EP4134472A1 - Procédé de production d'alcoolats alcalins dans une cellule d'électrolyse - Google Patents

Procédé de production d'alcoolats alcalins dans une cellule d'électrolyse Download PDF

Info

Publication number
EP4134472A1
EP4134472A1 EP21191300.9A EP21191300A EP4134472A1 EP 4134472 A1 EP4134472 A1 EP 4134472A1 EP 21191300 A EP21191300 A EP 21191300A EP 4134472 A1 EP4134472 A1 EP 4134472A1
Authority
EP
European Patent Office
Prior art keywords
sub
chamber
electrolytic cell
interior
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP21191300.9A
Other languages
German (de)
English (en)
Inventor
Michael Horn
Philip Heinrich REINSBERG
Ragnar LÜBKE
Lorenz FRIGGE
Linda GERHOFER
Markus SIEGBERG
Rüdiger TEUFERT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Functional Solutions GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Functional Solutions GmbH filed Critical Evonik Functional Solutions GmbH
Priority to EP21191300.9A priority Critical patent/EP4134472A1/fr
Priority to EP22760747.0A priority patent/EP4384656A1/fr
Priority to PCT/EP2022/071856 priority patent/WO2023016897A1/fr
Publication of EP4134472A1 publication Critical patent/EP4134472A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/01Electrolytic cells characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/05Diaphragms; Spacing elements characterised by the material based on inorganic materials
    • C25B13/07Diaphragms; Spacing elements characterised by the material based on inorganic materials based on ceramics
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/07Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/13Single electrolytic cells with circulation of an electrolyte
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/21Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms two or more diaphragms

Definitions

  • the present invention relates to a method for producing an alkali metal alkoxide solution L 1 in an electrolytic cell E.
  • the electrolytic cell E comprises at least one cathode chamber K K , at least one anode chamber K A and optionally a middle chamber K M located in between.
  • the interior I KK of the cathode chamber K K is separated by a partition wall W comprising at least one cation-conducting solid electrolyte ceramic F A , for example NaSICON, from the interior I KA of the anode chamber K A or, in cases where the electrolytic cell E comprises a central chamber K M , from Interior I KM of the middle chamber K M separated.
  • the electrolytic cell E comprises a central chamber K M
  • the interior I KM of the central chamber K M is separated from the interior I KA of the anode chamber K A by a diffusion barrier D, for example a membrane selective for cations or anions or a non-ion-specific partition.
  • the part O EA of the upper side O E delimiting the interior I KA of the anode chamber K A is essentially designed as a plane whose normal N OEA forms an angle 0° ⁇ EA ⁇ 45° to the gravitational vector V S .
  • the sequence A KA is then arranged on the upper half of O EA .
  • the part O EK of the upper side O E delimiting the interior I KK of the cathode chamber K K is essentially designed as a plane whose normal N OEK forms an angle 0° ⁇ EK ⁇ 45° to the gravity vector V S , and the sequence A KK is then arranged on the upper half of O EK .
  • the electrochemical production of alkali metal alkoxide solutions is an important industrial process that is used, for example, in DE 103 60 758 A1 , the U.S. 2006/0226022 A1 and the WO 2005/059205 A1 is described.
  • the principle of this process is reflected in an electrolytic cell in whose anode chamber there is a solution of an alkali salt, for example common salt or NaOH, and in whose cathode chamber there is the alcohol in question or a low-concentration alcoholic solution of the alkali metal alcoholate in question, for example sodium methoxide or sodium ethoxide.
  • the cathode chamber and the anode chamber are separated by a ceramic that conducts the alkali metal ion used, for example NaSICON or an analog for potassium or lithium.
  • a current is applied, chlorine is formed at the anode - if a chloride salt of the alkali metal is used - and hydrogen and alcohol ions are formed at the cathode.
  • the charge is equalized by the alkali metal ions migrating from the middle chamber into the cathode chamber via the ceramic that is selective for them.
  • the charge equalization between the middle chamber and the anode chamber takes place through the migration of cations when using cation exchange membranes or the migration of anions when using anion exchange membranes or through the migration of both types of ions when using non-specific diffusion barriers. This increases the concentration of the alkali metal alcoholate in the cathode chamber and the concentration of the sodium ions in the anolyte decreases.
  • WO 2014/008410 A1 describes an electrolytic process for the production of elemental titanium or rare earths. This process is based on the fact that titanium chloride is formed from TiO 2 and the corresponding acid, this reacts with sodium alcoholate to form titanium alcoholate and NaCl and is finally converted electrolytically to form elemental titanium and sodium alcoholate.
  • WO 2007/082092 A2 and WO 2009/059315 A1 describe processes for the production of biodiesel in which triglycerides are first converted into the corresponding alkali metal triglycerides with the aid of alcoholates electrolytically produced via NaSICON and in a second step are converted into glycerol and the respective alkali metal hydroxide with electrolytically produced protons.
  • the object of the present invention was therefore to provide a process for preparing an alkali metal alkoxide solution in an electrolytic cell which does not have this disadvantage.
  • a further disadvantage of conventional electrolytic cells in this technical field results from the fact that the solid electrolyte is not stable over the long term with respect to aqueous acids. This is problematic insofar as the pH drops in the anode chamber during electrolysis as a result of oxidation processes (for example when halogens are produced by disproportionation or by oxygen formation). These acidic conditions attack the NaSICON solid electrolyte, so the process cannot be used on an industrial scale.
  • Various approaches have been described in the prior art to address this problem.
  • WO 2012/048032 A2 and US 2010/0044242 A1 describe, for example, electrochemical processes for the production of sodium hypochlorite and similar chlorine compounds in such a three-chamber cell.
  • the cathode chamber and the middle chamber of the cell are separated by a cation-permeable solid electrolyte such as NaSICON.
  • the middle chamber is supplied with solution from the cathode chamber, for example.
  • the US 2010/0044242 A1 also describes in Figure 6 that solution from the middle chamber can be mixed with solution from the anode chamber outside the chamber to obtain sodium hypochlorite.
  • the DE 42 33 191 A1 describes the electrolytic production of alcoholates from salts and alcoholates in multi-chamber cells and stacks of several cells.
  • the WO 2008/076327 A1 describes a process for preparing alkali metal alkoxides.
  • a three-chamber cell is used, the middle chamber of which is filled with alkali metal alkoxide (see, for example, paragraphs [0008] and [0067] of WO 2008/076327 A1 ).
  • WO 2009/073062 A1 A similar arrangement is described in WO 2009/073062 A1 .
  • this arrangement has the disadvantage that it is the alkali metal alkoxide solution, which is consumed as a buffer solution and is continuously contaminated is the desired product.
  • the central chamber is separated from the anode chamber by a diffusion barrier and from the cathode chamber by an ion-conducting ceramic.
  • ion-conducting ceramic During the electrolysis, this inevitably leads to the formation of pH gradients and dead volumes. This can damage the ion-conducting ceramic and consequently increase the voltage requirement of the electrolysis and/or lead to breakage of the ceramic.
  • a further object of the present invention was therefore to provide an improved process for the electrolytic production of alkali metal alkoxide. These should not have the aforementioned disadvantages and should in particular ensure improved protection of the solid electrolyte against the formation of the pH gradient and more economical use of the educts compared to the prior art.
  • the same electrolytic cell is shown in both figures from a different perspective 1 A shown perspective corresponds to the top view of the in Fig. 1B shown electrolytic cell E ⁇ 1> in the direction of arrow ⁇ 30>.
  • the electrolytic cell E ⁇ 1> comprises a cathode chamber K K ⁇ 12> and an anode chamber K A ⁇ 11>.
  • the anode chamber K A ⁇ 11> comprises an anodic electrode E A ⁇ 113> in the interior I KA ⁇ 112>, an inlet Z KK ⁇ 110> and an outlet A KA ⁇ 111>.
  • the cathode chamber K K ⁇ 12> comprises a cathodic electrode E K ⁇ 123> in the interior I KK ⁇ 122>, an inlet Z KK ⁇ 120> and an outlet A KK ⁇ 121>.
  • the electrolytic cell E ⁇ 1> forms a container B E ⁇ 800> on the side and on the bottom and a flat upper side O E ⁇ 801> on top.
  • the interior I KA ⁇ 112> is delimited by a part O EA ⁇ 8011> of the upper side O E ⁇ 801> and a part B EA ⁇ 8001> of the container B E ⁇ 800>.
  • the interior I KK ⁇ 122> is delimited by a part O EK ⁇ 8012> of the upper side O E ⁇ 801> and a part B EK ⁇ 8002> of the container B E ⁇ 800>.
  • the interior I KK ⁇ 122> is also separated from the interior I KA ⁇ 112> by a partition wall W ⁇ 16>, which consists of a disk of a NaSICON solid electrolyte FA ⁇ 18> that is selectively permeable for sodium ions.
  • the NaSlCON solid electrolyte FA ⁇ 18> extends over the entire depth and height of the two-chamber cell E.
  • the NaSlCON solid electrolyte FA ⁇ 18> contacts the two interior spaces I KK ⁇ 122> and I KA ⁇ 112> directly, so that sodium ions can be conducted from one interior to the other through the NaSICON solid electrolyte F A ⁇ 18>.
  • the electrolytic cell E ⁇ 1> is inclined, which means that the flat upper side O E ⁇ 801> and thus also the two parts O EA ⁇ 8011> and O EK ⁇ 8012> are inclined.
  • the angle ⁇ EA or ⁇ EK of the respective normal N OEA ⁇ 91> and N OEK ⁇ 92> of the plane O EA ⁇ 8011> and O EK ⁇ 8012> compared to the vector of gravity V s ⁇ 90> is ⁇ 25 °.
  • the two drains A KA ⁇ 111> and A KK ⁇ 121> are located close to the highest edge of the electrolytic cell E ⁇ 1>.
  • An aqueous solution of sodium chloride L 3 ⁇ 23> with pH 10.5 is added counter to gravity into the interior I KA ⁇ 112> via the inlet Z KA ⁇ 110>.
  • a solution of sodium methoxide in methanol L 2 ⁇ 22> is fed into the interior space I KK ⁇ 122> via the inlet Z KK ⁇ 120>.
  • a voltage is applied between the cathodic electrode E K ⁇ 123> and the anodic electrode E A ⁇ 113>.
  • methanol is reduced to methoxide and H 2 in the electrolyte L 2 ⁇ 22> (CH 3 OH + e - ⁇ CH 3 O - + 1 ⁇ 2 H 2 ).
  • Sodium ions diffuse from the interior I KA ⁇ 112> through the NaSICON solid electrolyte FA ⁇ 18> into the interior I KK ⁇ 122>.
  • gases that form e.g. chlorine gas in the anode chamber K A ⁇ 11 > And hydrogen gas in the cathode chamber K K ⁇ 12>
  • the rapid removal of the chlorine gas also reduces the acid-forming reaction Cl 2 + H 2 O ⁇ HOCl + HCl and thus the increase in acidity in the anode chamber K A ⁇ 11 >, which in turn extends the service life of the NaSICON solid electrolyte.
  • the same electrolytic cell is shown in both figures from a different perspective Fig. 2A
  • the perspective shown corresponds to the top view of the in Fig. 2B shown electrolytic cell E ⁇ 1> in the direction of arrow ⁇ 30>.
  • the three-chamber electrolytic cell E comprises a cathode chamber K K ⁇ 12>, an anode chamber K A ⁇ 11> and a middle chamber K M ⁇ 13> located in between.
  • the anode chamber K A ⁇ 11> comprises an anodic electrode E A ⁇ 113> in the interior I KA ⁇ 112>, an inlet Z KK ⁇ 110> and an outlet A KA ⁇ 111>.
  • the cathode chamber K K ⁇ 12> comprises a cathodic electrode E K ⁇ 123> in the interior I KK ⁇ 122>, an inlet Z KK ⁇ 120> and an outlet A KK ⁇ 121>.
  • the central chamber K M ⁇ 13> comprises an interior space I KM ⁇ 132>, an inlet Z KM ⁇ 130> and an outlet A KM ⁇ 131>.
  • the interior space I KA ⁇ 112> is connected to the interior space I KM ⁇ 132> via the connection V AM ⁇ 15>.
  • the electrolytic cell E ⁇ 1> forms a container B E ⁇ 800> on the side and on the bottom and a flat upper side O E ⁇ 801> on top.
  • the interior I KA ⁇ 112> is delimited by a part O EA ⁇ 8011> of the upper side O E ⁇ 801> and a part B EA ⁇ 8001> of the container B E ⁇ 800>.
  • the interior I KK ⁇ 122> is defined by a part O EK ⁇ 8012> of the upper side O E ⁇ 801> and a part B EK ⁇ 8002> of container B E ⁇ 800> limited.
  • the interior space I KM ⁇ 132> is delimited by a part O EM ⁇ 8013> of the upper side O E ⁇ 801> and a part B EM ⁇ 8003> of the container B E ⁇ 800>.
  • the interior I KK ⁇ 122> is also separated from the interior I KM ⁇ 132> by a partition W ⁇ 16>, which consists of a disk of a NaSICON solid electrolyte FA ⁇ 18> that is selectively permeable for sodium ions.
  • the NaSlCON solid electrolyte FA ⁇ 18> extends over the entire depth and height of the three-chamber cell E.
  • the NaSlCON solid electrolyte FA ⁇ 18> contacts the two inner spaces I KK ⁇ 122> and I KM ⁇ 132> directly, so that sodium ions can be conducted from one interior to the other through the NaSICON solid electrolyte F A ⁇ 18>.
  • the interior I KM ⁇ 132> of the middle chamber K M ⁇ 13> is additionally separated from the interior I KA ⁇ 112> of the anode chamber KA ⁇ 11> by a diffusion barrier D ⁇ 14>.
  • the NaSlCON solid electrolyte F A ⁇ 18> and the diffusion barrier D ⁇ 14> extend over the entire depth and height of the three-chamber cell E.
  • the diffusion barrier D ⁇ 14> is a cation exchange membrane (sulfonated PTFE).
  • connection V AM ⁇ 15> is formed outside the electrolytic cell E , in particular by a tube or hose, the material of which can be chosen from rubber, metal or plastic.
  • liquid can be conducted from the interior I KM ⁇ 132> of the central chamber K M ⁇ 13> into the interior I KA ⁇ 112> of the anode chamber KA ⁇ 11> outside the three-chamber cell E ⁇ 1>.
  • connection V AM ⁇ 15> connects an outlet A KM ⁇ 131>, which breaks through the container B E ⁇ 800> of the electrolytic cell E at the bottom of the central chamber K M ⁇ 13>, with an inlet Z KA ⁇ 110>, which is at the bottom of the anode chamber K A ⁇ 11> breaks through the container B E ⁇ 800> of the electrolytic cell E.
  • the electrolytic cell E ⁇ 1> is inclined, which means that the flat upper side O E ⁇ 801> and thus also the two parts O EA ⁇ 8011> and O EK ⁇ 8012> are inclined.
  • the two drains A KA ⁇ 111> and A KK ⁇ 121> are located close to the highest edge of the electrolytic cell E ⁇ 1>.
  • the angle ⁇ EA or ⁇ EK of the respective normal N OEA ⁇ 91> and N OEK ⁇ 92> of the plane O EA ⁇ 8011> and O EK ⁇ 8012> compared to the vector of gravity V S ⁇ 90> is ⁇ 25 °.
  • An aqueous solution of sodium chloride L 3 ⁇ 23> with pH 10.5 is added via the inlet Z KM ⁇ 130> in the same direction as gravity into the interior I KM ⁇ 132> of the central chamber K M ⁇ 13>.
  • the interior space I KM ⁇ 132 is formed by the connection V AM ⁇ 15>, which is formed between the outlet A KM ⁇ 131> of the central chamber K M ⁇ 13> and an inlet Z KA ⁇ 110> of the anode chamber KA ⁇ 11>> of the middle chamber K M ⁇ 13> connected to the interior I KA ⁇ 112> of the anode chamber K A ⁇ 11>.
  • Sodium chloride solution L 3 ⁇ 23> is conducted through this connection V AM ⁇ 15> from interior I KM ⁇ 132> to interior I KA ⁇ 112>.
  • a solution of sodium methoxide in methanol L 2 ⁇ 22> is fed into the interior space I KK ⁇ 122> via the inlet Z KK ⁇ 120>.
  • a voltage is applied between the cathodic electrode E K ⁇ 123> and the anodic electrode E A ⁇ 113>.
  • methanol in the electrolyte L 2 ⁇ 22> is reduced to methoxide and H 2 (CH 3 OH + e - ⁇ CH 3 O - + 1 ⁇ 2 H 2 ).
  • Sodium ions diffuse from the interior I KM ⁇ 132> of the middle chamber K M ⁇ 103> through the NaSICON solid electrolyte FA ⁇ 18> into the interior I KK ⁇ 122>.
  • the acidity would damage the NaSICON solid electrolyte FA ⁇ 18>, but is limited to the anode chamber KA ⁇ 11> by the arrangement in the three-chamber cell and is thus kept away from the NaSICON solid electrolyte FA ⁇ 18> in the electrolytic cell E. This increases its lifespan considerably.
  • gases that form e.g. chlorine gas in the anode chamber K A ⁇ 11 > And hydrogen gas in the cathode chamber K K ⁇ 12>
  • the rapid removal of the chlorine gas also reduces the acid-forming reaction Cl 2 + H 2 O ⁇ HOCl + HCl and thus the increase in acidity in the anode chamber K A ⁇ 11 >, which in turn extends the service life of the NaSICON solid electrolyte.
  • This is carried out in an electrolytic cell E ⁇ 1>, which corresponds to the electrolytic cell E ⁇ 1> shown in Figures 2 A and 2 B with the following difference:
  • the connection V AM ⁇ 15> from the interior I KM ⁇ 132> of the middle chamber K M ⁇ 13> to the interior I KA ⁇ 112> of the anode chamber K A ⁇ 11> is not outside, but through a perforation in the diffusion barrier D ⁇ 14> formed within the electrolytic cell E ⁇ 1>.
  • This perforation can be introduced into the diffusion barrier D ⁇ 14> subsequently (e.g. by punching, drilling) or are already present in the diffusion barrier D ⁇ 14> from the outset due to the production thereof (e.g. in the case of textile fabrics such as filter cloths or metal fabrics).
  • Figure 4 shows a further embodiment of the method according to the invention. It shows the method according to the invention using an electrolytic cell E ⁇ 1>, which is a two-chamber cell.
  • the top is O E ⁇ 801> in the electrolytic cell E ⁇ 1> in 4 not parallel to the ground, and the interiors I KK ⁇ 122> and I KA ⁇ 112> have a trapezoidal section.
  • the angle ⁇ EA or ⁇ EK of the respective normal N OEA ⁇ 91> and N OEK ⁇ 92> of the plane O EA ⁇ 8011> and O EK ⁇ 8012> compared to the vector of gravity V s ⁇ 90> is ⁇ 11 °.
  • Figure 5 shows a further embodiment of the method according to the invention. It shows the method according to the invention using an electrolytic cell E ⁇ 1>, which is a three-chamber cell.
  • the top is O E ⁇ 801> in the electrolytic cell E ⁇ 1> in figure 5 not parallel to the ground, and the interiors I KK ⁇ 122>, I KA ⁇ 112> and I KM ⁇ 132> have a trapezoidal section.
  • the angle ⁇ EA or ⁇ EK of the respective normals N OEA ⁇ 91> and N OEK ⁇ 92> the plane O EA ⁇ 8011> and O EK ⁇ 8012> compared to the vector of gravity V S ⁇ 90> is ⁇ 11°.
  • Figure 6 shows an embodiment of the method not according to the invention.
  • a two-chamber electrolytic cell E is used as described for Figures 1 A and 1 B, except that these are not inclined and the two processes A KA ⁇ 111 > and A KK ⁇ 121 > in is arranged in the middle of the respective plane O EA ⁇ 8011> and O EK ⁇ 8012>.
  • Figure 7 shows an embodiment of the method not according to the invention.
  • a three-chamber electrolytic cell E is used as described for Figures 2 A and 2 B, except that these are not inclined and the two processes A KA ⁇ 111 > and A KK ⁇ 121 > in is arranged in the middle of the respective plane O EA ⁇ 8011> and O EK ⁇ 8012>.
  • the method according to the invention is carried out in an electrolytic cell E.
  • the electrolytic cell E comprises at least one anode chamber K A and at least one cathode chamber K K and optionally at least one intermediate chamber K M .
  • This also includes electrolytic cells E which have more than one anode chamber K A and/or more than one cathode chamber K K and/or more than one middle chamber K M .
  • Such electrolytic cells, in which these chambers are joined together in a modular manner, are, for example, in DD 258 143 A3 and the U.S. 2006/0226022 A1 described.
  • the electrolytic cell E comprises an anode chamber K A and a cathode chamber K K and optionally a middle chamber K M located in between.
  • the electrolytic cell E forms a container B E and a top O E from.
  • the container B E and the upper side O E each comprise, independently of one another, in particular a material which is selected from the group consisting of steel, preferably rubberized steel, plastic, which is in particular made from Telene® (thermosetting polydicyclopentadiene), PVC (polyvinyl chloride), PVC-C ( post-chlorinated polyvinyl chloride), PVDF (polyvinylidene fluoride).
  • the container B E and the top O E preferably comprise the same material. Even more preferably, they are then at least partially in one piece, ie at least part of the container B E forms one piece with at least part of the upper side O E .
  • the container B E and the top O E are perforated in particular for inlets and outlets.
  • the container B E and the top O E form the outer wall W A of the electrolytic cell E.
  • the at least one anode chamber K A Within BE and OE are the at least one anode chamber K A , the at least one cathode chamber K K and, in the embodiments in which the electrolytic cell E comprises such, the at least one intermediate intermediate chamber K M .
  • the container B E forms the bottom and the side walls of the electrolytic cell E.
  • the container B E thus also forms the bottom and the side walls of the at least one anode chamber K A that it encompasses, of the at least one cathode chamber K K that it encompasses and in the embodiments ,
  • the electrolytic cell E includes such a cell, which includes at least one intermediate chamber K M .
  • the base preferably essentially forms a plane, and each of the side walls in each case more preferably also essentially forms a plane.
  • the upper side O E is in particular formed essentially as a plane. "Top" implies that the lowest point of the plane defined by the top O E is higher (i.e. further from the center of the earth) than the lowest point of the container B E .
  • the container B E and the top O E essentially form a polyhedron, preferably a hexahedron, in which at least one pair, preferably at least two pairs of opposite sides are parallel to one another. Even more preferably, the container B E and the top O E essentially form a cuboid.
  • the electrolytic cell E is then arranged so that there is a face of the polyhedron on which the highest point (ie furthest from the center of the earth) of the polyhedron lies and whose lowest point is higher than the lowest point of the remaining sides. In this embodiment, this surface is then the upper side O E of the electrolytic cell E, the remaining surfaces form the container B E .
  • the cathode chamber K K has at least one inlet Z KK , at least one outlet A KK and an interior space I KK , which includes a cathodic electrode E K .
  • the interior I KK is delimited by a part O EK of the upper side O E and a part B EK of the container B E . Accordingly, the part of the upper side O E that delimits I KK is referred to as O EK , and the part of the container B E that delimits I KK is referred to as B EK .
  • the interior I KK of the cathode chamber K K is separated by the partition W from the interior I KA of the anode chamber K A if the electrolytic cell E does not include a central chamber K M .
  • the partition W comprises at least one solid electrolyte ceramic F A which conducts alkali cations, and the solid electrolyte ceramics which conduct alkali cations comprised by the partition W then contact the interior space I KK and the interior space I KA directly.
  • the interior I KK of the cathode chamber K K is separated by the partition W from the interior I KM of the middle chamber K M if the electrolytic cell E comprises at least one middle chamber K M .
  • the solid electrolyte ceramics which conduct alkali cations and are enclosed by the partition W then make direct contact with the interior space I KK and the interior space I KM .
  • the partition wall W comprises at least one solid electrolyte ceramic F A which conducts alkali cations.
  • the feature "partition wall” means that the partition wall W is liquid-tight.
  • the dividing wall comprises either an alkali cation-conducting solid electrolyte ceramic that completely separates the interior space I KK and the interior space I KM or the interior space I KK and the interior space I KA from one another, or comprises several alkali cation-conducting solid electrolyte ceramics which, for example, adjoin one another without gaps.
  • Contact directly means for the arrangement of the alkali cation-conducting solid electrolyte ceramics in the partition W and in the electrolytic cell E that there is an imaginary path from I KK to I AK or from I KK to I MK for each alkali cation-conducting solid electrolyte ceramic contained in the partition W There, which leads completely through the respective alkali cation-conducting solid electrolyte ceramic.
  • any solid electrolyte through which cations, in particular alkali cations, more preferably sodium cations, can be transported from I AK to I KK or from I MK to I KK can be considered as the at least one solid electrolyte ceramic FA that conducts alkali cations.
  • Such solid electrolytes are known to those skilled in the art and, for example, in DE 10 2015 013 155 A1 , in the WO 2012/048032 A2 , paragraphs [0035], [0039], [0040], in the US 2010/0044242 A1 , paragraphs [0040], [0041], in which DE 10360758 A1 , paragraphs [014] to [025].
  • NaSICON LiSICON
  • KSICON KSICON
  • a sodium ion conductive solid electrolyte is preferred, more preferably having a NaSICON structure.
  • NaSICON structures that can be used according to the invention are also described, for example, by Anantharamulu N, Koteswara Rao K, Rambabu G, Vijaya Kumar B, Velchuri Radha, Vithal M, J Mater Sci 2011, 46, 2821-2837 .
  • the alkali cation-conducting solid electrolyte ceramics comprised by the dividing wall W independently of one another have a NaSICON structure of the formula M I 1+2w+x-y+z M II w MI II x Zr IV 2-wxy M V y (SiO 4 ) z (PO 4 ) 3-z on.
  • M I is selected from Na + , Li + , preferably Na + .
  • M II is a divalent metal cation, preferably selected from Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , CO 2+ , Ni 2+ , more preferably selected from Co 2+ , Ni 2+ .
  • M III is a trivalent metal cation, preferably selected from Al 3+ , Ga 3+ , Sc 3+ , La 3+ , Y 3+ , Gd 3+ , Sm 3+ , Lu 3+ , Fe 3+ , Cr 3+ , more preferably selected from Sc 3+ , La 3+ , Y 3+ , Gd 3+ , Sm 3+ , particularly preferably selected from Sc 3+ , Y 3+ , La 3+ .
  • M V is a pentavalent metal cation, preferably selected from V 5+ , Nb 5+ , Ta 5+ .
  • w, x, y, z are real numbers, where 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 2, 0 ⁇ w ⁇ 2, 0 ⁇ z ⁇ 3, and where w, x, y, z are so chosen become that 1 + 2w + x - y + z ⁇ 0 and 2 - w - x - y ⁇ 0.
  • the alkali cation-conducting solid electrolyte ceramics comprised by the partition W have the same structure.
  • the cathode chamber K K includes an interior space I KK , which in turn includes a cathodic electrode E K .
  • a cathodic electrode E K Any electrode familiar to a person skilled in the art that is stable under the conditions of the method according to the invention can be used as such a cathodic electrode E K .
  • This electrode E K can be selected from the group consisting of mesh wool, three-dimensional matrix structure or "balls”.
  • the cathodic electrode E K comprises in particular a material which is selected from the group consisting of steel, nickel, copper, platinum, platinized metals, palladium, palladium supported on carbon, titanium. E K preferably comprises nickel.
  • the cathode chamber K K also includes an inlet Z KK and an outlet A KK .
  • the inlet Z KK and the outlet A KK are attached to the cathode chamber K K in such a way that the liquid makes contact with the cathodic electrode E K as it flows through the interior I KK of the cathode chamber K K .
  • the inlet Z KK and the outlet A KK can be attached to the electrolytic cell E by methods known to those skilled in the art, for example through holes in the container part B EK or the top part O EK and corresponding connections (valves) that allow the introduction or discharge of simplify fluid.
  • the sequence A KK is arranged at O EK .
  • the anode chamber K A has at least one inlet Z KA , at least one outlet A KA and an interior space I KA , which includes an anodic electrode E A .
  • the interior I KA is delimited by a part O EA of the upper side O E and a part B EA of the container B E . Accordingly, the part of the top O E that delimits I KA is referred to as O EA and the part of the container B E that delimits I KA is referred to as B EA .
  • the interior space I KA of the anode chamber K A is separated from the interior space I KM of the center chamber K M by a diffusion barrier D if the electrolytic cell E includes a central chamber K M . If the electrolytic cell E does not include a middle chamber K M , the interior space I KA of the anode chamber K is separated by the partition wall W from the interior space I KK of the cathode chamber K K .
  • the anode chamber K A includes an interior space I KA , which in turn includes an anodic electrode E A .
  • Any electrode familiar to a person skilled in the art that is stable under the conditions of the method according to the third aspect of the invention can be used as such an anodic electrode E A .
  • Such are in particular in WO 2014/008410 A1 , paragraph [024] or DE 10360758 A1 , paragraph [031].
  • This electrode E A can consist of one layer or of several planar, mutually parallel layers, each of which can be perforated or expanded.
  • the anodic electrode E A comprises in particular a material which is selected from the group consisting of ruthenium oxide, iridium oxide, nickel, cobalt, nickel tungstate, nickel titanate, noble metals such as platinum in particular, which is deposited on a carrier such as titanium or Kovar® (an iron/nickel/ Cobalt alloy, in which the individual proportions are preferably as follows: 54% by mass iron, 29% by mass nickel, 17% by mass cobalt) is supported.
  • Other possible anode materials are, in particular, stainless steel, lead, graphite, tungsten carbide, titanium diboride.
  • the anodic electrode E A preferably comprises a titanium anode (RuO 2 + IrO 2 /Ti) coated with ruthenium oxide/iridium oxide.
  • the anode chamber K A also includes an inlet Z KA and an outlet A KA .
  • the inlet Z KA and the outlet A KA are attached to the anode chamber K A in such a way that the liquid makes contact with the anodic electrode E A as it flows through the interior space I KA of the anode chamber K A .
  • This is the prerequisite for the solution L 4 being obtained at the outlet A KA when the method according to the invention is carried out if the solution L 3 of a salt S is passed through the interior space I KA of the anode chamber KA .
  • the inlet Z KA and the outlet A KA can be attached to the electrolytic cell E by methods known to those skilled in the art, e simplify fluid.
  • the inlet Z KA can also lie within the electrolytic cell, for example as a perforation in the diffusion barrier D.
  • the sequence A KA is arranged at O EA .
  • the electrolytic cell E preferably has a central chamber K M .
  • the optional middle chamber K M is located between the cathode chamber K K and the anode chamber K A . It comprises at least one inlet Z KM , at least one outlet A KM and an interior I KM .
  • the interior I KM is delimited by a part O EM of the upper side O E and a part B EM of the container B E . Accordingly, the part of the top O E that delimits I KM is referred to as O EM and the part of the container B E that delimits I KM is referred to as B EM .
  • the interior space I KA of the anode chamber K A is separated from the interior space I KM of the center chamber K M by a diffusion barrier D if the electrolytic cell E includes a central chamber K M .
  • a KM is then also connected to the inlet Z KA by a connection V AM , so that liquid can be conducted from I KM into I KA through the connection V AM .
  • the interior I KM of the optional central chamber K M is separated from the interior I KA of the anode chamber K A by a diffusion barrier D and from the interior I KK of the cathode chamber K K by the partition wall W.
  • any material which is stable under the conditions of the method according to the invention and which prevents or slows down the transfer of protons from the liquid in the interior I KA of the anode chamber K A to the interior I KM of the optional middle chamber K M can be used for the diffusion barrier D.
  • a non-ion-specific dividing wall or a membrane permeable to specific ions is used as the diffusion barrier D.
  • the diffusion barrier D is preferably a non-ion-specific partition.
  • the material of the non-ion-specific partition wall is in particular selected from the group consisting of fabric, in particular textile fabric or metal fabric, glass, in particular sintered glass or glass frits, ceramic, in particular ceramic frits, membrane diaphragms, and is selected particularly preferably a textile fabric or metal fabric, particularly preferably a textile fabric.
  • the textile fabric preferably comprises plastic, more preferably a plastic selected from PVC, PVC-C, polyvinyl ether (“PVE”), polytetrafluoroethylene (“PTFE”).
  • the diffusion barrier D is a “membrane that is permeable to specific ions”, this means according to the invention that the respective membrane favors the diffusion of certain ions through it compared to other ions.
  • membranes are meant that oppose the diffusion through them of ions of a certain type of charge favor oppositely charged ions. More preferably, specific ion permeable membranes also favor the diffusion of certain ions having one charge type through them over other ions of the same charge type.
  • the diffusion barrier D is a “membrane permeable to specific ions”, the diffusion barrier D is in particular an anion-conducting membrane or a cation-conducting membrane.
  • anion-conducting membranes are those which selectively conduct anions, preferably selectively specific anions. In other words, they favor the diffusion of anions through them over that of cations, especially over protons, more preferably they additionally favor the diffusion of certain anions through them over the diffusion of other anions through them.
  • cation-conducting membranes are those which selectively conduct cations, preferably selectively specific cations. In other words, they favor the diffusion of cations through them over that of anions, more preferably they additionally favor the diffusion of certain cations through them over the diffusion of other cations through them, much more preferably cations where there is are not protons, more preferably sodium cations, over protons.
  • “Favour the diffusion of certain ions X compared to the diffusion of other ions Y” means in particular that the diffusion coefficient (unit m 2 /s) of the ion species X at a given temperature for the membrane in question is higher by a factor of 10, preferably 100, preferably 1000 as the diffusion coefficient of the ionic species Y for the membrane in question.
  • the diffusion barrier D is a “membrane that is permeable to specific ions”, it is preferably an anion-conducting membrane because this prevents the diffusion of protons from the anode chamber K A into the middle chamber K M particularly well.
  • a membrane which is selective for the anions comprised by the salt S is used as the anion-conducting membrane.
  • Such membranes are known to those skilled in the art and can be used by them.
  • the salt S is preferably a halide, sulfate, sulfite, nitrate, bicarbonate or carbonate of X, more preferably a halide.
  • Halides are fluorides, chlorides, bromides, iodides. The most preferred halide is chloride.
  • a membrane selective for halides preferably chloride, is preferably used as the anion-conducting membrane.
  • Anion-conducting membranes are, for example, from MA Hickner, AM Herring, EB Coughlin, Journal of Polymer Science, Part B: Polymer Physics 2013, 51, 1727-1735 , by CG Arges, V Ramani, PN Pintauro, Electrochemical Society Interface 2010, 19, 31-35 , in WO 2007/048712 A2 as well as on Page 181 of the textbook by Volkmar M. Schmidt Electrochemical Process Engineering: Fundamentals, Reaction Engineering, Process Optimization, 1st edition (October 8, 2003 ) described.
  • they have covalently bonded functional groups selected from -NH 3 + , -NRH 2 + , -NR 3 + , more preferably selected from -NH 3 + , -NR 3 + , even more preferably -NR 3 + .
  • the diffusion barrier D is a cation-conducting membrane, it is in particular a membrane that is selective for the cations comprised by the salt S.
  • the diffusion barrier D is even more preferably an alkali cation-conducting membrane, even more preferably a potassium and/or sodium ion-conducting membrane, most preferably a sodium ion-conducting membrane.
  • Cation-conducting membranes are described, for example, on page 181 of the textbook by Volkmar M. Schmidt Electrochemical Process Engineering: Fundamentals, Reaction Engineering, Process Optimization, 1st edition (October 8, 2003 ).
  • organic polymers which are selected in particular from polyethylene, polybenzimidazoles, polyetherketones, polystyrene, polypropylene or fluorinated membranes such as polyperfluoroethylene, preferably polystyrene, polyperfluoroethylene, are even more preferably used as the cation-conducting membrane, with these covalently bonded functional groups selected from -SO 3 - , -COO - , -PO 3 2- , -PO 2 H - , preferably -SO 3 - , (described in DE 10 2010 062 804 A1 , U.S. 4,831,146 ) carry.
  • Neosepta ® membranes are described, for example, by SA Mareev, D.Yu. Butylskii, ND Pismenskaya, C Larchet, L Dammak, VV Nikonenko, Journal of Membrane Science 2018, 563, 768-776 .
  • a cation-conducting membrane is used as the diffusion barrier D , this can be, for example, a polymer functionalized with sulfonic acid groups, in particular of the following formula P NAFION , where n and m independently of one another are an integer from 1 to 10 6 , more preferably an integer from 10 to 10 5 , more preferably is an integer from 10 2 to 10 4 .
  • the optional middle chamber K M also includes an inlet Z KM and an outlet A KM . This makes it possible to add liquid, such as solution L 3 , to the interior space I KM of the middle chamber K M , and to transfer liquid therein, such as solution L 3 , to the anode chamber K A .
  • the inlet Z KM and the outlet A KM can be attached to the electrolytic cell E by methods known to those skilled in the art, for example through holes in the container part B EM or the top part O EM and corresponding connections (valves) that allow the introduction or discharge of simplify fluid.
  • the drain A KM can also be within the electrolytic cell, for example as a perforation in the diffusion barrier D.
  • Bottom of the electrolytic cell E is, according to the invention , the side of the electrolytic cell E through which a solution (e.g. L 3 at A KM in Figure 2A) in the same direction as gravity exits the electrolytic cell E or the side of the electrolytic cell E through which a solution (e.g. L 2 at Z KK in Figures 1 A, 2 A and 3 A and L 3 at A KA in Figures 1 A and 2 A) is fed to the electrolytic cell E against the force of gravity.
  • a solution e.g. L 3 at A KM in Figure 2A
  • a solution e.g. L 2 at Z KK in Figures 1 A, 2 A and 3 A and L 3 at A KA in Figures 1 A and 2 A
  • top O E of the electrolytic cell E is the side of the electrolytic cell E through which a solution (e.g. L 4 at A KA and L 1 at A KK in all figures) escapes from the electrolytic cell E against the force of gravity or the side of the Electrolytic cell E, through which a solution (eg L 3 at Z KM in Figures 2 A, 2 B, 3 A, 3 B and 4) is fed to the electrolytic cell E in the same direction as gravity.
  • a solution e.g. L 4 at A KA and L 1 at A KK in all figures
  • the dividing wall W is arranged in the electrolytic cell E in such a way that the solid electrolyte ceramics, which conduct alkali cations and are enclosed by the dividing wall W , make direct contact with the interior space I KK on the side S KK .
  • the partition W is arranged in the electrolytic cell E in such a way that when the interior space I KK is completely filled with solution L 4 on the side S KK , the solution L 4 contacts all of the solid electrolyte ceramics contained in the partition W that conduct alkali cations , so that ions (eg alkali metal ions such as sodium, lithium) from all solid electrolyte ceramics which conduct alkali cations and are encompassed by the partition W can enter the solution L 4 .
  • ions eg alkali metal ions such as sodium, lithium
  • the dividing wall W is arranged in the embodiments in which the electrolytic cell E does not include a middle chamber K M in the electrolytic cell E such that the solid electrolyte ceramics enclosing the dividing wall W make direct contact with the interior space I KA .
  • the partition wall W borders on the interior space I KA of the anode chamber K A .
  • the dividing wall W is arranged in the electrolytic cell E in such a way that when the interior space I KA is completely filled with solution L 3 , the solution L 3 then contacts all of the solid electrolyte ceramics that conduct alkali cations that are contained in the dividing wall W , so that ions (for example, alkali metal ions such as sodium, lithium) from the solution L 3 in any alkali cation-conducting solid electrolyte ceramic, which is comprised of the partition W , can occur.
  • ions For example, alkali metal ions such as sodium, lithium
  • the dividing wall W is arranged in the electrolytic cell E in cases in which the electrolytic cell E comprises at least one central chamber K M such that the solid electrolyte ceramics which are comprised of the dividing wall W and which conduct alkali cations make direct contact with the interior space I KM .
  • the partition wall W borders on the interior space I KM of the central chamber K M .
  • the dividing wall W is arranged in the electrolytic cell E in such a way that when the interior space I KM is completely filled with solution L 3 , the solution L 3 then contacts all of the solid electrolyte ceramics that conduct alkali cations that are contained in the dividing wall W , so that ions (eg alkali metal ions such as sodium, lithium) from the solution L 3 can enter any alkali cation-conducting solid electrolyte ceramic, which is comprised of the partition W.
  • ions eg alkali metal ions such as sodium, lithium
  • the present invention relates to a process for preparing a solution L 1 of an alkali metal alkoxide XOR in the alcohol ROH, where X is an alkali metal cation and R is an alkyl radical having 1 to 4 carbon atoms.
  • the process is carried out in an electrolytic cell E.
  • R is preferably selected from the group consisting of n -propyl, iso -propyl, ethyl, methyl, more preferably selected from the group consisting of ethyl, methyl. Most preferably R is methyl.
  • the steps ( ⁇ 1), ( ⁇ 2), ( ⁇ 3) running simultaneously are carried out.
  • step (a1) a solution L 2 comprising the alcohol ROH, preferably comprising an alkali metal alkoxide XOR and alcohol ROH, is passed through I KK .
  • the solution L 2 is preferably free of water.
  • “free of water” means that the weight of the water in the solution L 2 based on the weight of the alcohol ROH in the solution L 2 (mass ratio) is ⁇ 1:10, more preferably ⁇ 1:20, even more preferably ⁇ 1:100 , more preferably ⁇ 0.5:100.
  • the mass fraction of XOR in the solution L 2 is in particular >0 to 30% by weight, preferably 5 to 20% by weight, even more preferably at 10 to 20% by weight, more preferably at 10 to 15% by weight, most preferably at 13 to 14% by weight, most preferably at 13% by weight.
  • the mass ratio of XOR to alcohol ROH in the solution L 2 is in particular in the range from 1:100 to 1:5, more preferably in the range from 1:25 to 3:20, even more preferably in the range 1:12 to 1:8, more preferably at 1:10.
  • step (a2) a neutral or alkaline, aqueous solution L 3 of a salt S comprising X as a cation is passed through I KA .
  • the salt S is preferably a halide, sulfate, sulfite, nitrate, bicarbonate or carbonate of X, more preferably a halide.
  • Halides are fluorides, chlorides, bromides, iodides. The most preferred halide is chloride.
  • the pH of the aqueous solution L 3 is ⁇ 7.0, preferably in the range from 7 to 12, more preferably in the range from 8 to 11, even more preferably from 10 to 11, most preferably at 10.5.
  • the mass fraction of the salt S in the solution L 3 is preferably in the range > 0 to 20% by weight, preferably 1 to 20% by weight, more preferably 5 to 20% by weight, even more preferably 10 to 20% by weight %, most preferably at 20% by weight, based on the total solution L 3 .
  • step (a3) a voltage is then applied between E A and E K .
  • the charge source is known to those skilled in the art and is typically a rectifier that converts alternating current into direct current and can generate specific voltages via voltage converters.
  • the area of the solid electrolyte that contacts the anolyte in the interior I KA is in particular 0.00001 to 10 m 2 , preferably 0.0001 to 2.5 m 2 , more preferably 0.0002 to 0.15 m 2 , even more preferably 2.83 cm 2 .
  • step (a3) of the method is carried out when the interior space I KA is at least partially loaded with L 3 and the interior space I KK is at least partially loaded with L 2 , so that both L 3 and L 2 contact the solid electrolyte ceramics, which are conductive to alkali cations and are enclosed by the partition W.
  • step (a3) The fact that charge transport takes place between E A and E K in step (a3) implies that I KK and I KA are simultaneously charged with L 2 and L 3 , respectively, in such a way that they cover the electrodes E A and E K to such an extent that the circuit is closed.
  • step (a1) and step (a2) are carried out continuously and voltage is applied in accordance with step (a3).
  • the solution L 1 is obtained at the outlet A KK , the concentration of XOR in L 1 being higher than in L 2 .
  • the concentration of XOR in L 1 is preferably 1.01 to 2.2 fold, more preferably 1.04 to 1.8 fold, even more preferably 1077 to 1.4 fold, even more preferably 1077 to 1077 fold 1.08-fold higher than in L 2 , most preferably 1,077-fold higher than in L 2 , more preferably with the mass fraction of XOR in L 1 and in L 2 being in the range 10 to 20% by weight, even more preferably 13 to 14% by weight.
  • the concentration of the cation X in the aqueous solution L 3 is preferably in the range from 3.5 to 5 mol/l, more preferably 4 mol/l.
  • the concentration of the cation X in the aqueous solution L 4 is more preferably 0.5 mol/l lower than that of the aqueous solution L 3 used in each case.
  • steps (a1) to (a3) of the process are carried out at a temperature of 20°C to 70°C, preferably 35°C to 65°C, more preferably 35°C to 60°C, even more preferably 35°C to 50 °C and a pressure of 0.5 bar to 1.5 bar, preferably 0.9 bar to 1.1 bar, more preferably 1.0 bar.
  • hydrogen is typically formed in the interior I KK of the cathode chamber K K and is discharged from the cell via the outlet A KK can be discharged together with the solution L 1 .
  • the mixture of hydrogen and solution L 1 can then be separated by methods known to those skilled in the art.
  • the alkali metal compound used is a halide, in particular chloride, chlorine or another halogen gas can form, which can be removed from the cell via the outlet A KK together with the solution L 4 .
  • oxygen and/or carbon dioxide can also be formed, which can also be removed.
  • the mixture of chlorine, oxygen and/or CO 2 and solution L 4 can then be separated by methods known to those skilled in the art.
  • the gases chlorine, oxygen and/or CO 2 have been separated from the solution L 4 , these can be separated from one another by methods known to those skilled in the art.
  • steps ( ⁇ 1), ( ⁇ 2), ( ⁇ 3) are carried out simultaneously.
  • the electrolytic cell E comprises at least one middle chamber K M , and then the steps ( ⁇ 1), ( ⁇ 2), ( ⁇ 3) running simultaneously are carried out.
  • step ( ⁇ 1) a solution L 2 comprising the alcohol ROH, preferably comprising an alkali metal alkoxide XOR and alcohol ROH, is passed through I KK .
  • the solution L 2 is preferably free of water.
  • “free of water” means that the weight of the water in the solution L 2 based on the weight of the alcohol ROH in the solution L 2 (mass ratio) is ⁇ 1:10, more preferably ⁇ 1:20, even more preferably ⁇ 1:100 , more preferably ⁇ 0.5:100.
  • the mass fraction of XOR in the solution L 2 is in particular >0 to 30% by weight, preferably 5 to 20% by weight, even more preferably at 10 to 20% by weight, more preferably at 10 to 15% by weight, most preferably at 13 to 14% by weight, most preferably at 13% by weight.
  • the mass ratio of XOR to alcohol ROH in the solution L 2 is in particular in the range from 1:100 to 1:5, more preferably in the range from 1:25 to 3:20, even more preferably in the range 1:12 to 1:8, more preferably at 1:10.
  • step ( ⁇ 2) a neutral or alkaline aqueous solution L 3 of a salt S comprising X as a cation is passed through I KM , then over V AM , then through I KA .
  • the salt S is preferably a halide, sulfate, sulfite, nitrate, bicarbonate or carbonate of X, more preferably a halide.
  • Halides are fluorides, chlorides, bromides, iodides. The most preferred halide is chloride.
  • the pH of the aqueous solution L 3 is ⁇ 7.0, preferably in the range from 7 to 12, more preferably in the range from 8 to 11, even more preferably from 10 to 11, most preferably at 10.5.
  • the mass fraction of the salt S in the solution L 3 is preferably in the range > 0 to 20% by weight, preferably 1 to 20% by weight, more preferably 5 to 20% by weight, even more preferably 10 to 20% by weight %, most preferably at 20% by weight, based on the total solution L 3 .
  • step ( ⁇ 3) a voltage is then applied between E A and E K .
  • the charge source is known to those skilled in the art and is typically a rectifier that converts alternating current into direct current and can generate certain voltages via voltage converters.
  • This can be determined by a person skilled in the art by default.
  • the area of the solid electrolyte that contacts the anolyte located in the interior I KM of the middle chamber K M is in particular 0.00001 to 10 m 2 , preferably 0.0001 to 2.5 m 2 , more preferably 0.0002 to 0.15 m 2 , still more preferably 2.83 cm 2 .
  • step ( ⁇ 3) of the method is carried out when both interior spaces I KM and I KA are at least partially loaded with L 3 and I KK is at least partially loaded with L 2 , so that both L 3 and L 2 also contact the solid electrolytes enclosed by the partition W.
  • step ( ⁇ 3) The fact that charge transport takes place between E A and E K in step ( ⁇ 3) implies that I KK , I KM and I KA are simultaneously charged with L 2 and L 3 , respectively, in such a way that they connect the electrodes E A and E K so far that the circuit is closed.
  • step ( ⁇ 1) and step ( ⁇ 2) are carried out continuously and voltage is applied in accordance with step ( ⁇ 3).
  • the solution L 1 is obtained at the outlet A KK , the concentration of XOR in L 1 being higher than in L 2 .
  • the concentration of XOR in L 1 is preferably 1.01 to 2.2 fold, more preferably 1.04 to 1.8 fold, even more preferably 1077 to 1.4 fold, even more preferably 1077 to 1077 fold 1.08-fold higher than in L 2 , most preferably 1,077-fold higher than in L 2 , more preferably with the mass fraction of XOR in L 1 and in L 2 being in the range 10 to 20% by weight, even more preferably 13 to 14% by weight.
  • the concentration of the cation X in the aqueous solution L 3 is preferably in the range from 3.5 to 5 mol/l, more preferably 4 mol/l.
  • the concentration of the cation X in the aqueous solution L 4 is more preferably 0.5 mol/l lower than that of the aqueous solution L 3 used in each case.
  • steps ( ⁇ 1) to ( ⁇ 3) of the process are carried out at a temperature of 20°C to 70°C, preferably 35°C to 65°C, more preferably 35°C to 60°C, even more preferably 35°C to 50 °C and a pressure of 0.5 bar to 1.5 bar, preferably 0.9 bar to 1.1 bar, more preferably 1.0 bar.
  • hydrogen is typically produced in the interior I KK of the cathode chamber K K , which hydrogen can be discharged from the cell together with the solution L 1 via the outlet A KK .
  • the mixture of hydrogen and solution L 1 can then be separated by methods known to those skilled in the art.
  • the alkali metal compound used is a halide, in particular chloride, chlorine or another halogen gas can form, which can be removed from the cell via the outlet A KK together with the solution L 4 .
  • oxygen and/or carbon dioxide can also be formed, which can also be removed.
  • the mixture of chlorine, oxygen and/or CO 2 and solution L 4 can then be separated by methods known to those skilled in the art.
  • the gases chlorine, oxygen and/or CO 2 have been separated from the solution L 4 , these can be separated from one another by methods known to those skilled in the art.
  • Steps ( ⁇ 1) to ( ⁇ 3) of the method according to the invention protect the acid-labile solid electrolyte from corrosion without having to sacrifice alcoholate solution from the cathode space as a buffer solution, as in the prior art. These process steps are therefore more efficient than those in WO 2008/076327 A1 described procedure in which the product solution is used for the middle chamber, which reduces the overall turnover.
  • condition (i), (ii) is/are fulfilled.
  • condition (iii) described below is also met in cases in which the electrolytic cell E comprises at least one central chamber K M and the connection V AM is formed outside the electrolytic cell E.
  • Normal N OEA in the sense of the invention refers to the normal line (ie orthogonal straight line) or else the normal vector (ie orthogonal vector) to the upper side O EA , which is essentially designed as a plane.
  • the normal N OEA is therefore the vector or straight line which is perpendicular to the plane formed by the upper side O EA . This vector intersects the vector of gravity at the angle ⁇ EA .
  • the angle ⁇ EA can be determined by intersecting the straight line that is perpendicular to the plane formed by the upper side O EA with a straight line that is parallel to the direction of gravity.
  • the flow A KA is located on the upper half of O EA .
  • a KA is attached to this upper half.
  • the upper side O EA is inclined in relation to this, which means that the gases produced in the interior I KA are at the highest point of the interior due to the difference in density from the electrolyte I KA rise. This rising of the gases is facilitated by the fact that the upper side O EA is designed as a plane, in particular it does not have any steps or spikes in which gas bubbles could get caught.
  • O EA is formed as a plane whose normal N OEA forms an angle ⁇ EA , where 0° ⁇ ⁇ EA ⁇ 45°, to the gravity vector V s , and the sequence A KA is on the upper half of O EA arranged.
  • O EK is essentially a plane whose normal N OEK forms an angle ⁇ EK , where 0° ⁇ ⁇ EK ⁇ 45°, to the gravity vector V s , and the drain A KK is on the top half of O EK arranged.
  • Normal N OEK in the sense of the invention refers to the normal straight line (ie orthogonal straight line) or also the normal vector (ie orthogonal vector) to the upper side O EK , which is essentially designed as a plane.
  • the normal N OEK is accordingly the vector or the straight line which is perpendicular to the plane which is formed by the upper side O EK . This vector intersects the vector of gravity at the angle ⁇ EK .
  • the angle ⁇ EK can be determined by intersecting the straight line that is perpendicular to the plane formed by the upper side O EK with a straight line that is parallel to the direction of gravity.
  • the upper side O EK is because its normal N OEK forms an angle 0° ⁇ EK ⁇ 45° to the gravitational vector V s , inclined in relation to this, whereby gases arising in the interior I KK due to the density difference to the electrolyte reach the highest point of the interior I KK rise. This rising of the gases is facilitated by the fact that the upper side O EK is in the form of a plane, in particular it does not have any steps or spikes in which gas bubbles could get caught.
  • O EK is formed as a plane whose normal N OEK forms an angle ⁇ EK , where 0° ⁇ ⁇ EK ⁇ 45°, to the gravity vector V s , and the sequence A KK is on the upper half of O EK arranged.
  • drain A KA is located on the top half of O EA and drain A KK is located on the top half of O EK , more preferably then drain A KA is located on the top third of O EA and drain A KK on the top third of O EK , more preferably then drain A KA is located on the top quarter of O EA and drain A KK is located on the top quarter of O EK , more preferably then drain A KA is located on the top fifth of O EA and Flow A KK is located on the top fifth of O EK , more preferably then flow A KA is located on the top tenth of O EA and flow A KK is located on the top tenth of O EK .
  • the combination of the two conditions (i) and (ii) prevents the formation of a gas cushion in the respective interior space I KK and I KA of the cathode chamber K K and anode chamber K A in a particularly efficient manner.
  • O EM is essentially a plane whose normal N OEM forms an angle ⁇ EM , where 0° ⁇ ⁇ EM ⁇ 45°, to the gravity vector V s , and the gradient A KM is on the top half of O EM arranged.
  • Normal N OEM in the sense of the invention refers to the normal line (ie orthogonal straight line) or also the normal vector (ie orthogonal vector) to the upper side O EM , which is essentially designed as a plane.
  • the normal N OEM is the vector or line perpendicular to the plane formed by the top O EM . This vector intersects the vector of gravity at the angle ⁇ EM .
  • the angle ⁇ EM can be determined by intersecting the straight line that is perpendicular to the plane formed by the upper side O EM with a straight line that is parallel to the direction of gravity.
  • the upper side O EM is inclined in that its normal N OEM forms an angle 0° ⁇ EK ⁇ 45° to the gravity vector V s , which means that the gases produced in the interior I KM are at the highest due to the density difference Place of interior I KM rise. This rising of the gases is facilitated by the fact that the upper side O EM is in the form of a plane, in particular it does not have any steps or spikes in which gas bubbles could get caught.
  • O EM is formed as a plane whose normal N OEM forms an angle ⁇ EM , where 0° ⁇ ⁇ EM ⁇ 45°, to the gravity vector V s , and the sequence A KM is on the upper half Arranged by O EM .
  • NM Sodium methylate
  • the electrolytic cell consisted of three chambers, as in Figure 7 shown. The electrolytic cell was not tilted so that the normal to the top of the electrolytic chamber was parallel to the gravity vector. The drains of the anode chamber and the cathode chamber were also found in the center of the top.
  • the connection between the middle and anode chamber was made by a hose that was attached to the bottom of the electrolytic cell.
  • the anode compartment and middle compartment were separated by a 2.83 cm 2 anion exchange membrane (Tokuyama AMX, ammonium groups on polymer).
  • the cathode and middle chamber were separated by a ceramic of the NaSICON type with an area of 2.83 cm 2 .
  • the ceramic had a chemical composition of the formula Na 3.4 Zr 2.0 Si 2.4 P 0.6 O 12 .
  • the anolyte was transferred to the anode compartment through the middle compartment.
  • the flow rate of the anolyte was 1 l/h, that of the catholyte was 90 ml/h and a current of 0.14 A was applied.
  • the temperature was 35°C.
  • the electrolysis was carried out for 500 hours with the voltage remaining constant at 5V.
  • gas cushions form in the interior spaces of the cathode and anode chambers, in particular due to the formation of chlorine gas and hydrogen at the anode or cathode.
  • Comparative example 1 was repeated with a two-chamber cell comprising only an anode and a cathode chamber, the anode chamber being separated from the cathode chamber by the ceramic of the NaSICON type.
  • the arrangement corresponded to that in Figure 6 shown.
  • this electrolytic cell did not contain a center chamber.
  • the electrolytic cell was not tilted so that the normal to the top of the electrolytic chamber was parallel to the gravity vector.
  • the drains of the anode chamber and the cathode chamber were also found in the center of the top.
  • Comparative example 1 is repeated using an electrolytic cell according to Figures 2A and 2B which is tilted. The drains of the anode chamber and the cathode chamber were also found on the top near the highest edge.
  • the gases produced in the anode and cathode chambers are quickly discharged from the electrolysis chamber at the outlet. This ensures that the interior volumes are not blocked by gas bubbles.
  • the acidification process of the electrolytes, especially the anolyte is curbed.
  • Comparative example 2 is repeated using an electrolytic cell according to Figures 1A and 1B which is tilted. The drains of the anode chamber and the cathode chamber were also found on the top near the highest edge.
  • the gases produced in the anode and cathode chambers are quickly discharged from the electrolysis chamber at the outlet. This ensures that the interior volumes are not blocked by gas bubbles.
  • the acidification process of the electrolytes, especially the anolyte is curbed.
  • the inventive inclination of the upper side of the electrolytic cell in the area of the anode and cathode chambers and the inventive arrangement of the drains prevent the formation of a gas cushion in the respective interior space.
  • the volumes of the interior spaces are completely available for the electrolytes and thus for the electrolysis, and there are no undesired increases in voltage.
  • Gases (such as chlorine) produced at the respective electrode are quickly discharged, which prevents the electrolyte from acidifying and thus also protects the NaSICON ceramic.
  • the use of the three-chamber cell in the method of the invention also prevents corrosion of the solid electrolyte while at the same time not sacrificing an alkali metal alkoxide product for the center chamber and keeping the voltage constant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
EP21191300.9A 2021-08-13 2021-08-13 Procédé de production d'alcoolats alcalins dans une cellule d'électrolyse Withdrawn EP4134472A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21191300.9A EP4134472A1 (fr) 2021-08-13 2021-08-13 Procédé de production d'alcoolats alcalins dans une cellule d'électrolyse
EP22760747.0A EP4384656A1 (fr) 2021-08-13 2022-08-03 Procédé de production d'alcoolates de métal alcalin dans une cellule d'électrolyse
PCT/EP2022/071856 WO2023016897A1 (fr) 2021-08-13 2022-08-03 Procédé de production d'alcoolates de métal alcalin dans une cellule d'électrolyse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP21191300.9A EP4134472A1 (fr) 2021-08-13 2021-08-13 Procédé de production d'alcoolats alcalins dans une cellule d'électrolyse

Publications (1)

Publication Number Publication Date
EP4134472A1 true EP4134472A1 (fr) 2023-02-15

Family

ID=77338566

Family Applications (2)

Application Number Title Priority Date Filing Date
EP21191300.9A Withdrawn EP4134472A1 (fr) 2021-08-13 2021-08-13 Procédé de production d'alcoolats alcalins dans une cellule d'électrolyse
EP22760747.0A Pending EP4384656A1 (fr) 2021-08-13 2022-08-03 Procédé de production d'alcoolates de métal alcalin dans une cellule d'électrolyse

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP22760747.0A Pending EP4384656A1 (fr) 2021-08-13 2022-08-03 Procédé de production d'alcoolates de métal alcalin dans une cellule d'électrolyse

Country Status (2)

Country Link
EP (2) EP4134472A1 (fr)
WO (1) WO2023016897A1 (fr)

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4430175A (en) * 1981-12-22 1984-02-07 Rutgerswerke Aktiengesellschaft Process for the electrochemical conversion of coal and use of the reaction products
DD258143A3 (de) 1986-03-03 1988-07-13 Koethen Ing Hochschule Elektrolysezelle fuer stofftransportgehemmte oder durch konzentrationsabnahmen kinetisch verlangsamte elektrodenreaktionen
US4831146A (en) 1988-03-21 1989-05-16 Air Products And Chemicals, Inc. Process for preparing triacetone amine and other oxopiperidines
DE4233191A1 (de) 1992-01-16 1993-07-22 Huels Chemische Werke Ag Verfahren zur herstellung von alkoholaten
US5389211A (en) 1993-11-08 1995-02-14 Sachem, Inc. Method for producing high purity hydroxides and alkoxides
US6221225B1 (en) 1997-01-23 2001-04-24 Archer Daniels Midland Company Apparatus and process for electrodialysis of salts
WO2005059205A2 (fr) 2003-12-11 2005-06-30 American Pacific Corporation Procede electrolytique de fabrication d'alcoolates d'alcali au moyen de membranes solides ceramiques conduisant les ions
DE10360758A1 (de) 2003-12-23 2005-07-28 Degussa Ag Elektrochemische Herstellung von Alkalialkoholaten mit Hilfe einer keramischen Festelektrolytmembran
US20060226022A1 (en) 2003-12-11 2006-10-12 Ceramatec, Inc. Electrolytic method to make alkali alcoholates using ceramic ion conducting solid membranes
WO2007048712A2 (fr) 2005-10-24 2007-05-03 Basf Se Membranes structurees en surface, membranes revetues de catalyseur et unites membrane-electrode composees de ces membranes
US20070138020A1 (en) * 2005-12-20 2007-06-21 Shekar Balagopal Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes
WO2007082092A2 (fr) 2006-01-11 2007-07-19 Ceramatec, Inc. Synthese de biodiesel au moyen de membranes ceramiques conductrices d'ions de metal alcalin
WO2008076327A1 (fr) 2006-12-14 2008-06-26 Ceramatec, Inc. Procédé électrolytique de production d'alcoolates alcalins dans lequel sont utilisés et un séparateur et un électrolyte alcalins conducteurs d'ions
US20080173540A1 (en) * 2003-12-11 2008-07-24 Joshi Ashok V Electrolytic Cell for Producing Alkali Alcoholates
WO2009059315A1 (fr) 2007-11-02 2009-05-07 Ceramatec, Inc Processus électrolytique pour séparer des ions de métaux alcalins de sels alcalins de glycérine
US20100044242A1 (en) 2008-08-25 2010-02-25 Sai Bhavaraju Methods For Producing Sodium Hypochlorite With a Three-Compartment Apparatus Containing an Acidic Anolyte
DE102010062804A1 (de) 2010-01-12 2011-07-14 Evonik Degussa GmbH, 45128 Verfahren zur Herstellung von 1,1 Diarylalkanen und Derivativen davon
WO2012048032A2 (fr) 2010-10-07 2012-04-12 Ceramatec, Inc. Systèmes et procédés chimiques pour faire fonctionner une cellule électrochimique avec un anolyte acide
WO2014008410A1 (fr) 2012-07-03 2014-01-09 Ceramatec, Inc. Appareil et procédé de production de métal dans une cellule électrolytique de nasicon
US20160204459A1 (en) 2015-01-13 2016-07-14 Korea Institute Of Science And Technology Porous nafion membrane and method for preparing the same
DE102015013155A1 (de) 2015-10-09 2017-04-13 Forschungszentrum Jülich GmbH Elektrolytmaterial mit NASICON-Struktur für Feststoff-Natriumionenbatterien sowie Verfahren zu deren Herstellung
US20190292668A1 (en) * 2018-03-22 2019-09-26 Sekisui Chemical Co., Ltd. Carbon dioxide reduction apparatus and method of producing organic compound

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4430175A (en) * 1981-12-22 1984-02-07 Rutgerswerke Aktiengesellschaft Process for the electrochemical conversion of coal and use of the reaction products
DD258143A3 (de) 1986-03-03 1988-07-13 Koethen Ing Hochschule Elektrolysezelle fuer stofftransportgehemmte oder durch konzentrationsabnahmen kinetisch verlangsamte elektrodenreaktionen
US4831146A (en) 1988-03-21 1989-05-16 Air Products And Chemicals, Inc. Process for preparing triacetone amine and other oxopiperidines
DE4233191A1 (de) 1992-01-16 1993-07-22 Huels Chemische Werke Ag Verfahren zur herstellung von alkoholaten
US5389211A (en) 1993-11-08 1995-02-14 Sachem, Inc. Method for producing high purity hydroxides and alkoxides
US6221225B1 (en) 1997-01-23 2001-04-24 Archer Daniels Midland Company Apparatus and process for electrodialysis of salts
WO2005059205A2 (fr) 2003-12-11 2005-06-30 American Pacific Corporation Procede electrolytique de fabrication d'alcoolates d'alcali au moyen de membranes solides ceramiques conduisant les ions
US20060226022A1 (en) 2003-12-11 2006-10-12 Ceramatec, Inc. Electrolytic method to make alkali alcoholates using ceramic ion conducting solid membranes
US20080173540A1 (en) * 2003-12-11 2008-07-24 Joshi Ashok V Electrolytic Cell for Producing Alkali Alcoholates
DE10360758A1 (de) 2003-12-23 2005-07-28 Degussa Ag Elektrochemische Herstellung von Alkalialkoholaten mit Hilfe einer keramischen Festelektrolytmembran
WO2007048712A2 (fr) 2005-10-24 2007-05-03 Basf Se Membranes structurees en surface, membranes revetues de catalyseur et unites membrane-electrode composees de ces membranes
US20070138020A1 (en) * 2005-12-20 2007-06-21 Shekar Balagopal Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes
WO2007082092A2 (fr) 2006-01-11 2007-07-19 Ceramatec, Inc. Synthese de biodiesel au moyen de membranes ceramiques conductrices d'ions de metal alcalin
WO2008076327A1 (fr) 2006-12-14 2008-06-26 Ceramatec, Inc. Procédé électrolytique de production d'alcoolates alcalins dans lequel sont utilisés et un séparateur et un électrolyte alcalins conducteurs d'ions
WO2009073062A2 (fr) 2007-10-01 2009-06-11 Ceramatec, Inc. Cellule électrolytique servant à produire des alcoolates alcalins
WO2009059315A1 (fr) 2007-11-02 2009-05-07 Ceramatec, Inc Processus électrolytique pour séparer des ions de métaux alcalins de sels alcalins de glycérine
US20100044242A1 (en) 2008-08-25 2010-02-25 Sai Bhavaraju Methods For Producing Sodium Hypochlorite With a Three-Compartment Apparatus Containing an Acidic Anolyte
DE102010062804A1 (de) 2010-01-12 2011-07-14 Evonik Degussa GmbH, 45128 Verfahren zur Herstellung von 1,1 Diarylalkanen und Derivativen davon
WO2012048032A2 (fr) 2010-10-07 2012-04-12 Ceramatec, Inc. Systèmes et procédés chimiques pour faire fonctionner une cellule électrochimique avec un anolyte acide
US20120085657A1 (en) * 2010-10-07 2012-04-12 Sai Bhavaraju Chemical systems and methods for operating an electrochemical cell with an acidic anolyte
WO2014008410A1 (fr) 2012-07-03 2014-01-09 Ceramatec, Inc. Appareil et procédé de production de métal dans une cellule électrolytique de nasicon
US20160204459A1 (en) 2015-01-13 2016-07-14 Korea Institute Of Science And Technology Porous nafion membrane and method for preparing the same
DE102015013155A1 (de) 2015-10-09 2017-04-13 Forschungszentrum Jülich GmbH Elektrolytmaterial mit NASICON-Struktur für Feststoff-Natriumionenbatterien sowie Verfahren zu deren Herstellung
US20190292668A1 (en) * 2018-03-22 2019-09-26 Sekisui Chemical Co., Ltd. Carbon dioxide reduction apparatus and method of producing organic compound

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CAS, no. 31175-20-9
ELECTROCHEMICAL SOCIETY INTERFACE, vol. 19, 2010, pages 31 - 35
M.A. HICKNERA.M. HERRINGE.B. COUGHLIN, JOURNAL OF POLYMER SCIENCE
N. ANANTHARAMULUK. KOTESWARA RAOG. RAMBABUB. VIJAYA KUMARVELCHURI RADHAM. VITHAL, J MATER SEI, vol. 46, 2011, pages 2821 - 2837
PART B: POLYMER PHYSICS, vol. 51, 2013, pages 1727 - 1735
S.A. MAREEVD.YU. BUTYLSKIIN.D. PISMENSKAYAC. LARCHETL. DAMMAKV.V. NIKONENKO, JOURNAL OF MEMBRANE SCIENCE, vol. 563, 2018, pages 768 - 776
VOLKMAR M. SCHMIDT: "Elektrochemische Verfahrenstechnik: Grundlagen, Reaktionstechnik, Prozessoptimierung", 8 October 2003, pages: 181

Also Published As

Publication number Publication date
WO2023016897A1 (fr) 2023-02-16
EP4384656A1 (fr) 2024-06-19

Similar Documents

Publication Publication Date Title
EP3885470B1 (fr) Procédé de fabrication d'alcooliques métalliques alcalins dans une cellule d'électrolyse à trois chambres
EP3885471B1 (fr) Procédé amélioré de fabrication d'alcools de sodium
EP4043616B1 (fr) Procédé de production d'alcooliques métalliques alcalins dans une cellule d'électrolyse à trois chambres
EP4112780B1 (fr) Cellule d'électrolyse à trois chambre destinée à la production d'alcoolates alcalimétaux
EP4112779B1 (fr) Cellule d'électrolyse à trois chambre destinée à la production d'alcoolates alcalimétaux
EP4112778B1 (fr) Cellule d'électrolyse à trois chambre destinée à la production d'alcoolates alcalimétaux
DE2844499C2 (de) Verfahren zum Herstellen eines Halogens
DE2926560A1 (de) Elektrolysezelle, membran-elektroden- einheit und verfahren zur herstellung von halogen und alkalimetallhydroxid
DE102015212503A1 (de) Reduktionsverfahren und Elektrolysesystem zur elektrochemischen Kohlenstoffdioxid-Verwertung
DE102017212278A1 (de) CO2-Elektrolyseur
DE69220526T2 (de) Bipolare filterpressenartige Elektrolysezelle
DE2646825A1 (de) Verfahren zur kontinuierlichen herstellung von natriumdithionitloesungen durch kathodische reduktion
EP4134472A1 (fr) Procédé de production d'alcoolats alcalins dans une cellule d'électrolyse
DE10119285B4 (de) Verfahren zum Betreiben einer Chlor-Alkali-Elektrolysezelle
EP4124675B1 (fr) Paroi de séparation résistante à la rupture comprenant des céramiques à électrolyte solide pour cellules d'électrolyse
EP4144888A1 (fr) Procédé de production d'alcoolats alcalins dans une cellule d'électrolyse
EP4124677A1 (fr) Paroi de séparation résistante à la rupture comprenant des céramiques à électrolyte solide pour cellules d'électrolyse
EP4144890A1 (fr) Procédé de production d'alcoolats alcalins dans une cellule d'électrolyse
EP4144889A1 (fr) Procédé de production d'alcoolats alcalins dans une cellule d'électrolyse
DE102004012334A1 (de) Verfahren zur Herstellung von Metallhydroxiden, insbesondere Lithiumhydroxid
DE102020207186A1 (de) CO2 Elektrolyse mit Gasdiffusionselektrode und Salzbildungsvermeidung durch Elektrolytwahl
DE2434921B2 (de) Elektrolysezelle und Verfahren zur Elektrolyse ionisierbarer chemischer Verbindungen
WO2023193940A1 (fr) Procédé amélioré de dépolymérisation de polyéthylène téréphtalate
DE2415078A1 (de) Bipolare zelle
DE2745542A1 (de) Verfahren zur elektrolyse von salzloesungen durch quecksilberkathoden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK OPERATIONS GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230817