EP3885470B1 - Procédé de fabrication d'alcooliques métalliques alcalins dans une cellule d'électrolyse à trois chambres - Google Patents

Procédé de fabrication d'alcooliques métalliques alcalins dans une cellule d'électrolyse à trois chambres Download PDF

Info

Publication number
EP3885470B1
EP3885470B1 EP20165238.5A EP20165238A EP3885470B1 EP 3885470 B1 EP3885470 B1 EP 3885470B1 EP 20165238 A EP20165238 A EP 20165238A EP 3885470 B1 EP3885470 B1 EP 3885470B1
Authority
EP
European Patent Office
Prior art keywords
chamber
process according
solution
cation
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20165238.5A
Other languages
German (de)
English (en)
Other versions
EP3885470A1 (fr
Inventor
Michael Horn
Philip Heinrich REINSBERG
Felix GÄRTNER
Jutta MALTER
Patrik Stenner
Tobias STADTMÜLLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Operations GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Operations GmbH filed Critical Evonik Operations GmbH
Priority to EP20165238.5A priority Critical patent/EP3885470B1/fr
Priority to ES20165238T priority patent/ES2955404T3/es
Priority to US17/204,629 priority patent/US11174559B2/en
Priority to CA3112138A priority patent/CA3112138C/fr
Publication of EP3885470A1 publication Critical patent/EP3885470A1/fr
Application granted granted Critical
Publication of EP3885470B1 publication Critical patent/EP3885470B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/13Organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/07Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Definitions

  • the present invention relates to a method for the electrochemical production of an alkali metal alkoxide solution.
  • the process is carried out in an electrolytic cell which has three chambers, the middle chamber being separated from the cathode chamber by a cation-permeable solid electrolyte, for example NaSICON, and from the anode chamber by a diffusion barrier, for example a cation- or anion-selective membrane.
  • a cation-permeable solid electrolyte for example NaSICON
  • a diffusion barrier for example a cation- or anion-selective membrane.
  • the electrochemical production of alkali metal alkoxide solutions is an important industrial process that is used, for example, in DE 103 60 758 A1 , the U.S. 2006/0226022 A1 and the WO 2005/059205 A1 is described.
  • the principle of this process is an electrolytic cell in whose anode chamber there is a solution of an alkali salt, for example common salt or NaOH, and in whose cathode chamber there is the alcohol in question or a low-concentration alcoholic solution of the alkali metal alcoholate in question, for example sodium methoxide or sodium ethoxide.
  • the cathode compartment and the anode compartment are separated by a ceramic which conducts the alkali metal ion used, for example NaSICON or its analogues for potassium or lithium.
  • a ceramic which conducts the alkali metal ion used, for example NaSICON or its analogues for potassium or lithium.
  • chlorine is formed at the anode - if a chloride salt of the alkali metal is used - and hydrogen and alcohol ions are formed at the cathode.
  • the charge equalization results from the fact that alkali metal ions migrate from the middle chamber into the cathode chamber via the ceramic that is selective for them.
  • the charge equalization between the middle chamber and the anode chamber results from the migration of cations when using cation exchange membranes or the migration of anions when using anion exchange membranes or by migration of both types of ions when using non-specific diffusion barriers.
  • WO 2014/008410 A1 describes an electrolytic process for the production of elemental titanium or rare earths. This process is based on the fact that titanium chloride is formed from TiOz and the corresponding acid, this reacts with sodium alcoholate to form titanium alcoholate and NaCl and is finally converted electrolytically to form elemental titanium and sodium alcoholate.
  • WO 2007/082092 A2 and WO 2009/059315 A1 describe processes for the production of biodiesel in which triglycerides are first converted into the corresponding alkali metal triglycerides with the aid of alcoholates electrolytically produced via NaSICON and in a second step are converted into glycerol and the respective alkali metal hydroxide with electrolytically produced protons.
  • Three-chamber cells have been proposed in the prior art. Such are known in the field of electrodialysis, for example US 6,221,225 B1 .
  • WO 2012/048032 A2 and US 2010/0044242 A1 describe, for example, electrochemical processes for the production of sodium hypochlorite and similar chlorine compounds in such a three-chamber cell.
  • the cathode chamber and the middle chamber of the cell are separated by a cation-permeable solid electrolyte such as NaSICON.
  • the middle chamber is supplied with solution from the cathode chamber, for example.
  • the US 2010/0044242 A1 also describes in Figure 6 that solution from the middle compartment can be mixed with solution from the anode compartment outside the compartment to obtain sodium hypochlorite.
  • the WO 2008/076327 A1 describes a process for preparing alkali metal alkoxides.
  • a three-chamber cell is used, the middle chamber of which is filled with alkali metal alkoxide (See, for example, paragraphs [0008] and [0067] of the WO 2008/076327 A1 ).
  • This protects the solid electrolyte separating the middle chamber and the cathode chamber from the solution in the anode chamber, which becomes more acidic during the electrolysis.
  • this arrangement has the disadvantage that the alkali metal alkoxide solution is the desired product, but this is consumed as a buffer solution and is continuously contaminated.
  • the WO 2009/073062 A2 describes a similar process for the production of alkali metal alkoxides in a three-chamber electrolytic cell. This includes a central chamber in which alkali metal alcoholate solution is also used as a buffer solution.
  • the object of the present invention was therefore to provide an improved process for the electrolytic production of alkali metal alkoxide which ensures protection of the cation-conducting solid electrolyte against acid but does not have the disadvantages mentioned above.
  • the process should be distinguished by a more economical use of the educts compared to the prior art.
  • illustration 1 shows the method according to the invention using a three-chamber cell E ⁇ 100> comprising a cathode chamber K K ⁇ 102>, an anode chamber K A ⁇ 101> and a middle chamber K M ⁇ 103> located in between.
  • the three chambers are delimited by an outer wall ⁇ 117> of the three-chamber cell E ⁇ 100>.
  • the cathode chamber K K ⁇ 102> is also separated from the middle chamber K M ⁇ 103> by a NaSICON solid electrolyte F K ⁇ 111> that is selectively permeable for sodium ions.
  • the middle chamber K M ⁇ 103> is additionally in turn separated from the anode chamber K A ⁇ 101> by a diffusion barrier D ⁇ 110>.
  • the NaSICON solid electrolyte F K ⁇ 111> and the diffusion barrier D ⁇ 110> extend over the entire depth and height of the three-chamber cell E ⁇ 100>.
  • a solution of sodium methoxide in methanol L 2 ⁇ 113> is passed through the cathode chamber K K ⁇ 102>.
  • An aqueous solution of sodium chloride L 3 ⁇ 114> with a pH of 10.5 is added via the inlet Z KM ⁇ 108> in the same direction as gravity into the middle chamber KM ⁇ 103>.
  • the connection V AM ⁇ 112> which is formed between an outlet A KM ⁇ 118> of the middle chamber K M ⁇ 103> and an inlet Z KA ⁇ 119> of the anode chamber KA ⁇ 101>, creates the middle chamber K M ⁇ 103 > connected to the anode chamber K A ⁇ 101 >.
  • Sodium chloride solution L 3 ⁇ 114> is conducted through this connection V AM ⁇ 112> from the middle chamber KM ⁇ 103> into the anode chamber KA ⁇ 101>.
  • methanol is reduced to methoxide and H 2 in the cathode chamber K K ⁇ 102>.
  • Sodium ions diffuse from the middle chamber K M ⁇ 103> through the NaSICON solid electrolyte F K ⁇ 111> into the cathode chamber K K ⁇ 102>.
  • Cl 2 has an acidic reaction in aqueous solution. Due to the geometry of the three-chamber cell E ⁇ 100> and the routing of the aqueous solution L 3 ⁇ 114>, the acid-sensitive NaSICON solid electrolyte becomes ⁇ 111> protected from the increased acidity of the solution L 4 ⁇ 116> in the anode chamber K A ⁇ 101> compared to L 3 ⁇ 114>.
  • Figure 2 shows an embodiment of the method according to the invention, which corresponds to that in illustration 1 shown. The only difference is that the connection V AM ⁇ 112> from the middle chamber K M ⁇ 103> to the anode chamber K A ⁇ 101> is formed by a perforation in the diffusion barrier D ⁇ 110>.
  • Figure 3 shows a diagram of the voltage profile of the electrolysis in a three-chamber cell according to the invention in comparison to a two-chamber cell.
  • the measurement points of the comparative example are represented by triangles ( ⁇ ), those of the example according to the invention by dots (•).
  • the x-axis represents time in hours while the y-axis represents the measured voltage in volts.
  • the comparison shows that a constant voltage profile is obtained with the cell according to the invention, while the voltage rises rapidly in the two-chamber cell due to the destruction of the solid electrolyte.
  • the method according to the invention is carried out in an electrolytic cell E which comprises at least one anode chamber K A , at least one cathode chamber K K and at least one central chamber K M located in between.
  • This also includes electrolytic cells E which have more than one anode chamber K A and/or cathode chamber K K and/or middle chamber K M .
  • Such electrolytic cells, in which these chambers are joined together in a modular manner, are, for example, in DD 258 143 A3 , U.S. 2006/0226022 A1 described.
  • the anode chamber K A includes an anodic electrode E A .
  • Any electrode familiar to a person skilled in the art that is stable under the conditions of the method according to the invention can be used as such an anodic electrode E A .
  • Such are in particular in WO 2014/008410 A1 , paragraph [024] or DE 10360758 A1 , paragraph [031].
  • This electrode E A can consist of one layer or of several planar, mutually parallel layers, each of which can be perforated or expanded.
  • the anodic electrode E A comprises in particular a material which is selected from the group consisting of ruthenium oxide, iridium oxide, nickel, cobalt, nickel tungstate, nickel titanate, noble metals such as platinum in particular, which is deposited on a carrier such as titanium or Kovar® (an iron/nickel/ Cobalt alloy, in which the individual proportions are preferably as follows: 54% by mass iron, 29% by mass nickel, 17% by mass cobalt) is supported.
  • Other possible anode materials are, in particular, stainless steel, lead, graphite, tungsten carbide, titanium diboride.
  • E A preferably comprises a titanium anode (RuO 2 +IrO 2 /Ti) coated with ruthenium oxide/iridium oxide.
  • the cathode chamber K K includes a cathodic electrode E K .
  • a cathodic electrode E K Any electrode familiar to a person skilled in the art that is stable under the conditions can be used as such a cathodic electrode E K . Such are in particular in WO 2014/008410 A1 , paragraph [025] or DE 10360758 A1 , paragraph [030].
  • This electrode E K can be selected from the group consisting of mesh wool, a three-dimensional matrix structure or as "balls".
  • the cathodic electrode E K includes in particular a material selected from the group consisting of steel, nickel, copper, platinum, platinized metals, palladium, palladium supported on carbon, titanium. E K preferably comprises nickel.
  • the at least one middle chamber K M is located between the anode chamber K A and the cathode chamber K K .
  • the electrolytic cell E usually has an outer wall W A .
  • the outer wall W A is in particular made of a material selected from the group consisting of steel, preferably rubberized steel, plastic, in particular Telene ® (thermosetting polydicyclopentadiene), PVC (polyvinyl chloride), PVC-C (post-chlorinated polyvinyl chloride), PVDF (polyvinylidene fluoride ) is selected, is selected.
  • W A can be perforated in particular for inlets and outlets. Within W A are then the at least one anode chamber K A , the at least one cathode chamber K K and the at least one middle chamber K M lying between them.
  • K M is separated from K A by a diffusion barrier D and separated from K K by an alkali cation-conducting solid electrolyte F K .
  • any material which is stable under the conditions of the method according to the invention and which prevents or slows down the transfer of protons from the liquid in the anode chamber K A into the middle chamber K M can be used as the diffusion barrier D.
  • a non-ion-specific dividing wall or a membrane permeable to specific ions is used as the diffusion barrier D.
  • the diffusion barrier D is preferably a membrane that is permeable to specific ions.
  • the material for the non-ionic partition is in particular selected from the group consisting of fabric, in particular textile fabric or metal fabric, glass, in particular sintered glass or glass frits, ceramic, in particular ceramic frits, membrane diaphragms.
  • the diffusion barrier D is a “membrane that is permeable to specific ions”, this means according to the invention that the respective membrane favors the diffusion of certain ions through it over others.
  • membranes are meant that favor the diffusion through them of ions of a certain type of charge compared to oppositely charged ions. More preferably, specific ion permeable membranes also favor the diffusion of certain ions having one charge type through them over other ions of the same charge type.
  • the diffusion barrier D is therefore preferably an anion-conducting membrane or a cation-conducting membrane.
  • anion-conducting membranes are those which selectively conduct anions, preferably selectively specific anions. In other words, they favor the diffusion of anions through them over that of cations, especially over protons, more preferably they additionally favor the diffusion of certain anions through them over the diffusion of other anions through them.
  • cation-conducting membranes are those which selectively conduct cations, preferably selectively specific cations. In other words, they favor the diffusion of cations through them over that of anions, more favorably they favor the diffusion of certain cations through them over the diffusion of other cations through them, much more favorably cations which are is not protons, more preferably sodium cations, over protons.
  • “Favour the diffusion of certain ions X over the diffusion of other ions Y” means in particular that the diffusion coefficient (unit m 2 /s) of the ion type X at a given temperature for the membrane in question is higher by a factor of 10, preferably 100, preferably 1000 as the diffusion coefficient of the ionic species Y for the membrane in question.
  • the diffusion barrier D is more preferably an anion-conducting membrane, since this prevents the diffusion of protons from the anode chamber K A into the middle chamber K M particularly well.
  • a membrane which is selective for the anions comprised by the salt S is used as the anion-conducting membrane.
  • Such membranes are known to those skilled in the art and can be used by them.
  • Salt S is preferably a halide, sulfate, sulfite, nitrate, bicarbonate or carbonate of X, more preferably a halide.
  • Halides are fluorides, chlorides, bromides, iodides. The most preferred halide is chloride.
  • a membrane selective for halides is preferably used as the anion-conducting membrane.
  • they have covalently bonded functional groups selected from -NH 3 + , -NRH 2 + , -NR 3 + , more preferably selected from -NH 3 + , -NR 3 + , even more preferably -NR 3 + .
  • the diffusion barrier D is a cation-conducting membrane, it is in particular a membrane which is selective for the cations comprised by the salt S.
  • the diffusion barrier D is even more preferably a membrane which conducts alkali cations, even more preferably a membrane which conducts potassium and/or sodium ions, most preferably a membrane which conducts sodium ions.
  • Cation-conducting membranes are described, for example, on page 181 of the textbook by Volkmar M. Schmidt Electrochemical Process Engineering: Fundamentals, Reaction Engineering, Process Optimization, 1st edition (October 8, 2003 ).
  • organic polymers which are selected in particular from polyethylene, polybenzimidazoles, polyetherketones, polystyrene, polypropylene or fluorinated membranes such as polyperfluoroethylene, preferably polystyrene, polyperfluoroethylene, are even more preferably used as the cation-conducting membrane, with these covalently bonded functional groups selected from -SO 3 - , -COO-, -PO 3 2- , -PO 2 H- , preferably -SO 3 - , (described in DE 10 2010 062 804 A1 , US4,831,146 ) carry.
  • Neosepta ® membranes are described, for example, by SA Mareev, D.Yu. Butylskii, ND Pismenskaya, C Larchet, L Dammak, VV Nikonenko, Journal of Membrane Science 2018, 563, 768-776 .
  • a cation-conducting membrane is used as the diffusion barrier D , this can be, for example, a polymer functionalized with sulfonic acid groups, in particular of the following formula P NAFION , where n and m independently of one another are an integer from 1 to 10 6 , more preferably an integer from 10 to 10 5 , more preferably is an integer from 10 2 to 10 4 .
  • any solid electrolyte which can transport cations, in particular alkali cations, more preferably sodium cations, from the central chamber K M into the cathode chamber K K can be used as the alkali cation-conducting solid electrolyte F K .
  • Such solid electrolytes are known to those skilled in the art and, for example, in DE 10 2015 013 155 A1 , in the WO 2012/048032 A2 , paragraphs [0035], [0039], [0040], in the US 2010/0044242 A1 , paragraphs [0040], [0041], in which DE 10360758 A1 , paragraphs [014] to [025]. They are sold commercially under the names NaSICON, LiSICON, KSICON.
  • a sodium ion-conducting solid electrolyte F K is preferred, this even more preferably having a NaSICON structure.
  • NaSICON structures that can be used according to the invention are also described, for example, by N. Anantharamulu, K. Koteswara Rao, G. Rambabu, B. Vijaya Kumar, Velchuri Radha, M. Vithal, J Mater Sei 2011, 46 , 2821-2837.
  • NaSICON preferably has a structure of the formula M I 1 +2w+x-y+z M II w M III x Zr IV 2-wxy M V y (SiO 4 ) z (PO 4 ) 3-z .
  • M I is selected from Na + , Li + , preferably Na + .
  • M" is a divalent metal cation preferably selected from Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Co 2+ , Ni 2+ , more preferably selected from Co 2+ , Ni 2+ .
  • M III is a trivalent metal cation, preferably selected from Al 3+ , Ga 3+ , Sc 3+ , La 3+ , Y 3+ , Gd 3+ , Sm 3+ , Lu 3+ , Fe 3+ , Cr 3+ , more preferably selected from Sc 3+ , La 3+ , Y 3+ , Gd 3+ , Sm 3+ , particularly preferably selected from Sc 3+ , Y 3+ , La 3+ .
  • M V is a pentavalent metal cation, preferably selected from V 5+ , Nb 5+ , Ta 5+ .
  • the cathode chamber K K also comprises an inlet Z KK and an outlet A KK , which makes it possible to add liquid, such as solution L 2 , and liquid therein, such as solution L 1 , to the cathode chamber K K removed.
  • the inlet Z KK and the outlet A KK are attached to the cathode chamber K K in such a way that the solution makes contact with the cathodic electrode E K as it flows through the cathode chamber K K . This is the prerequisite for the solution L 1 being obtained at the outlet A KK when the process according to the invention is carried out if the solution L 2 of an alkali metal alkoxide XOR in the alcohol ROH is passed through KK .
  • the anode chamber K A also includes an outlet A KA , which makes it possible to remove liquid, for example the aqueous solution L 4 , located in the anode chamber K A .
  • the middle chamber K M includes an inlet Z KM , while K A and K M are connected to one another by a connection V AM .
  • a solution L 3 can be added to K M and this can then be passed through K M and via V AM into the anode chamber K A , then through this K A .
  • V AM and the outlet A KA are attached to the anode chamber K A in such a way that the solution L 3 makes contact with the anodic electrode E A as it flows through the anode chamber K A . This is the prerequisite for the aqueous solution L 4 being obtained at the outlet A KA when the process according to the invention is carried out if the solution L 3 is first passed through KM , then V AM , then KA .
  • Inflows Z KK , Z KM , Z KA and outflows A KK , A KA , A KM can be attached to the electrolytic cell by methods known to those skilled in the art.
  • connection V AM can be formed within the electrolytic cell E and/or outside of the electrolytic cell E.
  • connection V AM is formed within the electrolytic cell E , it is preferably formed by at least one perforation in the diffusion barrier D.
  • connection V AM is formed outside the electrolytic cell E , it is preferably formed by a connection between K M and K A running outside the electrolytic cell E , in particular by the fact that in the middle chamber K M a drain A KM through the outer wall W A is preferred is formed at the bottom of the middle chamber K M , with the inflow Z KM even more preferably being at the top of the middle chamber K M , and in the anode chamber K A an inflow Z KA through the outer wall W A , preferably at the bottom of the anode chamber K A , is formed, and these are connected by a line, for example a pipe or a hose, which preferably comprises a material selected from rubber, plastic.
  • the drain A KA is then even more preferably at the top of the anode chamber K A .
  • Outflow A KM at the bottom of the middle chamber K M means that the outflow A KM is attached to the electrolytic cell E in such a way that the solution L 3 leaves the middle chamber K M in the same direction as gravity.
  • Inlet Z KA at the bottom of the anode chamber K A means that the inlet Z KA is attached to the electrolytic cell E in such a way that the solution L 3 enters the anode chamber K A against the force of gravity.
  • Inlet Z KM at the top of the middle chamber K M means that the inlet Z KM is attached to the electrolytic cell E in such a way that the solution L 3 enters the middle chamber K M in the same direction as gravity.
  • Outlet A KA at the top of the anode chamber K A means that the outlet A KA is attached to the electrolytic cell E in such a way that the solution L 4 leaves the anode chamber K A against the force of gravity.
  • This embodiment is particularly advantageous and therefore preferred if the outlet A KM is formed by the outer wall WA at the bottom of the central chamber K M and the inlet Z KA is formed by the outer wall WA at the bottom of the anode chamber KA .
  • This arrangement makes it particularly easy to separate gases produced in the central chamber K M from L 3 through the gas outlet G , while gases produced in the anode chamber K A leave the anode chamber K A with L 4 and can then be further separated.
  • the direction of flow of L 3 in K M is the direction of flow of L 3 in K A in the opposite direction or in the same direction, preferably in the opposite direction, depending on how the connection V AM is attached to the electrolytic cell E.
  • the direction of flow of L 3 in K M is in the same direction as gravity.
  • connection V AM is arranged between central chamber K M and anode chamber K A in such a way that at least part of the aqueous Solution L 3 , more preferably the entire aqueous solution L 3 , flows through the middle chamber K M and the anode chamber K A completely.
  • connection V AM ⁇ 112> is formed outside the electrolytic cell E ⁇ 100>, this can be ensured in particular by the fact that Z KM ⁇ 108> and A KM ⁇ 118> are on opposite sides of the outer wall W A ⁇ 117> of the central chamber K M ⁇ 103> are arranged (i.e. Z KM ⁇ 108> on the bottom and A KM ⁇ 118> on the top of the electrolytic cell E ⁇ 100> or vice versa) and Z KA ⁇ 119> and A KA ⁇ 106> on opposite sides of the outer wall W A ⁇ 117> of the anode chamber K A ⁇ 101> (i.e.
  • L 3 ⁇ 114> must flow through the two chambers KM ⁇ 103> and KA ⁇ 101> through this geometry.
  • Z KA ⁇ 119> and Z KM ⁇ 108> can be formed on the same side of the electrolytic cell E ⁇ 100>, with A KM ⁇ 118> and A KA ⁇ 106> then automatically also being formed on the same side of the electrolytic cell E ⁇ 100> are.
  • Z KA ⁇ 119> and Z KM ⁇ 108> can be formed on opposite sides of the electrolytic cell E ⁇ 100>, in which case A KM ⁇ 118> and A KA ⁇ 106> are then also automatically formed on opposite sides of the electrolytic cell E ⁇ 100> are.
  • connection V AM ⁇ 112> is formed inside the electrolytic cell E ⁇ 100>
  • this can be ensured by one side ("side A") of the electrolytic cell E ⁇ 100>, which is the top or the bottom of the electrolytic cell E ⁇ 100>, preferably as in Figure 2 shown is the top, includes the inlet Z KM ⁇ 108> and the outlet A KA ⁇ 106> and the diffusion barrier D ⁇ 110> starting from this side A into the electrolytic cell ⁇ 100>, but not quite to the of the Side A opposite side ("side B") of the electrolytic cell E ⁇ 100>, which is then the bottom or the top of the electrolytic cell E ⁇ 100>, and thereby 50% or more of the height of the three-chamber cell E ⁇ 100>, more preferably 60% to 99% of the height of the three-chamber cell E ⁇ 100>, more preferably 70% to 95% of the height of the three-chamber cell E ⁇ 100>, even more preferably 80% to 90% of the height of the three-chamber cell E
  • Bottom of the electrolytic cell E is, according to the invention, the side of the electrolytic cell E through which a solution (e.g. L 3 ⁇ 114> at A KM ⁇ 118> in illustration 1 ) exits the electrolytic cell E in the same direction as gravity or the side of the electrolytic cell E through which a solution (e.g. L 2 ⁇ 113> at Z KK ⁇ 107> in Figures 1 and 2 and L 3 ⁇ 114> at A KA ⁇ 119> in illustration 1 ) of the electrolytic cell E is fed against gravity.
  • a solution e.g. L 3 ⁇ 114> at A KM ⁇ 118> in illustration 1
  • top side of the electrolytic cell E is the side of the electrolytic cell E through which a solution (eg L 4 ⁇ 116> at A KA ⁇ 106> and L 1 ⁇ 115> at A KK ⁇ 109> in FIGS. 1 and 2) counteracts exits the electrolytic cell E under gravity or the side of the electrolytic cell E through which a solution (e.g. L 3 ⁇ 114> at Z KM ⁇ 108> in Figures 1 and 2) is fed to the electrolytic cell E in the same direction as gravity.
  • a solution e.g. L 4 ⁇ 116> at A KA ⁇ 106> and L 1 ⁇ 115> at A KK ⁇ 109> in FIGS. 1 and 2
  • a solution e.g. L 3 ⁇ 114> at Z KM ⁇ 108> in Figures 1 and 2
  • the method according to the invention comprises the following steps (a), (b) and (c), which are carried out simultaneously.
  • step (a) a solution L 2 comprising the alcohol ROH, preferably comprising an alkali metal alkoxide XOR in the alcohol ROH, is passed through K K .
  • X is an alkali metal cation and R is an alkyl group having 1 to 4 carbon atoms.
  • R is preferably selected from the group consisting of n -propyl, iso -propyl, ethyl, methyl, more preferably selected from the group consisting of ethyl, methyl. Most preferably R is methyl.
  • the solution L 2 is preferably free of water.
  • “free of water” means that the weight of the water in the solution L 2 based on the weight of the alcohol ROH in the solution L 2 (mass ratio) is ⁇ 1:10, more preferably ⁇ 1:20, even more preferably ⁇ 1:100 , more preferably ⁇ 0.5:100.
  • the mass fraction of XOR in the solution L 2 is in particular >0 to 30% by weight, preferably 5 to 20% by weight, even more preferably at 10 to 20% by weight, more preferably at 10 to 15% by weight, most preferably at 13 to 14% by weight, most preferably at 13% by weight.
  • the mass ratio of XOR to alcohol ROH in the solution L 2 is in particular in the range from 1:100 to 1:5, more preferably in the range from 1:25 to 3:20, even more preferably in the range 1:12 to 1:8, more preferably at 1:10.
  • step (b) a neutral or alkaline aqueous solution L 3 of a salt S comprising X as a cation is passed through K M , then over V AM , then through K A .
  • the salt S is described above.
  • the pH of the aqueous solution L 3 is ⁇ 7.0, preferably in the range from 7 to 12, more preferably in the range from 8 to 11, even more preferably from 10 to 11, most preferably at 10.5.
  • the mass fraction of the salt S in the solution L 3 is preferably in the range > 0 to 20% by weight, preferably 1 to 20% by weight, more preferably 5 to 20% by weight, even more preferably 10 to 20% by weight %, most preferably at 20% by weight, based on the total solution L 3 .
  • step (c) a voltage is then applied between E A and E K .
  • the charge source is known to those skilled in the art and is typically a rectifier that converts alternating current into direct current and can generate certain voltages via voltage converters.
  • This can be determined by a person skilled in the art by default.
  • the area of the solid electrolyte which contacts the anolyte located in the central chamber K M is in particular 0.00001 to 10 m 2 , preferably 0.0001 to 2.5 m 2 , more preferably 0.0002 to 0.15 m 2 , even more preferably 2.83 cm 2 .
  • step (c) is carried out in the method according to the invention when both chambers K M and K A are at least partially charged with L 3 and K K is at least partially charged with L 2 .
  • step (c) charge transport takes place between E A and E K implies that K K , K M and K A are simultaneously charged with L 2 and L 3 , respectively, in such a way that they connect the electrodes E A and E K so far that the circuit is closed.
  • step (a) and step (b) are carried out continuously and voltage is applied in accordance with step (c).
  • the solution L 1 is obtained at the outlet A KK , the concentration of XOR in L 1 being higher than in L 2 .
  • the concentration of XOR in L 1 is preferably 1.01 to 2.2 fold, more preferably 1.04 to 1.8 fold, even more preferably 1077 to 1.4 fold, even more preferably 1077 to 1077 fold 1.08-fold higher than in L 2 , most preferably 1,077-fold higher than in L 2 , more preferably with the mass fraction of XOR in L 1 and in L 2 being in the range 10 to 20% by weight, even more preferably 13 to 14% by weight.
  • the concentration of the cation X in the aqueous solution L 3 is preferably in the range from 3.5 to 5 mol/l, more preferably 4 mol/l.
  • the concentration of the cation X in the aqueous solution L 4 is more preferably 0.5 mol/l lower than that of the aqueous solution L 3 used in each case.
  • the method according to the invention is carried out at a temperature of 20° C. to 70° C., preferably 35° C. to 65° C., more preferably 35° C. to 60° C., even more preferably 35° C. to 50° C. and a pressure of 0.5 bar to 1.5 bar, preferably 0.9 bar to 1.1 bar, more preferably 1.0 bar.
  • hydrogen is typically produced in the cathode chamber K K , which hydrogen can be removed from the cell via the outlet A KK together with the solution L 1 .
  • the mixture of hydrogen and solution L 1 can then in a particular embodiment of the present invention can be separated by methods known to those skilled in the art.
  • the alkali metal compound used is a halide, in particular chloride, chlorine or another halogen gas can form, which can be removed from the cell via the outlet A KK together with the solution L 4 .
  • oxygen and/or carbon dioxide can also be formed, which can also be removed.
  • the mixture of chlorine, oxygen and/or CO2 and solution L 4 can then be separated by methods known to those skilled in the art.
  • the gases chlorine, oxygen and/or CO2 have been separated from the solution L 4 , these can be separated from one another by methods known to those skilled in the art.
  • the method according to the invention protects the acid-labile solid electrolyte from corrosion without having to sacrifice alcoholate solution from the cathode compartment as a buffer solution, as is the case in the prior art.
  • the method according to the invention is thus more efficient than in WO 2008/076327 A1 described procedure in which the product solution is used for the middle chamber, which reduces the overall turnover.
  • illustration 1 shows a preferred embodiment of the invention in a three-chamber cell E ⁇ 100>.
  • This comprises a cathode chamber K K ⁇ 102>, a middle chamber K M ⁇ 103> and an anode chamber K A ⁇ 101>.
  • the anode chamber K A ⁇ 101> and the middle chamber K M ⁇ 103> are separated from one another by an anion exchange membrane extending over the entire cross section of the three-chamber cell E ⁇ 100> as a diffusion barrier D ⁇ 110>.
  • the cathode chamber K K ⁇ 102> and the middle chamber K M ⁇ 103> are separated from one another by a permeable solid electrolyte (NaSICON) ⁇ 111> that is selective for sodium ions and extends over the entire cross section of the three-chamber cell E ⁇ 100>.
  • the cathode chamber K K ⁇ 102> comprises a cathodic electrode E K ⁇ 105>, an inlet Z KK ⁇ 107> and an outlet A KK ⁇ 109>.
  • Anode chamber K A ⁇ 101> comprises an anodic electrode E A ⁇ 104> and drain A KA ⁇ 106> and is connected to middle chamber K M ⁇ 103> via connection V AM ⁇ 112>.
  • the central chamber K M ⁇ 103> also includes an inlet Z KM ⁇ 108>.
  • the connection V AM ⁇ 112> is formed outside the electrolytic cell E ⁇ 100>, in particular by a tube or hose, the material of which can be selected from rubber, metal or plastic, with which liquid from the central chamber K M ⁇ 103> in the anode chamber K A ⁇ 101> can be routed outside the outer wall W A ⁇ 117> of the three-chamber cell E ⁇ 100>.
  • connection V AM ⁇ 112> connects an outlet A KM ⁇ 118>, which breaks through the outer wall WA ⁇ 117> of the electrolysis cell E ⁇ 100> at the bottom of the central chamber K M ⁇ 103>, with an inlet Z KA ⁇ 119>, which breaks through the outer wall W A ⁇ 117> of the electrolytic cell E ⁇ 100> at the bottom of the anode chamber K A ⁇ 101>.
  • An electrolyte L 2 ⁇ 113> is conducted into the cathode chamber K K ⁇ 102> via the inlet Z KK ⁇ 107>.
  • the electrolyte L 2 ⁇ 113> comprises methanol; a methanolic solution of sodium methoxide L 2 ⁇ 113> is preferably used as the electrolyte L 2 ⁇ 113>.
  • an aqueous NaCl solution L 3 ⁇ 114> with pH 10.5 is introduced into the middle chamber KM ⁇ 103> via the inlet Z KM ⁇ 108>.
  • a voltage is applied between the cathodic electrode E K ⁇ 105> and the anodic electrode E A ⁇ 104>.
  • methanol in the electrolyte L 2 ⁇ 113> is reduced to methoxide and H 2 (CH 3 OH + e ⁇ CH 3 O ⁇ +1 ⁇ 2 H 2 ).
  • the oxidation of chloride ions to molecular chlorine takes place (Cl - ⁇ 1 ⁇ 2 Cl 2 + e-).
  • Chlorine gas Cl 2 forms hypochlorous acid and hydrochloric acid in water according to the reaction Cl 2 + H 2 O ⁇ HOCl + HCl, which reacts acidically with other water molecules.
  • the acidity damages the NaSICON solid electrolyte ⁇ 111>, but is by the invention Arrangement in the anode chamber K A ⁇ 101> and thus kept away from the NaSICON solid electrolyte F K ⁇ 111> in the electrolytic cell E ⁇ 100>. This increases its lifespan considerably.
  • the acid-sensitive NaSICON solid electrolyte ⁇ 111> is protected from the increased acidity compared to L 3 ⁇ 114> of the K A ⁇ 101> resulting in the anode chamber Solution L 4 ⁇ 116> protected.
  • connection V AM ⁇ 112> within the electrolytic cell E ⁇ 100> is designed in such a way that the diffusion barrier D ⁇ 110> does not extend over the entire cross section of the three-chamber cell E ⁇ 100>.
  • the connection V AM ⁇ 112> from the middle chamber K M ⁇ 103> to the anode chamber K A ⁇ 101> is thus formed by a gap in the diffusion barrier D ⁇ 110>.
  • diffusion barriers D ⁇ 110> with more than one gap can also be used, so that the connection V AM ⁇ 112> between central chamber K M ⁇ 103> and anode chamber K A ⁇ 101> extends through several gaps trains.
  • NM Sodium methylate
  • the electrolytic cell consisted of three chambers, as in illustration 1 shown with the anolyte being transferred through the middle compartment into the anode compartment.
  • the connection between the middle and anode chamber is made by a hose that is attached to the bottom of the electrolytic cell.
  • the anode compartment and middle compartment were separated by a 2.83 cm 2 anion exchange membrane (Tokuyama AMX, ammonium groups on polymer).
  • the cathode and middle chamber were separated by a ceramic of the NaSICON type with an area of 2.83 cm 2 .
  • the ceramic has a chemical composition of the formula Na 3.4 Zr 2.0 Si 2.4 P 0.6 O 12 .
  • the flow rate of the anolyte and that of the catholyte were each 90 mL/h and a current of 0.14 A was applied.
  • the temperature was 35°C.
  • the voltage curve (in V) over time (in hours) is in Figure 3 shown ( ⁇ ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Claims (15)

  1. Procédé de fabrication d'une solution L1 <115> d'un alcoolate d'un métal alcalin XOR dans l'alcool ROH dans une cellule d'électrolyse E <100>,
    dans lequel E <100> comprend au moins une chambre anodique KA <101>, au moins une chambre cathodique KK <102> et au moins une chambre centrale KM <103> disposée entre elles,
    dans lequel KA <101> comprend une électrode anodique EA <104> et une sortie AKA <106>,
    dans lequel KK <102> comprend une électrode cathodique EK <105>, une entrée ZKK <107> et une sortie AKK <109>,
    dans lequel KM <103> comprend une entrée ZKM <108>, est séparée de KA <101> par une barrière de diffusion D <110> et est séparée de la KK <102> par un électrolyte solide FK <111> conducteur de cations alcalins,
    dans lequel KM <103> et KA <101> sont reliées l'une à l'autre par un raccord VAM <112>, par lequel peut passer un liquide de KM <103> à KA <101>,
    le procédé comprenant les étapes simultanées (a), (b) et (c) ci-après :
    (a) une solution L2 <113> comprenant l'alcool ROH est envoyée à travers KK <102>,
    (b) une solution aqueuse neutre ou alcaline L3 <114> d'un sel S comprenant X en tant que cation est envoyée à travers KM , puis, par VAM , puis à travers KA <101>,
    (c) on applique une tension entre EA <104> et EK <105>,
    ce en conséquence quoi on obtient en sortie AKK <109> la solution L1 <115>, la concentration de XOR dans L1 <115> étant supérieure à celle dans L2 <113>,
    et ce en conséquence de quoi on obtient en sortie AKA <106> une solution aqueuse L4 <116> de S, la concentration de S dans L4 <116> étant inférieure à celle dans L3 <114>,
    X représentant un cation d'un métal alcalin et R un radical alkyle ayant 1 à 4 atomes de carbone.
  2. Procédé selon la revendication 1, dans lequel X est choisi dans le groupe consistant en Li+, Na+, K+.
  3. Procédé selon la revendication 1 ou 2, dans lequel S représente un halogénure, un sulfate, un sulfite, un nitrate, un hydrogénocarbonate ou un carbonate de X.
  4. Procédé selon l'une des revendications 1 à 3, dans lequel R est choisi dans le groupe consistant en un méthyle, un éthyle.
  5. Procédé selon l'une des revendications 1 à 4, dans lequel la barrière de diffusion D <110> est choisie dans le groupe consistant en les membranes conductrices de cations, conductrices d'anions.
  6. Procédé selon la revendication 5, dans lequel dans lequel la barrière de diffusion D <110> est une membrane conductrice de cations sodium.
  7. Procédé selon l'une des revendications 1 à 6, dans lequel le sens d'écoulement de L3 <114> dans la chambre centrale KM <103> est opposé au sens d'écoulement de L3 <114> dans la chambre anodique KA <101>.
  8. Procédé selon l'une des revendications 1 à 7, dans lequel le raccord VAM <112> est disposé à l'intérieur et/ou à l'extérieur de la cellule d'électrolyse E <100>.
  9. Procédé selon l'une des revendications 1 à 8, dans lequel le raccord VAM <112> est disposé entre la chambre centrale KM <103> et la chambre anodique KA <101> de façon qu'au moins une partie de la solution aqueuse L3 <114> traverse complètement la chambre centrale KM <103> et la chambre anodique KA <101>.
  10. Procédé selon l'une des revendications 1 à 9, dans lequel l'électrolyte solide FK <111> conducteur d'ions alcalin présente une structure de formule MI 1+2w+x-y+z MII w MIII x ZrIV 2-w-x-y MV y (SiO4)z (PO4)3-z,
    dans laquelle
    MI est choisi parmi Na+, Li+,
    MII est un cation métallique divalent,
    MIII est un cation métallique trivalent,
    MV est un cation métallique pentavalent,
    les indices en chiffres romains I, II, III, IV, V indiquant les nombres d'oxydation des cations métalliques correspondants,
    et w, x, y, z étant des nombres réels, avec 0 ≤ x < 2, 0 ≤ y < 2, 0 ≤ w < 2, 0 ≤ z < 3,
    et w, x, y, z étant choisis de façon que 1 + 2w + x - y + z ≥ 0 et 2 - w - x - y ≥ 0.
  11. Procédé selon l'une des revendications 1 à 10, dans lequel L2 <113> comprend l'alcool ROH et un alcoolate d'un métal alcalin XOR.
  12. Procédé selon la revendication 11, dans lequel le rapport en masse de XOR à l'alcool ROH dans L2 <113> est compris dans la plage de 1:100 à 1:5.
  13. Procédé selon la revendication 11 ou 12, dans lequel la concentration de XOR dans L1 <115> est de 1,01 à 2,2 fois plus élevée que dans L2 <113>.
  14. Procédé selon l'une des revendications 1 à 13, dans lequel la concentration de X dans L3 <114> est comprise dans la plage de 3,5 à 5 mol/l.
  15. Procédé selon l'une des revendications 1 à 14, qui est mis en œuvre à une température de 20 à 70 °C et sous une pression de 0,5 à 1,5 bar.
EP20165238.5A 2020-03-24 2020-03-24 Procédé de fabrication d'alcooliques métalliques alcalins dans une cellule d'électrolyse à trois chambres Active EP3885470B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20165238.5A EP3885470B1 (fr) 2020-03-24 2020-03-24 Procédé de fabrication d'alcooliques métalliques alcalins dans une cellule d'électrolyse à trois chambres
ES20165238T ES2955404T3 (es) 2020-03-24 2020-03-24 Procedimiento para la producción de alcoholatos de metal alcalino en una célula electrolítica de tres cámaras
US17/204,629 US11174559B2 (en) 2020-03-24 2021-03-17 Process for preparing alkali metal alkoxides in a three-chamber electrolysis cell
CA3112138A CA3112138C (fr) 2020-03-24 2021-03-18 Procede de preparation d`alcoolates metalliques alcalins dans une cellule d`electrolyse a trois chambres

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20165238.5A EP3885470B1 (fr) 2020-03-24 2020-03-24 Procédé de fabrication d'alcooliques métalliques alcalins dans une cellule d'électrolyse à trois chambres

Publications (2)

Publication Number Publication Date
EP3885470A1 EP3885470A1 (fr) 2021-09-29
EP3885470B1 true EP3885470B1 (fr) 2023-06-28

Family

ID=69960415

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20165238.5A Active EP3885470B1 (fr) 2020-03-24 2020-03-24 Procédé de fabrication d'alcooliques métalliques alcalins dans une cellule d'électrolyse à trois chambres

Country Status (4)

Country Link
US (1) US11174559B2 (fr)
EP (1) EP3885470B1 (fr)
CA (1) CA3112138C (fr)
ES (1) ES2955404T3 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3885471B1 (fr) * 2020-03-24 2023-07-19 Evonik Operations GmbH Procédé amélioré de fabrication d'alcools de sodium
EP4112780B1 (fr) * 2021-06-29 2023-08-02 Evonik Operations GmbH Cellule d'électrolyse à trois chambre destinée à la production d'alcoolates alcalimétaux
EP4112778B8 (fr) * 2021-06-29 2024-01-17 Evonik Operations GmbH Cellule d'électrolyse à trois chambre destinée à la production d'alcoolates alcalimétaux
EP4112779B1 (fr) * 2021-06-29 2023-08-16 Evonik Operations GmbH Cellule d'électrolyse à trois chambre destinée à la production d'alcoolates alcalimétaux
WO2023193940A1 (fr) * 2022-04-04 2023-10-12 Evonik Operations Gmbh Procédé amélioré de dépolymérisation de polyéthylène téréphtalate
WO2024083323A1 (fr) 2022-10-19 2024-04-25 Evonik Operations Gmbh Procédé amélioré de dépolymérisation de polyéthylène téréphtalate

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD258143A3 (de) 1986-03-03 1988-07-13 Koethen Ing Hochschule Elektrolysezelle fuer stofftransportgehemmte oder durch konzentrationsabnahmen kinetisch verlangsamte elektrodenreaktionen
US4831146A (en) 1988-03-21 1989-05-16 Air Products And Chemicals, Inc. Process for preparing triacetone amine and other oxopiperidines
DE4233191C2 (de) * 1992-01-16 1995-06-29 Huels Chemische Werke Ag Verfahren zur Herstellung von Alkoholaten
US5389211A (en) 1993-11-08 1995-02-14 Sachem, Inc. Method for producing high purity hydroxides and alkoxides
US5425856A (en) * 1994-04-26 1995-06-20 Occidental Chemical Corporation Method of making alkali metal alcoholates
US6294066B1 (en) 1997-01-23 2001-09-25 Archer Daniels Midland Company Apparatus and process for electrodialysis of salts
DE19844059A1 (de) 1998-09-25 2000-03-30 Degussa Elektrolysezelle und deren Verwendung
EP1312700A3 (fr) 2001-11-02 2003-05-28 Degussa AG Procédé pour la production d'alcoolats de metaux alcalins
US7824536B2 (en) 2003-12-11 2010-11-02 Ceramatec, Inc. Electrolytic method to make alkali alcoholates using ceramic ion conducting solid membranes
US20080173540A1 (en) 2003-12-11 2008-07-24 Joshi Ashok V Electrolytic Cell for Producing Alkali Alcoholates
US8075758B2 (en) 2003-12-11 2011-12-13 Ceramatec, Inc. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator
JP5314246B2 (ja) 2003-12-11 2013-10-16 アメリカン パシフィック コーポレイション イオン伝導性セラミックの固体膜を用いたアルカリアルコラートを生成するための電気分解による方法
DE10360758A1 (de) 2003-12-23 2005-07-28 Degussa Ag Elektrochemische Herstellung von Alkalialkoholaten mit Hilfe einer keramischen Festelektrolytmembran
DE102005051162A1 (de) 2005-10-24 2007-04-26 Basf Ag Oberflächenstrukturierte Membranen und mit Katalysator beschichtete Membranen sowie Membran-Elektroden-Einheiten daraus
WO2007082092A2 (fr) 2006-01-11 2007-07-19 Ceramatec, Inc. Synthese de biodiesel au moyen de membranes ceramiques conductrices d'ions de metal alcalin
EP2212449A4 (fr) 2007-11-02 2010-12-08 Ceramatec Inc Processus électrolytique pour séparer des ions de métaux alcalins de sels alcalins de glycérine
US20100044241A1 (en) 2008-08-25 2010-02-25 Justin Pendleton Methods for Producing Sodium Hypochlorite with a Three-Compartment Apparatus Containing a Basic Anolyte
DE102010062804A1 (de) 2010-01-12 2011-07-14 Evonik Degussa GmbH, 45128 Verfahren zur Herstellung von 1,1 Diarylalkanen und Derivativen davon
EP2625316A2 (fr) 2010-10-07 2013-08-14 Ceramatec, Inc Systèmes et procédés chimiques pour faire fonctionner une cellule électrochimique avec un anolyte acide
EP2870277B1 (fr) 2012-07-03 2021-04-14 Enlighten Innovations Inc. Appareil et procédé de production de métal dans une cellule électrolytique de nasicon
KR101719293B1 (ko) 2015-01-13 2017-03-23 한국과학기술연구원 다공성 나피온 막 및 그 제조 방법
DE102015013155A1 (de) 2015-10-09 2017-04-13 Forschungszentrum Jülich GmbH Elektrolytmaterial mit NASICON-Struktur für Feststoff-Natriumionenbatterien sowie Verfahren zu deren Herstellung

Also Published As

Publication number Publication date
ES2955404T3 (es) 2023-11-30
CA3112138C (fr) 2023-03-14
EP3885470A1 (fr) 2021-09-29
US20210301409A1 (en) 2021-09-30
CA3112138A1 (fr) 2021-09-24
US11174559B2 (en) 2021-11-16

Similar Documents

Publication Publication Date Title
EP3885470B1 (fr) Procédé de fabrication d&#39;alcooliques métalliques alcalins dans une cellule d&#39;électrolyse à trois chambres
EP3885471B1 (fr) Procédé amélioré de fabrication d&#39;alcools de sodium
DE2844499C2 (de) Verfahren zum Herstellen eines Halogens
EP1600426B1 (fr) Procédé et dispositif pour la séparation des anions sulfates de l&#39;eau et pour apporter un pouvoir tampon à l&#39;eau
DE2926560A1 (de) Elektrolysezelle, membran-elektroden- einheit und verfahren zur herstellung von halogen und alkalimetallhydroxid
DE102015212503A1 (de) Reduktionsverfahren und Elektrolysesystem zur elektrochemischen Kohlenstoffdioxid-Verwertung
EP4043616B1 (fr) Procédé de production d&#39;alcooliques métalliques alcalins dans une cellule d&#39;électrolyse à trois chambres
DE2451846A1 (de) Verfahren zur elektrolytischen herstellung von metallhydroxidloesungen
EP4112778B1 (fr) Cellule d&#39;électrolyse à trois chambre destinée à la production d&#39;alcoolates alcalimétaux
EP4112780B1 (fr) Cellule d&#39;électrolyse à trois chambre destinée à la production d&#39;alcoolates alcalimétaux
EP4112779B1 (fr) Cellule d&#39;électrolyse à trois chambre destinée à la production d&#39;alcoolates alcalimétaux
WO2023016897A1 (fr) Procédé de production d&#39;alcoolates de métal alcalin dans une cellule d&#39;électrolyse
EP4144888A1 (fr) Procédé de production d&#39;alcoolats alcalins dans une cellule d&#39;électrolyse
EP4124677A1 (fr) Paroi de séparation résistante à la rupture comprenant des céramiques à électrolyte solide pour cellules d&#39;électrolyse
EP4144890A1 (fr) Procédé de production d&#39;alcoolats alcalins dans une cellule d&#39;électrolyse
EP4124675A1 (fr) Paroi de séparation résistante à la rupture comprenant des céramiques à électrolyte solide pour cellules d&#39;électrolyse
DE102020207186A1 (de) CO2 Elektrolyse mit Gasdiffusionselektrode und Salzbildungsvermeidung durch Elektrolytwahl
DE102004012334A1 (de) Verfahren zur Herstellung von Metallhydroxiden, insbesondere Lithiumhydroxid
WO2023030915A1 (fr) Procédé de production d&#39;alcoolates de métaux alcalins dans une cellule d&#39;électrolyse
DE2434921B2 (de) Elektrolysezelle und Verfahren zur Elektrolyse ionisierbarer chemischer Verbindungen
WO2023193940A1 (fr) Procédé amélioré de dépolymérisation de polyéthylène téréphtalate
WO2024083323A1 (fr) Procédé amélioré de dépolymérisation de polyéthylène téréphtalate
WO2024052567A2 (fr) Procédé électrolytique, électrolyseur, système d&#39;électrolyse, utilisation et installation
DE2745542A1 (de) Verfahren zur elektrolyse von salzloesungen durch quecksilberkathoden
DE2409193B2 (de) Elektrolysezelle und ihre verwendung zur chloralkali-elektrolyse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211021

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502020003914

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C25B0003040000

Ipc: C25B0013040000

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: C25B0003040000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C25B 9/19 20210101ALI20230303BHEP

Ipc: C25B 3/25 20210101ALI20230303BHEP

Ipc: C07C 31/30 20060101ALI20230303BHEP

Ipc: B01D 61/00 20060101ALI20230303BHEP

Ipc: C25B 13/04 20060101AFI20230303BHEP

INTG Intention to grant announced

Effective date: 20230324

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK OPERATIONS GMBH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1582771

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020003914

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230929

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2955404

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20231130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231030

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231028

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020003914

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240320

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT