EP4222406A1 - Procédé d'assemblage et installation de cuve de stockage pour gaz liquéfié - Google Patents

Procédé d'assemblage et installation de cuve de stockage pour gaz liquéfié

Info

Publication number
EP4222406A1
EP4222406A1 EP21786224.2A EP21786224A EP4222406A1 EP 4222406 A1 EP4222406 A1 EP 4222406A1 EP 21786224 A EP21786224 A EP 21786224A EP 4222406 A1 EP4222406 A1 EP 4222406A1
Authority
EP
European Patent Office
Prior art keywords
membranes
tank
main structure
liquid dome
millimeters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21786224.2A
Other languages
German (de)
English (en)
Inventor
Paul Baron
Jocelyn DESBRUGERES
Cédric FELGUEIRAS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaztransport et Technigaz SA
Original Assignee
Gaztransport et Technigaz SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaztransport et Technigaz SA filed Critical Gaztransport et Technigaz SA
Publication of EP4222406A1 publication Critical patent/EP4222406A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • F17C3/027Wallpanels for so-called membrane tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/004Details of vessels or of the filling or discharging of vessels for large storage vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0358Thermal insulations by solid means in form of panels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0643Stainless steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0646Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0355Insulation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/013Reducing manufacturing time or effort
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • F17C2270/0107Wall panels

Definitions

  • the invention relates to the field of storage facilities for liquefied gas comprising a sealed and thermally insulating tank, with membranes.
  • the invention relates to the field of sealed and thermally insulating tanks for the storage and/or transport of liquefied gas at low temperature, such as tanks for the transport of Liquefied Petroleum Gas (also called LPG) having for example a temperature between -50°C and 0°C, or for the transport of Liquefied Natural Gas (LNG) at around -162°C at atmospheric pressure.
  • LPG Liquefied Petroleum Gas
  • LNG Liquefied Natural Gas
  • the document FR2991430 describes a storage facility for liquefied gas comprising a sealed and thermally insulating tank integrated into a supporting structure consisting of the double hull of a ship.
  • Each wall of the vessel comprises a secondary thermally insulating barrier, a secondary sealing membrane, a primary thermally insulating barrier and a metallic or metallic alloy primary sealing membrane.
  • the primary sealing membrane conventionally comprises waves intended to allow thermal contractions, without rupture of the membrane, these waves conventionally forming a network of small and large waves extending parallel to each other respectively so as to form a grid delimited by node zones, i.e. the generally perpendicular intersections of the small and large waves.
  • the tank In an area located at the top of the tank, the tank has a protruding portion in the form of a chimney.
  • the support structure In this zone, the support structure is locally interrupted so as to delimit a loading/unloading opening intended to be traversed by fluid loading/unloading pipes.
  • This loading/unloading opening and this pipe in the form of a chimney, called Liquid Dome comprise an insulation or thermally insulating barrier as well as an element forming a primary sealing membrane.
  • this liquid dome is conventionally located at one longitudinal end of the tank so that one of the vertical walls of the liquid dome continues or extends, in the same plane, by a wall vertical to the main structure of the vessel (containing a cold fluid).
  • a wall vertical to the main structure of the vessel containing a cold fluid.
  • LNG or LPG i.e. an LNGC (“Liquid Natural Gas Carrier”)
  • this vertical wall common to the liquid dome and to the main structure of the tank is called a cofferdam wall.
  • the tank is installed in a structure subjected to very high mechanical stresses, such as a ship, which bends and twists depending on the conditions of its environment.
  • the load-bearing structure being interrupted at the level of the liquid dome, these mechanical forces are all the more important there.
  • the walls of the main structure of the tank are mounted and assembled/fixed on the one hand while the walls of the liquid dome are mounted and assembled/fixed on the other hand, these two parts of the storage installation being then connected to each other in a sealed manner.
  • connection of the membranes and the continuity of the waves are ensured by a connecting plate, generally of small size, fixed by welding to the contiguous membranes of the liquid dome and of the main structure of the tank.
  • this connecting plate leads to its embrittlement.
  • this area of a ship is subject to high mechanical stress. This is why it is not acceptable for a portion of the primary waterproofing membrane to fail and compromise the tightness of the storage facility.
  • the present invention relates to a storage facility for liquefied gas comprising a supporting structure and a sealed and thermally insulating tank arranged in the support structure, the sealed and thermally insulating tank comprising a main structure formed by a plurality of tank walls connected to each other and fixed to the support structure, the main structure defining an internal storage space, the main structure comprising at least one sealing membrane and at least one thermally insulating barrier, the thermally insulating barrier being placed between the sealing membrane and the supporting structure; the sealing membrane, the thermally insulating barrier of the main structure and a so-called upper load-bearing wall being locally interrupted so as to delimit a pipe forming the load-bearing wall of a chimney extending along a vertical axis up to an upper end consisting in a loading/unloading opening intended to be traversed by liquefied gas loading/unloading pipes, said pipe up to said opening defining a liquid dome of the tank comprising, like the main structure of the tank, at least one membrane sealing and at least
  • the invention is characterized in that so-called contiguous membranes of the sealing membrane of the cofferdam wall of the main structure of the tank are at least partly protruding into the liquid dome, said so-called contiguous membranes being directly fixed, in a sealed manner, to so-called contiguous membranes of the liquid dome.
  • the invention allows substantial savings in the production of the liquid dome while ensuring or maintaining a perfect seal against the liquefied gas and excellent mechanical resilience of the latter to all the stresses that this zone is conventionally subjected to.
  • the expression "in a sealed manner” is understood to mean in connection with the fixings, in particular between membranes, the fact that the fixing is carried out by welding, possibly supplemented by a chemical fixing, by gluing, and/or mechanical, for example using a seal.
  • metal is understood to mean in particular in connection with the membranes the fact that it is a metal or a metal-based alloy, more often a metal-based alloy such as than a steel.
  • membrane systematically refers to the fact that it is a sealed membrane, impermeable to the fluid, whether the term is accompanied by the term "tight" or not.
  • a membrane is qualified as such in the context of the present invention if it has, on the cofferdam wall, at least one vertical wave line, preferably a plurality of vertical waves, and at least one line of horizontal wave.
  • the vertical waves from/on the cofferdam wall are small waves while the horizontal waves are large waves.
  • wave or “corrugation”, with or without plural, refers to the same element present on a membrane to allow its deformation, by contraction and/or stretching, under the effect of thermal expansion linked to the presence or the absence of a liquefied gas, cold or even very cold, in the tank.
  • the two lines of waves or corrugations perpendicular to each other, defining a membrane in the context of the present invention, can be of identical or different shape. In the following, these two lines of waves or corrugations are advantageously different, with a horizontal line of large wave or corrugation and a vertical line of small wave or corrugation.
  • the flat metal membranes forming the sealing membrane of the main structure and of the liquid dome have a rectangular shape with two large sides and two small ones.
  • the flat metal membranes comprise an elevation extending along two contiguous sides intended to cover the contiguous side of another membrane.
  • the thermally insulating barrier of the main structure and of the liquid dome of the tank comprise metal plates on which are welded, in a discontinuous manner, the sealing membrane of the main structure and of the liquid dome.
  • the so-called contiguous membranes of the liquid dome comprise an elevation extending along the long lower side while the so-called directly contiguous membranes of the main structure of the tank comprise an elevation extending along one of the two short sides of the membrane.
  • the membranes said to be directly contiguous with the main structure of the tank have only one elevation extending along one of the two short sides of the membrane.
  • the so-called contiguous membranes of the liquid dome comprise an elevation extending along the two opposite long sides while the so-called directly contiguous membranes of the main structure of the tank have only one elevation extending along one of the two short sides of the membrane, respectively.
  • the protruding part of the so-called contiguous membranes of the sealing membrane of the cofferdam wall (B) of the main structure of the tank are protruding by at least 30 millimeters in the liquid dome, preferably 55 mm.
  • the protruding part of the so-called contiguous membranes of the sealing membrane of the cofferdam wall (B) of the main structure of the tank are protruding by at plus 60 millimeters in the liquid dome.
  • the invention would also find application if, for example, the liquid dome is located at an angle of the main structure, so that in addition to the cofferdam wall, a side wall - the wall F on the Figure 2, in the case where there would not be the chamfers E - would be extended vertically in the liquid dome.
  • This scenario is covered by the present invention although such an arrangement of the liquid dome, in a corner of the tank, is a priori not very advantageous and practical.
  • the so-called contiguous membranes of the liquid dome have a length of between 500 millimeters and 3300 millimeters and a width of between 200 millimeters and 800 millimeters.
  • the so-called contiguous membranes of the sealing membrane of the cofferdam wall of the main structure of the vessel have a length of between 500 millimeters and 3300 millimeters and a width of between 200 millimeters and 800 millimeters.
  • the so-called contiguous membranes of the sealing membrane of the cofferdam wall of the main structure of the tank are in two rows of parallel membranes, one row of membranes having a width of between 200 and 400 millimeters and the other row of membranes having a width of between 700 and 800 millimeters.
  • the invention also relates to a method for mounting a storage installation as described above, in which it comprises: a first step of mounting and fixing, in a sealed manner, the assembly of the sealing membrane of the cofferdam wall of the main structure of the vessel; - a second step of mounting and fixing, in a leaktight manner, the entire sealing membrane of the liquid dome with the exception of the contiguous membranes of said liquid dome; the first and second steps being executed in any order or simultaneously;
  • the invention relates to a vessel for transporting a cold liquid product, the vessel comprising a double hull and a storage facility as described above arranged in the double hull.
  • the invention also relates to a transfer system for a cold liquid product, the system comprising a ship as described above, insulated pipes arranged so as to connect the tank installed in the hull of the ship to an external installation floating or onshore storage facility and a pump for driving a flow of cold liquid product through the insulated pipes from or to the external floating or onshore storage facility to or from the ship's tank.
  • the present invention relates to a method for loading or unloading a ship as described above, in which a cold liquid product is routed through insulated pipes from or to an external floating storage installation. or land to or from the vessel's tank.
  • Figure 1 is a schematic sectional and perspective view of a liquefied gas carrier ship of the LNGC type.
  • Figure 2 is a cross-section and cutaway of a tank of the ship shown in Figure 1.
  • Figure 3 is a schematic view illustrating a sealing membrane with three parallel rows of large wave or corrugation and nine parallel rows of small wave or corrugation, the two types of rows being mutually perpendicular.
  • Figure 4 is a schematic view illustrating the arrangement of the membranes at the level of the zone of the liquid dome and of the main structure of the tank, with the indication of the covering of each membrane with respect to her neighbor.
  • Figure 5 is an enlarged view of a portion P of Figure 4.
  • Figure 6 is a detailed and dimensioned view of a contiguous membrane, called the side membrane, of the main structure of the tank.
  • Figure 7 is a view, identical to the view of Figure 4, illustrating thermal insulation blocks present under the membranes, with in particular the metal plates allowing the membranes to be fixed by welding to these thermal insulation blocks.
  • FIG.8 Figure 8 is a cutaway schematic representation of an LNG tanker storage facility and a loading/unloading terminal for this tank.
  • vertical here means extending in the direction of the earth's gravity field.
  • horizontal here means extending in a direction perpendicular to the vertical direction.
  • the supporting structure When the storage facility is positioned on a ship 70 such as an LNG carrier, the supporting structure, not visible in the appended figures, is formed by the double hull of the ship.
  • the outer upper load-bearing wall is called the ship's outer deck.
  • the present invention is illustrated with a liquefied gas carrier ship 70 of a conventional type, namely an LNGC for "Liquid Natural Gas Carrier", but it is understood that the invention can be apply to other types of tanks provided that such a tank comprises a sealing membrane, called primary due to its direct contact with a fluid contained in the tank and the possible presence of a second sealing membrane , and a liquid dome 2 or the like, that is to say a chimney and an opening for loading/unloading said fluid, having at least one continuous wall section with a wall of the main structure of the tank 71, 71 '.
  • the machines or engine room At the rear of the ship 70 is conventionally located the machines or engine room, not visible in the appended figure, intended to manage the whole of the ship 70, from the propulsion to all the generation circuits. and supplying the various equipment items of the ship 70.
  • the cask 31 which conventionally consists of a tower or the like where the crew accommodation and the ship's command post are located in particular.
  • a tank 71 comprises a main structure formed of a front wall D, a rear wall B, a ceiling wall A, a bottom wall C and two side walls F, not both visible in the attached figure 2 (one side of the tank not being visible in this figure), connecting the bottom wall C to the ceiling wall A, and finally two to four bevel walls E, G connecting the side walls F to the bottom wall C or to the ceiling wall A.
  • the walls of the tank 71 are thus connected to each other so as to form a polyhedral structure and to delimit an internal storage space.
  • the tank 71 ' is substantially identical to a tank 71 .
  • the storage installation comprises a loading/unloading opening locally interrupting the outer upper load-bearing wall, the internal upper load-bearing wall and the ceiling wall of the tank 71 of so as to allow in particular the loading/unloading pipes, not shown in the appended figures, to reach the bottom of the tank 71 by crossing this opening.
  • the storage installation also comprises a loading/unloading tower, not visible in the appended figures, located to the right of the opening of the liquid dome 2 and inside the tank 71 forming a support structure for the loading/unloading pipes over the entire height of the tank 71 as well as for the pumps (not shown).
  • a loading/unloading tower not visible in the appended figures, located to the right of the opening of the liquid dome 2 and inside the tank 71 forming a support structure for the loading/unloading pipes over the entire height of the tank 71 as well as for the pumps (not shown).
  • the vessel 71 thus comprises a chimney, or conduit, located on or above the main structure and allowing the vessel walls to extend continuously from the internal bridge to the external bridge at the level where these are interrupted. through the loading/unloading opening.
  • a chimney, or pipe provided with a cover closing said loading/unloading opening is called: the liquid dome 2.
  • the loading/unloading opening as well as the chimney conventionally have a rectangular or square outline or action.
  • the chimney thus comprises four walls, one B' being the extension of the rear wall B, also designated as the "cofferdam wall" of the main structure of the tank 71, 71', as visible in FIG. 2, while the other three are connected to the ceiling wall A forming an angle of 90° with it.
  • the present invention relates only to the wall B, B ', or to the two walls in a different embodiment, continuous or extension without angle break between the main structure of the tank 71, 71 'and the dome liquid 2, more precisely at the level of the sealing membrane and its junction between the main structure of the tank 71, 71' and the liquid dome 2.
  • FIG. 3 shows such a conventional sealing membrane 3.
  • a sealing membrane is defined, in the context of the present invention, as a sheet of metal or a metal alloy comprising at least a first wave line or corrugation 4 and at least one second line of wave or corrugation 5, the first and the second line of wave or corrugation 4, 5 extending perpendicular to one another.
  • the main structure of the tank 71, 71' is made using Mark III® technology which is described in particular in the document FR-A-2691520.
  • the secondary thermally insulating barrier, the primary thermally insulating barrier and the secondary sealing membrane essentially consist of panels juxtaposed on the load-bearing structure, which may be the internal load-bearing structure or the structure connecting the inner top load-bearing wall to the outer top load-bearing wall at the opening.
  • the secondary waterproofing membrane is made of a composite material comprising an aluminum sheet sandwiched between two sheets of fiberglass fabric.
  • the primary waterproofing membrane is obtained by assembling a plurality of metal plates, welded to each other along their edges, and comprising undulations extending in two perpendicular directions.
  • the metal plates are, for example, made of stainless steel or aluminum, shaped by bending or by stamping.
  • the sealing membrane is a so-called primary sealing membrane (because in direct contact with the fluid stored in the tank 71, 71 ') is obtained by assembling a plurality of corrugated metal sheets conforming to the membrane shown in Figure 3.
  • Each corrugated metal membrane 3 comprises a first series of parallel corrugations 5, called high or large, extending in a first direction and a second series of parallel corrugations 4, called low or small, extending in a second direction perpendicular to the first series.
  • the node zones 6 are the crossing zones of these two types of waves 4, 5.
  • the undulations 4, 5 protrude towards the inside of the tank 71, 71'.
  • these corrugated metal membranes 3 are, for example, made of stainless steel or aluminum.
  • the corrugated metal membranes 3 are fixed to insulating panels 21 by means of metal plates 20 extending in two perpendicular directions, vertically and horizontally on the cofferdam wall B, B', these plates 20 being fixed on the internal face (oriented towards the internal space of the tank) of the insulating panels 21.
  • each insulating panel 21 having an internal face equipped with metal plates 20 on which are welded the corrugated metal membranes 3 forming the primary sealing membrane .
  • These insulating panels 21 on which the sealing membranes 3 are fixed are visible, with the aforementioned metal plates 20, in the appended figure 7.
  • the metal plates 20 extend in two perpendicular directions which are each parallel to two opposite edges of the insulating panels 21.
  • the metal plates 20 are fixed in recesses made in the internal face of the insulating panel 21 and fixed thereto. here, by screws, rivets or staples for example.
  • the appended figures 4 to 7 illustrate the actual arrangement of the sealing membrane 3, or primary sealing membrane, at the level of the wall B of the main structure of the tank 71, 71 'and of the wall B' continues to wall B in liquid dome 2.
  • the first characteristic of such an arrangement lies in the fact that only sealing membranes 3, 13, 13', 33 are used - comprising at least two wave lines 4, 5 or perpendicular corrugation between they - to achieve the continuity of the tightness of these two walls, the cofferdam wall B of the main structure of the tank 71, 71 'and the continuous wall B' of the liquid dome 2.
  • no intermediate element is present in this zone, it being understood that an "intermediate element", such as a sheet, is not a sealing membrane 3, 13, 13', 33 according to the present invention, that is to say the definition of a membrane given previously.
  • the second characteristic of such an arrangement according to the invention lies in the fact that the sealing membrane 13 of the main structure of the tank 71, 71 'directly adjacent to the liquid dome 2 - i.e. the three membranes 14, 15, 16 visible in Figure 4 - is protruding in the liquid dome 2, that is to say in the space forming this dome liquid 2 from the opening present in the ceiling wall A, the insulation and sealing elements being considered here to define the location of this opening of the liquid dome 2.
  • the protrusion 17 of the sealing membrane 13 in the liquid dome 2 is 55 millimeters in this example. In general, this protrusion 17 is at least 30 millimeters and at most 60 millimeters.
  • the contiguous membrane 13 is protruding over its entire width as is the case with the central membrane 15, or the contiguous membrane is protuberant over only a part of its length as is the case for the side membranes 14 and 16.
  • a cut has been made, for example by laser or using a saw, in a conventional membrane to extract the portion not contiguous to the liquid dome 2 and which is therefore not protruding in the latter 2.
  • a conventional membrane 3 of the main structure of the tank 71, 71' normally comprises three long wave lines 5 or corrugation, but the contiguous membranes 13, 13' of the main structure of the tank 71, 71' only comprise two long wave lines 5 or corrugation for the directly contiguous membrane 13, or even a single/single long wave line 5 for the contiguous membrane 13'.
  • a conventional membrane 3 of the liquid dome 2 normally comprises two lines 5 of long wave or corrugation, but the contiguous membranes 33 of the liquid dome 2 comprise only one/single line 5 of long wave.
  • FIGS. 4 and 5 show the membranes 13, 13' and 33 to scale, part of the main structure of the tank 71, 71' and the dome liquid 2, one can deduce the dimensions, or more exactly the domains or ranges of dimensions of each of the membranes 13, 13' and 33, knowing the dimensions precisely given for the lateral contiguous membrane 14 in FIG.
  • Another feature of the invention lies in the fact that the contiguous membranes 33 of the liquid dome 2 have, on their two lower/upper faces 34, 35 or even the two opposite long sides, an elevation 7 extending the along said two faces or sides 34, 35 so as to cover the two lower and upper membranes to which they are fixed respectively. It should be noted here that only the lower elevation 7 is imperative in the context of the present invention where the contiguous membranes 33 of the liquid dome must be mounted and assembled after those of the main structure of the tank 71, 71 '.
  • a conventional membrane 3, like that shown in Figure 3, has two elevations 7 extending along two contiguous sides of the membrane 3, either one short sides defining the width of the membrane 3 and one of the long sides of the membrane 3.
  • the black isosceles triangles indicate, thanks to the orientation of the tip of said triangle , the position of the elevation 7 so that the membrane on which the black isosceles triangle is located covers, at this portion of elevation 7, the adjacent membrane at the level of the small or large side considered.
  • FIG. 4 in particular is very explicit about the mounting or the relative assembly of the various membranes, whether they are those 3, 13, 13' of the liquid dome 2 or those 3, 33 of the main structure of the tank 71 , 71'.
  • FIG. 7 illustrates the thermal insulation blocks 21 which equip a storage facility for liquefied gas.
  • these thermal insulation blocks 21 are not modified with respect to the state of the art and details of such thermal insulation blocks 21 are in particular described in FR-A-2861060.
  • a particularity of this invention lies in the metal plates 20, described above, located on these thermal insulation blocks 21, opposite the membranes 3, 13, 13', 33, so as to fix by welding or welding these latter 3, 13, 14', 33 to the thermal insulation block 21 via these metal plates 21 .
  • These metal plates 20, also called “Anchoring Strip” (AS) are here arranged in a manner suitable for the contiguous membranes 13, 13', 33, both those 13, 13' of the main structure of the tank 71, 71' and those 33 of liquid dome 2.
  • the contiguous membranes 33 of the liquid dome 2 are located in the immediate vicinity of metal plates 20, so that they have a discontinuous weld line extending over more than 70% of their length, whereas these membranes 33 are not wide because they have only one long wave line or corrugation.
  • the other membranes 3 of the liquid dome 2 have two lines 5 of large wave or corrugation and have only one discontinuous weld line on plates 20, representing more than 70% of their length.
  • the contiguous membranes 13' of small dimensions of the main structure of the tank 71, 71' are also provided with such a discontinuous welding line whereas they also only have a single/single long wave line 5, at like membranes 33.
  • a cutaway view of an LNG carrier 70 shows a sealed and insulated tank 71 of generally prismatic shape mounted in the double hull 72 of the ship.
  • the wall of the tank 71 comprises a primary sealing membrane intended to be in contact with the LNG contained in the tank, a secondary sealing membrane arranged between the primary sealing membrane and the double hull 72 of the ship, and two insulating barriers arranged respectively between the primary sealing membrane and the secondary sealing membrane and between the secondary sealing membrane and the double shell 72.
  • loading/unloading pipes 73 arranged on the upper deck of the ship can be connected, by means of appropriate connectors, to a maritime or port terminal to transfer a cargo of LNG from or to the tank. 71 .
  • FIG 8 shows an example of a maritime terminal comprising a loading and unloading station 75, an underwater pipe 76 and a shore installation 77.
  • the loading and unloading station 75 is a fixed off-shore installation comprising a movable arm 74 and a tower 78 which supports the movable arm 74.
  • the movable arm 74 carries a bundle of insulated flexible pipes 79 connectable to the pipes loading/unloading 73.
  • the adjustable mobile arm 74 adapts to all sizes of LNG carriers.
  • a connecting pipe, not shown, extends inside the tower 78.
  • the loading and unloading station 75 allows the loading and unloading of the LNG carrier 70 from or to the shore installation 77.
  • This comprises liquefied gas storage tanks 80 and connecting pipes 81 connected by the underwater pipe 76 to the loading or unloading station 75.
  • the underwater pipe 76 allows the transfer of the liquefied gas between the loading or unloading station 75 and the shore installation 77 over a great distance, for example 5 km, which makes it possible to keep the LNG carrier 70 at a great distance from the coast during loading and unloading operations.
  • pumps on board the ship 70 and/or pumps fitted to the shore installation 77 and/or pumps fitted to the loading and unloading station are used. 75.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

L'invention concerne une installation de stockage de stockage pour gaz liquéfié comprenant une structure porteuse et une cuve (71) étanche et thermiquement isolante agencée dans la structure porteuse, dans laquelle les membranes (13, 13') dites contiguës de la membrane d'étanchéité de la paroi de cofferdam de la structure principale de la cuve (71) sont au moins en partie protubérantes dans le dôme liquide (2), lesdites membranes dites contiguës étant directement fixées, de manière étanche, aux membranes dites contiguës du dôme liquide (2).

Description

Description
Titre de l'invention : Procédé d’assemblage et installation de cuve de stockage pour gaz liquéfié
[0001 ] L’invention se rapporte au domaine des installations de stockage pour gaz liquéfié comprenant une cuve étanche et thermiquement isolante, à membranes. En particulier, l’invention se rapporte au domaine des cuves étanches et thermiquement isolantes pour le stockage et/ou le transport de gaz liquéfié à basse température, telles que des cuves pour le transport de Gaz de Pétrole Liquéfié (aussi appelé GPL) présentant par exemple une température comprise entre -50°C et 0°C, ou pour le transport de Gaz Naturel Liquéfié (GNL) à environ -162°C à pression atmosphérique. Ces cuves peuvent être installées à terre ou sur un ouvrage flottant. Dans le cas d’un ouvrage flottant, la cuve peut être destinée au transport de gaz liquéfié ou à recevoir du gaz liquéfié servant de carburant pour la propulsion de l’ouvrage flottant.
[0002] Le document FR2991430 décrit une installation de stockage pour gaz liquéfié comprenant une cuve étanche et thermiquement isolante intégrée à une structure porteuse constituée par la double coque d’un navire. Chaque paroi de la cuve comprend une barrière thermiquement isolante secondaire, une membrane d’étanchéité secondaire, une barrière thermiquement isolante primaire et une membrane d’étanchéité primaire métallique ou en alliage métallique.
[0003] La membrane d’étanchéité primaire comprend classiquement des ondes destinées à autoriser les contractions thermiques, sans rupture de la membrane, ces ondes formant classiquement un réseau de petites et grandes ondes s’étendant parallèlement entre elles respectivement de manière à constituer un quadrillage délimité par des zones de nœud, soit les intersections généralement perpendiculairement des petites et grandes ondes.
[0004] Dans une zone située au sommet de la cuve, la cuve comporte une portion saillante en forme de cheminée. Dans cette zone, la structure porteuse est interrompue localement de manière à délimiter une ouverture de chargement/déchargement destinée à être traversée par des conduites de chargement/déchargement en fluide. Cette ouverture de chargement/déchargement et cette conduite en forme de cheminée, dénommées Dôme Liquide, comportent une isolation ou barrière thermiquement isolante ainsi qu’un élément formant membrane primaire d’étanchéité.
[0005] Comme cela est visible sur les figures 1 et 2 annexées, ce dôme liquide est classiquement situé à une extrémité longitudinale de la cuve de sorte qu’une des parois verticales du dôme liquide se poursuit ou se prolonge, dans le même plan, par une paroi verticale de la structure principale de la cuve (contenant un fluide froid). Lorsque les cuves sont présentes dans un navire de transport de fluide froid tels que du GNL ou GPL, soit un LNGC (« Liquid Natural Gas Carrier »), cette paroi verticale commune au dôme liquide et à la structure principale de la cuve est dénommée une paroi de cofferdam.
[0006] La cuve est installée dans une structure soumise à de très fortes contraintes mécaniques, telle qu’un navire, qui ploie et se tord en fonction des conditions de son environnement. La structure porteuse étant interrompue au niveau du dôme liquide ces efforts mécaniques y sont d’autant plus importants.
[0007] Les parois de la structure principale de la cuve sont montées et assemblées/fixées d’une part tandis que les parois du dôme liquide sont montées et assemblées/fixées d’autre part, ces deux parties de l’installation de stockage étant ensuite raccordées l’une à l’autre de manière étanche.
[0008] Or, compte tenu notamment des dimensionnements des membranes d’isolation primaire, le raccord des membranes et la continuité des ondes sont assurés par une tôle de raccordement, généralement de petite dimension, fixée par soudure aux membranes contiguës du dôme liquide et de la structure principale de la cuve.
[0009] Cette tôle de raccordement n’est pas une solution satisfaisante.
[0010] Tout d’abord, afin d’assurer la continuité des ondes verticales entre dôme liquide et structure principale de la cuve, les opérateurs sont obligés de déformer in situ, à l’aide d’outils de frappe, cette tôle de raccordement car les ondes des deux parties - dôme liquide d’un côté et structure principale de l’autre - ne sont pas alignées. Cette opération est fastidieuse pour les opérateurs et nécessite classiquement plusieurs heures de travail.
[0011 ] Ensuite, le conformage de cette tôle de raccordement au niveau de ses ondes verticales entraîne sa fragilisation. Comme mentionné précédemment, cette zone d’un navire est sujette à de fortes sollicitations mécaniques. C’est pourquoi il n’est pas acceptable qu’une portion de la membrane primaire d’étanchéité puisse faire défaut et compromettre l’étanchéité de l’installation de stockage.
[0012] Après diverses expériences et tests, la demanderesse a constaté qu’il est possible de se passer de cette pièce de raccordement, ou portion de tôle, en proposant une solution d’assemblage plus simple et rapide, tout en permettant de fiabiliser, d’un point de vue de la résistance mécanique comme de l’étanchéité, cette zone de raccord entre les membranes primaires de la structure principale de la cuve et celles du dôme liquide.
[0013] Ainsi, la présente invention concerne une installation de stockage pour gaz liquéfié comprenant une structure porteuse et une cuve étanche et thermiquement isolante agencée dans la structure porteuse, la cuve étanche et thermiquement isolante comportant une structure principale formée par une pluralité de parois de cuve reliées les unes aux autres et fixées à la structure porteuse, la structure principale définissant un espace interne de stockage, la structure principale comprenant au moins une membrane d’étanchéité et au moins une barrière thermiquement isolante, la barrière thermiquement isolante étant placée entre la membrane d’étanchéité et la structure porteuse ; la membrane d’étanchéité, la barrière thermiquement isolante de la structure principale et une paroi dite porteuse supérieure étant interrompues localement de manière à délimiter une conduite formant paroi porteuse d’une cheminée s’étendant suivant un axe vertical jusqu’à une extrémité supérieure consistant en une ouverture de chargement/déchargement destinée à être traversée par des conduites de chargement/déchargement de gaz liquéfié, ladite conduite jusqu’à ladite ouverture définissant un dôme liquide de la cuve comportant, comme la structure principale de la cuve, au moins une membrane d’étanchéité et au moins une barrière thermiquement isolante, la barrière thermiquement isolante étant placée entre la membrane d’étanchéité et la paroi porteuse ; le dôme liquide étant situé à l’une des extrémités axiales de la cuve, une paroi verticale de la structure principale de la cuve, dite paroi de cofferdam, se prolonge depuis ladite structure principale pour former, suivant le même plan, une paroi de la conduite du dôme liquide ; la membrane d’étanchéité de la structure principale et du dôme liquide sont composées d’une pluralité de membranes planes métalliques, fixées entre elles de manière étanche, présentant chacune au moins deux lignes de corrugations perpendiculaires, la forme et les dimensions de ces deux lignes de corrugations étant respectivement identiques pour toutes les membranes de manière à ce que les membranes juxtaposées présentent un motif répété.
[0014] L’invention se caractérise en ce que des membranes dites contiguës de la membrane d’étanchéité de la paroi de cofferdam de la structure principale de la cuve sont au moins en partie protubérantes dans le dôme liquide, lesdites membranes dites contiguës étant directement fixées, de manière étanche, à des membranes dites contiguës du dôme liquide.
[0015] Ainsi, la demanderesse a constaté après de multiples tests et analyses qu’il est possible de raccorder fermement et de manière parfaitement étanche, la structure principale de la cuve avec le dôme liquide, tout en optimisant le temps de montage ou d’assemblage des membranes respectives de ces deux parties d’une installation de stockage pour gaz liquéfié, sans utiliser une tôle de raccordement.
[0016] Ce faisant, l’invention permet des économies substantielles dans la réalisation du dôme liquide tout en assurant ou en conservant une parfaite étanchéité au gaz liquéfié et une excellente résilience mécanique de ce dernier à toutes contraintes que subit classiquement cette zone.
[0017] On entend par l’expression « de manière étanche » en lien avec les fixations, en particulier entre membranes, le fait que la fixation est réalisée par soudure, éventuellement complétée par une fixation chimique, par collage, et/ou mécanique, par exemple à l’aide d’un joint d’étanchéité.
[0018] On entend par le terme de « métallique » en lien en particulier avec les membranes le fait qu’il s’agit d’un métal ou d’un alliage à base métallique, plus souvent d’un alliage à base métallique tel qu’un acier.
[0019] Le terme de « membrane » renvoie systématiquement au fait qu’il s’agit de membrane étanche, imperméable au fluide, que le terme soit accompagné du terme « étanche » ou non. Une membrane est qualifiée comme telle dans le cadre de la présente invention si elle dispose, sur la paroi de cofferdam, au moins d’une ligne d’onde verticale, de préférence une pluralité d’onde verticale, et au moins une ligne d’onde horizontale. Dans le mode d’exécution choisi pour illustrer l’invention, les ondes verticales de/sur la paroi de cofferdam sont des petites ondes tandis que les ondes horizontales sont des grandes ondes.
[0020] Le terme de « onde » ou « corrugation », avec ou sans pluriel, renvoie au même élément présent sur une membrane pour autoriser sa déformation, par contraction et/ou étirement, sous l’effet des dilatations thermiques liées à la présence ou l’absence d’un gaz liquéfié, froid voire très froid, dans la cuve. Les deux lignes d’ondes ou de corrugations perpendiculaires entre elles, définissant une membrane dans le cadre de la présente invention, peuvent être de forme identique ou différente. Dans la suite, ces deux lignes d’ondes ou de corrugations sont avantageusement différentes, avec une ligne horizontale de grande onde ou corrugation et une ligne verticale de petite onde ou corrugation.
[0021 ] Le terme de « contigu » en lien principalement avec les membranes, celles du dôme liquide et celles de la structure principale de la cuve, renvoie au fait que ces membranes sont celles les plus proches de l’autre partie de la cuve, à savoir tantôt de la structure principale pour les membranes situées dans le dôme liquide et du dôme liquide pour les membranes situées dans la structure principale. [0022] On entend par le terme de « conduite » le fait qu’il forme la paroi externe du dôme liquide, plus précisément la paroi de la cheminée débouchant dans la cuve contenant le gaz liquéfié, le terme de « cheminée » renvoyant à la forme générale du dôme liquide qui s’étend verticalement.
[0023] D’autres caractéristiques avantageuses de l’invention sont présentées succinctement ci-dessous :
[0024] De préférence, les membranes planes métalliques formant la membrane d’étanchéité de la structure principale et du dôme liquide présentent une forme rectangulaire avec deux grands côtés et deux petits.
[0025] De préférence, les membranes planes métalliques comportent une surélévation s’étendant le long de deux côtés contigus destinée à recouvrir le côté contigu d’une autre membrane.
[0026] Avantageusement, la barrière thermiquement isolante de la structure principale et du dôme liquide de la cuve comportent des platines métalliques sur lesquelles sont soudées, de manière discontinue, la membrane d’étanchéité de la structure principale et du dôme liquide.
[0027] Avantageusement, les membranes dites contiguës du dôme liquide comportent une surélévation s’étendant le long du grand côté inférieur tandis que les membranes dites directement contiguës de la structure principale de la cuve comportent une surélévation s’étendant le long d’un des deux petits côtés de la membrane. Selon un exemple particulier, les membranes dites directement contiguës de la structure principale de la cuve ne comportent qu’une seule surélévation s’étendant le long d’un des deux petits côtés de la membrane.
[0028] Selon une particularité de réalisation, lorsque ces membranes dites contiguës sont montées et assemblées après les autres membranes du dôme liquide, ce qui est un mode d’exécution préféré de l’invention, les membranes dites contiguës du dôme liquide comportent une surélévation s’étendant le long des deux grands côtés opposés tandis que les membranes dites directement contiguës de la structure principale de la cuve ne comportent qu’une seule surélévation s’étendant le long d’un des deux petits côtés de la membrane, respectivement.
[0029] Selon une particularité de l’invention, de préférence, la partie protubérante des membranes dites contiguës de la membrane d’étanchéité de la paroi de cofferdam (B) de la structure principale de la cuve sont protubérantes d’au moins 30 millimètres dans le dôme liquide, de préférence de 55 millimètres. [0030] Installation de stockage selon l’une quelconque des revendications précédentes, dans laquelle la partie protubérante des membranes dites contiguës de la membrane d’étanchéité de la paroi de cofferdam (B) de la structure principale de la cuve sont protubérantes d’au plus 60 millimètres dans le dôme liquide.
[0031 ] On peut noter ici que l’expression « de la paroi de cofferdam », soit la paroi référencée B ou B’ sur la figure 2, en lien notamment avec la structure principale de la cuve est superflue car les seules membranes qui intéressent la présente invention dans le mode d’exécution choisi pour l’illustrer sont les membranes de la paroi de cofferdam car cette paroi est la seule qui se trouve prolongée verticalement, autrement dit sans rupture d’angle, dans le dôme liquide.
[0032] Bien entendu, l’invention trouverait également à s’appliquer si par exemple le dôme liquide se trouve dans un angle de la structure principale, de sorte qu’outre la paroi de cofferdam, une paroi latérale - la paroi F sur la figure 2, dans le cas où il n’y aurait pas les chanfreins E - se trouverait prolongée verticalement dans le dôme liquide. Ce cas de figure est couvert par la présente invention bien qu’une telle disposition du dôme liquide, dans un coin de la cuve, soit a priori peu avantageuse et pratique.
[0033] Avantageusement, les membranes dites contiguës du dôme liquide présentent une longueur comprise entre 500 millimètres et 3300 millimètres et une largeur comprise entre 200 millimètres et 800 millimètres.
[0034] Avantageusement, les membranes dites contiguës de la membrane d’étanchéité de la paroi de cofferdam de la structure principale de la cuve présentent une longueur comprise entre 500 millimètres et 3300 millimètres et une largeur comprise entre 200 millimètres et 800 millimètres.
[0035] Selon encore un autre aspect avantageux de l’invention, les membranes dites contiguës de la membrane d’étanchéité de la paroi de cofferdam de la structure principale de la cuve se présentent en deux rangées de membranes parallèles, une rangée de membranes présentant une largeur comprise entre 200 et 400 millimètres et l’autre rangée de membranes présentant une largeur comprise entre 700 et 800 millimètres.
[0036] L’invention se rapporte également à un procédé de montage d’une installation de stockage telle que décrite ci-dessus, dans lequel il comprend : une première étape de montage et de fixation, de manière étanche, de l’ensemble de la membrane d’étanchéité de la paroi de cofferdam de la structure principale de la cuve ; - une deuxième étape de montage et de fixation, de manière étanche, de l’ensemble de la membrane d’étanchéité du dôme liquide à l’exception des membranes contiguës dudit dôme liquide ; les première et deuxième étapes étant exécutées dans un ordre indifférent ou simultanément ;
- une étape finale de montage et de fixation, de manière étanche, des membranes dites contiguës dudit dôme liquide de manière à ce que l’ensemble de la paroi de cofferdam, de la structure principale et du dôme liquide, soit étanche.
[0037] L’invention se rapporte à un navire pour le transport d’un produit liquide froid, le navire comportant une double coque et une installation de stockage telle que décrite ci-dessus disposée dans la double coque.
[0038] L’invention concerne également un système de transfert pour un produit liquide froid, le système comportant un navire tel que décrit ci-dessus, des canalisations isolées agencées de manière à relier la cuve installée dans la coque du navire à une installation externe de stockage flottante ou terrestre et une pompe pour entrainer un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation externe de stockage flottante ou terrestre vers ou depuis la cuve du navire.
[0039] Enfin, la présente invention se rapporte à un procédé de chargement ou déchargement d’un navire tel que décrit ci-dessus, dans lequel on achemine un produit liquide froid à travers des canalisations isolées depuis ou vers une installation externe de stockage flottante ou terrestre vers ou depuis la cuve du navire.
[0040] L’invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages de celle-ci apparaîtront plus clairement au cours de la description suivante de plusieurs modes de réalisation particuliers de l’invention, donnés uniquement à titre illustratif et non limitatif, en référence aux dessins annexés.
[0041 ] [fig.1] La figure 1 est une vue schématique en coupe et perspective d’un navire transporteur de gaz liquéfié du type LNGC.
[0042] [fig.2] La figure 2 est une en coupe et en écorchée d’une cuve du navire représenté sur la figure 1 .
[0043] [fig.3] La figure 3 est une vue schématique illustrant une membrane d’étanchéité avec trois rangées parallèles de grande onde ou corrugation et neuf rangées parallèles de petite onde ou corrugation, les deux types de rangées étant perpendiculaire entre eux. [0044] [fig .4] La figure 4 est une vue schématique illustrant l’agencement des membranes au niveau de la zone du dôme liquide et de la structure principale de la cuve, avec l’indication du recouvrement de chaque membrane par rapport à sa voisine.
[0045] [fig.5] La figure 5 est une vue agrandie d’une portion P de la figure 4.
[0046] [fig.6] La figure 6 est une vue détaillée et dimensionnée d’une membrane contiguë, dite membrane latérale, de la structure principale de la cuve.
[0047] [fig.7] La figure 7 est une vue, identique à la vue de la figure 4, illustrant des blocs d’isolation thermique présents sous les membranes, avec en particulier les platines métalliques permettant de fixer par soudure les membranes à ces blocs d’isolation thermique.
[0048] [fig.8] La figure 8 est une représentation schématique écorchée d’une installation de stockage de navire méthanier et d’un terminal de chargement/déchargement de cette cuve.
[0049] Le terme « vertical » signifie ici s’étendant dans la direction du champ de gravité terrestre. Le terme « horizontal » signifie ici s’étendant dans une direction perpendiculaire à la direction verticale.
[0050] Lorsque l’installation de stockage est positionnée sur un navire 70 tel qu’un méthanier, la structure porteuse, non visibles sur les figures annexées, est formée par la double coque du navire. La paroi porteuse supérieure externe est appelée le pont externe du navire.
[0051 ] Dans la suite, la présente invention est illustrée avec un navire 70 transporteur de gaz liquéfié d’un type classique, à savoir un LNGC pour « Liquid Natural Gas Carrier », mais il est bien entendu que l’invention peut s’appliquer à d’autres types de cuves pour autant qu’une telle cuve comporte une membrane d’étanchéité, dite primaire du fait de son contact direct avec un fluide contenu dans la cuve et de la présence éventuelle d’une deuxième membrane d’étanchéité, et un dôme liquide 2 ou analogue, c’est-à-dire une cheminée et une ouverture pour le chargement/déchargement dudit fluide, présentant au moins un pan de paroi continu avec une paroi de la structure principale de la cuve 71 , 71 ’. Ces deux caractéristiques étant vérifiées, la présente invention trouve à s’appliquer à une telle installation de stockage d’un fluide.
[0052] Ainsi, comme cela est visible sur la figure 1 , on peut voir la distribution des quatre cuves 71 , 71 ’ de GNL classiquement présentes dans un navire 70 méthanier du type LNGC. Ainsi, comme on l’a vu précédemment, trois des quatre cuves 71 présentent les mêmes dimensions tandis qu’une dernière, celle 71 ’ située à l’avant du navire 70, présente des dimensions plus réduite de manière en particulier à ce que les ballasts, disposés latéralement et sous la cuve 71 ’, présentent des dimensions bien supérieures aux autres ballasts, situés autour des trois autres cuves 71 , afin de rééquilibrer plus facilement l’assiette du navire 70, compte tenu du fait que l’essentiel du poids du navire 70 est situé à l’arrière de ce dernier lorsque les cuves 71 sont vides.
[0053] A l’arrière du navire 70 se trouve classiquement les machines ou salle des machines, non visibles sur la figure annexée, destinées à gérer l’ensemble du navire 70, depuis la propulsion jusqu’à l’ensemble des circuits de génération et d’alimentation des différents équipements du navire 70. Par ailleurs, au-dessus des machines se trouve le château 31 qui consiste classiquement en une tour ou analogue où sont situés notamment les logements de l’équipage et le poste de commandement du navire.
[0054] Une cuve 71 comporte une structure principale formée d’une paroi avant D, d’une paroi arrière B, d’une paroi de plafond A, d’une paroi de fond C et de deux parois latérales F, non toutes deux visibles sur la figure 2 annexée (un côté de la cuve n’étant pas visible sur cette figure), reliant la paroi de fond C à la paroi de plafond A, et enfin deux à quatre parois de chanfrein E, G reliant les parois latérales F à la paroi de fond C ou à la paroi de plafond A. Les parois de la cuve 71 sont ainsi reliées les unes aux autres de façon à former une structure polyédrique et à délimiter un espace interne de stockage. La cuve 71 ’ se présente de manière sensiblement identique à une cuve 71 .
[0055] Afin de charger et décharger la cuve 71 en gaz liquéfié, l’installation de stockage comporte une ouverture de chargement/déchargement interrompant localement la paroi porteuse supérieure externe, la paroi porteuse supérieure interne et la paroi de plafond de la cuve 71 de sorte à permettre notamment à des conduites de chargement/déchargement, non représentées sur les figures annexées, d’atteindre le fond de la cuve 71 en traversant cette ouverture.
[0056] L’installation de stockage comprend également une tour de chargement/déchargement, non visible sur les figures annexée, situé au droit de l’ouverture du dôme liquide 2 et à l’intérieur de la cuve 71 formant une structure de support pour les conduites de chargement/déchargement sur toute la hauteur de la cuve 71 ainsi que pour les pompes (non représentées).
[0057] La cuve 71 comporte ainsi une cheminée, ou conduite, située sur ou au-dessus de la structure principale et permettant aux parois de cuve de s’étendre continûment du pont interne vers le pont externe au niveau où ceux-ci sont interrompus par l’ouverture de chargement/déchargement. On appelle pour des cuves 71 , 71 ’ de stockage de gaz liquéfié une telle cheminée, ou conduite, munie d’un couvercle fermant ladite ouverture de chargement/déchargement : le dôme liquide 2. [0058] L’ouverture de chargement/déchargement ainsi que la cheminée possède classiquement un contour ou une action rectangulaire ou carré. La cheminée comprend ainsi quatre parois, l’une B’ étant le prolongement de la paroi arrière B, également désignée en tant que « paroi de cofferdam » de la structure principale de la cuve 71 , 71 ’, comme visible sur la figure 2, tandis que les trois autres sont reliées à la paroi de plafond A formant un angle de 90° avec celle-ci.
[0059] La présente invention s’intéresse uniquement à la paroi B, B’, ou aux deux parois dans une réalisation différente, continue ou de prolongement sans rupture d’angle entre la structure principale de la cuve 71 , 71 ’ et le dôme liquide 2, plus précisément au niveau de la membrane d’étanchéité et sa jonction entre la structure principale de la cuve 71 , 71 ’ et le dôme liquide 2.
[0060] La figure 3 représente une telle membrane d’étanchéité classique 3. Une membrane d’étanchéité est définie, dans le cadre de la présente invention, comme une feuille métallique ou en un alliage métallique comportant au moins une première ligne d’onde ou de corrugation 4 et au moins une seconde ligne d’onde ou de corrugation 5, la première et la seconde ligne d’onde ou de corrugation 4, 5 s’étendant perpendiculairement l’une par rapport à l’autre.
[0061 ] Selon un mode de réalisation, la structure principale de la cuve 71 , 71 ’ est réalisée selon la technologie Mark III® qui est notamment décrite dans le document FR-A-2691520.
[0062] Dans une telle structure principale, la barrière thermiquement isolante secondaire, la barrière thermiquement isolant primaire et la membrane d’étanchéité secondaire sont essentiellement constituées de panneaux juxtaposés sur la structure porteuse, qui peut être la structure porteuse interne ou la structure reliant la paroi porteuse supérieure interne à la paroi porteuse supérieure externe au niveau de l’ouverture. La membrane d’étanchéité secondaire est formée d’un matériau composite comportant une feuille d’aluminium prise en sandwich entre deux feuilles de tissu en fibres de verre. La membrane d’étanchéité primaire est quant à elle obtenue par assemblage d’une pluralité de plaques métalliques, soudées les unes aux autres le long de leurs bords, et comportant des ondulations s’étendant selon deux directions perpendiculaires. Les plaques métalliques sont, par exemple, réalisées en acier inoxydable ou d'aluminium, mises en forme par pliage ou par emboutissage.
[0063] De façon plus particulière pour illustrer un mode de réalisation de l’invention, la membrane d’étanchéité est une membrane d’étanchéité dite primaire (car en contact direct avec le fluide stocké dans la cuve 71 , 71 ’) est obtenue par assemblage d’une pluralité de feuilles métalliques ondulées conforme à la membrane représentée sur la figure 3. Chaque membrane métallique ondulée 3 comporte une première série d'ondulations parallèles 5, dite hautes ou grandes, s’étendant selon une première direction et une seconde série d'ondulations parallèles 4, dites basses ou petites, s’étendant selon une seconde direction perpendiculaire à la première série. Les zones de nœud 6 sont les zones de croisement de ces deux types d’ondes 4, 5. Les ondulations 4, 5 font saillie vers l’intérieur de la cuve 71 , 71 ’. Comme mentionné précédemment, ces membranes métalliques ondulées 3 sont, par exemple, réalisées en acier inoxydable ou en aluminium.
[0064] Les membranes métalliques ondulées 3 sont fixées sur des panneaux isolants 21 par l’intermédiaire de platines métalliques 20 s’étendant selon deux directions perpendiculaires, verticalement et horizontalement sur la paroi de cofferdam B, B’, ces platines 20 étant fixées sur la face interne (orientée vers l’espace interne de la cuve) des panneaux isolants 21. Ainsi, chaque panneau isolant 21 présentant une face interne équipée de platines métalliques 20 sur lesquelles sont soudées les membranes métalliques ondulées 3 formant la membrane d’étanchéité primaire. Ces panneaux isolants 21 sur lesquels sont fixées les membranes d’étanchéité 3 sont visibles, avec les susdites platines métalliques 20, sur la figure 7 annexée.
[0065] Les platines métalliques 20 s’étendent selon deux directions perpendiculaires qui sont chacune parallèles à deux bords opposés des panneaux isolants 21. Les platines métalliques 20 sont fixées dans des évidements ménagés dans la face interne du panneau isolant 21 et fixées à celui-ci, par des vis, des rivets ou des agrafes par exemple.
[0066] Les figures annexées 4 à 7 illustrent l’agencement proprement dit de la membrane d’étanchéité 3, ou membrane primaire d’étanchéité, au niveau de la paroi B de la structure principale de la cuve 71 , 71 ’ et de la paroi B’ continue à la paroi B dans le dôme liquide 2.
[0067] La première caractéristique d’un tel agencement réside dans le fait que l’on utilise uniquement des membranes d’étanchéité 3, 13, 13’, 33 - comportant au moins deux lignes 4, 5 d’onde ou corrugation perpendiculaire entre elles - pour réaliser la continuité de l’étanchéité de ces deux parois, la paroi de cofferdam B de la structure principale de la cuve 71 , 71 ’ et la paroi B’ continue du dôme liquide 2. Ainsi, aucun élément intermédiaire n’est présent dans cette zone, étant entendu qu’un « élément intermédiaire », tel qu’une tôle, n’est pas une membrane d’étanchéité 3, 13, 13’, 33 selon la présente invention, c’est- à-dire la définition d’une membrane donnée précédemment.
[0068] La deuxième caractéristique d’un tel agencement selon l’invention réside dans le fait que la membrane d’étanchéité 13 de la structure principale de la cuve 71 , 71 ’ directement contiguë au dôme liquide 2 - soit les trois membranes 14, 15, 16 visibles sur la figure 4 - est protubérante dans le dôme liquide 2, c’est-à-dire dans l’espace formant ce dôme liquide 2 à partir de l’ouverture présente dans la paroi de plafond A, les éléments d’isolation et d’étanchéité étant ici considérés pour définir l’emplacement de cette ouverture du dôme liquide 2.
[0069] Comme on peut le voir sur la figure 6, la protubérance 17 de la membrane d’étanchéité 13 dans le dôme liquide 2 est de 55 millimètres dans cet exemple. De manière générale, cette protubérance 17 est d’au moins 30 millimètres et d’au plus 60 millimètres. Comme on peut le voir clairement sur la figure 6, pour réaliser cette protubérance 17, soit la membrane contiguë 13 est protubérante sur toute sa largeur comme c’est le cas avec la membrane centrale 15, soit la membrane contiguë est protubérante sur seulement une partie de sa longueur comme c’est le cas pour les membranes latérales 14 et 16. Pour ces membranes dites latérales 14 et 16, on a réalisé une découpe, par exemple au laser ou à l’aide d’une scie, dans une membrane classique pour extraite la portion non contiguë au dôme liquide 2 et qui n’est donc pas protubérante dans ce dernier 2.
[0070] Une autre particularité de la présente invention réside dans les dimensions des membranes contiguës 13, 13’, 33 tant du dôme liquide 2 que de la structure principale de la cuve 71 , 71 ’. En effet, ces dimensions ne sont pas classiques et ont été choisi pour ajuster parfaitement, et le plus sûrement possible, le raccord des membranes 13, 13’ de la structure principale de la cuve 71 , 71 ’ et celles 33 du dôme liquide 2. Ainsi, une membrane classique 3 de la structure principale de la cuve 71 , 71 ’ comporte normalement trois lignes 5 de grande onde ou corrugation, or les membranes contiguës 13, 13’ de la structure principale de la cuve 71 , 71 ’ ne comportent que deux lignes 5 de grande onde ou corrugation pour la membrane directement contiguë 13, voire une seul/unique ligne 5 de grande onde pour la membrane contiguë 13’. De la même manière, une membrane classique 3 du dôme liquide 2 comporte normalement deux lignes 5 de grande onde ou corrugation, or les membranes contiguës 33 du dôme liquide 2 ne comportent qu’une seule/unique ligne 5 de grande onde.
[0071 ] A titre d’exemple non limitatif sont données, sur la figure 6, les dimensions, exprimées en millimètres, de la membrane latérale contiguë 14 de la structure principale de la cuve 71 , 71 ’, avec notamment une protubérance 17 de 55 millimètres résultant d’une découpe préalable de la membrane 14. Etant donné que les figures 4 et 5 présentent à l’échelle les membranes 13, 13’ et 33, une partie de la structure principale de la cuve 71 , 71 ’ et le dôme liquide 2, on peut en déduire les dimensions, ou plus exactement les domaines ou gammes de dimensions de chacune des membranes 13, 13’ et 33, connaissant les dimensions précisément données pour la membrane contiguë latérale 14 sur la figure 6. Bien entendu, il est rappelé ici que les dimensions précises données sur la figure 6 ne représentent qu’un mode de réalisation et que d’autres modes d’exécution de l’invention peuvent être prévus, les dimensions données sur la figure 6 pouvant varier, à l’exception de la partie protubérante 17, dans un domaine ou une gamme de +/- 30 millimètres (mm) de préférence de +/- 15 mm au plus. Pour la partie protubérante 17, on notera qu’elle ne peut être inférieure à 30 millimètres et supérieure à 60 millimètres.
[0072] Une autre particularité de l’invention réside dans le fait que les membranes contiguës 33 du dôme liquide 2 présentent, sur leur deux faces inférieure/supérieure 34, 35 ou encore les deux grands côtés opposés, une surélévation 7 s’étendant le long desdites deux faces ou côtés 34, 35 de manière à recouvrir les deux membranes inférieure et supérieure auxquelles elles sont fixées respectivement. Il doit être noté ici que seule la surélévation 7 inférieure est impérative dans le cadre de la présente invention où les membranes contiguës 33 du dôme liquide doivent être montées et assemblées après celles de la structure principale de la cuve 71 , 71 ’.
[0073] Cette caractéristique particulière de ces membranes contiguës 33 est justifiée par le procédé d’assemblage propre à l’installation de stockage selon l’invention dans lequel ces membranes contigües 33 du dôme liquide 2 sont avantageusement montées en dernier lieu, une fois les membranes d’étanchéités du dôme liquide 2 montées et fixées et les membranes d’étanchéité de la structure principale de la cuve 71 , 71 ’ (ou au moins les membranes situées à proximité du dôme liquide 2) sont également montées et fixées. Ce faisant, les membranes directement contiguës 13 de la structure principale de la cuve 71 , 71 ’ ne présentent qu’une unique surélévation 7, plus précisément sur l’un des petits côtés (largeur).
[0074] Il doit en effet être noté qu’une membrane classique 3, à l’instar de celle représentée sur la figure 3, présente deux surélévations 7 s’étendant le long de deux côtés contigus de la membrane 3, soit l’un des petits côtés définissant la largeur de la membrane 3 et l’un des grands côtés de la membrane 3. Comme on peut le noter sur les figures 4 à 6, les triangles isocèles noirs indiquent, grâce à l’orientation de la pointe dudit triangle, la position de la surélévation 7 de sorte que la membrane sur laquelle est situé le triangle isocèle noir recouvre, au niveau de cette portion de surélévation 7, la membrane adjacente au niveau du petit ou grand côté considéré. Ainsi, la figure 4 en particulier est très explicite sur le montage ou l’assemblage relatif des différentes membranes, qu’elles soient celles 3, 13, 13’ du dôme liquide 2 ou celles 3, 33 de la structure principale de la cuve 71 , 71 ’.
[0075] La figure 7 illustre les blocs d’isolation thermique 21 qui équipent une installation de stockage pour gaz liquéfié. Dans le cadre de la présente invention, ces blocs d’isolation thermique 21 ne sont pas modifiés par rapport à l’état de la technique et des détails de tels blocs d’isolation thermique 21 sont notamment décrits dans FR-A-2861060. Néanmoins, une particularité de cette invention réside dans les platines métalliques 20, décrites précédemment, situés sur ces blocs d’isolation thermiques 21 , en vis-à-vis des membranes 3, 13, 13’, 33, de manière à fixer par soudure ou soudage ces dernières 3, 13, 14’, 33 au bloc d’isolation thermique 21 par l’intermédiaire de ces platines métalliques 21 . Ces platines métalliques 20, également dénommées « Anchoring Strip » (AS), sont ici disposées de manière adaptée aux membranes contiguës 13, 13’, 33, tant celles 13, 13’ de la structure principale de la cuve 71 , 71 ’ que celles 33 du dôme liquide 2.
[0076] Ainsi, les membranes contiguës 33 du dôme liquide 2 sont situées à proximité immédiate de platines métalliques 20, de sorte qu’elles présentent une ligne de soudure discontinues s’étendant sur plus de 70% de leur longueur, alors que ces membranes 33 ne sont pas larges du fait qu’elles ne disposent que d’une seule ligne 5 de grande onde ou corrugation. Par comparaison, les autres membranes 3 du dôme liquide 2 présentent deux lignes 5 de grande onde ou corrugation et n’ont qu’une seule ligne de soudure discontinue sur des platines 20, représentant plus de 70% de leur longueur. Les membranes contiguës 13’ de petites dimensions de la structure principale de la cuve 71 , 71 ’ sont également pourvues d’une telle ligne de soudure discontinue alors qu’elles ne comptent également qu’une unique/seule ligne 5 de grande onde, à l’instar des membranes 33.
[0077] En référence à la figure 8, une vue écorchée d’un navire méthanier 70 montre une cuve étanche et isolée 71 de forme générale prismatique montée dans la double coque 72 du navire. La paroi de la cuve 71 comporte une membrane d’étanchéité primaire destinée à être en contact avec le GNL contenu dans la cuve, une membrane d’étanchéité secondaire agencée entre la membrane d’étanchéité primaire et la double coque 72 du navire, et deux barrières isolantes agencées respectivement entre la membrane d’étanchéité primaire et la membrane d’étanchéité secondaire et entre la membrane d’étanchéité secondaire et la double coque 72.
[0078] De manière connue en soi, des canalisations de chargement/déchargement 73 disposées sur le pont supérieur du navire peuvent être raccordées, au moyen de connecteurs appropriées, à un terminal maritime ou portuaire pour transférer une cargaison de GNL depuis ou vers la cuve 71 .
[0079] La figure 8 représente un exemple de terminal maritime comportant un poste de chargement et de déchargement 75, une conduite sous-marine 76 et une installation à terre 77. Le poste de chargement et de déchargement 75 est une installation fixe off-shore comportant un bras mobile 74 et une tour 78 qui supporte le bras mobile 74. Le bras mobile 74 porte un faisceau de tuyaux flexibles isolés 79 pouvant se connecter aux canalisations de chargement/déchargement 73. Le bras mobile 74 orientable s'adapte à tous les gabarits de méthaniers. Une conduite de liaison non représentée s'étend à l'intérieur de la tour 78. Le poste de chargement et de déchargement 75 permet le chargement et le déchargement du méthanier 70 depuis ou vers l'installation à terre 77. Celle-ci comporte des cuves de stockage de gaz liquéfié 80 et des conduites de liaison 81 reliées par la conduite sous-marine 76 au poste de chargement ou de déchargement 75. La conduite sous-marine 76 permet le transfert du gaz liquéfié entre le poste de chargement ou de déchargement 75 et l'installation à terre 77 sur une grande distance, par exemple 5 km, ce qui permet de garder le navire méthanier 70 à grande distance de la côte pendant les opérations de chargement et de déchargement.
[0080] Pour engendrer la pression nécessaire au transfert du gaz liquéfié, on met en oeuvre des pompes embarquées dans le navire 70 et/ou des pompes équipant l'installation à terre 77 et/ou des pompes équipant le poste de chargement et de déchargement 75.
[0081 ] Bien que l'invention ait été décrite en liaison avec plusieurs modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.
[0082] L’usage du verbe « comporter », « comprendre » ou « inclure » et de ses formes conjuguées n’exclut pas la présence d’autres éléments ou d’autres étapes que ceux énoncés dans une revendication. L’usage de l’article indéfini « un » ou « une » pour un élément ou une étape n’exclut pas, sauf mention contraire, la présence d’une pluralité de tels éléments ou étapes.
[0083] Dans les revendications, tout signe de référence entre parenthèses ne saurait être interprété comme une limitation de la revendication.

Claims

Revendications
[Revendication 1] Installation de stockage pour gaz liquéfié comprenant une structure porteuse et une cuve (71 ) étanche et thermiquement isolante agencée dans la structure porteuse, la cuve (71 ) étanche et thermiquement isolante comportant une structure principale formée par une pluralité de parois de cuve reliées les unes aux autres et fixées à la structure porteuse, la structure principale définissant un espace interne de stockage, la structure principale comprenant au moins une membrane d’étanchéité (3, 13, 13’) et au moins une barrière thermiquement isolante, la barrière thermiquement isolante étant placée entre la membrane d’étanchéité (3, 13, 13’) et la structure porteuse ; la membrane d’étanchéité (3, 13, 13’), la barrière thermiquement isolante de la structure principale et une paroi dite porteuse supérieure étant interrompues localement de manière à délimiter une conduite formant paroi porteuse d’une cheminée s’étendant suivant un axe vertical jusqu’à une extrémité supérieure consistant en une ouverture de chargement/déchargement destinée à être traversée par des conduites de chargement/déchargement de gaz liquéfié, ladite conduite jusqu’à ladite ouverture définissant un dôme liquide (2) de la cuve (71 ) comportant, comme la structure principale de la cuve (71 , 71 ’), au moins une membrane d’étanchéité (3, 33) et au moins une barrière thermiquement isolante, la barrière thermiquement isolante étant placée entre la membrane d’étanchéité (3, 33) et la paroi porteuse ; le dôme liquide (2) étant situé à l’une des extrémités axiales de la cuve (71 ), une paroi verticale de la structure principale de la cuve (71 ), dite paroi de cofferdam (B), se prolonge depuis ladite structure principale pour former, suivant le même plan, une paroi (B’) de la conduite du dôme liquide (2) ; la membrane d’étanchéité (3, 13, 13’, 33) de la structure principale et du dôme liquide (2) sont composées d’une pluralité de membranes planes métalliques, fixées entre elles de manière étanche, présentant chacune au moins deux lignes de corrugations (4, 5) perpendiculaires, la forme et les dimensions de ces deux lignes de corrugations (4, 5) étant respectivement identiques pour toutes les membranes de manière à ce que les membranes juxtaposées présentent un motif répété ; caractérisée en ce que des membranes (13, 13’) dites contiguës de la membrane d’étanchéité de la paroi de cofferdam (B) de la structure principale de la cuve (71 ) sont au moins en partie protubérantes dans le dôme liquide (2), lesdites membranes dites contiguës étant directement fixées, de manière étanche, à des membranes dites contiguës du dôme liquide (2).
[Revendication 2] Installation de stockage selon la revendication 1 , dans laquelle les membranes planes métalliques (3, 13, 13’, 33) formant la membrane d’étanchéité de la structure principale et du dôme liquide (2) présentent une forme rectangulaire avec deux grands côtés et deux petits.
[Revendication 3] Installation de stockage selon la revendication 1 ou 2, dans laquelle les membranes planes métalliques comportent une surélévation (7) s’étendant le long de deux côtés contigus destinée à recouvrir le côté contigu d’une autre membrane.
[Revendication 4] Installation de stockage selon l’une quelconque des revendications, dans laquelle la barrière thermiquement isolante de la structure principale et du dôme liquide (2) de la cuve (71 ) comportent des platines métalliques sur lesquelles sont soudées, de manière discontinue, la membrane d’étanchéité (3, 13, 13’, 33) de la structure principale et du dôme liquide (2).
[Revendication 5] Installation de stockage selon au moins l’une quelconque des revendications 2 à 4, dans laquelle les membranes dites contiguës du dôme liquide (2) comportent une surélévation (7) s’étendant le long du grand côté inférieur tandis que les membranes dites directement contiguës de la structure principale de la cuve (71 , 71 ’) comportent une surélévation (7) s’étendant le long d’un des deux petits côtés de la membrane.
[Revendication 6] Installation de stockage selon l’une quelconque des revendications précédentes, dans laquelle la partie protubérante (17) des membranes (13) dites contiguës de la membrane d’étanchéité de la paroi de cofferdam (B) de la structure principale de la cuve (71 ) sont protubérantes d’au moins 30 millimètres dans le dôme liquide (2), de préférence de 55 millimètres.
[Revendication 7] Installation de stockage selon l’une quelconque des revendications précédentes, dans laquelle la partie protubérante (17) des membranes (13) dites contiguës de la membrane d’étanchéité de la paroi de cofferdam (B) de la structure principale de la cuve (71 ) sont protubérantes d’au plus 60 millimètres dans le dôme liquide (2).
[Revendication 8] Installation de stockage selon l’une quelconque des revendications précédentes, dans laquelle les membranes dites contiguës du dôme liquide (2) présentent une longueur comprise entre 500 millimètres et 3300 millimètres et une largeur comprise entre 200 millimètres et 800 millimètres.
[Revendication 9] Installation de stockage selon l’une quelconque des revendications précédentes, dans laquelle les membranes (13, 13’) dites contiguës de la membrane 18 d’étanchéité de la paroi de cofferdam (B) de la structure principale de la cuve (71 ) présentent une longueur comprise entre 500 millimètres et 3300 millimètres et une largeur comprise entre 200 millimètres et 800 millimètres.
[Revendication 10] Installation de stockage selon la revendication 9, dans laquelle les membranes (13, 13’) dites contiguës de la membrane d’étanchéité de la paroi de cofferdam (B) de la structure principale de la cuve (71 , 71 ’) se présentent en deux rangées de membranes parallèles, une rangée de membranes (13’) présentant une largeur comprise entre 200 et 400 millimètres et l’autre rangée de membranes (13) présentant une largeur comprise entre 700 et 800 millimètres.
[Revendication 11 ] Procédé de montage d’une installation de stockage selon l’une quelconque des revendications précédentes, dans lequel il comprend :
- une première étape de montage et de fixation, de manière étanche, de l’ensemble de la membrane d’étanchéité (3, 13, 13’) de la paroi de cofferdam (B) de la structure principale de la cuve ;
- une deuxième étape de montage et de fixation, de manière étanche, de l’ensemble de la membrane d’étanchéité (3) du dôme liquide (2) à l’exception des membranes contiguës dudit dôme liquide (2) ; les première et deuxième étapes étant exécutées dans un ordre indifférent ou simultanément ;
- une étape finale de montage et de fixation, de manière étanche, des membranes (33) dites contiguës dudit dôme liquide (2) de manière à ce que l’ensemble de la paroi de cofferdam (B, B’), de la structure principale et du dôme liquide (2), soit étanche.
[Revendication 12] Navire (70) pour le transport d’un produit liquide froid, le navire comportant une double coque (72) et une installation de stockage (1 ) selon l’une des revendications 1 à 10 disposée dans la double coque.
[Revendication 13] Système de transfert pour un produit liquide froid, le système comportant un navire (70) selon la revendication 12, des canalisations isolées (73, 79, 76, 81 ) agencées de manière à relier la cuve (71 ) installée dans la coque du navire à une installation externe de stockage flottante ou terrestre (77) et une pompe pour entrainer un flux de produit liquide froid à travers les canalisations isolées depuis ou vers l’installation externe de stockage flottante ou terrestre vers ou depuis la cuve du navire.
[Revendication 14] Procédé de chargement ou déchargement d’un navire (70) selon la revendication 12, dans lequel on achemine un produit liquide froid à travers 19 des canalisations isolées (73, 79, 76, 81 ) depuis ou vers une installation externe de stockage flottante ou terrestre (77) vers ou depuis la cuve du navire (71 ).
EP21786224.2A 2020-10-02 2021-10-01 Procédé d'assemblage et installation de cuve de stockage pour gaz liquéfié Pending EP4222406A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2010115A FR3114863B1 (fr) 2020-10-02 2020-10-02 Procédé d’assemblage et installation de cuve de stockage pour gaz liquéfié
PCT/EP2021/077200 WO2022069751A1 (fr) 2020-10-02 2021-10-01 Procédé d'assemblage et installation de cuve de stockage pour gaz liquéfié

Publications (1)

Publication Number Publication Date
EP4222406A1 true EP4222406A1 (fr) 2023-08-09

Family

ID=73793415

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21786224.2A Pending EP4222406A1 (fr) 2020-10-02 2021-10-01 Procédé d'assemblage et installation de cuve de stockage pour gaz liquéfié

Country Status (7)

Country Link
US (1) US20230366512A1 (fr)
EP (1) EP4222406A1 (fr)
JP (1) JP2023544598A (fr)
KR (1) KR20230057457A (fr)
CN (1) CN116324258A (fr)
FR (1) FR3114863B1 (fr)
WO (1) WO2022069751A1 (fr)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1452604A (fr) * 1964-04-13 1966-04-15 Technigaz Ouverture et dispositif d'obturation sur paroi de cuves souples étanches soumises à des contractions et des dilatations d'origine thermique
FR2691520B1 (fr) 1992-05-20 1994-09-02 Technigaz Ste Nle Structure préfabriquée de formation de parois étanches et thermiquement isolantes pour enceinte de confinement d'un fluide à très basse température.
FR2861060B1 (fr) 2003-10-16 2006-01-06 Gaz Transport & Technigaz Structure de paroi etanche et cuve munie d'une telle structure
FR2961580B1 (fr) * 2010-06-17 2012-07-13 Gaztransport Et Technigaz Cuve etanche et isolante comportant un pied de support
FR2991430A1 (fr) 2012-05-31 2013-12-06 Gaztransp Et Technigaz Procede d'etancheification d'une barriere d'etancheite secondaire d'une cuve etanche et thermiquement isolante
FR3026459B1 (fr) * 2014-09-26 2017-06-09 Gaztransport Et Technigaz Cuve etanche et isolante comportant un element de pontage entre les panneaux de la barriere isolante secondaire
FR3082596B1 (fr) * 2018-06-15 2020-06-19 Gaztransport Et Technigaz Cuve etanche et thermiquement isolante a ondulations continues dans le dome liquide
FR3083589B1 (fr) * 2018-07-06 2022-04-08 Gaztransport Et Technigaz Tour de chargement et/ou de dechargement equipee d'un dispositif de pulverisation de gaz liquefie
FR3094448B1 (fr) * 2019-03-26 2022-06-17 Gaztransport Et Technigaz Cuve étanche et thermiquement isolante

Also Published As

Publication number Publication date
FR3114863A1 (fr) 2022-04-08
US20230366512A1 (en) 2023-11-16
JP2023544598A (ja) 2023-10-24
WO2022069751A1 (fr) 2022-04-07
KR20230057457A (ko) 2023-04-28
CN116324258A (zh) 2023-06-23
FR3114863B1 (fr) 2023-01-13

Similar Documents

Publication Publication Date Title
EP2956352B1 (fr) Paroi, etanche et thermiquement isolante, pour cuve de stockage de fluide
EP2984383B1 (fr) Cuve etanche et thermiquement isolante de stockage d'un fluide
EP3746377A1 (fr) Paroi etanche a membrane ondulee renforcee
FR3084347A1 (fr) Paroi etanche a membrane ondulee renforcee
WO2020039134A1 (fr) Paroi de cuve étanche et thermiquement isolante
WO2018024982A1 (fr) Structure de paroi etanche
FR3068763A1 (fr) Cuve etanche et thermiquement isolante comportant une corniere.
FR3078136A1 (fr) Paroi de cuve etanche comprenant une membrane d'etancheite comportant une zone renforcee
FR3068762A1 (fr) Cuve etanche et thermiquement isolante
WO2021140218A1 (fr) Installation de stockage pour gaz liquéfié
FR3080905A1 (fr) Paroi de cuve etanche comprenant une membrane d'etancheite
WO2019239071A1 (fr) Cuve étanche et thermiquement isolante à ondulations continues dans le dôme liquide
WO2021233712A1 (fr) Installation de stockage pour gaz liquéfié
FR3084346A1 (fr) Paroi etanche a membrane ondulee renforcee
WO2019145635A1 (fr) Cuve etanche et thermiquement isolante
WO2018122498A1 (fr) Cuve etanche et thermiquement isolante de stockage d'un fluide
WO2021228751A1 (fr) Dôme liquide d'une cuve de stockage pour gaz liquéfié comportant une ouverture munie d'une trappe additionnelle
EP4222406A1 (fr) Procédé d'assemblage et installation de cuve de stockage pour gaz liquéfié
WO2021255000A1 (fr) Dôme liquide d'une cuve de stockage pour gaz liquéfié
WO2021254999A1 (fr) Dôme liquide d'une cuve de stockage pour gaz liquéfié
WO2019239053A1 (fr) Cuve etanche munie d'un element de jonction ondule
WO2021074413A1 (fr) Poutre de raccordement pour une cuve etanche et thermiquement isolante de stockage de gaz liquefie
FR3118796A1 (fr) Installation de stockage pour gaz liquéfié
FR3131360A1 (fr) Installation de stockage pour gaz liquéfié
EP3645933A1 (fr) Membrane etanche et procede d'assemblage d'une membrane etanche

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230327

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED