis(3-tert-butyl-5-methyl-2- hydroxybenzyl)-4-methylphenol, l,l,3-Tris(5-tert-butyl-4-hydroxy-2-methyl- phenyl)butan, l,l-bis(5-tert-butyl-4-hydroxy-2-methylphenyl)-3-n-dodecyl- mercaptobutan, Ethylenglycol-bis[3,3-bis(3'-tert-butyl-4'-hydroxyphenyl)buty- rat], Bis(3-tert-butyl-4-hydroxy-5-methylphenyl)dicyclopentadien, Bis[2-(3'- tert-butyl-2'-hydroxy-5'-methylbenzyl)-6-tert-butyl-4-methylphenyl]tereph- thalat, l,l-Bis-(3,5-dimethyl-2-hydroxyphenyl)butan, 2,2-Bis(3,5-di-tert-butyl- 4-hydroxyphenyl)propan, 2,2-Bis-(5-tert-butyl-4-hydroxy-2-methylphenyl)-4-n- dodecylmercaptobutan, l,l,5,5-Tetra(5-tert-butyl-4-hydroxy-2-methylphenyl)- pentan;
0-, N-und S-Benzyl-Verbindungen, wie z.B. 3,5,3',5'-Tetra-tert-butyl-4,4'-dihyd- roxydibenzylether, Octadecyl-4-hydroxy-3,5-dimethylbenzylmercaptoacetat, Tridecyl-4-hydroxy-3,5-di-tert-butylbenzyl-mercaptoacetat, Tris(3,5-di-tert- butyl-4-hydroxybenzyl)amin, Bis(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)- dithioterephthalat, Bis(3,5-di-tert-butyl-4-hydroxybenzyl)sulfid, lsooctyl-3,5-di- tert-butyl-4-hydroxybenzylmercaptoacetat;
Hydroxybenzylierte Malonate, wie z.B. Dioctadecyl-2, 2-bis(3,5-di-tert-butyl-2- hydroxybenzyl)-malonat, Dioctadecyl-2-(3-tert-butyl-4-hydroxy-5-methyl- benzyl)malonat, Didodecylmercaptoethyl-2,2-bis(3,5-di-tert-butyl-4-hydroxy- benzyl)malonat, Bis[4-(l,l,3,3-tetramethylbutyl)phenyl]-2,2-bis-(3,5-di-tert- butyl-4-hydroxybenzyl)malonat;
Aromatische Hydroxybenzylverbindungen, wie z.B. l,3,5-Tris(3,5-di-tert-butyl- 4-hydroxybenzyl)-2,4,6-trimethylbenzol, l,4-Bis(3,5-di-tert-butyl-4-hydroxy- benzyl)-2,3,5,6-tetramethylbenzol, 2,4,6-Tris(3,5-di-tert-butyl-4-hydroxy- benzyl)phenol;
Triazinverbindungen, wie z.B. 2,4-Bis(octylmercapto)-6-(3,5-di-tert-butyl-4- hydroxyanilino)-l,3,5-triazin, 2-Octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hyd- roxyanilino)-l,3,5-triazin, 2-Octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxy- phenoxy)-l,3,5-triazin, 2,4,6-Tris(3,5-di-tert-butyl-4-hydroxyphe-noxy)-l,2,3- triazin, l,3,5-Tris(3,5-di-tert-butyl-4-hydroxybenzyl)isocyanurat, 1,3,5-Tris(4- tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanurat, 2,4,6-Tris(3,5-di-tert- butyl-4-hydroxphenylethyl)-l,3,5-tria-zin, l,3,5-Tris(3,5-di-tert-butyl-4-hydroy- phenylpropionyl)hexahydro-l,3,5-triazin, l,3,5-Tris(3,5-dicyc-lohexyl-4-hydro- xybenzyl)isocyanurat;
Benzylphosphonate, wie z.B. Dimethyl-2,5-di-tert-butyl-4-hydroxybenzylphos- phonat, Dietyhl-3,5-di-tert-butyl-4-hydroxybenzylphosphonat, Dioctadecyl-
3.5-di-tert-butyl-4-hydroxybenzylphosphonat, Di-octadecyl-5-tert-butyl-4-hyd- roxy-3-methylbenzylphosphonat, das Calciumsalz des Monoethylesters der
3.5-Di-tert-butyl-4-hydroxybenzylphosphonsäure;
Acylaminophenole, wie z.B. 4-Hydroxylauranilid, 4-Hydroxystearanilid, Octyl-N- (3,5-di-tert-butyl-4-hydroxyphenyl)carbamat;
Ester der ß-(3,5-Di-tert-butyl-4-hydroxyphenyl)propionsäure mit ein-oder mehrwertigen Alkoholen, z.B. Methanol, Ethanol, n-Octanol, i-Octanol, Octade- canol, 1,6-Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythri- tol, Tris(hydroxyethyl)isocyanurat, N,N'-Bis(hydroxyethyl)oxamid, 3-Thiaunde- canol, 3-Thiapentadecanol, Trimethylhexandiol, Trimethylolpropan, 4-Hydro- xymethyl-l-phospha-2,6,7-trioxabicyclo[2.2.2]octan;
Ester der ß-(5-tert-Butyl-4-hydroxy-3-methylphenyl)propionsäure mit ein-oder mehrwertigen Alkoholen, z.B. Methanol, Ethanol, n-Octanol, i-Octanol, Octade- canol, 1,6-Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythri- tol, Tris(hydroxyethyl)isocyanurat, N,N'-bis(hydroxyethyl)oxamid, 3-Thiaunde- canol, 3-Thiapentadecanol, Trimethylhexandiol, Trimethylolpropan, 4-Hydro- xymethyl-l-phospha-2,6,7-trioxabicyclo[2.2.2]octan, 3,9-Bis[2-{3-(3-tert-butyl- 4-hydroxy-5-methylphenyl)propionyloxy}-l,l-dimethylethyl]-2,4,8,10-tetrao- xaspiro[5.5]undecan;
Ester der ß-(3,5-Dicyclohexyl-4-hydroxyphenyl)propionsäure mit ein-oder mehrwertigen Alkoholen, z.B. Methanol, Ethanol, Octanol, Octadecanol, 1,6- Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thiodiethylenglycol, Diethylenglycol, Triethylenglycol, Pentaerythritol, Tris- (hydroxyethyl)isocyanurat, N,N'-bis(hydroxyethyl)oxamid, 3-Thiaundecanol, 3- Thiapentadecanol, Trimethylhexandiol, Trimethylolpropan, 4-Hydroxymethyl- l-phospha-2,6,7-trioxabicyclo[2.2.2]octan;
Ester der (3,5-Di-tert-butyl-4-hydroxyphenyl)essigsäure mit ein-oder mehrwertigen Alkoholen, z.B. Methanol, Ethanol, Octanol, Octadecanol, 1,6-Hexandiol, 1,9-Nonandiol, Ethylenglycol, 1,2-Propandiol, Neopentylglycol, Thiodiethylen- glycol, Diethylenglycol, Triethylenglycol, Pentaerythritol, Tris(hydroxyethyl)iso- cyanurat, N,N'-bis(hydroxyethyl)oxamid, 3-Thiaundecanol, 3-Thiapentadeca- nol, Trimethylhexandiol, Trimethylolpropan, 4-Hydroxymethyl-l-phospha- 2,6,7-trioxabicyclo[2.2.2]octan;
Amide der ß-(3,5-Di-tert-butyl-4-hydroxyphenyl)propionsäure, wie z.B. N,N'- Bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hexamethylendiamid, N,N'- Bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexamethylendiamid, N,N'- Bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hexamethylendiamid, N,N'-Bis- (3,5-di-tert-butyl-4-hydroxyphenylpropionyl)hydrazid, N,N'-Bis[2-(3-[3,5-di- tert-butyl-4-hy-droxyphenyl]propionyloxy)ethyl]oxamid (Naugard®XL-l, vertrieben durch Uniroyal);
Vitamin C
Besonders bevorzugte phenolische Antioxidantien sind:
Figure imgf000025_0001
Figure imgf000026_0001
Weitere besonders bevorzugte phenolische Antioxidantien basieren auf nachwachsenden Rohstoffen wie z. B. Tocopherole (Vitamin E), Tocotrienole, Tocomonoenole, Carotinoide, Hydroxytyrosol, Flavonole wie z.B. Chrysin, Quercitin, Hesperidin, Neohesperidin, Naringin, Morin, Kaempferol, Fisetin, Anthocyane, wie z.B . Delphinidin und Malvidin, Curcumin, Carnosolsäure, Car- nosol, Rosmarinsäure, Resveratrol und Tannine.
Geeignete aminische Antioxidantien sind beispielsweise:
N,N'-Di-isopropyl-p-phenylendiamin, N,N'-Di-sec-butyl-p-phenylendiamin, N,N'-Bis(l,4-dimethyl-pentyl)-p-phenylendiamin, N,N'-Bis(l-ethyl-3-methyl- pentyl)-p-phenylendiamin, N,N'-Bis(l-methyl-heptyl)-p-phenylendiamin, N,N'- Dicyclohexyl-p-phenylendiamin, N,N'-Diphenyl-p-phenylendiamin, N,N'-Bis(2- naphthyl)-p-phenylendiamin, N-lsopropyl-N'-phenyl-p-phenylendiamin, N- (l,3-Dimethyl-butyl)-N'-phenyl-p-phenylen-diamin, N-(1-Methylheptyl)-N'- phenyl-p-phenylendia-min, N-Cyclohexyl-N'-phenyl-p-phenylendiamin, 4-(p- Toluolsulfamoyl)diphenylamin, N,N'-Dimethyl-N,N'-di-sec-butyl-p-phenylendi- amin, Diphenylamin, N-Allyldiphenylamin, 4-lsopropoxydiphenylamin, N-Phe- nyl-l-naphthylamin, N-(4-tert-Octylphenyl)-l-naphthylamin, N-Phenyl-2-naph- thylamin, octyliertes Diphenylamin, z.B. p,p'-Di-tert-octyldiphenylamin, 4-n- Butylaminophenol, 4-Butyrylaminophenol, 4-Nonanoylaminophenol, 4-Dode- canoylaminophenol, 4-Octadecanoylamino-phenol, Bis(4-methoxyphenyl)a- min, 2,6-Di-tert-butyl-4-dimethylaminomethyl-phenol, 2,4'-Diaminodiphenyl- methan, 4,4'-Diaminodiphenylmethan, N,N,N',N'-Tetra-methyl-4,4'-diami- nodiphenylmethan, l,2-Bis[(2-methyl-phenyl)amino]ethan, 1,2-Bis(phenyla- mino)propan, (o-Tolyl)biguanid, Bis[4-(l',3'-dimethylbutyl)phenyl]amin, tert- octyliertes N-Phenyl-l-naphthylamin, ein Gemisch aus mono-und dialkylierten tert-Butyl/tert-Octyldiphenylaminen, ein Gemisch aus mono-und dialkylierten Nonyldiphenylaminen, ein Gemisch aus mono-und dialkylierten Dodecyldiphe- nylaminen, ein Gemisch aus mono-und dialkylierten Isopropyl/lsohexyl-diphe- nylaminen, ein Gemisch aus mono-und dialkylierten tert-Butyldiphenylaminen, 2,3-Dihydro-3,3-dimethyl-4H-l,4-benzothiazin, Phenothiazin, ein Gemisch aus mono-und dialkylierten tert-Butyl/tert-Octylphenothiazinen, ein Gemisch aus mono-und dialkylierten tert-Octylphenothiazinen, N-Allylphenothiazin, N,N,N',N'-Tetraphenyl-l,4-diaminobut-2-en sowie Mischungen oder Kombinationen hiervon.
Bevorzugte aminische Antioxidantien sind: N,N'-Di-isopropyl-p-phenylendia- min, N,N'-Di-secbutyl-p-phenylendiamin, N,N'-Bis(l,4-dimethylpentyl)-p-phe- nylendiamin, N,N'-Bis(l-ethyl-3-methylpentyl)-p-phenylendiamin, N, N'-Bis(l- methylheptyl)-p-phenylendiamin, N, N'-Dicyclohexyl-p-phenylendiamin, N,N'- Diphenyl-p-phenylendiamin, N,N'-Bis(2-naphthyl)-p-phenylendiamin, N-Isop- ropyl-N'-phenyl-p-phenylendiam in, N-( 1,3-Dimethylbutyl)-N' -phenyl-p-phe- nylen-diamin, N-(l-Methy'lheptyl)-N'-phenyl-p-phenylendiamin, N-Cyclohexyl- N'phenyl-p-phenylendiamin.
Besonders bevorzugte aminische Antioxidantien sind die Strukturen:
Figure imgf000028_0001
Bevorzugte Hydroxylamine bzw. N-oxide (Nitrone) sind z.B. N,N-Dialkylhydro- xylamine, N,N-Dibenzylhydroxylamin, N,N-Dilaurylhydroxylamin, N,N-Distea- ryl-hydroxylamin, N-Benzyl-a-phenylnitron, N-Octadecyl-a-hexadecylnitron, sowie Genox EP (Sl Group) gemäß der Formel:
Figure imgf000028_0002
Mit Ri, R2 = C14-C24-Alkyl
Geeignete Lactone sind Benzofuranone und Indolinone sind z.B. 3-(4-(2-ace- toxyethoxy)phenyl]-5,7-di-tert-butyl-benzofuran-2-on, 5,7-di-tert-butyl-3-[4- (2-stearoyloxyethoxy)phenyl]benzofuran-2-on, 3,3'-bis[5,7-di-tert-butyl-3-(4-(2- hydroxyethoxy]phenyl)benzofuran-2-on), 5,7-di-tert-butyl-3-(4-etho-xy-phe- nyl)benzofuran-2-on, 3-(4-acetoxy-3,5-dimethylphenyl)-5,7-di-tert-butyl-benz- ofuran-2-on, 3-(3,5-dimethyl-4-pivaloyloxyphenyl )-5,7-di-tert-butyl-benzof- uran-2-on, 3-(3,4-dimethylphenyl)-5,7-di-tert-butyl-benzofuran-2-on, 3-(2,3- dimethylphenyl)-5,7-di-tert-butyl-benzofuran-2-on sowie Lactone, die zusätzlich Phosphitgruppen beinhalten wie z.B.
Figure imgf000029_0001
Ein besonders bevorzugtes Lacton weist die folgende Struktur auf:
Figure imgf000030_0001
Eine weitere geeignete Gruppe von Antioxidantien sind lsoindolo[2,l-A]chi- nazoline wie z.B.
Figure imgf000030_0002
Sekundäre Antioxidantien wirken bei der Stabilisierung von Kunststoffen in erster Linie als Hydroperoxid-Zersetzer.
Geeignete sekundäre Antioxidantien .sind insbesondere Phosphite oder Phos- phonite wie z.B. Triphenylphosphit, Diphenylalkylphosphite, Phenyldialkylp- hosphite, Tri(nonylphenyl)phosphit, Trilaurylphosphite, Trioctadecylphosphit, Distearylpentaerythritoldiphosphit, Tris-(2,4-di-tert-butylphenyl)phosphit, Di- isodecylpentaerythritoldiphosphit, Bis(2,4-di-tert-butylphenyl)pentaerythritol- diphosphit, Bis(2,4-di-cumylphenyl)pentaerythritoldiphosphit, Bis(2,6-di-tert- butyl-4-methylphenyl)pentaerythritoldiphosphit, Diisodecyloxypentaerythri- toldiphosphit, Bis(2,4-di-tert-butyl-6 methylphenyl)pentaerythritoldiphosphit, Bis(2,4,6-tris(tert-butylphenyl)pentaerythritol-diphosphit, Tristearylsorbitoltri- phosphit, Tetrakis(2,4-di-tert-butylphenyl)-4,4'-biphenylen-diphosphonit, 6- lsooctyloxy-2,4,8, 10-tetra-tert-butyl-12 H-dibenz[d,g]-l,3,2-dioxaphosphocin, Bis(2,4-di-tert-butyl-6-methylphenyl)methylphosphit, Bis(2,4-di-tert-butyl-6- methylphenyl)-ethylphosphit, 6-Fluoro-2,4,8, 10-tetra-tert-butyl-12-methyl-di- benz[d,g]-l,3,2-dioxaphosphocin, 2,2'2"-Nitrilo[triethyltris(3,3",5,5'-tetra- tert-butyl-1, l'-biphenyl-2,2'-diyl)phosphit], 2-Ethyl-hexyl(3,3',5,5'-tetra-tert- butyl-1, l'-biphenyl-2,2'-diyl))phosphit, 5-Butyl-5-ethyl-2-(2,4,6-tri-tert- butylphenoxy)-l„2-dioxaphosphiran.
Besonders bevorzugte Phosphite sind:
Figure imgf000031_0001
Figure imgf000032_0001
Mit n = 1 bis 100
Figure imgf000033_0003
mit n = 3 bis 100
Ein bevorzugtes Phosphonit ist
Figure imgf000033_0001
Geeignete sekundäre Antioxidantien sind weiterhin Schwefelverbindungen wie beispielsweise Distearylthiodipropionat, Dilaurylthiodipropionat; Ditride- cyldithiopropionat, Ditetradecylthiodipropionat, 3-(dodecylthio)-l,l'-[2,2- bis[[3-(dodecylthio)-l-oxopropoxy]methyl]-l,3-propandiyl] propansäureester. Bevorzugt sind die folgenden Strukturen:
Figure imgf000033_0002
Figure imgf000034_0001
Geeignete weitere sekundäre Antioxidantien sind Sulfite:
Bevorzugt sind anorganische Sulfite, Disulfite oder Thiosulfate eines ein-, zwei- , drei-oder vierwertigen Metalls, wobei das Metall bevorzugt ein Alkalimetall, ein Erdalkalimetall, Aluminium und/oder Zink ist und wobei das anorganische Sulfit insbesondere in seiner kristallwasserfreien Form verwendet wird.
Geeignete Salze sind insbesondere Natriumsulfit, Kaliumsulfit, Lithiumsulfit, Calciumsulfit, Magnesiumsulfit, Aluminiumsulfit oder Zinksulfit. Weiterhin geeignet sind auch Thiosulfate wie z.B. Natriumthiosulfat.
Geeignete Füllstoffe und Verstärkungsstoffe sind beispielsweise synthetische cider natürliche Materialien wie z.B. Calciumcarbonat, Silikate, Glasfasern, Glaskugeln (massiv oder hohl), Talkum, Glimmer, Kaolin, Bariumsulfat, Metalloxide und Metallhydroxide, Ruß, Graphit, Kohlenstoffnanoröhrchen, Graphen, Holzmehl oder Fasern von Naturprodukten wie z.B. Cellulose oder synthetische Fasern. Weitere geeignete Füllstoffe sind Hydrotalcite oder Zeolithe oder Schichtsilikate wie z.B. Montmorillonit, Bentonit, Beidelit, Mica, Hectorit, Saponit, Vermiculit, Ledikit, Magadit, lllit, Kaolinit, Wollastonit, Attapulgit.
Geeignete Säurefänger („Antiacids") sind Salze von ein, zwei, drei oder vierwertigen Metallen, vorzugsweise Alkali-, Erdalkalimetalle, Aluminium oder Zink, insbesondere gebildet mit Fettsäuren, wie z.B. Calciumstearat, Magnesiumste- arat; Zinkstearat, Aluminiumstearat, Calciumlaurat, Calciumbehenat, Calciumlactat, Calciumstearoyl-2-lactat. Weitere Klassen geeigneter Säurefänger sind Hydrotalcite, insbesondere synthetische Hydrotalcite auf Aluminium-, Magne- sium-und Zinkbasis, Hydrocalumite, Zeolithe, Erdalkalioxide, insbesondere Calciumoxid und Magnesiumoxid sowie Zinkoxid, Erdalkalicarbonate, insbesondere Calciumcarbonat, Magnesiumcarbonat und Dolomit sowie Hydroxide, insbesondere Brucit (Magnesiumhydroxid).
Geeignete Costabilisatoren sind weiterhin Polyole insbesondere Alditole oder Cyclitole. Polyole sind z.B. Pentaerythrit, Dipentaerythrit, Tripentaerythrit, kurzkettige Polyetherpolyole oder Polyesterpolyole, sowie hyperverzweigte Polymere/Oligomere oder Dendrimere mit Alkoholgruppen z.B.
Figure imgf000035_0001
Vorzugsweise wird das mindestens eine Alditol ausgewählt aus der Gruppe bestehend aus Threit, Erythrit, Galactit, Mannit, Ribit, Sorbit, Xylit, Arabit, Isomalt, Lactit, Maltit, Altritol, Iditol, Maltotritol und hydrierte Oligo-und Polysaccharide mit Polyol-Endgruppen und Mischungen hiervon. Besonders bevorzugt ist das mindestens eine bevorzugte Alditol ausgewählt aus der Gruppe bestehend aus Erythrit, Mannit, Isomalt, Maltit und Mischungen hiervon.
Beispiele für weitere geeignete Zuckeralkohole sind Heptitole und Octitole: meso-glycero-allo-Heptitol, D-glycero-D-altro-Heptitol, D-glycero-D-manno- Heptitol, meso-glycero-gulo-heptitol, D-glycero-Dgalacto-Heptitol (Perseitol), D-glycero-D-gluco-Heptitol, L-glycero-D-gluco-eptitol, D-erythro-L-galacto-Oc- titol, D-threo-L-galacto-Octitol.
Insbesondere kann das mindestens eine Cyclitol ausgewählt sein aus der Gruppe bestehend aus Inositol (myo, scyllo-, D-chiro-, L-chiro-, muco-, neo-, allo-, epi-und cis-lnosit), 1,2,3,4-tetrahydroxycyclohexan, 1, 2,3,4, 5-pentahyd- roxycyclohexan, Quercitol, Viscumitol, Bornesitol, Condudtol, Ononitol, Pinitol, Pinpollitol, Quebrachitol, Ciceritol, Chinasäure, Shikimisäure und Valienol, bevorzugt ist dabei myo-lnosit (myo-lnositol).
Weitere geeignete Costabilisatoren sind Ester-und Etherderivate der genannten Alditole oder Cyclitole wie z.B. die folgenden Verbindungen:
Figure imgf000036_0001
Geeignete UV-Absorber sind beispielsweise Verbindungen auf der Basis von 2- (2'-Hydroxyphenyl)benzotriazolen, 2-Hydroxybenzophenonen, Estern von Benzoesäuren, Acrylaten, Oxamiden und 2-(2-Hydroxyphenyl)-l,3 ,5-Triazinen.
Geeignete 2-(2'-Hydroxyphenyl)benzotriazole sind beispielsweise 2-(2'-Hyd- roxy-5'methylphenyl)benzotriazol, 2-(3', 5'-Di-tert-butyl-2'-hydroxyphenyl)- benzotriazol, 2-(5'-tert- Butyl-2'-hydroxy-phenyl)benzotriazol, 2-(2'-Hydroxy- 5'-(l, l,3,3-tetramethylbutyl)phenyl)benzotriazol, 2-(3', 5'-Di-tert-butyl-2'-hyd- roxyphenyl)-5-chlorobenzotriazol, 2-(3'-tert-Butyl-2'-hydroxy-5'-methylphe- nyl-5-chlorobenzotriazol, 2-(3'-sec-Butyl-5'-tert-butyl-2'-hydroxy-phenyl)ben- zotriazol, 2-(2'-Hydroxy-4'-octyloxyphenyl)benzotriazol, 2-(3',5'-Di-tert-amyl- 2'-hydroxyphenyl)benzotriazol, 2-(3',5'-Bis(a,a-dimethylbenzyl)-2'-hydroxy- phenyl)benzotriazol, 2-(3'-tert-Butyl-2'-hydroxy-5'-(2-octyloxycarbonylethyl)- phenyl)-5-chlorobenzotriazol, 2-(3'-tert-B utyl-5'-[2-(2-ethylhexyloxy)-car- bonylethyl]-2'-hydroxyphenyl)-5-chlorobenzotriazol, 2-(3'-tert-Butyl-2'-hyd- roxy-5'-(2-methoxycarbonylethyl)phenyl)-5-chlorobenzotriazol, 2-(3'-tert- Butyl-2'-hydroxy-5'-(2-methoxycarbonylethyl)phenyl)benzotriazol, 2-(3'-tert- Butyl-2'-hydroxy-5'-(2-octyloxycarbonylethyl)phenyl)benzotriazol, 2-(3'-tert- Butyl-5'-[2-(2-ethylhexyloxy)carbonylethyl]-2'-hydroxyphenyl)benzotriazol, 2- (3'-Dodecyl-2'-hydroxy-5'-methylphenyl)benzotriazol, 2-(3'-tert-Butyl-2'-hyd- roxy-5'-(2-isooctyloxycarbonylethyl)phenylbenzotriazol, 2,2'-Methylenbis[ 4- (l,l,3,3-tetramethylbutyl)-6-benzotriazol-2-ylphenol]; das Produkt der Umesterung von 2-[3'-tert-Butyl-5'-(2-methoxycarbonylethyl)-2'-hydroxyphenyl]- 2H-benzotriazol mit Polyethylenglycol 300; [R-CH2CH2-COO-CH2CH2]2, wobei R = 3'-tert-Butyl-4'-hydroxy-5'-2H-benzotriazol-2-ylphenyl, 2-[2'-Hydroxy-3'-(a,a- dimethylbenzyl)-5'-(l,l,3,3-tetramethylbutyl)-phenyl]benzotriazol, 2-[2'-hyd- roxy-3'-(l, l,3,3-tetramethylbutyl)-5'-(a,a-dimethylbenzyl)phenyl]benzotria- zol.
Geeignete 2-Hydroxybenzophenone sind beispielsweise 4-Hydroxy-, 4-Me- thoxy-, 4-Octyloxy-, 4-Decyloxy-4-Dodecyloxy-, 4-Benzyloxy-, 4,2',4'-Trihyd- roxy-und 2'-Hydroxy-4,4'-dimethyoxy-Derivate der 2-Hydroxybenzophenone.
Geeignete Acrylate sind beispielsweise Ethyl-a-cyano-ß,ß-diphenylacrylat, lsooctyl-a-cyano- ß,ß-diphenylacrylat, Methyl-a-carbomethoxycinnamat, Me- thyl-a-cyano-ß-methyl-p- methoxycinnamat, Butyl-a-cyano-ß-methyl-p-me- thoxycinnamat, Methyl-a-carbomethoxy-p- methoxycinnamat und N-(ß-carbo- methoxy-ß-cyanovinyl)-2-methylindolin.
Geeignete Ester von Benzoesäuren sind beispielsweise 4-tert-Butylphenylsa- licylat, Phenylsalicylat, Octylphenylsalicylat, Dibenzoylresorcinol, Bis(4-tert- butylbenzoyl)resorcinol, Benzoylresorcinol, 2,4-Di-tert-butylphenyl-3, 5-di- tert-butyl-4-hyd roxybenzoat, Hexadecyl-3,5-di-tert-butyl-4-hydroxybenzoat, Octadecyl-3, 5-di-tert-butyl-4-hydroxybenzoat, 2-Methyl-4,6-di-tert-butylphe- nyl-3, 5-di-tert-butyl-4-hyd roxybenzoat.
Geeignete Oxamide sind beispielsweise 4,4'-Dioctyloxyoxanilid, 2,2'-diethoxyo- xanilid, 2,2'- Dioctyloxy-5,5'-di-tert-butoxanilid, 2,2'-didodecyloxy-5,5'-di-tert- butoxanilid, 2-Ethoxy-2'-ethyloxanilid, N,N'-Bis(3-dimethylaminopropyl)oxa- mid, 2-Ethoxy-5-tert-butyl-2'-ethoxanilid und seine Mischungen mit 2-Ethoxy- 2'-ethyl-5,4'-di-tert-butoxanilid, Mischungen von o-und p-Methoxy-disubstitu- ierten Oxaniliden und Mischungen von o-und p-Ethoxy-disubstituierten Oxani- liden.
Geeignete 2-(2-Hydroxyphenyl)-l,3,5-Triazine sind beispielsweise 2,4,6-Tris(2- hydroxy-4-octyloxyphenyl)-l ,3,5-triazin, 2-(2-Hydroxy-4-octyloxyphenyl)-4, 6- bis(2 ,4-dimethylphenyl)-l,3,5-triazin, 2-(2,4-Dihydroxyphenyl)-4,6-bis(2,4-di- methylphenyl)-l,3,5-triazin, 2,4-Bis(2-hydroxy-4-propyloxyphenyl)-6-(2,4-di- methylphenyl)-l,3, 5-triazin, 2-(2-Hydroxy-4-octyloxyphenyl)-4,6-bis(4-methyl- phenyl-1,3, 5-triazin, 2-(2-Hydroxy-4-dodecyloxyphenyl)-4,6-bis(2,4-dimethyl- phenyl)-l,3, 5-triazin, 2-(2-Hydroxy-4-tridecyloxyphenyl)-4,6-bis(2,4-dimethyl- phenyl)-l,3, 5-triazin, 2-[2-Hydroxy-4-(2-hydroxy-3-butyloxypropoxy)-phenyl]- 4,6-bis(2,4-dimethyl) 1,3, 5-triazin, 2-[2-Hydroxy-4-(2-hydroxy-3-octyloxypro- pyloxy)phenyl]-4, 6-bis(2,4-dimethyl)-l,3, 5-triazin, 2-[4-(Dodecyloxy/Tridecy- loxy-2-hydroxypropoxy)-2-hydroxyphenyl]-4, 6-bis(2,4-dimethylphenyl)-l,3, 5- triazin, 2-[2-Hydroxy-4-(2-hydroxy-3-dodecyloxypropoxy)phenyl]-4,6-bis(2,4- dimethylphenyl-1 ,3, 5-triazin, 2-(2-Hydroxy-4-hexyloxy)phenyl-4, 6-diphenyl-l ,3, 5-triazin, 2-(2-Hydroxy-4-methoxyphenyl)-4, 6-diphenyl-l, 3, 5-triazin, 2,4,6- Tris[2-hydroxy-4-(3-butoxy-2-hydroxypropoxy)phenyl]-l, 3, 5-triazin, 2-(2-Hyd- roxyphenyl)-4-(4-methoxyphenyl)-6-phenyl-l, 3, 5-triazin, 2-{2-Hydroxy-4-[3- (2-ethylhexyl-l-oxy)-2-hydroxypropyloxy ]phenyl}-4, 6-bis(2,4-dimethylphenyl- 1,3, 5-triazin.
Geeignete Metallde(s)aktivatoren sind beispielsweise N,N'-Diphenyloxamid, N- Sa licyla l-N '-sa licyloylhydrazin, N,N'-Bis(salicyloyl)hydrazin, N,N'-Bis(3, 5-di-tert- butyl-4-hydroxyphenylpropionyl)hydrazin, 3-Salicyloylamino-l,2,4-triazol, Bis- (benzyliden)oxalyldihydrazid, Oxanilid, Isophthaloyldihydrazid, Sebacoylbi- sphenylhydrazid, N,N'-Diacetyladipoyldihydrazid, N,N'-Bis(salicyloyl)oxyl- yldihydrazid, N,N'-Bis(salicyloyl)thiopropionyldihydrazid, Tris[2-tert-butyl-4- thio-(2'-methyl-4'-hydroxy-5'-tert-butyl)-phenyl-5-methyl] phenylphosphite.
Besonders bevorzugt als Metalldesaktivatoren sind:
Figure imgf000038_0001
Figure imgf000039_0001
Geeignete gehinderte Amine sind beispielsweise l,l-Bis(2,2,6,6-tetramethyl-4- piperidyl)succinat, Bis(l,2,2,6,6-pentamethyl-4-piperidyl)sebazat, Bis(l-octy- loxy-2,2,6,6-tetramethyl-4-piperidyl)sebazat, Bis(l, 2,2,6, 6-pentamethyl-4- piperidyl)-n-butyl-3,5-di-tert-butyl-4-hydroxybenzylmalonat, das Kondensationsprodukt aus l-(2-Hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxy-piperidin und Succinsäure, lineare oder zyklische Kondensationsprodukte von N,N'- Bis(2,2,6,6-tetramethyl-4-piperidyl)hexamethylendiamin und 4-tert-Octyla- mino-2,6-di--chloro-l,3,5-triazin, Tris(2,2,6,6-tetramethyl-4-piperidyl)-nitrilot- riacetat, Tetrakis(2,2,6,6-tetra--methyl-4-piperidyl)-l,2,3,4-butantetracarboxy- lat, l,l'-(l,2-Ethandiyl)-bis(3,3,5,5-tetramethyl--piper-azinon), 4-Benzoyl- 2,2,6,6-tetramethylpiperidin, 4-Stearyloxy-2,2,6,6-tetramethylpiperidin, lineare oder zyklische Kondensationsprodukte aus N,N'-Bis(2,2,6,6-tetramethyl-4- piperidyl)hexamethylendiamin und 4-Morpholino-2,6-dichloro-l,3,5-triazin das Reaktionsprodukt von 7,7,9,9-Tetramethyl-2-cycloundecyl-l-oxa-3,8-di- aza-4-oxospiro-[4,5]decan und Epichlorhydrin.
Umfasst in den oben angegebenen Strukturen sind dabei jeweils auch die sterisch gehinderten N-H, N-alkyl wie N-methyl oder N-octyl, die N-Alkoxy-Deri- vate wie N-Methoxy oder N-Octyloxy, die Cycloalkylderivate wie N-Cyclohexy- loxy und die N-(2-Hydroxy-2-methylpropoxy)-Analoga.
Besonders bevorzugte gehinderte Amine sind die folgenden:
Figure imgf000039_0002
Figure imgf000040_0001
Figure imgf000041_0001
Bevorzugte oligomere und polymere gehinderte Amine weisen die folgenden Strukturen auf:
Figure imgf000042_0001
Mit jeweils n= 2 bis 100, bevorzugt 2 bis 10
Figure imgf000042_0002
Mit jeweils n= 2 bis 100, bevorzugt 3 bis 20
Figure imgf000043_0001
Mit jeweils n= 3 bis 200, bevorzugt 5 bis 100
Figure imgf000043_0002
Figure imgf000044_0001
Mit jeweils n= 1 bis 100, bevorzugt 2 bis 10, oder
Figure imgf000045_0001
Ein weiterer geeigneter Lichtstabilisator ist Hostanox NOW (Hersteller: Clariant SE) mit der folgenden allgemeinen Struktur:
Figure imgf000045_0002
wobei R -O-C(O)-CisH3i oder -O-C(O)-CI?H35 bedeutet.
Kompatibilisatoren oder Verträglichkeitsmacher werden beispielsweise bei thermodynamisch nicht mischbaren Blends oder auch bei Rezyklatmischungen eingesetzt und enthalten Strukturelemente der jeweiligen Blendkomponenten, die gemischt werden. Geeignete Kompatibilisatoren für Polyolefin-Mischungen sind beispielsweise Olefin-Blockcopolymere, bestehend aus Ethyl-en, Propylen und alpha-Olefinen wie z.B. 1-Octen. Andere Kompatibilisatoren insbesondere zur Kompatibilisierung von polaren, wie PET oder Polyamide und unpolaren, wie PP oder PE Polymeren enthalten häufig reaktive Gruppen abgeleitet z.B. von Maleinsäureanhydrid, Acrylsäure, Glycidylacrylat oder Glycidylmethacrylat und sind beispielsweise Polypropylen-g- Maleinsäureanhydrid, Polyethylen-g- Maleinsäureanhydrid, Polypropylen-g-Acrylsäure, Polyethylen-g-Acrylsäure, Poly(ethylen-co-maleinsäureanhydrid), SBS-g-Maleinsäureanhydrid, SEBS-g- Maleinsäureanhydrid, Polyethylen-Polyacrylat-Polyglycidylmethacrylat.
Geeignete Dispergiermittel sind beispielsweise:
Polyacrylate, z.B. Copolymere mit langkettigen Seitengruppen, Polyacrylat- Blockcopolymere, Alkylamide: z. B. N,N'-1,2-Ethandiylbisoctadecanamid Sorbi- tanester, z.B. Monostearylsorbitanester, Titanate und Zirconate, reaktive Copolymere mit funktionellen Gruppen z. B. Polypropylen-co-Acrylsäure, Polypro- pylen-co-Maleinsäureanhydrid, Polyethylen-co-Glycidylmethacrylat, Po-Iysty- rol-alt-Maleinsäureanhydrid-Polysiloxane: z.B. Dimethylsilandiol-Ethylenoxid Copolymer, Polyphenylsiloxan-Copolymer, Amphiphile Copolymere: z.B. Po- lyethylenblock-Polyethylenoxid, Dendrimere, z.B. hydroxylgruppenhaltige Dendrimere.
Geeignete Flammschutzmittel sind insbesondere a) Anorganische Flammschutzmittel wie z.B. AI(OH)3, Mg(0H)2, AIO(OH), MgCCh Schichtsilikate wie z. B. Montmorillonit oder Sepiolit, nicht oder organisch modifiziert, Doppelsalze, wie z.B. Mg-Al-Silikate, POSS-(Po- lyhedral Oligomeric Silsesquioxane) Verbindungen, Huntit, Hydromagnesit oder Halloysit sowie Sb2Ü3, Sb20s, MoOs, Zinkstannat, Zinkhydroxystannat, b) Stickstoffhaltige Flammschutzmittel wie z.B. Melamin, Meiern, Melam, Melon, Melaminderivate, Melaminkondensationsprodukte oder Melaminsalze, Benzoguanamin, Polyisocyanurate, Allantoin, Phosphacene, insbesondere Melamincyanurat, Melaminphosphat, Dimelaminphosphat, Melaminpyrophosphat, Melaminpolyphosphat, Melamin-Metall- Phosphate wie z.B. Melaminaluminiumphosphat, Melaminzinkphosphat, Melaminmagnesiumphosphat, sowie die entsprechenden Pyrophosphate und Polyphosphate, Poly-[2,4-(piperazin-l,4-yl)-6-(morpholin-4-yl)-l,3,5- triazin], Ammoniumpolyphosphat, Melaminborat, Melaminhydrobromid, c) Radikalbildner, wie z.B. Alkoxyamine, Hydroxylaminester, Azoverbindungen, Sulfenamide, Sulfenimide, Dicumyl oder Polycumyl, Hydroxyimide und deren Derivate wie z. B. Hydroxyimidester oder Hydroxyimidether, d) Phosphorhaltige Flammschutzmitteln wie z.B. roter Phosphor, Phosphate wie z.B. Resorcindiphosphat, Bisphenol-A-diphosphat und ihre Oligomere, Triphenylphosphat, Ethylendiamindiphosphat, Phosphinate wie z.B. Salze der hypophosphorigen Säure und Ihrer Derivate wie Alkylphos- phinatsalzen z.B. Diethylphosphinataluminium oder Diethylphosphinat- Zink oder Aluminiumphosphinat, Aluminiumphosphit, Aluminiumphos- phonat, Phosphonatester, oligomere und polymere Derivate der Methan- phosphonsäure, 9,10-Dihydro-9-oxa-10-phosphoryl-phenanthren-10- oxid (DOPO) und deren substituierte Verbindungen, e) Halogenhaltige Flammschutzmittel auf Chlor- und Brombasis wie z. B. po- lybrominierte Diphenyloxide, wie z.B. Decabromdiphenyloxid, Tris(3- brom-2,2-bis(brommethyl)propyl-phosphat, Tris(tribromneopentyl)- phosphat, Tetrabromphthalsäure, 1,2-Bis(tribromphenoxy)ethan, Hexab- romcyclododecan, bromiertes Diphenylethan, Tris-(2,3-dibrompro- pyl)isocyanurat, Ethylen-bis-(tetrabromphthalimid), Tetrabrombisphenol A, bromiertes Polystyrol, bromiertes Polybutadien bzw, Polystyrol-bro- miertes Polybutadien-Copolymere, bromierter Polyphenylenether, bromiertes Epoxidharz, Polypentabrombenzylacrylat, ggf. in Kombination mit Sb2O3 und/oder Sb2Os, f) Borate wie z. B. Zinkborat oder Calciumborat, ggf. auf Trägermaterial wie z.B. Silica, g) Schwefelhaltige Verbindungen wie z.B. elementarer Schwefel, Disulfide und Polysulfide, Thiuramsulfid, Dithiocarbamate, Mercaptobenzthiazol und Sulfenamide, h) Antidrip-Mitteln wie z.B. Polytetrafluorethylen, i) Siliciumhaltige Verbindungen wie z. B. Polyphenylsiloxane, j) Kohlenstoffmodifikationen wie z.B. Carbon-Nanoröhren (CNT), Blähgraphit oder Graphen k) sowie Kombinationen oder Mischungen hieraus.
Besonders geeignete Flammschutzmittel sind:
Radikalbildner bevorzugt ausgewählt aus der Gruppe bestehend aus N-Alkoxya- minen, -C-C- Radikalbildnern, Radikalbildnern mit Azogruppen (-N=N-), Radikal- bildnern mit Hydrazingruppen (-NH-HN-), Radikalbildnern mit Hydrazongrup- pen (>C=N-NH-), Radikalbildnern mit Azingruppen (>C=N-N=C<), Radikalbildnern mit Triazengruppen (-N=N-N<) oder aus Iminoxytriazinen.
Die Herstellung geeigneter Azoverbindungen ist beispielsweise in M. Aubert et. al. Macromol. Sei. Eng. 2007, 292, 707-714 oder in WO 2008/101845, die Herstellung von Hydrazonen und Azinen in M. Aubert et al., Pol. Adv. Technol. 2011, 22, 1529-1538, die Herstellung von Triazenen in W. Pawelec et al., Pol. Degr. Stab. 2012, 97, 948-954 beschrieben. Die Synthese von Iminoxytriazinen ist in WO 2014/064064 beschrieben.
Insbesondere zu verwendende Radikalbildner sind dabei ausgewählt aus der Gruppe bestehend aus a) N-Alkoxyaminen gemäß der nachfolgend abgebildeten Strukturformel
Figure imgf000048_0001
wobei
R3 für Wasserstoff oder einen gegebenenfalls substituierter Alkyl-, Cycloalkyl-, Aryl-Heteroaryl- oder Acyl-Rest steht, insbesondere ein CI, bis C4- Alkylrest ist,
R4 für einen Alkoxy-, Aryloxy-, Cycloalkoxy-, Aralkoxy- oder Acyloxy-Rest steht,
Z für Wasserstoff oder einen gegebenenfalls substituierter Alkyl-, Cycloalkyl-, Aryl-Heteroaryl- oder Acyl-Rest steht, wobei die beiden Reste Z auch einen geschlossenen Ring bilden können, der ggf. durch Ester-, Ether-, A- min, Amid, Carboxy- oder Urethangruppen substituiert sein kann, E für einen Alkoxy-, Aryloxy-, Cycloalkyloxy-, Aralkoxy oder Acyloxyrest steht, b) Azo-Verbindungen gemäß der nachfolgend abgebildeten Strukturformeln
Figure imgf000049_0001
wobei
R5 einen Alkly-, Cycloalkyl- oder Arylrest bedeutet,
R6 bei jedem Auftreten gleich oder verschieden ist und einen linearen oder verzweigten Alkylrest bedeutet,
R7 bei jedem Auftreten gleich oder verschieden ist und Wasserstoff oder einen linearen oder verzweigten Alkylrest bedeutet, und
R8 bei jedem Auftreten gleich oder verschieden ist und einen Alkyl, Alkoxy-, Aryloxy-Cycloalkyloxy-, Aralkoxy oder Acyloxyrest bedeutet, c) Dicumyl gemäß der nachfolgend abgebildeten Strukturformel
Figure imgf000049_0002
wobei R7 die zuvor angegebene Bedeutung aufweist, bevorzugt Methyl ist, d) und/oder Polycumyl gemäß der nachfolgend abgebildeten Strukturformel
Figure imgf000050_0001
wobei R7 die zuvor angegebene Bedeutung aufweist, bevorzugt Methyl ist, und 2 <n < 100.
Typische Beispiele für die zuvor genannten N-Alkoxyamine der angegebenen Struktur sind dabei:
1-Cyclohexyloxy-2,2,6,6-Tetramethyl-4-Octadecylaminopiperidin: Bis(l-Octy- loxy-2,2,6,6-Tetramethylpiperidin-4-yl)-sebacat; 2,4-Bis[(l-Cyclohexyloxy-
2.2.6.6-Tetramethylpiperidin-4-yl)Butylamino]-6-(2-Hydroxyethylamino-S-Tria- zin; Bis(l-Cyclohexyloxy-2,2,6,6-Tetramethylpiperidin-4-yl) Adipat;
2,4-Bis[(l-Cyclohexyloxy-2,2,6,6-Tetramethylpiperidin-4-yl)Butylamino]-6- chlor-S-Triazin; l-(2-Hydroxy-2-Methylpropoxy)-4-Hydroxy-2,2,6,6-Tetrame- thylpiperidin; l-(2-Hydroxy-2-Methylpropoxy)-4-Oxo-2,2,6,6-Tetramethylpipe- ridin; l-(2-Hydroxy-2-Methylpropoxy)-4-Octadecanoyloxy-2,2,6,6-tetramethyl- piperidin; Bis(l-(2-Hydroxy-2-Methylpropoxy)-2,2,6,6-tetramethylpiperidin-4- yl)sebacat; Bis(l-(2-Hydroxy-2-Methylpropoxy)-2,2,6,6-Tetramethylpiperidin- 4-yl)adipat; 2,4-Bis{N-[l-(2-Hydroxy-2-Methylpropoxy)-2,2,6,6-Tetramethyl- piperidin-4-yl]-N-Butylamino}-6-(2-Hydroxyethylamino)-S-Triazin); 4-Piperidi- nol, 2,2,6,6-Tetramethyl-l-(undecyloxy)-4,4'-carbonat; das Reaktionsprodukt von 2,4-Bis[(l-Cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)butylamino]-6- chlor-S-triazin mit N,N'-Bis(3-Aminopropylethylendiamin); die Oligomer-Ver- bindung, welche das Kondensationsprodukt ist von 4,4'-Hexamethylen- Bis(Amino-2,2,6,6-Tetramethylpiperidin) und 2,4-Dichlor-6-[(l-cyclohexyloxy-
2.2.6.6-tetramethyl-4-yl)butylamino]-S-triazin, an den Enden verschlossen mit
2-Chlor-4,6-bis(dibutylamino)-S-Triazin; aliphatische Hydroxylamin wie z.B. Dis- terarylhydroxylamin; sowie Verbindungen der nachfolgenden Formeln.
Figure imgf000051_0001
wobei n = 1-15 ist
Die oben genannten Verbindungen sind teilweise kommerzielle Produkte und werden unter den folgenden Handelsnamen gehandelt: FLAMESTAB NOR 116 (RTM), TINUVIN NOR 371 (RTM), IRGATEC CR 76 (RTM) von BASF SE, Hostavin NOW (RTM) von Clariant oder ADK Stab LA 81 (RTM) von Adeka. Dicumyl und Polycumyl sind Handelsprodukte, die z.B. von United Initiators erhältlich sind. b) Phosphorhaltige Flammschutzmittel z.B. Phosphinate der folgenden
Strukturen:
Figure imgf000051_0002
wobei bevorzugt RI und R2 identisch oder verschieden sind und ausgewählt sind aus linearem oder verzweigtem Cl-C6-Alkyl und/oder Aryl; M ausgewählt ist aus der Gruppe bestehend aus Mg, Ca, AI, Sb, Sn, Ge, Ti, Fe, Zr, Ce, Bi, Sr, Mn, Li, Na, K, Zn und/oder einem protonierten Stickstoff-Base, vorzugsweise Calcium-Ionen, Magnesium-Ionen, Aluminium-Ionen, und/oder Zink-Ionen; und m = 1-4, bevorzugt 2 oder 3, ist; n = 1-4, bevorzugt 1 oder 3, ist; x = 1-4, bevorzugt 1 oder 2, ist. In einer besonders bevorzugten Ausführungsform ist Ri = Alkyl, R2=AI ky I und M = AI oder Zn.
Ein besonders bevorzugtes Beispiel für ein Phosphinat sind die kommerziell erhältlichen Produkte Exolit OP (RTM) von Clariant SE.
Weitere bevorzugte phosphorhaltige Flammschutzmittel sind Metallsalze der hypophosphorigen Säure mit einer Struktur gemäß der Formel
Metn+
Figure imgf000052_0001
wobei Met ein Metall ist, ausgewählt aus den Gruppen I, II, III und IV des Periodensystems der Elemente, und n eine Zahl von 1 bis 4 ist, die der Ladung des entsprechenden Metall-Ions Met entspricht. Metn+ ist beispielsweise Na+, Ca2+, Mg2+, Zn2+, Ti4+ oder Al3+, wobei Ca2+, Zn2+ und Al3+ besonders bevorzugt sind.
Die oben genannten Salze der hypophosphorigen Säure sind teilweise kommerziell erhältlich z.B. unter der Bezeichnung Phoslite (RTM) von Italmatch Chemicals.
Eine weitere bevorzugte Gruppe von phosphorhaltigen Flammschutzmitteln sind Phosphonate oder Phosphonsäurediarylester einer Strukturgemäß derfol- genden Formel:
Figure imgf000052_0002
wobei Rs, und Rw= H, Alkyl, vorzugsweise C1-C4 sind, Rg=Cl-C4 alkyl u = l-5st und v = l-5ist.
Entsprechende Strukturen können auch in der Form von Phosphonat-Oligome- ren, Polymeren und Co-Polymeren vorliegen. Linear oder verzweigte Phospho- nat-Oligomere und Polymere sind aus dem Stand der Technik bekannt. Für verzweigte Phosphonat-Oligomere und Polymere wird auf die US-Patente US 2716 101, US 3 326 852, US 4 328 174, US 4 331 614, US 4 374971, US 4415 719, US
5 216 113, US 5 334 692, US 3 442 854, US 6 291 630 Bl, US 6 861 499 B2 und US 7816486 B2 verwiesen. Für Phosphonat-Oligomere wird auf die US-Patent- anmeldungen US 2005/0020800 Al, US 2007/0219295 Al und US 2008/0045673 Al verwiesen. In Bezug auf lineare Phosphonat-Oligomere und Polymere wird auf die US-Patent-Dokumente, US 3 946 093, US 3 919 363, US
6 288 210 Bl, US 2 682 522 und US 2 891 915 verwiesen.
Phophonate sind beispielsweise unterdem Handelsnamen Nofia (RTM) von FRX Polymers erhältlich.
Eine weitere bevorzugte Gruppe von phosphorhaltigen Flammschutzmitteln sind Verbindungen auf Basis von Oxaphosphorinoxid und deren Derivate mit beispielsweise den folgenden Strukturen:
Figure imgf000053_0001
Figure imgf000054_0001
Figure imgf000055_0001
Figure imgf000056_0001
wobei M ein Metall ist, ausgewählt aus der zweiten, dritten, zwölften oder dreizehnten Gruppe des Periodensystems der Elemente ist, x=2 oder 3 ist, n > 10 ist, m=0-25 ist, R=H, Halogen oder ein aliphatischer oder aromatischer Rest mit 1-32 C-Atomen ist und Ri = H, Cl -C6-a I kyl oder -phenyl ist.
Produkte auf der Basis von Oxophosphorinoxid sind beispielsweise unter dem Handelsnamen Ukanol (RTM) von Schill und Seilacher GmbH im Handel. Weitere Verbindungen können beispielsweise gemäß der Patentschriften WO 2013020696, WO 2010135398, W003070736, W02006084488, WO 2006084489, WO 2011000019, WO 2013068437, WO 2013072295 hergestellt werden.
Weitere geeignete phosphorhaltige Flammschutzmittel sind zyklische Phos- phonate einer Struktur gemäß einer der folgenden Formeln:
Figure imgf000057_0001
wobei A1 und A2 unabhängig voneinander eine substituierte oder nicht substituierte, geradkettige oder verzweigte Alkylgruppe mit 1 bis 4 Kohlenstoffatomen, substituiertes oder nicht substituiertes Benzyl, substituiertes oder nicht substituiertes Phenyl, substituiertes oder nicht substituiertes Naphthyl darstellten und wobei A3 und A4 unabhängig voneinander Methyl oder Ethyl sind und A5 eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 4 Kohlenstoffatomen oder eine Phenyl- oder Benzylgruppe ist, die jeweils bis zu 3 Methylgruppen aufweisen kann, ist.
Zyklische Phosphonate sind beispielsweise von der Fa. Thor GmbH unter dem Handelsnamen Aflammit (RTM) im Handel oder können gemäß EP 2450401 hergestellt werden.
Weitere synergistische phosphorhaltige Flammschutzmittel sind Phosphacene, insbes. Polymere Phosphacene. Ein entsprechendes Produkt ist z.B. unter der Bezeichnung SPB-100 von Otsuka Chemicals im Handel. a) Stickstoffhaltige Flammschutzmittel
Bevorzugte Stickstoffhaltige Flammschutzmittel sind Melaminpolyphosphat, Melamincyanurat, Melamin-Metall-Phosphate, Poly-[2,4-(piperazin-l,4-yl)-6- (morpholin-4-yl)-l,3,5-triazin] und Ammoniumpolyphosphat. Diese Verbindungen sind kommerzielle Produkte und unter den Handelsnamen Melapur (RTM) von BASF SE, Budit (RTM) von Budenheim Chemische Fabrik, Exolit (RTM) von Clariant, Safire (RTM) von Huber Chemicals oder MCA PPM Triazine von MCA Technologies GmbH erhältlich. c) Bevorzugte schwefelhaltige Flammschutzmittel sind beispielsweise die folgenden Verbindungen
Figure imgf000058_0001
Figure imgf000059_0001
Ganz besonders bevorzugte Flammschutzmittel sind halogenfrei und sind die folgenden Verbindungen:
Figure imgf000059_0002
Figure imgf000060_0001
mit jeweils R= Alkyl, Phenyl und n = 3-20
Figure imgf000061_0001
Geeignete Gleitmittel und Verarbeitungshilfsmittel sind beispielsweise Polyethylenwachse, Polypropylenwachse, Salze von Fettsäuren wie z.B. Calci- umstearat, Zinkstearat oder Salze von Montanwachsen, Amidwachse wie z. B. Erucasäureamid oder Ölsäureamide, Fluorpolymere, Silikone oder Neoalkoxy- titanate und -zirkonate. Geeignete Hitzestabilisatoren insbes. für PVC sind beispielsweise Metallseifen von zweiwertigen Metallen wie Ba, Zn, Ca z.B. Zinkstearat, Calciumstearat, Organozinnverbindungen z.B. Methyl und Octyl-Zinnverbindungen wie z.B. Dio- ctylzinnbisisooctylthioglycolat oder Dioctylzinnmaleat, Aminouracile, Ami- nocrotonsäureester, Perchloratsalze sowie als Costabilisatoren Phosphite, Epoxide, Polyole, Diketone, Dihydropyridine, Hydrotalcite, Zeolithe.
Geeignete Pigmente können anorganischer oder organischer Natur sein. Anorganische Pigmente sind beispielsweise Titandioxid, Zinkoxid, Zinksulfid, Eisenoxid, Ultramarin, Ruß, organische Pigmente sind beispielsweise Anthrachinone, Anthanthrone, Benzimidazolone, Chinacridone, Diketopyrrolopyrrole, Dio- xazine, Indanthrone, Isoindolinone, Azo-Verbindungen, Perylene, Phthalocyanine oder Pyranthrone. Weitere geeignete Pigmente sind Effektpigmente auf Metallbasis oder Perlglanzpigmente auf Metalloxid-Basis. Weitere geeignete Pigmente sind C.I. Pigmente wie z.B. Black 12, Black 26, Black 28, Black 30, Blue 15, Blue 28, Blue 36, Blue 60, Blue 385, Brown 24, Brown 25, Brown 29, Brown 33, Green 7, Green 17, Green 26, Green 36, Green 47, Green 50, Violet 1, Violet 3, Violet 14, Violet 16, Violet 19, Violet 23, Violet 27, Yellow 1, Yellow 3, Yellow
12, Yellow 13, Yellow 14, Yellow 17, Yellow 53, Yellow 62, Yellow 74, Yellow 83, Yellow 95, Yellow 138, Yellow 147, Yellow 151, Yellow 154, Yellow 155, Yellow 164, Red 2, Red 3, Red 4, Red 8, Red 48, Red 49, Red 52, Red 53, Red 57, Red 81, Red 112, Red 122, Red 146, Red 169, Red 170, Red 254, Orange 5, Orange
13, Orange 23, Orange 34, Orange 43.
Geeignete Optische Aufheller sind beispielsweise Bisbenzoxazole, Phenylcumarine oder Bis(styryl)biphenyle und insbesondere optische Aufheller der Formeln:
Figure imgf000062_0001
Figure imgf000063_0001
Geeignete Füllstoffdeaktivatoren sind beispielsweise Polysiloxane, Polyacrylate insbesondere Blockcopolymere wie Polymethacrylsäurepolyalkylenoxid oder Polyglycidyl(meth)acrylate und deren Copolymere z.B. mit Styrol sowie Epoxide z. B. der folgenden Strukturen:
Figure imgf000063_0002
Figure imgf000064_0001
Figure imgf000065_0001
Geeignete Antistatika sind beispielsweise ethoxylierte Alkylamine, Fettsäureester, Alkylsulfonate und Polymere, die ein co-kontinuierliches Netzwerk mit der Polymermatrix bilden wie z.B. Polyetheramide, Polyesteramide, Polyetheresteramide oder Polyether-Blockcopolymere ggf. unter Zusatz von ionisch leitenden Metallsalzen.
Geeignete Antiozonantien sind die oben genannten Amine wie z.B. N,N'-Di- isopropyl-p-phenylendiamin, N,N'-Di-sec-butyl-p-phenylendiamin, N,N'-Bis- (l,4-dimethylpentyl)-p-phenylendiamin, N,N'-Dicyclohexyl-p-phenylendiamin, N-lsopropyl-N'-phenyl-p-phenylendiamin, N-(l,3-Dimethylbutyl)-N'-phenyl-p- phenylen-diamin, N-(l-Methylheptyl)-N'-phenyl-p-phenylendiamin, N-Cyclo- hexyl-N'-phenyl-p-phenylendiamin.
Geeignete Rheologiemodifikatoren z.B. für die Herstellung von controlled rheology Polypropylen (CR-PP) sind beispielsweise Peroxide, Alkoxyaminester, Oxyimidsulfonsäureester und insbesondere die folgenden Strukturen:
Figure imgf000065_0002
Geeignete Additive zum Molekulargewichtsaufbau von Polykondensationspo- lymeren (Kettenverlängerer) sind Diepoxide, Bis-Oxazoline, Bis-Oxazolone, Bis- Oxazine, Diisocyanate, Dianhydride, Bis-Acyllactame, Bis-Maleimide, Dicya- nate, Carbodiimide und Polycarbodiimide. Weitere geeignete Kettenverlängerer sind polymere Verbindungen wie z. B. Polystyrol-Polyacrylat-Polygly- cidyl(meth)acrylat-Copolymere, Polystyrol-Maleinsäureanhydrid-Copolymere und Polyethylen-Maleinsäureanhydrid-Copolymere.
Geeignete Additive zur Erhöhung der elektrischen Leitfähigkeit sind beispielsweise die erwähnten Antistatika, Ruß und Kohlenstoffverbindungen wie Kohlenstoff-Nanoröhrchen und Graphen, Metallpulver wie z.B. Kupferpulver und leitfähige Polymere wie bspw. Polypyrrole, Polyaniline und Polythiophene.
Geeignete Infrarot-aktive Additive sind beispielsweise Aluminumsilikate, Hydrotalcite oder Farbstoffe wie Phthalocyanine oder Anthrachinone.
Geeignete Vernetzungsmittel sind beispielsweise Peroxide wie Dialkylperoxide, Alkyl-aryl-peroxide, Peroxyester, Peroxycarbonate, Diacylproxide, Peroxyke- tale, Silane wie z.B. Vinyltrimethoxysilan, Vinyltriethoxysilan, Vinyltriacetoxysilan, Vinyltris(2-methoxyethoxy)silan, 3-Methacryloyloxypropyltrimethoxy- silan, Vinyldimethoxymethylsilan oder Ethylen-Vinylsilan-Copolymere.
Geeignete Prodegradantien sind Additive, die einen Abbau eines Polymeren in der Umwelt gezielt beschleunigen oder kontrollieren. Beispiele sind Übergangsmetallfettsäureester, z.B. von Mangan oder Eisen, die einen oxidativen und/oder photooxidativen Abbau z.B. von Polyolefinen beschleunigen oder Enzyme, die einen hydrolytischen Abbau z.B. von aliphatischen Polyestern induzieren.
Geeignete chemische Treibmittel sind beispielsweise Azoverbindungen wie Azodicarbonsäurediamid, Sulfonylsemicarbazide wie p-Toluolsulfonylsemi- carbazid, Tetrazole wie 5-Phenyltetrazol, Hydrazide wie p-Toluolsulfonylhydra- zid, 4,4'-Oxibis(benzolsulfonyl)hydrazid, N-Nitrosoverbindungen wie N,N'-Di- nitrosopentamethylentetramin oder Carbonate wie z.B. Natriumhydrogencarbonat oder Zinkcarbonat. Geeignete Slip-Agents sind beispielsweise Amidwachse wie Erucaäureamid cider Ölsäureamid.
Geeignete Antiblock-Mittel sind beispielsweise Silica, Talk oder Zeolithe.
Geeignete Antifogging-Additive sind beispielsweise ethoxylierte Sorbitanester, ethoxylierte Fettsäurealkohole oder ethoxylierte Alkylaminester.
Geeignete Biozide sind beispielsweise quaternäre Ammoniumsalze oder Silbersalze, kolloidales Silber oder Silberkomplexe oder auch Naturstoffderivate wie bsp. Chitosan.
Geeignete Aldehyd-Scavenger sind Amine, Hydroxylamine, Polyvinyalkohol, Zeolithe oder Cyclodextrine, geeignete Formaldehyd-Scavenger sind Melaminde- rivate wie z.B. Benzoguanamin oder Harnstoffderivate wie Allantoin.
Geeignete geruchsbindende oder geruchsverhindernde Substanzen sind Silikate wie Calciumsilikat, Zeolithe oder Salze von Hydroxyfettsäuren wie z. B. Zin- kriceneolat.
Geeignete Markierungsmittel sind beispielsweise Fluoreszenzfarbstoffe oder seltene Erden.
Geeignete Nukleierungsmittel sind Talkum, Alkali oder Erdalkalisalze von mono- und polyfunktionellen Carbonsäuren wie z. B. Benzoesäure, Bernsteinsäure, Adipinsäure, z.B. Natriumbenzoat, Zinkglycerolat, Aluminiumhydroxy- bis(4-tert-butyl)benzoat, 2,2'-Methylen-bis-(4,6-di-tert-butylphenyl)phosphat, sowie Trisamide und Diamide wie z.B. Trimesinsäuretricyclohexylamid, Trime- sinsäuretri(4-methylcyclohexylamid), Trimesinsäuretri(tert.-butylamid), N,N',N"-l,3,5-Benzoltriyltris(2,2-dimethyl-propanamid) oder 2,6-Naphthalindi- carbosäuredicyclohexylamid.
Geeignete Transparenzverbesserer (Clarifier) sind insbesondere Sorbitolderi- vate wie z.B.
Figure imgf000068_0001
Geeignete Antinukleierungsmittel sind Azinfarbstoffe wie z. B. Nigrosin oder io- nische Flüssigkeiten,
Geeignete Additive zur Erhöhung der Wärmeleitfähigkeit von Kunststoff-Rezyk- laten sind beispielsweise anorganische Füllstoffe wie Bornitrid, Aluminiumnitrid, Aluminiumoxid, Aluminiumsilikat, Siliziumcarbid aber auch Kohlenstoff- Nanoröhren (CNT).
Geeignete Schlagzähigkeitsverbesserer werden üblicherweise für das jeweilige Rezyklat ausgewählt und sind beispielsweise aus der Gruppe der funktionali- sierten oder nicht funktionalisierten Polyolefine, wie z.B. Ethylencopolymere wie EPDM oder Maleinsäureanhydrid oder Styrol-Acrynitril-modifiziertes EPDM, Glycidylmethacrylat modifizierte Etylen-Acrylat-Copolymere oder auch lonomere, Core-Shell-Polymere z. B. auf Basis von MBS (Methacrylat-Butadien- Styrol-Copolymer) oder Acrylester-Polymethylmethacrylat, thermoplastische Elastomere (TPE) z. B. auf der Basis von Styrol-Blockcopolymeren (Styrol-Butadien (SB), Styrol-Butadien-Styrol (SBS) ggf. hydriert (SEBS) oder modifiziert durch Maleinsäureanhydrid (SEBS-g-MAH), thermoplastischen Polyurethanen, Copolyestern oder Copolyamiden. Geeignete Weichmacher sind beispielsweise Ester der Phthalsäure, Terephthal- säure, Adipinsäure, 1,2-Cyclohexandicarbonsäure, Trimellithsäure, Zitronensäure oder Phosphorsäure wie z.B. Benzylbutylphthalat (BBP), Butylnonylph- thalat (BNP), Didecylphthalat (DDP), Diisobutyladipat (DIBA), Diisodecyladipat (DIDA), Dioctylterephthalat (DOTP), Diisotridecylphthalat (DTDP), Tributyl-O- acetylcitrat (TBAC), Triethyl-O-acetylcitrat (TOAC), Tetrahydrofurfuryloleat (THFO), Triisooctyltrimellitat (TIOTM), Tributylphosphat (TBP) sowie epoxidier- tes Sojabohnenöl (ESO) oder epoxidiertes Leinöl (ELO).
Geeignete Entformungshilfsmittel sind beispielsweise Silikone, Seifen und Wachse wie z.B. Montanwachse.
Bevorzugt wird das erfindungsgemäße Additiv, das als Pulver, Flüssigkeit, Öl, kompaktiert, auf einem Trägermaterial, als Granulat, Lösung oder Schuppen vorliegen kann mit dem zu stabilisierenden Polymeren gemischt, die Polymermatrix in die Schmelze überführt und anschließend abgekühlt. Alternativ hierzu ist es ebenso möglich, das Additiv in einem schmelzflüssigen Zustand in eine Polymerschmelze einzubringen.
Weiterhin können die erfindungsgemäßen Additivzusammensetzungen in Form von sogenannten Masterbatchen oder Konzentraten, die beispielsweise 10-90 % der erfindungsgemäßen Zusammensetzungen in einem Polymeren oder einem Polymerrezyklat enthalten, hergestellt und eingebracht werden.
In weiterhin bevorzugter Ausführungsform enthalten die Zusammensetzungen sekundäre Antioxidantien insbesondere Phosphite/Phosphonite, Sulfite, Säurefänger, Costabilisatoren auf der Basis von Polyolen und/oder Lichtstabilisatoren aus der Gruppe der gehinderten Amine (HALS).
Bei der zuvor genannten Ausführungsform ist es vorteilhaft, wenn der mindestens eine Zusatzstoff in einer Menge von 0,01 bis 80 Gew.%, bevorzugt von 0,01 bis 9,99 Gew.-%, weiter bevorzugt von 0,01 bis 4,98 Gew.-%, besonders bevorzugt von 0,02 bis 2,00 Gew.-%, bezogen auf die Gesamtheit des mindestens einen Polymeren gemäß allgemeiner Formel I, des Kunststoffs und des mindestens einen Zusatzstoffs, enthalten ist oder zugesetzt wird. Gemäß einem weiteren Aspekt betrifft die vorliegende Erfindung eine Kunststoffzusammensetzung, enthaltend mindestens einen Kunststoff sowie mindestens ein Polymer gemäß allgemeiner Formel I wie voranstehend definiert.
Eine bevorzugte Ausführungsform sieht vor, dass die Kunststoffzusammensetzung die folgende Zusammensetzung aufweist:
0,01 bis 10,00 Gew.-%, bevorzugt 0,01 bis 7,50 Gew.-%, weiter bevorzugt von 0,02 bis 5,00 Gew.-%, besonders bevorzugt von 0,05 bis 3,00 Gew.-% eines Polymeren gemäß allgemeiner Formel I,
99,99 bis 10,00, bevorzugt 99,99 bis 90,00 Gew.-%, bevorzugt 99,89 bis 95,00 Gew.-%, besonders bevorzugt 99,90 bis 98,00 Gew.-% mindestens eines Kunststoffes, sowie
0 bis 80,00 Gew.-%, bevorzugt 0 bis 9,99 Gew.-%, weiter bevorzugt 0,01 bis 4,98 Gew.-%, besonders bevorzugt 0,02 bis 2,00 Gew.-% mindestens eines Zusatzstoffs, wobei sich die Bestandteile zu 100 Gew.-% addieren.
Bevorzugt ist hierbei der mindestens eine Zusatzstoff ausgewählt aus der Gruppe bestehend aus primären Antioxidantien, sekundären Antioxidantien, UV-Absorbern, der Lichtstabilisatoren, insbesondere dergehinderten Amine als Licht- (HALS) und Langzeitwärmestabilisatoren (HAS), der Metalldesaktiva- toren, der Füllstoffdesaktivatoren, der Antiozonantien, Nukleierungsmittel, Antinukleierungsmittel, Transparenzverbesserer (Clarifier), Schlagzähigkeitsverbesserer, Weichmacher, Gleitmittel, Rheologie- oder Viskositätsmodifikatoren, Thixotropiemittel, Kette nverlänge re r, Verarbeitungshilfsmittel, Entformungshilfsmittel, Flammschutzmittel, Pigmente, Farbstoffe, optische Aufheller, antimikrobielle Wirkstoffe, Antistatika, Slipmittel, Antiblockmittel, Kopplungsmittel, Vernetzungsmittel, Antivernetzungsmittel, Hydrophilisierungsmittel Hydrophobierungsmittel, Oberflächenmodifikatoren, Hydrolysestabilisatoren, Haftvermittler, Dispergiermittel, Kompatibilisatoren, Sauerstofffänger, Säurefänger, Acetaldehyd- und Formaldehydfänger, Treibmittel, Abbau-Additive (Prode- gradantien), Entschäumungshilfsmittel, Geruchsfänger und geruchsverbessernde Substanzen, PVC-Wärmestabilisatoren, Markierungsmittel, Antifogging- mittel, Glanzverbesserer, Mattierungsmittel, Additive zur Erhöhung der elektrischen und/oder Wärmeleitfähigkeit, Repellants, Füllstoffe und Verstärkungsstoffe und Mischungen hiervon.
Besonders bevorzugte Kunststoffzusammensetzungen bestehen aus
(A) 0,02-4, besonders bevorzugt 0,05-2 Teile mindestens eines Polymeren gemäß allgemeiner Formel I wie voranstehend definiert,
(B) 43-99,96 Teile eines Kunststoffs,
(C) 0,02-4 Teile, besonders bevorzugt 0,05-2 Teile eines
(a) Phosphites oder Phosphonites und/oder
(b) Sulfites und/oder
(c) Polyols und/oder
(d) Säurefängers und/oder
(e) gehinderten Amins
(D) 0-50 Teile, besonders bevorzugt 0-2 Teile eines weiteren Zusatzes, so dass 100 Teile erhalten werden.
Für den Fall, dass der Kunststoffzusammensetzung (synonym hierzu: Polymerzusammensetzung) weitere Bestandteile zugefügt werden, können diese separat, in Form von Flüssigkeiten, Pulvern, Granulaten oder kompaktierten Produkten oder zusammen mit der erfindungsgemäßen Additivzusammensetzung (d.h. des mindestens einen Polymeren gemäß allgemeiner Formel I sowie ggf. Zusatzstoffe) wie zuvor beschrieben den Polymeren zugesetzt werden.
Die Einarbeitung der oben beschriebenen Additivzusammensetzung und ggf. der zusätzlichen Additive in den Kunststoff erfolgt durch übliche Verarbeitungsmethoden, vorzugsweise durch Mischer, Kneter oder Extruder. Als Verarbeitungsmaschinen bevorzugt sind Extruder wie z.B. Einschneckenextruder, Zweischneckenextruder, Planetwalzenextruder, Ringextruder, Co-Kneter, die vorzugsweise mit einer Vakuumentgasung ausgestattet sind. Die Verarbeitung kann dabei unter Luft oder ggf. unter Inertgasbedingungen erfolgen.
Die Verarbeitung der die beschriebene Additivzusammensetzung enthaltenden Kunststoff-Zusammensetzungen kann durch übliche Kunststoffverarbeitungs- methoden in kontinuierlichen und diskontinuierlichen Verfahren erfolgen, wie z.B. durch Extrudieren, Kalandrieren, Blasformen, Pultrusion, Spritzgießen, Pressen, Spritzpressen, Gießen, Blasformen, Rotationsformen, Tiefziehen, Sintern, Schäumen oder auch durch additive Fertigungsverfahren zur Herstellung von Granulat, Formteilen, Halbzeugen, Fasern und Folien.
Geeignete Extruder sind Kolbenextruder und Schneckenextruder, Einschneckenextruder, Zweischneckenextruder, Vielwellenextruder, Planetwalzenextruder insbes. zur Herstellung von Kunststoffgranulaten, Rohren, Stäben, Schläuchen, Profilen, Ummantelungen, Platten, Folien, Keilriemen, Zahnriemen, Dichtungen, Schaumplatten (XPS), Fasern und von Filamenten für additive Fertigungsverfahren.
Geeignete Spritzgießmaschinen können hydraulisch oder elektromechanisch ausgeführt sein und umfassen Mehrkomponenten-Spritzguss und in-mold Verfahren. Durch Spritzguss hergestellte Formteile sind beispielsweise Flaschen, Behälter, Schraubdosen, Kästen, Fässer, Eimer, Paletten, technische Teile für Auto- und Transport wie Stoßfänger, Verkleidungsteile, Griffe, Scheinwerferabdeckungen, Armaturen- und Funktionsteile, Elektro- und Elektronikanwendungen wie Gehäuseteile und Zubehör von Fernsehgeräten, Computern, Mobilte- lefonen, Waschmaschinen, Geschirrspüler, Kaffeemaschinen, Bohrmaschinen, Steckverbindungen, Speichermedien, Haushalts-, Freizeit- und Sportartikel wie z.B. Blumenkübel, Kleiderbügel, Spielfiguren, Modellbau, Bauteile für Möbel wie z.B. Klammern und Clips,
Durch Blasformen hergestellte Teile sind insbesondere Hohlkörper wie Flaschen, Kraftstoffbehälter, Kanister, Waschwasserbehälter und Ausgleichsbehälter.
Durch Rotationsformen hergestellte Teile sind insbesondere Tanks wie Heizöl- und Regenwassertanks, Gehäuse für Maschinen, Transportbehälter, Freizeit- und Wassersportartikel wie z.B. Kajaks.
Durch Kalandrieren werden insbesondere Folien wie Dekorfolien, Tapeten und Fußbodenbeläge hergestellt.
Additive Fertigungsverfahren umfassen beispielsweise Binder jetting (BJ), Laser Sintering (LS), Selective Laser Melting (SLM), Electron Beam Melting (EBM), Fused Deposition Modeling (FDM), Fused Filament Fabrication (FFF), Multi-Jet Modelling (MJM), Poly-Jet Modelling (PJM), Layer Laminated Manufacturing (LLM), Thermotransfer Sintering (TIS), Digital Light Processing (DLP), Photopolymer Jetting (PJ) und Stereolithography (SL).
Beispielhafte Formteile, die sich aus der erfindungsgemäßen Zusammensetzung herstellen lassen sind Folien oder Filmen, Schäumen, Fasern, Kabeln und Rohren, Profilen, Hohlkörpern, Bändchen, Membranen, wie z.B. Geomembranen, oder Klebstoffen, die über Extrusion, Spritzguss, Blasformen, Kalandrieren, Pressverfahren, Spinnprozesse, Rotomoulding hergestellt werden, z.B. für Verpackungen z.B. für Lebensmittel, Detergentien, Kosmetik, Klebstoffe in Form von Folien, Flaschen, Beuteln, Schraubdosen, Lager- und Transportbehälter wie z. B. Boxen, Kästen, Fässer, Eimer, Paletten Automobil-, Eisenbahn-, Flugzeug-, Schiffs- und Maschinenteile wie z.B. Stoßfänger, Verkleidungsteile, Armaturen- und Funktionsteile, Polster Bauanwendungen wie Profile, Baufolien, Kabelkanäle, Hausverkleidungen, Lärmschutzwände, Entwässerungsrinnen, Profilbretter, Fußbodenbeläge Straßen und Landschaftsbauanwendungen wie z.B. Bakenfüße, Pfosten, Absperrungen, Geotextilien, Elektro- und Elektronikanwendungen wie Gehäuseteile und Zubehör von Fernsehgeräten, Computern, Mobiltelefonen, Waschmaschinen, Geschirrspüler, Kaffeemaschinen, Bohrmaschinen, Steckverbindungen, Speichermedien, Kabelisolierungen, Rohre für z.B. Wasser, Gas, Abwasser, Bewässerung; Drainagerohre Hygieneartikel wie z.B. Windeln, Möbel- und Textilanwendungen, wie z.B. Vorhänge und Polster, Arbeitsplatten, Haushalts-, Freizeit- und Sportartikel wie z.B. Bälle, Tennisschläger, Ski, Blumenkübel, Regentonnen, Kleiderbügel, Landwirtschaftsanwendungen wie z.B. Mulch-, Tunnel- oder Lochfolien, Pflanztöpfe, Pharmazeutische und Pflanzenschutz-Anwendungen wie z.B. zur Verkapselung von Wirkstoffen und biologisch aktiven Substanzen, In der Medizintechnik zur Herstellung von Nahtmaterial, Verbandsmaterial, Orthesen und Prothesen.
Des Weiteren betrifft die Erfindung ein Verfahren zur Stabilisierung einer Kunststoffzusammensetzung, insbesondere gegen oxidativen, thermischen und/oder actinischen Abbau, bei dem mindestens ein Polymer gemäß allgemeiner Formel I wie voranstehend definiert in mindestens einen Kunststoff oder einen Blend mindestens zweier Kunststoffe eingearbeitet wird. Ein weiterer Aspekt der vorliegenden Erfindung betrifft eine Stabilisator-Zusammensetzung, bestehend aus a) mindestens einem Polymer gemäß allgemeiner Formel I wie voranstehend definiert (Komponenten A), sowie b) mindestens einem Zusatzstoff (Komponente B), ), ausgewählt aus der Gruppe bestehend aus primären Antioxidantien, sekundären Antioxidantien, UV-Absorbern, der Lichtstabilisatoren, insbesondere der gehinderten Amine als Licht- (HALS) und Langzeitwärmestabilisatoren (HAS), der Metalldesaktivatoren, der Füllstoffdesaktivatoren, der An- tiozonantien, Nukleierungsmittel, Antinukleierungsmittel, Transparenzverbesserer (Clarifier), Schlagzähigkeitsverbesserer, Weichmacher, Gleitmittel, Rheologie- oder Viskositätsmodifikatoren, Thixotro- piemittel, Kette nverlänge re r, Verarbeitungshilfsmittel, Entformungshilfsmittel, Flammschutzmittel, Pigmente, Farbstoffe, optische Aufheller, antimikrobielle Wirkstoffe, Antistatika, Slipmittel, Antiblockmittel, Kopplungsmittel, Vernetzungsmittel, Antivernetzungsmittel, Hydro- philisierungsmittel Hydrophobierungsmittel, Oberflächenmodifikatoren, Hydrolysestabilisatoren, Haftvermittler, Dispergiermittel, Kompa- tibilisatoren, Sauerstofffänger, Säurefänger, Acetaldehyd- und Formaldehydfänger, Treibmittel, Abbau-Additive (Prodegradantien), Entschäumungshilfsmittel, Geruchsfänger und geruchsverbessernde Substanzen, PVC-Wärmestabilisatoren, Markierungsmittel, Antifoggingmittel, Glanzverbesserer, Mattierungsmittel, Additive zur Erhöhung der elektrischen und/oder Wärmeleitfähigkeit, Repellants, Füllstoffe und Verstärkungsstoffe und Mischungen hiervon.
Bei der Stabilisator-Zusammensetzung ist es bevorzugt, wenn Komponente A und Komponente B in einem Gewichtsverhältnis von 100 : 1 bis 1: 100, bevorzugt 10 : 1 bis 1 : 10, besonders bevorzugt von 5 : 1 bis 1 : 5 vorliegen.
Die vorliegend Erfindung wird anhand der nachfolgenden Ausführungen näher erläutert, ohne die Erfindung auf die dargestellten speziellen Ausführungen zu beschränken.
Ausführungsbeispiele: Zur Prüfung der Wirkung der erfindungsgemäßen Stabilisatoren wurde ein handelsübliches Polypropylen (Moplen HP 500N, Lyondell Basell Industries) in einer Pulver-Pulver Mischung mit den erfindungsgemäßen Stabilisatoren homogenisiert und in einem Doppelschnecken-Microextruder (MC 5, Hersteller DSM) über 30 Minuten bei 200 °C und 90 Umdrehungen pro Minute im Kreislauf geführt und die Abnahme der Kraft aufgezeichnet. Die Kraft ist ein direktes Maß für das Molekulargewicht von Polypropylen, je geringer die Abnahme, desto höher die Stabilisierungswirkung.
Der Zusatz von 0.2 bis 0.5 % eines aus einem handelsüblichen Polyvinylalkohol (gemäß Lieferant Sigma-Aldrich, Mw=13000-23000, Hydrolysegrad 87-89 %, d.h. enthaltend 11-13 % Polyvinylacetat-Gruppen), mit aus Vanillinsäuremethylester durch Umesterung hergestellten Polyvinylesters, enthaltend 50 % Vanillinsäurevinylester führt im Vergleich zu einem Polypropylen ohne Zusatz zu einer erhöhten Verarbeitungsstabilisierung, d.h. zu einer höheren Restkraft. Eine weitere Verbesserung der Verarbeitungsstabilität wird erreicht indem man zu 0.25 % des Vinylesters zusätzlich 0.25 % Mannit oder 0.25 % Tris-(2,4- di-tertbutylphenyl)phosphit hinzugibt.

Claims

Patentansprüche Polymer, enthaltend eine Wiederholungseinheit (A) der allgemeinen Formel I
Figure imgf000076_0001
Formel I wobei
R1, R2 und R3 jeweils unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus Hydroxy, linearen oder verzweigten Alkoxylgruppen mit 1 bis 6 Kohlenstoffatomen und Wasserstoff, mit der Maßgabe, dass mindestens einer der Reste R1, R2 und R3 ein Hydroxyrest und mindestens einer der Reste R1, R2 und R3 eine lineare oder verzweigte Alkoxygruppe mit 1 bis 6 Kohlenstoffatomen ist, wobei R1, R2 und R3 bei jedem Auftreten gleich oder verschieden sind,
X ausgewählt ist aus der Gruppe bestehend aus —
(CH2)y— , wobei y eine ganze Zahl von 1 bis 12 ist, — (CH=CH)— und -(CH=CMe)-, x 0 oder l ist. Polymer nach Anspruch 1, dadurch gekennzeichnet, dass
R1 Wasserstoff, Hydroxy oder eine lineare oder verzweigte Alko- xylgruppe mit 1 bis 6 Kohlenstoffatomen, insbesondere Methoxy, R2 Hydroxy und
R3 eine lineare oder verzweigte Alkoxylgruppe mit 1 bis 6 Kohlenstoffatomen, insbesondere Methoxy ist.
3. Polymer nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es mindestens eine weitere Wiederholungseinheit (B), enthält, die ausgewählt ist aus Wiederholungseinheiten, die von radikalisch, kontrolliert radikalisch oder koordinativ polymerisierbaren Monomeren abgeleitet sind.
4. Polymer nach vorhergehendem Anspruch, dadurch gekennzeichnet, dass die mindestens eine weitere Wiederholungseinheit (B) ausgewählt ist aus den nachfolgenden Wiederholungseinheiten:
Figure imgf000077_0001
wobei
R4 ausgewählt ist aus der Gruppe bestehend aus Wasserstoff sowie linearen oder verzweigen Alkylresten mit 1 bis 36 Kohlenstoffatomen,
R5 ausgewählt ist aus der Gruppe bestehend aus linearen oder verzweigen Alkylresten mit 1 bis 36 Kohlenstoffatomen, und
Z O oder NH ist. Polymer nach einem der beiden vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das molare Verhältnis der Wiederholungseinheit (A) zur Gesamtheit sämtlicher Wiederholungseinheiten 0,01 bis <1,0, bevorzugt 0,25 bis 0,95, besonders bevorzugt 0,40 bis 0,90 beträgt. Polymer nach einem der vorhergehenden Ansprüche, gekennzeichnet durch ein gewichtsgemitteltes Molekulargewicht von 103 bis 106 g/mol, bevorzugt 5 103 bis 5 105 g/mol, besonders bevorzugt von 7,5 103 bis 105 g/mol. Polymer nach einem der vorhergehenden Ansprüche, enthaltend oder bestehend aus der Wiederholungseinheit (A) gemäß allgemeiner Formel I sowie den nachfolgenden Wiederholungseinheiten (Bl) und (B2):
Figure imgf000078_0001
(Bl) (B2) wobei Z und R5 die voranstehende Bedeutung aufweisen, insbesondere Z Sauerstoff und R5 Ethyl sind. Polymer nach vorhergehendem Anspruch, dadurch gekennzeichnet, dass das molare Verhältnis der Wiederholungseinheit (A) zur Gesamtheit sämtlicher Wiederholungseinheiten 0,25 bis 0,95, besonders bevorzugt 0,40 bis 0,90, das molare Verhältnis der Wiederholungseinheit (Bl) zur Gesamtheit sämtlicher Wiederholungseinheiten 0,05 bis 0,50, bevorzugt 0,20 bis
Figure imgf000078_0002
das molare Verhältnis der Wiederholungseinheit (B2) zur Gesamtheit sämtlicher Wiederholungseinheiten 0,05 bis 0,25, bevorzugt 0,08 bis 0,20, beträgt.
9. Verwendung eines Polymers oder einer Mischung mehrerer Polymere, enthaltend eine Wiederholungseinheit (A) der allgemeinen Formel I
Figure imgf000079_0001
Formel I wobei
R1, R2 und R3 jeweils unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus Hydroxy, linearen oder verzweigten Alkoxylgruppen mit 1 bis 6 Kohlenstoffatomen und Wasserstoff, mit der Maßgabe, dass mindestens einer der Reste R1, R2 und R3 ein Hydroxyrest, wobei R1, R2 und R3 bei jedem Auftreten gleich oder verschieden sind,
X ausgewählt ist aus der Gruppe bestehend aus — (CH2)y— , wobei y eine ganze Zahl von 1 bis 12 ist, — (CH=CH)— und -(CH=CMe)-, x 0 oder 1 ist, zur Stabilisierung von Kunststoffen, insbesondere gegen oxidativen, thermischen und/oder actinischen Abbau.
10. Verwendung nach vorhergehendem Anspruch, dadurch gekennzeichnet, dass mindestens einer der Reste R1, R2 und R3 eine lineare oder verzweigte Alkoxygruppe mit 1 bis 6 Kohlenstoffatomen ist. Verwendung nach einem der beiden vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Polymer oder die Mischung mehrerer Polymere zu einem Gewichtsanteil von 0,01 bis 10,00 Gew.-%, bevorzugt von 0,02 bis 5,00 Gew.-%, besonders bevorzugt von 0,05 bis 2,00 Gew.-% im Kunststoff enthalten ist. Verwendung nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass der Kunststoff ausgewählt ist aus der Gruppe bestehend aus a) Polymeren aus Olefinen oder Diolefinen wie z.B. Polyethylen (LDPE, LLDPE, VLDPE, ULDPE, MDPE, HDPE, UHMWPE), Metal- locen-PE (m-PE), Polypropylen, Polyisobutylen, Poly-4-methyl- penten-1, Polybutadien, Polyisopren, wie z.B. auch Naturkautschuk (NR), Polycycloocten, Polyalkylen-Kohlenmonoxid-Copoly- mere, sowie Copolymere in Form von statistischen oder Blockstrukturen wie z.B. Polypropylen-Polyethylen (EP), EPM oder EPDM mit z.B. 5-Ethyliden- 2-Norbornen als Comonomer, Ethylen- Vinylacetat (EVA), Ethylen-Acrylester, wie z.B. Ethylen- Butylac- rylat, Ethylen-Acrylsäure und deren Salze (lonomere), sowie Terpolymere wie z.B. Ethylen-Acrylsäure-Glycidyl(meth)acrylat, Pfropfpolymere wie z.B. Polypropylen-graft-Maleinsäureanhydrid, Polypropylen-graft-Acrylsäure, Polyethylen-graft -Acrylsäure, Po- lyethylen-Polybutylacrylat-graft-Maleinsäureanhydrid sowie Blends wie z.B. LDPE/LLDPE oder auch langkettenverzweigte Polypropylen-Copolymere die mit alpha-Olefinen als Comonomere hergesellt werden wie z.B. mit 1-Buten, 1-Hexen, 1-Octen oder 1- Octadecen, b) Polystyrol, Polymethylstyrol, Poly-alpha-methylstyrol, Polyvinylnaphthalin, Polyvinylbiphenyl, Polyvinyltoluol, Styrol-Butadien (SB), Styrol-Butadien-Styrol (SBS), Styrol-Ethylen-Butylen- Styrol (SEBS), Styrol-Ethylen-Propylen-Styrol, Styrol-Isopren, Styrol-Isop- ren-Styrol (SIS), Styrolutadien-acrylnitril (ABS), Styrol-acrylnitril (SAN), Styrol-acrylnitrilacrylat (ASA), Styrol- Ethylen, Styrol-Malein- säureanhydrid-Polymere einschl. entsprechender Pfropfcopolymere wie z.B. Styrol auf Butadien, Maleinsäureanhydrid auf SBS cider SEBS, sowie Pfropfcopolymere aus Methyl methacrylat, Styrol- Butadien und ABS (MABS), sowie hydrierte Polystyrol-Derivate wie z.B. Polyvinylcyclohexan, c) halogenenthaltenden Polymeren wie z.B. Polyvinylchlorid (PVC), Polychloropren und Polyvinylidenchlorid (PVDC), Copolymere aus Vinylchlorid und Vinylidenchlorid oder aus Vinylchlorid und Vinylacetat, chloriertes Polyethylen, Polyvinylidenfluorid, Epichlorhydrin- Homo und Copolymere insbes. mit Ethylenoxid (ECO), d) Polymeren von ungesättigten Estern wie z.B. Polyacrylate und Po- lymethacrylate wie Polymethylmethacrylat (PMMA), Polybutylac- rylat, Polylaurylacrylat, Polystearylacrylat, Polyglycidylacrylat, Po- lyglycidylmethacrylat, Polyacrylnitril, Polyacrylamide, Copolymere wie z.B. Polyacrylnitril-Polyalkylacrylat, e) Polymeren aus ungesättigten Alkoholen und Derivaten, wie z.B. Polyvinylalkohol, Polyvinylacetat, Polyvinylbutyral, Polyallylphtha- lat, Polyallylmelamin, f) Polyacetalen, wie z.B. Polyoxymethylen (POM) oder Copolymere mit z.B. Butanal, g) Polyphenylenoxiden und Blends mit Polystyrol oder Polyamiden, h) Polymeren von cyclischen Ethern wie z.B. Polyethylenglycol, Polyp- ropylenglycol, Polyethylenoxid, Polypropylenoxid, Polytetrahydrofuran, i) Polyurethanen, aus hydroxyterminierten Polyethern oder Polyestern und aromatischen oder aliphatischen Isocyanaten wie z.B.
2,4- oder 2,6-Toluylendiisocyanat oder Methylendiphenyldiisocya- nat insbesondere auch lineare Polyurethane (TPU), Polyharnstoffen, j) Polyamiden wie z.B. Polyamid-6, 6.6, 6.10, 4.6, 4.10, 6.12, 10.10, 10.12, 12.
12, Polyamid 11, Polyamid 12 sowie (teil-)aromatische Polyamide wie z.B. Polyphthalamide, z.B. hergestellt aus Tereph- thalsäure und/oder Isophthalsäure und aliphatischen Diaminen wie z.B. Hexamethylendiamin oder m-Xylylendiamin oder aus aliphatischen Dicarbonsäuren wie z.B. Adipinsäure oder Sebazin- säure und aromatischen Diaminen wie z.B. 1,4- oder 1,3- Diaminobenzol, Blends von unterschiedlichen Polyamiden wie z.B. PA-6 und PA 6.6 bzw. Blends von Polyamiden und Polyolefinen wie z.B. PA/PP, k) Polyimiden, Polyamidimiden, Polyetherimiden, Polyesterimiden, Poly(ether)ketonen, Polysulfonen, Polyethersulfonen, Polyarylsul- fonen, Polyphenylensulfiden, Polybenzimidazolen, Polyhydantoi- nen, l) Polyestern aus aliphatischen oder aromatischen Dicarbonsäuren und Diolen oder aus Hydroxy-Carbonsäuren wie z.B. Polyethylen- terephthalat (PET), Polybutylenterephthalat (PBT), Polypropylen- terephthalat (PTI), Polyethylennaphthylat (PEN), Poly-l,4-dimethy- lolcyclohexanterephthalat, Polyhydroxybenzoat, Polyhydroxy- naphthalat, Polymilchsäure (PLA), Polyhydroxybutyrat (PHB), Poly hydroxyvale rat (PHV), Polyethylensuccinat, Polytetramethylen- succinat, Polycaprolacton, m) Polycarbonaten, Polyestercarbonaten, sowie Blends wie z.B. PC/ABS, PC/PBT, PC/PET/PBT, PC/PA, n) Cellulosederivaten wie z.B. Cellulosenitrat, Celluloseacetat, Cellulosepropionat, Cellulosebutyrat, o) Epoxidharzen, bestehend aus di- oder polyfunktionellen Epoxidverbindungen in Kombination mit z.B. Härtern auf der Basis von A- minen, Anhydriden, Dicyandiamid, Mercaptanen, Isocyanaten cider katalytisch wirkenden Härtern, p) Phenolharzen wie z.B. Phenol-Formaldehyd-Harze, Harnstoff-For- maldehyd-Harze, Melamin- Formaldehydharze, q) ungesättigten Polyesterharzen aus ungesättigten Dicarbonsäuren und Diolen mit Vinylverbindungen z.B. Styrol, Alkydharze, r) Silikonen, z.B. auf der Basis von Dimethylsiloxanen, Methyl-Phe- nyl-siloxanen oder Diphenylsiloxanen z.B. Vinylgruppen terminiert, s) sowie Mischungen, Kombinationen oder Blends aus zwei oder mehr der zuvor genannten Polymere.
13. Verwendung nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass mindestens ein weiterer Zusatzstoff, ausgewählt aus der Gruppe bestehend primären Antioxidantien, sekundären Antioxidantien, UV-Absorbern, der Lichtstabilisatoren, insbesondere der gehinderten Amine als Licht- (HALS) und Langzeitwärmestabilisatoren (HAS), der Metalldesaktivatoren, der Füllstoffdesaktivatoren, der Antiozonan- tien, Nukleierungsmittel, Antinukleierungsmittel, Transparenzverbesserer (Clarifier), Schlagzähigkeitsverbesserer, Weichmacher, Gleitmittel, Rheologie- oder Viskositätsmodifikatoren, Thixotropiemittel, Kette nverlänge re r, Verarbeitungshilfsmittel, Entformungshilfsmittel, Flammschutzmittel, Pigmente, Farbstoffe, optische Aufheller, antimikrobielle Wirkstoffe, Antistatika, Slipmittel, Antiblockmittel, Kopplungsmittel, Vernetzungsmittel, Antivernetzungsmittel, Hydrophilisierungs- mittel, Hydrophobierungsmittel, Oberflächenmodifikatoren, Hydrolysestabilisatoren, Haftvermittler, Dispergiermittel, Kompatibilisatoren, Sauerstofffänger, Säurefänger, Acetaldehyd- und Formaldehydfänger, Treibmittel, Abbau-Additive (Prodegradantien), Entschäumungshilfsmittel, Geruchsfänger und geruchsverbessernde Substanzen, PVC-Wär- mestabilisatoren, Markierungsmittel, Antifoggingmittel, Glanzverbesserer, Mattierungsmittel, Additive zur Erhöhung der elektrischen und/oder Wärmeleitfähigkeit, Repellants, Füllstoffe und Verstärkungsstoffe und Mischungen hiervon enthalten ist oder zugesetzt wird.
14. Verwendung nach vorhergehendem Anspruch, dadurch gekennzeichnet, dass der mindestens eine Zusatzstoff in einer Menge von 0,01 bis 80 Gew.%, bevorzugt von 0,01 bis 9,99 Gew.-%, weiter bevorzugt von 0,01 bis 4,98 Gew.-%, besonders bevorzugt von 0,02 bis 2,00 Gew.-%, bezogen auf die Gesamtheit des mindestens einen Polymeren gemäß allgemeiner Formel I, des Kunststoffs und des mindestens einen Zusatzstoffs, enthalten ist oder zugesetzt wird. Kunststoffzusammensetzung, enthaltend mindestens einen Kunststoff sowie mindestens Polymer wie in einem der Ansprüche 1 bis 8 definiert. Kunststoffzusammensetzung nach vorhergehendem Anspruch, mit folgender Zusammensetzung
0,01 bis 10,00 Gew.-%, bevorzugt 0,01 bis 7,50 Gew.-%, weiter bevorzugt von 0,02 bis 5,00 Gew.-%, besonders bevorzugt von 0,05 bis 3,00 Gew.-% eines Polymers oder einer Mischung mehrerer Polymerer wie in einem der Ansprüche 1 bis 8 definiert,
99,99 bis 10,00, bevorzugt 99,99 bis 90,00 Gew.-%, bevorzugt 99,89 bis 95,00 Gew.-%, besonders bevorzugt 99,90 bis 98,00 Gew.-% mindestens eines Kunststoffes, sowie
0 bis 80,00 Gew.-%, bevorzugt 0 bis 9,99 Gew.-%, weiter bevorzugt 0,01 bis 4,98 Gew.-%, besonders bevorzugt 0,02 bis 2,00 Gew.-% mindestens eines Zusatzstoffs, wobei sich die Bestandteile zu 100 Gew.-% addieren. Kunststoffzusammensetzung nach vorhergehendem Anspruch, dadurch gekennzeichnet, dass der mindestens eine Zusatzstoff ausgewählt aus der Gruppe bestehend aus primären Antioxidantien, sekundären Antioxidantien, UV-Absorbern, der Lichtstabilisatoren, insbesondere der gehinderten Amine als Licht- (HALS) und Langzeitwärmestabilisatoren (HAS), der Metalldesaktivatoren, der Füllstoffdesaktivatoren, der Antiozonantien, Nukleierungsmittel, Antinukleierungsmittel, Transparenzverbesserer (CJarifier), Schlagzähigkeitsverbesserer, Weichmacher, Gleitmittel, Rheologie- oder Viskositätsmodifikatoren, Thixotro- piemittel, Kette nverlänge re r, Verarbeitungshilfsmittel, Entformungshilfsmittel, Flammschutzmittel, Pigmente, Farbstoffe, optische Aufheller, antimikrobielle Wirkstoffe, Antistatika, Slipmittel, Antiblockmittel, Kopplungsmittel, Vernetzungsmittel, Antivernetzungsmittel, Hydrophi- lisierungsmittel Hydrophobierungsmittel, Oberflächenmodifikatoren, Hydrolysestabilisatoren, Haftvermittler, Dispergiermittel, Kompatibili- satoren, Sauerstofffänger, Säurefänger, Acetaldehyd- und Formaldehydfänger, Treibmittel, Abbau-Additive (Prodegradantien), Entschäumungshilfsmittel, Geruchsfänger und geruchsverbessernde Substanzen, PVC-Wärmestabilisatoren, Markierungsmittel, Antifoggingmittel, Glanzverbesserer, Mattierungsmittel, Additive zur Erhöhung der elektrischen und/oder Wärmeleitfähigkeit, Repellants, Füllstoffe und Verstärkungsstoffe und Mischungen hiervon. Verfahren zur Stabilisierung einer Kunststoffzusammensetzung, insbesondere gegen oxidativen, thermischen und/oder actinischen Abbau, bei dem mindestens ein Polymer wie in einem der Ansprüche 1 bis 8 definiert in mindestens einen Kunststoff oder einen Blend mindestens zweier Kunststoffe eingearbeitet wird. Stabilisator-Zusammensetzung, bestehend aus a) mindestens einem Polymer wie in einem der Ansprüche 1 bis 8 definiert (Komponenten A), sowie b) mindestens einem Zusatzstoff (Komponente B), ausgewählt aus der Gruppe bestehend aus primären Antioxidantien, sekundären Antioxidantien, UV-Absorbern, der Lichtstabilisatoren, insbesondere der gehinderten Amine als Licht- (HALS) und Langzeitwärmestabilisatoren (HAS), der Metalldesaktivatoren, der Füllstoffdesaktivatoren, der Antiozonantien, Nukleierungsmittel, Antinukleierungsmittel, Transparenzverbesserer (CJarifier), Schlagzähigkeitsverbesserer, Weichmacher, Gleitmittel, Rheologie- oder Viskositätsmodifikatoren, Thixotropiemittel, Kettenverlängerer, Verarbeitungshilfsmittel, Entformungshilfsmittel, Flammschutzmittel, Pigmente, Farbstoffe, optische Aufheller, antimikrobielle Wirkstoffe, Antistatika, Slipmittel, Antiblockmittel, Kopplungsmittel, Vernetzungsmittel, Antivernetzungsmittel, Hydrophilisierungsmittel Hydrophobierungsmittel, Oberflächenmodifikatoren, Hydrolysestabilisatoren, Haftvermittler, Dispergiermittel, Kompatibilisatoren, Sauerstofffänger, Säurefänger, Acetaldehyd- und Formaldehydfänger, Treibmittel, Abbau-Additive (Prodegradantien), Entschäu- mungshilfsmittel, Geruchsfänger und geruchsverbessernde Substanzen, PVCWärmestabilisatoren, Markierungsmittel, Antifoggingmittel, Glanzverbesserer, Mattierungsmittel, Additive zur Erhöhung der elektrischen und/oder Wärmeleitfähigkeit, Repellants, Füllstoffe und Verstärkungsstoffe und Mischungen hiervon. Stabilisator-Zusammensetzung nach vorhergehendem Anspruch, dadurch gekennzeichnet, dass Komponente A und Komponente B in einem Gewichtsverhältnis von 100 : 1 bis 1: 100, bevorzugt 10 : 1 bis 1 : 10, besonders bevorzugt von 5 : 1 bis 1 : 5 vorliegen.
PCT/EP2023/052682 2022-02-16 2023-02-03 Polymere stabilisatoren auf basis von methoxy-hydroxy-benzoesäuren, kunststoffzusammensetzung, verfahren zur stabiliserung einer kunststoffzusammensetzung sowie stabilisatorzusammensetzung WO2023156222A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022201632.7 2022-02-16
DE102022201632.7A DE102022201632A1 (de) 2022-02-16 2022-02-16 Polymere Stabilisatoren auf Basis von Syringasäure, Vanillinsäure, lsovanillinsäure oder 5-Hydroxyveratrumsäure, Kunststoffzusammensetzung, Verfahren zur Stabiliserung einer Kunststoffzusammensetzung sowie Stabilisatorzusammensetzung

Publications (1)

Publication Number Publication Date
WO2023156222A1 true WO2023156222A1 (de) 2023-08-24

Family

ID=85222147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/052682 WO2023156222A1 (de) 2022-02-16 2023-02-03 Polymere stabilisatoren auf basis von methoxy-hydroxy-benzoesäuren, kunststoffzusammensetzung, verfahren zur stabiliserung einer kunststoffzusammensetzung sowie stabilisatorzusammensetzung

Country Status (2)

Country Link
DE (1) DE102022201632A1 (de)
WO (1) WO2023156222A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117624262A (zh) * 2024-01-23 2024-03-01 昆明理工大学 一种从单宁锗渣中提取制备高纯度单宁酸的方法

Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2682522A (en) 1952-09-10 1954-06-29 Eastman Kodak Co Process for preparing polymeric organo-phosphonates
US2716101A (en) 1952-09-10 1955-08-23 Eastman Kodak Co Polymeric organo-phosphonates containing phosphato groups
US2891915A (en) 1954-07-02 1959-06-23 Du Pont Organophosphorus polymers
US3326852A (en) 1964-08-10 1967-06-20 Owens Illinois Inc Resinous polymeric phosphonates
US3442854A (en) 1965-01-21 1969-05-06 Bayer Ag Quaternary ammonium phosphonium and arsonium catalysts for the production of polycarbonates by the transesterification method
US3919363A (en) 1974-04-30 1975-11-11 Nissan Chemical Ind Ltd Process for preparing poly(sulfonyl-phenylene)phenylphosphonate
US3946093A (en) 1974-04-27 1976-03-23 Nissan Chemical Industries, Ltd. Process for preparing polyphosphonate
US4328174A (en) 1979-06-22 1982-05-04 Bayer Aktiengesellschaft Aromatic polyester phosphonates
US4331614A (en) 1979-06-22 1982-05-25 Bayer Aktiengesellschaft Aromatic polyphosphonates and a process for their production
US4374971A (en) 1979-10-31 1983-02-22 Bayer Aktiengesellschaft Process for the preparation of thermoplastic aromatic polyphosphonates with improved thermal ageing resistance
EP0231922A2 (de) * 1986-02-07 1987-08-12 American Cyanamid Company Elektronen- und Röntgenstrahllacke
US5216113A (en) 1989-10-07 1993-06-01 Bayer Aktiengesellschaft Highly branched polyphosphonates
US5334692A (en) 1990-09-06 1994-08-02 Bayer Aktiengesellschaft Highly branched polyphosphonates based on melamine
WO1998018830A1 (en) 1996-10-31 1998-05-07 Ciba Specialty Chemicals Holding Inc. Functionalised polymers
US6288210B1 (en) 1999-11-12 2001-09-11 Virginia Tech. Intellectual Properties, Inc. High refractive index thermoplastic polyphosphonates
US6291630B1 (en) 1998-03-12 2001-09-18 Bayer Aktiengesellschaft Method for producing a liquid formulation of tetraphenylphosphonium phenolate
WO2003070736A1 (de) 2002-02-20 2003-08-28 Forschungszentrum Karlsruhe Gmbh Verfahren zur herstellung von 6-alkoxy-(6h)-dibenz(c,e)(1,2)-oxaphosphorinen
US20050020800A1 (en) 2001-10-04 2005-01-27 Levchik Sergei V Oligomeric, hydroxy-terminated phosphonates
US6861499B2 (en) 2003-02-24 2005-03-01 Triton Systems, Inc. Branched polyphosphonates that exhibit an advantageous combination of properties, and methods related thereto
WO2006084488A1 (de) 2005-02-09 2006-08-17 Schill + Seilacher 'struktol' Aktiengesellschaft Stickstoffhaltige verbrückte derivate von 6h-dibenz[e,e][1,2]-­oxaphosphorin-6-oxiden, verfahren zu ihrer herstellung sowie ihre verwendung als flammschutzmittel
WO2006084489A1 (de) 2005-02-09 2006-08-17 Schill + Seilacher 'struktol' Aktiengesellschaft AMINODERIVATE VON DIBENZ[c,e][1,2]-OXAPHOSPHORIN-6-OXIDEN, VERFAHREN ZU IHRER HERSTELLUNG UND VERWENDUNG
US20070219295A1 (en) 2004-05-19 2007-09-20 Sergei Levchik Polyphosphonate Flame Retardant Curing Agent For Epoxy Resin
US20080045673A1 (en) 2004-08-31 2008-02-21 Piotrowski Andrew M Process for Preparing Diaryl Alkylphosphonates and Oligomeric/Polymeric Derivatives Thereof
WO2008101845A1 (en) 2007-02-21 2008-08-28 Basf Se Symmetric azo compounds in flame retardant compositions
WO2010135398A1 (en) 2009-05-19 2010-11-25 Albemarle Corporation Dopo derivative flame retardants
WO2011000019A1 (de) 2009-07-03 2011-01-06 Krems Chemie Chemical Services Ag Neue derivate von 9,10-dihydro-9-oxa-10-phosphaphenanthren-10-on
EP2450401A1 (de) 2008-09-05 2012-05-09 THOR GmbH Flammschutzzusammensetzung enthaltend ein Phosphonsäurederivat
WO2013020696A2 (en) 2011-08-08 2013-02-14 Empa Eidgenössische Materialprüfungs- Und Forschungsanstalt Novel phosphonamidates-synthesis and flame retardant applications
WO2013068437A2 (en) 2011-11-11 2013-05-16 Basf Se P-n-compounds as flame retardants
WO2013072295A1 (en) 2011-11-15 2013-05-23 Basf Se P-piperazine compounds as flame retardants
WO2014064064A1 (en) 2012-10-23 2014-05-01 Basf Se Iminoxytriazines as radical generators
WO2014194055A1 (en) 2013-05-29 2014-12-04 Rutgers, The State University Of New Jersey Antioxidant-based poly(anhydride-esters)
CN108003268A (zh) * 2017-11-17 2018-05-08 王建华 一种不饱和聚烯醇酯
CN110183912A (zh) 2019-05-20 2019-08-30 陈卫国 一种耐腐蚀地板漆及其制备方法
WO2021191364A1 (de) 2020-03-27 2021-09-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verwendung von hydroxyzimtsäuresalzen zur stabilisierung von organischen materialien, stabilisiertes organisches material, verfahren zur stabilisierung von organischen materialien, spezifische stabilisatoren sowie stabilisatorzusammensetzungen
WO2021191078A1 (de) 2020-03-27 2021-09-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verwendung von substituierten zimtsäureestern als stabilisatoren für organische materialien, stabilisiertes organisches material, verfahren zur stabilisierung von organischen materialien sowie spezifische zimtsäureester

Patent Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2682522A (en) 1952-09-10 1954-06-29 Eastman Kodak Co Process for preparing polymeric organo-phosphonates
US2716101A (en) 1952-09-10 1955-08-23 Eastman Kodak Co Polymeric organo-phosphonates containing phosphato groups
US2891915A (en) 1954-07-02 1959-06-23 Du Pont Organophosphorus polymers
US3326852A (en) 1964-08-10 1967-06-20 Owens Illinois Inc Resinous polymeric phosphonates
US3442854A (en) 1965-01-21 1969-05-06 Bayer Ag Quaternary ammonium phosphonium and arsonium catalysts for the production of polycarbonates by the transesterification method
US3946093A (en) 1974-04-27 1976-03-23 Nissan Chemical Industries, Ltd. Process for preparing polyphosphonate
US3919363A (en) 1974-04-30 1975-11-11 Nissan Chemical Ind Ltd Process for preparing poly(sulfonyl-phenylene)phenylphosphonate
US4331614A (en) 1979-06-22 1982-05-25 Bayer Aktiengesellschaft Aromatic polyphosphonates and a process for their production
US4328174A (en) 1979-06-22 1982-05-04 Bayer Aktiengesellschaft Aromatic polyester phosphonates
US4415719A (en) 1979-06-22 1983-11-15 Bayer Aktiengesellschaft Thermoplastic, branched aromatic polyphosphonates, and a process for their production
US4374971A (en) 1979-10-31 1983-02-22 Bayer Aktiengesellschaft Process for the preparation of thermoplastic aromatic polyphosphonates with improved thermal ageing resistance
EP0231922A2 (de) * 1986-02-07 1987-08-12 American Cyanamid Company Elektronen- und Röntgenstrahllacke
US5216113A (en) 1989-10-07 1993-06-01 Bayer Aktiengesellschaft Highly branched polyphosphonates
US5334692A (en) 1990-09-06 1994-08-02 Bayer Aktiengesellschaft Highly branched polyphosphonates based on melamine
WO1998018830A1 (en) 1996-10-31 1998-05-07 Ciba Specialty Chemicals Holding Inc. Functionalised polymers
US6291630B1 (en) 1998-03-12 2001-09-18 Bayer Aktiengesellschaft Method for producing a liquid formulation of tetraphenylphosphonium phenolate
US6288210B1 (en) 1999-11-12 2001-09-11 Virginia Tech. Intellectual Properties, Inc. High refractive index thermoplastic polyphosphonates
US20050020800A1 (en) 2001-10-04 2005-01-27 Levchik Sergei V Oligomeric, hydroxy-terminated phosphonates
WO2003070736A1 (de) 2002-02-20 2003-08-28 Forschungszentrum Karlsruhe Gmbh Verfahren zur herstellung von 6-alkoxy-(6h)-dibenz(c,e)(1,2)-oxaphosphorinen
US6861499B2 (en) 2003-02-24 2005-03-01 Triton Systems, Inc. Branched polyphosphonates that exhibit an advantageous combination of properties, and methods related thereto
US7816486B2 (en) 2003-02-24 2010-10-19 Frx Polymers, Inc. Branched polyphosphonates
US20070219295A1 (en) 2004-05-19 2007-09-20 Sergei Levchik Polyphosphonate Flame Retardant Curing Agent For Epoxy Resin
US20080045673A1 (en) 2004-08-31 2008-02-21 Piotrowski Andrew M Process for Preparing Diaryl Alkylphosphonates and Oligomeric/Polymeric Derivatives Thereof
WO2006084488A1 (de) 2005-02-09 2006-08-17 Schill + Seilacher 'struktol' Aktiengesellschaft Stickstoffhaltige verbrückte derivate von 6h-dibenz[e,e][1,2]-­oxaphosphorin-6-oxiden, verfahren zu ihrer herstellung sowie ihre verwendung als flammschutzmittel
WO2006084489A1 (de) 2005-02-09 2006-08-17 Schill + Seilacher 'struktol' Aktiengesellschaft AMINODERIVATE VON DIBENZ[c,e][1,2]-OXAPHOSPHORIN-6-OXIDEN, VERFAHREN ZU IHRER HERSTELLUNG UND VERWENDUNG
WO2008101845A1 (en) 2007-02-21 2008-08-28 Basf Se Symmetric azo compounds in flame retardant compositions
EP2450401A1 (de) 2008-09-05 2012-05-09 THOR GmbH Flammschutzzusammensetzung enthaltend ein Phosphonsäurederivat
WO2010135398A1 (en) 2009-05-19 2010-11-25 Albemarle Corporation Dopo derivative flame retardants
WO2011000019A1 (de) 2009-07-03 2011-01-06 Krems Chemie Chemical Services Ag Neue derivate von 9,10-dihydro-9-oxa-10-phosphaphenanthren-10-on
WO2013020696A2 (en) 2011-08-08 2013-02-14 Empa Eidgenössische Materialprüfungs- Und Forschungsanstalt Novel phosphonamidates-synthesis and flame retardant applications
WO2013068437A2 (en) 2011-11-11 2013-05-16 Basf Se P-n-compounds as flame retardants
WO2013072295A1 (en) 2011-11-15 2013-05-23 Basf Se P-piperazine compounds as flame retardants
WO2014064064A1 (en) 2012-10-23 2014-05-01 Basf Se Iminoxytriazines as radical generators
WO2014194055A1 (en) 2013-05-29 2014-12-04 Rutgers, The State University Of New Jersey Antioxidant-based poly(anhydride-esters)
CN108003268A (zh) * 2017-11-17 2018-05-08 王建华 一种不饱和聚烯醇酯
CN110183912A (zh) 2019-05-20 2019-08-30 陈卫国 一种耐腐蚀地板漆及其制备方法
WO2021191364A1 (de) 2020-03-27 2021-09-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verwendung von hydroxyzimtsäuresalzen zur stabilisierung von organischen materialien, stabilisiertes organisches material, verfahren zur stabilisierung von organischen materialien, spezifische stabilisatoren sowie stabilisatorzusammensetzungen
WO2021191078A1 (de) 2020-03-27 2021-09-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verwendung von substituierten zimtsäureestern als stabilisatoren für organische materialien, stabilisiertes organisches material, verfahren zur stabilisierung von organischen materialien sowie spezifische zimtsäureester

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
0. OLEJNIKA. MASEK: "Bio-Based Packaging Materials Containing Substances Derived from Coffee and Tea Plants", MATERIALS, vol. 13, 2020, pages 5719
A. MASEKM. LATOSBROZIO: "The Effect of Substances of Plant Origin on the Thermal and Thermo-Oxidative Ageing of Aliphatic Polyesters (PLA, PHA", POLYMERS, vol. 10, 2018, pages 1252
ARRIGO ROSSELLA ET AL: "Biopolyester-Based Systems Containing Naturally Occurring Compounds with Enhanced Thermo-Oxidative Stability", JOURNAL OF APPLIED BIOMATERIALS & FUNCTIONAL MATERIALS, vol. 14, no. 4, 11 February 2016 (2016-02-11), pages 455 - 462, XP093041947, ISSN: 2280-8000, Retrieved from the Internet <URL:http://journals.sagepub.com/doi/pdf/10.5301/jabfm.5000322> DOI: 10.5301/jabfm.5000322 *
B. KIRSCHWENG ET AL.: "Melt stabilisation of PE with natural antioxidants: Comparison of rutin and quercetin", EUR. POL. J., vol. 103, 2018, pages 228 - 237, XP085396901, DOI: 10.1016/j.eurpolymj.2018.04.016
B. KIRSCHWENG ET AL.: "Melt stabilization of polyethylene with dihydromyricetin, a natural antioxidant", POL. DEGR. STAB., vol. 133, 2016, pages 192 - 200, XP029758156, DOI: 10.1016/j.polymdegradstab.2016.08.016
B. KIRSCHWENG ET AL.: "Melt stabilization of polyethylene with natural antioxidants: comparison of a natural extract and its main components", JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, Retrieved from the Internet <URL:https://doi.org/10.1007/s10973-020-09709-5>
C. KRÖHNKE ET AL.: "Antioxidants in Ullmann's encyclopedia of industrial chemistry", 2015, WILEY-VCH VERLAG
D. TATRAALJAI ET AL.: "Processing stabilisation of PE with a natural antioxidant, curcumin", EUROPEAN POLYMER JOURNAL, vol. 49, 2013, pages 1196 - 1203, XP028562661, DOI: 10.1016/j.eurpolymj.2013.02.018
K. DOUDIN ET AL.: "New genre of antioxidants from renewable natural resources: Synthesis and characterisation of rosemary plant-derived antioxidants and their performance in polyolefins", POL. DEGR. STAB., vol. 130, 2016, pages 126 - 134, XP029635076, DOI: 10.1016/j.polymdegradstab.2016.05.030
K. HENNING ET AL.: "Polymeranaloge Umsetzungen an Ethylen-Vinylalkohol-Copolymeren", ACTA POLYMERICA, vol. 41, 1990, pages 285 - 289, XP055441627
K. VOSRMANN ET AL., APPL. MICROBIOL. BIOTECHNOL., vol. 80, 2008, pages 29 - 36
M. AMANNO. MINGE: "Biodegradability of Poly(vinyl acetate) and Related Polymers", ADV. POLYM. SCI., vol. 245, 2012, pages 137 - 172, XP055524385, DOI: 10.1007/12-2011-153
M. AUBERT ET AL., POL. ADV. TECHNOL., vol. 22, 2011, pages 1529 - 1538
M. AUBERT, MACROMOL. SCI. ENG., vol. 292, 2007, pages 707 - 714
M. ROSTAGNO ET AL.: "Sustainable polyvinyl acetals from bioaromatic aldehydes", POLYM. CHEM., vol. 8, 2017, pages 5049 - 5059
S. AL-MALAIKA, MACROMOL. SYMP., vol. 176, 2001, pages 107
W. PAWELEC ET AL., POL. DEGR. STAB., vol. 97, 2012, pages 948 - 954
W.J. GRIGSBY ET AL.: "Esterification of condensed tannins and their impact on the properties of poly (lactic acid", POLYMERS, vol. 5, 2013, pages 344 - 360, XP055864900, DOI: 10.3390/polym5020344

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117624262A (zh) * 2024-01-23 2024-03-01 昆明理工大学 一种从单宁锗渣中提取制备高纯度单宁酸的方法
CN117624262B (zh) * 2024-01-23 2024-03-29 昆明理工大学 一种从单宁锗渣中提取制备单宁酸的方法

Also Published As

Publication number Publication date
DE102022201632A1 (de) 2023-08-17

Similar Documents

Publication Publication Date Title
EP3194482B1 (de) Verwendung von phosphorhaltigen organischen oxyimiden als flammschutzmittel für kunststoffe, flammgeschützte kunststoffzusammensetzung, verfahren zu deren herstellung sowie formteile, lacke und beschichtungen
EP3194486B1 (de) Verwendung von organischen oxyimidsalzen als flammschutzmittel, flammengeschützte kunststoffzusammensetzung, verfahren zu ihrer herstellung sowie formteil, lack oder beschichtung
EP3155041B1 (de) Verwendung von hydroxybenzotriazol-derivaten und/oder hydroxy-indazol-derivaten als flammschutzmittel für kunststoffe sowie flammgeschützte kunststoffformmasse
EP3688081A1 (de) Verfahren zur stabilisierung von halogenfreien thermoplastischen kunststoff-rezyklaten sowie stabilisierte kunststoffzusammensetzungen und hieraus hergestellte formmassen und formteile
DE102018218120A1 (de) Verfahren zur Stabilisierung von thermoplastischer Kunststoffneuware sowie stabilisierte Kunststoffzusammensetzungen, hieraus hergestellte Formmassen und Formteile, Stabilisator-Zusammensetzungen sowie Verwendungen hiervon
EP3947540B1 (de) Verfahren zur stabilisierung von thermoplastischen kunststoff-rezyklaten sowie stabilisierte kunststoffzusammensetzungen und hieraus hergestellte formmassen und formteile
EP3914641A1 (de) Verfahren zur stabilisierung von halogenfreien thermoplastischen kunststoff-rezyklaten, kunststoff-zusammensetzung, stabilisator-zusammensetzung sowie verwendung der stabilisator-zusammensetzung
EP4127045A1 (de) Verwendung von hydroxyzimtsäuresalzen zur stabilisierung von organischen materialien, stabilisiertes organisches material, verfahren zur stabilisierung von organischen materialien, spezifische stabilisatoren sowie stabilisatorzusammensetzungen
WO2023156222A1 (de) Polymere stabilisatoren auf basis von methoxy-hydroxy-benzoesäuren, kunststoffzusammensetzung, verfahren zur stabiliserung einer kunststoffzusammensetzung sowie stabilisatorzusammensetzung
EP3997164A1 (de) Verwendung von phenolisch substituierten zuckerderivaten als stabilisatoren, kunststoffzusammensetzung, verfahren zur stabilisierung von kunststoffen sowie phenolisch substituierte zuckerderivate
WO2022243354A1 (de) Verwendung mindestens einer schwefel enthaltenden aminosäure zur stabilisierung von thermoplastischen kunststoff-recyclaten, stabilisiertes thermoplastisches kunststoffrecyclat, stabilisatorzusammensetzung, masterbatch sowie formmasse bzw. formteil
DE102020203987A1 (de) Verwendung von substituierten Zimtsäureestern als Stabilisatoren für organische Materialien, tabilisiertes organisches Material, Verfahren zur Stabilisierung von organischen Materialien sowie spezifische Zimtsäureester
EP4301809A1 (de) Verwendung einer stabilisatorzusammensetzung zur stabilisierung von halogenfreien thermoplastischen kunststoff-recyclaten, eine stabilisatorzusammensetzung, ein masterbatch oder konzentrat, eine stabilisierte kunststoffzusammensetzung, ein verfahren zur stabilisierung von halogenfreien thermoplastischen kunststoff-recyclaten sowie verwendung von zusammensetzungen
WO2022058371A1 (de) Verwendung von dieugenol, oligomeren und/oder polymeren von eugenol zur stabilisierung von organischen materialien, stabilisierte kunststoffzusammensetzung, stabilisatorzusammensetzung sowie verfahren zur stabilisierung von organischen materialien
WO2022194672A1 (de) Verwendung einer stabilisatorzusammensetzung zur stabilisierung von polyolefin-recyclaten, stabilisatorzusammensetzung, masterbatchkonzentrat, kunststoffzusammensetzung, formmasse oder formteil, verfahren zur stabilisierung eines polyolefin-recyclats sowie verwendung einer kunststoffzusammensetzung
WO2022090566A1 (de) Verwendung von eugenol-derivaten als stabilisatoren, organisches material sowie eugenol-derivate
WO2023083884A1 (de) Stabilisatoren auf basis von syringasäure, vanillinsäure, isovanillinsäure oder 5-hydroxyveratrumsäure, kunststoffzusammensetzung, verfahren zur stabilisierung einer kunststoffzusammensetzung sowie stabilisatorzusammensetzung
DE102022206466A1 (de) Verwendung einer Stabilisatorzusammensetzung zur Stabilisierung von halogenfreier thermoplastischer Kunststoff-Neuware, Stabilisatorzusammensetzung, ein Masterbatch oder Konzentrat, eine stabilisierte Kunststoffzusammensetzung, Verfahren zur Stabilisierung von halogenfreien thermoplastischen Kunststoff-Neuware sowie Verwendung der Zusammensetzung
EP4301810A1 (de) Verwendung einer stabilisatorzusammensetzung zur stabilisierung von organischen materialien, stabilisatorzusammensetzung, masterbatch, zusammensetzung, formmasse der formteile, verfahren zur oxidativen, thermischen aktinischen stabilisierung eines thermoplastischen kunststoffs sowie verwendung einer zusammensetzung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23704280

Country of ref document: EP

Kind code of ref document: A1