EP4165236B1 - Procédé de fabrication électrochimique d'acides alcanicarboxyliques par oxydation avec ouverture de cycle au moyen d'une électrode en mousse ni(o)oh dopée - Google Patents

Procédé de fabrication électrochimique d'acides alcanicarboxyliques par oxydation avec ouverture de cycle au moyen d'une électrode en mousse ni(o)oh dopée Download PDF

Info

Publication number
EP4165236B1
EP4165236B1 EP21727488.5A EP21727488A EP4165236B1 EP 4165236 B1 EP4165236 B1 EP 4165236B1 EP 21727488 A EP21727488 A EP 21727488A EP 4165236 B1 EP4165236 B1 EP 4165236B1
Authority
EP
European Patent Office
Prior art keywords
carbon atoms
weight
mol
carried out
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21727488.5A
Other languages
German (de)
English (en)
Other versions
EP4165236A1 (fr
Inventor
Frank Weinelt
Franz-Erich Baumann
Siegfried R. Waldvogel
Anna-Lisa RAUEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Operations GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Operations GmbH filed Critical Evonik Operations GmbH
Publication of EP4165236A1 publication Critical patent/EP4165236A1/fr
Application granted granted Critical
Publication of EP4165236B1 publication Critical patent/EP4165236B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/23Oxidation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/042Electrodes formed of a single material
    • C25B11/047Ceramics
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/07Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/13Single electrolytic cells with circulation of an electrolyte
    • C25B9/15Flow-through cells

Definitions

  • the invention relates to a process for the electrochemical production of alkylenedicarboxylic acids by ring-opening oxidation using a doped Ni(O)OH foam electrode in an aqueous alkaline solution.
  • BV Lyalin and VA Petrosyan disclose the production of unsubstituted adipic acid and the oxidation of carbohydrates.
  • EP 2907898 A1 ( US 2015/0225861 A1 ) discloses the use of nickel foam at reaction temperatures of 80 ° C for the oxidative ring cleavage of 3,3,5-trimethylcyclohexanol in one embodiment variant. The reaction was carried out in a highly diluted solution with low yields.
  • Schmitt et al. (Beilstein J. Org. Chem., 2015, 11, 473-480 ) reveal the cleavage of lignin into various oxo-substituted aromatics using different electrodes. The oxidation to the corresponding acids was not successful.
  • Another advantage is the high yield of the process according to the invention.
  • the present invention thus opens up for the first time the possibility of developing a technically relevant continuous process for obtaining alkanedicarboxylic acids without the use of aggressive chemicals and still in high yields.
  • R 1 , R 2 , R 3 can be the same or different, hydrogen or alkyl radical with 1 to 8 carbon atoms, preferably 1 to 5 carbon atoms, linear or branched, where at least one of the radicals R 1 , R 2 , R 3 is an alkyl radical.
  • radicals R 1 , R 2 , R 3 are particularly preferably hydrogen and R 2 is an alkyl radical with 1 to 4 carbon atoms.
  • the process according to the invention is preferably carried out according to scheme (IV).
  • A is a hydrocarbon with 4 to 9 carbons, all ring carbons of A in the cyclic starting material of scheme (IV) carrying at least one hydrogen substituent, A has at least 2 ring carbon atoms, more preferably 3 to 9 ring carbon atoms.
  • the process according to the invention is preferably carried out according to at least one of the schemes (II), (III) or (IV).
  • Isomers are known to those skilled in the art; reference is made in particular to the definitions by Prof. Kazmaier of Saarland University, e.g. E.g. http://www.uni-saarland.de/fak8/kazmaier/PDF_files/vorlesungen/Stereochemie%20Strassb%20V orlage.pdf.
  • the doping content information relates to the elementary state of the doping based on the mass of the metal of the electrode.
  • the Ni(O)OH foam electrode preferably has 3 to 9% by weight of phosphorus and more preferably 4 to 9% by weight; phosphorus is considered an element and is based on the metal mass of the electrode.
  • the content determination of the phosphorus doping is preferably carried out in accordance with DIN EN ISO 5427, Appendix D.1.
  • the Ni(O)OH foam electrode preferably has a thickness of several millimeters, more preferably more than 3 mm, more preferably more than 5 mm and particularly preferably equal to or thicker than 6 mm.
  • the Ni(O)OH foam electrode preferably contains at least 90% by weight of metal, more preferably at least 95, 98, 99% by weight, more preferably at least 99.9, particularly preferably at least 99.99% by weight. Nickel, based on the total metal content.
  • Ni(O)OH foam electrode can contain other metals besides nickel.
  • Preferred other metals are Co, Fe and Cu.
  • Content of other metals in the Ni(O)OH foam electrode is preferably equal to or less than 10% by weight, more preferably 5% by weight, more preferably 2% by weight, particularly preferably less than or equal to 1% by weight based on the total metal content.
  • the Ni(O)OH foam electrode preferably contains a maximum of 5% by weight, preferably 2% by weight, more preferably 1% by weight and particularly preferably 0.5% by weight and particularly preferably a maximum of 0.1% by weight.
  • % iron or iron compounds where the content information relates to the element in relation to the total metal content.
  • the Ni(O)OH foam electrode preferably contains a maximum of 1% by weight, preferably 0.1% by weight and more preferably a maximum of 0.01% by weight of V, Wo and Mo; These metals are subject to corrosion in an alkaline-aqueous medium, which can have an unfavorable effect on the process according to the invention.
  • any metal that is inert to the reaction medium can be used as a cathode material.
  • cosolvents can be alcohols or DMSO. Up to 30% by volume of a cosolvent is preferably present, more preferably 1 to 20% by volume, based on the sum of the solvents, more preferably the solvent consists of water.
  • alkaline additives are suitable as alkaline additives.
  • Alkaline metal hydroxides such as LiOH, NaOH, KOH, and soluble alkaline earth metal hydroxides are preferred in the process according to the invention.
  • Sodium hydroxide is particularly preferably used according to the invention.
  • the concentration of the alkaline additive is preferably 0.5 to 2 mol/l based on the aqueous alkaline solution, more preferably 0.8 to 1.5 mol/l and particularly preferably 1 mol/l with a possible deviation of up to 10% , preferably a deviation of up to 5% of the molarity.
  • the concentration of the starting materials according to scheme (I) is preferably 0.06 to 0.5 mol/l, more preferably 0.08 to 0.3 and particularly preferably 0.09 to 0.11 mol/l.
  • the total current that leads to the reaction according to the invention according to schemes (II) and (III) is 8 F.
  • 8 to 10 F are used, more preferably 8.5 to 9 F.
  • 6 F are required for implementation according to scheme (IV).
  • 6 to 8 F are used, more preferably 6.5 to 7 F.
  • the method according to the invention is preferably carried out with a current density of 2 to 10 mA/cm 2 , more preferably 2.5 to 7.5 mA/cm 2 and particularly preferably 3.3 to 6 mA/cm 2 .
  • the area specification refers to the geometric area without taking the inner surface of the foam into account.
  • This current density information refers to the largest area on one of the sides and is therefore independent of the flow direction in the case of the flow cell.
  • the process according to the invention can be carried out discontinuously, for example in a batch electrolysis cell or continuously in an electrolysis cell through which flow occurs, preferably in an electrolysis cell through which flow is continuous.
  • the process according to the invention is preferably carried out at temperatures of 20 - 70°C, preferably 30 - 60°C, more preferably 35 - 50°C.
  • the method according to the invention is carried out using a doped Ni(O)OH foam electrode, the doping being selected from phosphorus, arsenic, selenium and sulfur, the concentration of alkali being 0.8 to 1.5 mol/l and the concentration of starting material according to scheme (I) is 0.08 to 0.3 mol/l.
  • the method according to the invention is carried out using a Ni(O)OH foam electrode doped with phosphorus, the concentration of alkali being 0.8 to 1.5 mol/l and the current density being 2 to 10 mA/cm 2 .
  • the method according to the invention is carried out using a Ni(O)OH foam electrode doped with phosphorus according to scheme (IV).
  • A is a hydrocarbon with 4 to 9 carbons, all ring carbons of A in the cyclic starting material of scheme (IV) carrying at least one hydrogen substituent, preferably A has at least 2 ring carbon atoms, more preferably 3 to 9 ring carbon atoms.
  • the method according to the invention is more preferably carried out using a phosphorus-doped Ni(O)OH foam electrode in a flow cell, the concentration of alkali being 0.8 to 1.5 mol/l and the concentration of starting material according to scheme (I). is 0.08 to 0.3 mol/l.
  • the method according to the invention is particularly preferably carried out using a phosphorus-doped Ni(O)OH foam electrode in a flow cell, the concentration of alkali being 0.8 to 1.5 mol/l, whereby the Concentration of starting material according to scheme (I) is 0.08 to 0.3 mol/l and the flow rate of the reaction medium in the anode space is at least 5 cm/min, preferably at least 8 cm/min, more preferably at least 10 cm/min .
  • Figure 1 shows the schematic structure with a reaction cell with continuous flow
  • Figure 2 shows the temperature dependence of the yield of the reaction according to Table 1, entry 1, for the doped anode in the batch test.
  • All anodes used had dimensions of length 60 mm, width 20 and thickness 6 mm. In the batch process, however, only half of the surface (length 30 mm) was immersed to carry out the process according to the invention.
  • the cathodes have the same surface area as the anodes, but are made of sheet metal. The thickness does not play a significant role, especially in the flow process only one surface is exposed to the reaction medium.
  • the nickel foam electrodes had a density of 0.35 to 0.44 g/cm 3 . This corresponds to a porosity of 95 to 96%.
  • the phosphorus-doped electrodes were purchased from Aqua Titan, Dortmund.
  • Ni(O)OH layer of the anodes was carried out in 280 ml of a solution of 0.1 mol/l NiSO 4 * 6H 2 O, 0.1 mol/l NaOAc * 3H 2 O, 0.005 mol/l NaOH in carried out with distilled water.
  • the electrodes were completely immersed and coated with a pole change (10 s) at 150 coulombs and 10 mA/cm 2 at room temperature. After the reaction was complete, the electrodes were rinsed and then dried.
  • the reaction cell was filled (25 ml) with water and sodium hydroxide dissolved therein (1 mol/l) and the substance to be oxidized (educt according to scheme (I)). The concentration of starting material was 0.1 mol/l. The stirred solution was then tempered. The electrooxidation was carried out under galvanostatic conditions.
  • the doped Ni(O)OH foam electrode prepared above was used as the anode in the experiments according to the invention; in the experiments not according to the invention, electrodes of basically the same construction and not doped with phosphorus were used and stainless steel sheet electrodes were used as cathodes.
  • the solution was discharged quantitatively (with rinsing using demineralised water and dichloromethane (20 ml each)) and extracted with dichloromethane (volume ratio: water to organic solvent approximately 2 to 1).
  • the remaining aqueous phase was adjusted to pH 1 with 50% sulfuric acid and extracted four times with diethyl ether (volume ratio: water to organic solvent approximately 2 to 1).
  • the organic phases were dried separately over sodium sulfate and the solvent was then removed on a rotary evaporator.
  • the doped Ni(O)OH foam electrode produced above was installed in a multilayer Teflon block in such a way that it was completely flowed through; the entry area was 6 mm * 20 mm, i.e. the flow direction was in the longitudinal axis of the electrode.
  • the cathode was separated by a slot plate at a distance of less than a millimeter.
  • the chamber was flowed through from bottom to top in an upright position.
  • a Ritmo ® 05 from Fink Chem+Tec GmbH & Co. KG was used as the pump.
  • reaction solutions were carried out as in the batch process.
  • the workup was carried out as in the batch process.
  • DC6 octanedioic acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Claims (14)

  1. Procédé pour la préparation électrochimique d'acides alcanedicarboxyliques par oxydation avec ouverture de cycle en solution alcaline aqueuse, caractérisé en ce que l'oxydation est effectuée sur une électrode en mousse de Ni(O)OH dopée par des éléments du 5e et/ou 6e groupe principal, l'électrode en mousse de Ni(O)OH présentant 2 à 10% en poids de phosphore, le phosphore étant pris comme élément et se rapportant à la masse métallique de l'électrode,
    selon le schéma (I)
    Figure imgb0039
    dans lequel
    Figure imgb0040
    représente une simple ou une double liaison, R étant de manière correspondante présent ou non,
    R représentant hydrogène ou un radical acyle, le radical acyle étant le radical d'un acide monocarboxylique aliphatique comprenant 2 à 8 atomes de carbone et A représentant un hydrocarbure comprenant 4 à 30 atomes de carbone, tous les carbones de cycle de A dans le produit de départ cyclique du schéma (I) portant au moins un substituant hydrogène.
  2. Procédé selon la revendication 1, caractérisé en ce que l'électrode en mousse de Ni(O)OH présente 3 à 9% en poids et de préférence 4 à 9% en poids, le phosphore étant pris comme élément et se rapportant à la masse métallique de l'électrode.
  3. Procédé selon la revendication 1 à 2, caractérisé en ce que l'électrode en mousse de Ni(O)OH présente une épaisseur de plusieurs millimètres, de préférence de plus de 3 mm, plus préférablement de plus de 5 mm et en particulier de préférence une épaisseur de 6 mm ou plus.
  4. Procédé selon au moins l'une des revendications 1 à 3, caractérisé en ce que l'électrode en mousse de Ni(O)OH contient, comme métal, au moins 80% en poids, de préférence 90, 95, 98, 99% en poids, plus préférablement au moins 99,9, en particulier de préférence 99,99% en poids de nickel.
  5. Procédé selon au moins l'une des revendications 1 à 4, caractérisé en ce que la solution aqueuse signifie que jusqu'à 30% en volume d'un cosolvant peuvent être présents dans la solution.
  6. Procédé selon au moins l'une des revendications 1 à 5, caractérisé en ce que l'ajout alcalin de la solution aqueuse est l'hydroxyde de lithium, l'hydroxyde de sodium ou l'hydroxyde de potassium, d'autres anions des bases n'étant de préférence pas présents.
  7. Procédé selon au moins l'une des revendications 1 à 6, caractérisé en ce que la concentration de l'ajout alcalin est de 0,5 à 2 moles/l par rapport à la solution alcaline aqueuse, de préférence 0,8 à 1,5 mole/l et en particulier de préférence 1 mole/l avec un écart possible de jusqu'à 10%, de préférence avec un écart de jusqu'à 5% de la molarité.
  8. Procédé selon au moins l'une des revendications 1 à 7, caractérisé en ce que la concentration en cycloalcanols, c'est-à-dire que dans le schéma (I) R = hydrogène et représente une simple liaison, est de 0,06 à 0,5 mole/l, de préférence de 0,08 à 0,3 et en particulier de préférence 0,09 à 0,11 mole/l.
  9. Procédé selon au moins l'une des revendications 1 à 8, caractérisé en ce que le procédé est effectué selon
    Figure imgb0041
    , ou R1, R2, R3 sont identiques ou différents et représentent hydrogène ou un radical alkyle comprenant 1 à 8 atomes de carbone, de préférence 1 à 5 atomes de carbone, linéaire ou ramifié, au moins l'un des radicaux R1, R2, R3 représentant un radical alkyle, plus préférablement seul l'un des radicaux R1, R2, R3 représentant un radical alkyle comprenant 1 à 4 atomes de carbone et de manière particulièrement préférée les radicaux R1 et R3 représentant hydrogène et R2 représentant un radical alkyle comprenant 1 à 4 atomes de carbone.
  10. Procédé selon la revendication 9, la quantité appliquée totale d'électrons étant de 8 à 10 F, plus préférablement de 8,5 à 9 F, F représentant l'unité Faraday.
  11. Procédé selon au moins l'une des revendications 1 à 9, caractérisé en ce que le procédé est réalisé à une densité de courant de 2 à 10 mA/cm2, plus préférablement de 2,5 à 7,5 mA/cm2 et en particulier de préférence de 3,3 à 6 mA/cm2, l'indication de surface se rapportant à la surface géométrique sans prendre en compte la surface interne de la mousse.
  12. Procédé selon au moins l'une des revendications précédentes, caractérisé en ce que l'électrolyse est effectuée dans une cellule d'électrolyse par lots ou dans une cellule d'électrolyse à écoulement continu, de préférence dans une cellule d'électrolyse à écoulement continu.
  13. Procédé selon au moins l'une des revendications précédentes, caractérisé en ce que de l'acier inoxydable, du platine ou du nickel ou un mélange est utilisé comme matériau de la cathode.
  14. Procédé selon au moins l'une des revendications précédentes, caractérisé en ce que l'électrolyse est effectuée à des températures de 20 - 70°C, de préférence de 30 - 60°C, plus préférablement de 35 - 50°C.
EP21727488.5A 2020-06-10 2021-05-26 Procédé de fabrication électrochimique d'acides alcanicarboxyliques par oxydation avec ouverture de cycle au moyen d'une électrode en mousse ni(o)oh dopée Active EP4165236B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20179245.4A EP3922758A1 (fr) 2020-06-10 2020-06-10 Procédé de fabrication électrochimique d'acides alcanicarboxyliques par oxydation avec ouverture de cycle au moyen d'une électrode en mousse ni(o)oh dopée
PCT/EP2021/064057 WO2021249775A1 (fr) 2020-06-10 2021-05-26 Procédé de production électrochimique d'acides alcanedicarboxyliques au moyen d'une oxydation par ouverture de cycle au moyen d'une électrode en mousse de ni(o)oh dopé

Publications (2)

Publication Number Publication Date
EP4165236A1 EP4165236A1 (fr) 2023-04-19
EP4165236B1 true EP4165236B1 (fr) 2023-12-27

Family

ID=71083537

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20179245.4A Withdrawn EP3922758A1 (fr) 2020-06-10 2020-06-10 Procédé de fabrication électrochimique d'acides alcanicarboxyliques par oxydation avec ouverture de cycle au moyen d'une électrode en mousse ni(o)oh dopée
EP21727488.5A Active EP4165236B1 (fr) 2020-06-10 2021-05-26 Procédé de fabrication électrochimique d'acides alcanicarboxyliques par oxydation avec ouverture de cycle au moyen d'une électrode en mousse ni(o)oh dopée

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP20179245.4A Withdrawn EP3922758A1 (fr) 2020-06-10 2020-06-10 Procédé de fabrication électrochimique d'acides alcanicarboxyliques par oxydation avec ouverture de cycle au moyen d'une électrode en mousse ni(o)oh dopée

Country Status (6)

Country Link
US (1) US11976373B2 (fr)
EP (2) EP3922758A1 (fr)
JP (1) JP2023529827A (fr)
CN (1) CN115917047A (fr)
ES (1) ES2975117T3 (fr)
WO (1) WO2021249775A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116143607A (zh) * 2023-02-24 2023-05-23 广西科学院 一种制备木质素基3-乙基己二酸或3-丙基己二酸的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19536056A1 (de) 1995-09-28 1997-04-03 Huels Chemische Werke Ag Flüssige Lösungen von Dicarbonsäuren
DE10207924A1 (de) 2002-02-23 2003-09-04 Clariant Gmbh Hochkonzentrierte wässrige Lösungen von Betainen oder Aminoxiden
DE102010002809A1 (de) 2010-03-12 2011-11-17 Evonik Degussa Gmbh Verfahren zur Herstellung von linearen alpha,omega-Dicarbonsäurediestern
DE102013203866A1 (de) 2013-03-07 2014-09-11 Evonik Industries Ag Elektrochemische Kupplung eines Phenols mit einem Naphthol
DE102013203865A1 (de) 2013-03-07 2014-09-11 Evonik Industries Ag Elektrochemische Kupplung zweier Phenole, welche sich in ihrem Oxidationspotential unterscheiden
DE102014202502A1 (de) 2014-02-12 2015-08-13 Evonik Degussa Gmbh Verfahren zur elektrochemischen Herstellung von 2.2.4-Trimethyladipinsäure und 2.4.4-Trimethyladipinsäure
EP3498759A1 (fr) 2017-12-13 2019-06-19 Evonik Degussa GmbH Procédé de fabrication de polymères à base de monomères comportant du lauryllactame
CN109837555B (zh) * 2019-04-11 2019-12-31 浙江工业大学 一种镍钒磷化物催化剂电催化氧化制取2,5-呋喃二甲酸的方法
EP3741790A1 (fr) 2019-05-20 2020-11-25 Evonik Operations GmbH Polyamide à sous-structures de terpénoïdes cycliques
WO2021063630A1 (fr) 2019-10-01 2021-04-08 Evonik Operations Gmbh Procédé de production de compositions thermoplastiques pour des composants soumis à des contraintes mécaniques et/ou thermiques
CN111229267B (zh) * 2020-01-16 2021-04-20 湖南大学 负载型磷掺杂金属羟基氧化物纳米片材料及其制备方法和应用

Also Published As

Publication number Publication date
EP3922758A1 (fr) 2021-12-15
US20230212762A1 (en) 2023-07-06
JP2023529827A (ja) 2023-07-12
EP4165236A1 (fr) 2023-04-19
ES2975117T3 (es) 2024-07-03
US11976373B2 (en) 2024-05-07
CN115917047A (zh) 2023-04-04
WO2021249775A1 (fr) 2021-12-16

Similar Documents

Publication Publication Date Title
EP2742172B1 (fr) Procédé de fabrication de vanilline par oxydation électrochimique de solutions ou suspensions aqueuses de lignine
EP0627020B1 (fr) Procede electrochimique de preparation d'acide glyoxylique
EP0011712B1 (fr) La préparation de dialcoylacétals de benzaldéhyd substitués en position 4
DE2460754C2 (de) Verfahren zur Herstellung von p-Benzochinondiketalen
EP0280120B1 (fr) Procédé électrochimique d'échange d'atomes d'halogène dans un composé organique
DE2343054B1 (de) Verfahren zur elektrochemischen Herstellung von Pinacolen
EP0012240B1 (fr) Procédé de préparation de dialcoylacétals de benzaldéhyde éventuellement substitués
EP4165236B1 (fr) Procédé de fabrication électrochimique d'acides alcanicarboxyliques par oxydation avec ouverture de cycle au moyen d'une électrode en mousse ni(o)oh dopée
EP2411564B1 (fr) Procédé électrochimique de production de 3-tert-butylbenzaldehyde-dimetylacetals
EP0308838B1 (fr) Procédé de production d'acides fluorés et leurs dérivés
WO2008145627A1 (fr) Oxydation électrochimique sur des groupes allyle
DE602004001782T2 (de) Verfahren zur herstellung a-substituierter carbonsäuren aus der reihe der a-hydroxycarbonsäuren und n-substituierten a-aminocarbonsäuren
EP0326855B1 (fr) Procédé de préparation de l'acide fluoromalonique et de ses dérivés
WO1992005299A1 (fr) Procede de production d'acides acryliques halogenes
DE2738274A1 (de) Verfahren zur entfernung von bleiionen aus formose
DE1618838C3 (fr)
EP0040331B1 (fr) Méthode de préparation de l'acide diacétogulonique
DE2851732A1 (de) Verfahren zur herstellung von substituierten benzaldehyd-dialkylacetalen
DE2505911A1 (de) Verfahren zur herstellung von diaceton- 2-ketogulonsaeure
DE3028758A1 (de) Verfahren zur herstellung von anisaldehyd
DE69706668T2 (de) Verfahren zur herstellung von tetraalkyl 1,2,3,4-butantetracarboxylaten
DE102013211744A1 (de) Elektrochemisches Verfahren zur Herstellung von symmetrischen Biphenolen unter Verwendung einer Glaskohlenstoffanode
DE102013211745A1 (de) Elektrochemisches Verfahren zur Herstellung von symmetrischen Biphenolen unter Verwendung von Essigsäure als Elektrolyt
EP4253605A1 (fr) Oxydation électrochimique des cycloalcènes en acides alpha,oméga-dicarboniques et en acides cétocarboniques
DE10045664A1 (de) Verfahren zur elektrochemischen Regenerierung von Mediatoren an Diamantelektroden

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231017

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021002301

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231206

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240328

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240328

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240327

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240521

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240427

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2975117

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240521

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240602

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240627

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240427

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240531

Year of fee payment: 4

Ref country code: FR

Payment date: 20240527

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240429

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240429

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240521

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231227