EP3885470B1 - Verfahren zur herstellung von alkalimetallalkoholaten in einer dreikammerelektrolysezelle - Google Patents

Verfahren zur herstellung von alkalimetallalkoholaten in einer dreikammerelektrolysezelle Download PDF

Info

Publication number
EP3885470B1
EP3885470B1 EP20165238.5A EP20165238A EP3885470B1 EP 3885470 B1 EP3885470 B1 EP 3885470B1 EP 20165238 A EP20165238 A EP 20165238A EP 3885470 B1 EP3885470 B1 EP 3885470B1
Authority
EP
European Patent Office
Prior art keywords
chamber
process according
solution
cation
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20165238.5A
Other languages
English (en)
French (fr)
Other versions
EP3885470A1 (de
Inventor
Michael Horn
Philip Heinrich REINSBERG
Felix GÄRTNER
Jutta MALTER
Patrik Stenner
Tobias STADTMÜLLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Operations GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Operations GmbH filed Critical Evonik Operations GmbH
Priority to EP20165238.5A priority Critical patent/EP3885470B1/de
Priority to ES20165238T priority patent/ES2955404T3/es
Priority to US17/204,629 priority patent/US11174559B2/en
Priority to CA3112138A priority patent/CA3112138C/en
Publication of EP3885470A1 publication Critical patent/EP3885470A1/de
Application granted granted Critical
Publication of EP3885470B1 publication Critical patent/EP3885470B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/13Organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/07Oxygen containing compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Definitions

  • the present invention relates to a method for the electrochemical production of an alkali metal alkoxide solution.
  • the process is carried out in an electrolytic cell which has three chambers, the middle chamber being separated from the cathode chamber by a cation-permeable solid electrolyte, for example NaSICON, and from the anode chamber by a diffusion barrier, for example a cation- or anion-selective membrane.
  • a cation-permeable solid electrolyte for example NaSICON
  • a diffusion barrier for example a cation- or anion-selective membrane.
  • the electrochemical production of alkali metal alkoxide solutions is an important industrial process that is used, for example, in DE 103 60 758 A1 , the U.S. 2006/0226022 A1 and the WO 2005/059205 A1 is described.
  • the principle of this process is an electrolytic cell in whose anode chamber there is a solution of an alkali salt, for example common salt or NaOH, and in whose cathode chamber there is the alcohol in question or a low-concentration alcoholic solution of the alkali metal alcoholate in question, for example sodium methoxide or sodium ethoxide.
  • the cathode compartment and the anode compartment are separated by a ceramic which conducts the alkali metal ion used, for example NaSICON or its analogues for potassium or lithium.
  • a ceramic which conducts the alkali metal ion used, for example NaSICON or its analogues for potassium or lithium.
  • chlorine is formed at the anode - if a chloride salt of the alkali metal is used - and hydrogen and alcohol ions are formed at the cathode.
  • the charge equalization results from the fact that alkali metal ions migrate from the middle chamber into the cathode chamber via the ceramic that is selective for them.
  • the charge equalization between the middle chamber and the anode chamber results from the migration of cations when using cation exchange membranes or the migration of anions when using anion exchange membranes or by migration of both types of ions when using non-specific diffusion barriers.
  • WO 2014/008410 A1 describes an electrolytic process for the production of elemental titanium or rare earths. This process is based on the fact that titanium chloride is formed from TiOz and the corresponding acid, this reacts with sodium alcoholate to form titanium alcoholate and NaCl and is finally converted electrolytically to form elemental titanium and sodium alcoholate.
  • WO 2007/082092 A2 and WO 2009/059315 A1 describe processes for the production of biodiesel in which triglycerides are first converted into the corresponding alkali metal triglycerides with the aid of alcoholates electrolytically produced via NaSICON and in a second step are converted into glycerol and the respective alkali metal hydroxide with electrolytically produced protons.
  • Three-chamber cells have been proposed in the prior art. Such are known in the field of electrodialysis, for example US 6,221,225 B1 .
  • WO 2012/048032 A2 and US 2010/0044242 A1 describe, for example, electrochemical processes for the production of sodium hypochlorite and similar chlorine compounds in such a three-chamber cell.
  • the cathode chamber and the middle chamber of the cell are separated by a cation-permeable solid electrolyte such as NaSICON.
  • the middle chamber is supplied with solution from the cathode chamber, for example.
  • the US 2010/0044242 A1 also describes in Figure 6 that solution from the middle compartment can be mixed with solution from the anode compartment outside the compartment to obtain sodium hypochlorite.
  • the WO 2008/076327 A1 describes a process for preparing alkali metal alkoxides.
  • a three-chamber cell is used, the middle chamber of which is filled with alkali metal alkoxide (See, for example, paragraphs [0008] and [0067] of the WO 2008/076327 A1 ).
  • This protects the solid electrolyte separating the middle chamber and the cathode chamber from the solution in the anode chamber, which becomes more acidic during the electrolysis.
  • this arrangement has the disadvantage that the alkali metal alkoxide solution is the desired product, but this is consumed as a buffer solution and is continuously contaminated.
  • the WO 2009/073062 A2 describes a similar process for the production of alkali metal alkoxides in a three-chamber electrolytic cell. This includes a central chamber in which alkali metal alcoholate solution is also used as a buffer solution.
  • the object of the present invention was therefore to provide an improved process for the electrolytic production of alkali metal alkoxide which ensures protection of the cation-conducting solid electrolyte against acid but does not have the disadvantages mentioned above.
  • the process should be distinguished by a more economical use of the educts compared to the prior art.
  • illustration 1 shows the method according to the invention using a three-chamber cell E ⁇ 100> comprising a cathode chamber K K ⁇ 102>, an anode chamber K A ⁇ 101> and a middle chamber K M ⁇ 103> located in between.
  • the three chambers are delimited by an outer wall ⁇ 117> of the three-chamber cell E ⁇ 100>.
  • the cathode chamber K K ⁇ 102> is also separated from the middle chamber K M ⁇ 103> by a NaSICON solid electrolyte F K ⁇ 111> that is selectively permeable for sodium ions.
  • the middle chamber K M ⁇ 103> is additionally in turn separated from the anode chamber K A ⁇ 101> by a diffusion barrier D ⁇ 110>.
  • the NaSICON solid electrolyte F K ⁇ 111> and the diffusion barrier D ⁇ 110> extend over the entire depth and height of the three-chamber cell E ⁇ 100>.
  • a solution of sodium methoxide in methanol L 2 ⁇ 113> is passed through the cathode chamber K K ⁇ 102>.
  • An aqueous solution of sodium chloride L 3 ⁇ 114> with a pH of 10.5 is added via the inlet Z KM ⁇ 108> in the same direction as gravity into the middle chamber KM ⁇ 103>.
  • the connection V AM ⁇ 112> which is formed between an outlet A KM ⁇ 118> of the middle chamber K M ⁇ 103> and an inlet Z KA ⁇ 119> of the anode chamber KA ⁇ 101>, creates the middle chamber K M ⁇ 103 > connected to the anode chamber K A ⁇ 101 >.
  • Sodium chloride solution L 3 ⁇ 114> is conducted through this connection V AM ⁇ 112> from the middle chamber KM ⁇ 103> into the anode chamber KA ⁇ 101>.
  • methanol is reduced to methoxide and H 2 in the cathode chamber K K ⁇ 102>.
  • Sodium ions diffuse from the middle chamber K M ⁇ 103> through the NaSICON solid electrolyte F K ⁇ 111> into the cathode chamber K K ⁇ 102>.
  • Cl 2 has an acidic reaction in aqueous solution. Due to the geometry of the three-chamber cell E ⁇ 100> and the routing of the aqueous solution L 3 ⁇ 114>, the acid-sensitive NaSICON solid electrolyte becomes ⁇ 111> protected from the increased acidity of the solution L 4 ⁇ 116> in the anode chamber K A ⁇ 101> compared to L 3 ⁇ 114>.
  • Figure 2 shows an embodiment of the method according to the invention, which corresponds to that in illustration 1 shown. The only difference is that the connection V AM ⁇ 112> from the middle chamber K M ⁇ 103> to the anode chamber K A ⁇ 101> is formed by a perforation in the diffusion barrier D ⁇ 110>.
  • Figure 3 shows a diagram of the voltage profile of the electrolysis in a three-chamber cell according to the invention in comparison to a two-chamber cell.
  • the measurement points of the comparative example are represented by triangles ( ⁇ ), those of the example according to the invention by dots (•).
  • the x-axis represents time in hours while the y-axis represents the measured voltage in volts.
  • the comparison shows that a constant voltage profile is obtained with the cell according to the invention, while the voltage rises rapidly in the two-chamber cell due to the destruction of the solid electrolyte.
  • the method according to the invention is carried out in an electrolytic cell E which comprises at least one anode chamber K A , at least one cathode chamber K K and at least one central chamber K M located in between.
  • This also includes electrolytic cells E which have more than one anode chamber K A and/or cathode chamber K K and/or middle chamber K M .
  • Such electrolytic cells, in which these chambers are joined together in a modular manner, are, for example, in DD 258 143 A3 , U.S. 2006/0226022 A1 described.
  • the anode chamber K A includes an anodic electrode E A .
  • Any electrode familiar to a person skilled in the art that is stable under the conditions of the method according to the invention can be used as such an anodic electrode E A .
  • Such are in particular in WO 2014/008410 A1 , paragraph [024] or DE 10360758 A1 , paragraph [031].
  • This electrode E A can consist of one layer or of several planar, mutually parallel layers, each of which can be perforated or expanded.
  • the anodic electrode E A comprises in particular a material which is selected from the group consisting of ruthenium oxide, iridium oxide, nickel, cobalt, nickel tungstate, nickel titanate, noble metals such as platinum in particular, which is deposited on a carrier such as titanium or Kovar® (an iron/nickel/ Cobalt alloy, in which the individual proportions are preferably as follows: 54% by mass iron, 29% by mass nickel, 17% by mass cobalt) is supported.
  • Other possible anode materials are, in particular, stainless steel, lead, graphite, tungsten carbide, titanium diboride.
  • E A preferably comprises a titanium anode (RuO 2 +IrO 2 /Ti) coated with ruthenium oxide/iridium oxide.
  • the cathode chamber K K includes a cathodic electrode E K .
  • a cathodic electrode E K Any electrode familiar to a person skilled in the art that is stable under the conditions can be used as such a cathodic electrode E K . Such are in particular in WO 2014/008410 A1 , paragraph [025] or DE 10360758 A1 , paragraph [030].
  • This electrode E K can be selected from the group consisting of mesh wool, a three-dimensional matrix structure or as "balls".
  • the cathodic electrode E K includes in particular a material selected from the group consisting of steel, nickel, copper, platinum, platinized metals, palladium, palladium supported on carbon, titanium. E K preferably comprises nickel.
  • the at least one middle chamber K M is located between the anode chamber K A and the cathode chamber K K .
  • the electrolytic cell E usually has an outer wall W A .
  • the outer wall W A is in particular made of a material selected from the group consisting of steel, preferably rubberized steel, plastic, in particular Telene ® (thermosetting polydicyclopentadiene), PVC (polyvinyl chloride), PVC-C (post-chlorinated polyvinyl chloride), PVDF (polyvinylidene fluoride ) is selected, is selected.
  • W A can be perforated in particular for inlets and outlets. Within W A are then the at least one anode chamber K A , the at least one cathode chamber K K and the at least one middle chamber K M lying between them.
  • K M is separated from K A by a diffusion barrier D and separated from K K by an alkali cation-conducting solid electrolyte F K .
  • any material which is stable under the conditions of the method according to the invention and which prevents or slows down the transfer of protons from the liquid in the anode chamber K A into the middle chamber K M can be used as the diffusion barrier D.
  • a non-ion-specific dividing wall or a membrane permeable to specific ions is used as the diffusion barrier D.
  • the diffusion barrier D is preferably a membrane that is permeable to specific ions.
  • the material for the non-ionic partition is in particular selected from the group consisting of fabric, in particular textile fabric or metal fabric, glass, in particular sintered glass or glass frits, ceramic, in particular ceramic frits, membrane diaphragms.
  • the diffusion barrier D is a “membrane that is permeable to specific ions”, this means according to the invention that the respective membrane favors the diffusion of certain ions through it over others.
  • membranes are meant that favor the diffusion through them of ions of a certain type of charge compared to oppositely charged ions. More preferably, specific ion permeable membranes also favor the diffusion of certain ions having one charge type through them over other ions of the same charge type.
  • the diffusion barrier D is therefore preferably an anion-conducting membrane or a cation-conducting membrane.
  • anion-conducting membranes are those which selectively conduct anions, preferably selectively specific anions. In other words, they favor the diffusion of anions through them over that of cations, especially over protons, more preferably they additionally favor the diffusion of certain anions through them over the diffusion of other anions through them.
  • cation-conducting membranes are those which selectively conduct cations, preferably selectively specific cations. In other words, they favor the diffusion of cations through them over that of anions, more favorably they favor the diffusion of certain cations through them over the diffusion of other cations through them, much more favorably cations which are is not protons, more preferably sodium cations, over protons.
  • “Favour the diffusion of certain ions X over the diffusion of other ions Y” means in particular that the diffusion coefficient (unit m 2 /s) of the ion type X at a given temperature for the membrane in question is higher by a factor of 10, preferably 100, preferably 1000 as the diffusion coefficient of the ionic species Y for the membrane in question.
  • the diffusion barrier D is more preferably an anion-conducting membrane, since this prevents the diffusion of protons from the anode chamber K A into the middle chamber K M particularly well.
  • a membrane which is selective for the anions comprised by the salt S is used as the anion-conducting membrane.
  • Such membranes are known to those skilled in the art and can be used by them.
  • Salt S is preferably a halide, sulfate, sulfite, nitrate, bicarbonate or carbonate of X, more preferably a halide.
  • Halides are fluorides, chlorides, bromides, iodides. The most preferred halide is chloride.
  • a membrane selective for halides is preferably used as the anion-conducting membrane.
  • they have covalently bonded functional groups selected from -NH 3 + , -NRH 2 + , -NR 3 + , more preferably selected from -NH 3 + , -NR 3 + , even more preferably -NR 3 + .
  • the diffusion barrier D is a cation-conducting membrane, it is in particular a membrane which is selective for the cations comprised by the salt S.
  • the diffusion barrier D is even more preferably a membrane which conducts alkali cations, even more preferably a membrane which conducts potassium and/or sodium ions, most preferably a membrane which conducts sodium ions.
  • Cation-conducting membranes are described, for example, on page 181 of the textbook by Volkmar M. Schmidt Electrochemical Process Engineering: Fundamentals, Reaction Engineering, Process Optimization, 1st edition (October 8, 2003 ).
  • organic polymers which are selected in particular from polyethylene, polybenzimidazoles, polyetherketones, polystyrene, polypropylene or fluorinated membranes such as polyperfluoroethylene, preferably polystyrene, polyperfluoroethylene, are even more preferably used as the cation-conducting membrane, with these covalently bonded functional groups selected from -SO 3 - , -COO-, -PO 3 2- , -PO 2 H- , preferably -SO 3 - , (described in DE 10 2010 062 804 A1 , US4,831,146 ) carry.
  • Neosepta ® membranes are described, for example, by SA Mareev, D.Yu. Butylskii, ND Pismenskaya, C Larchet, L Dammak, VV Nikonenko, Journal of Membrane Science 2018, 563, 768-776 .
  • a cation-conducting membrane is used as the diffusion barrier D , this can be, for example, a polymer functionalized with sulfonic acid groups, in particular of the following formula P NAFION , where n and m independently of one another are an integer from 1 to 10 6 , more preferably an integer from 10 to 10 5 , more preferably is an integer from 10 2 to 10 4 .
  • any solid electrolyte which can transport cations, in particular alkali cations, more preferably sodium cations, from the central chamber K M into the cathode chamber K K can be used as the alkali cation-conducting solid electrolyte F K .
  • Such solid electrolytes are known to those skilled in the art and, for example, in DE 10 2015 013 155 A1 , in the WO 2012/048032 A2 , paragraphs [0035], [0039], [0040], in the US 2010/0044242 A1 , paragraphs [0040], [0041], in which DE 10360758 A1 , paragraphs [014] to [025]. They are sold commercially under the names NaSICON, LiSICON, KSICON.
  • a sodium ion-conducting solid electrolyte F K is preferred, this even more preferably having a NaSICON structure.
  • NaSICON structures that can be used according to the invention are also described, for example, by N. Anantharamulu, K. Koteswara Rao, G. Rambabu, B. Vijaya Kumar, Velchuri Radha, M. Vithal, J Mater Sei 2011, 46 , 2821-2837.
  • NaSICON preferably has a structure of the formula M I 1 +2w+x-y+z M II w M III x Zr IV 2-wxy M V y (SiO 4 ) z (PO 4 ) 3-z .
  • M I is selected from Na + , Li + , preferably Na + .
  • M" is a divalent metal cation preferably selected from Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Co 2+ , Ni 2+ , more preferably selected from Co 2+ , Ni 2+ .
  • M III is a trivalent metal cation, preferably selected from Al 3+ , Ga 3+ , Sc 3+ , La 3+ , Y 3+ , Gd 3+ , Sm 3+ , Lu 3+ , Fe 3+ , Cr 3+ , more preferably selected from Sc 3+ , La 3+ , Y 3+ , Gd 3+ , Sm 3+ , particularly preferably selected from Sc 3+ , Y 3+ , La 3+ .
  • M V is a pentavalent metal cation, preferably selected from V 5+ , Nb 5+ , Ta 5+ .
  • the cathode chamber K K also comprises an inlet Z KK and an outlet A KK , which makes it possible to add liquid, such as solution L 2 , and liquid therein, such as solution L 1 , to the cathode chamber K K removed.
  • the inlet Z KK and the outlet A KK are attached to the cathode chamber K K in such a way that the solution makes contact with the cathodic electrode E K as it flows through the cathode chamber K K . This is the prerequisite for the solution L 1 being obtained at the outlet A KK when the process according to the invention is carried out if the solution L 2 of an alkali metal alkoxide XOR in the alcohol ROH is passed through KK .
  • the anode chamber K A also includes an outlet A KA , which makes it possible to remove liquid, for example the aqueous solution L 4 , located in the anode chamber K A .
  • the middle chamber K M includes an inlet Z KM , while K A and K M are connected to one another by a connection V AM .
  • a solution L 3 can be added to K M and this can then be passed through K M and via V AM into the anode chamber K A , then through this K A .
  • V AM and the outlet A KA are attached to the anode chamber K A in such a way that the solution L 3 makes contact with the anodic electrode E A as it flows through the anode chamber K A . This is the prerequisite for the aqueous solution L 4 being obtained at the outlet A KA when the process according to the invention is carried out if the solution L 3 is first passed through KM , then V AM , then KA .
  • Inflows Z KK , Z KM , Z KA and outflows A KK , A KA , A KM can be attached to the electrolytic cell by methods known to those skilled in the art.
  • connection V AM can be formed within the electrolytic cell E and/or outside of the electrolytic cell E.
  • connection V AM is formed within the electrolytic cell E , it is preferably formed by at least one perforation in the diffusion barrier D.
  • connection V AM is formed outside the electrolytic cell E , it is preferably formed by a connection between K M and K A running outside the electrolytic cell E , in particular by the fact that in the middle chamber K M a drain A KM through the outer wall W A is preferred is formed at the bottom of the middle chamber K M , with the inflow Z KM even more preferably being at the top of the middle chamber K M , and in the anode chamber K A an inflow Z KA through the outer wall W A , preferably at the bottom of the anode chamber K A , is formed, and these are connected by a line, for example a pipe or a hose, which preferably comprises a material selected from rubber, plastic.
  • the drain A KA is then even more preferably at the top of the anode chamber K A .
  • Outflow A KM at the bottom of the middle chamber K M means that the outflow A KM is attached to the electrolytic cell E in such a way that the solution L 3 leaves the middle chamber K M in the same direction as gravity.
  • Inlet Z KA at the bottom of the anode chamber K A means that the inlet Z KA is attached to the electrolytic cell E in such a way that the solution L 3 enters the anode chamber K A against the force of gravity.
  • Inlet Z KM at the top of the middle chamber K M means that the inlet Z KM is attached to the electrolytic cell E in such a way that the solution L 3 enters the middle chamber K M in the same direction as gravity.
  • Outlet A KA at the top of the anode chamber K A means that the outlet A KA is attached to the electrolytic cell E in such a way that the solution L 4 leaves the anode chamber K A against the force of gravity.
  • This embodiment is particularly advantageous and therefore preferred if the outlet A KM is formed by the outer wall WA at the bottom of the central chamber K M and the inlet Z KA is formed by the outer wall WA at the bottom of the anode chamber KA .
  • This arrangement makes it particularly easy to separate gases produced in the central chamber K M from L 3 through the gas outlet G , while gases produced in the anode chamber K A leave the anode chamber K A with L 4 and can then be further separated.
  • the direction of flow of L 3 in K M is the direction of flow of L 3 in K A in the opposite direction or in the same direction, preferably in the opposite direction, depending on how the connection V AM is attached to the electrolytic cell E.
  • the direction of flow of L 3 in K M is in the same direction as gravity.
  • connection V AM is arranged between central chamber K M and anode chamber K A in such a way that at least part of the aqueous Solution L 3 , more preferably the entire aqueous solution L 3 , flows through the middle chamber K M and the anode chamber K A completely.
  • connection V AM ⁇ 112> is formed outside the electrolytic cell E ⁇ 100>, this can be ensured in particular by the fact that Z KM ⁇ 108> and A KM ⁇ 118> are on opposite sides of the outer wall W A ⁇ 117> of the central chamber K M ⁇ 103> are arranged (i.e. Z KM ⁇ 108> on the bottom and A KM ⁇ 118> on the top of the electrolytic cell E ⁇ 100> or vice versa) and Z KA ⁇ 119> and A KA ⁇ 106> on opposite sides of the outer wall W A ⁇ 117> of the anode chamber K A ⁇ 101> (i.e.
  • L 3 ⁇ 114> must flow through the two chambers KM ⁇ 103> and KA ⁇ 101> through this geometry.
  • Z KA ⁇ 119> and Z KM ⁇ 108> can be formed on the same side of the electrolytic cell E ⁇ 100>, with A KM ⁇ 118> and A KA ⁇ 106> then automatically also being formed on the same side of the electrolytic cell E ⁇ 100> are.
  • Z KA ⁇ 119> and Z KM ⁇ 108> can be formed on opposite sides of the electrolytic cell E ⁇ 100>, in which case A KM ⁇ 118> and A KA ⁇ 106> are then also automatically formed on opposite sides of the electrolytic cell E ⁇ 100> are.
  • connection V AM ⁇ 112> is formed inside the electrolytic cell E ⁇ 100>
  • this can be ensured by one side ("side A") of the electrolytic cell E ⁇ 100>, which is the top or the bottom of the electrolytic cell E ⁇ 100>, preferably as in Figure 2 shown is the top, includes the inlet Z KM ⁇ 108> and the outlet A KA ⁇ 106> and the diffusion barrier D ⁇ 110> starting from this side A into the electrolytic cell ⁇ 100>, but not quite to the of the Side A opposite side ("side B") of the electrolytic cell E ⁇ 100>, which is then the bottom or the top of the electrolytic cell E ⁇ 100>, and thereby 50% or more of the height of the three-chamber cell E ⁇ 100>, more preferably 60% to 99% of the height of the three-chamber cell E ⁇ 100>, more preferably 70% to 95% of the height of the three-chamber cell E ⁇ 100>, even more preferably 80% to 90% of the height of the three-chamber cell E
  • Bottom of the electrolytic cell E is, according to the invention, the side of the electrolytic cell E through which a solution (e.g. L 3 ⁇ 114> at A KM ⁇ 118> in illustration 1 ) exits the electrolytic cell E in the same direction as gravity or the side of the electrolytic cell E through which a solution (e.g. L 2 ⁇ 113> at Z KK ⁇ 107> in Figures 1 and 2 and L 3 ⁇ 114> at A KA ⁇ 119> in illustration 1 ) of the electrolytic cell E is fed against gravity.
  • a solution e.g. L 3 ⁇ 114> at A KM ⁇ 118> in illustration 1
  • top side of the electrolytic cell E is the side of the electrolytic cell E through which a solution (eg L 4 ⁇ 116> at A KA ⁇ 106> and L 1 ⁇ 115> at A KK ⁇ 109> in FIGS. 1 and 2) counteracts exits the electrolytic cell E under gravity or the side of the electrolytic cell E through which a solution (e.g. L 3 ⁇ 114> at Z KM ⁇ 108> in Figures 1 and 2) is fed to the electrolytic cell E in the same direction as gravity.
  • a solution e.g. L 4 ⁇ 116> at A KA ⁇ 106> and L 1 ⁇ 115> at A KK ⁇ 109> in FIGS. 1 and 2
  • a solution e.g. L 3 ⁇ 114> at Z KM ⁇ 108> in Figures 1 and 2
  • the method according to the invention comprises the following steps (a), (b) and (c), which are carried out simultaneously.
  • step (a) a solution L 2 comprising the alcohol ROH, preferably comprising an alkali metal alkoxide XOR in the alcohol ROH, is passed through K K .
  • X is an alkali metal cation and R is an alkyl group having 1 to 4 carbon atoms.
  • R is preferably selected from the group consisting of n -propyl, iso -propyl, ethyl, methyl, more preferably selected from the group consisting of ethyl, methyl. Most preferably R is methyl.
  • the solution L 2 is preferably free of water.
  • “free of water” means that the weight of the water in the solution L 2 based on the weight of the alcohol ROH in the solution L 2 (mass ratio) is ⁇ 1:10, more preferably ⁇ 1:20, even more preferably ⁇ 1:100 , more preferably ⁇ 0.5:100.
  • the mass fraction of XOR in the solution L 2 is in particular >0 to 30% by weight, preferably 5 to 20% by weight, even more preferably at 10 to 20% by weight, more preferably at 10 to 15% by weight, most preferably at 13 to 14% by weight, most preferably at 13% by weight.
  • the mass ratio of XOR to alcohol ROH in the solution L 2 is in particular in the range from 1:100 to 1:5, more preferably in the range from 1:25 to 3:20, even more preferably in the range 1:12 to 1:8, more preferably at 1:10.
  • step (b) a neutral or alkaline aqueous solution L 3 of a salt S comprising X as a cation is passed through K M , then over V AM , then through K A .
  • the salt S is described above.
  • the pH of the aqueous solution L 3 is ⁇ 7.0, preferably in the range from 7 to 12, more preferably in the range from 8 to 11, even more preferably from 10 to 11, most preferably at 10.5.
  • the mass fraction of the salt S in the solution L 3 is preferably in the range > 0 to 20% by weight, preferably 1 to 20% by weight, more preferably 5 to 20% by weight, even more preferably 10 to 20% by weight %, most preferably at 20% by weight, based on the total solution L 3 .
  • step (c) a voltage is then applied between E A and E K .
  • the charge source is known to those skilled in the art and is typically a rectifier that converts alternating current into direct current and can generate certain voltages via voltage converters.
  • This can be determined by a person skilled in the art by default.
  • the area of the solid electrolyte which contacts the anolyte located in the central chamber K M is in particular 0.00001 to 10 m 2 , preferably 0.0001 to 2.5 m 2 , more preferably 0.0002 to 0.15 m 2 , even more preferably 2.83 cm 2 .
  • step (c) is carried out in the method according to the invention when both chambers K M and K A are at least partially charged with L 3 and K K is at least partially charged with L 2 .
  • step (c) charge transport takes place between E A and E K implies that K K , K M and K A are simultaneously charged with L 2 and L 3 , respectively, in such a way that they connect the electrodes E A and E K so far that the circuit is closed.
  • step (a) and step (b) are carried out continuously and voltage is applied in accordance with step (c).
  • the solution L 1 is obtained at the outlet A KK , the concentration of XOR in L 1 being higher than in L 2 .
  • the concentration of XOR in L 1 is preferably 1.01 to 2.2 fold, more preferably 1.04 to 1.8 fold, even more preferably 1077 to 1.4 fold, even more preferably 1077 to 1077 fold 1.08-fold higher than in L 2 , most preferably 1,077-fold higher than in L 2 , more preferably with the mass fraction of XOR in L 1 and in L 2 being in the range 10 to 20% by weight, even more preferably 13 to 14% by weight.
  • the concentration of the cation X in the aqueous solution L 3 is preferably in the range from 3.5 to 5 mol/l, more preferably 4 mol/l.
  • the concentration of the cation X in the aqueous solution L 4 is more preferably 0.5 mol/l lower than that of the aqueous solution L 3 used in each case.
  • the method according to the invention is carried out at a temperature of 20° C. to 70° C., preferably 35° C. to 65° C., more preferably 35° C. to 60° C., even more preferably 35° C. to 50° C. and a pressure of 0.5 bar to 1.5 bar, preferably 0.9 bar to 1.1 bar, more preferably 1.0 bar.
  • hydrogen is typically produced in the cathode chamber K K , which hydrogen can be removed from the cell via the outlet A KK together with the solution L 1 .
  • the mixture of hydrogen and solution L 1 can then in a particular embodiment of the present invention can be separated by methods known to those skilled in the art.
  • the alkali metal compound used is a halide, in particular chloride, chlorine or another halogen gas can form, which can be removed from the cell via the outlet A KK together with the solution L 4 .
  • oxygen and/or carbon dioxide can also be formed, which can also be removed.
  • the mixture of chlorine, oxygen and/or CO2 and solution L 4 can then be separated by methods known to those skilled in the art.
  • the gases chlorine, oxygen and/or CO2 have been separated from the solution L 4 , these can be separated from one another by methods known to those skilled in the art.
  • the method according to the invention protects the acid-labile solid electrolyte from corrosion without having to sacrifice alcoholate solution from the cathode compartment as a buffer solution, as is the case in the prior art.
  • the method according to the invention is thus more efficient than in WO 2008/076327 A1 described procedure in which the product solution is used for the middle chamber, which reduces the overall turnover.
  • illustration 1 shows a preferred embodiment of the invention in a three-chamber cell E ⁇ 100>.
  • This comprises a cathode chamber K K ⁇ 102>, a middle chamber K M ⁇ 103> and an anode chamber K A ⁇ 101>.
  • the anode chamber K A ⁇ 101> and the middle chamber K M ⁇ 103> are separated from one another by an anion exchange membrane extending over the entire cross section of the three-chamber cell E ⁇ 100> as a diffusion barrier D ⁇ 110>.
  • the cathode chamber K K ⁇ 102> and the middle chamber K M ⁇ 103> are separated from one another by a permeable solid electrolyte (NaSICON) ⁇ 111> that is selective for sodium ions and extends over the entire cross section of the three-chamber cell E ⁇ 100>.
  • the cathode chamber K K ⁇ 102> comprises a cathodic electrode E K ⁇ 105>, an inlet Z KK ⁇ 107> and an outlet A KK ⁇ 109>.
  • Anode chamber K A ⁇ 101> comprises an anodic electrode E A ⁇ 104> and drain A KA ⁇ 106> and is connected to middle chamber K M ⁇ 103> via connection V AM ⁇ 112>.
  • the central chamber K M ⁇ 103> also includes an inlet Z KM ⁇ 108>.
  • the connection V AM ⁇ 112> is formed outside the electrolytic cell E ⁇ 100>, in particular by a tube or hose, the material of which can be selected from rubber, metal or plastic, with which liquid from the central chamber K M ⁇ 103> in the anode chamber K A ⁇ 101> can be routed outside the outer wall W A ⁇ 117> of the three-chamber cell E ⁇ 100>.
  • connection V AM ⁇ 112> connects an outlet A KM ⁇ 118>, which breaks through the outer wall WA ⁇ 117> of the electrolysis cell E ⁇ 100> at the bottom of the central chamber K M ⁇ 103>, with an inlet Z KA ⁇ 119>, which breaks through the outer wall W A ⁇ 117> of the electrolytic cell E ⁇ 100> at the bottom of the anode chamber K A ⁇ 101>.
  • An electrolyte L 2 ⁇ 113> is conducted into the cathode chamber K K ⁇ 102> via the inlet Z KK ⁇ 107>.
  • the electrolyte L 2 ⁇ 113> comprises methanol; a methanolic solution of sodium methoxide L 2 ⁇ 113> is preferably used as the electrolyte L 2 ⁇ 113>.
  • an aqueous NaCl solution L 3 ⁇ 114> with pH 10.5 is introduced into the middle chamber KM ⁇ 103> via the inlet Z KM ⁇ 108>.
  • a voltage is applied between the cathodic electrode E K ⁇ 105> and the anodic electrode E A ⁇ 104>.
  • methanol in the electrolyte L 2 ⁇ 113> is reduced to methoxide and H 2 (CH 3 OH + e ⁇ CH 3 O ⁇ +1 ⁇ 2 H 2 ).
  • the oxidation of chloride ions to molecular chlorine takes place (Cl - ⁇ 1 ⁇ 2 Cl 2 + e-).
  • Chlorine gas Cl 2 forms hypochlorous acid and hydrochloric acid in water according to the reaction Cl 2 + H 2 O ⁇ HOCl + HCl, which reacts acidically with other water molecules.
  • the acidity damages the NaSICON solid electrolyte ⁇ 111>, but is by the invention Arrangement in the anode chamber K A ⁇ 101> and thus kept away from the NaSICON solid electrolyte F K ⁇ 111> in the electrolytic cell E ⁇ 100>. This increases its lifespan considerably.
  • the acid-sensitive NaSICON solid electrolyte ⁇ 111> is protected from the increased acidity compared to L 3 ⁇ 114> of the K A ⁇ 101> resulting in the anode chamber Solution L 4 ⁇ 116> protected.
  • connection V AM ⁇ 112> within the electrolytic cell E ⁇ 100> is designed in such a way that the diffusion barrier D ⁇ 110> does not extend over the entire cross section of the three-chamber cell E ⁇ 100>.
  • the connection V AM ⁇ 112> from the middle chamber K M ⁇ 103> to the anode chamber K A ⁇ 101> is thus formed by a gap in the diffusion barrier D ⁇ 110>.
  • diffusion barriers D ⁇ 110> with more than one gap can also be used, so that the connection V AM ⁇ 112> between central chamber K M ⁇ 103> and anode chamber K A ⁇ 101> extends through several gaps trains.
  • NM Sodium methylate
  • the electrolytic cell consisted of three chambers, as in illustration 1 shown with the anolyte being transferred through the middle compartment into the anode compartment.
  • the connection between the middle and anode chamber is made by a hose that is attached to the bottom of the electrolytic cell.
  • the anode compartment and middle compartment were separated by a 2.83 cm 2 anion exchange membrane (Tokuyama AMX, ammonium groups on polymer).
  • the cathode and middle chamber were separated by a ceramic of the NaSICON type with an area of 2.83 cm 2 .
  • the ceramic has a chemical composition of the formula Na 3.4 Zr 2.0 Si 2.4 P 0.6 O 12 .
  • the flow rate of the anolyte and that of the catholyte were each 90 mL/h and a current of 0.14 A was applied.
  • the temperature was 35°C.
  • the voltage curve (in V) over time (in hours) is in Figure 3 shown ( ⁇ ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur elektrochemischen Herstellung einer Alkalimetallalkoholatlösung. Das Verfahren wird in einer Elektrolysezelle durchgeführt, welche drei Kammern aufweist, wobei die mittlere Kammer durch einen für Kationen durchlässigen Festelektrolyten, beispielsweise NaSICON, von der Kathodenkammer und durch eine Diffusionsbarriere, beispielsweise einer für Kationen oder Anionen selektiven Membran, von der Anodenkammer abgetrennt ist.
  • 1. Hintergrund der Erfindung
  • Die elektrochemische Herstellung von Alkalimetallalkoholatlösungen ist ein wichtiger industrieller Prozess, der beispielsweise in der DE 103 60 758 A1 , der US 2006/0226022 A1 und der WO 2005/059205 A1 beschrieben ist. Das Prinzip dieser Verfahren ist eine Elektrolysezelle, in deren Anodenkammer sich die Lösung eines Alkalisalzes, beispielsweise Kochsalz oder NaOH, und in deren Kathodenkammer sich der betreffende Alkohol oder eine niedrig konzentrierte alkoholische Lösung des betreffenden Alkalialkoholates, beispielsweise Natriummethanolat oder Natriumethanolat, befinden. Die Kathodenkammer und die Anodenkammer sind durch eine das eingesetzte Alkalimetallion leitende Keramik getrennt, beispielsweise NaSICON oder dessen Analoga für Kalium oder Lithium. Bei Anlegen eines Stroms entstehen an der Anode - wenn ein Chloridsalz des Alkalimetalls eingesetzt wird - Chlor und an der Kathode Wasserstoff und Alkoholationen. Der Ladungsausgleich resultiert dadurch, dass Alkalimetallionen aus der Mittelkammer in die Kathodenkammer über die für sie selektive Keramik wandern. Der Ladungsausgleich zwischen Mittelkammer und Anodenkammer resultiert aus der Wanderung von Kationen bei Einsatz von Kationenaustauschermembranen oder der Wanderung von Anionen bei Einsatz von Anionenaustauschermembranen oder durch Wanderung beider lonenarten bei Einsatz nichtspezifischer Diffusionsbarrieren. Dadurch erhöht sich die Konzentration des Alkalialkoholats in der Kathodenkammer und es erniedrigt sich die Konzentration der Natriumionen im Anolyten. NaSICON-Festelektrolyte werden auch bei der elektrochemischen Herstellung anderer Verbindungen eingesetzt:
    WO 2014/008410 A1 beschreibt ein elektrolytisches Verfahren zur Herstellung von elementarem Titan oder Seltenen Erden. Dieses Verfahren beruht darauf, dass Titanchlorid aus TiOz und der entsprechenden Säure gebildet wird, dieses mit Natriumalkoholat zum Titaniumalkoholat und NaCl reagiert und schließlich elektrolytisch zu elementarem Titan und Natriumalkoholat umgesetzt wird.
  • WO 2007/082092 A2 und WO 2009/059315 A1 beschreiben Verfahren zur Herstellung von Biodiesel, in denen mithilfe von über NaSICON elektrolytisch hergestellten Alkoholaten zunächst Triglyceride in die entsprechenden Alkalimetalltriglyceride überführt werden und in einem zweiten Schritt mit elektrolytisch erzeugten Protonen zu Glycerin und dem jeweiligen Alkalimetallhydroxid umgesetzt werden.
  • Im Stand der Technik sind demnach Verfahren beschrieben, die in Elektrolysezellen mit einer ionendurchlässigen Schicht durchgeführt werden, wie zum Beispiel NaSiCON-Festelektrolyten. Diese Festelektrolyten weisen allerdings typischerweise den Nachteil auf, dass sie nicht gegenüber wässrigen Säuren langzeitstabil sind. Dies ist insofern problematisch, als während der Elektrolyse in der Anodenkammer der pH durch Oxidationsprozesse sinkt (zum Beispiel bei Herstellung von Halogenen durch Disproportionierung oder durch Sauerstoffbildung). Diese sauren Bedingungen greifen den NaSICON-Festelektrolyten an, so dass das Verfahren nicht großtechnisch eingesetzt werden kann. Um diesem Problem zu begegnen, wurden im Stand der Technik verschiedene Ansätze beschrieben.
  • So wurden im Stand der Technik Dreikammerzellen vorgeschlagen. Solche sind auf dem Gebiet der Elektrodialyse bekannt, zum Beispiel US 6,221,225 B1 .
  • WO 2012/048032 A2 und US 2010/0044242 A1 beschreiben beispielsweise elektrochemische Verfahren zur Herstellung von Natriumhypochlorit und ähnlicher Chlorverbindungen in einer solchen Dreikammerzelle. Die Kathodenkammer und die mittlere Kammer der Zelle werden dabei durch einen für Kationen durchlässigen Festelektrolyten wie zum Beispiel NaSICON getrennt. Um diesen vor dem sauren Anolyten zu schützen, wird der Mittelkammer beispielsweise Lösung aus der Kathodenkammer zugeführt. Die US 2010/0044242 A1 beschreibt außerdem in Abbildung 6, dass Lösung aus der mittleren Kammer mit Lösung aus der Anodenkammer außerhalb der Kammer vermischt werden kann, um Natriumhypochlorit zu erhalten.
  • Auch für die Herstellung oder Reinigung von Alkalialkoholaten wurden solche Zellen im Stand der Technik vorgeschlagen.
  • So beschreibt die US 5,389,211 A ein Verfahren zur Reinigung von Alkoholatlösungen, in denen eine Dreikammerzelle eingesetzt wird, in welcher die Kammern durch kationenselektive Festelektrolyten oder auch nichtionische Trennwände voneinander abgegrenzt sind. Die Mittelkammer wird als Pufferkammer eingesetzt, um zu verhindern, dass sich die gereinigte Alkoxid- oder Hydroxidlösung aus der Kathodenkammer mit der verunreinigten Lösung aus der Anodenkammer mischt.
  • Die WO 2008/076327 A1 beschreibt ein Verfahren zur Herstellung von Alkalimetallalkoholaten. Dabei wird eine Dreikammerzelle eingesetzt, deren Mittelkammer mit Akalimetallalkoholat gefüllt ist (siehe zum Beispiel Absätze [0008] und [0067] der WO 2008/076327 A1 ). Dadurch wird der die Mittelkammer und die Kathodenkammer abtrennende Festelektrolyt vor der in der Anodenkammer befindlichen Lösung, die bei der Elektrolyse saurer wird, geschützt. Diese Anordnung hat allerdings den Nachteil, dass es sich bei Alkalimetallalkoholatlösung um das gewünschte Produkt handelt, was aber als Pufferlösung verbraucht und kontinuierlich kontaminiert wird. Ein weiterer Nachteil des in der WO 2008/076327 A1 beschriebenen Verfahrens ist, dass die Bildung des Alkoholats in der Kathodenkammer von der Diffusionsgeschwindigkeit der Alkalimetallionen durch zwei Membranen bzw. Festelektrolyten abhängt. Dies führt wiederum zu einer Verlangsamung der Bildung des Alkoholats.
  • Die WO 2009/073062 A2 beschreibt ein ähnliches Verfahren zur Herstellung von Alkalimetallalkoholaten in einer Dreikammerelektrolysezelle. Diese umfasst eine Mittelkammer, in welcher ebenfalls Alkalimetallalkoholatlösung als Pufferlösung eingesetzt wird.
  • Aufgabe der vorliegenden Erfindung war deshalb, ein verbessertes Verfahren zur elektrolytischen Herstellung von Alkalimetallalkoholat bereitzustellen, welches einen Schutz des kationenleitenden Festelektrolyten vor Säure gewährleistet, aber die vorgenannten Nachteile nicht aufweist. Daneben soll sich das Verfahren durch einen gegenüber dem Stand der Technik sparsameren Einsatz der Edukte auszeichnen.
  • 2. Kurzbeschreibung der Erfindung
  • Es wurde nun überraschend ein Verfahren gefunden, welches die erfindungsgemäße Aufgabe löst.
  • Das erfindungsgemäße Verfahren ist eines zur Herstellung einer Lösung L1 <115> eines Alkalimetallalkoholats XOR im Alkohol ROH in einer Elektrolysezelle E <100>,
    • wobei E <100> mindestens eine Anodenkammer KA <101>, mindestens eine Kathodenkammer KK <102> und mindestens eine dazwischen liegende Mittelkammer KM <103> umfasst,
    • wobei KA <101 > eine anodische Elektrode EA <104> und einen Ablauf AKA <106> umfasst,
    • wobei KK <102> eine kathodische Elektrode EK <105>, einen Zulauf ZKK <107> und einen Ablauf AKK <109> umfasst,
    • wobei KM <103> einen Zulauf ZKM <108> umfasst, durch eine Diffusionsbarriere D <110> von KA <101 > abgetrennt ist und durch einen alkalikationenleitenden Festelektrolyten FK <111> von KK <102> abgetrennt ist,
    • wobei KA <101 > und KM <103> durch eine Verbindung VAM <112> miteinander verbunden sind, durch welche Flüssigkeit aus KM <103> in KA <101 > geleitet werden kann,
    • wobei das Verfahren die folgenden, gleichzeitig ablaufenden Schritte (a), (b) und (c) umfasst:
      1. (a) ein Lösung L2 <113> umfassend den Alkohol ROH und bevorzugt umfassend mindestens ein Alkalimetallalkoholat XOR wird durch KK <102> geleitet,
      2. (b) eine neutrale oder alkalische, wässrige Lösung L3 <114> eines Salzes S umfassend X als Kation wird durch KM <103>, dann über VAM <112>, dann durch KA <101 > geleitet,
      3. (c) zwischen EA <104> und EK <105> wird Spannung angelegt,
    • wodurch am Ablauf AKK <109> die Lösung L1 <115> erhalten wird, wobei die Konzentration von XOR in L1 <115> höher ist als in L2 <113>,
    • und wodurch am Ablauf AKA <106> eine wässrige Lösung L4 <116> von S erhalten wird, wobei die Konzentration von S in L4 <116> geringer ist als in L3 <114>,
    • wobei X ein Alkalimetallkation ist und Rein Alkylrest mit 1 bis 4 Kohlenstoffatomen ist.
    3. Abbildungen
  • Abbildung 1 zeigt das erfindungsgemäße Verfahren anhand einer Dreikammerzelle E <100> umfassend eine Kathodenkammer KK <102>, eine Anodenkammer KA <101 > und eine dazwischen liegende Mittelkammer KM <103>. Die drei Kammern werden von einer Außenwand <117> der Dreikammerzelle E <100> begrenzt. Die Kathodenkammer KK <102> ist außerdem durch einen für Natriumionen selektiv permeablen NaSICON-Festelektrolyten FK <111 > von der Mittelkammer KM <103> abgetrennt. Die Mittelkammer KM <103> ist zusätzlich wiederum durch eine Diffusionsbarriere D <110> von der Anodenkammer KA <101 > abgetrennt. Der NaSICON-Festelektrolyt FK <111> und die Diffusionsbarriere D <110> erstrecken sich über die gesamte Tiefe und Höhe der Dreikammerzelle E <100>.
  • Durch die Kathodenkammer KK <102> wird eine Lösung von Natriummethanolat in Methanol L2 <113> geleitet. Eine wässrige Lösung von Natriumchlorid L3 <114> mit pH 10.5 wird über den Zulauf ZKM <108> gleichgerichtet mit der Schwerkraft in die Mittelkammer KM <103> gegeben. Durch die Verbindung VAM <112>, die zwischen einem Ablauf AKM <118> der Mittelkammer KM <103> und einem Zulauf ZKA <119> der Anodenkammer KA <101 > ausgebildet ist, ist die Mittelkammer KM <103> mit der Anodenkammer KA <101 > verbunden. Natriumchloridlösung L3 <114> wird durch diese Verbindung VAM <112> von der Mittelkammer KM <103> in die Anodenkammer KA <101 > geleitet. Beim Anlegen einer Spannung wird in der Kathodenkammer KK <102> Methanol zu Methanolat und H2 reduziert. Natriumionen diffundieren dabei von der Mittelkammer KM <103> durch den NaSICON-Festelektrolyten FK <111> in die Kathodenkammer KK <102>. Insgesamt erhöht sich dadurch die Konzentration von Natriummethanolat in der Kathodenkammer KK <102>, wodurch eine methanolische Lösung von Natriummethanolat L1 <115> erhalten wird, deren Konzentration von Natriummethanolat gegenüber L2 <113> erhöht ist. In der Anodenkammer KA <101 > werden Chloridionen aus L3 <114> zu Clz oxidiert.
  • Cl2 reagiert in wässriger Lösung sauer. Aufgrund der Geometrie der Dreikammerzelle E <100> und der Führung der wässrigen Lösung L3 <114> wird der säureempfindliche NaSICON-Festelektrolyt <111 > vor der gegenüber L3 <114> erhöhten Acidität der in der Anodenkammer KA <101 > resultierenden Lösung L4 <116> geschützt.
  • Abbildung 2 zeigt eine Ausführungsform des erfindungsgemäßen Verfahrens, die der in Abbildung 1 dargestellten entspricht. Der einzige Unterschied ist dabei, dass die Verbindung VAM <112> von der Mittelkammer KM <103> in die Anodenkammer KA <101 > durch eine Perforation in der Diffusionsbarriere D <110> gebildet wird.
  • Abbildung 3 zeigt ein Diagramm des Spannungsverlauf der Elektrolyse in einer erfindungsgemäßen Dreikammerzelle im Vergleich zu einer Zweikammerzelle. Die Messpunkte des Vergleichsbeispiels sind mit Dreiecken wiedergegeben (▲), jene des erfindungsgemäßen Beispiels mit Punkten (●). Die x-Achse gibt die Zeit in Stunden wieder, während die y-Achse die gemessene Spannung in Volt wiedergibt. Der Vergleich zeigt, dass mit der erfindungsgemäßen Zelle ein konstanter Spannungsverlauf erhalten wird, während bei der Zweikammerzelle aufgrund der Zerstörung des Festelektrolyten die Spannung schnell ansteigt.
  • 4. Detaillierte Beschreibung der Erfindung 4.1 Elektrolysezelle E
  • Das erfindungsgemäße Verfahren wird in einer Elektrolysezelle E, die mindestens eine Anodenkammer KA , mindestens eine Kathodenkammer KK und mindestens eine dazwischen liegende Mittelkammer KM umfasst, durchgeführt. Dies umfasst auch Elektrolysezellen E, welche mehr als eine Anodenkammer KA und/oder Kathodenkammer KK und/oder Mittelkammer KM aufweisen. Solche Elektrolysezellen, in denen diese Kammern modulartig aneinandergefügt werden, sind beispielsweise in der DD 258 143 A3 , US 2006/0226022 A1 beschrieben.
  • Die Anodenkammer KA umfasst eine anodische Elektrode EA . Als solche anodische Elektrode EA kommt jede dem Fachmann geläufige Elektrode in Frage, die unter den Bedingungen des erfindungsgemäßen Verfahrens stabil ist. Solche sind insbesondere in WO 2014/008410 A1 , Absatz [024] oder DE 10360758 A1 , Absatz [031] beschrieben. Diese Elektrode EA kann aus einer Schicht bestehen oder aus mehreren planen, zueinander parallelen Schichten bestehen, die jeweils perforiert oder expandiert sein können. Die anodische Elektrode EA umfasst insbesondere ein Material, welches ausgewählt ist aus der Gruppe bestehend aus Rutheniumoxid, Iridiumoxid, Nickel, Kobalt, Nickelwolframat, Nickeltitanat, Edelmetalle wie insbesondere Platin, welches auf einem Träger wie Titan oder Kovar ® (einer Eisen/Nickel/Kobalt-Legierung, in denen die einzelnen Anteile bevorzugt wie folgt sind: 54 Massen-% Eisen, 29 Massen-% Nickel, 17 Massen-% Cobalt) geträgert ist. Weitere mögliche Anodenmaterialien sind insbesondere Edelstahl, Blei, Graphit, Wolframcarbid, Titandiborid. Bevorzugt umfasst EA eine mit Rutheniumoxid/Iridiumoxid beschichtete Titananode (RuO2 + IrO2 / Ti).
  • Die Kathodenkammer KK umfasst eine kathodische Elektrode EK . Als solche kathodische Elektrode EK kommt jede dem Fachmann geläufige Elektrode in Frage, die unter den Bedingungen stabil ist. Solche sind insbesondere in WO 2014/008410 A1 , Absatz [025] oder DE 10360758 A1 , Absatz [030] beschrieben. Diese Elektrode EK kann aus der Gruppe bestehend aus Maschenwolle, dreidimensionale Matrixstruktur oder als "Kugeln" ausgewählt sein. Die kathodische Elektrode EK umfasst insbesondere ein Material, welches ausgewählt ist aus der Gruppe bestehend aus Stahl, Nickel, Kupfer, Platin, platinierte Metalle, Palladium, auf Kohle geträgertes Palladium, Titan. Bevorzugt umfasst EK Nickel.
  • Die mindestens eine Mittelkammer KM befindet sich zwischen der Anodenkammer KA und der Kathodenkammer KK .
  • Die Elektrolysezelle E weist üblicherweise eine Außenwand WA auf. Die Außenwand WA ist insbesondere aus einem Material, welches aus der Gruppe bestehend aus Stahl, bevorzugt gummierter Stahl, Kunststoff, der insbesondere aus Telene ® (duroplastisches Polydicyclopentadien), PVC (Polyvinylchlorid), PVC-C (nachchloriertes Polyvinylchlorid), PVDF (Polyvinylidenfluorid) ausgewählt ist, ausgewählt ist. WA kann insbesondere für Zuläufe und Abläufe durchbrochen sein. Innerhalb von WA liegen dann die mindestens eine Anodenkammer KA , die mindestens eine Kathodenkammer KK und die mindestens eine dazwischen liegende Mittelkammer KM .
  • KM ist durch eine Diffusionsbarriere D von KA abgetrennt und durch einen alkalikationenleitenden Festelektrolyten FK von KK abgetrennt.
  • Als Diffusionsbarriere D kann jedes Material genutzt werden, welches unter den Bedingungen des erfindungsgemäßen Verfahrens stabil ist und den Übergang von Protonen von der in der Anodenkammer KA befindliche Flüssigkeit in die Mittelkammer KM verhindert oder verlangsamt.
  • Als Diffusionsbarriere D wird insbesondere eine nicht ionenspezifische Trennwand oder eine für spezifische Ionen durchlässige Membran verwendet. Bevorzugt handelt es sich bei der Diffusionsbarriere D um eine für spezifische Ionen durchlässige Membran.
  • Das Material für die nichtionische Trennwand ist insbesondere aus der Gruppe bestehend aus Gewebe, wobei es sich insbesondere um textiles Gewebe oder Metallgewebe handelt, Glas, wobei es sich insbesondere um gesintertes Glas oder Glasfritten handelt, Keramik, insbesondere keramische Fritten, Membrandiaphragmas ausgewählt.
  • Handelt es sich bei der Diffusionsbarriere D um eine "für spezifische Ionen durchlässige Membran", so bedeutet dies erfindungsgemäß, dass die jeweilige Membran die Diffusion bestimmter Ionen durch sie hindurch gegenüber anderen begünstigt. Insbesondere sind damit Membranen gemeint, die die Diffusion durch sie hindurch von Ionen einer bestimmten Ladungsart gegenüber entgegengesetzt geladenen Ionen begünstigt. Noch bevorzugter begünstigen für spezifische Ionen durchlässige Membranen außerdem die Diffusion bestimmter Ionen mit einer Ladungsart gegenüber anderen Ionen derselben Ladungsart durch sie hindurch.
  • Bevorzugt handelt es sich demnach bei der Diffusionsbarriere D um eine anionenleitende Membran oder um eine kationenleitende Membran.
  • Anionenleitende Membranen sind erfindungsgemäß solche, die selektiv Anionen, bevorzugt selektiv bestimmte Anionen leiten. In anderen Worten begünstigen sie die Diffusion von Anionen durch sie hindurch gegenüber der von Kationen, insbesondere gegenüber Protonen, noch bevorzugter begünstigen sie zusätzlich die Diffusion von bestimmten Anionen durch sie hindurch gegenüber der Diffusion anderer Anionen durch sie hindurch.
  • Kationenleitende Membranen sind erfindungsgemäß solche, die selektiv Kationen, bevorzugt selektiv bestimmte Kationen leiten. In anderen Worten begünstigen sie die Diffusion von Kationen durch sie hindurch gegenüber der von Anionen, noch bevorzugter begünstigen sie die Diffusion von bestimmten Kationen, durch sie hindurch gegenüber der Diffusion anderer Kationen durch sie hindurch, noch viel mehr bevorzugter von Kationen, bei denen es sich nicht um Protonen handelt, noch bevorzugter um Natriumkationen handelt, gegenüber Protonen.
  • "Begünstigen die Diffusion bestimmter Ionen X gegenüber der Diffusion anderer Ionen Y" bedeutet insbesondere, dass der Diffusionskoeffizient (Einheit m2/s) der lonenart X bei einer gegebenen Temperatur für die betreffende Membran um den Faktor 10, bevorzugt 100, bevorzugt 1000 höher ist als der Diffusionskoeffizient der lonenart Y für die betreffende Membran.
  • Bevorzugter handelt es sich bei der Diffusionsbarriere D um eine anionenleitende Membran, denn diese verhindert besonders gut die Diffusion von Protonen aus der Anodenkammer KA in die Mittelkammer KM .
  • Als anionenleitende Membran wird insbesondere eine solche eingesetzt, die für die vom Salz S umfassten Anionen selektiv sind. Solche Membranen sind dem Fachmann bekannt und können von ihm eingesetzt werden.
  • Salz S ist bevorzugt ein Halogenid, Sulfat, Sulfit, Nitrat, Hydrogencarbonat oder Carbonat von X, noch bevorzugter ein Halogenid.
  • Halogenide sind Fluoride, Chloride, Bromide, Jodide. Das bevorzugteste Halogenid ist Chlorid.
  • Bevorzugt wird als anionenleitende Membran eine für Halogenide, bevorzugter Chlorid, selektive Membran eingesetzt.
  • Anionenleitende Membranen sind beispielsweise beschrieben von M.A. Hickner, A.M. Herring, E.B. Coughlin, Journal of Polymer Science, Part B: Polymer Physics 2013, 51, 1727-1735 und C.G. Arges, V. Ramani, P.N. Pintauro, Electrochemical Society Interface 2010, 19, 31-35, WO 2007/048712 A2 sowie auf Seite 181 des Lehrbuchs von Volkmar M. Schmidt Elektrochemische Verfahrenstechnik: Grundlagen, Reaktionstechnik, Prozessoptimierung, 1. Auflage (8. Oktober 2003).
  • Noch bevorzugter werden demnach als anionenleitende Membran organische Polymere, welche insbesondere aus Polyethylen, Polybenzimidazolen, Polyetherketonen, Polystyrol, Polypropylen oder fluorierten Membranen wie Polyperfluorethylen, bevorzugt Polystyrol, ausgewählt sind, eingesetzt, wobei diese kovalent gebunden funktionelle Gruppen ausgewählt aus -NH3 +, -NRH2 +, -NR3 +, =NR+;-PR3 +, wobei es sich bei R um Alkylgruppen mit bevorzugt 1 bis 20 Kohlenstoffatomen handelt, oder andere kationische Gruppen aufweisen. Bevorzugt weisen sie kovalent gebundene funktionelle Gruppen, ausgewählt aus -NH3 +, -NRH2 +, -NR3 +, bevorzugter ausgewählt aus -NH3 +, -NR3 +, noch bevorzugter-NR3 +, auf.
  • Wenn die Diffusionsbarriere D eine kationenleitende Membran ist, handelt es sich insbesondere um eine Membran, die für die vom Salz S umfassten Kationen selektiv sind. Noch bevorzugter ist die Diffusionsbarriere D eine alkalikationenleitende Membran, noch mehr bevorzugter eine kalium-, und/oder natriumionenleitende Membran, am bevorzugtesten eine natriumionenleitende Membran.
  • Kationenleitende Membranen sind beispielsweise beschrieben auf Seite 181 des Lehrbuchs von Volkmar M. Schmidt Elektrochemische Verfahrenstechnik: Grundlagen, Reaktionstechnik, Prozessoptimierung, 1. Auflage (8. Oktober 2003).
  • Noch bevorzugter werden demnach als kationenleitende Membran organische Polymere, welche insbesondere aus Polyethylen, Polybenzimidazolen, Polyetherketonen, Polystyrol, Polypropylen oder fluorierten Membranen wie Polyperfluorethylen, bevorzugt Polystyrol, Polyperfluorethylen, ausgewählt sind, eingesetzt, wobei diese kovalent gebunden funktionelle Gruppen ausgewählt aus -SO3-, -COO-, -PO3 2-, -PO2H- , bevorzugt -SO3 -, (beschrieben in DE 10 2010 062 804 A1 , US4,831,146 ) tragen.
  • Dies kann zum Beispiel ein sulfoniertes Polyperfluorethylen (Nafion ® mit CAS-Nummer: 31175-20-9) sein. Diese sind dem Fachmann beispielsweise aus der WO 2008/076327 A1 , Absatz [058], US 2010/0044242 A1 , Absatz [0042] oder der US 2016/ 0204459 A1 bekannt und unter dem Handelsnamen Nafion ®, Aciplex ® F, Flemion ®, Neosepta ®, Ultrex ®, PC-SK ® erwerblich. Neosepta®-Membranen sind beispielsweise beschrieben von S.A. Mareev, D.Yu. Butylskii, N.D. Pismenskaya, C. Larchet, L. Dammak, V.V. Nikonenko, Journal of Membrane Science 2018, 563, 768-776.
  • Wird eine kationenleitende Membran als Diffusionsbarriere D eingesetzt, kann dies beispielsweise ein mit Sulfonsäuregruppen funktionalisiertes Polymer, insbesondere der folgenden Formel P NAFION, wobei n und m unabhängig voneinander eine ganze Zahl von 1 bis 106, bevorzugter eine ganze Zahl von 10 bis 105, noch bevorzugter eine ganze Zahl von 102 bis 104 ist, sein.
    Figure imgb0001
  • Als alkalikationenleitender Festelektrolyt FK kommt jeder Festelektrolyt in Frage, welcher Kationen, insbesondere Alkalikationen, noch bevorzugter Natriumkationen, von der Mittelkammer KM in die Kathodenkammer KK transportieren kann. Solche Festelektrolyten sind dem Fachmann bekannt und beispielsweise in der DE 10 2015 013 155 A1 , in der WO 2012/048032 A2 , Absätze [0035], [0039], [0040], in der US 2010/0044242 A1 , Absätze [0040], [0041], in der DE 10360758 A1 , Absätze [014] bis [025] beschrieben. Sie werden kommerziell unter dem Namen NaSICON, LiSICON, KSICON vertrieben. Ein natriumionenleitender Festelektrolyt FK ist bevorzugt, wobei dieser noch bevorzugter eine NaSICON-Struktur aufweist. Erfindungsgemäß einsetzbare NaSICON-Strukturen sind außerdem beispielsweise beschrieben von N. Anantharamulu, K. Koteswara Rao, G. Rambabu, B. Vijaya Kumar, Velchuri Radha, M. Vithal, J Mater Sei 2011, 46, 2821-2837.
  • NaSICON hat bevorzugt eine Struktur der Formel MI1+2w+x-y+z MII w MIII x ZrIV 2-w-x-y MV y (SiO4)z (PO4)3-z.
  • MI ist ausgewählt aus Na+, Li+, bevorzugt Na+.
  • M" ist ein zweiwertiges Metallkation, bevorzugt ausgewählt aus Mg2+, Ca2+, Sr2+, Ba2+, Co2+, Ni2+, bevorzugter ausgewählt aus Co2+, Ni2+.
  • MIII ist ein dreiwertiges Metallkation, bevorzugt ausgewählt aus Al3+, Ga3+, Sc3+, La3+, Y3+, Gd3+, Sm3+, Lu3+, Fe3+, Cr3+, bevorzugter ausgewählt aus Sc3+, La3+, Y3+, Gd3+, Sm3+, besonders bevorzugt ausgewählt aus Sc3+, Y3+, La3+.
  • MV ist ein fünfwertiges Metallkation, bevorzugt ausgewählt aus V5+, Nb5+, Ta5+.
  • Die römischen Indizes I, II, III, IV, V geben die Oxidationszahlen an, in der die jeweiligen Metallkationen vorliegen.
    • w, x, y, z sind reelle Zahlen, wobei gilt, dass 0 ≤ x < 2, 0 ≤ y < 2, 0 ≤ w < 2, 0 ≤ z < 3,
    • und wobei w, x, y, z so gewählt werden, dass gilt 1 + 2w + x - y + z ≥ 0 und 2 - w - x - y ≥ 0.
  • NaSICON hat erfindungsgemäß noch bevorzugter eine Struktur der Formel Na(1 + v)Zr2SivP(3 - v)O12, wobei v eine reelle Zahl ist, für die 0 ≤ v ≤ 3 gilt. Am bevorzugtesten gilt v = 2.4
  • Die Kathodenkammer KK umfasst auch einen Zulauf ZKK und einen Ablauf AKK , der es ermöglicht, in die Kathodenkammer KK Flüssigkeit, wie zum Beispiel die Lösung L2 , zuzufügen und darin befindliche Flüssigkeit, wie zum Beispiel die Lösung L1 , zu entfernen. Der Zulauf ZKK und der Ablauf AKK sind dabei so an der Kathodenkammer KK angebracht, dass die Lösung beim Durchströmen der Kathodenkammer KK die kathodische Elektrode EK kontaktiert. Dies ist die Voraussetzung dafür, dass bei der Durchführung des erfindungsgemäßen Verfahrens am Ablauf AKK die Lösung L1 erhalten wird, wenn die Lösung L2 eines Alkalialkoholats XOR im Alkohol ROH durch KK geleitet wird.
  • Die Anodenkammer KA umfasst auch einen Ablauf AKA , der es ermöglicht, in der Anodenkammer KA befindliche Flüssigkeit, beispielsweise die wässrige Lösung L4 , zu entfernen. Daneben umfasst die Mittelkammer KM einen Zulauf ZKM , während KA und KM durch eine Verbindung VAM miteinander verbunden sind. Dadurch kann zu KM eine Lösung L3 gegeben und diese dann durch KM geleitet werden, und über VAM in die Anodenkammer KA , dann durch diese KA geleitet werden. VAM und der Ablauf AKA sind dabei so an der Anodenkammer KA angebracht, dass die Lösung L3 beim Durchströmen der Anodenkammer KA die anodische Elektrode EA kontaktiert. Dies ist die Voraussetzung dafür, dass bei der Durchführung des erfindungsgemäßen Verfahrens am Ablauf AKA die wässrige Lösung L4 erhalten wird, wenn die Lösung L3 zuerst durch KM , dann VAM , dann KA geleitet wird.
  • Zuläufe ZKK , ZKM , ZKA und Abläufe AKK , AKA , AKM können nach dem Fachmann bekannten Verfahren an der Elektrolysezelle angebracht werden.
  • Die Verbindung VAM kann innerhalb der Elektrolysezelle E und/oder außerhalb der Elektrolysezelle E ausgebildet sein.
  • Ist die Verbindung VAM innerhalb der Elektrolysezelle E ausgebildet, wird sie bevorzugt durch mindestens eine Perforation in der Diffusionsbarriere D gebildet.
  • Ist die Verbindung VAM außerhalb der Elektrolysezelle E ausgebildet, wird sie bevorzugt durch eine außerhalb der Elektrolysezelle E verlaufende Verbindung von KM und KA gebildet, insbesondere dadurch, dass in der Mittelkammer KM ein Ablauf AKM durch die Außenwand WA , bevorzugt am Boden der Mittelkammer KM , wobei noch bevorzugter der Zulauf ZKM an der Oberseite der Mittelkammer KM ist, gebildet wird, und in der Anodenkammer KA ein Zulauf ZKA durch die Außenwand WA , bevorzugt am Boden der Anodenkammer KA , gebildet wird, und diese durch eine Leitung, beispielsweise ein Rohr oder ein Schlauch, der bevorzugt ein Material ausgewählt aus Gummi, Kunststoff umfasst, verbunden sind. Der Ablauf AKA ist dann noch bevorzugter an der Oberseite der Anodenkammer KA .
  • "Ablauf AKM am Boden der Mittelkammer KM " bedeutet, dass der Ablauf AKM so an der Elektrolysezelle E angebracht ist, dass die Lösung L3 die Mittelkammer KM gleichgerichtet mit der Schwerkraft verlässt.
  • "Zulauf ZKA am Boden der Anodenkammer KA " bedeutet, dass der Zulauf ZKA so an der Elektrolysezelle E angebracht ist, dass die Lösung L3 in die Anodenkammer KA entgegen der Schwerkraft eintritt.
  • "Zulauf ZKM an der Oberseite der Mittelkammer KM " bedeutet, dass der Zulauf ZKM so an der Elektrolysezelle E angebracht ist, dass die Lösung L3 in die Mittelkammer KM gleichgerichtet mit der Schwerkraft eintritt.
  • "Ablauf AKA an der Oberseite der Anodenkammer KA " bedeutet, dass der Ablauf AKA so an der Elektrolysezelle E angebracht ist, dass die Lösung L4 in die Anodenkammer KA entgegen der Schwerkraft verlässt.
  • Diese Ausführungsform ist dabei besonders vorteilhaft und deshalb bevorzugt, wenn der Ablauf AKM durch die Außenwand WA am Boden der Mittelkammer KM , und der Zulauf ZKA durch die Außenwand WA am Boden der Anodenkammer KA , gebildet wird. Durch diese Anordnung ist es besonders einfach möglich in der Mittelkammer KM entstehende Gase durch den Gasauslass G von L3 abzutrennen, während in der Anodenkammer KA gebildete Gase mit L4 die Anodenkammer KA verlassen und dann weiter abgetrennt werden können.
  • Demnach ist die Fließrichtung von L3 in KM der Fließrichtung von L3 in KA entgegengerichtet oder gleichgerichtet, bevorzugt entgegengerichtet, je nachdem wie die Verbindung VAM an der Elektrolysezelle E angebracht ist. Bevorzugt ist die Fließrichtung von L3 in KM der Schwerkraft gleichgerichtet.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird Verbindung VAM zwischen Mittelkammer KM und Anodenkammer KA so angeordnet, dass mindestens ein Teil der wässrigen Lösung L3 , bevorzugter die gesamte wässrige Lösung L3 , die Mittelkammer KM und die Anodenkammer KA vollständig durchströmt.
  • Wenn die Verbindung VAM <112> außerhalb der Elektrolysezelle E <100> ausgebildet ist, kann dies insbesondere dadurch gewährleistet werden, dass ZKM <108> und AKM <118> an gegenüberliegenden Seiten der Außenwand WA <117> der Mittelkammer KM <103> angeordnet sind (also ZKM <108> am Boden und AKM <118> an der Oberseite der Elektrolysezelle E <100> oder umgekehrt) und ZKA <119> und AKA <106> an gegenüberliegenden Seiten der Außenwand WA <117> der Anodenkammer KA <101 > angeordnet ist (also ZKA <119> am Boden und AKA <106> an der Oberseite der Elektrolysezelle E <100> oder umgekehrt), wie es insbesondere in Abbildung 1 gezeigt ist. Durch diese Geometrie muss L3 <114> die beiden Kammern KM <103> und KA <101 > durchströmen. Dabei können ZKA <119> und ZKM <108> an derselben Seite der Elektrolysezelle E <100> ausgebildet sein, wobei dann automatisch auch AKM <118> und AKA <106> an derselben Seite der Elektrolysezelle E <100> ausgebildet sind. Alternativ können wie in Abbildung 1 gezeigt, ZKA <119> und ZKM <108> an gegenüberliegenden Seiten der Elektrolysezelle E <100> ausgebildet sein, wobei dann automatisch auch AKM <118> und AKA <106> an gegenüberliegenden Seiten der Elektrolysezelle E <100> ausgebildet sind.
  • Wenn die Verbindung VAM <112> innerhalb der Elektrolysezelle E <100> ausgebildet ist, kann dies insbesondere dadurch gewährleistet werden, dass eine Seite ("Seite A") der Elektrolysezelle E <100>, bei der es sich um die Oberseite oder den Boden der Elektrolysezelle E <100> handelt, bevorzugt wie in Abbildung 2 gezeigt um die Oberseite handelt, den Zulauf ZKM <108> und den Ablauf AKA <106> umfasst und die Diffusionsbarriere D <110> ausgehend von dieser Seite A sich in die Elektrolysezelle <100> erstreckt, aber nicht ganz bis zur der der Seite A gegenüberliegenden Seite ("Seite B") der Elektrolysezelle E <100>, bei der es dann sich um den Boden bzw. die Oberseite der Elektrolysezelle E <100> handelt, reicht und dabei 50 % oder mehr der Höhe der Dreikammerzelle E <100>, bevorzugter 60 % bis 99 % der Höhe der Dreikammerzelle E <100>, noch bevorzugter 70 % bis 95 % der Höhe der Dreikammerzelle E <100>, noch mehr bevorzugter 80 % bis 90 % der Höhe der Dreikammerzelle E <100>, noch viel mehr bevorzugter 85 % der Höhe der Dreikammerzelle E <100> durchspannt. Dadurch dass die Diffusionsbarriere D <110> die Seite B der Dreikammerzelle E <100> nicht berührt, entsteht so ein Spalt zwischen Diffusionsbarriere D <110> und der Außenwand WA der Seite B der Dreikammerzelle E <100>. Der Spalt ist dann die Verbindung VAM <112>. Durch diese Geometrie muss L3 die beiden Kammern KM und KA vollständig durchströmen.
  • Diese Ausführungsformen gewährleisten am besten, dass am säureempfindlichen Festelektrolyten die wässrige Salzlösung L3 vorbeiströmt, bevor diese mit der anodischen Elektrode EA <104> in Kontakt kommt, wodurch es zur Bildung von Säuren kommt.
  • "Boden der Elektrolysezelle E" ist erfindungsgemäß die Seite der Elektrolysezelle E, durch die eine Lösung (z.B. L3 <114> bei AKM <118> in Abbildung 1) gleichgerichtet mit der Schwerkraft aus der Elektrolysezelle E austritt bzw. die Seite der Elektrolysezelle E, durch die eine Lösung (z.B. L2 <113> bei ZKK <107> in Abbildungen 1 und 2 und L3 <114> bei AKA <119> in Abbildung 1) der Elektrolysezelle E entgegen der Schwerkraft zugeführt wird.
  • "Oberseite der Elektrolysezelle E" ist erfindungsgemäß die Seite der Elektrolysezelle E, durch die eine Lösung (z.B. L4 <116> bei AKA <106> und L1 <115> bei AKK <109> in Abbildungen 1 und 2) entgegen der Schwerkraft aus der Elektrolysezelle E austritt bzw. die Seite der Elektrolysezelle E, durch die eine Lösung (z.B. L3 <114> bei ZKM <108> in Abbildungen 1 und 2) der Elektrolysezelle E gleichgerichtet mit der Schwerkraft zugeführt wird.
  • 4.2 Erfindungsgemäße Verfahrensschritte
  • Das erfindungsgemäße Verfahren umfasst die folgenden Schritte (a), (b) und (c), welche gleichzeitig durchgeführt werden.
  • Im Schritt (a) wird eine Lösung L2 umfassend den Alkohol ROH, bevorzugt umfassend ein Alkalialkoholat XOR im Alkohol ROH, durch KK geleitet. X ist ein Alkalimetallkation und Rein Alkylrest mit 1 bis 4 Kohlenstoffatomen.
  • Bevorzugt ist X aus der Gruppe bestehend aus Li+, K+, Na+, bevorzugter aus der Gruppe bestehend aus K+, Na+ ausgewählt. Am bevorzugtesten ist X = Na+.
  • R ist bevorzugt aus der Gruppe bestehend aus n-Propyl, iso-Propyl, Ethyl, Methyl ausgewählt, bevorzugter aus der Gruppe bestehend aus Ethyl, Methyl ausgewählt. Am bevorzugtesten ist R Methyl.
  • Die Lösung L2 ist bevorzugt frei von Wasser. "Frei von Wasser" bedeutet erfindungsgemäß, dass das Gewicht des Wassers in der Lösung L2 bezogen auf das Gewichts des Alkohols ROH in der Lösung L2 (Massenverhältnis) ≤ 1 : 10, bevorzugter ≤ 1 : 20, noch bevorzugter ≤ 1 : 100, noch bevorzugter ≤ 0.5 : 100 ist.
  • Umfasst die Lösung L2 XOR, so liegt der Massenanteil von XOR in der Lösung L2 , bezogen auf die gesamte Lösung L2 , insbesondere bei > 0 bis 30 Gew.-%, bevorzugt bei 5 bis 20 Gew.-%, noch bevorzugter bei 10 bis 20 Gew.-%, noch bevorzugter bei 10 bis 15 Gew.-%, am bevorzugtesten bei 13 bis 14 Gew.-%, am allerbevorzugtesten bei 13 Gew.-%.
  • Umfasst die Lösung L2 XOR, so liegt in der Lösung L2 insbesondere das Massenverhältnis von XOR zu Alkohol ROH im Bereich 1 : 100 bis 1 : 5, bevorzugter im Bereich 1 : 25 bis 3 : 20, noch bevorzugter im Bereich 1 : 12 bis 1 : 8, noch bevorzugter bei 1 : 10.
  • In Schritt (b) wird eine neutrale oder alkalische wässrige Lösung L3 eines Salzes S umfassend X als Kation durch KM , dann über VAM , dann durch KA geleitet.
  • Das Salz S ist oben beschrieben. Der pH der wässrigen Lösung L3 ist dabei ≥ 7.0, bevorzugt im Bereich 7 bis 12, bevorzugter im Bereich 8 bis 11, noch bevorzugter 10 bis 11, am bevorzugtesten bei 10.5.
  • Der Massenanteil des Salzes S in der Lösung L3 liegt dabei bevorzugt im Bereich > 0 bis 20 Gew.-%, bevorzugt 1 bis 20 Gew.-%, bevorzugter bei 5 bis 20 Gew.-%, noch bevorzugter bei 10 bis 20 Gew.-%, am bevorzugtesten bei 20 Gew.-%, bezogen auf die gesamte Lösung L3 .
  • Im Schritt (c) wird dann eine Spannung zwischen EA und EK angelegt.
  • Dadurch kommt es zu einem Stromtransport von der Ladungsquelle zur Anode, zu einem Ladungstransport über Ionen zur Kathode und schließlich zu einem Stromtransport zurück zur Ladungsquelle. Die Ladungsquelle ist dem Fachmann bekannt und ist typischerweise ein Gleichrichter, der Wechselstrom in Gleichstrom umwandelt und über Spannungsumwandler bestimmte Spannungen erzeugen kann.
  • Dies führt wiederum zu folgenden Konsequenzen:
    • am Ablauf AKK <109> wird die Lösung L1 <115> erhalten, wobei die Konzentration von XOR in L1 <115> höher ist als in L2 <113>,
    • am Ablauf AKA <106> wird eine wässrige Lösung L4 <116> von S erhalten, wobei die Konzentration von S in L4 <116> geringer ist als in L3 <114>.
  • Im erfindungsgemäßen Verfahren wird insbesondere eine solche Spannung angelegt, dass so ein Strom fließt, so dass die Stromdichte (= Verhältnis des Stroms, der zur Elektrolysezelle fließt, zur Fläche des Festelektrolyten, die den in der Mittelkammer KM befindlichen Anolyten kontaktiert) im Bereich von 10 bis 8000 A/ m2 liegt, bevorzugter im Bereich von 100 bis 2000 A/ m2 liegt, noch bevorzugter im Bereich von 300 bis 800 A/ m2, noch bevorzugter bei 494 A/ m2 liegt. Dies kann vom Fachmann standardmäßig bestimmt werden. Die Fläche des Festelektrolyten, die den in der Mittelkammer KM befindlichen Anolyten kontaktiert beträgt insbesondere 0.00001 bis 10 m2, bevorzugt 0.0001 bis 2.5 m2, bevorzugter 0.0002 bis 0.15 m2, noch bevorzugter 2.83 cm2.
  • Es versteht sich von selbst, dass im erfindungsgemäßen Verfahren Schritt (c) dann durchgeführt wird, wenn beide Kammern KM und KA mindestens teilweise mit L3 beladen sind und KK mit L2 mindestens teilweise beladen ist.
  • Die Tatsache, dass in Schritt (c) ein Ladungstransport zwischen EA und EK stattfidnet, impliziert, dass KK , KM und KA gleichzeitig mit L2 bzw. L3 so beladen sind, dass sie die Elektroden EA und EK soweit bedecken, dass der Stromkreislauf geschlossen ist.
  • Das ist insbesondere dann der Fall, wenn kontinuierlich ein Flüssigkeitsstrom von L3 durch KM , VAM und KA und ein Flüssigkeitsstrom von L2 durch KK geleitet wird und der Flüssigkeitsstrom von L3 die Elektrode EA und der Flüssigkeitsstrom von L2 die Elektrode EK mindestens teilweise, bevorzugt vollständig bedeckt.
  • In einer weiteren bevorzugten Ausführungsform wird das erfindungsgemäße Verfahren kontinuierlich durchgeführt, also Schritt (a) und Schritt (b) kontinuierlich durchgeführt und dabei gemäß Schritt (c) Spannung angelegt.
  • Nach Durchführung des Schrittes (c) wird am Ablauf AKK die Lösung L1 erhalten, wobei die Konzentration von XOR in L1 höher ist als in L2 . Wenn L2 schon XOR umfasste, ist die Konzentration von XOR in L1 bevorzugt um das 1.01 bis 2.2-fache, bevorzugter um das 1.04 bis 1.8-fache, noch bevorzugter um das 1.077 bis 1.4-fache, noch mehr bevorzugter um das 1.077 bis 1.08-fache höher als in L2 , am bevorzugtesten um das 1.077-fache höher als in L2 , wobei noch bevorzugter dabei der Massenanteil von XOR in L1 und in L2 im Bereich 10 bis 20 Gew.-%, noch mehr bevorzugter 13 bis 14 Gew.-% liegt.
  • Am Ablauf AKA wird eine wässrige Lösung L4 von S erhalten wird, wobei die Konzentration von S in L4 geringer ist als in L3 .
  • Die Konzentration des Kations X in der wässrigen Lösung L3 liegt bevorzugt im Bereich 3.5 bis 5 mol/l, bevorzugter 4 mol/l. Die Konzentration des Kations X in der wässrigen Lösung L4 ist bevorzugter 0.5 mol/l geringer als jene der jeweils eingesetzten wässrigen Lösung L3 .
  • Insbesondere wird das erfindungsgemäße Verfahren bei einer Temperatur von 20 °C bis 70 °C, bevorzugt 35 °C bis 65 °C, bevorzugter 35 °C bis 60 °C, noch bevorzugter 35 °C bis 50 °C und einem Druck von 0.5 bar bis 1.5 bar, bevorzugt 0.9 bar bis 1.1 bar, bevorzugter 1.0 bar durchgeführt.
  • Bei der Durchführung des erfindungsgemäßen Verfahrens entsteht in der in der Kathodenkammer KK typischerweise Wasserstoff, der über den Ablauf AKK aus der Zelle zusammen mit der Lösung L1 abgeführt werden kann. Die Mischung aus Wasserstoff und Lösung L1 kann dann in einer besonderen Ausführungsform der vorliegenden Erfindung nach dem Fachmann bekannten Verfahren aufgetrennt werden. In der Anodenkammer KA , wenn es sich bei der eingesetzten Alkalimetallverbindung um ein Halogenid, insbesondere Chlorid handelt, kann Chlor oder ein anderes Halogengas entstehen, welches über den Ablauf AKK aus der Zelle zusammen mit der Lösung L4 abgeführt werden kann. Daneben kann auch Sauerstoff oder/und Kohlendioxid entstehen, was ebenso abgeführt werden kann. Die Mischung aus Chlor, Sauerstoff und/oder COz und Lösung L4 kann dann in einer besonderen Ausführungsform der vorliegenden Erfindung nach dem Fachmann bekannten Verfahren aufgetrennt werden. Genauso kann dann nach Abtrennung der Gase Chlor, Sauerstoff und/oder COz von der Lösung L4 diese nach dem Fachmann bekannten Verfahren voneinander abgetrennt werden.
  • Diese Ergebnisse waren überraschend und im Lichte des Standes der Technik nicht zu erwarten. Durch das erfindungsgemäße Verfahren wird der säurelabile Feststoffelektrolyt vor Korrosion geschützt, ohne dass dabei wie im Stand der Technik Alkoholatlösung aus dem Kathodenraum als Pufferlösung geopfert werden muss. Damit ist das erfindungsgemäße Verfahren effizienter als die in WO 2008/076327 A1 beschriebene Vorgehensweise, in der die Produktlösung für die Mittelkammer verwendet wird, was den Gesamtumsatz schmälert.
  • Bevorzugte Ausführungsformen der Erfindung
  • Abbildung 1 zeigt eine bevorzugte Ausführungsform der Erfindung in einer Dreikammerzelle E <100>. Diese umfasst eine Kathodenkammer KK <102>, eine Mittelkammer KM <103> und eine Anodenkammer KA <101>. Die Anodenkammer KA <101 > und die Mittelkammer KM <103> sind durch eine sich über den ganzen Querschnitt der Dreikammerzelle E <100> erstreckende Anionenaustauschermembran als Diffusionsbarriere D <110> voneinander getrennt. Die Kathodenkammer KK <102> und die Mittelkammer KM <103> sind durch einen für Natriumionen selektiven permeable Festelektrolyten (NaSICON) <111> voneinander getrennt, der sich über den ganzen Querschnitt der Dreikammerzelle E <100> erstreckt. Die Kathodenkammer KK <102> umfasst eine kathodische Elektrode EK <105>, einen Zulauf ZKK <107> und einen Ablauf AKK <109>.
  • Die Anodenkammer KA <101> umfasst eine anodische Elektrode EA <104> und einen Ablauf AKA <106> und ist mit der Mittelkammer KM <103> über die Verbindung VAM <112> verbunden. Die Mittelkammer KM <103> umfasst daneben einen Zulauf ZKM <108>. In der Ausführungsform gemäß Abbildung 1 wird die Verbindung VAM <112> außerhalb der Elektrolysezelle E <100> ausgebildet, insbesondere durch ein Rohr oder Schlauch, dessen Material aus Gummi, Metall oder Kunststoff ausgewählt sein kann, gebildet, mit welcher Flüssigkeit aus der Mittelkammer KM <103> in die Anodenkammer KA <101 > außerhalb der Außenwand WA <117> der Dreikammerzelle E <100> geleitet werden kann. Die Verbindung VAM <112> verbindet einen Ablauf AKM <118>, der am Boden der Mittelkammer KM <103> die Außenwand WA <117> der Elektrolysezelle E <100> durchbricht, mit einem Zulauf ZKA <119>, der am Boden der Anodenkammer KA <101 > die Außenwand WA <117> der Elektrolysezelle E <100> durchbricht.
  • Über den Zulauf ZKK <107> wird ein Elektrolyt L2 <113> in die Kathodenkammer KK <102> geleitet. Der Elektrolyt L2 <113> umfasst Methanol, bevorzugt wird als Elektrolyt L2 <113> eine methanolische Lösung von Natriummethanolat L2 <113> eingesetzt.
  • Über den Zulauf ZKM <108> wird gleichzeitig in die Mittelkammer KM <103> eine wässrige NaCl-Lösung L3 <114> mit pH 10.5 eingeleitet. Diese strömt durch die Mittelkammer KM <103> und die Verbindung VAM <112> in die Anodenkammer KA <101>.
  • Es wird dabei eine Spannung zwischen der kathodischen Elektrode EK <105> und der anodischen Elektrode EA <104> angelegt. Dadurch wird in der Kathodenkammer KK <102> Methanol im Elektrolyten L2 <113> zu Methanolat und H2 reduziert (CH3OH + e → CH3O- + ½ H2). In der Anodenkammer KA <101> findet die Oxidation von Chloridionen zu molekularem Chlor statt (Cl- → ½ Cl2 + e-). Chlorgas Cl2 bildet in Wasser gemäß der Reaktion Cl2 + H2O → HOCI + HCl hypochlorige Säure und Salzsäure, welche mit weiteren Wassermolekülen sauer reagieren. Die Acidität schädigt den NaSICON-Festelektrolyten <111>, wird aber durch die erfindungsgemäße Anordnung in der Anodenkammer KA <101 > begrenzt und somit in der Elektrolysezelle E <100> vom NaSICON-Festelektrolyten FK <111> ferngehalten. Dadurch erhöht sich dessen Lebensdauer beträchtlich.
  • Natriumionen diffundieren dabei von der Mittelkammer KM <103> durch den NaSICON-Festelektrolyten <111 > in die Kathodenkammer KK <102>. Insgesamt erhöht sich dadurch die Konzentration von Natriummethanolat in der Kathodenkammer KK <102>, wodurch eine methanolische Lösung von Natriummethanolat L1 <115> erhalten wird, deren Konzentration von Natriummethanolat gegenüber L2 <113> erhöht wird. Aufgrund der Geometrie der Dreikammerzelle E <100> und der erfindungsgemäßen Führung der wässrigen Lösung L3 <114> wird der säureempfindliche NaSICON-Festelektrolyt <111> vor der gegenüber L3 <114> erhöhten Acidität der in der Anodenkammer KA <101 > resultierenden Lösung L4 <116> geschützt.
  • Die in Abbildung 2 gezeigte Ausführungsform der vorliegenden Erfindung entspricht der in Abbildung 1 gezeigten. Der einzige Unterschied ist dabei, dass die Verbindung VAM <112> innerhalb der Elektrolysezelle E <100> dergestalt ausgebildet ist, dass sich die Diffusionsbarriere D <110> nicht über den gesamten Querschnitt der Dreikammerzelle E <100> erstreckt. Die Verbindung VAM <112> von der Mittelkammer KM <103> in die Anodenkammer KA <101 > wird dadurch durch einen Spalt in der Diffusionsbarriere D <110> gebildet. Es können in weiteren bevorzugten Ausführungsformen der vorliegenden Erfindung auch Diffusionsbarrieren D <110> mit mehr als einem Spalt genutzt werden, so dass sich die Verbindung VAM <112> zwischen Mittelkammer KM <103> und Anodenkammer KA <101 > durch mehrere Spalten ausbildet.
  • Beispiele Erfinderisches Beispiel
  • Natriummethylat (NM) wurde über einen kathodischen Prozess hergestellt, wobei in der Anodenkammer 20 Gew.-%-ige NaCl-Lösung (in Wasser) und in der Kathodenkammer 10 Gew.-%-ige methanolische NM-Lösung zugeführt werden. Dabei bestand die Elektrolysezelle aus drei Kammern, wie in Abbildung 1 gezeigt, wobei der Anolyt durch die mittlere Kammer in die Anodenkammer überführt wurde. Die Verbindung zwischen Mittel- und Anodenkammer wird durch einen Schlauch, der am Boden der Elektrolysezelle angebracht ist, hergestellt. Die Anodenkammer und mittlere Kammer waren durch eine 2.83 cm2 Anionenaustauschermembran (Tokuyama AMX, Ammoniumgruppen auf Polymer) getrennt. Kathoden und Mittelkammer waren durch eine Keramik vom Typ NaSICON mit einer Fläche von 2.83 cm2 getrennt. Die Keramik hat eine chemische Zusammensetzung der Formel Na3.4Zr2.0Si2.4P0.6O12. Die Durchflussrate des Anolyten und jene des Katholyten betrug jeweils 90 mL/h, und es wurde ein Strom von 0.14 A angelegt. Die Temperatur betrug 35 °C. Der Spannungsverlauf (in V) über die Zeit (in Stunden) ist in Abbildung 3 dargestellt (●).
  • Vergleichsbeispiel
  • Das Verfahren wurde mit einer Zweikammerzelle umfassend nur eine Anoden- und eine Kathodenkammer, wobei die Anodenkammer durch die Keramik vom Typ NaSICON von der Kathodenkammer getrennt war, wiederholt. Somit enthielt diese Elektrolysezelle keine Mittelkammer. Dies schlägt sich in einer schnelleren Korrosion der Keramik im Vergleich zum erfinderischen Beispiel nieder, was zu einem schnellen Anstieg der Spannungskurve führt, siehe Abbildung 3, (▲).
  • Ergebnis
  • Durch die Verwendung einer Dreikammerzelle wie im erfindungsgemäßen Verfahren wird die Korrosion des Festelektrolyten verhindert, wobei gleichzeitig kein Alkalialkoholatprodukt für die Mittelkammer geopfert werden muss.

Claims (15)

  1. Verfahren zur Herstellung einer Lösung L1 <115> eines Alkalimetallalkoholats XOR im Alkohol ROH in einer Elektrolysezelle E <100>,
    wobei E <100> mindestens eine Anodenkammer KA <101>, mindestens eine Kathodenkammer KK <102> und mindestens eine dazwischen liegende Mittelkammer KM <103> umfasst,
    wobei KA <101 > eine anodische Elektrode EA <104> und einen Ablauf AKA <106> umfasst,
    wobei KK <102> eine kathodische Elektrode EK <105>, einen Zulauf ZKK <107> und einen Ablauf AKK <109> umfasst,
    wobei KM <103> einen Zulauf ZKM <108> umfasst, durch eine Diffusionsbarriere D <110> von KA <101 > abgetrennt ist und durch einen alkalikationenleitenden Festelektrolyten FK <111> von KK <102> abgetrennt ist,
    wobei KM <103> und KA <101 > durch eine Verbindung VAM <112> miteinander verbunden sind, durch welche Flüssigkeit aus KM <103> in KA <101 > geleitet werden kann,
    wobei das Verfahren die folgenden, gleichzeitig ablaufenden Schritte (a), (b) und (c) umfasst:
    (a) ein Lösung L2 <113> umfassend den Alkohol ROH wird durch KK <102> geleitet,
    (b) eine neutrale oder alkalische, wässrige Lösung L3 <114> eines Salzes S umfassend X als Kation wird durch KM , dann über VAM , dann durch KA <101 > geleitet,
    (c) zwischen EA <104> und EK <105> wird Spannung angelegt,
    wodurch am Ablauf AKK <109> die Lösung L1 <115> erhalten wird, wobei die Konzentration von XOR in L1 <115> höher ist als in L2 <113>,
    und wodurch am Ablauf AKA <106> eine wässrige Lösung L4 <116> von S erhalten wird, wobei die Konzentration von S in L4 <116> geringer ist als in L3 <114>,
    wobei X ein Alkalimetallkation ist und Rein Alkylrest mit 1 bis 4 Kohlenstoffatomen ist.
  2. Verfahren nach Anspruch 1, wobei X aus der Gruppe bestehend aus Li+, Na+, K+ ausgewählt ist.
  3. Verfahren nach Anspruch 1 oder 2, wobei S ein Halogenid, Sulfat, Sulfit, Nitrat, Hydrogencarbonat oder Carbonat von X ist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei R aus der Gruppe bestehend aus Methyl, Ethyl ausgewählt ist.
  5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die Diffusionsbarriere D <110> aus der Gruppe bestehend aus kationenleitenden, anionenleitenden Membranen ausgewählt ist.
  6. Verfahren nach Anspruch 5, wobei die Diffusionsbarriere D <110> eine Natriumkationen leitende Membran ist.
  7. Verfahren nach einem der Ansprüche 1 bis 6, wobei die Fließrichtung von L3 <114> in der Mittelkammer KM <103> der Fließrichtung von L3 <114> in der Anodenkammer KA <101 > entgegengerichtet ist.
  8. Verfahren nach einem der Ansprüche 1 bis 7, wobei die Verbindung VAM <112> innerhalb und/oder außerhalb der Elektrolysezelle E <100> ausgebildet ist.
  9. Verfahren nach einem der Ansprüche 1 bis 8, wobei die Verbindung VAM <112> zwischen Mittelkammer KM <103> und Anodenkammer KA <101> so angeordnet ist, dass mindestens ein Teil der wässrigen Lösung L3 <114> die Mittelkammer KM <103> und die Anodenkammer KA <101> vollständig durchströmt.
  10. Verfahren nach einem der Ansprüche 1 bis 9, wobei der alkaliionenleitende Festelektrolyt FK <111> eine Struktur der Formel MI 1+2w+x-y+z MII w MIII x ZrIV 2-w-x-y MV y (SiO4)z (PO4)3-z aufweist,
    wobei MI ausgewählt aus Na+, Li+ ist,
    M" ein zweiwertiges Metallkation ist,
    MIII ein dreiwertiges Metallkation ist,
    MV ein fünfwertiges Metallkation ist,
    die römischen Indizes I, II, III, IV, V die Oxidationszahlen angeben, in der die jeweiligen Metallkationen vorliegen,
    und w, x, y, z reelle Zahlen sind, wobei gilt, dass 0 ≤ x < 2, 0 ≤ y < 2, 0 ≤ w < 2, 0 ≤ z < 3,
    und wobei w, x, y, z so gewählt werden, dass 1 + 2w + x - y + z ≥ 0 und 2 - w - x - y ≥ 0 gilt.
  11. Verfahren nach einem der Ansprüche 1 bis 10, wobei L2 <113> den Alkohol ROH und ein Alkalimetallalkoholat XOR umfasst.
  12. Verfahren nach Anspruch 11, wobei das Massenverhältnis von XOR zu Alkohol ROH in L2 <113> im Bereich 1 : 100 bis 1 : 5 liegt.
  13. Verfahren nach Anspruch 11 oder 12, wobei die Konzentration von XOR in L1 <115> um das 1.01 bis 2.2-fache höher ist als in L2 <113>.
  14. Verfahren nach einem der Ansprüche 1 bis 13, wobei die Konzentration von X in L3 <114> im Bereich von 3.5 bis 5 mol/l liegt.
  15. Verfahren nach einem der Ansprüche 1 bis 14, welches bei einer Temperatur von 20 bis 70 °C und einem Druck von 0.5 bis 1.5 bar durchgeführt wird.
EP20165238.5A 2020-03-24 2020-03-24 Verfahren zur herstellung von alkalimetallalkoholaten in einer dreikammerelektrolysezelle Active EP3885470B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20165238.5A EP3885470B1 (de) 2020-03-24 2020-03-24 Verfahren zur herstellung von alkalimetallalkoholaten in einer dreikammerelektrolysezelle
ES20165238T ES2955404T3 (es) 2020-03-24 2020-03-24 Procedimiento para la producción de alcoholatos de metal alcalino en una célula electrolítica de tres cámaras
US17/204,629 US11174559B2 (en) 2020-03-24 2021-03-17 Process for preparing alkali metal alkoxides in a three-chamber electrolysis cell
CA3112138A CA3112138C (en) 2020-03-24 2021-03-18 Process for preparing alkali metal alkoxides in a three-chamber electrolysis cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20165238.5A EP3885470B1 (de) 2020-03-24 2020-03-24 Verfahren zur herstellung von alkalimetallalkoholaten in einer dreikammerelektrolysezelle

Publications (2)

Publication Number Publication Date
EP3885470A1 EP3885470A1 (de) 2021-09-29
EP3885470B1 true EP3885470B1 (de) 2023-06-28

Family

ID=69960415

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20165238.5A Active EP3885470B1 (de) 2020-03-24 2020-03-24 Verfahren zur herstellung von alkalimetallalkoholaten in einer dreikammerelektrolysezelle

Country Status (4)

Country Link
US (1) US11174559B2 (de)
EP (1) EP3885470B1 (de)
CA (1) CA3112138C (de)
ES (1) ES2955404T3 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3885471B1 (de) * 2020-03-24 2023-07-19 Evonik Operations GmbH Verbessertes verfahren zur herstellung von natriumalkoholaten
HUE065497T2 (hu) * 2021-06-29 2024-05-28 Evonik Operations Gmbh Háromkamrás elektrolizáló cella alkálifém-alkoholátok elõállítására
EP4112780B1 (de) * 2021-06-29 2023-08-02 Evonik Operations GmbH Dreikammerelektrolysezelle zur herstellung von alkalimetallalkoholaten
EP4112779B1 (de) * 2021-06-29 2023-08-16 Evonik Operations GmbH Dreikammerelektrolysezelle zur herstellung von alkalimetallalkoholaten
WO2023193940A1 (de) * 2022-04-04 2023-10-12 Evonik Operations Gmbh Verbessertes verfahren zur depolymerisierung von polyethylenterephthalat
WO2024083323A1 (de) 2022-10-19 2024-04-25 Evonik Operations Gmbh Verbessertes verfahren zur depolymerisierung von polyethylenterephthalat
WO2024114899A1 (de) 2022-11-30 2024-06-06 Evonik Operations Gmbh Verbessertes verfahren zur herstellung von alkalimetallmethanolaten
WO2024120883A1 (en) 2022-12-07 2024-06-13 Evonik Operations Gmbh Improved process for preparing metal alkoxide compounds
WO2024125775A1 (de) 2022-12-14 2024-06-20 Evonik Operations Gmbh Verbessertes verfahren zur herstellung von metallalkoholatverbindungen
WO2024156568A1 (en) 2023-01-23 2024-08-02 Evonik Operations Gmbh Process for depolymerization of polyalkylene terephthalates in an extruder
WO2024156563A1 (en) 2023-01-23 2024-08-02 Evonik Operations Gmbh Process for depolymerizing polyalkylene terephthalates in mixtures with lower-melting polyolefins
WO2024156567A1 (en) 2023-01-23 2024-08-02 Evonik Operations Gmbh Process for depolymerization of polyalkylene terephthalates in an extruder

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD258143A3 (de) 1986-03-03 1988-07-13 Koethen Ing Hochschule Elektrolysezelle fuer stofftransportgehemmte oder durch konzentrationsabnahmen kinetisch verlangsamte elektrodenreaktionen
US4831146A (en) 1988-03-21 1989-05-16 Air Products And Chemicals, Inc. Process for preparing triacetone amine and other oxopiperidines
DE4233191C2 (de) * 1992-01-16 1995-06-29 Huels Chemische Werke Ag Verfahren zur Herstellung von Alkoholaten
US5389211A (en) 1993-11-08 1995-02-14 Sachem, Inc. Method for producing high purity hydroxides and alkoxides
US5425856A (en) * 1994-04-26 1995-06-20 Occidental Chemical Corporation Method of making alkali metal alcoholates
US6294066B1 (en) 1997-01-23 2001-09-25 Archer Daniels Midland Company Apparatus and process for electrodialysis of salts
DE19844059A1 (de) 1998-09-25 2000-03-30 Degussa Elektrolysezelle und deren Verwendung
EP1312700A3 (de) 2001-11-02 2003-05-28 Degussa AG Verfahren zur Herstellung von Alkalialkoholaten
EP1702089A2 (de) 2003-12-11 2006-09-20 American Pacific Corporation Elektrolytisches verfahren zur herstellung von alkalialkoholaten unter verwendung von ionenleitenden festen keramikmembranen
US8075758B2 (en) * 2003-12-11 2011-12-13 Ceramatec, Inc. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator
US7824536B2 (en) 2003-12-11 2010-11-02 Ceramatec, Inc. Electrolytic method to make alkali alcoholates using ceramic ion conducting solid membranes
US20080173540A1 (en) 2003-12-11 2008-07-24 Joshi Ashok V Electrolytic Cell for Producing Alkali Alcoholates
DE10360758A1 (de) 2003-12-23 2005-07-28 Degussa Ag Elektrochemische Herstellung von Alkalialkoholaten mit Hilfe einer keramischen Festelektrolytmembran
DE102005051162A1 (de) 2005-10-24 2007-04-26 Basf Ag Oberflächenstrukturierte Membranen und mit Katalysator beschichtete Membranen sowie Membran-Elektroden-Einheiten daraus
US20070158205A1 (en) 2006-01-11 2007-07-12 Shekar Balagopal Synthesis of Biodiesel Using Alkali Ion Conductive Ceramic Membranes
WO2009059315A1 (en) 2007-11-02 2009-05-07 Ceramatec, Inc Electrolytic process to separate alkali metal ions from alkali salts of glycerine
WO2010027825A2 (en) 2008-08-25 2010-03-11 Ceramatec, Inc. Methods for producing sodium hypochlorite with a three-comportment apparatus containing an acidic anolyte
DE102010062804A1 (de) 2010-01-12 2011-07-14 Evonik Degussa GmbH, 45128 Verfahren zur Herstellung von 1,1 Diarylalkanen und Derivativen davon
WO2012048032A2 (en) 2010-10-07 2012-04-12 Ceramatec, Inc. Chemical systems and methods for operating an electrochemical cell with an acidic anolyte
WO2014008410A1 (en) 2012-07-03 2014-01-09 Ceramatec, Inc. Apparatus and method of producing metal in a nasicon electrolytic cell
KR101719293B1 (ko) 2015-01-13 2017-03-23 한국과학기술연구원 다공성 나피온 막 및 그 제조 방법
DE102015013155A1 (de) 2015-10-09 2017-04-13 Forschungszentrum Jülich GmbH Elektrolytmaterial mit NASICON-Struktur für Feststoff-Natriumionenbatterien sowie Verfahren zu deren Herstellung

Also Published As

Publication number Publication date
EP3885470A1 (de) 2021-09-29
US20210301409A1 (en) 2021-09-30
ES2955404T3 (es) 2023-11-30
CA3112138C (en) 2023-03-14
US11174559B2 (en) 2021-11-16
CA3112138A1 (en) 2021-09-24

Similar Documents

Publication Publication Date Title
EP3885470B1 (de) Verfahren zur herstellung von alkalimetallalkoholaten in einer dreikammerelektrolysezelle
EP3885471B1 (de) Verbessertes verfahren zur herstellung von natriumalkoholaten
EP4043616B1 (de) Verfahren zur herstellung von alkalimetallalkoholaten in einer dreikammerelektrolysezelle
EP4112778B1 (de) Dreikammerelektrolysezelle zur herstellung von alkalimetallalkoholaten
EP4112780B1 (de) Dreikammerelektrolysezelle zur herstellung von alkalimetallalkoholaten
EP4112779B1 (de) Dreikammerelektrolysezelle zur herstellung von alkalimetallalkoholaten
DE2844499C2 (de) Verfahren zum Herstellen eines Halogens
EP1600426B1 (de) Verfahren und Vorrichtung zur Abtrennung von Sulfationen aus Wässern und zur Einbringung von Pufferkapazität in Wässer
DE2451846A1 (de) Verfahren zur elektrolytischen herstellung von metallhydroxidloesungen
EP4384656A1 (de) Verfahren zur herstellung von alkalimetallalkoholaten in einer elektrolysezelle
EP4124675B1 (de) Bruchstabile trennwand umfassend festelektrolytkeramiken für elektrolysezellen
EP4144888A1 (de) Verfahren zur herstellung von alkalimetallalkoholaten in einer elektrolysezelle
EP4124677A1 (de) Bruchstabile trennwand umfassend festelektrolytkeramiken für elektrolysezellen
DE102004012334A1 (de) Verfahren zur Herstellung von Metallhydroxiden, insbesondere Lithiumhydroxid
EP4144890A1 (de) Verfahren zur herstellung von alkalimetallalkoholaten in einer elektrolysezelle
DE102020207186A1 (de) CO2 Elektrolyse mit Gasdiffusionselektrode und Salzbildungsvermeidung durch Elektrolytwahl
EP4399347A1 (de) Verfahren zur herstellung von alkalimetallalkoholaten in einer elektrolysezelle
DE2434921B2 (de) Elektrolysezelle und Verfahren zur Elektrolyse ionisierbarer chemischer Verbindungen
WO2023193940A1 (de) Verbessertes verfahren zur depolymerisierung von polyethylenterephthalat
WO2024083323A1 (de) Verbessertes verfahren zur depolymerisierung von polyethylenterephthalat
DE2745542A1 (de) Verfahren zur elektrolyse von salzloesungen durch quecksilberkathoden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211021

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502020003914

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C25B0003040000

Ipc: C25B0013040000

Ref country code: DE

Free format text: PREVIOUS MAIN CLASS: C25B0003040000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C25B 9/19 20210101ALI20230303BHEP

Ipc: C25B 3/25 20210101ALI20230303BHEP

Ipc: C07C 31/30 20060101ALI20230303BHEP

Ipc: B01D 61/00 20060101ALI20230303BHEP

Ipc: C25B 13/04 20060101AFI20230303BHEP

INTG Intention to grant announced

Effective date: 20230324

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK OPERATIONS GMBH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1582771

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020003914

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230929

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2955404

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20231130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231030

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231028

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020003914

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240320

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240328

Year of fee payment: 5

Ref country code: BE

Payment date: 20240320

Year of fee payment: 5

26N No opposition filed

Effective date: 20240402

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240429

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230628