EP3631168A1 - Moteur à combustion interne - Google Patents

Moteur à combustion interne

Info

Publication number
EP3631168A1
EP3631168A1 EP17732494.4A EP17732494A EP3631168A1 EP 3631168 A1 EP3631168 A1 EP 3631168A1 EP 17732494 A EP17732494 A EP 17732494A EP 3631168 A1 EP3631168 A1 EP 3631168A1
Authority
EP
European Patent Office
Prior art keywords
spacer
internal combustion
cylinders
pistons
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17732494.4A
Other languages
German (de)
English (en)
Other versions
EP3631168B1 (fr
Inventor
Jean Eugène PONS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pons Engine
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to PL17732494T priority Critical patent/PL3631168T3/pl
Publication of EP3631168A1 publication Critical patent/EP3631168A1/fr
Application granted granted Critical
Publication of EP3631168B1 publication Critical patent/EP3631168B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/32Engines characterised by connections between pistons and main shafts and not specific to preceding main groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B1/00Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements
    • F01B1/08Reciprocating-piston machines or engines characterised by number or relative disposition of cylinders or by being built-up from separate cylinder-crankcase elements with cylinders arranged oppositely relative to main shaft and of "flat" type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B7/00Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders
    • F01B7/16Machines or engines with two or more pistons reciprocating within same cylinder or within essentially coaxial cylinders with pistons synchronously moving in tandem arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/02Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with crankshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/02Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with crankshaft
    • F01B9/023Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with crankshaft of Bourke-type or Scotch yoke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/02Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with crankshaft
    • F01B9/026Rigid connections between piston and rod; Oscillating pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1816Number of cylinders four

Definitions

  • the invention belongs to the field of motion transformation systems capable of generating circular continuous movement from an alternating rectilinear motion, and more particularly relates to an engine, in particular of the so-called internal combustion type.
  • crank-crank mechanism The transformation of a circular continuous movement from a reciprocating rectilinear movement is carried out by means of a so-called crank-crank mechanism.
  • This mechanism is generally implemented in internal combustion engines in order to deliver a torque able to set a vehicle in motion.
  • an internal combustion engine comprises a crankshaft having one or more crank pins, the or each crankpin forming a crank around which pivots a rod by one of its ends, called a crankshaft.
  • the connecting rod at its opposite end, called the small end, is hingedly attached to a piston slidably adjusted in a cylinder.
  • the piston forms with the cylinder, a working chamber, inside the cylinder called “combustion chamber", in which is produced a combustion of a mixture of gas, such as air, and fuel, such as than a hydrocarbon.
  • This combustion causing the expansion of the mixture, generates a thrust force on the piston which transmits, via the connecting rod, a portion of this force on the crankpin of the crankshaft, in view of driving the crankshaft in rotation.
  • the operating cycle of an internal combustion engine comprises a phase of admission of a mixture of fresh gas and fuel into the combustion chamber of the or each cylinder, followed by a phase of compression of this mixture by the or each piston, then respective combustion phases of the mixture, generating an increase in the pressure in the combustion chamber, and relaxation of the burnt gases, and finally a phase of exhaust gases burned.
  • the piston stroke, in the cylinder, is bounded by two extreme positions, respectively called top dead center, in which the volume of the combustion chamber is minimal, and low dead point, in which the volume of the combustion chamber is maximum .
  • One of the drawbacks of the state of the art internal combustion engines is its low efficiency.
  • performance is meant the ratio between the mechanical power provided by the crankshaft and the power provided by the fuel required for the combustion of the mixture of gas and fuel.
  • This friction is partly generated by the stroke of the piston along the cylinder.
  • the connecting rod forms an angle with the axis of a generatrix of the cylinder, varying according to the angular position of the crankpin, we speak of obliquity of the connecting rod.
  • This skew reaches a maximum value when the piston is halfway between the top dead center and the bottom dead center. Due to the relatively high value of this angle, the piston generates transverse forces, that is to say perpendicular to the longitudinal axis of the cylinder, during its sliding along the cylinder.
  • these forces can generate mechanical fatigue of the crankshaft, under the action of cyclic mechanical stresses, and therefore be the cause of a break crankshaft.
  • the obliquity of the connecting rod is also at the origin of strong accelerations and decelerations of the piston during its race between the top and bottom dead spots, and vice versa. These strong accelerations and decelerations generate so-called "second-order" forces of inertia. These second-order forces vary twice per revolution of the crankshaft and can cause the appearance of significant internal mechanical stresses in the moving parts of the engine.
  • the low efficiency of the internal combustion engines is also due to the incomplete combustion of the gas and fuel mixture. Indeed, due to incomplete combustion, the power that can potentially provide the fuel in the combustion chamber is not fully exploited.
  • the piston when the piston is in the vicinity of the top dead center, the piston is driven to compress the mixture between ninety and one hundred percent of the maximum pressure of the mixture during a rotation of five to ten degrees. crankshaft. The maximum pressure of the mixture is reached when the piston is in the top dead center.
  • the pistons of the internal combustion engines of the state of the art are subjected to cycles of strong acceleration and deceleration.
  • the pistons generate inertial forces acting on the crankshaft cyclically.
  • these cyclic stresses generate vibrations that can be the cause of breakage of parts.
  • the present invention aims to overcome the aforementioned drawbacks by providing an internal combustion engine, high efficiency, lightweight and compact.
  • an internal combustion engine comprising at least two cylinders of parallel longitudinal axes, each cylinder having an opening and a piston adapted to translate inside said cylinder, said respective openings of said cylinders facing each other, said pistons being in kinematic relationship with a crank-handle mechanism comprising:
  • a spacer connecting said pistons, adapted to maintain a fixed spacing between said pistons so that a displacement in translation of a piston causes the same displacement in translation for the other piston, said pistons being respectively fixed to arms of said spacer,
  • crankshaft movable in rotation about an axis, arranged between the openings of the cylinders and between the longitudinal axes of said cylinders, said crankshaft having a crankpin
  • a rudder movable in rotation around the crankpin having two ends arranged on either side of said crankpin
  • At least one connecting rod having a first end, called “foot”, integral with the spacer, and a second end, called “head” secured to one end of the rudder
  • the translational guidance of a piston is achieved by the other piston.
  • the pistons are essentially subjected to axial forces during the combustion of the mixture and generate little or no transverse forces in the cylinders during their sliding.
  • the friction generated by the sliding of the pistons in the cylinders are then negligible compared to the friction generated by the sliding of the pistons in the cylinders of the engines of the state of the art.
  • the engine efficiency is substantially increased.
  • the rudder is adapted to describe a reciprocating movement around the crankpin during the translation of the pistons in the cylinders, so as to cause the head of the rod or rods to describe a non-circular path.
  • the arrival and departure speed of each piston at the top dead center is relatively small compared to the engines of the state of the art, so that the duration during which each piston evolves in the vicinity of the top dead center is relatively high compared to state-of-the-art engines.
  • the piston is driven to compress the mixture between ninety and one hundred percent of the maximum pressure of the mixture during a rotation of about twenty five degrees of crankshaft.
  • the piston maintains a high pressure for a long time in the combustion chamber so that the combustion is substantially complete.
  • the gases released no longer include (or include in negligible quantity) unburned gases, a source of atmospheric pollution and harmful to human health.
  • the combustion phase is performed during a rotation of about one hundred twenty degrees of the crankshaft.
  • the substantially complete combustion also generates a gain in engine efficiency, and thus a reduction in fuel consumption.
  • the necessary amount of fuel for the operation of the engine is less important for the internal combustion engine object of the invention than for a combustion engine of the state of the art.
  • the fuel consumption of the engine that is the subject of the invention is more than 60% lower than the fuel consumption of a motor of the state of the art.
  • the invention also fulfills the following characteristics, implemented separately or in each of their technically operating combinations.
  • the arms of the spacer are connected to a spacer body comprising an opening through which the crankshaft is able to evolve.
  • the spacer is more rigid and is therefore more suitable for restoring the forces transmitted by the pistons during the combustion phase of the mixture.
  • the spacer is more adapted to withstand the mechanical stresses resulting from these efforts.
  • the journals or crankpin of the crankshaft are adapted to evolve through the opening of the spacer, according to the configuration of said opening.
  • the internal combustion engine comprises two rods respectively secured to the spacer by their foot, and respectively secured to one end of the rudder by their head.
  • the connecting rod feet may be respectively integral with the arms or the spacer body, preferably at two respective points substantially diametrically opposite one another relative to the axis of rotation of the crankshaft journals.
  • the internal combustion engine comprising four cylinders arranged in pairs, symmetrically arranged on either side of a median plane P having the axis of rotation of the crankshaft, so that the longitudinal axis of the cylinders is perpendicular to the plane P.
  • the spacer comprises four arms divided into two pairs connected on either side of a spacer body.
  • the internal combustion engine comprises two pedals movable in rotation around the crank pin, a rod being secured by its head to at least one end of each pedals.
  • the internal combustion engine comprises four connecting rods respectively secured to one of the arms of the spacer by their foot, and respectively secured to one end of the pedals by their head.
  • the internal combustion engine comprises a plurality of sets of four cylinders juxtaposed to each other along the axis of rotation of the crankshaft, so that the pistons of each set of four cylinders be in kinematic relationship with the same crankshaft.
  • the internal combustion engine according to the invention has the particular advantage of having the same power, smaller dimensions and a lower mass, due to the arrangement of the cylinders and the short length of the crankshaft.
  • the combustion engine according to the invention has a mass and a volume about three times less than a motor of the state of the art.
  • FIG. 1 a schematic view of a first embodiment of an internal combustion engine, the pistons being halfway,
  • FIG. 2 a view of certain isolated elements of the internal combustion engine according to FIG. 1,
  • FIG. 3 is a schematic view of the internal combustion engine according to FIG. 1, the pistons being in an extreme position,
  • FIG. 4 a view of certain isolated elements of the internal combustion engine according to FIG. 3,
  • FIG. 5 is a schematic view of an internal combustion engine according to a second embodiment of the invention, the pistons being half-way, FIG. 6: a view of certain isolated elements of the internal combustion engine according to FIG. 5;
  • FIG. 7 is a schematic view of a crank-handle mechanism of an internal combustion engine according to a third embodiment of the invention.
  • FIG. 8 a schematic view of an embodiment of a crank-crank mechanism of an internal combustion engine according to the invention. Detailed description of the invention
  • the present invention relates to an internal combustion engine 10 comprising cylinders in each of which is engaged in sliding a piston, so as to form a combustion chamber, known to those skilled in the art.
  • the pistons are in kinematic relationship with a crank-rod mechanism for transmitting a torque capable of driving, for example, a moving vehicle.
  • the internal combustion engine 10 comprises two cylinders 11, 11 'extending respectively along two longitudinal axes AA' and BB 'parallel to each other. and each comprising an opening.
  • the rolls 1 1, 1 1 ' are not coaxial and are preferably arranged on both sides, and at a distance, from a median plane P, so that the longitudinal axes AA' and BB 'are perpendicular to the median plane P and that their respective openings are facing each other.
  • Each cylinder 1 1, 1 1 ' is adapted to receive a piston 12, 12' slidably engaged, by its opening, between two extreme positions, respectively called “top dead center” and “bottom dead center”.
  • the crank-link mechanism comprises a spacer 13 connecting the pistons 12 and 12 ', and to which said pistons 12 and 12' are rigidly fixed.
  • the spacer 13 is adapted to maintain a fixed spacing between the two pistons 12, 12 ', so that the displacement in translation of one of the pistons 12 or 12' causes a analogous displacement of the other piston.
  • FIG. 3 when a piston 12 'is at the top dead center, the other piston 12 and at the bottom dead center, and vice versa.
  • the spacer 13 comprises two arms 131, 131 ', for example parallel.
  • the arms 31, 131 'of the spacer 13 extend between a first, so-called proximal end, through which the arms 131, 131' are connected on either side of a spacer body 133, and a second end, said distal, remote from the body 133, to which a piston 12, 12 'is fixed.
  • each piston 12 and 12 ' is fixed on an arm 131 and 131' with degrees of freedom in rotation, for example along axes perpendicular to the longitudinal axes of the arms, so as to correct the possible parallelism defects of the cylinders between them .
  • each arm 131, 131 ' is adapted to be engaged in a cylinder, with the piston 12, 12' to which it is attached.
  • the crank-crank mechanism also comprises a crankshaft 20 with a crank pin 21 interposed between two journals 22, and at least one balancing flyweight 23 known to those skilled in the art.
  • the journals 22 are rotatably mounted, for example, in bearings known per se.
  • the body 133 of the spacer 13 is provided with an opening 132 configured to receive the crankpin 21, and through which said crankpin 21 is able to evolve, for example when , the rotation of the crankshaft 20.
  • the opening extends, for example, along a longitudinal axis perpendicular to the respective longitudinal axes AA 'and BB of the rolls 1 1 and 1 1'.
  • the body 133 of the spacer 13 may be configured such that it does not include an opening.
  • the axis of rotation of the journals 22 of the crankshaft 20 is inscribed in the median plane P, and that said axis is situated equidistant from each of the respective longitudinal axes AA 'and BB of the cylinders 11, 11'.
  • the crank-crank mechanism also comprises at least one connecting rod 30 integral, by one of its ends called “small end” 31, at the distal end of one of the arms 131 or 131 ', and its other end, called “big end” 32 to a rudder 40.
  • the connecting rod 30 can also be secured by its foot 31, at any point along the arms 131 or 131 '. This arrangement advantageously makes it possible to dimension the length of the connecting rod optimally so as to limit the second-order inertia forces.
  • the crank-handle mechanism comprises two connecting rods 30 and 30 'respectively secured by their foot 31 or 31' to the distal end of one of the arms 131 or 131 ', and by their head 32 or 32' to a spreader 40.
  • the connecting rods 31 and 31 ' are integral with the arms 131 and 131' at two respective points substantially diametrically opposed to each other with respect to the axis of rotation of the journals 22.
  • the spreader 40 comprises a central opening by which it is rotatably mounted around the crankpin 21, for example by means of a sliding bearing known per se.
  • the center of the rudder 40 is defined as the point with respect to which any point on the periphery of the rudder has a symmetrical point.
  • the spreader 40 extends along a longitudinal axis CC and has two ends on either side of the crankpin 21.
  • each of the ends of the spreader 40 is secured to a connecting rod head 32, 32 ', by means known per se, such as a shaft housed in bores made respectively in the heads 32, 32' of the connecting rods 30, 30 'and in the ends of the rudder 40.
  • the rudder 40 is adapted to drive each connecting rod end 32, 32 'to describe a different trajectory of the circular path described by the crankpin 21 of the crankshaft, during operation of the internal combustion engine 10.
  • the spreader 40 causes each connecting rod head 32 to describe a substantially non-circular path.
  • the connecting rods 32 and 32 'and the spreader 40 are dimensioned so that, when the pistons are halfway, the connecting rods 30 and 30 'are substantially parallel.
  • the distance between the center of the rudder 40 and the axis of rotation of each conrod head 32 on the rudder 40 represents a lever arm. Consequently, the intensity of the moment of force generated on the end of the rudder 40 is proportional to the length of this distance.
  • each connecting rod 31 and 31' is adapted so that its head 32 or 32 'describes, during a cycle of engine operation, an arc of a circle of an angle a.
  • the longitudinal axis CC of the crossbar 40 forms an angle ⁇ with the median plane P, as shown schematically in FIG. .
  • the longitudinal axis CC is parallel to the median plane P, as represented in FIG.
  • the rudder 40 is then subjected, during the displacement of the pistons 12 and
  • the spreader 40 thus describes a movement consisting of a circular translation around the axis of rotation of the journals 22 and an alternating rotation around the crank pin 21.
  • This alternative rotation advantageously allows the pistons 12 and 12 'to remain a maximum of time in the vicinity of the top and bottom dead spots.
  • High pressure means, close to the maximum pressure of the mixture, a pressure comprised between ninety and one hundred percent of the maximum pressure.
  • the maximum pressure of the mixture is the pressure of the mixture when the piston 12 or 12 'is in the top dead center.
  • the time period during which high pressure is applied to the mixture is representative of about twenty five degrees of rotation of the crankshaft.
  • the high pressure is maintained long enough by said piston within the combustion chamber, to obtain a substantially complete combustion of the mixture during the combustion phase.
  • this alternative rotation of the spreader 40 in particular makes it possible to greatly limit the acceleration of the piston 12, 12 'due to the obliquity of the connecting rods.
  • the internal combustion engine 10 comprises four pistons 12, 12 ', 12 "and 12"' respectively slidably engaged in four cylinders 11, 11 ', 1 1 "and 1 1”' each comprising an opening. Said rolls are arranged in pairs, on either side of a median plane P ', the longitudinal axis of the rolls 1 1, 1 1', 1 1 "and 1 1” 'being perpendicular to this plane P' .
  • said cylinders are arranged symmetrically on both sides, and at a distance, from the median plane P ', so that the rolls 11, 11 "of a pair are respectively coaxial with the rolls 11', 1 1 "'of the other pair, and that the openings of said cylinders 1 1, 1 1" are arranged with respect to the openings of the cylinders 1 1', 1 1 "'.
  • the internal combustion engine 10 according to the second embodiment has a crank-crank mechanism analogous to that of the first embodiment, with the exception of the number of cylinders, and consequently the piston, the spacer arm and the connecting rod. .
  • the axis of rotation of the journals 22 of the crankshaft 20 is located equidistant from the set of cylinders 1 1, 1 1 ', 1 1 "and 1 1"', for example, written in the plane P '.
  • the four pistons 12, 12 ', 12 “and 12”' are kinematically connected to one another via the spacer 13, so that the displacement two pistons 12 and 12 “, or 12 'and 12"' of a pair causes a similar displacement of the pistons 12 and 12 ", or 12 'and 12"' of the other pair.
  • the pairs of pistons 12 and 12 ", 12 'and 12"' are attached to the spacer 13 via pairs of arms 131 and 131 ', 131 "and 131"' of the spacer 13 connected to the spacer body 133, as illustrated in FIG. 6.
  • the pairs of arms are respectively connected on the one hand and the another of the spacer body 133 so that the longitudinal axis of one arm 131 or 131 'of one pair coincides with the longitudinal axis of one arm 131 "or 131"' of the other pair.
  • the longitudinal axes of the arms 131, 131 ', 131 "and 131"' are respectively merged with the longitudinal axes of the rolls 1 1, 1 1 ', 1 1 "and 1 1”'.
  • each distal end of the arms 131, 131 ', 131 "and 131"' of the spacer is respectively secured to the foot 31, 31 ', 31 "and 31"' of a connecting rod 30. , 30 ', 30 "and 30"'.
  • Said rods 30 and 30 ' are respectively secured by their head 32, 32' to a spreader 40
  • each crossbar 40, 40 ' can be respectively integral with a single rod 30 or 30', and 30 "or 30" '.
  • Two pairs of rods are respectively formed by the rods 30 and 30 'and by the rods 30 "and 30"'.
  • the connecting rods 30 and 30 ', and 30 "and 30"' of each pair are diagonally opposite, as illustrated by FIGS. 5 and 6.
  • “Diagonally opposite” means that the connecting rods of each pair of connecting rods are respectively associated with the arms of each pair of arms, and that the respective longitudinal axes of the arms which are associated with the rods of the same pair are distant from one another.
  • each crossbar 40 and 40 ' is respectively associated with a pair of connecting rods 30 and 30', and 30 "and 30" 'diagonally opposite
  • the spreaders 40 and 40' are caused to describe, around the crank pin 21 , a reciprocating rotational movement, inverted with respect to each other.
  • the rotational movement of one of the spreaders 40 or 40 ' is symmetrical to the rotational movement of the other spreader 40 or 40' according to a plane of symmetry parallel to the plane P '.
  • the angle formed by the longitudinal axis of one of the spreaders 40 or 40 'with the plane P is opposite to the angle formed by the longitudinal axis of the other spreader 40 or 40' with said plane P, relative to at this plane P.
  • this reciprocating movement allows the connecting rod heads 32, 32 ', 32 "and 32"' to describe a non-circular trajectory during operation of the internal combustion engine 10 , that is to say, during the rotation of the spreaders 40 and 40 'around the axis of rotation of the journals 22.
  • a combustion can be carried out concomitantly in the combustion chamber of each cylinder 1 1 and 1 1 “, or 1 1 'and 1 1”' of the same pair.
  • the thrust forces produced by the combustion are transmitted by the pistons 12 and 12 ', or 12 “and 12"' respectively engaged in the cylinders 1 1 and 1 1 ", or 1 1 'and 1 1”' of said pair to other pistons 12 and 12 ', or 12 "and 12"' and comprise only an axial component.
  • the axial guidance of one of the pistons during its sliding in the cylinder with which it is associated, is provided by the sliding of the other pistons in the respective cylinders with which they are associated.
  • the pistons do not generate transverse forces. This arrangement advantageously makes it possible to significantly reduce the second-order inertia forces.
  • the internal combustion engine 10 comprises two cylinders according to the first embodiment described above, except that they are coaxial.
  • a piston is slidably engaged in each cylinder.
  • the internal combustion engine 10 comprises a crank-handle mechanism, as shown in FIG. 7, identical to that of the first embodiment, with the exception of the configuration of the spacer 13.
  • the pistons are kinematically interconnected via the arms 131 and 131 'of the spacer 13.
  • the arms 131 and 131 ' are coaxial and are arranged on either side of the spacer body 133.
  • the longitudinal axes of the arms 131 and 131' and the axis of rotation of the journals 22 of the crankshaft 20 are inscribed in the same plane M.
  • This plane M is for example a median plane of the spacer 13.
  • the legs 31 and 31 'of the rods 30 and 30' are respectively integral with the spacer body 133 at two points substantially diametrically opposite one another relative to the axis of rotation of the journals 22.
  • the rods 30 and 30 ' are respectively integral by their head 32 and 32' at each end of the spreader 40.
  • a first and a second spreader 40 and 40 ' can be arranged on either side of the spacer 13 and arranged in rotation around the crank pin 21.
  • the internal combustion engine 10 then comprises two pairs of connecting rods, each pair of connecting rods being secured to a spreader as described above.
  • the spacer 13 is provided with an opening 132 configured so that one of the journals 22 of the crankshaft 20 is adapted to evolve through said opening 132 during the sliding of said spacer 13.
  • the opening 132 preferably extends along a longitudinal axis parallel to the respective longitudinal axes AA 'and BB' of the rolls 1 1 and 1 1 '.
  • the spacer 13 comprises arms 131, 131 'according to one of the embodiments described above, connected on either side of the spacer body 133, and at the end of each of which is fixed a piston 12 or 12 '.
  • the crank-handle mechanism also comprises, for example, two connecting rods 30, 30 'respectively secured by their foot 31, 31' to the arms 131, 131 'or to the body 133, and by their head 32, 32' to the spreader 40.
  • one of the connecting rods 30 or 30 'exerts a traction force on the spreader 40, and the other exerts a thrust force on the spreader 40.
  • the internal combustion engine 10 may comprise more or fewer cylinders than the engine according to the embodiments of the invention described above.
  • the number of piston is the same as the number of cylinder.
  • the motor 10 to internal combustion comprises sets of two or four cylinders arranged in series, juxtaposed to each other, along the axis of rotation of the trunnions, and sharing a single crankshaft.
  • the internal combustion engine 10 preferably comprises two sets of two or four cylinders, each cylinder assembly being associated with pistons in kinematic relation with a connecting rod-crank mechanism according to one of the embodiments of the invention described above.
  • the crankshaft comprises two crank pins, arranged for example, at one hundred and eighty degrees relative to each other, on each of which are adjusted in rotation, one or two pedals.
  • a spreader is preferably secured to two connecting rods, and is therefore associated with two pistons. Therefore, the number of rudder is equal to half the number of cylinder.
  • crank link mechanism has been described in the context of a combustion engine, but can be used in an engine operating with other types of energy, such as a pressurized fluid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Transmission Devices (AREA)

Abstract

Le moteur (10) à combustion interne comporte au moins deux cylindres (11, 1') d'axes longitudinaux parallèles, chaque cylindre comportant une ouverture et un piston (12, 12') adapté à translater à l'intérieur dudit cylindre, lesdites ouvertures respectives desdits cylindres se faisant face, lesdits pistons étant en relation cinématique avec un mécanisme bielle- manivelle comportant : - une entretoise (13) reliant lesdits pistons, adaptée à maintenir un écartement fixe entre lesdits pistons, lesdits pistons étant respectivement fixés à des bras (131, 131') de ladite entretoise, - un vilebrequin (20) mobile en rotation autour d'un axe, agencé entre les ouvertures des cylindres et entre les axes longitudinaux desdits cylindres, ledit vilebrequin comportant un maneton (21), - un palonnier (40) mobile en rotation autour du maneton, - au moins une bielle (30) comportant une première extrémité, dite « pied » (31), solidaire de l'entretoise, et une seconde extrémité, dite « tête » (32), solidaire d'une des extrémités du palonnier.

Description

Moteur à combustion interne
Domaine de l'invention
L'invention appartient au domaine des systèmes de transformation de mouvement aptes à générer un mouvement continu circulaire à partir d'un mouvement rectiligne alternatif, et concerne plus particulièrement un moteur, notamment du type dit, à combustion interne.
État de l'art
La transformation d'un mouvement continu circulaire à partir d'un mouvement rectiligne alternatif est réalisée par l'intermédiaire d'un mécanisme dit bielle-manivelle. Ce mécanisme est généralement mis en œuvre dans les moteurs à combustion interne afin de délivrer un couple apte à mettre en mouvement un véhicule.
Typiquement, un moteur à combustion interne comprend un vilebrequin doté d'un ou plusieurs manetons, le ou chaque maneton formant une manivelle autour de laquelle pivote une bielle par l'une de ses extrémités, appelée tête de bielle. La bielle, par son extrémité opposée, appelée pied de bielle, est fixée de manière articulée à un piston ajusté en coulissement dans un cylindre. Le piston forme avec le cylindre, une chambre de travail, à l'intérieur du cylindre dite « chambre de combustion », dans laquelle est réalisée une combustion d'un mélange de gaz, tel que de l'air, et de carburant, tel qu'un hydrocarbure. Cette combustion, provoquant la dilatation du mélange, génère un effort de poussée sur le piston qui transmet, par l'intermédiaire de la bielle, une partie de cet effort sur le maneton du vilebrequin, en vu d'entraîner le vilebrequin en rotation.
Le cycle de fonctionnement d'un moteur à combustion interne comprend une phase d'admission d'un mélange de gaz frais et de carburant, dans la chambre de combustion du ou de chaque cylindre, suivi d'une phase de compression de ce mélange par le ou chaque piston, puis des phases respectives de combustion du mélange, générant une augmentation de la pression dans la chambre de combustion, et de détente des gaz brûlés, et enfin une phase d'échappement des gaz brûlés.
La course du piston, dans le cylindre, est bornée par deux positions extrêmes, respectivement appelées point mort haut, dans laquelle le volume de la chambre de combustion est minimale, et point mort bas, dans laquelle le volume de la chambre de combustion est maximale.
Un des inconvénients des moteurs à combustion interne de l'état de l'art est son faible rendement. Par rendement, on entend le rapport entre la puissance mécanique fournie par le vilebrequin et à la puissance fournie par le carburant nécessaire à la combustion du mélange de gaz et de carburant.
La faiblesse du rendement des moteurs à combustion interne de l'état de l'art est notamment due aux frottements générés par les nombreuses pièces en mouvement composant la chaîne cinématique de ces moteurs.
Ces frottements sont en partie générés par la course du piston le long du cylindre. En effet, lors de la course du piston, la bielle forme un angle avec l'axe d'une génératrice du cylindre, variant en fonction de la position angulaire du maneton, on parle d'obliquité de la bielle. Cette obliquité atteint une valeur maximale lorsque le piston est à mi-distance entre le point mort haut et le point mort bas. Du fait de la valeur relativement élevée de cet angle, le piston génère des efforts transversaux, c'est-à-dire perpendiculaires à l'axe longitudinal du cylindre, lors de son coulissement le long du cylindre. Par ailleurs, en plus de générer des frottements pouvant provoquer une usure prématurée des pièces en mouvement, ces efforts peuvent générer une fatigue mécanique du vilebrequin, sous l'action de contraintes mécaniques cycliques, et par conséquent être à l'origine d'une rupture du vilebrequin.
L'obliquité de la bielle est également à l'origine de fortes accélérations et décélérations du piston lors de sa course entre les points morts haut et bas, et inversement. Ces fortes accélérations et décélérations génèrent des forces d'inertie dites de « deuxième ordre ». Ces forces de deuxième ordre varient deux fois par tour de vilebrequin et peuvent être à l'origine de l'apparition de contraintes mécaniques internes importantes dans les éléments en mouvement du moteur. Le faible rendement des moteurs à combustion interne est également dû au fait que la combustion du mélange de gaz et de carburant est incomplète. En effet, du fait de la combustion incomplète, la puissance que peut potentiellement fournir le carburant dans la chambre de combustion n'est pas entièrement exploitée.
Le fait que la combustion est incomplète a notamment pour origine les durées insuffisantes des phases de compression et de combustion. En effet, le piston ne demeure pas suffisamment longtemps au voisinage du point mort haut de sorte à maintenir le mélange à une compression élevé suffisamment longtemps pour assurer une combustion sensiblement complète. En effet, de part la structure du mécanisme bielle-manivelle des moteurs de l'état de l'art, la rotation de la bielle autour du maneton du vilebrequin soumet le piston à une forte accélération linéaire immédiatement après avoir atteint le point mort haut.
A titre d'exemple, lorsque le piston est au voisinage du point mort haut, le piston est entraîné à comprimer le mélange entre quatre-vingt dix et cent pour cent de la pression maximale du mélange lors d'une rotation de cinq à dix degrés du vilebrequin. La pression maximale du mélange est atteinte lorsque le piston est au point mort haut.
Le fait que la combustion soit inachevée génère également un problème de pollution atmosphérique dans la mesure où des gaz non brûlés, sont dégagés lors de la phase de d'échappement. Ces gaz non brûlés sont également nocifs pour la santé humaine.
Par ailleurs, les pistons des moteurs à combustion interne de l'état de l'art sont soumis à des cycles de forte accélération et décélération. De ce fait, les pistons génèrent des forces d'inertie agissant sur le vilebrequin de manière cyclique. Outre une fatigue mécanique subie par ces pièces, ces sollicitations cycliques génèrent des vibrations pouvant être à l'origine de la rupture de pièces.
Un autre inconvénient des moteurs à combustion interne de l'état de la technique réside dans leur poids élevé, dû au nombre important de pièce qu'ils comportent. Ce poids élevé a pour incidence, notamment, de nécessiter une puissance importante pour déplacer le véhicule comportant le moteur, et par conséquent, de générer une consommation importante de carburant. Par ailleurs, le fait que les moteurs à combustion interne présente un poids élevé complexifie les opérations de maintenance.
Exposé de l'invention
La présente invention a pour objectif de palier les inconvénients susmentionnés en proposant un moteur à combustion interne, à haut rendement, léger et compact.
La présente invention vise notamment, selon un premier aspect, un moteur à combustion interne comportant au moins deux cylindres d'axes longitudinaux parallèles, chaque cylindre comportant une ouverture et un piston adapté à translater à l'intérieur dudit cylindre, lesdites ouvertures respectives desdits cylindres se faisant face, lesdits pistons étant en relation cinématique avec un mécanisme bielle-manivelle comportant :
- une entretoise reliant lesdits pistons, adaptée à maintenir un écartement fixe entre lesdits pistons de sorte qu'un déplacement en translation d'un piston entraîne le même déplacement en translation pour l'autre piston, lesdits pistons étant respectivement fixés à des bras de ladite entretoise,
- un vilebrequin mobile en rotation autour d'un axe, agencé entre les ouvertures des cylindres et entre les axes longitudinaux desdits cylindres, ledit vilebrequin comportant un maneton,
- un palonnier mobile en rotation autour du maneton, comportant deux extrémités agencées de part et d'autre dudit maneton,
- au moins une bielle comportant une première extrémité, dite « pied », solidaire de l'entretoise, et une seconde extrémité, dite « tête », solidaire d'une des extrémités du palonnier
Par le terme « solidaire », on entend « fixé mobile en rotation ».
Du fait de ces caractéristiques, le guidage en translation d'un piston est réalisé par l'autre piston. De ce fait, les pistons sont soumis essentiellement à des efforts axiaux, lors de la combustion du mélange, et génèrent peu ou pas d'efforts transversaux dans les cylindres lors de leur coulissement. Les frottements générés par le coulissement des pistons dans les cylindres sont alors négligeables par rapport aux frottements générés par le coulissement des pistons dans les cylindres des moteurs de l'état de l'art. Le rendement du moteur s'en retrouve substantiellement augmenté.
De plus, le palonnier est adapté à décrire un mouvement de rotation alternatif autour du maneton lors de la translation des pistons dans les cylindres, de manière à entraîner la tête de la ou des bielles à décrire une trajectoire non circulaire. Ainsi, la vitesse d'arrivée et de départ de chaque piston au point mort haut est relativement réduite par rapport aux moteurs de l'état de l'art, de sorte que la durée pendant laquelle chaque piston évolue au voisinage du point mort haut est relativement élevée par rapport aux moteurs de l'état de l'art. A titre d'exemple, lorsque le piston est au voisinage du point mort haut, le piston est entraîné à comprimer le mélange entre quatre-vingt dix et cent pour cent de la pression maximale du mélange lors d'une rotation d'environ vingt cinq degrés du vilebrequin.
De ce fait, le piston maintien une pression élevée suffisamment longtemps dans la chambre de combustion pour que la combustion soit sensiblement complète. Ainsi, les gaz rejetés ne comprennent plus (ou comprennent en quantité négligeable) de gaz non brûlés, source de pollution atmosphérique et nocifs pour la santé humaine. A d'exemple, la phase de combustion est réalisée lors d'une rotation d'environ cent vingt degrés du vilebrequin.
La combustion sensiblement complète génère également un gain de rendement du moteur, et donc une réduction de la consommation de carburant. A puissance égale, la quantité nécessaire de carburant pour le fonctionnement du moteur est moins importante pour le moteur à combustion interne objet de l'invention que pour un moteur à combustion interne de l'état de la technique. A titre d'exemple, à puissance égale et dans les mêmes conditions de fonctionnement, la consommation de carburant du moteur objet de l'invention est plus de 60% inférieure à la consommation de carburant d'un moteur de l'état de la technique. Dans des modes particuliers de réalisation, l'invention répond en outre aux caractéristiques suivantes, mises en œuvre séparément ou en chacune de leurs combinaisons techniquement opérantes.
Dans des modes particuliers de réalisation de l'invention, les bras de l'entretoise sont reliés à un corps d'entretoise comprenant une ouverture à travers laquelle le vilebrequin est apte à évoluer.
Grâce à ces caractéristiques, l'entretoise est plus rigide et est donc plus adaptée à restituer les efforts transmis par le pistons lors de la phase de combustion du mélange. De plus, l'entretoise est plus adaptée à résister aux contraintes mécaniques résultants de ces efforts.
Les tourillons ou le maneton du vilebrequin sont aptes à évoluer à travers l'ouverture de l'entretoise, selon la configuration de ladite ouverture.
Dans des modes particuliers de réalisation, le moteur à combustion interne comprend deux bielles respectivement solidaires de l'entretoise par leur pied, et respectivement solidaires d'une des extrémités du palonnier par leur tête.
Les pieds de bielle peuvent être respectivement solidaires des bras ou du corps d'entretoise, préférentiellement en deux points respectifs sensiblement diamétralement opposés l'un à l'autre par rapport à l'axe de rotation des tourillons du vilebrequin.
Dans des modes particuliers de réalisation de l'invention, le moteur à combustion interne comprenant quatre cylindres agencés par paires, symétriquement disposés de part et d'autre d'un plan médian P comportant l'axe de rotation du vilebrequin, de sorte que l'axe longitudinal des cylindres soit perpendiculaire au plan P.
Dans des modes particuliers de réalisation de l'invention, l'entretoise comprend quatre bras répartis en deux paires reliées de part et d'autre d'un corps d'entretoise.
Dans des modes particuliers de réalisation de l'invention, le moteur à combustion interne comprend deux palonniers mobiles en rotation autour du maneton, une bielle étant solidaire par sa tête à au moins une des extrémités de chaque palonniers. Selon d'autres caractéristiques, le moteur à combustion interne comprend quatre bielles respectivement solidaires d'un des bras de l'entretoise par leur pied, et respectivement solidaires d'une des extrémités des palonniers par leur tête.
Selon un autre mode de réalisation de l'invention, le moteur à combustion interne comprenant une pluralité d'ensembles de quatre cylindres juxtaposés les uns aux autres selon l'axe de rotation du vilebrequin, de sorte que les pistons de chaque ensemble de quatre cylindre soient en relation cinématique avec un même vilebrequin.
Dans ses divers aspects, le moteur à combustion interne selon l'invention a notamment pour avantage, de présenter à puissance identique, des dimensions plus réduites et une masse plus faible, du fait de la disposition des cylindres et de la faible longueur du vilebrequin. A titre d'exemple, à puissance égale, le moteur à combustion selon l'invention présente une masse et un volume environ trois fois inférieur à un moteur de l'état de l'art.
Présentation des figures
L'invention sera mieux comprise à la lecture de la description suivante, donnée à titre d'exemple nullement limitatif, et faite en se référant aux figures qui représentent :
- figure 1 : une vue schématique d'un premier mode de réalisation d'un moteur à combustion interne, les pistons étant à mi-course,
- figure 2 : une vue de certains éléments isolés du moteur à combustion interne selon la figure 1 ,
- figure 3 : une vue schématique du moteur à combustion interne selon la figure 1 , les pistons étant dans une position extrême,
- figure 4 : une vue de certains éléments isolés du moteur à combustion interne selon la figure 3,
- figure 5 : une vue schématique d'un moteur à combustion interne selon un deuxième mode de réalisation de l'invention, les pistons étant à mi-course, - figure 6 : une vue de certains éléments isolés du moteur à combustion interne selon la figure 5,
- figure 7 : une vue schématique d'un mécanisme bielle-manivelle d'un moteur à combustion interne selon un troisième mode de réalisation de l'invention,
- figure 8 : une vue schématique d'un exemple de réalisation d'un mécanisme bielle-manivelle d'un moteur à combustion interne selon l'invention. Description détaillée de l'invention
La présente invention concerne un moteur 10 à combustion interne comprenant des cylindres dans chacun desquels est engagé en coulissement un piston, de manière à former une chambre de combustion, connue de l'homme du métier. Les pistons sont en relation cinématique avec un mécanisme bielle-manivelle destiné à transmettre un couple apte à entraîner, par exemple, un véhicule en mouvement.
Dans un premier mode de réalisation de l'invention, tel que représenté par les figures 1 à 4, le moteur 10 à combustion interne comprend deux cylindres 1 1 , 1 1 ' s'étendant respectivement selon deux axes longitudinaux AA' et BB' parallèles et comprenant chacun une ouverture. Les cylindres 1 1 , 1 1 ' ne sont pas coaxiaux et sont préférentiellement disposés de part et d'autre, et à distance, d'un plan médian P, de manière à ce que les axes longitudinaux AA' et BB' soient perpendiculaires au plan médian P et à ce que leurs ouvertures respectives se fassent face.
Chaque cylindre 1 1 , 1 1 ' est adapté à recevoir un piston 12, 12' engagé en coulissement, par son ouverture, entre deux positions extrêmes, respectivement appelées « point mort haut » et « point mort bas ».
Dans le premier mode de réalisation de l'invention, le mécanisme bielle- manivelle comprend une entretoise 13 reliant les pistons 12 et 12', et à laquelle lesdits pistons 12 et 12' sont rigidement fixés. L'entretoise 13 est adaptée à maintenir un écartement fixe entre les deux pistons 12, 12', de sorte que le déplacement en translation d'un des pistons 12 ou 12' entraîne un déplacement analogue de l'autre piston. Ainsi, comme représenté par la figure 3, lorsqu'un piston 12' est au point mort haut, l'autre piston 12 et au point mort bas, et inversement.
Comme représenté par les figures 2 et 4, l'entretoise 13 comporte deux bras, 131 , 131 ', par exemple parallèles. Les bras 1 31 , 131 ' de l'entretoise 13 s'étendent entre une première extrémité, dite proximale, par laquelle les bras 131 , 131 ' sont reliés de part et d'autre d'un corps 133 d'entretoise 13, et une seconde extrémité, dite distale, distante du corps 133, à laquelle un piston 12, 12' est fixé. Préférentiellement, chaque piston 12 et 12' est fixé sur un bras 131 et 131 ' avec des degrés de liberté en rotation, par exemple selon des axes perpendiculaires aux axes longitudinaux des bras, de sorte à corriger les éventuels défauts de parallélisme des cylindres entre eux.
Il y a lieu de noter que, sur les figures 2 et 4, les pistons ne sont pas représentés. Tel qu'illustré par les figures 1 et 3, l'extrémité distale de chaque bras 131 , 131 ' est adaptée pour être engagée dans un cylindre, avec le piston 12, 12' auquel il est fixé.
Le mécanisme bielle-manivelle comprend également un vilebrequin 20 doté d'un maneton 21 interposé entre deux tourillons 22, et d'au moins une masselotte d'équilibrage 23 connue de l'homme du métier. Les tourillons 22 sont montés mobiles en rotation, par exemple, dans des paliers connus en soi.
Dans l'exemple non limitatif illustré par la figure 2, le corps 133 de l'entretoise 13 est pourvu d'une ouverture 132 configurée pour recevoir le maneton 21 , et à travers laquelle ledit maneton 21 est apte à évoluer, lors, par exemple, de la rotation du vilebrequin 20. L'ouverture s'étend, par exemple, selon un axe longitudinal perpendiculaire aux axes longitudinaux AA' et BB respectifs des cylindres 1 1 et 1 1 '.
De manière alternative, le corps 133 de l'entretoise 13 peut être configuré de telle sorte qu'il ne comprend pas d'ouverture.
Préférentiellement, l'axe de rotation des tourillons 22 du vilebrequin 20 est inscrit dans le plan médian P, et que ledit axe est situé à équidistance de chacun des axes longitudinaux AA' et BB respectifs des cylindres 1 1 , 1 1 '.
Le mécanisme bielle-manivelle comprend également au moins une bielle 30 solidaire, par une de ses extrémités dite « pied de bielle » 31 , à l'extrémité distale d'un des bras 131 ou 131 ', et par son autre extrémité, dite « tête de bielle » 32 à un palonnier 40.
Dans d'autres exemples de réalisation, la bielle 30 peut également être solidaire par son pied 31 , en tout point le long des bras 131 ou 131 '. Cette disposition permet avantageusement de pouvoir dimensionner la longueur de la bielle de manière optimale de sorte à limiter les efforts d'inertie de deuxième ordre.
Dans l'exemple de réalisation non limitatif représenté par les figures 1 à 4, le mécanisme bielle-manivelle comprend deux bielles 30 et 30' respectivement solidaires par leur pied 31 ou 31 ' à l'extrémité distale d'un des bras 131 ou 131 ', et par leur tête 32 ou 32' à un palonnier 40. Préférentiellement, les pieds de bielle 31 et 31 ' sont solidaires des bras 131 et 131 ' en deux points respectifs sensiblement diamétralement opposés l'un à l'autre par rapport à l'axe de rotation des tourillons 22.
Comme schématiquement représenté sur figures 1 à 4, le palonnier 40 comprend une ouverture centrale par lequel il est monté en rotation autour du maneton 21 , par exemple par l'intermédiaire d'un palier lisse connu en soi. Le centre du palonnier 40 est défini comme étant le point par rapport auquel tout point sur la périphérie du palonnier a un point symétrique.
Le palonnier 40 s'étend selon un axe longitudinal CC et comporte deux extrémités de part et d'autre du maneton 21 .
Préférentiellement, chacune des extrémités du palonnier 40 est solidaire d'une tête de bielle 32, 32', par des moyens connus en soi, tel qu'un arbre logé dans des alésages pratiqués respectivement dans les têtes 32, 32' des bielles 30, 30' et dans les extrémités du palonnier 40.
Le palonnier 40 est apte à entraîner chaque tête de bielle 32, 32' à décrire une trajectoire différente de la trajectoire circulaire décrite par le maneton 21 du vilebrequin, lors du fonctionnement du moteur 10 à combustion interne. Avantageusement, le palonnier 40 entraîne chaque tête de bielle 32 à décrire une trajectoire sensiblement non circulaire.
Les bielles 32 et 32' et le palonnier 40 sont dimensionnés de sorte que, lorsque les pistons sont à mi-distance, les bielles 30 et 30' sont sensiblement parallèles.
Lors du cycle de fonctionnement du moteur 10 à combustion interne objet de la présente invention, lorsqu'une combustion est générée dans la chambre de combustion d'un cylindre 1 1 ou 1 1 ', un effort de poussée est produit sur un piston 12 ou 12' agencé en coulissement dans ledit cylindre. Ledit piston transmet alors, par le biais de l'entretoise 13, une partie de cet effort aux bielles 30 et 30'. Les bielles 30 et 30' transmettent ces efforts aux extrémités respectives du palonnier 40 auxquelles elles sont solidaires, créant un moment de force entraînant la rotation dudit palonnier 40 autour du maneton 21 , et provoquant de fait la rotation du maneton 21 autour de l'axe de rotation des tourillons 22. Il y a lieu de noter que les efforts appliqués par les bielles sur le palonnier sont caractérisés, pour l'une des bielles, par un effort de traction sur le palonnier 40, et pour l'autre, par un effort de poussée sur le palonnier 40.
La distance entre le centre du palonnier 40 et l'axe de rotation de chaque tête de bielle 32 sur le palonnier 40 représente un bras de levier. Par conséquent, l'intensité du moment de force généré sur l'extrémité du palonnier 40 est proportionnelle à la longueur de cette distance.
Ces dispositions permettent de pouvoir réduire les dimensions des cylindres 1 1 , 1 1 ' et des pistons 12, 12', tout en permettant au vilebrequin de délivrer un couple relativement élevé. Pour un couple délivré par le vilebrequin d'une valeur donnée, les dimensions des pistons et cylindres du moteur 10 objet de la présente invention sont donc inférieures à celles des moteurs de l'état de l'art.
Les deux pistons 12 et 12' étant cinématiquement liés entre eux grâce à l'entretoise 13, l'effort de poussée produit sur un des pistons 12 ou 12', lors de la combustion, est également en partie transmis à l'autre piston 12 ou 12'. Le guidage axial d'un des pistons 12 ou 12', lors de son coulissement dans le cylindre 1 1 ou 1 1 ' auquel il est associé, est assuré par l'autre piston 12 ou 12' en coulissant dans le cylindre 1 1 ou 1 1 ' auquel il est associé. De ce fait, les pistons 12 et 12' sont soumis essentiellement à des efforts axiaux et génèrent peu ou pas d'efforts transversaux dans les cylindres 1 1 , 1 1 ' lors de leur coulissement. Cette disposition permet avantageusement de réduire de manière significative les efforts d'inertie de deuxième ordre.
Lors du déplacement des pistons 12 et 12' entre les points morts haut et bas, et inversement, les efforts des bielles 30 et 30' sur le palonnier 40 conduisent ledit palonnier 40 à décrire sensiblement un mouvement de translation circulaire autour de l'axe de rotation des tourillons 22.
Lors du déplacement d'un piston 12 ou 12' d'une de ses positions extrêmes à l'autre, la bielle 30 ou 30' solidaire du bras 131 ou 131 ' auquel ledit piston 12 ou 12' est fixé, pivote autour de son pied 31 ou 31 ', entre deux positions angulaires extrêmes, comme représenté en trait discontinu en figure 2. Chaque bielle 31 et 31 ' est adaptée à ce que sa tête 32 ou 32' décrive, lors d'un cycle de fonctionnement du moteur, un arc de cercle d'un angle a.
Lorsque les pistons 12 et 12' sont respectivement à mi-distance entre les positions de point mort haut et point mort bas, l'axe longitudinal CC du palonnier 40 forme un angle β avec le plan médian P, comme représenté schématiquement sur la figure 1 . Par ailleurs, lorsque les pistons 12 et 12' occupent les positions de point mort haut et point mort bas, l'axe longitudinal CC est parallèle au plan médian P, comme représenté en figure 3.
Le palonnier 40 est alors soumis, lors du déplacement des pistons 12 et
12' entre leurs deux positions extrêmes, à un mouvement de rotation alternatif autour du maneton 21 , d'un angle β par rapport au plan médian P.
Le palonnier 40 décrit donc un mouvement composé d'une translation circulaire autour de l'axe de rotation des tourillons 22 et d'une rotation alternative autour du maneton 21 .
Cette rotation alternative permet avantageusement aux pistons 12 et 12' de rester un maximum de temps au voisinage des points morts haut et bas.
Ainsi, lors du fonctionnement du moteur 10 à combustion interne, lorsque le piston 12 ou 12' est au point mort haut, une pression élevée, proche de la pression maximale du mélange est maintenue plus longtemps par ledit piston 12 ou 12' que dans un moteur de l'art antérieur. On entend par pression élevée, proche de la pression maximale du mélange, une pression comprise entre quatre-vingt dix et cent pour cent de la pression maximale. La pression maximale du mélange est la pression du mélange lorsque le piston 12 ou 12' est au point mort haut. Le laps de temps durant lequel une pression élevée est appliquée sur le mélange est représentatif d'environ vingt cinq degrés de rotation du vilebrequin.
Avantageusement, la pression élevée est maintenue suffisamment longtemps par ledit piston au sein de la chambre de combustion, pour obtenir une combustion sensiblement complète du mélange lors de la phase de combustion.
Par ailleurs, cette rotation alternative du palonnier 40 permet notamment de fortement limiter l'accélération du piston 12, 12' due à l'obliquité des bielles.
Dans un deuxième mode de réalisation, telle que schématiquement représentée sur les figures 5 et 6, le moteur 10 à combustion interne comprend quatre pistons 12, 12', 12" et 12"' respectivement engagés en coulissement dans quatre cylindres 1 1 , 1 1 ', 1 1 " et 1 1 "' comprenant chacun une ouverture. Lesdits cylindres sont disposés deux à deux, de part et d'autre d'un plan médian P', l'axe longitudinal des cylindres 1 1 , 1 1 ', 1 1 " et 1 1 "' étant perpendiculaire à ce plan P'. Préférentiellement, lesdits cylindres sont agencés symétriquement de part et d'autre, et à distance, du plan médian P', de sorte que les cylindres 1 1 , 1 1 " d'une paire soient respectivement coaxiaux avec les cylindres 1 1 ', 1 1 "' de l'autre paire, et que les ouvertures desdits cylindres 1 1 , 1 1 " soient disposées au regard des ouvertures des cylindres 1 1 ', 1 1 "'.
Le moteur 10 à combustion interne selon le deuxième mode de réalisation présente un mécanisme bielle-manivelle analogue à celui du premier mode de réalisation, à l'exception du nombre de cylindres, et par conséquent de piston, de bras d'entretoise et de bielle.
Préférentiellement, pour des raisons d'équilibre des masses en mouvement, l'axe de rotation des tourillons 22 du vilebrequin 20 est situé à équidistance de l'ensemble des cylindres 1 1 , 1 1 ', 1 1 " et 1 1 "', par exemple, inscrit dans le plan P'.
Les quatre pistons 12, 12', 12" et 12"' sont cinématiquement liés les uns aux autres par l'intermédiaire de l'entretoise 13, de sorte que le déplacement de deux pistons 12 et 12", ou 12' et 12"' d'une paire entraîne un déplacement analogue des pistons 12 et 12", ou 12' et 12"' de l'autre paire.
De manière analogue au premier mode de réalisation, les paires de pistons 12 et 12", 12' et 12"' sont fixés à l'entretoise 13 par l'intermédiaire de paires de bras 131 et 131 ', 131 " et 131 "' de l'entretoise 13 relié au corps 133 d'entretoise, comme illustré par la figure 6. Il y a lieu de noter que les pistons ne sont pas représentés sur la figure 6. Les paires de bras sont respectivement reliées de part et d'autre du corps 133 d'entretoise de sorte que l'axe longitudinal d'un bras 131 ou 131 ' d'une paire est confondu avec l'axe longitudinal d'un bras 131 " ou 131 "' de l'autre paire. Préférentiellement, les axes longitudinaux des bras 131 , 131 ', 131 " et 131 "' sont respectivement confondus avec les axes longitudinaux des cylindres 1 1 , 1 1 ', 1 1 " et 1 1 "'.
Comme schématiquement représenté sur la figure 6, à chaque extrémité distale des bras 131 , 131 ', 131 " et 131 "' de l'entretoise est respectivement solidaire le pied 31 , 31 ', 31 " et 31 "' d'une bielle 30, 30', 30" et 30"'. Lesdites bielles 30 et 30' sont respectivement solidaires par leur tête 32, 32' à un palonnier 40, et lesdites bielles 30" et 30"' sont respectivement solidaires par leur tête 32", 32"' à un second palonnier 40'. De manière alternative, chaque palonnier 40, 40' peut être respectivement solidaire à une seule bielle 30 ou 30', et 30" ou 30"'. Deux paires de bielles sont respectivement formées par les bielles 30 et 30' et par les bielles 30" et 30"'.
Avantageusement, les bielles 30 et 30', et 30" et 30"' de chaque paire sont diagonalement opposées, comme illustré par les figures 5 et 6. On entend, par « diagonalement opposées » que les bielles de chaque paire de bielles sont respectivement associées aux bras de chaque paire de bras, et que les axes longitudinaux respectifs des bras auxquels sont associées les bielles d'une même paire sont distants l'un de l'autre.
Dans ce mode de réalisation de l'invention, deux palonniers 40 et 40' sont montés mobiles en rotation autour du maneton 21 . Les palonniers 40 et 40' sont disposés, par exemple, de part et d'autre de l'entretoise 13, sur le maneton 21 .
Ainsi, lors du déplacement des pistons 12, 12', 12" et 12"' entre les points morts haut et bas et inversement, les efforts des bielles 30, 30', 30" et 30"' sur chacun des palonniers 40 et 40' entraînent chaque dit palonnier à décrire sensiblement un mouvement de translation circulaire autour de l'axe de rotation des tourillons 22.
Toutefois, dans la mesure où chaque palonnier 40 et 40' est respectivement associé avec une paire de bielles 30 et 30', et 30" et 30"' diagonalement opposées, les palonniers 40 et 40' sont amenés à décrire, autour du maneton 21 , un mouvement de rotation alternatif, inversé l'un par rapport à l'autre. Autrement dit, le mouvement de rotation d'un des palonniers 40 ou 40' est symétrique au mouvement de rotation de l'autre palonnier 40 ou 40' selon un plan de symétrie parallèle au plan P'. L'angle formé par l'axe longitudinal d'un des palonniers 40 ou 40' avec le plan P est opposé à l'angle formé par l'axe longitudinal de l'autre palonnier 40 ou 40' avec ledit plan P, par rapport à ce plan P.
Ainsi, de la même manière que pour le premier mode de réalisation, ce mouvement de rotation alternatif permet aux têtes de bielles 32, 32', 32" et 32"' de décrire une trajectoire non circulaire lors du fonctionnement du moteur 10 à combustion interne, c'est-à-dire, lors de la rotation des palonniers 40 et 40' autour de l'axe de rotation des tourillons 22.
De ce fait, durant les courses des pistons 12, 12', 12", 12"' respectivement dans les cylindres 1 1 , 1 1 ', 1 1 ", 1 1 "', lesdits pistons demeurent suffisamment longtemps au point mort haut pour maintenir une pression élevée suffisamment longtemps par le piston au sein de la chambre de combustion, pour obtenir une combustion sensiblement complète du mélange.
Avantageusement, une combustion peut être réalisée de manière concomitante dans la chambre de combustion de chaque cylindre 1 1 et 1 1 ", ou 1 1 ' et 1 1 "' d'une même paire. Les efforts de poussée produits par la combustion sont transmis par les pistons 12 et 12', ou 12" et 12"' respectivement engagés dans les cylindres 1 1 et 1 1 ", ou 1 1 ' et 1 1 "' de ladite paire aux autres pistons 12 et 12', ou 12" et 12"' et comprennent uniquement une composante axiale. Le guidage axial d'un des pistons lors de son coulissement dans le cylindre auquel il est associé, est assuré par le coulissement des autres pistons dans les cylindres respectifs auxquels ils sont associés. Les pistons ne génèrent donc pas d'efforts transversaux. Cette disposition permet avantageusement de réduire de manière significative les efforts d'inertie de deuxième ordre.
Dans un troisième mode de réalisation de l'invention, le moteur 10 à combustion interne comprend deux cylindres conformes au premier mode de réalisation décrit ci-avant, à l'exception qu'ils sont coaxiaux. De manière analogue aux autres modes de réalisation de l'invention, un piston est engagé en coulissement dans chaque cylindre.
Le moteur 10 à combustion interne selon le troisième mode de réalisation comprend un mécanisme bielle-manivelle, tel que représenté par la figure 7, identique à celui du premier mode de réalisation, à l'exception de la configuration de l'entretoise 13.
Plus particulièrement, de manière analogue au premier mode de réalisation, les pistons sont cinématiquement liés entre eux par l'intermédiaire des bras 131 et 131 ' de l'entretoise 13. Toutefois, dans ce mode de réalisation de l'invention, les bras 131 et 131 ' sont coaxiaux et sont agencés de part et d'autre du corps d'entretoise 133. Préférentiellement, les axes longitudinaux des bras 131 et 131 ' et l'axe de rotation des tourillons 22 du vilebrequin 20 sont inscrits dans un même plan M. Ce plan M est par exemple un plan médian de l'entretoise 13.
Les pieds 31 et 31 ' des bielles 30 et 30' sont respectivement solidaires au corps d'entretoise 133, en deux points sensiblement diamétralement opposées l'un à l'autre par rapport à l'axe de rotation des tourillons 22. Les bielles 30 et 30' sont respectivement solidaires par leur tête 32 et 32' à chacune des extrémités du palonnier 40.
Alternativement, un premier et un second palonnier 40 et 40' peuvent être disposés de part et d'autre de l'entretoise 13 et agencés en rotation autour du maneton 21 . Le moteur 10 à combustion interne comprend alors deux paires de bielles, chacune des paires de bielle étant solidaire d'un palonnier comme décrit ci-avant.
Dans un autre exemple de réalisation du mécanisme bielle-manivelle tel que représenté par la figure 8, et pouvant être mis en œuvre dans les modes de réalisation de l'invention décrits ci-avant, l'entretoise 13 est dotée d'une ouverture 132 configurée de sorte qu'un des tourillons 22 du vilebrequin 20 soit adapté à évoluer à travers ladite ouverture 132 lors du coulissement de ladite entretoise 13. L'ouverture 132 s'étend préférentiellement selon un axe longitudinal parallèle aux axes longitudinaux respectifs AA' et BB' des cylindres 1 1 et 1 1 '. L'entretoise 13 comprend des bras 131 , 131 ' conformes à l'un des modes de réalisation décrit précédemment, reliés de part et d'autre du corps 133 d'entretoise, et à l'extrémité de chacun desquels est fixé un piston 12 ou 12'.
Le mécanisme bielle-manivelle comprend également, par exemple, deux bielles 30, 30' respectivement solidaires par leur pied 31 , 31 ' aux bras 131 , 131 ' ou au corps 133, et par leur tête 32, 32' au palonnier 40.
Ainsi, de manière analogue au cycle de fonctionnement du moteur 10 à combustion interne décrit précédemment, lorsqu'une combustion est générée dans la chambre de combustion d'un cylindre 1 1 ou 1 1 ', un effort de poussée est produit sur un piston 12 ou 12' agencé en coulissement dans ledit cylindre. Ledit piston transmet alors, par le biais de l'entretoise 13, une partie de cet effort aux bielles 30, 30'. Les bielles 30, 30' transmettent cet effort aux extrémités du palonnier 40 auxquelles elles sont respectivement solidaires, créant un moment de force entraînant la rotation dudit palonnier 40 autour du maneton 21 , et provoquant de fait la rotation du maneton 21 autour de l'axe de rotation des tourillons 22.
De la même manière que pour les modes de réalisation précédemment décrits, une des bielles 30 ou 30' exerce un effort de traction sur le palonnier 40, et l'autre exerce un effort de poussée sur le palonnier 40.
Dans d'autres modes de réalisation de l'invention, non représentés sur les figures, le moteur 10 à combustion interne peut comprendre plus ou moins de cylindres que le moteur selon les modes de réalisation de l'invention précédemment décrits. Le nombre de piston est le même que le nombre de cylindre.
Dans d'autres modes de réalisation de l'invention, le moteur 10 à combustion interne comprend des ensembles de deux ou quatre cylindres disposés en série, juxtaposés les uns aux autres, selon l'axe de rotation des tourillons, et partageant un unique vilebrequin. Le moteur 10 à combustion interne comprend préférentiellement deux ensembles de deux ou quatre cylindres, chaque ensemble de cylindre étant associé à des pistons en relation cinématique avec un mécanisme bielle-manivelle conforme à l'un des modes de réalisation de l'invention décrits précédemment. Plus précisément, le vilebrequin comprend deux manetons, agencés par exemple, à cent quatre- vingt degrés l'un par rapport à l'autre, sur chacun desquels sont ajustés en rotation, un ou deux palonniers. Il y a lieu de noter qu'un palonnier est préférentiellement solidaire de deux bielles, et est donc associé à deux pistons. Par conséquent, le nombre de palonnier est égal à la moitié du nombre de cylindre.
De manière plus générale, il est à noter que les modes de réalisation considérés ci-dessus ont été décrits à titre d'exemples non limitatifs, et que d'autres variantes sont par conséquent envisageables.
Notamment, rien n'exclut, suivant d'autres exemples, de combiner les différentes caractéristiques des différents modes de réalisation de l'invention.
Par ailleurs, le mécanisme bielle manivelle a été décrit dans le cadre d'un moteur à combustion, mais peut être employé dans un moteur fonctionnant avec d'autres types d'énergie, telle qu'un fluide sous pression.

Claims

Revendications
1 . Moteur (10) à combustion interne comportant au moins deux cylindres (1 1 , 1 1 ') d'axes longitudinaux parallèles, chaque cylindre comportant une ouverture et un piston (12, 12') adapté à translater à l'intérieur dudit cylindre, lesdites ouvertures respectives desdits cylindres se faisant face, lesdits pistons étant en relation cinématique avec un mécanisme bielle-manivelle, caractérisé en ce que ledit mécanisme bielle-manivelle comporte :
- une entretoise (13) reliant lesdits pistons, adaptée à maintenir un écartement fixe entre lesdits pistons de sorte qu'un déplacement en translation d'un piston entraîne le même déplacement en translation pour l'autre piston, lesdits pistons étant respectivement fixés à des bras (131 , 131 ') de ladite entretoise,
- un vilebrequin (20) mobile en rotation autour d'un axe, agencé entre les ouvertures des cylindres et entre les axes longitudinaux desdits cylindres, ledit vilebrequin comportant un maneton (21 ),
- un palonnier (40) mobile en rotation autour du maneton, comportant deux extrémités agencées de part et d'autre dudit maneton,
- au moins une bielle (30) comportant une première extrémité, dite
« pied » (31 ), solidaire de l'entretoise, et une seconde extrémité, dite « tête » (32), solidaire d'une des extrémités du palonnier.
2. Moteur (10) à combustion interne selon la revendication 1 , dans lequel les bras (131 , 131 ') de l'entretoise (13) sont reliés à un corps (133) d'entretoise comprenant une ouverture (132) à travers laquelle le vilebrequin (20) est apte à évoluer.
3. Moteur (10) à combustion interne selon l'une des revendications 1 ou 2, comprenant deux bielles (30, 30'), respectivement solidaires de l'entretoise (13) par leur pied (31 , 31 '), et respectivement solidaires d'une des extrémités du palonnier (40, 40') par leur tête (32, 32'). Moteur (10) à combustion interne selon l'une des revendications 1 à 3, comprenant quatre cylindres (1 1 , 1 1 ', 1 1 ", 1 1 "') agencés par paires, symétriquement disposés de part et d'autre d'un plan médian P dans lequel est inscrit l'axe de rotation du vilebrequin, de sorte que l'axe longitudinal des cylindres soit perpendiculaire au plan P.
Moteur (10) à combustion interne selon la revendication 4, dans lequel l'entretoise (13) comprend quatre bras (131 , 131 ', 131 ", 131 "') répartis en deux paires reliées de part et d'autre d'un corps (133) d'entretoise.
Moteur (10) à combustion interne selon l'une des revendications 4 ou 5, comprenant deux palonniers (40, 40') mobiles en rotation autour du maneton (21 ), une bielle (30, 30") étant solidaire par sa tête à au moins une des extrémités de chaque palonniers.
Moteur (10) à combustion interne selon l'une des revendications 4 à 6, comprenant quatre bielles (30, 30', 30", 30"'), respectivement solidaires d'un des bras (131 , 131 ', 131 ", 131 "') de l'entretoise (13) par leur pied (31 , 31 ', 31 ", 31 "'), et respectivement solidaires d'une des extrémités des palonniers (40, 40') par leur tête (32, 32', 32", 32"').
Moteur (10) à combustion interne selon l'une des revendications 4 à 7, comprenant une pluralité d'ensembles de quatre cylindres juxtaposés les uns aux autres, selon l'axe de rotation du vilebrequin, de sorte que les pistons de chaque ensemble de quatre cylindre soient en relation cinématique avec le même vilebrequin.
EP17732494.4A 2017-05-23 2017-05-23 Moteur à combustion interne Active EP3631168B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL17732494T PL3631168T3 (pl) 2017-05-23 2017-05-23 Silnik o spalaniu wewnętrznym

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2017/051267 WO2018215698A1 (fr) 2017-05-23 2017-05-23 Moteur à combustion interne

Publications (2)

Publication Number Publication Date
EP3631168A1 true EP3631168A1 (fr) 2020-04-08
EP3631168B1 EP3631168B1 (fr) 2021-07-07

Family

ID=59153210

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17732494.4A Active EP3631168B1 (fr) 2017-05-23 2017-05-23 Moteur à combustion interne

Country Status (9)

Country Link
US (1) US10900413B2 (fr)
EP (1) EP3631168B1 (fr)
CN (1) CN110914516B (fr)
CA (1) CA3064675A1 (fr)
ES (1) ES2894448T3 (fr)
MA (1) MA48713B1 (fr)
PL (1) PL3631168T3 (fr)
RU (1) RU2733157C1 (fr)
WO (1) WO2018215698A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021105745A1 (fr) * 2019-11-29 2021-06-03 Mani Arben Double moteur hydromécanique

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH202053A (fr) * 1936-12-15 1938-12-31 Tilling Stevens Limited Moteur comportant au moins une paire de cylindres diamétralement opposés.
GB755255A (en) * 1953-03-06 1956-08-22 Eric Sydney Symes Improvements in or relating to internal combustion engines
RU2019721C1 (ru) * 1992-07-15 1994-09-15 Геня Те Линейный двигатель внутреннего сгорания
DE19602703A1 (de) * 1995-08-24 1997-02-27 Udo Wagener Zweikanal-Zweitaktmotor
US5983845A (en) * 1996-07-26 1999-11-16 Yugen Kaisha Sozoan Rotational motion mechanism and engine
RU2184864C1 (ru) * 2001-07-20 2002-07-10 Анашин Дмитрий Викторович Двигатель внутреннего сгорания
CN101592077A (zh) * 2002-03-15 2009-12-02 先进动力科技公司 内燃机
CN100593078C (zh) * 2004-04-29 2010-03-03 弗朗西斯科·哈维尔·路易斯·马丁内兹 平衡旋转发动机
RU2270925C1 (ru) * 2004-09-22 2006-02-27 Дмитрий Викторович Анашин Двигатель внутреннего сгорания
CA2894441C (fr) * 2007-04-23 2017-12-12 New Power Concepts Llc Machine a cycle stirling
US9435202B2 (en) * 2007-09-07 2016-09-06 St. Mary Technology Llc Compressed fluid motor, and compressed fluid powered vehicle
CN102149914B (zh) * 2009-06-23 2013-06-26 浪越博道 内燃引擎
CN102733947B (zh) * 2012-07-07 2015-06-03 北京理工大学 一种对置二冲程发动机
SK522012A3 (sk) * 2012-07-13 2014-09-04 Ladislav Just Pevné spojenie dvoch protiľahlých piestov do jednej osi dvojitým premostením
US10590841B2 (en) * 2015-06-26 2020-03-17 GM Global Technology Operations LLC Single shaft dual expansion internal combustion engine

Also Published As

Publication number Publication date
MA48713B1 (fr) 2021-10-29
PL3631168T3 (pl) 2022-01-24
US10900413B2 (en) 2021-01-26
MA48713A (fr) 2020-04-08
EP3631168B1 (fr) 2021-07-07
WO2018215698A1 (fr) 2018-11-29
CA3064675A1 (fr) 2018-11-29
US20200088094A1 (en) 2020-03-19
CN110914516B (zh) 2021-05-25
CN110914516A (zh) 2020-03-24
RU2733157C1 (ru) 2020-09-29
ES2894448T3 (es) 2022-02-14

Similar Documents

Publication Publication Date Title
FR2870895A1 (fr) Pompe a piston radiaux avec une bague d'actionnement par roulement entrainee de facon excentrique.
EP2281107B1 (fr) Moteur pourvu d'une chambre a volume variable
EP2279332B1 (fr) Moteur a combustion interne
EP3631168B1 (fr) Moteur à combustion interne
EP0034958B1 (fr) Moteur avec pistons rotatifs à variation cyclique de vitesse et moyens d'entraînement
FR3046198A1 (fr) Moteur a combustion interne
WO2004111411A1 (fr) Moteur thermique a combustion interne semi-rotatif a cycle superposes
EP3004550B1 (fr) Dispositif de transformation de mouvement et procédé correspondant
EP3983647B1 (fr) Moteur à combustion interne à train epicycloïdale et à pistons alternatifs
FR3103216A1 (fr) Système de commande pour une soupape d’admission sur piston d’un moteur deux temps
FR3062188A1 (fr) Organe d’equilibrage et systeme d’equilibrage pour equilibrer un moteur a combustion interne
WO2018138093A1 (fr) Système d'équilibrage pour équilibrer un moteur à combustion interne
WO2018138092A1 (fr) Méthode d'équilibrage d'un moteur à combustion interne
FR3096425A1 (fr) Méthode d'équilibrage d'un moteur à combustion interne
FR2807466A1 (fr) Moteur thermique avec ensembles piston/cylindre a deplacement relatifs autour d'un axe
EP0083892A2 (fr) Machine rotative à pistons à vitesse de rotation non uniforme
FR2821643A1 (fr) Chambre d'expansion de moteur a air comprime
EP0216976A1 (fr) Dispositif moteur et/ou compresseur autopropulseur
BE861936A (fr) Moteur a pistons
FR2965321A1 (fr) Moteur a combustion interne muni d'un arbre d'equilibrage
BE477496A (fr)
FR2866065A1 (fr) Moteurs a combustion interne dits a explosion, a piston
FR2519697A1 (fr) Machine a pistons
FR2811373A1 (fr) Procede et dispositif tres reactifs pour l'optimisation continue du taux de compression des moteurs a pistons alternatifs
WO2015014975A1 (fr) Mecanisme de conversion reciproque entre un mouvement de rotation et un mouvement alternatif de translation, systeme mecanique et vehicule

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAV Requested validation state of the european patent: fee paid

Extension state: MA

Effective date: 20200102

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PONS ENGINE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210115

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1408773

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017041653

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: MA

Ref legal event code: VAGR

Ref document number: 48713

Country of ref document: MA

Kind code of ref document: B1

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210707

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1408773

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211007

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211108

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211007

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2894448

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211008

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017041653

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

26N No opposition filed

Effective date: 20220408

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220523

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230420

Year of fee payment: 7

Ref country code: IE

Payment date: 20230420

Year of fee payment: 7

Ref country code: ES

Payment date: 20230601

Year of fee payment: 7

Ref country code: DE

Payment date: 20230419

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230419

Year of fee payment: 7

Ref country code: PL

Payment date: 20230424

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170523