WO2004111411A1 - Moteur thermique a combustion interne semi-rotatif a cycle superposes - Google Patents

Moteur thermique a combustion interne semi-rotatif a cycle superposes Download PDF

Info

Publication number
WO2004111411A1
WO2004111411A1 PCT/IB2004/000460 IB2004000460W WO2004111411A1 WO 2004111411 A1 WO2004111411 A1 WO 2004111411A1 IB 2004000460 W IB2004000460 W IB 2004000460W WO 2004111411 A1 WO2004111411 A1 WO 2004111411A1
Authority
WO
WIPO (PCT)
Prior art keywords
crank
pistons
engine
cylinders
piston
Prior art date
Application number
PCT/IB2004/000460
Other languages
English (en)
Inventor
Hery Nirina Rakotomalala
Original Assignee
Rafaranirina, Herimalala, Lucia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rafaranirina, Herimalala, Lucia filed Critical Rafaranirina, Herimalala, Lucia
Publication of WO2004111411A1 publication Critical patent/WO2004111411A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/02Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with crankshaft
    • F01B9/026Rigid connections between piston and rod; Oscillating pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/02Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with crankshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • F02B75/222Multi-cylinder engines with cylinders in V, fan, or star arrangement with cylinders in star arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/24Multi-cylinder engines with cylinders arranged oppositely relative to main shaft and of "flat" type
    • F02B75/246Multi-cylinder engines with cylinders arranged oppositely relative to main shaft and of "flat" type with only one crankshaft of the "pancake" type, e.g. pairs of connecting rods attached to common crankshaft bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1816Number of cylinders four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1824Number of cylinders six

Definitions

  • Conventional engines generally consist of several pistons (1) coupled to the crankshaft using connecting rods.
  • the crankshaft extended by the flywheel rotates around a fixed axis on which it takes several support points constituted by the bearings.
  • the explosion that occurs in a cylinder (2) causes the crankshaft to rotate, and the latter in turn moves pistons (1) to complete the cycle (exhaust, intake, compression).
  • the flywheel transmits the rotational movement to the gearbox.
  • the new type of motor according to the invention overcomes all these drawbacks. It is characterized, in fact, by its capacity to supply a significant amount of energy at the time of the greatest demand in the motor cycle, that is to say, just in the terminal part of the compression phase. It eliminates a large part of the friction and uses most of the power developed for its objective.
  • the trick is to divide the four cylinders (2) into two groups, thus forming two pairs of paired cylinders (2).
  • a pair of cylinders is arranged on one plane, and the other couple on another plane parallel to the previous one.
  • the two pistons (1) are diametrically opposite and arranged symmetrically. They are joined by a piece to form a single block and move together in the same direction.
  • This part which is called the piston rod (3), has a circular axis at its center point called the pedal axis (6).
  • the axis of movement of a set of pistons (1) located on a plane is perpendicular to that of the other set located on a parallel plane (see Figure 2).
  • the two sets of pistons (1) must have the same displacement stroke.
  • the synchronization of the displacement of the pistons (1) must ensure that one set of pistons (1) located on a plane is in the middle of its stroke when the other set located on a parallel plane is at the end of its stroke .
  • crank (5) a piece, in the form of a bicycle crank provided with a cylindrical axis at its two ends, which will be called crank (5), and d '' perform the synchronized sinusoidal movement of the pistons (1) to obtain a rotational movement of the crank (5). It then remains to capture the movement of the point of symmetry of this crank (5) to obtain a circular movement in the opposite direction to the direction of rotation thereof, and centered on the axis of symmetry mentioned above.
  • crank (5) performs a rotary movement around an axis passing through its point of symmetry which effecting at the same time a circular movement around a fixed axis.
  • the two movements, rotary and circular, are synchronized with the two rectilinear sinusoidal movements of the pistons (1).
  • the construction of the engine will be based essentially on this principle. Consequently, the arrangement of two opposite cylinders (2) must be made so that they are perfectly aligned, symmetrical and diametrically opposite.
  • the circular trajectory of the point of symmetry of the crank (5) is obtained by the use of a disc provided with a circular axis, located between the two sets of pistons (1) and whose plane of rotation is parallel to the layout plan of these.
  • the crank (5) rotates around an axis integral with the disc and the disc rotates around the axis of symmetry (8) mentioned above.
  • the direction of rotation of the crank (17) is opposite to that of the rotation of the disc.
  • the assembly, crank and disc makes it possible to limit the stroke of the pistons (1). In short, this set ensures the role of the crankshaft.
  • the engine comprises a device making it possible to secure two symmetrical and diametrically opposite pistons called a piston rod. It comprises, according to a second characteristic, a crank disc (9), coupled with a crank (5) which is responsible for transforming the two rectilinear sinusoidal movements of the pistons into two rotational movements, and of limiting the stroke of the pistons.
  • a crank disc (9) which is responsible for transforming the two rectilinear sinusoidal movements of the pistons into two rotational movements, and of limiting the stroke of the pistons.
  • the number of pistons (1) can vary but preferably in multiples of four.
  • the arrangement of the pistons (1) can be in "X" or in longitudinal.
  • piston rod (3) a part called piston rod (3), or constitute a single block from manufacture.
  • the coupling pinion (11) can be cylindrical or conical.
  • Figure 1 shows a perspective view of a four-cylinder engine available in "X" where all the pistons are intentionally positioned halfway.
  • Figure 2 shows a section of the motor illustrated in Figure 1.
  • Figure 3 shows a perspective view of a four-cylinder engine available in an "X" shape during operation.
  • Figure 4 shows a view identical to that illustrated in Figure 3 but without the crank disc.
  • Figure 5 shows a section of the motor illustrated in Figure 4 on which we added the direction of rotation of the crank (17) and its circular path (15).
  • Figure 6 shows the section of a pair of symmetrical cylinders with its two pistons connected by the piston rod framed by its rod axis (4) with its two flat bearings (12) provided with cylindrical balls (13).
  • Figure 7 shows an anterior perspective view of a four-cylinder engine, with longitudinal arrangement of the cylinders, and provided with a cylindrical coupling pinion (11).
  • Figure 8 shows an anterior view of the motor illustrated in Figure 7.
  • Figure 9 shows a rear perspective view of a four-cylinder engine with longitudinal arrangement of the cylinders, provided with a cylindrical coupling pinion (11).
  • Figure 10 shows a rear view of the motor illustrated in Figure 9.
  • Figure 11 shows a left side view of the engine illustrated in Figure 9.
  • Figure 12 shows a right side view of the engine illustrated in Figure 9.
  • Figure 13 shows a top view of the motor illustrated in Figure 9.
  • Figure 14 shows a bottom view of the motor illustrated in Figure 9.
  • FIG. 15 represents a front perspective view of a four-cylinder engine with transverse arrangement of the cylinders, provided with a conical coupling pinion (11).
  • Figure 16 shows an anterior view of the engine illustrated in Figure 15.
  • FIG. 17 represents a rear perspective view of a four-cylinder engine with transverse arrangement of the cylinders, provided with a conical coupling pinion (11).
  • Figure 18 shows a rear view of the motor illustrated in Figure 17 and Figure 15.
  • Figure 19 shows a top view of the motor illustrated in Figure 17 and Figure 15.
  • Figure 20 shows a bottom view of the engine illustrated in Figure 17 and Figure 15.
  • Figure 21 shows a left side view of the engine illustrated in Figure 17 and figurel5.
  • Figure 22 shows a right side view of the engine illustrated in Figure 17.
  • FIG. 23 represents a pedal disc of a conical coupling pinion motor (11) where the axis of rotation of the crank (16), its direction of rotation (17) and its direction of movement have been added ( 19).
  • Figure 24 shows the crank disc
  • Figure 25 shows the crank
  • Figure 26 shows an eight-cylinder engine with a longitudinal arrangement superimposed on the cylinders, provided with a single conical coupling pinion (11).
  • the new engine comprises several paired pistons (l), several piston rods (3) joining each pair of pistons, one or more crank discs (9) and cranks (5) articulated with the rods pistons (3).
  • the pistons are arranged in "X” that is to say that the axes of movement intersect perpendicularly but on two parallel and different planes.
  • the crank disc (9) is placed between the two planes containing the pistons (1), and its plane of rotation is parallel to the two previous planes.
  • the crank disc (9) is a very solid metal disc, the central part of which can be empty, and provided with a reinforced circular axis called the crank axis (6), through which the crank (5) passes.
  • the disc is housed in the internal cage of a tapered ball or cylindrical ball bearing.
  • the crank disc (9) has a variable type of gear called a disc pinion (10) used to extract the power developed by the motor.
  • the crank (5) is coupled to the crank disc (9). It comes in the form of a bicycle crankset without chainring or pedal (see Figure 25). Its height is equal to half of the piston stroke.
  • Its axis of rotation (16) is perpendicular to the plane of rotation of the disc which it crosses right through the axis with the crank (7).
  • crank (5) turns in the opposite direction to the direction of rotation of the crank disc (9) but with the same speed.
  • the piston rod (3) replaces the connecting rod and ensures the pooling of two pistons (1) symmetrical and diametrically opposite. It is surrounded, on two of these faces, by two flat bearings (12) provided with cylindrical balls (13) and it moves on a highly lubricated axis to facilitate its movement. It also has a circular axis at its midpoint called the pedal axis (6), intended to receive one of the ends of the crank (5).
  • the rod axis (4) in which the piston rod moves, serves as a cage for the rolling balls (13) of the flat bearing (12) of this rod (see FIG. 6). It must be constructed of rigid and resistant material. It has holes serving as an orifice for its lubrication.
  • the pistons are arranged on the same pla.
  • a crank disc (9) is arranged opposite each pair of pistons (1) integral, and the gears located on the two crank discs called disc sprockets (10) together drive a central gear called coupling pinion (11 ) which itself drives the axis of the flywheel (14).
  • One end of the crank (5) is articulated with a piston rod (3) while the other end is articulated with a false piston rod ( 18) moving in a false rod axis.
  • a false rod axis is like a rod axis, but it frames a false piston rod.
  • the method is perfectly identical to the method used to produce the motor illustrated in Figure 7, but a conical coupling pinion (11) is used for driving the crank discs (9) and for the extraction of the power developed by the engine. Furthermore, the false piston rod (18) is constituted here by a single piece, provided with two crank axles (6). This method further reduces friction.
  • each group of four cylinders can constitute a bevel gear motor.
  • a single coupling pinion is sufficient to drive the assembly. This obviously results in a significant gain in weight and a reduction in friction.
  • This embodiment constitutes the ideal configuration for this type of engine because it allows a maximum gain in terms of weight / power ratio of the engine, and a maximum gain in terms of efficiency.
  • an engine of this type and with eight cylinders, with a bore of 70mm and a compression ratio of ten, will have a dimension of the order of 58 cm for the length, of 30 cm for the width, and 30 cm for height.
  • the new engine according to the invention is intended for any type of internal combustion engine operating on existing fuels and used in the automotive industry, in the aeronautical industry and in the maritime industry.
  • the use of this new technique can also be applied to hydraulic and pneumatic pumps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

Moteur thermique à combustion interne semi-rotatif à cycles superposés. L'invention définit une nouvelle technique de fabrication des moteurs thermiques à pistons multicylindres. Le nouveau moteur comporte plusieurs pistons (l) appariés et solidarisés par des tiges à pistons (3) articulées avec une ou plusieurs manivelles(5). Chaque manivelle est couplée à un disque à manivelle (9) logé dans la cage interne d'un roulement à billes. Les ensembles disques à manivelle (9) - manivelles (5) assurent une transformation directe des mouvements sinusoïdaux des tiges et fausses tiges à pistons en un mouvement de rotation recueilli par le pignon de couplage (11) et transmis au volant moteur. La tige à piston (3) assure une transmission des forces nécessaire au déplacement des pistons avec une perte minimale. Dans un moteur à quatre cylindres de ce type, les phases du cycle moteur peuvent se superposer. Le rapprochement et 1'écartement de deux cylindres opposés permet une modulation du taux de compression. Ce nouveau moteur thermique à combustion interne, selon l'invention, s'adapte parfaitement aux combustibles existants et est particulièrement destiné à l'industrie automobile, à 1'industre aéronautique, à l'industrie maritime .

Description

Moteur thermique à combustion interne , semi-rotatif à cycles superposés. Ce nouveau type de moteur thermique à pistons permet un accroissement de la performance , du rendement et de la longévité du moteur .
Les moteurs conventionnels sont généralement constitués de plusieurs pistons (1) accouplés au vilebrequin à l'aide de bielles. Le vilebrequin prolongé par le volant moteur tourne autour d'un axe fixe sur lequel il prend plusieurs points d'appui constitués par les paliers. Dans ce type de moteurs, l'explosion qui se produit dans un cylindre (2) entraîne la rotation du vilebrequin , et ce dernier déplace à son tour des pistons (1) pour terminer le cycle ( échappement , admission , compression ). Le volant moteur assure la transmission du mouvement de rotation vers la boîte de vitesse.
Dans le fonctionnement de ce type de moteur, l'explosion se produit juste au moment où le piston(l),la bielle, et le vilebrequin sont parfaitement alignés. Le vilebrequin s'oppose alors à la force délivrée par l'explosion, à sa plus forte intensité entraînant une perte importante d'énergie et sollicitant considérablement les paliers. De plus , la force délivrée par l'explosion va en diminuant alors que la force nécessaire pour la compression va en augmentant. De ce fait , il devient impératif de coupler le vilebrequin à un volant moteur à moment d'inertie élevé pour pouvoir terminer le cycle et fluidifier le mouvement de rotation du moteur. Par ailleurs , la direction de la force délivrée par l'explosion est toujours dans le sens opposé à celle requise par la compression et nécessite une réorientation , constituant une source supplémentaire de frottement. Le mouvement pendulaire oscillatoire des bielles autour des axes à piston entraîne également une perte d'énergie importante en même temps qu'un frottement considérable provoquant une usure prématurée des chemises à piston, des segments, des pistons (1) et des coussinets. De plus, l'adoption d'un cylindre (2) à grande section s'impose pour avoir un taux de compression très élevé, à moins d'utiliser un turbocompresseur.
Dans le cas spécifique des moteurs conventionnels à quatre cylindres (2) en ligne, le point mort haut de deux pistons (1) coïncide avec le point mort bas des deux autres pistons (1) nécessitant ainsi la présence d'un volant moteur pour éviter une cassure du mouvement à chaque changement de phase dans le cycle moteur. Par ailleurs , deux explosions seulement se produisent au cours d'une rotation complète du moteur.
Le nouveau type de moteur selon l'invention permet de remédier à tous ces inconvénients. Il se caractérise, en effet, par sa capacité de fournir une énergie en quantité importante au moment de la plus forte demande dans le cycle moteur, c'est à dire, juste dans la partie terminale de la phase de compression . Il permet d'éliminer une grande partie des frottements et d'utiliser la majeure partie de la puissance développée pour son objectif.
Dans notre exposé, nous nous fonderons sur un moteur théorique à quatre cylindres (2) mais la technique s'adapte parfaitement à un nombre supérieur de cylindres.
L 'astuce consiste à repartir les quatre cylindres (2) en deux groupes formant ainsi deux couples de cylindres (2) appariés. Un couple de cylindres est disposé sur un plan, et l'autre couple sur un autre plan parallèle au précédent. Dans chaque couple de cylindres(2), les deux pistons (1) sont diamétralement opposés et disposés de façon symétrique. Ils sont solidarisés par une pièce pour former un seul bloc et se déplacent ensemble dans le même sens. Cette pièce qu'on dénomme tige à pistons (3) comporte sur son point médiane un axe circulaire appelé axe à pédalier (6). L'axe de déplacement d'un ensemble de pistons (1) situé sur un plan est perpendiculaire à celui de l'autre ensemble situé sur un plan parallèle ( voir Figure 2 ). Si tous les pistons (1) sont positionnés au milieu de leur course, l'axe qu'on va appeler axe de symétrie (8), passant par le point de symétrie d'un ensemble de pistons situé sur un plan, et par le point de symétrie de l'autre ensemble situé sur un plan parallèle coupe les deux plans perpendiculairement ( voir figure 1 ). Les deux ensembles de pistons (1) doivent avoir la même course de déplacement. La synchronisation du déplacement des pistons (1) doit faire en sorte qu'un ensemble de pistons (1) situé sur un plan, se trouve au milieu de sa course lorsque l'autre ensemble situé sur un plan parallèle se trouve en fin de course. Il suffît alors de relier les deux points de symétrie de chaque ensemble de pistons (1) par une pièce, en forme de manivelle à bicyclette munie d'un axe cylindrique à ses deux extrémités, qu'on appellera manivelle (5), et d'effectuer le mouvement sinusoïdal synchronisé des pistons (1) pour obtenir un mouvement de rotation de la manivelle (5). Il reste ensuite à capter le mouvement du point de symétrie de cette manivelle (5) pour obtenir un mouvement circulaire de sens contraire au sens de rotation de celle-ci, et centré sur l'axe de symétrie cité plus haut. Il ressort de cet exposé que même si les deux extrémités de la manivelle (5) restent sur des trajectoires rectilignes, elle effectue un mouvement rotatif autour d'un axe passant par son point de symétrie lequel effectuant en même temps un mouvement circulaire autour d'un axe fixe . Les deux mouvements, rotatif et circulaire sont synchronisés avec les deux mouvements sinusoïdaux rectilignes des pistons (1). Par extrapolation, on peut conclure que, si on anime une extrémité de la manivelle (5) d'un mouvement sinusoïdal rectiligne, et qu'on impose à son centre de symétrie une trajectoire circulaire de rayon égal au quart de l'amplitude totale du mouvement de cette extrémité, et centrée sur le point médiane du dit mouvement, on obtiendrait un mouvement sinusoïdale rectiligne de même amplitude et de sens perpendiculaire , au niveau de l'autre extrémité .
La construction du moteur se fondera essentiellement sur ce principe. Par conséquent, la disposition de deux cylindres (2) opposés doit se faire de sorte qu'ils soient parfaitement alignés, symétriques et diamétralement opposés. La trajectoire circulaire du point de symétrie de la manivelle (5) s'obtient par l'utilisation d'un disque munie d'un axe circulaire, localisé entre les deux ensembles de pistons (1) et dont le plan de rotation est parallèle au plan de disposition de ces derniers. La manivelle (5) tourne autour d'une axe solidaire au disque et le disque tourne autour de l'axe de symétrie (8) mentionné plus haut. Le sens de rotation de la manivelle (17) est contraire à celui de la rotation du disque. L'ensemble, manivelle et disque, permet de limiter la course des pistons (1) . En somme, cet ensemble assure le rôle du vilebrequi .
Comme annoncé plus haut, une paire de pistons (1) doit se trouver en fin de course lorsque l'autre paire se trouve au milieu de leur course. Ce déphasage de 90° du cycle d'un cylindre (2) par rapport à celui d'un autre, dans un moteur à quatre cylindres (2), se traduit par le fait que deux cylindres (2) différents se trouvent toujours dans une même phase du cycle moteur sauf au point mort , avec l'un des cylindre (2) dans sa partie initiale et l'autre cylindre (2) dans sa partie terminale. Ce nouveau ordonnancement des cycles moteurs des cylindres (2) entraîne une superposition des phases du cycle, même dans un moteur à quatre cylindres (2), et il se nomme une superposition de cycles.
Il est évident qu'avec l'utilisation de cette nouvelle technique de fabrication, on peut atteindre des taux de compression très élevés même avec un alésage réduit des pistons (1). Par ailleurs, la vitesse de rotation du moteur ne sera limitée que par la vitesse de déplacement des pistons(l) dans leurs chemises au niveau desquelles les frottements ont fortement baissé. En plus, la modulation du taux de compression peut s'obtenir facilement en faisant varier l'écartement entre deux pistons (1) symétriques et diamétralement opposés.
Le moteur comporte, selon une première caractéristique, un dispositif permettant de solidariser deux pistons symétriques et diamétralement opposés appelé tige à piston. II comporte, selon une deuxième caractéristique, un disque à manivelle (9), couplé avec une manivelle (5) qui se charge de la transformation des deux mouvements rectilignes sinusoïdaux des pistons en deux mouvements de rotation, et de limiter la course des pistons. Selon des modes particuliers de réalisation :
- le nombre de pistons (1) peut varier mais de préférence en multiple de quatre .
- la disposition des pistons (1) peut être en « X » ou en longitudinal .
- deux pistons symétriques et diamétralement opposés peuvent être solidarisés par une pièce appelée tige à piston (3) , ou constituer un seul bloc dès la fabrication. - le pignon de couplage (11) peut être cylindrique ou conique .
Les dessins annexés, qui contiennent uniquement les parties essentielles à la compréhension, illustrent l'invention :
La Figure 1 représente une vue en perspective d'un moteur à quatre cylindres à disposition en « X » où tous les pistons sont volontairement positionnés à mi-course . La Figure 2 représente une coupe du moteur illustré en figure 1 .
La Figure 3 représente une vue en perspective d'un moteur à quatre cylindres à disposition en « X » en cours de fonctionnement .
La Figure 4 représente une vue identique à celle illustrée en figure 3 mais sans le disque à manivelle. La Figure 5 représente une coupe du moteur illustré en figure 4 sur laquelle on a ajouté le sens de rotation de la manivelle (17) ainsi que sa trajectoire circulaire (15) .
La Figure 6 représente la coupe d'une paire de cylindres symétriques avec ses deux pistons reliés par le tige à piston encadrée par son axe à tige (4) avec ses deux roulement à plats (12) munies de billes cylindriques (13). La Figure 7 représente une vue antérieure en perspective d'un moteur à quatre cylindres, à disposition longitudinale des cylindres, et muni d'un pignon de couplage (11) cylindrique.
La Figure 8 représente une vue antérieure du moteur illustré en figure 7.
La Figure 9 représente une vue postérieure en perspective d'un moteur à quatre cylindres à disposition longitudinale des cylindres, muni d'un pignon de couplage (11) cylindrique. La Figure 10 représente une vue postérieur du moteur illustré en figure 9 .
La Figure 11 représente une vue latérale gauche du moteur illustré en figure 9.
La Figure 12 représente une vue latérale droite du moteur illustré en figure 9. La Figure 13 représente une vue supérieure du moteur illustré en figure 9.
La Figure 14 représente une vue inférieure du moteur illustré en figure 9.
La Figure 15 représente une vue antérieure en perspective d'un moteur à quatre cylindres à disposition transversale des cylindres , muni d'un pignon de couplage (11) conique . La Figure 16 représente une vue antérieure du moteur illustré en figure 15.
La Figure 17 représente une vue postérieure en perspective d'un moteur à quatre cylindres à disposition transversale des cylindres , muni d'un pignon de couplage (11) conique.
La Figure 18 représente une vue postérieure du moteur illustré en figure 17 et figure 15.
La Figure 19 représente une vue supérieure du moteur illustré en figure 17 et figure 15. La Figure 20 représente une vue inférieure du moteur illustré en figure 17 et figure 15.
La Figure 21 représente une vue latérale gauche du moteur illustré en figure 17 et figurel5.
La Figure 22 représente une vue latérale droite du moteur illustré en figure 17.
La Figure 23 représente un disque à pédale d'un moteur à pignon de couplage (11) conique où on a rajouté l'axe de rotation de la manivelle (16), son sens de rotation (17) ainsi que son sens de déplacement (19) .
La Figure 24 représente le disque à manivelle.
La Figure 25 représente la manivelle.
La Figure 26 représente un moteur à huit cylindres à disposition longitudinale superposée des cylindres, munie d'un seul pignon de couplage (11) conique . En référence à ces dessins, le nouveau moteur comporte plusieurs pistons appariés(l), plusieurs tiges à pistons (3) solidarisant chaque couple de pistons , un ou plusieurs disques à manivelle (9) et des manivelles (5) articulées avec les tiges à pistons(3). Selon le mode de réalisation illustré en figure 1, les pistons sont disposés en « X » c'est à dire que les axes de déplacement se coupent perpendiculairement mais sur deux plans parallèleis et différents. Le disque à manivelle (9) se place entre les deux plans contenant les pistons (1), et son plan de rotation est parallèle aux deux plans précédents. Le disque à manivelle (9) est un disque métallique très solide , dont la partie centrale peut être vide, et munie d'un axe circulaire renforcé appelé axe à manivelle (6), par où passe la manivelle (5). Le disque se loge dans la cage interne d'un roulement à billes coniques ou à bille cylindrique . Le disque à manivelle (9) comporte un engrenage de type variable appelé pignon à disque (10) servant à extraire la puissance développée par le moteur . La manivelle (5) est couplé au disque à manivelle (9). Elle se présente sous la forme d'un pédalier de bicyclette sans plateau ni pédale (voir Figure 25). Sa hauteur est égale à la moitié de la course des pistons. Son axe de rotation (16) est perpendiculaire au plan de rotation du disque qu' elle traverse de part en part à travers l'axe à manivelle (7) . Ses deux extrémités comportent deux axes cylindriques qui s'articulent avec les deux tiges à pistons (3) au niveau des axes à pédalier (6) (voir figure 23).La manivelle (5) tourne dans le sens contraire au sens de rotation du disque à manivelle (9) mais avec la même vitesse .
La tige à pistons (3) ( voir figure 6) remplace la bielle et assure la mise en commun de deux pistons (1) symétriques et diamétralement opposés. Il est encadré, sur deux de ces faces, par deux roulements à plat (12) muni de billes cylindriques (13) et il se déplace sur un axe hautement lubrifié pour faciliter son déplacement . Il comporte également un axe circulaire en son point médiane appelé axe à pédalier (6) , destiné à recevoir l'une des extrémité de la manivelle (5). L'axe à tige (4) dans lequel se déplace la tige à pistons, sert de cage aux billes de roulement (13) du roulement à plat (12) de cette tige (voir figure 6). Il doit être construit en matériau rigide et résistant. Il comporte des trous servant d'orifice pour sa lubrification .
Selon le mode de réalisation illustré en figure 7 , les pistons sont disposés sur le même pla . Un disque à manivelle (9) est agencé vis à vis de chaque couple de pistons (1) solidaires , et les engrenages situés sur les deux disques à manivelle appelés pignons à disque (10) entraînent ensemble un engrenage central appelé pignon de couplage (11) qui lui-même entraîne l 'axe du volant moteur(14).Une extrémité de la manivelle(5) est articulé avec une tige à pistons (3) tandis que l'autre extrémité s'articule avec une fausse tige à pistons (18) se déplaçant dans un faux axe à tige. La seule différence entre une tige à pistons (3) et une fausse tige à pistons (18) est que cette dernière est dépourvue de pistons aux extrémités. Un faux axe à tige est comme un axe à tige, mais il encadre une fausse tige à piston. La tige à pistons (3) et la manivelle (5) s'alignent parfaitement lorsque les pistons (1) se trouvent en bout de course (voir figure 8 ) . La rotation de la disque à manivelle (9) entraîne l'inclinaison de la manivelle(5) et le déplacement de la tige à piston (3) . Inversement, si la manivelle est en position inclinée, une pression exercée par les pistons sur la tige à piston (3) entraîne une rotation de la disque à manivelle (9). Dans ce mode de réalisation , la synchronisation des mouvement des pistons(l) peut être modifiée sans restriction et le rajout d'un nouveau quadruplet de cylindres (2) devient très facile. Seulement , une mauvaise synchronisation du mouvement des pistons entraînerait une vibration importante du moteur . Par conséquent , un mouvement symétrique des pistons constitue la solution la plus facile et représenté dans les figures annexées. Cette solution implique évidemment la mise en place d'un volant moteur mais de plus faible poids .
Selon la mode de réalisation illustrée en Figure 15 , la méthode est parfaitement identique à la méthode utilisée pour réaliser le moteur illustré en Figure 7 , mais on utilise un pignon de couplage conique (11) pour l'entraînement des disques à manivelles (9) et pour l'extraction de la puissance développée par le moteur . Par ailleurs , la fausse tige à pistons (18) est constituée ici par une seule pièce, munie de deux axes à pédalier (6) . Cette méthode permet de réduire davantage le frottement.
Selon la mode de réalisation illustrée en Figure 26 , huit cylindres (2) sont divisés en deux groupes et chaque groupe de quatre cylindre peut constituer un moteur à pignon de couplage conique . Cependant, au lieu d'utiliser deux pignons de couplage coniques , un seul pignon de couplage suffit pour entraîner l'ensemble . Cela entraîne évidement un gain important en poids et une diminution des frottements . Ce mode de réalisation constitue la configuration idéale pour ce type de moteur car il permet, un gain maximal en terme de rapport poids / puissance du moteur , et un gain maximale en terme de rendement .
A titre d'exemple non limitatif , un moteur de ce type et à huit cylindres, avec un alésage de 70mm et un taux de compression de dix, aura une dimension de l'ordre de 58 cm pour la longueur , de 30 cm pour la largeur , et de 30 cm pour la hauteur .
Le nouveau moteur, selon l'invention, est destiné à tout type de moteur thermique à combustion interne fonctionnant aux combustibles existants et utilisé dans l'industrie automobile, dans l'industrie aéronautique et dans l'industrie maritime. L'utilisation de cette nouvelle technique peut également s'appliquer aux pompes hydrauliques et pneumatiques .

Claims

REVENDICATIONS
1) Moteur thermique à combustion interne, semi-rotatif, à cycles superposés caractérisé en ce qu'il comporte plusieurs paires de cylindres (2) contenant chacune un couple de pistons (1) appariés, deux ou plusieurs tiges à pistons (3) solidarisant chacun un couple de pistons (1) symétriques et diamétralement opposés, un ou plusieurs ensembles comprenant une manivelle (5) couplée avec un disque à manivelle (9) et s'articulant avec une paire de tiges à pistons (3) ou avec une tige à pistons (3) et une fausse tige à piston au niveau des axes à pédalier, un pignon de couplage .
2) Moteur selon la revendication 1 caractérisé en ce qu'il comporte deux paires de cylindres (2) disposées en « X ».
3) Moteur selon la revendication 1 caractérisé en ce qu'il comporte deux paire de cylindres (2) disposées en longitudinal .
4) Moteur selon la revendication 1 caractérisé en ce qu'il comporte plusieurs quadruplets de cylindres (2) où les plans contenant un quadruplet de cylindres (2) sont parallèles les uns par rapport aux autres.
5) Moteur selon la revendication 1 caractérisé en ce qu'il comporte six cylindres (2) disposés dans un même plan.
6) Pièce mécanique transformant directement deux mouvements sinusoïdaux rectilignes à axes de déplacement perpendiculaires en deux mouvement rotatif et inversement , caractérisé en ce qu'il comporte une manivelle (5) et une disque à manivelle (9) qui s'articulent entre elles à travers l'axe à manivelle (7) et où la manivelle (5) assure la capture des deux mouvements rectilignes.
7) Pièce mécanique solidarisant deux pistons (1) symétriques et diamétralement opposés caractérisée en ce qu'il comporte une tige à pistons (3) munie d'un axe à pédalier (6) en son point médiane roulant ou non sur des billes cylindriques (13) d'un roulement à plat.
8) Pièce mécanique définissant la trajectoire rectiligne d'une extrémité de la manivelle (5) caractérisée en ce qu'il comporte une fausse tige à pistons (18) se déplaçant dans un faux axe à tige .
9) Technique de modulation du taux de compression d'un moteur à piston caractérisé en ce qu'elle procède à l'écartement ou au rapprochement des cylindres (2) symétriques et diamétralement opposés pour faire varier le taux de compression .
PCT/IB2004/000460 2003-06-17 2004-02-24 Moteur thermique a combustion interne semi-rotatif a cycle superposes WO2004111411A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MG03011 2003-06-17
MG2003/011 2003-06-17

Publications (1)

Publication Number Publication Date
WO2004111411A1 true WO2004111411A1 (fr) 2004-12-23

Family

ID=33550361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2004/000460 WO2004111411A1 (fr) 2003-06-17 2004-02-24 Moteur thermique a combustion interne semi-rotatif a cycle superposes

Country Status (1)

Country Link
WO (1) WO2004111411A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2421766A (en) * 2004-12-30 2006-07-05 James Brian Duffus Leggat Internal combustion engine with double acting pistons and three geared crankshafts
WO2007034259A1 (fr) * 2005-09-21 2007-03-29 Hery Nirina Rakotomalala Moteur thermique a combustion interne semi-rotatif a double disques a pedale
CN101975110A (zh) * 2010-10-08 2011-02-16 舒锦海 齿轮传动(opoc)内燃机
CN102182556A (zh) * 2011-03-10 2011-09-14 舒锦海 对撞齿轮内燃机
WO2014142687A1 (fr) * 2013-03-11 2014-09-18 Majewski Jacek Système de vilebrequin de moteur à combustion interne, spécialement pour moteur à deux temps
DE102016210923A1 (de) * 2016-06-20 2017-12-21 Bayerische Motoren Werke Aktiengesellschaft Verbrennungskraftmaschine, Fahrzeug mit einer Verbrennungskraftmaschine und Notstromaggregat mit einer Verbrennungskraftmaschine
DE102016210924A1 (de) * 2016-06-20 2017-12-21 Bayerische Motoren Werke Aktiengesellschaft Verbrennungskraftmaschine, Fahrzeug mit einer Verbrennungskraftmaschine und Notstromaggregat mit einer Verbrennungskraftmaschine
CN107524518A (zh) * 2017-09-11 2017-12-29 董绍麟 一种十字形对置盘气缸排列的内燃机
DE102021129350A1 (de) 2021-11-11 2023-05-11 Alexander Alhaier Verbrennungsmotor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4887560A (en) * 1988-06-20 1989-12-19 Heniges William B Crankshaft assembly for variable stroke engine for variable compression
JPH08200498A (ja) * 1995-01-26 1996-08-06 Shizuo Yoshida 同じクランク径の二重クランク機構のピストン 往復動原動機
US5782213A (en) * 1997-04-07 1998-07-21 Pedersen; Laust Internal combustion engine
US5826550A (en) * 1995-10-16 1998-10-27 Paut; Drazen Internal combustion engine
EP0882875A1 (fr) * 1996-12-09 1998-12-09 Longwell Japan Co., Ltd. Ensemble entraine par une machine destine a une connexion directe dans un moteur a combustion interne
US20010029922A1 (en) * 2000-04-28 2001-10-18 Dow Glendal R. Gear train crankshaft
US20020166521A1 (en) * 1997-09-02 2002-11-14 Walter Schmied Reciprocating internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4887560A (en) * 1988-06-20 1989-12-19 Heniges William B Crankshaft assembly for variable stroke engine for variable compression
JPH08200498A (ja) * 1995-01-26 1996-08-06 Shizuo Yoshida 同じクランク径の二重クランク機構のピストン 往復動原動機
US5826550A (en) * 1995-10-16 1998-10-27 Paut; Drazen Internal combustion engine
EP0882875A1 (fr) * 1996-12-09 1998-12-09 Longwell Japan Co., Ltd. Ensemble entraine par une machine destine a une connexion directe dans un moteur a combustion interne
US5782213A (en) * 1997-04-07 1998-07-21 Pedersen; Laust Internal combustion engine
US20020166521A1 (en) * 1997-09-02 2002-11-14 Walter Schmied Reciprocating internal combustion engine
US20010029922A1 (en) * 2000-04-28 2001-10-18 Dow Glendal R. Gear train crankshaft

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 12 26 December 1996 (1996-12-26) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2421766A (en) * 2004-12-30 2006-07-05 James Brian Duffus Leggat Internal combustion engine with double acting pistons and three geared crankshafts
GB2421766B (en) * 2004-12-30 2007-06-13 James Brian Duffus Leggat Three gear internal combustion engine
WO2007034259A1 (fr) * 2005-09-21 2007-03-29 Hery Nirina Rakotomalala Moteur thermique a combustion interne semi-rotatif a double disques a pedale
CN101975110A (zh) * 2010-10-08 2011-02-16 舒锦海 齿轮传动(opoc)内燃机
CN102182556A (zh) * 2011-03-10 2011-09-14 舒锦海 对撞齿轮内燃机
WO2014142687A1 (fr) * 2013-03-11 2014-09-18 Majewski Jacek Système de vilebrequin de moteur à combustion interne, spécialement pour moteur à deux temps
DE102016210923A1 (de) * 2016-06-20 2017-12-21 Bayerische Motoren Werke Aktiengesellschaft Verbrennungskraftmaschine, Fahrzeug mit einer Verbrennungskraftmaschine und Notstromaggregat mit einer Verbrennungskraftmaschine
DE102016210924A1 (de) * 2016-06-20 2017-12-21 Bayerische Motoren Werke Aktiengesellschaft Verbrennungskraftmaschine, Fahrzeug mit einer Verbrennungskraftmaschine und Notstromaggregat mit einer Verbrennungskraftmaschine
CN107524518A (zh) * 2017-09-11 2017-12-29 董绍麟 一种十字形对置盘气缸排列的内燃机
DE102021129350A1 (de) 2021-11-11 2023-05-11 Alexander Alhaier Verbrennungsmotor

Similar Documents

Publication Publication Date Title
CA2952528C (fr) Mecanisme equilibre pour economie d'energie, machine tournante et procede de mise en oeuvre
WO2004111411A1 (fr) Moteur thermique a combustion interne semi-rotatif a cycle superposes
FR2927138A1 (fr) Dispositif de conversion de mouvement entre translation et rotation
FR2928694A1 (fr) Moteur pourvu d'une chambre a volume variable
WO2012110722A1 (fr) Moteur à combustion interne équipé d'arbres d'équilibrage et procédé de pilotage d'un tel moteur
FR2657932A1 (fr) Entrainement a vilebrequin, en particulier pour des moteurs a piston et des machines-outils.
FR2459367A1 (fr) Moteur a combustion interne asymetrique
EP3094844B1 (fr) Système de distribution pour moteur bicylindre
FR2617537A1 (fr) Dispositif de transmission de puissance a fluide
FR2608688A1 (fr) Dispositif de propulsion d'un vehicule utilisant la force centrifuge
EP3631168A1 (fr) Moteur à combustion interne
FR2669676A1 (fr) Paliers permettant de faire varier le taux de compression d'un moteur a combustion interne.
WO2007034259A1 (fr) Moteur thermique a combustion interne semi-rotatif a double disques a pedale
CA2056168C (fr) Machine energetique
FR2988776A1 (fr) Moteur rotatif a combustion interne et a taux de compression variable
WO2014195656A1 (fr) Dispositif de transformation de mouvement et procédé correspondant
FR3105334A1 (fr) Convertisseur de couple
FR2757568A1 (fr) Moteur thermique 3 temps a 4 ou 6 cylindres opposes 2 a 2 avec un vilebrequin contrarotatif excentre et une distribution automatique
FR3046198A1 (fr) Moteur a combustion interne
FR2878902A1 (fr) Decalage angulaire du point mort haut d'un moteur a explosion par rotation cycloide de la tete de bielle pour en augmenter la puissance
FR2667650A1 (fr) Moteur a combustion a pistons rotatifs.
FR2645605A1 (fr) Coussinet pour articulation, et moteur muni d'une telle articulation
WO1990002868A1 (fr) Equipage mobile: moteurs thermiques, machines a pistons
WO2015014975A1 (fr) Mecanisme de conversion reciproque entre un mouvement de rotation et un mouvement alternatif de translation, systeme mecanique et vehicule
BE679111A (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WA Withdrawal of international application
WWW Wipo information: withdrawn in national office

Ref document number: 2004247939

Country of ref document: AU