EP4180625B1 - Verbrennungsmotor - Google Patents

Verbrennungsmotor Download PDF

Info

Publication number
EP4180625B1
EP4180625B1 EP22203181.7A EP22203181A EP4180625B1 EP 4180625 B1 EP4180625 B1 EP 4180625B1 EP 22203181 A EP22203181 A EP 22203181A EP 4180625 B1 EP4180625 B1 EP 4180625B1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
cylinder
combustion engine
crankshaft
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP22203181.7A
Other languages
English (en)
French (fr)
Other versions
EP4180625A1 (de
Inventor
Michael-Alexander Müller
Alexander Alhaier
Germina Alhaier
Wladimir Alhaier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP4180625A1 publication Critical patent/EP4180625A1/de
Application granted granted Critical
Publication of EP4180625B1 publication Critical patent/EP4180625B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/02Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with crankshaft
    • F01B9/026Rigid connections between piston and rod; Oscillating pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/28Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F02B75/282Engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders the pistons having equal strokes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/32Engines characterised by connections between pistons and main shafts and not specific to preceding main groups

Definitions

  • the invention relates to an internal combustion engine according to the preamble of claim 1.
  • the task is to improve combustion engines, especially with regard to space requirements.
  • Such an engine known as a Müller alternating chamber engine, has the advantage that the dual-piston engine makes manufacturing the engine much easier.
  • a particularly advantageous feature is that only one connecting rod needs to be used for two pistons. This is made possible by the fact that the two pistons are connected to one another using spacer rods.
  • Another advantage is that two pistons can be accommodated in a single cylinder. Unlike previous designs of internal combustion engines, however, it is not necessary to deviate from the shape of the vertical circular cylinder for the crankshaft housing and/or combustion chambers.
  • a first crankshaft stub is fixedly connected to a first receiving wheel outside the cylinder housing and is configured such that the crankshaft stub drives the first receiving wheel, which is configured to drive a first and a second flywheel, such that the second flywheel is arranged on the side of the receiving wheel facing away from the first flywheel.
  • first and the second flywheel are configured such that an axis of rotation of the respective flywheel runs parallel to the axis of rotation of the crankshaft and perpendicular to an axis of symmetry of the circular cylinder and that an intersection point of the axis of rotation of the respective flywheel and the axis of symmetry of the circular cylinder is further away from the crankshaft than the circular end surface of the circular cylinder facing the combustion chamber, and that the first and the second flywheel balance the internal combustion engine.
  • crankshaft arms are no longer designed as balancing weights.
  • a support wheel is mounted on the crankshaft outside the cylinder and crankshaft housing.
  • a flywheel is provided on each side of the support wheel. Accordingly, at least one flywheel is used as a balancing wheel for each torque applied by the respective piston.
  • a balancing weight is used.
  • flywheels are driven by the crankshaft via the support wheel.
  • the flywheels are mounted outside the engine housing. Using such flywheels means that the bearings of the crankshaft are subjected to less stress.
  • the design of the crankshaft arms without balancing weights makes it possible to accommodate the combustion chamber, piston and crankshaft completely in a single cylinder housing.
  • This cylinder housing has the shape of a vertical circular cylinder on the inside. This structure makes the manufacture of the engine much easier. In addition, this type of construction can reduce the required installation space.
  • a third and a fourth flywheel are attached to the internal combustion engine, the third flywheel being arranged substantially on the same axis of rotation as the first flywheel and the fourth flywheel being arranged substantially on the same axis of rotation as the second flywheel.
  • the third and the fourth flywheel are arranged on the side of the cylinder on which a second crankshaft stub can be led out of the cylinder housing.
  • the third and the fourth flywheel are designed to balance the internal combustion engine.
  • crankshaft bearings can be further reduced by extending the axes of the first and second flywheels beyond the axis of symmetry of the cylinder housing.
  • a third and a fourth flywheel can then be fitted on the side where the second crankshaft stub can be led out of the cylinder housing.
  • At least one opening is provided in each of the circular end surfaces of the circular cylinder facing a combustion chamber.
  • a number of slide valves corresponding to the number of openings is arranged, which is/are designed to close and open the respective opening.
  • the second crankshaft stub in the internal combustion engine, is fixedly connected to a second receiving wheel outside the cylinder housing and is arranged such that the second crankshaft stub drives the second receiving wheel, which is arranged such that it drives the third and fourth flywheel drive wheels.
  • the imbalance of the engine can be further reduced by providing both crankshaft stubs with a support wheel to drive the flywheels.
  • the axes of rotation of the first and third flywheels and of the second and fourth flywheels are each two separate half shafts, which are each firmly connected to a first bevel gear at the ends facing away from the flywheels such that the first and second flywheels rotate in opposite directions to the third and fourth flywheels.
  • flywheels are suitably designed, it is possible to make the shafts between the two flywheels from two half shafts each. Both half shafts are each provided with a first bevel gear at the end facing away from the flywheel. A second bevel gear is in engagement with both first bevel gears. The shaft of this second bevel gear runs essentially on the axis of symmetry of the cylinder housing. This construction of three bevel gears means that the two flywheels can run in opposite directions. The balancing effect of the flywheels can be further improved by the two flywheels running in opposite directions.
  • the receiving wheel or wheels drive the flywheel or flywheels by means of a traction means, in particular a chain or a belt.
  • Traction devices in particular belts such as toothed belts or chains such as roller chains, can advantageously be used to drive the flywheels.
  • Particularly common and easily available parts can be used here.
  • the receiving wheel or wheels on the internal combustion engine drive the flywheels by means of coupling rods.
  • the pickup wheel drives the flywheels by means of coupling rods, this creates a particularly robust and low-wear form of connection between the pickup wheel and the flywheel.
  • the first and/or the second receiving gear on the internal combustion engine is designed as a third bevel gear.
  • a fourth and a fifth bevel gear are arranged on the receiving wheel in such a way that at least one shaft coaxial with the crankshaft, which is firmly connected to the fifth bevel gear, can be driven by the internal combustion engine.
  • the coupling rod or coupling rods are thus bridged by means of the fourth and fifth bevel gears.
  • a second aspect of the invention is a two-cylinder internal combustion engine, composed of two internal combustion engines with two pistons as described above, in which two cylinder housings are arranged in a V-shape such that a flywheel is provided with a bevel gear for each cylinder housing such that the two flywheels are arranged to mesh with one another and serve to synchronize the two single-cylinder internal combustion engines, and in which the output shafts of the two internal combustion engines are each provided with a bevel gear at their end facing away from the cylinder housing of the respective engine and are arranged such that the two bevel gears can engage with a further bevel gear which is arranged on a shaft running perpendicular to the plane spanned by the axes of symmetry of the two cylinder housings, which is the output shaft of the two-cylinder internal combustion engine.
  • V-engine To increase engine power, two of the single-cylinder combustion engines described above can be combined to form a V-engine.
  • a third aspect of the invention is a four-cylinder internal combustion engine, composed of two two-cylinder internal combustion engines described above, in which axes of symmetry of cylinder housings of the four single-cylinder internal combustion engines are arranged in a plane and in which the output shafts of the four single-cylinder internal combustion engines are each provided with a bevel gear at their end facing away from the cylinder housing of the respective engine and are arranged such that the four bevel gears can engage with a common bevel gear which is arranged on a shaft running perpendicular to the plane spanned by the axes of symmetry of the four cylinder housings, which is the output shaft of the four-cylinder internal combustion engine.
  • Two of the V-engines according to the second aspect can be combined to form an engine in which four cylinders are arranged along the edges of a square.
  • Such an engine is suitable for replacing the radial engines known from aircraft.
  • a fourth aspect of the invention is a multi-cylinder internal combustion engine, consisting of at least two double-piston internal combustion engines described above, in which the shafts of the flywheels consist of half shafts which are connected by means of a second bevel gear, wherein in this engine two single-cylinder internal combustion engines are each arranged such that axes of symmetry of their cylinder housings substantially coincide and that second bevel gears of two single-cylinder internal combustion engines are connected to one another by means of a common shaft.
  • the cylinders are lined up along their axis of symmetry. In this way, a separate output shaft can be attached to the crankshaft of each cylinder. This is recommended, for example, to drive several wheels of a vehicle. This can be used in tracked vehicles.
  • a fifth aspect of the invention is a four-cylinder internal combustion engine, composed of four single-cylinder internal combustion engines described above, characterized in that axes of symmetry of the cylinder housings of the four single-cylinder internal combustion engines are arranged parallel to one another, that axes of rotation of the crankshafts of the four single-cylinder internal combustion engines are arranged in a plane such that output shafts of the four single-cylinder internal combustion engines are each provided with a bevel gear at their end facing away from the cylinder housing of the respective engine and are arranged running towards one another along diagonals of a quadrilateral such that the four bevel gears can engage with at least one common bevel gear which is arranged on a shaft running parallel to the axes of symmetry of the four cylinder housings, which is the output shaft of the four-cylinder internal combustion engine.
  • Such a so-called tetra engine is particularly suitable for aircraft engines, since the output shaft is located centrally at the intersection of the axes of the crankshafts.
  • the crankshafts form diagonals of a square.
  • a pusher propeller and a tractor propeller can be driven in this way. It is also possible to provide two common bevel gears and two output half shafts so that they extend in opposite directions and rotate in opposite directions.
  • a sixth aspect of the invention is an internal combustion engine composed of at least two single-cylinder internal combustion engines described above, in which axes of symmetry of the cylinder housings of the at least two single-cylinder internal combustion engines are arranged parallel to one another and in one plane, and in which the receiving wheels of two adjacent single-cylinder internal combustion engines are connected to one another and/or the connecting wheels of two adjacent internal combustion engines are connected to one another.
  • in-line engines with two or more cylinders can be realized in this way.
  • the internal combustion engine has a first receiving wheel and a first and a second flywheel on a first cylinder housing and a second receiving wheel and a third and a fourth flywheel on a last cylinder housing. Furthermore, these two receiving wheels are the only receiving wheels and these four flywheels are the only flywheels of the internal combustion engine.
  • an in-line engine can be realized in a particularly compact manner.
  • the required distance between the individual cylinder housings and the overall length of the crankshaft are significantly reduced because no space has to be provided for support wheels and flywheels.
  • the Fig.1 The internal combustion engine shown is housed in a circular cylindrical cylinder housing 1.
  • the axis of symmetry of the circular cylinder is designated 59.
  • Flywheels 2 at the ends of the cylinder serve to balance the flywheel masses of the pistons. They balance the engine. In this example, the flywheels 2 are synchronized via coupling rods 14.
  • a so-called receiving wheel 9 between the two flywheels 2 on one side receives the movement of the flywheels via the two coupling rods 14 of the two flywheels, which are seated on a common pin.
  • the receiving wheel 9 can be designed as a three-disk flywheel with a centrifugal clutch. Since the coupling rods prevent direct power transfer, a bevel gear set with bridging gears 10 is attached to the receiving gear to bridge the coupling rods, with the power transfer gear 11 as the outer element.
  • the receiving gear 9 serves as the inner element.
  • the shaft stub 12 is attached to the outside of the power transfer gear, which transfers the power of the engine to a gearbox.
  • Each flywheel 2 is designed as a circular, disc-shaped hollow body.
  • a pin is attached near the outer edge of the wheel, to which the coupling rod is attached.
  • the disc-shaped hollow body is filled with a flywheel whose job is to balance the flywheel mass of the two pistons 3.
  • the design has a total of four such flywheel masses. However, these flywheel masses must also balance the flywheel masses of two pistons instead of just one.
  • the flywheels are connected by a simple shaft without a bevel gear set. In this way, two flywheels each run in parallel, which is comparable to the crankshaft webs of the conventional engine, which balance the flywheel mass of the piston in pairs.
  • the two pistons 3 are kept at a distance by four spacer rods 16. This construction is called a piston cage. It is also possible to use only two or six appropriately arranged spacer rods instead of four.
  • the crankshaft 4 is constructed as follows:
  • the connecting rod 5 is attached to the underside of one of the two pistons. This is connected to the side of the piston facing away from the combustion chamber by a piston pin 65.
  • the connecting rod 5 ends at the short cross-segment shaft 50 between two simple crankshaft webs 52. Since both pistons are rigidly connected to one another, it is sufficient to attach an internal connecting rod 5 and an internal crankshaft to just one of the two pistons 3.
  • An external shaft stub 53 transfers the combined force of both pistons through the cylinder housing 1 to the receiving wheel 9. This design makes a crankshaft housing separate from the cylinder, i.e. the housing of the pistons, superfluous.
  • the cylinder head 24 is a hollow body that has the shape of a flat, circular can. It consists of a cover 26, a base 27 and a border 28.
  • the cavity 25 is cooled with water.
  • a closed cooling circuit is created via supply and discharge lines (not shown) and a water pump (also not shown).
  • the cylinder head of the invention has not just one inlet and/or outlet opening, but at least two. Usually, at least one opening is provided for the inlet and one opening for the outlet. Since both openings open and close according to the same functional principle, only one opening is shown for better visibility, which in this example functions as both an inlet and an outlet.
  • the control of the intake and exhaust ports extends over three levels.
  • the first, outer level is located above the cylinder head 24, the second level is located inside the cylinder head, i.e. in the cylinder head cavity 25, and the third level is located just below the cylinder head at the lower edge (base) of the cylinder head 27 or at the upper edge of the combustion chamber 29.
  • the first level above the cylinder head, contains the control mechanism for the slide 37.
  • the second, middle level is the water-filled interior of the cylinder head cavity 25.
  • the actuator 78 is coupled to the upper end of the connecting shaft 33 and moves it. This is located almost entirely in the second, middle level.
  • the connecting shaft 33 passes through the water jacket of the cylinder head within its guide tube 35 and reaches into the combustion chamber.
  • the third, lower level is the upper edge of the combustion chamber or the base 27 of the cylinder head.
  • a slide 37 moves back and forth at a 60° angle without direct material contact and at a short distance from the cylinder head base.
  • the slide opens and closes the inlet or outlet opening.
  • the explosion pressure causes the system to seal itself.
  • the slide is moved via the connecting shaft 33, which in turn is moved via an actuator 78.
  • Guide tubes 35 run between the cover and the base of the cylinder head, inside which the connecting axis 33 is located. These axes begin above the cylinder head cover 26, pass through the cylinder head and end in the combustion chamber 29 at the pivot points of the slides 37.
  • the slide control mechanism consists of three tubes inserted into one another, the outer guide tube 35, the inner connecting shaft 33 and a spring pin 77 in a recess within the connecting shaft.
  • the problem is to decouple the radial movement of the connecting shaft and the spring-loaded axial movement of the spring pin 77.
  • the connecting shaft is fixed by two circumferential elevations 79 in circumferential grooves 80 inside the guide tube 35.
  • the spring pin has four axially extending elevations 75, which engage in axially extending grooves 76 of the connecting shaft 33.
  • the spring pin 77 is thus given a short stretch of axial spring travel so that it can keep the slide away from the lower edge of the cylinder head, but also so that the explosion pressure can push it a short distance
  • the actuator control of the rotary movement of the connecting shaft eliminates the limitations of the rigid camshaft curves and makes the timing completely flexible.
  • an actuator 78 connected to the connecting shaft 33 for the direct control of the connecting shaft.
  • An electronic control device (it can also be the car's black box) is connected to the actuator, which electronically controls the rotary movements of the actuator 78. This removes the limits of the rigid camshaft curves. This makes the control times completely flexible. Since the slides are electronically controlled by a control device, the opening and closing times can be varied completely freely as required. This means that the opening or closing of the inlet and outlet channels can be advanced or delayed relative to the position of the piston.
  • the slides 37 open and close the lower opening of the intake or exhaust duct 43 and 44, which extends into the combustion chamber.
  • Each duct opening is provided with a raised ring 74, which extends over the lower edge of the cylinder head by exactly the amount that corresponds to the distance between the top of the slide and the lower edge of the cylinder head. Since the slides close the opening coming from the side and floating completely flat close to the cylinder head base, the slides are pressed against the raised ring by the compression of the gas mixture or the explosion pressure of the combustion chamber, thereby sealing the opening completely tightly.
  • This is a self-reinforcing type of opening closure, which corresponds to the way the valve plate of a conventional internal combustion engine works. This ensures maximum compression and maximum power output.
  • each inlet or outlet port opening must be provided with an externally rounded raised ring 74 onto which the slide can run flat in order to reliably close the channel.
  • the raised ring is raised above the cylinder head base to the same extent as the slide is raised above the cylinder head base over the lower end of the connecting axis.
  • the actuator is well protected against the heat of the combustion chamber in an air area above the cylinder head and its movement is not inhibited by the cylinder head's water jacket.
  • the control axis 33 runs in the guide tube 35, which extends from the cover 26 through the water-filled cylinder head cavity 25 to the base 27 of the cylinder head. The control axis therefore does not run in the water, but in the guide tube, and can therefore be lubricated with oil inside the guide tube.
  • Thermal bridges arise because the guide tube 35 and the control axis 33 are guided through the cylinder head 24. The thermal energy that these thermal bridges dissipate from the combustion chamber is dissipated by the water cooling of the cylinder head.
  • a cylinder head with four pairs of slides is shown. Each slide closes or opens an inlet channel 43 or an outlet channel 44.
  • the inlet and outlet channels 43 and 44 are adjacent to each other. They are opened and closed by the described slides, which operate horizontally within the combustion chamber on the underside of the cylinder head base.
  • the adjacent intake ports are connected to each other via pressure rings 7.
  • the pressure rings 7 correspond to the injection rail in the conventional common rail system.
  • Fig.5 shows another embodiment of the combustion engine of the Fig.1 .
  • the flywheels 2 drive a bevel gear 19 each via two half shafts 6.
  • These bevel gears 19 are connected via a further bevel gear 20.
  • This enables the rotation of the flywheels 2 to rotate in opposite directions.
  • a connecting gear 13 which is mounted in a bearing (not shown).
  • Fig.6 shows a variation of the combustion engine of the Fig.1
  • the coupling rods attached on both sides between the flywheels are replaced by a traction device 18 such as a chain or a corresponding toothed belt.
  • the coupling rods that have been eliminated no longer stand in the way of a crankshaft that extends directly from the inside of the respective cylinder through the cylinder wall to the outside. Since the advantages that allow the crankshaft to be kept simple, i.e. the flywheel mass compensation outsourced to the flywheels and the supporting effect of the rigid spacer rods, are still effective, a crankshaft housing is still not required.
  • Fig.7 shows a further possible variation of the combustion engine according to the invention with variable compression.
  • each of the Fig.1 shown spacer rods 16 into three segments.
  • the lower and upper segments 60 are designed as immersion tubes
  • the middle segment 61 is designed as a standpipe.
  • the inside diameter of this standpipe 61 is slightly larger than the outside diameter of the immersion tubes 60.
  • the immersion tubes 60 can dip into the standpipe 61.
  • Four control legs 62 are spread apart or folded together in their crossing element 63 by a control body 64 of variable length inside the standpipe 61. This allows the length of the spacer rods to be varied. This in turn varies the compression because the length of the spacer rods influences the distance between the pistons 3.
  • This distance between the pistons 3 is in turn a fixed part of the total internal length of the cylinder housing.
  • the distance between the pistons 3 and the cylinder head 24 at the top dead center of the piston is reduced. Therefore, by extending the spacer rods, the compression is increased. In order to change the compression of both pistons, it is necessary to also make the connecting rod 5 variable in length.
  • the two-cylinder internal combustion engine shown is a so-called V-engine according to the second aspect. It is created by combining two internal combustion engines described above. It can be realized by arranging two cylinder housings 1 in a V shape in such a way that a flywheel 23 is provided with a bevel gear for each cylinder housing in such a way that the flywheels 23 provided with the bevel gear are arranged in an interlocking manner and serve to synchronize the two internal combustion engines, and that output shafts 84 of the two internal combustion engines are each provided with a bevel gear 86 at their end facing away from the cylinder housing 1 of the respective engine and so are arranged in such a way that the two bevel gears 86 can engage with a further bevel gear 82, which is arranged on a shaft 83 running perpendicular to the plane spanned by the axes of symmetry 59 of the two cylinder housings, which is the output shaft of the two-cylinder internal combustion engine.
  • Fig.9 is a two V-engined Fig.8 composite four-cylinder engine.
  • a power connection between four alternating chamber engines arranged in a square is possible. If the power output of the output shafts 84 of the individual cylinders is diverted along the diagonals of the square and combined via a set of four bevel gears 86 arranged at the ends of the output shafts 84 and a central bevel gear 82, a high power can be generated that can be diverted perpendicular to the plane of the square via the output shaft 83, for example to a propeller 89.
  • This design is suitable for replacing radial engines.
  • Fig.10 A so-called chain engine is shown, in which several, in this case four, cylinder housings 1 are lined up along their axis of symmetry. In all cases, these are engines in which the shaft of the flywheels 2 is split. Such an engine is in Fig.5
  • the half shafts 6 carry bevel gears 19 at their end remote from the flywheels. These bevel gears 19 are connected via a further bevel gear 20. Because the shaft of the flywheels 2 consists of two half shafts 6, the direction of rotation of the flywheels 2 on both sides of the cylinders is opposite. Accordingly, the output shafts on both sides of the cylinders also rotate in opposite directions. If, for example, in a If synchronization of the shafts on both sides of the cylinders is required in a tracked vehicle, then a corresponding gearbox must be provided on at least one side.
  • the Tetra engine shown consists of four cylinder housings 1 with eight combustion chambers.
  • the cylinder housings 1 are arranged in such a way that they are similar to the four "cylinders" of a high-rise building in Kunststoff.
  • the rotary motion of the output shafts 84 of the four cylinders is diverted into the space between the cylinders by the belt drive of the flywheels.
  • These four output shafts 84 run along the diagonals of a square.
  • Each of these four output shafts carries a bevel gear 86. All four bevel gears meet in the middle of the space.
  • All four bevel gears 86 mesh with two central gears 82, from each of which a split output shaft 83 extends, which projects beyond the front and rear limits of the Tetra engine.
  • This output shaft 83 runs parallel to the axes of symmetry 59 of the four cylinder housings.
  • the two half shafts of the output shaft here rotate in opposite directions.
  • a set of flywheels 2 is provided on both sides of the crankshaft of each cylinder housing 1.
  • Fig. 13 A more compact design of the Tetra engine is shown.
  • a set of flywheels is arranged only on the side of the cylinder 1 that is remote from the common output shaft. This allows the output shafts 84 to be shortened.
  • Fig. 14 is a series engine, which in this example is composed of four cylinder housings 1.
  • the crankshafts of the two cylinders shown on the left in the picture are connected to each other by connecting the receiving wheels 9 by means of a bridging wheel 10.
  • the crankshafts of the two cylinders shown on the right in the picture are also connected to each other.
  • Both cylinder pairs are connected to one another in that the connecting wheels 13 of adjacent cylinders arranged between two flywheels 2 are connected to one another via a bridging wheel 10.
  • the receiving wheels 9 and the two connecting wheels 13 facing one another, as well as the gears 10 are designed as bevel gears.
  • the crankshaft of this in-line engine with four cylinders is continuous for two cylinders each.
  • the connecting wheels 13 are joined together by means of a bridging wheel 10. These connecting wheels 13 are not directly connected to the adjacent crankshaft stub. The connecting wheels 13 are driven via the receiving wheels 9 on the other side of the respective cylinder and the flywheel set.
  • Any shaft of the bridging gears 10 as well as any shaft of the bevel gears that connect the two half shafts of the flywheel drive wheels 2 can be used as the output shaft of this motor.
  • traction means 18 such as belts are used to connect the flywheels 2 to the receiving wheels 9.
  • flywheels 2 are only present on the outside of the two cylinders that are at the ends of the row.
  • the pistons of the inner cylinders are balanced by means of the flywheels of the cylinders at the ends of the row. If no flywheels are provided on the inner cylinders, a continuous crankshaft is possible, which extends through a receiving wheel 9 into the output shaft 83.
  • the first requirement is that the power transmission from the pickup wheel to the shaft stub is interrupted via a clutch, thereby temporarily bringing the shaft stub to a standstill.
  • the second requirement is that, over a number of cycles, a control command to the actuator moves the slides into a position where all inlet and outlet channels are opened simultaneously, so that the old gas mixture can escape completely. This prevents the gasoline gas mixture and the diesel gas mixture from meeting in the combustion chamber and causing damage.
  • the third requirement is that you have two separate fuel tanks and two separate fuel lines. A switch must be placed between the two lines to allow or block the flow of the type of fuel that is currently required or blocked.
  • the pressure rings must be completely emptied before they can be filled with the new type of fuel.
  • the piston empties the pressure rings by sucking them down and pushing out gas through the permanently open outlet openings during its upward movement.
  • the pressure rings are emptied over several revolutions until they are completely empty. After this, operation with the new type of fuel continues under electronic control.
  • the single-chamber engine has only one piston, one combustion chamber and only two flywheels. It can easily be built as a small engine, e.g. for mopeds. It needs a conventional crankshaft that diverts the power to the outside. It goes without saying that no complex crankshaft construction is required here either, as the flywheels compensate for the imbalance of the piston movement. Accordingly, no complex crankshaft housing is required.
  • the working strokes of the two combustion chambers support each other.
  • the stroke sequence of one combustion chamber is shifted by exactly one stroke compared to the other.
  • stroke 3 working stroke
  • the piston moves downwards after ignition.
  • This piston transfers its kinetic energy to the other piston via the rigid spacer rods.
  • This piston is currently in stroke 2 (compression stroke).
  • the combustion energy of the first piston therefore supports the compression movement of the second piston.
  • the second piston then reaches top dead center and is moved in the opposite direction again in stroke 3. This movement meets stroke 4 (exhaust stroke) of the first piston and amplifies its exhaust movement to remove the old gases.
  • the intake movement (stroke 1) of the first piston then meets the exhaust movement (stroke 4) of the second piston, and then the compression movement of the first piston (stroke 2) meets the intake movement of the second piston (stroke 1).
  • the movements of the two pistons therefore always support each other and run in the same direction, even if the support is limited by the fact that ignition only takes place every fourth stroke.
  • the flywheels overcome the "dry spell" until the next ignition. If you work with a second cylinder, you have an ignition offset of one stroke for all four combustion chambers, so that one combustion chamber is always performing a working stroke, thus ensuring a continuous ignition sequence that constantly delivers power.
  • the alternating chamber engine does not require valves. This avoids valve plates that are in the middle of the gas flow and therefore severely inhibit it. This increases performance and reduces consumption. Since the gas channels are no longer opened and closed mechanically, not only valves but also camshafts are eliminated. In addition, there are no longer rigid opening and closing times caused by different cam shapes, but instead, thanks to the control of the slide infinitely variable using an electronic actuator. This opens up new scope for adjustment under changing load conditions.
  • the pistons are held in place by four spacer rods. This makes it almost impossible for the pistons to tilt near the dead center. This also makes it easier to achieve large piston diameters.
  • the interchangeable chamber engine also has the same variability capabilities as today's modern four-stroke engine.
  • the variable control of intake and exhaust allows the timing of injection and exhaust to be dynamically adapted to the respective load condition of the engine. This makes it possible to adjust the power and torque curve just as carefully as with a conventional four-stroke engine.
  • Dynamos can be attached to one or more flywheels via gear ring connections, which can feed recuperated braking energy back into the motor.
  • the motor can therefore also be used as a hybrid motor that can recover kinetic energy and convert it back into electrical energy.
  • the engine is easier to repair than the conventional four-stroke engine. Since it burns very cleanly and the pistons are broadly supported by the spacer rods, wear should also be less and the service life should therefore be longer.
  • multi-cylinder engines can be manufactured using the modular principle.
  • the sizes of the cylinder and piston are determined based on the piston stroke and the piston diameter. From these The balancing masses of the flywheels are derived from these dimensions.
  • Multi-cylinder engines can be manufactured by simply assembling these elements. The only variables are the flywheels connecting the individual cylinders and the elements of the crankshaft or output shaft connecting the individual cylinders.
  • a separate block as a housing for the crankshaft and cylinders and a cylinder head adapted to the number of cylinders are not required.
  • these elements are adapted to the respective engine. With the present invention, however, it is possible to design and build a new engine with more or fewer cylinders without great effort in the design and manufacture of the engine housing or other parts.

Description

  • Die Erfindung betrifft einen Verbrennungsmotor nach dem Oberbegriff des Anspruchs 1.
  • Obwohl Verbrennungsmotoren eine kontinuierliche Entwicklung erfahren haben, stellt der Raumbedarf in der herkömmlichen Konstruktion ein Problem dar. Insbesondere ist aufgrund des Platzbedarfs der Ausgleichsgewichte an den Kurbelwellenarmen sowie aufgrund der Notwendigkeit einer Krafteinleitung in einen abstützenden Rahmen (das Kurbelwellengehäuse) ein umfangreiches Kurbelwellengehäuse erforderlich. Darüber hinaus stellen die Ventile in der herkömmlichen Konstruktion ein erhebliches Problem dar. So bilden die Ventilteller ein Hindernis im Gasstrom. Weiter sind Ventilfedern nötig, damit die Ventile zuverlässig entlang der Nocken der Nockenwelle geführt werden.
  • Anhand der US 2 310 733 A ist ein Verbrennungsmotor nach dem Oberbegriff des Anspruchs 1 bekannt geworden.
  • Hiervon ausgehend stellt sich die Aufgabe, Verbrennungsmotoren zu verbessern, insbesondere im Hinblick auf den Platzbedarf.
  • Diese Aufgabe wird mit dem Gegenstand der unabhängigen Ansprüche gelöst. Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen zu finden.
  • Ein erster Aspekt der Erfindung ist ein Verbrennungsmotor, der als Viertakt-Hubkolbenmotor ausgeführt ist, aufweisend
    • eine Kurbelwelle, die zwei Kurbelwellenstümpfe und zwei Kurbelarme, deren jeweils erstes Ende fest mit den Kurbelwellenstümpfen verbunden ist und deren jeweils zweites Ende fest mit einem Kurbelzapfen verbunden ist, aufweist,
    • eine Pleuelstange, die an einem ersten Ende mit dem Kurbelzapfen verbunden ist und an einem zweiten Ende mit einem ersten Kolben verbunden ist, und
    • ein Zylindergehäuse, dessen Innenseite als senkrechter Kreiszylinder ausgeformt ist, wobei zwischen dem ersten Kolben und einer ersten kreisförmigen Endfläche des Kreiszylinders ein Brennraum angeordnet ist, und wobei in dem Zylindergehäuse auf der von dem ersten Kolben abgewandten Seite der Kurbelwellenstümpfe ein zweiter Kolben angeordnet ist, der mit dem ersten Kolben mittels mindestens zweier Distanzstangen verbunden ist, und wobei zwischen dem zweiten Kolben und einer zweiten der kreisförmigen Endflächen des Kreiszylinders ein zweiter Brennraum angeordnet ist, und wobei in jeder der einem Brennraum zugewandten kreisförmigen Endflächen des Kreiszylinders mindestens eine Öffnung vorgesehen ist, und wobei an jeder der einem Brennraum zugewandten kreisförmigen Endflächen des Kreiszylinders eine der Zahl der Öffnungen entsprechende Zahl von Schiebern angeordnet ist, die zum Schließen und Öffnen der jeweiligen Öffnung ausgeführt ist/sind.
  • Ein solcher Motor, der Müllerscher Wechselkammermotor genannt wird, zeichnet sich durch den Vorteil aus, dass sich in der Ausführung als Doppelkolbenmotor die Fertigung des Motors erheblich vereinfachen lässt. Besonders vorteilhaft ist hierbei, dass für zwei Kolben nur eine Pleuelstange verwendet werden muss. Dies wird dadurch möglich, dass die beiden Kolben mittels Distanzstangen miteinander verbunden sind. Ein weiterer Vorteil besteht darin, dass zwei Kolben in einem einzigen Zylinder untergebracht werden können. Anders als bei bisherigen Entwürfen von Verbrennungsmotoren ist es hier jedoch nicht nötig, für Kurbelwellengehäuse und/oder für Brennräume von der Form des senkrechten Kreiszylinders abzuweichen.
  • In einigen Ausführungsformen ist ein erster Kurbelwellenstumpf außerhalb des Zylindergehäuses fest mit einem ersten Aufnahmerad verbunden und so eingerichtet, dass der Kurbelwellenstumpf das erste Aufnahmerad antreibt, das so eingerichtet ist, dass es ein erstes und ein zweites Schwungtreibrad antreibt, dass das zweite Schwungtreibrad auf der von dem ersten Schwungtreibrad abgewandten Seite des Aufnahmerades angeordnet ist. Weiter sind das erste und das zweite Schwungtreibrad so eingerichtet, dass eine Drehachse des jeweiligen Schwungtreibrads parallel zur Drehachse der Kurbelwelle und senkrecht zu einer Symmetrieachse des Kreiszylinders verläuft und dass ein Schnittpunkt der Drehachse des jeweiligen Schwungtreibrads und der Symmetrieachse des Kreiszylinders weiter von der Kurbelwelle entfernt ist als die dem Brennraum zugewandte kreisförmige Endfläche des Kreiszylinders, und dass das erste und das zweite Schwungtreibrad den Verbrennungsmotor auswuchten.
  • Die Kurbelwellenarme sind nicht mehr als Ausgleichsgewichte ausgestaltet. Um den Doppelkolbenmotor günstig auszuwuchten, ist außerhalb des Zylinder- und Kurbelwellengehäuses ein Aufnahmerad auf der Kurbelwelle angebracht. Auf jeder Seite des Aufnahmerades ist. ein Schwungtreibrad vorgesehen. Entsprechend wird für die vom jeweiligen Kolben aufgebrachten Drehmomente mindestens je ein Schwungtreibrad als Ausgleichsgewicht verwendet. Diese Schwungtreibräder werden über das Aufnahmerad von der Kurbelwelle angetrieben. Die Schwungtreibräder sind außerhalb des Motorgehäuses angebracht. Durch die Verwendung solcher Schwungtreibräder werden die Lager der Kurbelwelle weniger beansprucht. Weiter wird es durch die Ausführung der Kurbelwellenarme ohne Ausgleichsgewichte möglich, Brennraum, Kolben und Kurbelwelle komplett in einem einzigen Zylindergehäuse unterzubringen. Dieses Zylindergehäuse hat auf seiner Innenseite die Form eines senkrechten Kreiszylinders. Durch diesen Aufbau wird die Fertigung des Motors erheblich vereinfacht. Darüber hinaus kann mit einer solchen Konstruktion der erforderliche Bauraum reduziert werden.
  • In einigen weiteren Ausführungsformen sind an dem Verbrennungsmotor ein drittes und ein viertes Schwungtreibrad angebracht, wobei das dritte Schwungtreibrad im Wesentlichen auf derselben Drehachse wie das erste Schwungtreibrad angeordnet ist und das vierte Schwungtreibrad im Wesentlichen auf derselben Drehachse wie das zweite Schwungtreibrad angeordnet ist. Dabei sind das dritte und das vierte Schwungtreibrad auf derjenigen Seite des Zylinders angeordnet, auf der ein zweiter Kurbelwellenstumpf aus dem Zylindergehäuse herausführbar ist. Schließlich sind das dritte und das vierte Schwungtreibrad so eingerichtet, dass sie den Verbrennungsmotor auswuchten.
  • Die Kräfte auf die Lager der Kurbelwelle können weiter reduziert werden, indem die Achsen des ersten und des zweiten Schwungtreibrads über die Symmetrieachse des Zylindergehäuses hinaus verlängert werden. Dann können ein drittes und ein viertes Schwungtreibrad auf der Seite angebracht werden, auf der der zweite Kurbelwellenstumpf aus dem Zylindergehäuse herausgeführt werden kann.
  • Bei dem Verbrennungsmotor ist in jeder der einem Brennraum zugewandten kreisförmigen Endflächen des Kreiszylinders mindestens eine Öffnung vorgesehen. Weiter ist an jeder der einem Brennraum zugewandten kreisförmigen Endflächen des Kreiszylinders eine der Zahl der Öffnungen entsprechende Zahl von Schiebern angeordnet, die zum Schließen und Öffnen der jeweiligen Öffnung ausgeführt ist/sind.
  • Hierbei wird durch die Verwendung eines drehbar gelagerten Schiebers, der elektronisch gesteuert ist, der Wegfall der bisher verwendeten Ventile möglich, die durch ihre Ventilteller den Gasstrom erheblich behindern. Die Anbringung der Schwungtreibräder auf den von der Kurbelwelle entfernten Seiten des Brennraums wird dadurch erleichtert, dass der den Ventiltrieb ersetzende Schieber und die dazugehörige Ansteuerung sowie die Einspritzung und die Ausleitung der verbrannten Gase nicht so viel Raum in Anspruch nehmen wie bei einem konventionellen Motor.
  • In einigen weiteren Ausführungsformen ist bei dem Verbrennungsmotor der zweite Kurbelwellenstumpf außerhalb des Zylindergehäuses fest mit einem zweiten Aufnahmerad verbunden und so eingerichtet, dass der zweite Kurbelwellenstumpf das zweite Aufnahmerad antreibt, das so eingerichtet ist, dass es das dritte und das vierte Schwungtreibrad antreibt.
  • Die Unwucht des Motors kann weiter verringert werden, indem beide Kurbelwellenstümpfe mit einem Aufnahmerad zum Antrieb der Schwungtreibräder versehen sind.
  • In einigen weiteren Ausführungsformen sind bei dem Verbrennungsmotor die Drehachsen des ersten und des dritten Schwungtreibrads sowie des zweiten und des vierten Schwungtreibrads jeweils zwei voneinander getrennte Halbwellen, die jeweils an den von den Schwungtreibrädern abgewandten Enden mit einem ersten Kegelzahnrad fest so verbunden sind, dass das erste und das zweite Schwungtreibrad gegensinnig zu dem dritten und dem vierten Schwungtreibrad drehen.
  • Bei geeigneter Ausgestaltung der Schwungtreibräder ist es möglich, die Wellen zwischen den beiden Schwungtreibrädern aus jeweils zwei Halbwellen auszuführen. Beide Halbwellen sind jeweils mit einem ersten Kegelzahnrad an dem von dem Schwungtreibrad abgewandten Ende versehen. Ein zweites Kegelzahnrad steht im Eingriff mit beiden ersten Kegelzahnrädern. Die Welle dieses zweiten Kegelzahnrads verläuft im Wesentlichen auf der Symmetrieachse des Zylindergehäuses. Mittels dieser Konstruktion aus drei Kegelzahnrädern lässt sich also bewirken, dass die beiden Schwungtreibräder gegensinnig laufen. Durch den gegensinnigen Lauf der beiden Schwungtreibräder lässt sich die Auswuchtwirkung der Schwungtreibräder weiter verbessern.
  • In einigen weiteren Ausführungsformen treiben bei dem Verbrennungsmotor das Aufnahmerad oder die Aufnahmeräder das Schwungtreibrad oder die Schwungtreibräder mittels jeweils eines Zugmittels, insbesondere einer Kette oder eines Riemens an.
  • Vorteilhaft können zum Antrieb der Schwungtreibräder Zugmittel, insbesondere Riemen wie zum Beispiel Zahnriemen oder Ketten wie zum Beispiel Rollenketten verwendet werden. Hier können besonders gängige und leicht verfügbare Teile verwendet werden.
  • In einigen weiteren Ausführungsformen treiben an dem Verbrennungsmotor das Aufnahmerad oder die Aufnahmeräder die Schwungtreibräder mittels Kuppelstangen an.
  • Wenn das Aufnahmerad die Schwungtreibräder mittels Kuppelstangen antreibt, stellt dies eine besonders robuste und verschleißarme Form der Verbindung zwischen Aufnahmerad und Schwungtreibrad her.
  • In einigen weiteren Ausführungsformen ist an dem Verbrennungsmotor das erste und/oder das zweite Aufnahmerad als drittes Kegelzahnrad ausgeführt. Weiter sind je Aufnahmerad ein viertes und ein fünftes Kegelzahnrad so angeordnet, dass mindestens eine mit der Kurbelwelle koaxiale Welle, die fest mit dem fünften Kegelzahnrad verbunden ist, von dem Verbrennungsmotor antreibbar ist. So werden mittels der vierten und fünften Kegelzahnräder die Kuppelstange oder Kuppelstangen überbrückt.
  • Wenn auf beiden Seiten der Kurbelwelle Aufnahmeräder vorgesehen sind, die jeweils mit einer Kuppelstange versehen sind, kann es nötig werden, den Abtrieb des Motors in dieser Weise zu realisieren.
  • Ein zweiter Aspekt der Erfindung ist ein Zweizylinder-Verbrennungsmotor, zusammengesetzt aus zwei oben beschriebenen Verbrennungsmotoren mit zwei Kolben, in dem zwei Zylindergehäuse in V-Form so angeordnet sind, dass je Zylindergehäuse ein Schwungtreibrad derart mit einer Kegelverzahnung versehen ist, dass die beiden Schwungtreibräder ineinandergreifend angeordnet sind und zur Synchronisierung der beiden Einzylinder-Verbrennungsmotoren dienen, und in dem Abtriebswellen der beiden Verbrennungsmotoren an ihrem von dem Zylindergehäuse des jeweiligen Motors abgewandten Ende mit je einem Kegelzahnrad versehen und so angeordnet sind, dass die beiden Kegelzahnräder in ein weiteres Kegelzahnrad eingreifbar sind, das auf einer senkrecht zu der von Symmetrieachsen der beiden Zylindergehäuse aufgespannten Ebene verlaufenden Welle angeordnet ist, die Abtriebswelle des Zweizylinder-Verbrennungsmotors ist.
  • Um die Motorleistung zu erhöhen, können zwei der oben beschriebenen Einzylinder-Verbrennungsmotoren zu einem V-Motor zusammengesetzt werden.
  • Ein dritter Aspekt der Erfindung ist ein Vierzylinder-Verbrennungsmotor, zusammengesetzt aus zwei oben beschriebenen Zweizylinder-Verbrennungsmotoren, in dem Symmetrieachsen von Zylindergehäusen der vier Einzylinder-Verbrennungsmotoren in einer Ebene angeordnet sind und in dem Abtriebswellen der vier Einzylinder-Verbrennungsmotoren an ihrem von dem Zylindergehäuse des jeweiligen Motors abgewandten Ende mit je einer Kegelverzahnung versehen und so angeordnet sind, dass die vier Kegelverzahnungen in ein gemeinsames Kegelzahnrad eingreifbar sind, das auf einer senkrecht zu der von Symmetrieachsen der vier Zylindergehäuse aufgespannten Ebene verlaufenden Welle angeordnet ist, die Abtriebswelle des Vierzylinder-Verbrennungsmotors ist.
  • Zwei der V-Motoren nach dem zweiten Aspekt können zu einem Motor zusammengesetzt werden, in dem vier Zylinder entlang der Kanten eines Vierecks angeordnet sind. Ein solcher Motor ist geeignet, die von Flugzeugen bekannten Sternmotoren zu ersetzen.
  • Ein vierter Aspekt der Erfindung ist ein Mehrzylinder-Verbrennungsmotor, bestehend aus mindestens zwei oben beschriebenen Doppelkolben-Verbrennungsmotoren, bei denen die Wellen der Schwungtreibräder aus Halbwellen bestehen, die mittels eines zweiten Kegelzahnrades verbunden sind, wobei in diesem Motor zwei Einzylinder-Verbrennungsmotoren jeweils so angeordnet sind, dass Symmetrieachsen ihrer Zylindergehäuse im Wesentlichen zusammenfallen und dass zweite Kegelzahnräder zweier Einzylinder-Verbrennungsmotoren mittels einer gemeinsamen Welle miteinander verbunden sind.
  • Hierbei werden die Zylinder entlang ihrer Symmetrieachse aufgereiht. Auf diese Weise kann an der Kurbelwelle eines jeden Zylinders eine eigene Abtriebswelle angebracht werden. Dies empfiehlt sich zum Beispiel, um mehrere Räder eines Fahrzeugs anzutreiben. Dies kann bei Kettenfahrzeugen eingesetzt werden.
  • Ein fünfter Aspekt der Erfindung ist ein Vierzylinder-Verbrennungsmotor, zusammengesetzt aus vier oben beschriebenen Einzylinder-Verbrennungsmotoren, dadurch gekennzeichnet, dass Symmetrieachsen der Zylindergehäuse der vier Einzylinder-Verbrennungsmotoren parallel zueinander angeordnet sind, dass Drehachsen der Kurbelwellen der vier Einzylinder-Verbrennungsmotoren in einer Ebene so angeordnet sind, dass Abtriebswellen der vier Einzylinder-Verbrennungsmotoren an ihrem von dem Zylindergehäuse des jeweiligen Motors abgewandten Ende mit je einem Kegelzahnrad versehen und entlang von Diagonalen eines Vierecks aufeinander zu verlaufend so angeordnet sind, dass die vier Kegelzahnräder in mindestens ein gemeinsames Kegelzahnrad eingreifbar sind, das auf einer parallel zu den Symmetrieachsen der vier Zylindergehäuse verlaufenden Welle angeordnet ist, die Abtriebswelle des Vierzylinder-Verbrennungsmotors ist.
  • Ein solcher sogenannter Tetra-Motor ist besonders geeignet für Flugzeugmotoren, da die Abtriebswelle zentral am Schnittpunkt der Achsen der Kurbelwellen liegt. Die Kurbelwellen bilden hierbei Diagonalen eines Vierecks. Bei Flugzeugen lassen sich auf diese Weise ein Schubpropeller und ein Zugpropeller antreiben. Es ist auch möglich, zwei gemeinsame Kegelzahnräder und zwei Abtriebshalbwellen so vorzusehen, dass sie sich in entgegengesetzte Richtungen erstrecken und gegenläufig drehen.
  • Ein sechster Aspekt der Erfindung ist ein Verbrennungsmotor, zusammengesetzt aus mindestens zwei oben beschriebenen Einzylinder-Verbrennungsmotoren, in dem Symmetrieachsen der Zylindergehäuse der mindestens zwei Einzylinder-Verbrennungsmotoren parallel zueinander und in einer Ebene angeordnet sind, und in dem die Aufnahmeräder zweier benachbarter Einzylinder-Verbrennungsmotoren miteinander verbunden sind und/oder die Verbindungsräder zweier benachbarter Verbrennungsmotoren miteinander verbunden sind.
  • Zur Erhöhung der Motorleistung können auf diese Weise Reihenmotoren mit zwei oder mehr Zylindern realisiert werden.
  • In einigen Ausführungsformen des sechsten Aspekts sind bei dem Verbrennungsmotor an einem ersten Zylindergehäuse ein erstes Aufnahmerad und ein erstes und ein zweites Schwungtreibrad und an einem letzten Zylindergehäuse ein zweites Aufnahmerad und ein drittes und ein viertes Schwungtreibrad vorhanden. Weiter sind diese beiden Aufnahmeräder die einzigen Aufnahmeräder und diese vier Schwungtreibräder die einzigen Schwungtreibräder des Verbrennungsmotors.
  • In diesen Ausführungsformen kann ein Reihenmotor besonders kompakt realisiert werden. Der erforderliche Abstand zwischen den einzelnen Zylindergehäusen und die Gesamtlänge der Kurbelwelle sind erheblich reduziert, weil kein Raum für Aufnahmeräder und Schwungtreibräder vorgesehen werden muss.
  • Nachfolgend werden bevorzugte Ausführungsformen des Verbrennungsmotors beschrieben, die jeweils, soweit dies nicht ausdrücklich ausgeschlossen wird oder technisch unmöglich ist, beliebig miteinander sowie mit den weiteren beschriebenen anderen Aspekten der Erfindung kombiniert werden können.
  • Dabei zeigt
    • Fig. 1 schematisch einen Verbrennungsmotor;
    • Fig. 2 einen Zylinderkopf mit einer Ein- bzw. Auslassöffnung;
    • Fig. 3 den Antrieb des Schiebers;
    • Fig. 4 einen Zylinderkopf mit je vier Einlass- und Auslassöffnungen;
    • Fig. 5 einen Verbrennungsmotor mit gegenläufigen Schwungtreibrädern;
    • Fig. 6 einen Verbrennungsmotor mit Antrieb der Schwungtreibräder mittels eines Zugmittels;
    • Fig. 7 längenvariable Distanzstangen für eine variable Verdichtung;
    • Fig. 8 einen V-Motor mit zwei Zylindern;
    • Fig. 9 einen Rautenmotor;
    • Fig. 10 einen Kettenmotor;
    • Fig. 11 einen Tetra-Motor;
    • Fig. 12 einen Tetra-Motor;
    • Fig. 13 einen Tetra-Motor in kompakter Bauform;
    • Fig. 14 einen Reihenmotor;
    • Fig. 15 einen Reihenmotor in kompakter Bauform;
  • Der in Fig. 1 dargestellte Verbrennungsmotor ist in einem kreiszylinderförmigen Zylindergehäuse 1 untergebracht. Die Symmetrieachse des Kreiszylinders ist mit 59 bezeichnet. An den beiden kreisförmigen Endflächen des Zylinders befindet sich je ein Brennraum 29. Zwei durch starre Distanzstangen 16 fest miteinander verbundene Kolben 3 bewegen sich in einer Zylinderlaufbahn in der jeweils gleichen Richtung hin und her, wobei am einen oder anderen Ende des Zylinders abwechselnd eine Zündung (Fremd- oder Eigenzündung) erfolgt. Schwungtreibräder 2 an den Enden des Zylinders dienen dem Ausgleich der Schwungmassen der Kolben. Sie wuchten den Motor aus. Die Schwungtreibräder 2 werden in diesem Beispiel über Kuppelstangen 14 synchronisiert. Ein sogenanntes Aufnahmerad 9 zwischen den beiden Schwungtreibrädern 2 einer Seite nimmt über die auf einem gemeinsamen Zapfen sitzenden beiden Kuppelstangen 14 der beiden Schwungtreibräder die Bewegung der Schwungtreibräder auf. Bei Bedarf kann das Aufnahmerad 9 als dreischeibiges Schwungtreibrad mit Fliehkraftkupplung ausgeführt werden. Da die Kuppelstangen einer direkten Kraftableitung im Wege stehen, wird zur Überbrückung über die Kuppelstangen hinweg ein Kegelradsatz mit Überbrückungsrädern 10 an das Aufnahmerad angebaut, mit dem Kraftableitungsrad 11 als äußerem Element. Als inneres Element dient hierbei das Aufnahmerad 9. An der Außenseite des Kraftableitungsrades ist der Wellenstumpf 12 angebracht, der die Leistung des Motors an ein Getriebe weiterleitet.
  • Jedes Schwungtreibrad 2 ist als kreisrunder scheibenförmiger Hohlkörper ausgeführt. Nahe dem Außenrand des Rades ist ein Zapfen angebracht, an dem die Kuppelstange ansetzt. Auf der dem der Verankerung der Kuppelstange dienenden Zapfen 22 gegenüberliegenden Seite ist der scheibenförmige Hohlkörper mit einer Schwungmasse gefüllt, die die Aufgabe hat, die Schwungmasse der beiden Kolben 3 auszugleichen. Insgesamt besitzt die Konstruktion vier solche Schwungmassen. Allerdings müssen diese Schwungmassen auch die Schwungmassen von zwei Kolben statt nur eines Kolbens ausgleichen. Die Schwungtreibräder sind durch eine einfache Welle ohne Kegelzahnradsatz verbunden. So laufen jeweils zwei Schwungtreibräder gleichläufig, was den paarweise gleichläufig die Schwungmasse des Kolbens ausgleichenden Kurbelwellenwangen des konventionellen Motors vergleichbar ist.
  • Die beiden Kolben 3 werden durch vier Distanzstangen 16 auf Abstand gehalten. Diese Konstruktion wird als Kolben-Käfig bezeichnet. Es ist auch möglich, statt vier nur zwei oder sechs entsprechend angeordnete Distanzstangen zu verwenden.
  • Die Kurbelwelle 4 ist wie folgt aufgebaut: An der Unterseite eines der beiden Kolben ist die Pleuelstange 5 angebracht. Diese ist durch einen Kolbenbolzen 65 mit der vom Brennraum abgewandten Seite des Kolbens verbunden. Die Pleuelstange 5 endet an der kurzen Quersegmentwelle 50 zwischen zwei einfachen Kurbelwellenwangen 52. Da beide Kolben starr miteinander verbunden sind, genügt es, an nur einem der beiden Kolben 3 eine innenliegende Pleuelstange 5 und eine innenliegende Kurbelwelle anzubringen. Ein außenliegender Wellenstumpf 53 führt die vereinigte Kraft beider Kolben durch das Zylindergehäuse 1 hindurch an das Aufnahmerad 9 ab. Ein vom Zylinder, also dem Gehäuse der Kolben getrenntes Kurbelwellengehäuse wird durch diese Konstruktion überflüssig.
  • Der Ölkreislauf eines solchen Verbrennungsmotors ist hier nicht dargestellt, da er im Wesentlichen dem eines üblichen Viertaktmotors entspricht.
  • Der Zylinderkopf 24 ist ein Hohlkörper, der die Form einer flachen, kreisrunden Büchse hat. Sie besteht aus einem Deckel 26, einem Boden 27 und einer Umrandung 28. Der Hohlraum 25 ist mit Wasser gekühlt. Über nicht gezeigte Zu- und Ableitungen und eine ebenfalls nicht gezeigte Wasserpumpe wird ein geschlossener Kühlkreislauf erzeugt.
  • In den Fig. 2 und 3 ist ein beispielhafter Zylinderkopf dargestellt. Anders als in diesen Zeichnungen verfügt der Zylinderkopf der Erfindung nicht nur über eine Ein - und/oder Auslassöffnung, sondern über mindestens zwei. Üblicherweise ist mindestens eine Öffnung für den Einlass und eine Öffnung für den Auslass vorgesehen. Da beide Öffnungen nach dem gleichen Funktionsprinzip öffnen bzw. schließen, ist zur besseren Erkennbarkeit nur eine Öffnung dargestellt, die in diesem Beispiel sowohl als Einlass als auch als Auslass fungiert.
  • Die Steuerung der Ein- und Auslassöffnungen erstreckt sich über drei Ebenen. Die erste, äußere Ebene befindet sich oberhalb des Zylinderkopfs 24, die zweite Ebene befindet sich innerhalb des Zylinderkopfs, also im Zylinderkopfhohlraum 25 und die dritte Ebene befindet sich knapp unterhalb des Zylinderkopfs am Unterrand (Boden) des Zylinderkopfs 27 bzw. am Oberrand des Brennraums 29.
  • Die erste, oberhalb des Zylinderkopfs liegende Ebene enthält den Steuerungsmechanismus für den Schieber 37.
  • Die zweite, mittlere Ebene ist das wassergefüllte Innere des Zylinderkopf-Hohlraums 25. Der Aktuator 78 ist mit dem oberen Ende der Verbindungswelle 33 gekoppelt und bewegt diese. Diese befindet sich fast ganz in der zweiten, mittleren Ebene. Die Verbindungswelle 33 geht innerhalb ihres Führungsrohres 35 durch den Wassermantel des Zylinderkopfs hindurch und reicht bis in den Brennraum.
  • Die dritte, untere Ebene ist der Oberrand des Brennraums bzw. der Boden 27 des Zylinderkopfs. An der Unterseite des Bodens des Zylinderkopfs bewegt sich in einem 60°-Winkel ein Schieber 37 ohne direkten Materialkontakt in knappem Abstand zum Zylinderkopfboden hin und her. Der Schieber öffnet und schließt die Ein- oder Auslassöffnung. Der Explosionsdruck bewirkt die Selbstabdichtung des Systems. Der Schieber wird über die Verbindungswelle 33 bewegt, die wiederum über einen Aktuator 78 bewegt wird.
  • Zwischen Deckel und Boden des Zylinderkopfs verlaufen Führungsrohre 35, in deren Innerem sich die Verbindungsachse 33 befindet. Diese Achsen beginnen oberhalb des Zylinderkopfdeckels 26, gehen durch den Zylinderkopf hindurch und enden im Brennraum 29 an den Drehpunkten der Schieber 37.
  • Der Schiebersteuerungsmechanismus besteht aus drei ineinander gesteckten Rohren, dem äußeren Führungsrohr 35, der inneren Verbindungswelle 33 und einem Federstift 77 in einer Aussparung innerhalb der Verbindungswelle. Auf dem oberen Ende der Verbindungswelle 33, oberhalb des Zylinderkopfdeckels 26, befindet sich ein Aktuator 78 für die Steuerung der Drehbewegungen der Verbindungswelle. Auf dem Aktuator 78 sitzt ein nicht gezeigtes Steuerungsgerät, das die Drehbewegungen des Aktuators 78 elektronisch steuert. Es besteht das Problem, die Radialbewegung der Verbindungswelle und die gefederte Axialbewegung des Federstifts 77 zu entkoppeln. Die Verbindungswelle wird durch zwei umlaufende Erhebungen 79 in umlaufende Nuten 80 im Innern des Führungsrohrs 35 fixiert. Dadurch wird die Verbindungswelle 33 in Axialrichtung unverschiebbar, bleibt aber in Radialrichtung durch den Aktuator 78 drehbar. Daher besitzt der Federstift vier axial verlaufende Erhebungen 75, die in axial verlaufenden Nuten 76 der Verbindungswelle 33 eingreifen. Der Federstift 77 erhält dadurch eine kurze Strecke axialen Federwegs, damit er den Schieber vom Unterrand des Zylinderkopfs fernhalten kann, aber auch, damit ihn der Explosionsdruck ein kurzes
  • Stück nach oben schieben kann. Die Aktuatorsteuerung der Drehbewegung der Verbindungswelle beseitigt die Grenzen der starren Nockenwellenkurven und macht die Steuerzeiten vollkommen flexibel.
  • Oberhalb des Zylinderkopfdeckels 26 befindet sich ein mit der Verbindungswelle 33 verbundener Aktuator 78 für die Direktsteuerung der Verbindungswelle. Mit dem Aktuator ist ein elektronisches Steuerungsgerät (es kann auch die Blackbox des Autos sein) verbunden, das die Drehbewegungen des Aktuators 78 elektronisch steuert. Damit fallen die Grenzen der starren Nockenwellenkurven. Dies bewirkt eine vollkommene Flexibilisierung der Steuerzeiten. Da die Schieber durch ein Steuerungsgerät elektronisch gesteuert sind, können die Öffnungs- und Verschlusszeiten völlig frei nach Bedarf variiert werden. Es kann also eine Vor- oder Nacheilung der Öffnung oder Schließung der Ein- und Auslasskanäle relativ zur Stellung des Kolbens erreicht werden.
  • Die Schieber 37 öffnen und schließen die untere Einmündung des Ein- oder Auslasskanals 43 und 44, die in den Brennraum ragt. Jede Kanalöffnung ist mit einem Erhöhungsring 74 versehen, der exakt mit dem Maß über den Unterrand des Zylinderkopfs hinausragt, das dem Abstand zwischen der Oberseite des Schiebers und dem Unterrand des Zylinderkopfs entspricht. Da die Schieber die Öffnung von der Seite kommend und völlig flach nahe am Zylinderkopfboden entlang schwebend die Öffnung verschlie-ßen, werden die Schieber durch die Verdichtung des Gasgemischs bzw. den Explosionsdruck des Brennraums gegen den Erhöhungsring gedrückt und verschließen die Öffnung dadurch vollkommen dicht. Es liegt eine selbstverstärkende Art des Öffnungsverschlusses vor, die der Wirkungsweise des Ventiltellers eines konventionellen Verbrennungsmotors entspricht. Daher sind maximale Verdichtung und maximale Leistungsausbeute gesichert.
  • Da der Schieber nicht plan an der Unterseite des Zylinderkopfbodens anliegt, sondern einen geringen Abstand zu ihm hat, muss jede Ein- oder Auslasskanalöffnung mit einem außen abgerundeten Erhöhungsring 74 versehen sein, auf den der Schieber plan auflaufen kann, um den Kanal zuverlässig zu verschließen. Der Erhöhungsring ist in dem gleichen Maß über den Zylinderkopfboden erhaben, wie der Schieber über das untere Ende der Verbindungsachse über dem Zylinderkopfboden erhaben ist.
  • Kompressionsverluste durch die Schließelemente der Kanalöffnungen, also die Schieber, sind ausgeschlossen. Der Aktuator befindet sich gut geschützt gegen die Hitze des Brennraums in einem Luftbereich über dem Zylinderkopf und wird in seiner Bewegung nicht durch den Wassermantel des Zylinderkopfs gehemmt. Die Steuerungsachse 33 läuft in dem Führungsrohr 35, das vom Deckel 26 durch den wassergefüllten Zylinderkopf-Hohlraum 25 zum Boden 27 des Zylinderkopfs reicht. Damit läuft die Steuerungsachse nicht im Wasser, sondern im Führungsrohr, und kann daher innerhalb des Führungsrohrs mit Öl geschmiert werden.
  • Wärmebrücken entstehen, weil das Führungsrohr 35 und die Steuerungsachse 33 durch den Zylinderkopf 24 geführt werden. Die Wärmeenergie, die diese Wärmebrücken aus dem Brennraum ableiten, wird durch die Wasserkühlung des Zylinderkopfes abgeleitet.
  • In Fig. 4 ist unter anderem ein Zylinderkopf mit vier Paaren von Schiebern dargestellt. Jeweils ein Schieber verschließt oder öffnet einen Einlasskanal 43 bzw. einen Auslasskanal 44. Entsprechend der Anordnung der Ein- und Auslassöffnungen 45 und 46 liegen Ein- und Auslasskanäle 43 und 44 jeweils einander benachbart. Sie werden durch die beschriebenen, waagrecht innerhalb des Brennraums an der Unterseite des Zylinderkopfbodens arbeitenden Schieber geöffnet und geschlossen.
  • Die einander benachbarten Einlasskanäle sind über Druckringe 7 miteinander verbunden. Die Druckringe 7 entsprechen der Einspritzleiste beim konventionellen Common-Rail-System.
  • Fig. 5 zeigt eine andere Ausführungsform des Verbrennungsmotors der Fig. 1. Anders als in Fig. 1 treiben hier die Schwungtreibräder 2 über zwei Halbwellen 6 jeweils ein Kegelzahnrad 19 an. Diese Kegelzahnräder 19 sind über ein weiteres Kegelzahnrad 20 verbunden. So wird eine Gegenläufigkeit der Drehbewegung der Schwungtreibräder 2 ermöglicht. Hier befindet sich an dem, dem Aufnahmerad 9 gegenüberliegenden Ende der Kurbelwelle ein Verbindungsrad 13, dass in einer nicht gezeigten Lagerung angebracht ist.
  • Fig. 6 zeigt eine Variationsmöglichkeit des Verbrennungsmotors der Fig. 1. Hier werden die beidseitig angebrachten Kuppelstangen zwischen den Schwungtreibrädern durch ein Zugmittel 18 wie eine Kette oder einen entsprechenden Zahnriemen ersetzt. Dann stehen die weggefallenen Kuppelstangen einer direkt vom Inneren des jeweiligen Zylinders durch die Zylinderwand nach außen reichenden Kurbelwelle nicht mehr im Wege. Da die Vorteile, die es erlauben, die Kurbelwelle einfach zu halten, also der in die Schwungtreibräder ausgelagerte Schwungmassenausgleich und die tragende Wirkung der starren Distanzstangen, nach wie vor unverändert wirksam sind, braucht man nach wie vor kein Kurbelwellengehäuse. Es genügt bei dieser technischen Lösung, den Wellenstumpf, der aus dem Zylinder zum Aufnahmerad hinausführt, durch ein Loch in der Zylinderwand, genauer gesagt, durch eine in die Zylinderwand eingepasste längliche Stützhülse 67 mit innen liegendem Nadellager zu führen und zu stützen. Bei dieser Lösung entfallen das Ableitrad und die Überbrückungsräder.
  • Fig. 7 zeigt eine weitere Variationsmöglichkeit des erfindungsgemäßen Verbrennungsmotors mit variabler Verdichtung. Hier ist jede der in Fig. 1 gezeigten Distanzstangen 16 in drei Segmente geteilt. Das untere und das obere Segment 60 sind als Tauchrohr ausgeführt. Das mittlere Segment 61 ist als Standrohr ausgeführt. Der Innendurchmesser dieses Standrohrs 61 ist geringfügig größer als der Außendurchmesser der Tauchrohre 60. Die Tauchrohre 60 können in das Standrohr 61 eintauchen. Vier Steuerungsschenkel 62 werden in ihrem Kreuzungselement 63 durch einen längenvariablen Steuerungskörper 64 im Innern des Standrohres 61 gespreizt oder zusammengeklappt. Dadurch kann die Länge der Distanzstangen variiert werden. Damit wiederum variiert man die Verdichtung, weil die Länge der Distanzstangen den Abstand der Kolben 3 beeinflusst. Dieser Abstand der Kolben 3 ist wiederum ein fester Teil der gesamten Innenlänge des Zylindergehäuses. Somit wird durch eine Vergrößerung des Abstands der Kolben 3 der Abstand der Kolben 3 vom Zylinderkopf 24 am oberen Totpunkt des Kolbens verringert. Deshalb wird durch eine Verlängerung der Distanzstangen die Verdichtung erhöht. Um die Verdichtung beider Kolben zu verändern, ist es erforderlich, die Pleuelstange 5 ebenfalls längenvariabel auszuführen.
  • Im Folgenden werden Motoren beschrieben, die über mehrere Zylinder der oben beschriebenen Bauart verfügen und mit Doppelkolben ausgestattet sind. Hierbei werden zur Vereinfachung der Zeichnungen die Kegelzahnräder 9, 10, 11 und 13 (s. Fig. 5) als Scheiben oder Stirnzahnräder dargestellt. Dies erfolgt insbesondere in den Fig. 8, 9, 10 und 14.
  • Ein in Fig. 8 dargestellter Zweizylinder-Verbrennungsmotor ist ein sogenannter V-Motor nach dem zweiten Aspekt. Er entsteht, indem zwei oben beschriebene Verbrennungsmotoren zusammengesetzt werden. Er lässt sich realisieren, indem zwei Zylindergehäuse 1 in V-Form so angeordnet sind, dass je Zylindergehäuse ein Schwungtreibrad 23 derart mit einer Kegelverzahnung versehen ist, dass die mit der Kegelverzahnung versehenen Schwungtreibräder 23 ineinandergreifend angeordnet sind und zur Synchronisierung der beiden Verbrennungsmotoren dienen, und dass Abtriebswellen 84 der beiden Verbrennungsmotoren an ihrem von dem Zylindergehäuse 1 des jeweiligen Motors abgewandten Ende mit je einem Kegelzahnrad 86 versehen und so angeordnet sind, dass die beiden Kegelzahnräder 86 in ein weiteres Kegelzahnrad 82 eingreifbar sind, das auf einer senkrecht zu der von Symmetrieachsen 59 der beiden Zylindergehäuse aufgespannten Ebene verlaufenden Welle 83 angeordnet ist, die Abtriebswelle des Zweizylinder-Verbrennungsmotors ist. Über eine Verzahnung entsprechender Schwungtreibräder ist ein Kraftschluss zweier in V-Form zueinander liegender Einzylinder-Verbrennungsmotoren möglich. Leitet man den Leistungsabgang zwischen die Schenkel des V ab und fasst ihn über einen Kegelzahnradsatz zusammen, kann man eine hohe, über die Abtriebswelle 83 abzuführende Leistung erzeugen.
  • In Fig. 9 ist ein aus zwei V-Motoren der Fig. 8 zusammengesetzter Vierzylindermotor dargestellt. Über eine Verzahnung entsprechender Schwungtreibräder ist ein Kraftschluss von vier im Viereck zueinander liegenden Wechselkammermotoren möglich. Leitet man den Leistungsabgang der Abtriebswellen 84 der einzelnen Zylinder entlang der Diagonalen des Vierecks ab und fasst ihn über einen Satz von vier, an den Enden der Abtriebswellen 84 angeordneten Kegelzahnrädern 86 und von einem Zentralkegelzahnrad 82 zusammen, kann man eine hohe, senkrecht zur Ebene des Vierecks über die Abtriebswelle 83 z. B. auf einen Propeller 89 abzuleitende Leistung erzeugen. Diese Bauart eignet sich dafür, Sternmotoren zu ersetzen.
  • In Fig. 10 ist ein sogenannter Kettenmotor dargestellt, bei dem mehrere, in diesem Fall vier Zylindergehäuse 1 entlang ihrer Symmetrieachse aufgereiht sind. Es handelt sich hierbei in allen Fällen um Motoren, bei denen die Welle der Schwungtreibräder 2 geteilt ist. Ein solcher Motor ist in Fig. 5 dargestellt. Die Halbwellen 6 tragen an ihrem von den Schwungtreibrädern entfernten Ende Kegelzahnräder 19. Diese Kegelzahnräder 19 sind über ein weiteres Kegelzahnrad 20 verbunden. Weil die Welle der Schwungtreibräder 2 aus zwei Halbwellen 6 besteht, ist die Drehrichtung der Schwungtreibräder 2 auf beiden Seiten der Zylinder jeweils gegenläufig. Entsprechend sind auch die Abtriebswellen auf den beiden Seiten der Zylinder jeweils gegenläufig. Wenn z.B. in einem Kettenfahrzeug Gleichlauf der Wellen auf beiden Seiten der Zylinder erforderlich ist, dann ist zumindest auf einer Seite ein entsprechendes Getriebe vorzusehen.
  • Der in den Fig. 11 und 12 dargestellte Tetra-Motor besteht aus vier Zylindergehäusen 1 mit acht Brennkammern. Die Zylindergehäuse 1 sind so angeordnet, dass sie ähnlich den vier "Zylindern" eines hohen Hochhauses in München angeordnet sind. Die Drehbewegung der Abtriebswellen 84 der vier Zylinder wird in den Zwischenraum zwischen den Zylindern durch den Riemenantrieb der Schwungtreibräder hindurch abgeleitet. Diese vier Abtriebswellen 84 verlaufen entlang der Diagonalen eines Vierecks. Jede dieser vier Abtriebswellen trägt ein Kegelzahnrad 86. Alle vier Kegelzahnräder treffen sich in der Mitte des Zwischenraums. Alle vier Kegelzahnräder 86 greifen in zwei Zentralzahnräder 82, von denen jeweils eine geteilte Abtriebswelle 83 ausgeht, die über die vordere und hintere Grenze des Tetra-Motors hinausragt. Diese Abtriebswelle 83 verläuft parallel zu den Symmetrieachsen 59 der vier Zylindergehäuse. Die beiden Halbwellen der Abtriebswelle sind hier gegenläufig. In der hier gezeigten Version des Tetra-Motors ist auf beiden Seiten der Kurbelwelle jedes Zylindergehäuses 1 ein Satz Schwungtreibräder 2 vorgesehen.
  • In Fig. 13 ist eine kompaktere Bauform des Tetra-Motors dargestellt. Hier ist nur auf der von der gemeinsamen Abtriebswelle entfernten Seite der Zylinder 1 ein Satz Schwungtreibräder angeordnet. Dadurch können die Abtriebswellen 84 verkürzt werden.
  • In Fig. 14 ist ein Reihenmotor dargestellt, der in diesem Beispiel aus vier Zylindergehäusen 1 zusammengesetzt ist. Die Kurbelwellen der beiden im Bild links dargestellten Zylinder sind miteinander verbunden, indem die Aufnahmeräder 9 mittels eines Überbrückungsrads 10 verbunden sind. Ebenso sind die Kurbelwellen der beiden im Bild rechts dargestellten Zylinder miteinander verbunden. Beide Zylinderpaare werden dadurch miteinander verbunden, dass die zwischen zwei Schwungrädern 2 angeordneten Verbindungsräder 13 benachbarter Zylinder über ein Überbrückungsrad 10 miteinander verbunden sind. In diesem Reihenmotor sind die Aufnahmeräder 9 und die beiden einander zugewandten Verbindungsräder 13 ebenso wie die Zahnräder 10 als Kegelzahnräder ausgeführt. Die Kurbelwelle dieses Reihenmotors mit vier Zylindern ist für jeweils zwei Zylinder durchgehend. An der Stelle, wo die beiden Paare von Zylindern miteinander verbunden sind, werden die Verbindungsräder 13 mittels eines Überbrückungsrades 10 zusammengefügt. Diese Verbindungsräder 13 sind nicht direkt mit dem benachbarten Kurbelwellenstumpf verbunden. Die Verbindungsräder 13 werden über die Aufnahmeräder 9 auf der anderen Seite des jeweiligen Zylinders und den Schwungradsatz angetrieben.
  • Als Abtriebswelle dieses Motors können sowohl beliebige Wellen der Überbrückungsräder 10 verwendet werden als auch beliebige Wellen derjenigen Kegelzahnräder, die die beiden Halbwellen der Schwungtreibräder 2 miteinander verbinden.
  • Eine kompaktere Bauform eines Reihenmotors ist in Fig. 15 gezeigt. Statt Kuppelstangen wie in Fig. 14 dienen hier Zugmittel 18 wie Riemen der Verbindung der Schwungtreibräder 2 mit den Aufnahmerädern 9. Darüber hinaus sind Schwungtreibräder 2 nur an den Außenseiten der beiden Zylinder vorhanden, die an den Enden der Reihe stehen. Die Kolben der inneren Zylinder werden mittels der Schwungtreibräder der Zylinder an den Enden der Reihe ausgewuchtet. Wenn an den inneren Zylindern keine Schwungtreibräder vorgesehen sind, wird eine durchgehende Kurbelwelle möglich, die sich durch ein Aufnahmerad 9 hindurch in die Abtriebswelle 83 erstreckt.
  • Ist der Bereich der in Fig. 7 dargestellten Verstellung der Verdichtung groß genug, kann man zwischen Diesel- und Ottomotor-Modus wechseln. Hierfür ist die Erfüllung von vier Bedingungen erforderlich:
    Bedingung ist erstens, dass man über eine Kupplung die Kraftübertragung vom Aufnahmerad auf den Wellenstumpf unterbricht und der Wellenstumpf dadurch vorübergehend stillsteht.
  • Bedingung ist zweitens, dass über einige Takte hinweg ein Steuerbefehl an den Aktuator die Schieber in eine Position bringt, bei der alle Ein- und Auslasskanäle gleichzeitig geöffnet sind, so dass das alte Gasgemisch vollständig entweichen kann. Dadurch wird verhindert, dass sich Benziner-Gasgemisch und Diesel-Gasgemisch im Brennraum treffen und Schäden erzeugen.
  • Bedingung ist drittens, dass man zwei getrennte Treibstoffbehälter und zwei getrennte Treibstoffleitungen hat. Zwischen den beiden Leitungen muss eine Weiche für die geeignete Freigabe oder Blockierung des Durchflusses der jeweils aktuell benötigten oder gesperrten Treibstoffart sorgen.
  • Bedingung ist viertens, dass die Druckringe vollständig entleert werden, bevor sie mit der neuen Kraftstoffart befüllt werden können. Die Entleerung der Druckringe bewirkt der Kolben durch seine leersaugenden Abwärtsbewegungen und seine Gasausschiebungen durch die dauerhaft geöffneten Auslassöffnungen hindurch während seiner Aufwärtsbewegungen. Die Entleerung der Druckringe findet über mehrere Umdrehungen hinweg statt, bis sie vollständig vollzogen ist. Danach erfolgt elektronisch gesteuert der weitere Betrieb mit der neuen Kraftstoffart.
  • Der Einkammermotor besitzt nur einen Kolben, eine Brennkammer und nur zwei Schwungtreibräder. Er kann gut als Kleinstmotor z. B. für Mofas gebaut werden. Er braucht eine die Kraft nach außen ableitende konventionelle Kurbelwelle. Es versteht sich, dass hier ebenfalls keine aufwändige Kurbelwellenkonstruktion erforderlich ist, da die Schwungtreibräder die Unwucht der Kolbenbewegung ausgleichen. Entsprechend ist auch kein aufwändiges Kurbelwellengehäuse nötig.
  • Beim Wechselkammermotor unterstützen sich die Arbeitstakte der beiden Brennkammern. Hierbei ist die Taktfolge der einen gegenüber der anderen Brennkammer um genau einen Takt verschoben. Bei Takt 3 (Arbeitstakt) der einen Kammer bewegt sich der Kolben nach der Zündung nach unten. Über die starren Distanzstangen überträgt dieser Kolben seine Bewegungsenergie auf den anderen Kolben. Dieser befindet sich gerade in Takt 2 (Verdichtungstakt). Die Verbrennungsenergie des ersten Kolbens unterstützt also die Verdichtungsbewegung des zweiten Kolbens. Danach gelangt der zweite Kolben an den oberen Totpunkt und wird in Takt 3 wieder in entgegengesetzte Richtung bewegt. Diese Bewegung trifft auf Takt 4 (Ausstoßtakt) des ersten Kolbens und verstärkt dessen Ausstoßbewegung zum Entfernen der Altgase. Anschließend stößt die Ansaugbewegung (Takt 1) des ersten Kolbens auf die Ausstoßbewegung (Takt 4) des zweiten Kolbens und danach trifft die Verdichtungsbewegung des ersten Kolbens (Takt 2) auf die Ansaugbewegung des zweiten Kolbens (Takt 1). Die Bewegungen der beiden Kolben laufen daher stets sich gegenseitig unterstützend in die gleiche Richtung, auch wenn die Unterstützung dadurch begrenzt ist, dass nur bei jedem vierten Takt eine Zündung stattfindet. Die Schwungtreibräder überwinden die "Durststrecke" bis zur nächsten Zündung. In dem Falle, dass man mit einem zweiten Zylinder arbeitet, hat man für alle vier Brennkammern einen Zündversatz von je einem Takt, so dass ständig eine Brennkammer einen Arbeitstakt verrichtet und so eine durchgehende Zündfolge gewährleistet ist, die ständig Leistung liefert.
  • Der Wechselkammermotor kommt ohne Ventile aus. Er vermeidet damit Ventilteller, die mitten im Gasstrom stehen und diesen daher stark hemmen. Dadurch steigt die Leistung, und der Verbrauch sinkt. Da Öffnung und Schließung der Gaskanäle nicht mehr mechanisch erfolgt, spart man neben den Ventilen auch die Nockenwellen ein. Außerdem gibt es keine starren Öffnungs- und Schließzeiten mehr, die durch unterschiedliche Nockenformen bewirkt werden, sondern dank der Steuerung des Schiebers mittels eines elektronischen Aktuators stufenlos unendlich viele. Dies eröffnet neue Abstimmungsspielräume bei wechselnden Lastzuständen.
  • Beim konventionellen Motor hat man eine Einlassseite und eine Auslassseite, da die oben liegenden Nockenwellen eine räumliche Trennung der Ein- und Auslassöffnungen erzwingen. Da beim Wechselkammermotor Ein- und Auslassöffnungen jeweils benachbart angeordnet sind, kann Frischgas von allen Seiten in den Brennraum strömen. Man erreicht also eine vollständige Füllung des Brennraums, im Gegensatz zu der schlechter befüllten "Tasche" des Bereichs, welcher beim konventionellen Viertaktmotor der Einlassöffnung gegenüberliegt. Desgleichen erreicht man eine bessere Spülung des Brennraums, weil sich auch die Auslassöffnungen gegenüberstehen, was zur Folge hat, dass das verbrannte Altgas an mehreren Seiten ausgestoßen werden kann. Da der Arbeitstakt der einen Brennkammer die Spülung des anderen Brennraums unterstützt, verbessert sich durch das Wechselkammerprinzip die Spülung ebenfalls. Im Falle von zwei Zylindern in Reihe verstärkt sich diese Wirkung. Beim konventionellen Viertaktmotor entsteht durch die Entleerung der Altgase zu nur einer Seite hin auf der gegenüberliegenden Einlassseite ein schlechter gespülter Bereich, in dem verbranntes Altgas in einer "Tasche" zurückbleibt. Beide Nachteile des konventionellen Viertaktmotors führen zu einer unsauberen Verbrennung. Die Frischgasströme des Wechselkammermotors hingegen treffen sich in der Mitte des Brennraums und verwirbeln gut. Man kann Ein- und Auslassöffnungen beliebig mischen. Einlassen und Ausstoßen kann von allen Seiten her erfolgen. Die Trennung in eine Einlass- und eine Auslassseite ist beim Wechselkammermotor aufgehoben. Der bessere Gaswechsel verringert den Verbrauch und ermöglicht saubere Abgase.
  • Infolge des Wegfalls der Ventilfedern ist auch der Größe des Einzelhubraums kaum noch eine Grenze gesetzt. Der Schwungausgleich der Kolbenmassen wurde nach au-ßen in die Schwungtreibräder verlegt. Die Abstützung der Bewegungswucht der beiden Kolben erfolgt weit überwiegend über die Schwungtreibräder und die starren Distanzstangen. Dadurch werden die Lager der Kurbelwelle deutlich entlastet. Daher kann die innen liegende Kurbelwelle so einfach ausgeführt werden, dass man sogar das Kurbelwellengehäuse einsparen kann.
  • Die Kolben werden durch vier Distanzstangen gehalten. Damit ist eine Kippbewegung der Kolben in der Nähe der Totpunkte nahezu unmöglich. Auch dies erleichtert es, große Kolbendurchmesser zu verwirklichen.
  • Der Wechselkammermotor besitzt zudem die gleichen Variabilitäts-Fähigkeiten wie der heutige moderne Viertaktmotor. Durch die variable Steuerung von Einlass und Auslass können die Zeitpunkte von Einspritzung und Ausstoß dynamisch an den jeweiligen Lastzustand des Motors angepasst werden. Es ist somit eine ebenso sorgfältige Abstimmung der Leistungs- und Drehmomentkurve möglich wie beim konventionellen Viertaktmotor.
  • An ein oder mehrere Schwungtreibräder können über Zahnkranz-Verbindungen Dynamos angebracht werden, die rekuperierte Bremsenergie in den Motor rückleiten können. Der Motor ist also auch als Hybrid-Motor denkbar, der Bewegungsenergie wiedergewinnen und in elektrische Energie zurückverwandeln kann.
  • Der Motor ist insgesamt reparaturfreundlicher als der konventionelle Viertaktmotor. Da er sehr sauber verbrennt und die Kolben durch die Distanzstangen breit abgestützt sind, dürfte auch der Verschleiß geringer und somit die Lebensdauer länger sein.
  • Ein Vorteil der Erfindung besteht darin, dass Mehrzylindermotoren nach dem Baukastenprinzip gefertigt werden können. Anhand des Kolbenhubs und des Kolbendurchmessers werden die Größen des Zylinders und der Kolben festgelegt. Aus diesen Maßen ergeben sich wiederum die Ausgleichsmassen der Schwungräder. Mehrzylindermotoren können durch einfaches Zusammensetzen dieser Elemente gefertigt werden. Variabel sind lediglich die einzelne Zylinder verbindenden Schwungräder und die die Einzelzylinder verbindenden Elemente der Kurbel- bzw. Abtriebswelle. Anders als bei konventionellen Motoren ist nicht einerseits ein separater Block als Gehäuse für Kurbelwelle und Zylinder und andererseits ein an die Zahl der Zylinder angepasster Zylinderkopf erforderlich. Diese Elemente werden bei konventionellen Motoren an den jeweiligen Motor angepasst. Bei der vorliegenden Erfindung ist es dagegen möglich, ohne großen Aufwand bei der Konstruktion und der Fertigung des Motorgehäuses oder anderer Teile einen neuen Motor mit mehr oder weniger Zylindern zu entwerfen und zu bauen.
  • Liste mit Ausführungsformen der Erfindung Einzylindermotoren verschiedener Bauarten
    1. 1. Zweikolbenmotor
    2. 2. Zweikolbenmotor mit zwei Schwungtreibrädern auf derselben Seite
    3. 3. Zweikolbenmotor mit je zwei Schwungtreibrädern pro Seite
    4. 4. Zweikolbenmotor mit Schieber statt Ventil
    5. 5. Zweikolbenmotor mit zwei Aufnahmerädern
    6. 6. Zweikolbenmotor mit je zwei Schwungtreibrädern pro Seite und geteilten Schwungtreibradwellen (und nur einem Aufnahmerad bzw. Freilauf in einem mittleren Rad)
    7. 7. Motor mit Riemenantrieb des Schwungtreibrads/der Schwungtreibräder
    8. 8. Motor mit Kuppelstange zwischen Aufnahmerad und Schwungtreibrad
    9. 9. Motor mit Kuppelstange zwischen Aufnahmerad und Schwungtreibrad, Überbrückung der Kuppelstange mit Kegelzahnrädern
    Mehrzylindermotoren verschiedener Bauarten
    • 10. V-Motor
    • 11. Zwei V-Motoren zu einem Rautenmotor zusammengesetzt
    • 12. Kettenmotor (mehrere Zylinder hintereinander auf derselben Symmetrieachse)
    • 13. Tetra-Motor (vier Zylinder mit parallel verlaufenden Symmetrieachsen)
    • 14. Reihenmotor
    • 15. Reihenmotor kompakt (mit zwei Sätzen Schwungtreibräder nur außen)
    Bezugszeichenliste
  • 1
    Zylindergehäuse
    2
    Schwungtreibrad
    3
    Kolben
    4
    Kurbelwelle
    5
    Pleuelstange
    6
    Welle für Schwungtreibrad
    7
    Druckring Kraftstoff
    8
    Druckring Luftzufuhr
    9
    Aufnahmerad
    10
    Überbrückungsrad (viertes Kegelzahnrad)
    11
    Kraftableitungsrad (fünftes Kegelzahnrad)
    12
    Abtriebswelle
    13
    Verbindungsrad zwischen zwei Schwungtreibrädern
    14
    Kuppelstange (Zuganker)
    16
    Distanzstange
    18
    Zugmittel
    19
    Kegelzahnrad an Halbwelle Schwungtreibrad
    20
    Kegelzahnrad zur Verbindung der Halbwellen der Schwungtreibräder
    21
    Verbindungswelle zweier Zylinder im Reihenmotor
    22
    Kuppelstangenzapfen
    23
    Schwungtreibrad mit Kegelverzahnung
    24
    Zylinderkopf
    25
    gekühlter Hohlraum im Zylinderkopf
    26
    Zylinderkopfdeckel
    27
    Zylinderkopfboden
    28
    Umrandung (Seitenwand des Zylinderkopfs)
    29
    Brennraum
    30
    Drehpunkt Schieberwelle
    33
    Verbindungswelle
    34
    Zündkerze
    35
    Führungsrohr
    36
    Kraftstoffpumpe
    37
    Schieber
    43
    Kanal für Einlass bzw. Auslass
    44
    Kanal für Auslass bzw. Einlass
    45
    Öffnung für Einlass bzw. Auslass
    46
    Öffnung für Auslass bzw. Einlass
    50
    Kurbelzapfen
    52
    Kurbelwellenarm
    53
    Kurbelwellenstumpf zum ersten Aufnahmerad
    59
    Symmetrieachse des Zylinders
    60
    Tauchrohr der Distanzstangen, die die Kolben verbinden
    61
    Standrohr der Distanzstangen, die die Kolben verbinden
    62
    Steuerungsschenkel
    63
    Kreuzungselement der Steuerungsschenkel
    64
    längenvariabler Steuerungskörper im Standrohr
    65
    Kolbenbolzen
    67
    Stützhülse für Kurbelwelle im Zylinder
    74
    Erhöhungsring zwischen Schieber und Zylinderkopfboden
    75
    axiale Erhebung des Federstifts
    76
    axiale Nut der Verbindungswelle
    77
    Federstift in der Verbindungswelle der Schiebersteuerung
    78
    Aktuator
    79
    umlaufende Erhebung der Verbindungswelle
    80
    umlaufende Nut an der Innenseite des Führungsrohrs
    82
    Kegelzahnrad an Abtriebswelle Mehrzylindermotor
    83
    Abtriebswelle Mehrzylindermotor
    84
    Abtriebswelle eines Zylinders
    86
    Kegelzahnrad an Abtriebswelle eines Zylinders
    89
    Propeller

Claims (14)

  1. Verbrennungsmotor, der als Viertakt-Hubkolbenmotor ausgeführt ist, aufweisend
    - eine Kurbelwelle (4), die zwei Kurbelwellenstümpfe und zwei Kurbelarme (52), deren jeweils erstes Ende fest mit den Kurbelwellenstümpfen verbunden ist und deren jeweils zweites Ende fest mit einem Kurbelzapfen (50) verbunden ist, aufweist,
    - eine Pleuelstange (5), die an einem ersten Ende mit dem Kurbelzapfen (50) verbunden ist und an einem zweiten Ende mit einem ersten Kolben (3) verbunden ist, und
    - ein Zylindergehäuse (1), dessen Innenseite als senkrechter Kreiszylinder ausgeformt ist,
    wobei zwischen dem ersten Kolben (3) und einer ersten kreisförmigen Endfläche des Kreiszylinders ein Brennraum (29) angeordnet ist, und wobei in dem Zylindergehäuse (1) auf der von dem ersten Kolben (3) abgewandten Seite der Kurbelwellenstümpfe ein zweiter Kolben (3) angeordnet ist, der mit dem ersten Kolben (3) mittels mindestens zweier Distanzstangen (16) verbunden ist, und wobei zwischen dem zweiten Kolben (3) und einer zweiten der kreisförmigen Endflächen des Kreiszylinders ein zweiter Brennraum angeordnet ist, dadurch gekennzeichnet, dass in jeder der einem Brennraum (29) zugewandten kreisförmigen Endflächen des Kreiszylinders mindestens eine Öffnung (45, 46) vorgesehen ist, und dass an jeder der einem Brennraum (29) zugewandten kreisförmigen Endflächen des Kreiszylinders eine der Zahl der Öffnungen (45, 46) entsprechende Zahl von Schiebern (37) angeordnet ist, die zum Schließen und Öffnen der jeweiligen Öffnung (45, 46) ausgeführt ist/sind.
  2. Verbrennungsmotor nach Anspruch 1, dadurch gekennzeichnet, dass
    ein erster Kurbelwellenstumpf außerhalb des Zylindergehäuses (1) fest mit einem ersten Aufnahmerad (9) verbunden und so eingerichtet ist, dass der Kurbelwellenstumpf das erste Aufnahmerad (9) antreibt, das so eingerichtet ist, dass es ein erstes und ein zweites Schwungtreibrad (2) antreibt, dass
    das zweite Schwungtreibrad (2) auf der von dem ersten Schwungtreibrad (2) abgewandten Seite des Aufnahmerades (9) angeordnet ist, dass
    das erste und das zweite Schwungtreibrad (2) so eingerichtet sind, dass
    eine Drehachse des jeweiligen Schwungtreibrads (2) parallel zur Drehachse der Kurbelwelle (4) und senkrecht zu einer Symmetrieachse (59) des Kreiszylinders verläuft und dass ein Schnittpunkt der Drehachse des jeweiligen Schwungtreibrads (2) und der Symmetrieachse (59) des Kreiszylinders weiter von der Kurbelwelle (4) entfernt ist als die dem Brennraum zugewandte kreisförmige Endfläche des Kreiszylinders, und dass
    das erste und das zweite Schwungtreibrad (2) den Verbrennungsmotor auswuchten.
  3. Verbrennungsmotor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass
    ein drittes und ein viertes Schwungtreibrad (2) angebracht sind, wobei das dritte Schwungtreibrad (2) im Wesentlichen auf derselben Drehachse wie das erste Schwungtreibrad (2) angeordnet ist und das vierte Schwungtreibrad (2) im Wesentlichen auf derselben Drehachse wie das zweite Schwungtreibrad (2) angeordnet ist, dass
    das dritte und das vierte Schwungtreibrad (2) auf derjenigen Seite des Zylindergehäuses (1) angeordnet sind, auf der ein zweiter Kurbelwellenstumpf aus dem Zylindergehäuse (1) herausführbar ist, und dass
    das dritte und das vierte Schwungtreibrad (2) so eingerichtet sind, dass sie den Verbrennungsmotor auswuchten.
  4. Verbrennungsmotor nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass
    der zweite Kurbelwellenstumpf außerhalb des Zylindergehäuses (1) fest mit einem zweiten Aufnahmerad (9) verbunden und so eingerichtet ist, dass der zweite Kurbelwellenstumpf das zweite Aufnahmerad (9) antreibt, das so eingerichtet ist, dass es das dritte und das vierte Schwungtreibrad (2) antreibt.
  5. Verbrennungsmotor nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Drehachsen des ersten und des dritten Schwungtreibrads (2) sowie des zweiten und des vierten Schwungtreibrads (2) jeweils zwei voneinander getrennte Halbwellen (6) sind, die jeweils an den von den Schwungtreibrädern (2) abgewandten Enden mit einem ersten Kegelzahnrad (19) fest verbunden sind, und dass die Halbwellen (6) mittels eines zweiten Kegelzahnrads (20) so verbunden sind, dass das erste und das zweite Schwungtreibrad (2) gegensinnig zu dem dritten und dem vierten Schwungtreibrad (2) drehen.
  6. Verbrennungsmotor nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass
    das Aufnahmerad (9) oder die Aufnahmeräder das Schwungtreibrad (2) oder die Schwungtreibräder mittels jeweils eines Zugmittels (18), insbesondere einer Kette oder eines Riemens antreiben.
  7. Verbrennungsmotor nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass
    das Aufnahmerad (9) oder die Aufnahmeräder die Schwungtreibräder (2) mittels Kuppelstangen (14) antreiben.
  8. Verbrennungsmotor nach Anspruch 7, dadurch gekennzeichnet, dass
    das erste und/oder das zweite Aufnahmerad (9) als drittes Kegelzahnrad ausgeführt ist, und dass
    pro als drittes Kegelzahnrad ausgeführtem Aufnahmerad (9) ein viertes (10) und ein fünftes (11) Kegelzahnrad so angeordnet sind, dass mindestens eine mit der Kurbelwelle (4) im Wesentlichen koaxiale Welle (12), die fest mit dem fünften Kegelzahnrad (11) verbunden ist, von dem Verbrennungsmotor antreibbar ist und dass mittels der vierten (10) und fünften (11) Kegelzahnräder die Kuppelstange oder Kuppelstangen (14) überbrückt werden.
  9. Zweizylinder-Verbrennungsmotor, zusammengesetzt aus zwei Verbrennungsmotoren nach Anspruch 6 oder 8, dadurch gekennzeichnet, dass
    zwei Zylindergehäuse (1) in V-Form so angeordnet sind, dass
    je Zylindergehäuse (1) ein Schwungtreibrad (23) derart mit einer Kegelverzahnung versehen ist, dass die mit der Kegelverzahnung versehenen Schwungtreibräder (23) ineinandergreifend angeordnet sind und zur Synchronisierung der beiden Verbrennungsmotoren dienen, und dass
    Abtriebswellen (84) der beiden Verbrennungsmotoren an ihrem von dem Zylindergehäuse des jeweiligen Motors abgewandten Ende mit je einem Kegelzahnrad (86) versehen und so angeordnet sind, dass die beiden Kegelzahnräder (86) in ein weiteres Kegelzahnrad (82) eingreifbar sind, das auf einer senkrecht zu der von Symmetrieachsen (59) der beiden Zylindergehäuse (1) aufgespannten Ebene verlaufenden Welle (83) angeordnet ist, die Abtriebswelle des Zweizylinder-Verbrennungsmotors ist.
  10. Vierzylinder-Verbrennungsmotor, zusammengesetzt aus zwei Zweizylinder-Verbrennungsmotoren nach Anspruch 9, dadurch gekennzeichnet, dass Symmetrieachsen (59) von Zylindergehäusen (1) von vier Verbrennungsmotoren nach einem der Ansprüche 5 bis 7 in einer Ebene angeordnet sind und dass Abtriebswellen (84) der vier Einzylinder-Verbrennungsmotoren an ihrem von dem Zylindergehäuse (1) des jeweiligen Motors abgewandten Ende mit je einem Kegelzahnrad (86) versehen und so angeordnet sind, dass die vier Kegelzahnräder (86) in mindestens ein gemeinsames Kegelzahnrad (82) eingreifbar sind, das auf einer senkrecht zu der von Symmetrieachsen (59) der vier Zylindergehäuse (1) aufgespannten Ebene verlaufenden Welle (83) angeordnet ist, die Abtriebswelle des Vierzylinder-Verbrennungsmotors ist.
  11. Mehrzylinder-Verbrennungsmotor, bestehend aus mindestens zwei Verbrennungsmotoren nach Anspruch 5, dadurch gekennzeichnet, dass
    zwei Verbrennungsmotoren jeweils so angeordnet sind, dass Symmetrieachsen (59) ihrer Zylindergehäuse (1) im Wesentlichen zusammenfallen und dass zweite Kegelzahnräder (20) zweier Verbrennungsmotoren mittels einer den zweiten Kegelzahnrädern (20) gemeinsamen Welle (21) miteinander verbunden sind.
  12. Vierzylinder-Verbrennungsmotor, zusammengesetzt aus vier Verbrennungsmotoren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass Symmetrieachsen (59) der Zylindergehäuse (1) der vier Verbrennungsmotoren parallel zueinander angeordnet sind, dass
    Drehachsen der Kurbelwellen (4) der vier Verbrennungsmotoren in einer Ebene so angeordnet sind, dass Abtriebswellen (84) der vier Verbrennungsmotoren an ihrem von dem Zylindergehäuse (1) des jeweiligen Motors abgewandten Ende mit je einem Kegelzahnrad (86) versehen und entlang von Diagonalen eines Vierecks aufeinander zu verlaufend so angeordnet sind, dass die vier Kegelzahnräder (86) in ein gemeinsames Kegelzahnrad (82) eingreifbar sind, das auf einer im Wesentlichen parallel zu den Symmetrieachsen (59) der vier Zylindergehäuse (1) verlaufenden Welle (83) angeordnet ist, die Abtriebswelle des Vierzylinder-Verbrennungsmotors ist.
  13. Verbrennungsmotor zusammengesetzt aus mindestens zwei Verbrennungsmotoren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass Symmetrieachsen (59) der Zylindergehäuse der mindestens zwei Verbrennungsmotoren parallel zueinander und in einer Ebene angeordnet sind, und dass
    die Aufnahmeräder (9) zweier benachbarter Verbrennungsmotoren miteinander verbunden sind und/oder die Verbindungsräder (13) zweier benachbarter Verbrennungsmotoren miteinander verbunden sind.
  14. Verbrennungsmotor nach Anspruch 13, dadurch gekennzeichnet, dass
    an einem ersten Zylindergehäuse ein erstes Aufnahmerad und ein erstes und ein zweites Schwungtreibrad vorhanden sind, dass
    an einem letzten Zylindergehäuse ein zweites Aufnahmerad und ein drittes und ein viertes Schwungtreibrad vorhanden sind, und dass
    diese beiden Aufnahmeräder die einzigen Aufnahmeräder und diese vier Schwungtreibräder die einzigen Schwungtreibräder des Verbrennungsmotors sind.
EP22203181.7A 2021-11-11 2022-10-24 Verbrennungsmotor Active EP4180625B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102021129350.2A DE102021129350A1 (de) 2021-11-11 2021-11-11 Verbrennungsmotor

Publications (2)

Publication Number Publication Date
EP4180625A1 EP4180625A1 (de) 2023-05-17
EP4180625B1 true EP4180625B1 (de) 2024-04-17

Family

ID=83995147

Family Applications (1)

Application Number Title Priority Date Filing Date
EP22203181.7A Active EP4180625B1 (de) 2021-11-11 2022-10-24 Verbrennungsmotor

Country Status (2)

Country Link
EP (1) EP4180625B1 (de)
DE (1) DE102021129350A1 (de)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2310733A (en) * 1942-03-25 1943-02-09 Duke Charles Austin Internal combustion engine
GB791223A (en) 1956-04-24 1958-02-26 Michal Rubel Improvements in or relating to internal combustion engines
FR2067119A1 (de) * 1969-11-07 1971-08-20 Guillon Marcel
DE2514068A1 (de) 1975-03-29 1976-10-07 Heinrich Euler Verbrennungsmotor
DE2656391A1 (de) * 1976-12-13 1978-06-15 Horst Ing Grad Hendel Zentralhubkolben-brennkraftmaschine
DE3118452A1 (de) 1981-05-09 1982-12-02 E.D. Dr. 7562 Gernsbach Voigt Verbrennungsmotor
DE3600657A1 (de) * 1986-01-11 1987-07-16 Bongers Hermann Gegenzylinder-zweitakt-brennkraftmotor
NL9000464A (nl) * 1990-02-27 1991-09-16 Pieter Frans Van Rij Zuigermotor en in- en uitlaatsysteem daarvoor.
IT1278531B1 (it) 1995-12-13 1997-11-24 Giuseppe Raoul Piccinini Macchina alternativa
WO2004111411A1 (fr) 2003-06-17 2004-12-23 Rafaranirina, Herimalala, Lucia Moteur thermique a combustion interne semi-rotatif a cycle superposes
SK522012A3 (sk) * 2012-07-13 2014-09-04 Ladislav Just Pevné spojenie dvoch protiľahlých piestov do jednej osi dvojitým premostením
DE102013000253A1 (de) 2013-01-09 2014-07-10 Wilfried von Ammon Verfahren zur Umsetzung einer oszillierenden Hubbewegung in eine Drehbewegung und eine nach diesem Verfahren arbeitende Kolbenmaschine

Also Published As

Publication number Publication date
DE102021129350A1 (de) 2023-05-11
EP4180625A1 (de) 2023-05-17

Similar Documents

Publication Publication Date Title
DE4416989C2 (de) Vorrichtung zur Umwandlung einer kreisförmigen Bewegung in eine Hin- und Herbewegung und umgekehrt
DE10311358B4 (de) Hubkolbenbrennkraftmaschine, Verfahren zu ihrem Betreiben sowie Vorrichtung zum Verstellen der Hubfunktion eines Ladungswechselventils
DE3245246A1 (de) Nockenbetaetigte hubkolbenmaschine
DE102009006633A1 (de) Brennkraftmaschine mit verlängertem Expansionshub und verstellbarem Verdichtungsverhältnis
WO2007006469A2 (de) Gaswechselsteuerung für gegenkolbenmotoren mit schiebebüchsen
DE102012219851A1 (de) Viertaktmotor
DE1906171A1 (de) Verbrennungsmotor
DE102013005837B3 (de) Verbrennungsmotor mit Variation der Zündfolge
WO2005038197A1 (de) Hubkolben-brennkraftmaschine
DE102010027351A1 (de) Brennkraftmaschine mit verlängertem Expansionshub und Momentenausgleich
DE19953346A1 (de) Ventilmechanismus eines Verbrennungsmotors
DE1601818B2 (de) Schwenkkolben-brennkraftmaschine
EP4180625B1 (de) Verbrennungsmotor
DE202013009627U1 (de) Koaxialkolben-Motor mit einem oder mehrerer Zylinder, mit einem jeweilig doppelt wirkenden Kolben
DE102018210521A1 (de) Variable Ventilbetätigungsvorrichtung
DE3920620A1 (de) Rotationsmaschine
DE19545153C1 (de) Verbrennungsmotor mit einem Ventilsystem zum Betrieb im Zweitakt- oder Viertaktmodus
DE60109010T2 (de) Ventiltriebsystem in einer Vierzylinder-Brennkraftmaschine mit obenliegenden Ventilen
DE102015221908A1 (de) Vorrichtung zur Veränderung des Verdichtungsverhältnisses einer Hubkolbenbrennkraftmaschine
DE19648337C2 (de) Brennkraftmaschine mit innerer Verbrennung
AT407898B (de) Hubkolbenmotor mit linear entlang der zylinderachse angeordneten hubräumen
DE102009048648B4 (de) Wechselhubmotor, Heißgasmotor
DE102018210265B4 (de) Kolben für eine Brennkraftmaschine und Verfahren zum Betreiben einer Brennkraftmaschine mit einem derartigen Kolben
WO1991019077A1 (de) Brennkraftmaschine
DE102006033200A1 (de) Maschine mit einem Kurbeltrieb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221024

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC ME MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH